Don't print 0x for core_addr_to_string_nz
[deliverable/binutils-gdb.git] / gold / s390.cc
CommitLineData
e79a4bad
MK
1// s390.cc -- s390 target support for gold.
2
6f2750fe 3// Copyright (C) 2015-2016 Free Software Foundation, Inc.
e79a4bad
MK
4// Written by Marcin Kościelnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
57 layout_(layout)
58 { }
59
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
62 layout_(layout)
63 { }
64
65 protected:
66 // Write out the PLT data.
67 void
68 do_write(Output_file*);
69
70 // Write to a map file.
71 void
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
78 Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88 Reloc_section;
89
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
99
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
106 4, false),
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
110 {
111 this->init(layout);
112
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
116 }
117
118 // Initialize the PLT section.
119 void
120 init(Layout* layout);
121
122 // Add an entry to the PLT.
123 void
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127 unsigned int
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
130
131 // Add the relocation for a PLT entry.
132 void
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135 // Return the .rela.plt section data.
136 Reloc_section*
137 rela_plt()
138 { return this->rel_; }
139
140 // Return where the IRELATIVE relocations should go in the PLT
141 // relocations.
142 Reloc_section*
143 rela_irelative(Symbol_table*, Layout*);
144
145 // Return whether we created a section for IRELATIVE relocations.
146 bool
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
149
150 // Return the number of PLT entries.
151 unsigned int
152 entry_count() const
153 { return this->count_ + this->irelative_count_; }
154
155 // Return the offset of the first non-reserved PLT entry.
156 unsigned int
157 first_plt_entry_offset()
158 { return plt_entry_size; }
159
160 // Return the size of a PLT entry.
161 unsigned int
162 get_plt_entry_size() const
163 { return plt_entry_size; }
164
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
166 void
167 reserve_slot(unsigned int plt_index)
168 {
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
171 }
172
173 // Return the PLT address to use for a global symbol.
174 uint64_t
175 address_for_global(const Symbol*);
176
177 // Return the PLT address to use for a local symbol.
178 uint64_t
179 address_for_local(const Relobj*, unsigned int symndx);
180
181 // Add .eh_frame information for the PLT.
182 void
183 add_eh_frame(Layout* layout)
184 {
185 (void)layout;
186 layout->add_eh_frame_for_plt(this,
187 plt_eh_frame_cie,
188 plt_eh_frame_cie_size,
189 plt_eh_frame_fde,
190 plt_eh_frame_fde_size);
191 }
192
193 protected:
194 // Fill in the first PLT entry.
195 void
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
202 unsigned int
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
209
210 void
211 do_adjust_output_section(Output_section* os);
212
213 // Write to a map file.
214 void
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219 // Set the final size.
220 void
221 set_final_data_size();
222
223 // Write out the PLT data.
224 void
225 do_write(Output_file*);
226
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
229 Layout* layout_;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
235 // The .got section.
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
242 unsigned int count_;
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
247 // update links.
248 Free_list free_list_;
249
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
262
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277 Target_s390()
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283 layout_(NULL)
284 { }
285
286 // Scan the relocations to look for symbol adjustments.
287 void
288 gc_process_relocs(Symbol_table* symtab,
289 Layout* layout,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
294 size_t reloc_count,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
299
300 // Scan the relocations to look for symbol adjustments.
301 void
302 scan_relocs(Symbol_table* symtab,
303 Layout* layout,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
308 size_t reloc_count,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
313
314 // Finalize the sections.
315 void
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318 // Return the value to use for a dynamic which requires special
319 // treatment.
320 uint64_t
321 do_dynsym_value(const Symbol*) const;
322
323 // Relocate a section.
324 void
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
328 size_t reloc_count,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
331 unsigned char* view,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
335
336 // Scan the relocs during a relocatable link.
337 void
338 scan_relocatable_relocs(Symbol_table* symtab,
339 Layout* layout,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
344 size_t reloc_count,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
350
4d625b70
CC
351 // Scan the relocs for --emit-relocs.
