daily update
[deliverable/binutils-gdb.git] / gold / resolve.cc
CommitLineData
14bfc3f5
ILT
1// resolve.cc -- symbol resolution for gold
2
4b95cf5c 3// Copyright (C) 2006-2014 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
25#include "elfcpp.h"
26#include "target.h"
27#include "object.h"
28#include "symtab.h"
89fc3421 29#include "plugin.h"
14bfc3f5
ILT
30
31namespace gold
32{
33
1564db8d
ILT
34// Symbol methods used in this file.
35
75517b77
ILT
36// This symbol is being overridden by another symbol whose version is
37// VERSION. Update the VERSION_ field accordingly.
38
39inline void
2ea97941 40Symbol::override_version(const char* version)
75517b77 41{
2ea97941 42 if (version == NULL)
75517b77
ILT
43 {
44 // This is the case where this symbol is NAME/VERSION, and the
45 // version was not marked as hidden. That makes it the default
46 // version, so we create NAME/NULL. Later we see another symbol
47 // NAME/NULL, and that symbol is overriding this one. In this
48 // case, since NAME/VERSION is the default, we make NAME/NULL
49 // override NAME/VERSION as well. They are already the same
50 // Symbol structure. Setting the VERSION_ field to NULL ensures
51 // that it will be output with the correct, empty, version.
2ea97941 52 this->version_ = version;
75517b77
ILT
53 }
54 else
55 {
56 // This is the case where this symbol is NAME/VERSION_ONE, and
57 // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is
58 // overriding NAME. If VERSION_ONE and VERSION_TWO are
59 // different, then this can only happen when VERSION_ONE is NULL
60 // and VERSION_TWO is not hidden.
2ea97941
ILT
61 gold_assert(this->version_ == version || this->version_ == NULL);
62 this->version_ = version;
75517b77
ILT
63 }
64}
65
0602e05a
ILT
66// This symbol is being overidden by another symbol whose visibility
67// is VISIBILITY. Updated the VISIBILITY_ field accordingly.
68
69inline void
2ea97941 70Symbol::override_visibility(elfcpp::STV visibility)
0602e05a
ILT
71{
72 // The rule for combining visibility is that we always choose the
73 // most constrained visibility. In order of increasing constraint,
74 // visibility goes PROTECTED, HIDDEN, INTERNAL. This is the reverse
75 // of the numeric values, so the effect is that we always want the
76 // smallest non-zero value.
2ea97941 77 if (visibility != elfcpp::STV_DEFAULT)
0602e05a
ILT
78 {
79 if (this->visibility_ == elfcpp::STV_DEFAULT)
2ea97941
ILT
80 this->visibility_ = visibility;
81 else if (this->visibility_ > visibility)
82 this->visibility_ = visibility;
0602e05a
ILT
83 }
84}
85
1564db8d
ILT
86// Override the fields in Symbol.
87
88template<int size, bool big_endian>
89void
90Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 91 unsigned int st_shndx, bool is_ordinary,
2ea97941 92 Object* object, const char* version)
1564db8d 93{
a3ad94ed 94 gold_assert(this->source_ == FROM_OBJECT);
2ea97941
ILT
95 this->u_.from_object.object = object;
96 this->override_version(version);
d491d34e
ILT
97 this->u_.from_object.shndx = st_shndx;
98 this->is_ordinary_shndx_ = is_ordinary;
32364e50
CC
99 // Don't override st_type from plugin placeholder symbols.
100 if (object->pluginobj() == NULL)
101 this->type_ = sym.get_st_type();
1564db8d 102 this->binding_ = sym.get_st_bind();
0602e05a 103 this->override_visibility(sym.get_st_visibility());
ead1e424 104 this->nonvis_ = sym.get_st_nonvis();
2ea97941 105 if (object->is_dynamic())
0d4f1889
ILT
106 this->in_dyn_ = true;
107 else
108 this->in_reg_ = true;
1564db8d
ILT
109}
110
111// Override the fields in Sized_symbol.
112
113template<int size>
114template<bool big_endian>
115void
116Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym,
d491d34e 117 unsigned st_shndx, bool is_ordinary,
2ea97941 118 Object* object, const char* version)
1564db8d 119{
2ea97941 120 this->override_base(sym, st_shndx, is_ordinary, object, version);
1564db8d 121 this->value_ = sym.get_st_value();
ead1e424 122 this->symsize_ = sym.get_st_size();
1564db8d
ILT
123}
124
aeddab66
ILT
125// Override TOSYM with symbol FROMSYM, defined in OBJECT, with version
126// VERSION. This handles all aliases of TOSYM.
127
128template<int size, bool big_endian>
129void
130Symbol_table::override(Sized_symbol<size>* tosym,
131 const elfcpp::Sym<size, big_endian>& fromsym,
d491d34e 132 unsigned int st_shndx, bool is_ordinary,
2ea97941 133 Object* object, const char* version)
aeddab66 134{
2ea97941 135 tosym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
136 if (tosym->has_alias())
137 {
138 Symbol* sym = this->weak_aliases_[tosym];
139 gold_assert(sym != NULL);
7d1a9ebb 140 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
141 do
142 {
2ea97941 143 ssym->override(fromsym, st_shndx, is_ordinary, object, version);
aeddab66
ILT
144 sym = this->weak_aliases_[ssym];
145 gold_assert(sym != NULL);
7d1a9ebb 146 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
147 }
148 while (ssym != tosym);
149 }
150}
151
86f2e683
ILT
152// The resolve functions build a little code for each symbol.
153// Bit 0: 0 for global, 1 for weak.
154// Bit 1: 0 for regular object, 1 for shared object
155// Bits 2-3: 0 for normal, 1 for undefined, 2 for common
156// This gives us values from 0 to 11.