352 void
353 emit_relocs_scan(Symbol_table* symtab,
354 Layout* layout,
355 Sized_relobj_file<size, true>* object,
356 unsigned int data_shndx,
357 unsigned int sh_type,
358 const unsigned char* prelocs,
359 size_t reloc_count,
360 Output_section* output_section,
361 bool needs_special_offset_handling,
362 size_t local_symbol_count,
363 const unsigned char* plocal_syms,
364 Relocatable_relocs* rr);
365
e79a4bad
MK
366 // Return a string used to fill a code section with nops.
367 std::string
368 do_code_fill(section_size_type length) const;
369
370 // Emit relocations for a section.
371 void
372 relocate_relocs(
373 const Relocate_info<size, true>*,
374 unsigned int sh_type,
375 const unsigned char* prelocs,
376 size_t reloc_count,
377 Output_section* output_section,
378 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
379 unsigned char* view,
380 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381 section_size_type view_size,
382 unsigned char* reloc_view,
383 section_size_type reloc_view_size);
384
385 // Return whether SYM is defined by the ABI.
386 bool
387 do_is_defined_by_abi(const Symbol* sym) const
388 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
389
390 // Return the PLT address to use for a global symbol.
391 uint64_t
392 do_plt_address_for_global(const Symbol* gsym) const
393 { return this->plt_section()->address_for_global(gsym); }
394
395 uint64_t
396 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397 { return this->plt_section()->address_for_local(relobj, symndx); }
398
399 // Return the offset to use for the GOT_INDX'th got entry which is
400 // for a local tls symbol specified by OBJECT, SYMNDX.
401 int64_t
402 do_tls_offset_for_local(const Relobj* object,
403 unsigned int symndx,
404 unsigned int got_indx) const;
405
406 // Return the offset to use for the GOT_INDX'th got entry which is
407 // for global tls symbol GSYM.
408 int64_t
409 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
410
411 // This function should be defined in targets that can use relocation
412 // types to determine (implemented in local_reloc_may_be_function_pointer
413 // and global_reloc_may_be_function_pointer)
414 // if a function's pointer is taken. ICF uses this in safe mode to only
415 // fold those functions whose pointer is defintely not taken.
416 bool
417 do_can_check_for_function_pointers() const
418 { return true; }
419
420 // Return the size of the GOT section.
421 section_size_type
422 got_size() const
423 {
424 gold_assert(this->got_ != NULL);
425 return this->got_->data_size();
426 }
427
428 // Return the number of entries in the GOT.
429 unsigned int
430 got_entry_count() const
431 {
432 if (this->got_ == NULL)
433 return 0;
434 return this->got_size() / (size / 8);
435 }
436
437 // Return the number of entries in the PLT.
438 unsigned int
439 plt_entry_count() const;
440
441 // Return the offset of the first non-reserved PLT entry.
442 unsigned int
443 first_plt_entry_offset() const;
444
445 // Return the size of each PLT entry.
446 unsigned int
447 plt_entry_size() const;
448
449 // Create the GOT section for an incremental update.
450 Output_data_got_base*
451 init_got_plt_for_update(Symbol_table* symtab,
452 Layout* layout,
453 unsigned int got_count,
454 unsigned int plt_count);
455
456 // Reserve a GOT entry for a local symbol, and regenerate any
457 // necessary dynamic relocations.
458 void
459 reserve_local_got_entry(unsigned int got_index,
460 Sized_relobj<size, true>* obj,
461 unsigned int r_sym,
462 unsigned int got_type);
463
464 // Reserve a GOT entry for a global symbol, and regenerate any
465 // necessary dynamic relocations.
466 void
467 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
468 unsigned int got_type);
469
470 // Register an existing PLT entry for a global symbol.
471 void
472 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
473 Symbol* gsym);
474
475 // Force a COPY relocation for a given symbol.
476 void
477 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
478
479 // Apply an incremental relocation.
480 void
481 apply_relocation(const Relocate_info<size, true>* relinfo,
482 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
483 unsigned int r_type,
484 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
485 const Symbol* gsym,
486 unsigned char* view,
487 typename elfcpp::Elf_types<size>::Elf_Addr address,
488 section_size_type view_size);
489
490 private:
491
492 // The class which scans relocations.
493 class Scan
494 {
495 public:
496 Scan()
497 : issued_non_pic_error_(false)
498 { }
499
500 static inline int
501 get_reference_flags(unsigned int r_type);
502
503 inline void
504 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
505 Sized_relobj_file<size, true>* object,
506 unsigned int data_shndx,
507 Output_section* output_section,
508 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
509 const elfcpp::Sym<size, true>& lsym,
510 bool is_discarded);
511
512 inline void
513 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
514 Sized_relobj_file<size, true>* object,
515 unsigned int data_shndx,
516 Output_section* output_section,
517 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
518 Symbol* gsym);
519
520 inline bool
521 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
522 Target_s390* target,
523 Sized_relobj_file<size, true>* object,
524 unsigned int data_shndx,
525 Output_section* output_section,
526 const elfcpp::Rela<size, true>& reloc,
527 unsigned int r_type,
528 const elfcpp::Sym<size, true>& lsym);
529
530 inline bool
531 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
532 Target_s390* target,
533 Sized_relobj_file<size, true>* object,
534 unsigned int data_shndx,
535 Output_section* output_section,
536 const elfcpp::Rela<size, true>& reloc,
537 unsigned int r_type,
538 Symbol* gsym);
539
540 private:
541 static void
542 unsupported_reloc_local(Sized_relobj_file<size, true>*,
543 unsigned int r_type);
544
545 static void
546 unsupported_reloc_global(Sized_relobj_file<size, true>*,
547 unsigned int r_type, Symbol*);
548
549 void
550 check_non_pic(Relobj*, unsigned int r_type);
551
552 inline bool
553 possible_function_pointer_reloc(unsigned int r_type);
554
555 bool
556 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
557 unsigned int r_type);
558
559 // Whether we have issued an error about a non-PIC compilation.
560 bool issued_non_pic_error_;
561 };
562
563 // The class which implements relocation.
564 class Relocate
565 {
566 public:
567 // Do a relocation. Return false if the caller should not issue
568 // any warnings about this relocation.
569 inline bool
91a65d2f
AM
570 relocate(const Relocate_info<size, true>*, unsigned int,
571 Target_s390*, Output_section*, size_t, const unsigned char*,
572 const Sized_symbol<size>*, const Symbol_value<size>*,
e79a4bad
MK
573 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
574 section_size_type);
575
576 private:
577 // Do a TLS relocation.
578 inline typename elfcpp::Elf_types<size>::Elf_Addr
579 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
580 size_t relnum, const elfcpp::Rela<size, true>&,
581 unsigned int r_type, const Sized_symbol<size>*,
582 const Symbol_value<size>*,
583 unsigned char*, section_size_type);
584
585 // Do a TLS General-Dynamic to Initial-Exec transition.
586 inline void
587 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
588 const elfcpp::Rela<size, true>&,
589 unsigned char* view,
590 section_size_type view_size);
591
592 // Do a TLS General-Dynamic to Local-Exec transition.
593 inline void
594 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
595 const elfcpp::Rela<size, true>&,
596 unsigned char* view,
597 section_size_type view_size);
598
599 // Do a TLS Local-Dynamic to Local-Exec transition.
600 inline void
601 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
602 const elfcpp::Rela<size, true>&,
603 unsigned char* view,
604 section_size_type view_size);
605
606 // Do a TLS Initial-Exec to Local-Exec transition.
607 static inline void
608 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
609 const elfcpp::Rela<size, true>&,
610 unsigned char* view,
611 section_size_type view_size);
612 };
613
e79a4bad
MK
614 // Adjust TLS relocation type based on the options and whether this
615 // is a local symbol.
616 static tls::Tls_optimization
617 optimize_tls_reloc(bool is_final, int r_type);
618
619 // Get the GOT section.
620 const Output_data_got<size, true>*
621 got_section() const
622 {
623 gold_assert(this->got_ != NULL);
624 return this->got_;
625 }
626
627 // Get the GOT section, creating it if necessary.