157
158static const int global_or_weak_shift = 0;
159static const unsigned int global_flag = 0 << global_or_weak_shift;
160static const unsigned int weak_flag = 1 << global_or_weak_shift;
161
162static const int regular_or_dynamic_shift = 1;
163static const unsigned int regular_flag = 0 << regular_or_dynamic_shift;
164static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift;
165
166static const int def_undef_or_common_shift = 2;
167static const unsigned int def_flag = 0 << def_undef_or_common_shift;
168static const unsigned int undef_flag = 1 << def_undef_or_common_shift;
169static const unsigned int common_flag = 2 << def_undef_or_common_shift;
170
70e654ba
ILT
171// This convenience function combines all the flags based on facts
172// about the symbol.
173
174static unsigned int
175symbol_to_bits(elfcpp::STB binding, bool is_dynamic,
d491d34e 176 unsigned int shndx, bool is_ordinary, elfcpp::STT type)
70e654ba
ILT
177{
178 unsigned int bits;
179
180 switch (binding)
181 {
182 case elfcpp::STB_GLOBAL:
adcf2816 183 case elfcpp::STB_GNU_UNIQUE:
70e654ba
ILT
184 bits = global_flag;
185 break;
186
187 case elfcpp::STB_WEAK:
188 bits = weak_flag;
189 break;
190
191 case elfcpp::STB_LOCAL:
192 // We should only see externally visible symbols in the symbol
193 // table.
194 gold_error(_("invalid STB_LOCAL symbol in external symbols"));
195 bits = global_flag;
196
197 default:
198 // Any target which wants to handle STB_LOOS, etc., needs to
199 // define a resolve method.
ac897c20 200 gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding));
70e654ba
ILT
201 bits = global_flag;
202 }
203
204 if (is_dynamic)
205 bits |= dynamic_flag;
206 else
207 bits |= regular_flag;
208
209 switch (shndx)
210 {
211 case elfcpp::SHN_UNDEF:
212 bits |= undef_flag;
213 break;
214
215 case elfcpp::SHN_COMMON:
d491d34e
ILT
216 if (!is_ordinary)
217 bits |= common_flag;
70e654ba
ILT
218 break;
219
220 default:
221 if (type == elfcpp::STT_COMMON)
222 bits |= common_flag;
8a5e3e08
ILT
223 else if (!is_ordinary && Symbol::is_common_shndx(shndx))
224 bits |= common_flag;
70e654ba
ILT
225 else
226 bits |= def_flag;
227 break;
228 }
229
230 return bits;
231}
232
14bfc3f5 233// Resolve a symbol. This is called the second and subsequent times
d491d34e
ILT
234// we see a symbol. TO is the pre-existing symbol. ST_SHNDX is the
235// section index for SYM, possibly adjusted for many sections.
236// IS_ORDINARY is whether ST_SHNDX is a normal section index rather
237// than a special code. ORIG_ST_SHNDX is the original section index,
238// before any munging because of discarded sections, except that all
95d14cd3 239// non-ordinary section indexes are mapped to SHN_UNDEF. VERSION is
d491d34e 240// the version of SYM.
14bfc3f5
ILT
241
242template<int size, bool big_endian>
243void
1564db8d 244Symbol_table::resolve(Sized_symbol<size>* to,
14bfc3f5 245 const elfcpp::Sym<size, big_endian>& sym,
d491d34e
ILT
246 unsigned int st_shndx, bool is_ordinary,
247 unsigned int orig_st_shndx,
14b31740 248 Object* object, const char* version)
14bfc3f5 249{
534b4e5f
ILT
250 // It's possible for a symbol to be defined in an object file
251 // using .symver to give it a version, and for there to also be
252 // a linker script giving that symbol the same version. We
253 // don't want to give a multiple-definition error for this
254 // harmless redefinition.
255 bool to_is_ordinary;
256 if (to->source() == Symbol::FROM_OBJECT
257 && to->object() == object
258 && is_ordinary
259 && to->is_defined()
260 && to->shndx(&to_is_ordinary) == st_shndx
261 && to_is_ordinary
262 && to->value() == sym.get_st_value())
263 return;
264
029ba973 265 if (parameters->target().has_resolve())
14bfc3f5 266 {
274e99f9 267 Sized_target<size, big_endian>* sized_target;
029ba973 268 sized_target = parameters->sized_target<size, big_endian>();
14b31740 269 sized_target->resolve(to, sym, object, version);
14bfc3f5
ILT
270 return;
271 }
272
86f2e683
ILT
273 if (!object->is_dynamic())
274 {
275 // Record that we've seen this symbol in a regular object.
276 to->set_in_reg();
277 }
2da73f13
CC
278 else if (st_shndx == elfcpp::SHN_UNDEF
279 && (to->visibility() == elfcpp::STV_HIDDEN
280 || to->visibility() == elfcpp::STV_INTERNAL))
645afe0c
CC
281 {
282 // A dynamic object cannot reference a hidden or internal symbol
283 // defined in another object.
284 gold_warning(_("%s symbol '%s' in %s is referenced by DSO %s"),
285 (to->visibility() == elfcpp::STV_HIDDEN
286 ? "hidden"
287 : "internal"),
288 to->demangled_name().c_str(),
289 to->object()->name().c_str(),
290 object->name().c_str());
291 return;
292 }
86f2e683
ILT
293 else
294 {
295 // Record that we've seen this symbol in a dynamic object.
296 to->set_in_dyn();
297 }
14bfc3f5 298
89fc3421
CC
299 // Record if we've seen this symbol in a real ELF object (i.e., the
300 // symbol is referenced from outside the world known to the plugin).
f7c5b166 301 if (object->pluginobj() == NULL && !object->is_dynamic())
89fc3421
CC
302 to->set_in_real_elf();
303
304 // If we're processing replacement files, allow new symbols to override
305 // the placeholders from the plugin objects.
6168c2a1
RÁE
306 // Treat common symbols specially since it is possible that an ELF
307 // file increased the size of the alignment.
89fc3421
CC
308 if (to->source() == Symbol::FROM_OBJECT)
309 {
310 Pluginobj* obj = to->object()->pluginobj();
311 if (obj != NULL
6168c2a1
RÁE
312 && parameters->options().plugins()->in_replacement_phase()
313 && !to->is_common())
89fc3421
CC
314 {
315 this->override(to, sym, st_shndx, is_ordinary, object, version);
316 return;
317 }
318 }
319
ba4d53bf
ILT
320 // A new weak undefined reference, merging with an old weak
321 // reference, could be a One Definition Rule (ODR) violation --
322 // especially if the types or sizes of the references differ. We'll
323 // store such pairs and look them up later to make sure they
324 // actually refer to the same lines of code. We also check
325 // combinations of weak and strong, which might occur if one case is
326 // inline and the other is not. (Note: not all ODR violations can
327 // be found this way, and not everything this finds is an ODR
328 // violation. But it's helpful to warn about.)
ba4d53bf
ILT
329 if (parameters->options().detect_odr_violations()
330 && (sym.get_st_bind() == elfcpp::STB_WEAK
331 || to->binding() == elfcpp::STB_WEAK)
332 && orig_st_shndx != elfcpp::SHN_UNDEF
333 && to->shndx(&to_is_ordinary) != elfcpp::SHN_UNDEF
334 && to_is_ordinary
335 && sym.get_st_size() != 0 // Ignore weird 0-sized symbols.
336 && to->symsize() != 0
337 && (sym.get_st_type() != to->type()
338 || sym.get_st_size() != to->symsize())
339 // C does not have a concept of ODR, so we only need to do this
340 // on C++ symbols. These have (mangled) names starting with _Z.
341 && to->name()[0] == '_' && to->name()[1] == 'Z')
342 {
343 Symbol_location fromloc
76677ad0 344 = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) };
ba4d53bf 345 Symbol_location toloc = { to->object(), to->shndx(&to_is_ordinary),
76677ad0 346 static_cast<off_t>(to->value()) };
ba4d53bf
ILT
347 this->candidate_odr_violations_[to->name()].insert(fromloc);
348 this->candidate_odr_violations_[to->name()].insert(toloc);
349 }
350
32364e50
CC
351 // Plugins don't provide a symbol type, so adopt the existing type
352 // if the FROM symbol is from a plugin.
353 elfcpp::STT fromtype = (object->pluginobj() != NULL
354 ? to->type()
355 : sym.get_st_type());
70e654ba
ILT
356 unsigned int frombits = symbol_to_bits(sym.get_st_bind(),
357 object->is_dynamic(),
d491d34e 358 st_shndx, is_ordinary,
32364e50 359 fromtype);
14bfc3f5 360
86f2e683 361 bool adjust_common_sizes;
ce279a62 362 bool adjust_dyndef;
1ae4d23b 363 typename Sized_symbol<size>::Size_type tosize = to->symsize();
32364e50 364 if (Symbol_table::should_override(to, frombits, fromtype, OBJECT,
62855347 365 object, &adjust_common_sizes,
ce279a62 366 &adjust_dyndef))
86f2e683 367 {
ce279a62 368 elfcpp::STB tobinding = to->binding();
fd325007 369 typename Sized_symbol<size>::Value_type tovalue = to->value();
d491d34e 370 this->override(to, sym, st_shndx, is_ordinary, object, version);
fd325007
ILT
371 if (adjust_common_sizes)
372 {
373 if (tosize > to->symsize())
374 to->set_symsize(tosize);
375 if (tovalue > to->value())
376 to->set_value(tovalue);
377 }
ce279a62
CC
378 if (adjust_dyndef)
379 {
380 // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF.
381 // Remember which kind of UNDEF it was for future reference.
382 to->set_undef_binding(tobinding);
383 }
86f2e683
ILT
384 }
385 else
386 {
fd325007
ILT
387 if (adjust_common_sizes)
388 {
389 if (sym.get_st_size() > tosize)
390 to->set_symsize(sym.get_st_size());
391 if (sym.get_st_value() > to->value())
392 to->set_value(sym.get_st_value());
393 }
ce279a62
CC
394 if (adjust_dyndef)
395 {
396 // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF.
397 // Remember which kind of UNDEF it was.
398 to->set_undef_binding(sym.get_st_bind());
399 }
0602e05a
ILT
400 // The ELF ABI says that even for a reference to a symbol we
401 // merge the visibility.
402 to->override_visibility(sym.get_st_visibility());
86f2e683 403 }
70e654ba 404
1ae4d23b
ILT
405 if (adjust_common_sizes && parameters->options().warn_common())
406 {
407 if (tosize > sym.get_st_size())
408 Symbol_table::report_resolve_problem(false,
409 _("common of '%s' overriding "
410 "smaller common"),
99fff23b 411 to, OBJECT, object);
1ae4d23b
ILT
412 else if (tosize < sym.get_st_size())
413 Symbol_table::report_resolve_problem(false,
414 _("common of '%s' overidden by "
415 "larger common"),
99fff23b 416 to, OBJECT, object);
1ae4d23b
ILT
417 else
418 Symbol_table::report_resolve_problem(false,
419 _("multiple common of '%s'"),
99fff23b 420 to, OBJECT, object);
1ae4d23b 421 }
86f2e683
ILT
422}
423
424// Handle the core of symbol resolution. This is called with the
425// existing symbol, TO, and a bitflag describing the new symbol. This
426// returns true if we should override the existing symbol with the new
427// one, and returns false otherwise. It sets *ADJUST_COMMON_SIZES to
428// true if we should set the symbol size to the maximum of the TO and
429// FROM sizes. It handles error conditions.