628 Output_data_got<size, true>*
629 got_section(Symbol_table*, Layout*);
630
631 typename elfcpp::Elf_types<size>::Elf_Addr
632 got_address() const
633 {
634 gold_assert(this->got_ != NULL);
635 return this->got_plt_->address();
636 }
637
638 typename elfcpp::Elf_types<size>::Elf_Addr
639 got_main_offset() const
640 {
641 gold_assert(this->got_ != NULL);
642 return this->got_->address() - this->got_address();
643 }
644
645 // Create the PLT section.
646 void
647 make_plt_section(Symbol_table* symtab, Layout* layout);
648
649 // Create a PLT entry for a global symbol.
650 void
651 make_plt_entry(Symbol_table*, Layout*, Symbol*);
652
653 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
654 void
655 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
656 Sized_relobj_file<size, true>* relobj,
657 unsigned int local_sym_index);
658
659 // Create a GOT entry for the TLS module index.
660 unsigned int
661 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
662 Sized_relobj_file<size, true>* object);
663
664 // Get the PLT section.
665 Output_data_plt_s390<size>*
666 plt_section() const
667 {
668 gold_assert(this->plt_ != NULL);
669 return this->plt_;
670 }
671
672 // Get the dynamic reloc section, creating it if necessary.
673 Reloc_section*
674 rela_dyn_section(Layout*);
675
676 // Get the section to use for IRELATIVE relocations.
677 Reloc_section*
678 rela_irelative_section(Layout*);
679
680 // Add a potential copy relocation.
681 void
682 copy_reloc(Symbol_table* symtab, Layout* layout,
683 Sized_relobj_file<size, true>* object,
684 unsigned int shndx, Output_section* output_section,
685 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
686 {
859d7987 687 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
e79a4bad
MK
688 this->copy_relocs_.copy_reloc(symtab, layout,
689 symtab->get_sized_symbol<size>(sym),
690 object, shndx, output_section,
859d7987
CC
691 r_type, reloc.get_r_offset(),
692 reloc.get_r_addend(),
693 this->rela_dyn_section(layout));
e79a4bad
MK
694 }
695
696 // Information about this specific target which we pass to the
697 // general Target structure.
698 static Target::Target_info s390_info;
699
700 // The types of GOT entries needed for this platform.
701 // These values are exposed to the ABI in an incremental link.
702 // Do not renumber existing values without changing the version
703 // number of the .gnu_incremental_inputs section.
704 enum Got_type
705 {
706 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
707 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
708 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
709 };
710
711 // The GOT section.
712 Output_data_got<size, true>* got_;
713 // The PLT section.
714 Output_data_plt_s390<size>* plt_;
715 // The GOT PLT section.
716 Output_data_got_plt_s390<size>* got_plt_;
717 // The GOT section for IRELATIVE relocations.
718 Output_data_space* got_irelative_;
719 // The _GLOBAL_OFFSET_TABLE_ symbol.
720 Symbol* global_offset_table_;
721 // The dynamic reloc section.
722 Reloc_section* rela_dyn_;
723 // The section to use for IRELATIVE relocs.
724 Reloc_section* rela_irelative_;
725 // Relocs saved to avoid a COPY reloc.
726 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
727 // Offset of the GOT entry for the TLS module index.
728 unsigned int got_mod_index_offset_;
729 // True if the _TLS_MODULE_BASE_ symbol has been defined.
730 bool tls_base_symbol_defined_;
731 // For use in do_tls_offset_for_*
732 Layout *layout_;
733};
734
735template<>
736Target::Target_info Target_s390<32>::s390_info =
737{
738 32, // size
739 true, // is_big_endian
740 elfcpp::EM_S390, // machine_code
741 false, // has_make_symbol
742 false, // has_resolve
743 true, // has_code_fill
744 true, // is_default_stack_executable
745 true, // can_icf_inline_merge_sections
746 '\0', // wrap_char
747 "/lib/ld.so.1", // dynamic_linker
748 0x00400000, // default_text_segment_address
749 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
750 4 * 1024, // common_pagesize (overridable by -z common-page-size)
751 false, // isolate_execinstr
752 0, // rosegment_gap
753 elfcpp::SHN_UNDEF, // small_common_shndx
754 elfcpp::SHN_UNDEF, // large_common_shndx
755 0, // small_common_section_flags
756 0, // large_common_section_flags
757 NULL, // attributes_section
758 NULL, // attributes_vendor
759 "_start", // entry_symbol_name
760 32, // hash_entry_size
761};
762
763template<>
764Target::Target_info Target_s390<64>::s390_info =
765{
766 64, // size
767 true, // is_big_endian
768 elfcpp::EM_S390, // machine_code
769 false, // has_make_symbol
770 false, // has_resolve
771 true, // has_code_fill
772 true, // is_default_stack_executable
773 true, // can_icf_inline_merge_sections
774 '\0', // wrap_char
775 "/lib/ld64.so.1", // dynamic_linker
776 0x80000000ll, // default_text_segment_address
777 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
778 4 * 1024, // common_pagesize (overridable by -z common-page-size)
779 false, // isolate_execinstr
780 0, // rosegment_gap
781 elfcpp::SHN_UNDEF, // small_common_shndx
782 elfcpp::SHN_UNDEF, // large_common_shndx
783 0, // small_common_section_flags
784 0, // large_common_section_flags
785 NULL, // attributes_section
786 NULL, // attributes_vendor
787 "_start", // entry_symbol_name
788 64, // hash_entry_size
789};
790
791template<int size>
792class S390_relocate_functions
793{
794public:
795 enum Overflow_check
796 {
797 CHECK_NONE,
798 CHECK_SIGNED,
799 CHECK_UNSIGNED,
800 CHECK_BITFIELD,
801 CHECK_LOW_INSN,
802 CHECK_HIGH_INSN
803 };
804
805 enum Status
806 {
807 STATUS_OK,
808 STATUS_OVERFLOW
809 };
810
811private:
812 typedef S390_relocate_functions<size> This;
813 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
814
815 template<int valsize>
816 static inline bool
817 has_overflow_signed(Address value)
818 {
819 // limit = 1 << (valsize - 1) without shift count exceeding size of type
820 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
821 limit <<= ((valsize - 1) >> 1);
822 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
823 return value + limit > (limit << 1) - 1;
824 }
825
826 template<int valsize>
827 static inline bool
828 has_overflow_unsigned(Address value)
829 {
830 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
831 limit <<= ((valsize - 1) >> 1);
832 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
833 return value > (limit << 1) - 1;
834 }
835
836 template<int fieldsize>
837 static inline void
838 rela(unsigned char* view, Address mask, Address value)
839 {
840 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
841 Valtype* wv = reinterpret_cast<Valtype*>(view);
842 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
843 val &= ~mask;
844 value &= mask;
845 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
846 }
847
848public:
849 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
850 static inline Status
851 rela12(unsigned char* view, Address value)
852 {
853 if (This::template has_overflow_unsigned<12>(value))
854 return STATUS_OVERFLOW;
855 This::template rela<16>(view, 0x0fff, value);
856 return STATUS_OK;
857 }
858
859 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
860 static inline Status
861 rela16(unsigned char* view, Address value)
862 {
863 if (This::template has_overflow_signed<16>(value))
864 return STATUS_OVERFLOW;
865 This::template rela<16>(view, 0xffff, value);
866 return STATUS_OK;
867 }
868
869 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
870 static inline Status
871 rela20(unsigned char* view, Address value)
872 {
873 if (This::template has_overflow_signed<20>(value))
874 return STATUS_OVERFLOW;
875 This::template rela<16>(view, 0x0fff, value);
876 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
877 return STATUS_OK;
878 }
879
880 // R_390_PC12DBL, R_390_PLT12DBL
881 static inline Status
882 pcrela12dbl(unsigned char* view, Address value, Address address)
883 {
884 value -= address;
885 if ((value & 1) != 0)
886 return STATUS_OVERFLOW;
887 if (This::template has_overflow_signed<13>(value))
888 return STATUS_OVERFLOW;
889 value >>= 1;
890 This::template rela<16>(view, 0x0fff, value);
891 return STATUS_OK;
892 }
893
894 // R_390_PC16DBL, R_390_PLT16DBL
895 static inline Status
896 pcrela16dbl(unsigned char* view, Address value, Address address)
897 {
898 value -= address;
899 if ((value & 1) != 0)
900 return STATUS_OVERFLOW;
901 if (This::template has_overflow_signed<17>(value))
902 return STATUS_OVERFLOW;
903 value >>= 1;
904 This::template rela<16>(view, 0xffff, value);
905 return STATUS_OK;
906 }
907
908 // R_390_PC24DBL, R_390_PLT24DBL
909 static inline Status
910 pcrela24dbl(unsigned char* view, Address value, Address address)
911 {
912 value -= address;
913 if ((value & 1) != 0)
914 return STATUS_OVERFLOW;
915 if (This::template has_overflow_signed<25>(value))
916 return STATUS_OVERFLOW;
917 value >>= 1;
918 // Swap doesn't take 24-bit fields well...