430
431bool
432Symbol_table::should_override(const Symbol* to, unsigned int frombits,
62855347
ILT
433 elfcpp::STT fromtype, Defined defined,
434 Object* object, bool* adjust_common_sizes,
ce279a62 435 bool* adjust_dyndef)
86f2e683
ILT
436{
437 *adjust_common_sizes = false;
ce279a62 438 *adjust_dyndef = false;
86f2e683 439
e5756efb 440 unsigned int tobits;
f3e9c5c5
ILT
441 if (to->source() == Symbol::IS_UNDEFINED)
442 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true,
443 to->type());
444 else if (to->source() != Symbol::FROM_OBJECT)
d491d34e 445 tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false,
e5756efb
ILT
446 to->type());
447 else
d491d34e
ILT
448 {
449 bool is_ordinary;
450 unsigned int shndx = to->shndx(&is_ordinary);
451 tobits = symbol_to_bits(to->binding(),
452 to->object()->is_dynamic(),
453 shndx,
454 is_ordinary,
455 to->type());
456 }
14bfc3f5 457
32364e50
CC
458 if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS)
459 && !to->is_placeholder())
62855347
ILT
460 Symbol_table::report_resolve_problem(true,
461 _("symbol '%s' used as both __thread "
462 "and non-__thread"),
463 to, defined, object);
1564db8d 464
14bfc3f5
ILT
465 // We use a giant switch table for symbol resolution. This code is
466 // unwieldy, but: 1) it is efficient; 2) we definitely handle all
467 // cases; 3) it is easy to change the handling of a particular case.
468 // The alternative would be a series of conditionals, but it is easy
469 // to get the ordering wrong. This could also be done as a table,
470 // but that is no easier to understand than this large switch
471 // statement.
472
86f2e683
ILT
473 // These are the values generated by the bit codes.
474 enum
475 {
476 DEF = global_flag | regular_flag | def_flag,
477 WEAK_DEF = weak_flag | regular_flag | def_flag,
478 DYN_DEF = global_flag | dynamic_flag | def_flag,
479 DYN_WEAK_DEF = weak_flag | dynamic_flag | def_flag,
480 UNDEF = global_flag | regular_flag | undef_flag,
481 WEAK_UNDEF = weak_flag | regular_flag | undef_flag,
482 DYN_UNDEF = global_flag | dynamic_flag | undef_flag,
483 DYN_WEAK_UNDEF = weak_flag | dynamic_flag | undef_flag,
484 COMMON = global_flag | regular_flag | common_flag,
485 WEAK_COMMON = weak_flag | regular_flag | common_flag,
486 DYN_COMMON = global_flag | dynamic_flag | common_flag,
487 DYN_WEAK_COMMON = weak_flag | dynamic_flag | common_flag
488 };
489
14bfc3f5
ILT
490 switch (tobits * 16 + frombits)
491 {
492 case DEF * 16 + DEF:
12e14209 493 // Two definitions of the same symbol.
878405a8
ILT
494
495 // If either symbol is defined by an object included using
496 // --just-symbols, then don't warn. This is for compatibility
497 // with the GNU linker. FIXME: This is a hack.
498 if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols())
99fff23b 499 || (object != NULL && object->just_symbols()))
878405a8
ILT
500 return false;
501
9c4ae156 502 if (!parameters->options().muldefs())
30bc8c46
ILT
503 Symbol_table::report_resolve_problem(true,
504 _("multiple definition of '%s'"),
505 to, defined, object);
86f2e683 506 return false;
14bfc3f5
ILT
507
508 case WEAK_DEF * 16 + DEF:
1564db8d
ILT
509 // We've seen a weak definition, and now we see a strong
510 // definition. In the original SVR4 linker, this was treated as
511 // a multiple definition error. In the Solaris linker and the
512 // GNU linker, a weak definition followed by a regular
513 // definition causes the weak definition to be overridden. We
514 // are currently compatible with the GNU linker. In the future
515 // we should add a target specific option to change this.
516 // FIXME.
86f2e683 517 return true;
14bfc3f5
ILT
518
519 case DYN_DEF * 16 + DEF:
520 case DYN_WEAK_DEF * 16 + DEF:
1564db8d
ILT
521 // We've seen a definition in a dynamic object, and now we see a
522 // definition in a regular object. The definition in the
523 // regular object overrides the definition in the dynamic
524 // object.
86f2e683 525 return true;
1564db8d 526
14bfc3f5
ILT
527 case UNDEF * 16 + DEF:
528 case WEAK_UNDEF * 16 + DEF:
529 case DYN_UNDEF * 16 + DEF:
530 case DYN_WEAK_UNDEF * 16 + DEF:
1564db8d
ILT
531 // We've seen an undefined reference, and now we see a
532 // definition. We use the definition.
86f2e683 533 return true;
1564db8d 534
14bfc3f5
ILT
535 case COMMON * 16 + DEF:
536 case WEAK_COMMON * 16 + DEF:
537 case DYN_COMMON * 16 + DEF:
538 case DYN_WEAK_COMMON * 16 + DEF:
1564db8d 539 // We've seen a common symbol and now we see a definition. The
1ae4d23b
ILT
540 // definition overrides.
541 if (parameters->options().warn_common())
542 Symbol_table::report_resolve_problem(false,
543 _("definition of '%s' overriding "
544 "common"),
99fff23b 545 to, defined, object);
86f2e683 546 return true;
14bfc3f5
ILT
547
548 case DEF * 16 + WEAK_DEF:
549 case WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
550 // We've seen a definition and now we see a weak definition. We
551 // ignore the new weak definition.
86f2e683 552 return false;
1564db8d 553
14bfc3f5
ILT
554 case DYN_DEF * 16 + WEAK_DEF:
555 case DYN_WEAK_DEF * 16 + WEAK_DEF:
1564db8d
ILT
556 // We've seen a dynamic definition and now we see a regular weak
557 // definition. The regular weak definition overrides.
86f2e683 558 return true;
1564db8d 559
14bfc3f5
ILT
560 case UNDEF * 16 + WEAK_DEF:
561 case WEAK_UNDEF * 16 + WEAK_DEF:
562 case DYN_UNDEF * 16 + WEAK_DEF:
563 case DYN_WEAK_UNDEF * 16 + WEAK_DEF:
1564db8d 564 // A weak definition of a currently undefined symbol.