919 This::template rela<8>(view, 0xff, value >> 16);
920 This::template rela<16>(view + 1, 0xffff, value);
921 return STATUS_OK;
922 }
923
924 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
925 static inline Status
926 pcrela32dbl(unsigned char* view, Address value, Address address)
927 {
928 Address reloc = value - address;
929 if ((reloc & 1) != 0)
930 {
931 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
932 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
933 // return STATUS_OVERFLOW;
934 }
935 if (This::template has_overflow_signed<33>(reloc))
936 return STATUS_OVERFLOW;
937 reloc >>= 1;
938 if (value < address && size == 32)
939 reloc |= 0x80000000;
940 This::template rela<32>(view, 0xffffffff, reloc);
941 return STATUS_OK;
942 }
943
944};
945
946// Initialize the PLT section.
947
948template<int size>
949void
950Output_data_plt_s390<size>::init(Layout* layout)
951{
952 this->rel_ = new Reloc_section(false);
953 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
954 elfcpp::SHF_ALLOC, this->rel_,
955 ORDER_DYNAMIC_PLT_RELOCS, false);
956}
957
958template<int size>
959void
960Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
961{
962 os->set_entsize(plt_entry_size);
963}
964
965// Add an entry to the PLT.
966
967template<int size>
968void
969Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
970 Symbol* gsym)
971{
972 gold_assert(!gsym->has_plt_offset());
973
974 unsigned int plt_index;
975 off_t plt_offset;
976 section_offset_type got_offset;
977
978 unsigned int* pcount;
979 unsigned int offset;
980 unsigned int reserved;
981 Output_section_data_build* got;
982 if (gsym->type() == elfcpp::STT_GNU_IFUNC
983 && gsym->can_use_relative_reloc(false))
984 {
985 pcount = &this->irelative_count_;
986 offset = 0;
987 reserved = 0;
988 got = this->got_irelative_;
989 }
990 else
991 {
992 pcount = &this->count_;
993 offset = 1;
994 reserved = 3;
995 got = this->got_plt_;
996 }
997
998 if (!this->is_data_size_valid())
999 {
1000 // Note that when setting the PLT offset for a non-IRELATIVE
1001 // entry we skip the initial reserved PLT entry.
1002 plt_index = *pcount + offset;
1003 plt_offset = plt_index * plt_entry_size;
1004
1005 ++*pcount;
1006
1007 got_offset = (plt_index - offset + reserved) * size / 8;
1008 gold_assert(got_offset == got->current_data_size());
1009
1010 // Every PLT entry needs a GOT entry which points back to the PLT
1011 // entry (this will be changed by the dynamic linker, normally
1012 // lazily when the function is called).
1013 got->set_current_data_size(got_offset + size / 8);
1014 }
1015 else
1016 {
1017 // FIXME: This is probably not correct for IRELATIVE relocs.
1018
1019 // For incremental updates, find an available slot.