86f2e683 565 return true;
1564db8d 566
14bfc3f5
ILT
567 case COMMON * 16 + WEAK_DEF:
568 case WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 569 // A weak definition does not override a common definition.
86f2e683 570 return false;
1564db8d 571
14bfc3f5
ILT
572 case DYN_COMMON * 16 + WEAK_DEF:
573 case DYN_WEAK_COMMON * 16 + WEAK_DEF:
1564db8d 574 // A weak definition does override a definition in a dynamic
1ae4d23b
ILT
575 // object.
576 if (parameters->options().warn_common())
577 Symbol_table::report_resolve_problem(false,
578 _("definition of '%s' overriding "
579 "dynamic common definition"),
99fff23b 580 to, defined, object);
86f2e683 581 return true;
14bfc3f5
ILT
582
583 case DEF * 16 + DYN_DEF:
584 case WEAK_DEF * 16 + DYN_DEF:
585 case DYN_DEF * 16 + DYN_DEF:
586 case DYN_WEAK_DEF * 16 + DYN_DEF:
1564db8d 587 // Ignore a dynamic definition if we already have a definition.
86f2e683 588 return false;
1564db8d 589
14bfc3f5 590 case UNDEF * 16 + DYN_DEF:
14bfc3f5
ILT
591 case DYN_UNDEF * 16 + DYN_DEF:
592 case DYN_WEAK_UNDEF * 16 + DYN_DEF:
1564db8d 593 // Use a dynamic definition if we have a reference.
86f2e683 594 return true;
1564db8d 595
ce279a62
CC
596 case WEAK_UNDEF * 16 + DYN_DEF:
597 // When overriding a weak undef by a dynamic definition,
598 // we need to remember that the original undef was weak.
599 *adjust_dyndef = true;
600 return true;
601
14bfc3f5
ILT
602 case COMMON * 16 + DYN_DEF:
603 case WEAK_COMMON * 16 + DYN_DEF:
604 case DYN_COMMON * 16 + DYN_DEF:
605 case DYN_WEAK_COMMON * 16 + DYN_DEF:
1564db8d
ILT
606 // Ignore a dynamic definition if we already have a common
607 // definition.
86f2e683 608 return false;
14bfc3f5
ILT
609
610 case DEF * 16 + DYN_WEAK_DEF:
611 case WEAK_DEF * 16 + DYN_WEAK_DEF:
612 case DYN_DEF * 16 + DYN_WEAK_DEF:
613 case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF:
1564db8d
ILT
614 // Ignore a weak dynamic definition if we already have a
615 // definition.
86f2e683 616 return false;
1564db8d 617
14bfc3f5 618 case UNDEF * 16 + DYN_WEAK_DEF:
74f67560
DK
619 // When overriding an undef by a dynamic weak definition,
620 // we need to remember that the original undef was not weak.
621 *adjust_dyndef = true;
622 return true;
623
14bfc3f5
ILT
624 case DYN_UNDEF * 16 + DYN_WEAK_DEF:
625 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF:
1564db8d 626 // Use a weak dynamic definition if we have a reference.
86f2e683 627 return true;
1564db8d 628
ce279a62
CC
629 case WEAK_UNDEF * 16 + DYN_WEAK_DEF:
630 // When overriding a weak undef by a dynamic definition,
631 // we need to remember that the original undef was weak.
632 *adjust_dyndef = true;
633 return true;
634
14bfc3f5
ILT
635 case COMMON * 16 + DYN_WEAK_DEF:
636 case WEAK_COMMON * 16 + DYN_WEAK_DEF:
637 case DYN_COMMON * 16 + DYN_WEAK_DEF:
638 case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF:
1564db8d
ILT
639 // Ignore a weak dynamic definition if we already have a common
640 // definition.
86f2e683 641 return false;
14bfc3f5
ILT
642
643 case DEF * 16 + UNDEF:
644 case WEAK_DEF * 16 + UNDEF:
14bfc3f5 645 case UNDEF * 16 + UNDEF:
ead1e424 646 // A new undefined reference tells us nothing.
86f2e683 647 return false;
ead1e424 648
ce279a62
CC
649 case DYN_DEF * 16 + UNDEF:
650 case DYN_WEAK_DEF * 16 + UNDEF:
651 // For a dynamic def, we need to remember which kind of undef we see.
652 *adjust_dyndef = true;
653 return false;
654
14bfc3f5
ILT
655 case WEAK_UNDEF * 16 + UNDEF:
656 case DYN_UNDEF * 16 + UNDEF:
657 case DYN_WEAK_UNDEF * 16 + UNDEF:
ead1e424 658 // A strong undef overrides a dynamic or weak undef.
86f2e683 659 return true;
ead1e424 660
14bfc3f5
ILT
661 case COMMON * 16 + UNDEF:
662 case WEAK_COMMON * 16 + UNDEF:
663 case DYN_COMMON * 16 + UNDEF:
664 case DYN_WEAK_COMMON * 16 + UNDEF:
1564db8d 665 // A new undefined reference tells us nothing.
86f2e683 666 return false;
14bfc3f5
ILT
667
668 case DEF * 16 + WEAK_UNDEF:
669 case WEAK_DEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
670 case UNDEF * 16 + WEAK_UNDEF:
671 case WEAK_UNDEF * 16 + WEAK_UNDEF:
672 case DYN_UNDEF * 16 + WEAK_UNDEF:
14bfc3f5
ILT
673 case COMMON * 16 + WEAK_UNDEF:
674 case WEAK_COMMON * 16 + WEAK_UNDEF:
675 case DYN_COMMON * 16 + WEAK_UNDEF:
676 case DYN_WEAK_COMMON * 16 + WEAK_UNDEF:
a4649286
DK
677 // A new weak undefined reference tells us nothing unless the
678 // exisiting symbol is a dynamic weak reference.
86f2e683 679 return false;
14bfc3f5 680
a4649286
DK
681 case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF:
682 // A new weak reference overrides an existing dynamic weak reference.
683 // This is necessary because a dynamic weak reference remembers
684 // the old binding, which may not be weak. If we keeps the existing
685 // dynamic weak reference, the weakness may be dropped in the output.
686 return true;
687
ce279a62
CC
688 case DYN_DEF * 16 + WEAK_UNDEF:
689 case DYN_WEAK_DEF * 16 + WEAK_UNDEF:
690 // For a dynamic def, we need to remember which kind of undef we see.
691 *adjust_dyndef = true;
692 return false;
693
14bfc3f5
ILT
694 case DEF * 16 + DYN_UNDEF:
695 case WEAK_DEF * 16 + DYN_UNDEF:
696 case DYN_DEF * 16 + DYN_UNDEF:
697 case DYN_WEAK_DEF * 16 + DYN_UNDEF:
698 case UNDEF * 16 + DYN_UNDEF:
699 case WEAK_UNDEF * 16 + DYN_UNDEF:
700 case DYN_UNDEF * 16 + DYN_UNDEF:
701 case DYN_WEAK_UNDEF * 16 + DYN_UNDEF:
702 case COMMON * 16 + DYN_UNDEF:
703 case WEAK_COMMON * 16 + DYN_UNDEF:
704 case DYN_COMMON * 16 + DYN_UNDEF:
705 case DYN_WEAK_COMMON * 16 + DYN_UNDEF:
1564db8d 706 // A new dynamic undefined reference tells us nothing.
86f2e683 707 return false;
14bfc3f5
ILT
708
709 case DEF * 16 + DYN_WEAK_UNDEF:
710 case WEAK_DEF * 16 + DYN_WEAK_UNDEF:
711 case DYN_DEF * 16 + DYN_WEAK_UNDEF:
712 case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF:
713 case UNDEF * 16 + DYN_WEAK_UNDEF:
714 case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
715 case DYN_UNDEF * 16 + DYN_WEAK_UNDEF:
716 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF:
717 case COMMON * 16 + DYN_WEAK_UNDEF:
718 case WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
719 case DYN_COMMON * 16 + DYN_WEAK_UNDEF:
720 case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF:
1564db8d 721 // A new weak dynamic undefined reference tells us nothing.
86f2e683 722 return false;
14bfc3f5
ILT
723
724 case DEF * 16 + COMMON:
1564db8d 725 // A common symbol does not override a definition.
1ae4d23b
ILT
726 if (parameters->options().warn_common())
727 Symbol_table::report_resolve_problem(false,
728 _("common '%s' overridden by "
729 "previous definition"),
99fff23b 730 to, defined, object);
86f2e683 731 return false;
1564db8d 732
14bfc3f5
ILT
733 case WEAK_DEF * 16 + COMMON:
734 case DYN_DEF * 16 + COMMON:
735 case DYN_WEAK_DEF * 16 + COMMON:
1564db8d
ILT
736 // A common symbol does override a weak definition or a dynamic
737 // definition.
86f2e683 738 return true;
1564db8d 739
14bfc3f5
ILT
740 case UNDEF * 16 + COMMON:
741 case WEAK_UNDEF * 16 + COMMON:
742 case DYN_UNDEF * 16 + COMMON:
743 case DYN_WEAK_UNDEF * 16 + COMMON:
1564db8d 744 // A common symbol is a definition for a reference.
86f2e683 745 return true;
1564db8d 746
14bfc3f5 747 case COMMON * 16 + COMMON:
ead1e424 748 // Set the size to the maximum.
86f2e683
ILT
749 *adjust_common_sizes = true;
750 return false;
ead1e424 751
14bfc3f5 752 case WEAK_COMMON * 16 + COMMON:
ead1e424
ILT
753 // I'm not sure just what a weak common symbol means, but
754 // presumably it can be overridden by a regular common symbol.
86f2e683 755 return true;
ead1e424 756
14bfc3f5
ILT
757 case DYN_COMMON * 16 + COMMON:
758 case DYN_WEAK_COMMON * 16 + COMMON:
86f2e683
ILT
759 // Use the real common symbol, but adjust the size if necessary.
760 *adjust_common_sizes = true;
761 return true;
14bfc3f5
ILT
762
763 case DEF * 16 + WEAK_COMMON:
764 case WEAK_DEF * 16 + WEAK_COMMON:
765 case DYN_DEF * 16 + WEAK_COMMON:
766 case DYN_WEAK_DEF * 16 + WEAK_COMMON:
ead1e424
ILT
767 // Whatever a weak common symbol is, it won't override a
768 // definition.
86f2e683 769 return false;
ead1e424 770
14bfc3f5
ILT
771 case UNDEF * 16 + WEAK_COMMON:
772 case WEAK_UNDEF * 16 + WEAK_COMMON:
773 case DYN_UNDEF * 16 + WEAK_COMMON:
774 case DYN_WEAK_UNDEF * 16 + WEAK_COMMON:
ead1e424 775 // A weak common symbol is better than an undefined symbol.
86f2e683 776 return true;
ead1e424 777
14bfc3f5
ILT
778 case COMMON * 16 + WEAK_COMMON:
779 case WEAK_COMMON * 16 + WEAK_COMMON:
780 case DYN_COMMON * 16 + WEAK_COMMON:
781 case DYN_WEAK_COMMON * 16 + WEAK_COMMON:
ead1e424
ILT
782 // Ignore a weak common symbol in the presence of a real common
783 // symbol.
86f2e683 784 return false;
14bfc3f5
ILT
785
786 case DEF * 16 + DYN_COMMON:
787 case WEAK_DEF * 16 + DYN_COMMON:
788 case DYN_DEF * 16 + DYN_COMMON:
789 case DYN_WEAK_DEF * 16 + DYN_COMMON:
ead1e424
ILT
790 // Ignore a dynamic common symbol in the presence of a
791 // definition.