1020 plt_offset = this->free_list_.allocate(plt_entry_size,
1021 plt_entry_size, 0);
1022 if (plt_offset == -1)
1023 gold_fallback(_("out of patch space (PLT);"
1024 " relink with --incremental-full"));
1025
1026 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1027 // can be calculated from the PLT index, adjusting for the three
1028 // reserved entries at the beginning of the GOT.
1029 plt_index = plt_offset / plt_entry_size - 1;
1030 got_offset = (plt_index - offset + reserved) * size / 8;
1031 }
1032
1033 gsym->set_plt_offset(plt_offset);
1034
1035 // Every PLT entry needs a reloc.
1036 this->add_relocation(symtab, layout, gsym, got_offset);
1037
1038 // Note that we don't need to save the symbol. The contents of the
1039 // PLT are independent of which symbols are used. The symbols only
1040 // appear in the relocations.
1041}
1042
1043// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1044// the PLT offset.
1045
1046template<int size>
1047unsigned int
1048Output_data_plt_s390<size>::add_local_ifunc_entry(
1049 Symbol_table* symtab,
1050 Layout* layout,
1051 Sized_relobj_file<size, true>* relobj,
1052 unsigned int local_sym_index)
1053{
1054 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1055 ++this->irelative_count_;
1056
1057 section_offset_type got_offset = this->got_irelative_->current_data_size();
1058
1059 // Every PLT entry needs a GOT entry which points back to the PLT
1060 // entry.
1061 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1062
1063 // Every PLT entry needs a reloc.
1064 Reloc_section* rela = this->rela_irelative(symtab, layout);
1065 rela->add_symbolless_local_addend(relobj, local_sym_index,
1066 elfcpp::R_390_IRELATIVE,
1067 this->got_irelative_, got_offset, 0);
1068
1069 return plt_offset;
1070}
1071
1072// Add the relocation for a PLT entry.
1073
1074template<int size>
1075void
1076Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1077 Layout* layout,
1078 Symbol* gsym,
1079 unsigned int got_offset)
1080{
1081 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1082 && gsym->can_use_relative_reloc(false))
1083 {
1084 Reloc_section* rela = this->rela_irelative(symtab, layout);
1085 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1086 this->got_irelative_, got_offset, 0);
1087 }
1088 else
1089 {
1090 gsym->set_needs_dynsym_entry();
1091 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1092 got_offset, 0);
1093 }
1094}
1095
1096// Return where the IRELATIVE relocations should go in the PLT. These
1097// follow the JUMP_SLOT and the TLSDESC relocations.
1098
1099template<int size>
1100typename Output_data_plt_s390<size>::Reloc_section*
1101Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1102 Layout* layout)
1103{
1104 if (this->irelative_rel_ == NULL)
1105 {
1106 this->irelative_rel_ = new Reloc_section(false);
1107 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1108 elfcpp::SHF_ALLOC, this->irelative_rel_,
1109 ORDER_DYNAMIC_PLT_RELOCS, false);
1110 gold_assert(this->irelative_rel_->output_section()
1111 == this->rel_->output_section());
1112
1113 if (parameters->doing_static_link())
1114 {
1115 // A statically linked executable will only have a .rela.plt
1116 // section to hold R_390_IRELATIVE relocs for
1117 // STT_GNU_IFUNC symbols. The library will use these
1118 // symbols to locate the IRELATIVE relocs at program startup
1119 // time.
1120 symtab->define_in_output_data("__rela_iplt_start", NULL,
1121 Symbol_table::PREDEFINED,
1122 this->irelative_rel_, 0, 0,
1123 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1124 elfcpp::STV_HIDDEN, 0, false, true);
1125 symtab->define_in_output_data("__rela_iplt_end", NULL,
1126 Symbol_table::PREDEFINED,
1127 this->irelative_rel_, 0, 0,
1128 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1129 elfcpp::STV_HIDDEN, 0, true, true);
1130 }
1131 }
1132 return this->irelative_rel_;
1133}
1134
1135// Return the PLT address to use for a global symbol.