86f2e683 792 return false;
ead1e424 793
14bfc3f5
ILT
794 case UNDEF * 16 + DYN_COMMON:
795 case WEAK_UNDEF * 16 + DYN_COMMON:
796 case DYN_UNDEF * 16 + DYN_COMMON:
797 case DYN_WEAK_UNDEF * 16 + DYN_COMMON:
ead1e424 798 // A dynamic common symbol is a definition of sorts.
86f2e683 799 return true;
ead1e424 800
14bfc3f5
ILT
801 case COMMON * 16 + DYN_COMMON:
802 case WEAK_COMMON * 16 + DYN_COMMON:
803 case DYN_COMMON * 16 + DYN_COMMON:
804 case DYN_WEAK_COMMON * 16 + DYN_COMMON:
ead1e424 805 // Set the size to the maximum.
86f2e683
ILT
806 *adjust_common_sizes = true;
807 return false;
14bfc3f5
ILT
808
809 case DEF * 16 + DYN_WEAK_COMMON:
810 case WEAK_DEF * 16 + DYN_WEAK_COMMON:
811 case DYN_DEF * 16 + DYN_WEAK_COMMON:
812 case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON:
ead1e424 813 // A common symbol is ignored in the face of a definition.
86f2e683 814 return false;
ead1e424 815
14bfc3f5
ILT
816 case UNDEF * 16 + DYN_WEAK_COMMON:
817 case WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
818 case DYN_UNDEF * 16 + DYN_WEAK_COMMON:
819 case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON:
ead1e424 820 // I guess a weak common symbol is better than a definition.
86f2e683 821 return true;
ead1e424 822
14bfc3f5
ILT
823 case COMMON * 16 + DYN_WEAK_COMMON:
824 case WEAK_COMMON * 16 + DYN_WEAK_COMMON:
825 case DYN_COMMON * 16 + DYN_WEAK_COMMON:
826 case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON:
ead1e424 827 // Set the size to the maximum.
86f2e683
ILT
828 *adjust_common_sizes = true;
829 return false;
1564db8d
ILT
830
831 default:
a3ad94ed 832 gold_unreachable();
14bfc3f5
ILT
833 }
834}
835
1ae4d23b
ILT
836// Issue an error or warning due to symbol resolution. IS_ERROR
837// indicates an error rather than a warning. MSG is the error
838// message; it is expected to have a %s for the symbol name. TO is
99fff23b
ILT
839// the existing symbol. DEFINED/OBJECT is where the new symbol was
840// found.
1ae4d23b
ILT
841
842// FIXME: We should have better location information here. When the
843// symbol is defined, we should be able to pull the location from the
844// debug info if there is any.
845
846void
847Symbol_table::report_resolve_problem(bool is_error, const char* msg,
99fff23b
ILT
848 const Symbol* to, Defined defined,
849 Object* object)
1ae4d23b
ILT
850{
851 std::string demangled(to->demangled_name());
852 size_t len = strlen(msg) + demangled.length() + 10;
853 char* buf = new char[len];
854 snprintf(buf, len, msg, demangled.c_str());
855
856 const char* objname;
99fff23b
ILT
857 switch (defined)
858 {
859 case OBJECT:
860 objname = object->name().c_str();
861 break;
862 case COPY:
863 objname = _("COPY reloc");
864 break;
865 case DEFSYM:
866 case UNDEFINED:
867 objname = _("command line");
868 break;
869 case SCRIPT:
870 objname = _("linker script");
871 break;
872 case PREDEFINED:
5146f448 873 case INCREMENTAL_BASE:
99fff23b
ILT
874 objname = _("linker defined");
875 break;
876 default:
877 gold_unreachable();
878 }
1ae4d23b
ILT
879
880 if (is_error)
881 gold_error("%s: %s", objname, buf);
882 else
883 gold_warning("%s: %s", objname, buf);
884
885 delete[] buf;
886
887 if (to->source() == Symbol::FROM_OBJECT)
888 objname = to->object()->name().c_str();
889 else
890 objname = _("command line");
891 gold_info("%s: %s: previous definition here", program_name, objname);
892}
893
86f2e683
ILT
894// A special case of should_override which is only called for a strong
895// defined symbol from a regular object file. This is used when
896// defining special symbols.
897
898bool
62855347
ILT
899Symbol_table::should_override_with_special(const Symbol* to,
900 elfcpp::STT fromtype,
901 Defined defined)
86f2e683
ILT
902{
903 bool adjust_common_sizes;
ce279a62 904 bool adjust_dyn_def;
86f2e683 905 unsigned int frombits = global_flag | regular_flag | def_flag;
62855347
ILT
906 bool ret = Symbol_table::should_override(to, frombits, fromtype, defined,
907 NULL, &adjust_common_sizes,
ce279a62
CC
908 &adjust_dyn_def);
909 gold_assert(!adjust_common_sizes && !adjust_dyn_def);
86f2e683
ILT
910 return ret;
911}
912
913// Override symbol base with a special symbol.
914
915void
916Symbol::override_base_with_special(const Symbol* from)
917{
21131061
ILT
918 bool same_name = this->name_ == from->name_;
919 gold_assert(same_name || this->has_alias());
46fe1623 920
d1bddd3c
CC
921 // If we are overriding an undef, remember the original binding.
922 if (this->is_undefined())
923 this->set_undef_binding(this->binding_);
924
86f2e683
ILT
925 this->source_ = from->source_;
926 switch (from->source_)
927 {
928 case FROM_OBJECT:
929 this->u_.from_object = from->u_.from_object;
930 break;
931 case IN_OUTPUT_DATA:
932 this->u_.in_output_data = from->u_.in_output_data;
933 break;
934 case IN_OUTPUT_SEGMENT:
935 this->u_.in_output_segment = from->u_.in_output_segment;
936 break;
f3e9c5c5
ILT
937 case IS_CONSTANT:
938 case IS_UNDEFINED:
86f2e683
ILT
939 break;
940 default:
941 gold_unreachable();
942 break;
943 }
944
21131061 945 if (same_name)
24d47b34
ILT
946 {
947 // When overriding a versioned symbol with a special symbol, we
948 // may be changing the version. This will happen if we see a
949 // special symbol such as "_end" defined in a shared object with
950 // one version (from a version script), but we want to define it
951 // here with a different version (from a different version
952 // script).
953 this->version_ = from->version_;
954 }
86f2e683
ILT
955 this->type_ = from->type_;
956 this->binding_ = from->binding_;
0602e05a 957 this->override_visibility(from->visibility_);
86f2e683
ILT
958 this->nonvis_ = from->nonvis_;
959
960 // Special symbols are always considered to be regular symbols.
961 this->in_reg_ = true;
46fe1623
ILT
962
963 if (from->needs_dynsym_entry_)
964 this->needs_dynsym_entry_ = true;
965 if (from->needs_dynsym_value_)
966 this->needs_dynsym_value_ = true;
967
5146f448
CC
968 this->is_predefined_ = from->is_predefined_;
969
46fe1623
ILT
970 // We shouldn't see these flags. If we do, we need to handle them
971 // somehow.
46fe1623 972 gold_assert(!from->is_forwarder_);
880cd20d 973 gold_assert(!from->has_plt_offset());
46fe1623
ILT
974 gold_assert(!from->has_warning_);
975 gold_assert(!from->is_copied_from_dynobj_);
55a93433 976 gold_assert(!from->is_forced_local_);
86f2e683
ILT
977}
978
979// Override a symbol with a special symbol.
980
981template<int size>
982void
983Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from)
984{
985 this->override_base_with_special(from);
986 this->value_ = from->value_;
987 this->symsize_ = from->symsize_;
988}
989
aeddab66
ILT
990// Override TOSYM with the special symbol FROMSYM. This handles all
991// aliases of TOSYM.
992
993template<int size>
994void
995Symbol_table::override_with_special(Sized_symbol<size>* tosym,
996 const Sized_symbol<size>* fromsym)
997{
998 tosym->override_with_special(fromsym);
999 if (tosym->has_alias())
1000 {
1001 Symbol* sym = this->weak_aliases_[tosym];
1002 gold_assert(sym != NULL);
7d1a9ebb 1003 Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
1004 do
1005 {
1006 ssym->override_with_special(fromsym);
1007 sym = this->weak_aliases_[ssym];
1008 gold_assert(sym != NULL);
7d1a9ebb 1009 ssym = this->get_sized_symbol<size>(sym);
aeddab66
ILT
1010 }
1011 while (ssym != tosym);
1012 }
0602e05a
ILT
1013 if (tosym->binding() == elfcpp::STB_LOCAL
1014 || ((tosym->visibility() == elfcpp::STV_HIDDEN
1015 || tosym->visibility() == elfcpp::STV_INTERNAL)
1016 && (tosym->binding() == elfcpp::STB_GLOBAL
adcf2816 1017 || tosym->binding() == elfcpp::STB_GNU_UNIQUE
0602e05a
ILT
1018 || tosym->binding() == elfcpp::STB_WEAK)
1019 && !parameters->options().relocatable()))
55a93433 1020 this->force_local(tosym);
aeddab66
ILT
1021}
1022
14bfc3f5
ILT
1023// Instantiate the templates we need. We could use the configure
1024// script to restrict this to only the ones needed for implemented
1025// targets.
1026
6cfaf60b
DK
1027// We have to instantiate both big and little endian versions because
1028// these are used by other templates that depends on size only.
1029
1030#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
14bfc3f5
ILT
1031template
1032void
193a53d9 1033Symbol_table::resolve<32, false>(
1564db8d 1034 Sized_symbol<32>* to,
193a53d9 1035 const elfcpp::Sym<32, false>& sym,
d491d34e
ILT
1036 unsigned int st_shndx,
1037 bool is_ordinary,
1038 unsigned int orig_st_shndx,
14b31740
ILT
1039 Object* object,
1040 const char* version);
14bfc3f5
ILT
1041
1042template
1043void
193a53d9 1044Symbol_table::resolve<32, true>(
1564db8d 1045 Sized_symbol<32>* to,
193a53d9 1046 const elfcpp::Sym<32, true>& sym,
d491d34e
ILT
1047 unsigned int st_shndx,
1048 bool is_ordinary,
1049 unsigned int orig_st_shndx,
14b31740
ILT
1050 Object* object,
1051 const char* version);
193a53d9 1052#endif
14bfc3f5 1053
6cfaf60b 1054#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
14bfc3f5
ILT
1055template
1056void
193a53d9 1057Symbol_table::resolve<64, false>(
1564db8d 1058 Sized_symbol<64>* to,
193a53d9 1059 const elfcpp::Sym<64, false>& sym,
d491d34e
ILT
1060 unsigned int st_shndx,
1061 bool is_ordinary,
1062 unsigned int orig_st_shndx,
14b31740
ILT
1063 Object* object,
1064 const char* version);
14bfc3f5
ILT
1065
1066template
1067void
193a53d9 1068Symbol_table::resolve<64, true>(
1564db8d 1069 Sized_symbol<64>* to,
193a53d9 1070 const elfcpp::Sym<64, true>& sym,
d491d34e
ILT
1071 unsigned int st_shndx,
1072 bool is_ordinary,
1073 unsigned int orig_st_shndx,
14b31740
ILT
1074 Object* object,
1075 const char* version);
193a53d9 1076#endif
14bfc3f5 1077
86f2e683
ILT
1078#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1079template
1080void
aeddab66
ILT
1081Symbol_table::override_with_special<32>(Sized_symbol<32>*,
1082 const Sized_symbol<32>*);
86f2e683
ILT
1083#endif
1084
1085#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1086template
1087void
aeddab66
ILT
1088Symbol_table::override_with_special<64>(Sized_symbol<64>*,
1089 const Sized_symbol<64>*);
86f2e683
ILT
1090#endif
1091
14bfc3f5 1092} // End namespace gold.
This page took 0.400956 seconds and 4 git commands to generate.