1136
1137template<int size>
1138uint64_t
1139Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1140{
1141 uint64_t offset = 0;
1142 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1143 && gsym->can_use_relative_reloc(false))
1144 offset = (this->count_ + 1) * plt_entry_size;
1145 return this->address() + offset + gsym->plt_offset();
1146}
1147
1148// Return the PLT address to use for a local symbol. These are always
1149// IRELATIVE relocs.
1150
1151template<int size>
1152uint64_t
1153Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1154 unsigned int r_sym)
1155{
1156 return (this->address()
1157 + (this->count_ + 1) * plt_entry_size
1158 + object->local_plt_offset(r_sym));
1159}
1160
1161// Set the final size.
1162template<int size>
1163void
1164Output_data_plt_s390<size>::set_final_data_size()
1165{
1166 unsigned int count = this->count_ + this->irelative_count_;
1167 this->set_data_size((count + 1) * plt_entry_size);
1168}
1169
1170template<int size>
1171const unsigned char
1172Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1173{
1174 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1175 0x0d, 0x10, // basr %r1, %r0
1176 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1177 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1178 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1179 0x07, 0xf1, // br %r1
1180 0x00, 0x00, // padding
1181 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1182 0x00, 0x00, 0x00, 0x00, // padding
1183};
1184
1185template<int size>
1186const unsigned char
1187Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1188{
1189 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1190 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1191 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1192 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1193 0x07, 0xf1, // br %r1
1194 0x00, 0x00, // padding
1195 0x00, 0x00, 0x00, 0x00, // padding
1196 0x00, 0x00, 0x00, 0x00, // padding
1197 0x00, 0x00, 0x00, 0x00, // padding
1198};
1199
1200template<int size>
1201const unsigned char
1202Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1203{
1204 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1205 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1206 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1207 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1208 0x07, 0xf1, // br %r1
1209 0x07, 0x00, // nopr
1210 0x07, 0x00, // nopr
1211 0x07, 0x00, // nopr
1212};
1213
1214template<int size>
1215void
1216Output_data_plt_s390<size>::fill_first_plt_entry(
1217 unsigned char* pov,
1218 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1219 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1220{
1221 if (size == 64)
1222 {
1223 memcpy(pov, first_plt_entry_64, plt_entry_size);
1224 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1225 }
1226 else if (!parameters->options().output_is_position_independent())
1227 {
1228 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1229 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1230 }
1231 else
1232 {
1233 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1234 }
1235}
1236
1237template<int size>
1238const unsigned char
1239Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1240{
1241 // first part
1242 0x0d, 0x10, // basr %r1, %r0
1243 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1244 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1245 0x07, 0xf1, // br %r1
1246 // second part
1247 0x0d, 0x10, // basr %r1, %r0
1248 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1249 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1250 0x00, 0x00, // padding
1251 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1252 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1253};
1254
1255template<int size>
1256const unsigned char
1257Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1258{
1259 // first part
1260 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1261 0x07, 0xf1, // br %r1
1262 0x00, 0x00, // padding
1263 0x00, 0x00, 0x00, 0x00, // padding
1264 // second part
1265 0x0d, 0x10, // basr %r1, %r0
1266 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1267 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1268 0x00, 0x00, // padding
1269 0x00, 0x00, 0x00, 0x00, // padding
1270 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1271};
1272
1273template<int size>
1274const unsigned char
1275Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1276{
1277 // first part
1278 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1279 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1280 0x07, 0xf1, // br %r1
1281 0x00, 0x00, // padding
1282 // second part
1283 0x0d, 0x10, // basr %r1, %r0
1284 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1285 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1286 0x00, 0x00, // padding
1287 0x00, 0x00, 0x00, 0x00, // padding
1288 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1289};
1290
1291template<int size>
1292const unsigned char
1293Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1294{
1295 // first part
1296 0x0d, 0x10, // basr %r1, %r0
1297 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1298 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1299 0x07, 0xf1, // br %r1
1300 // second part
1301 0x0d, 0x10, // basr %r1, %r0
1302 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1303 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1304 0x00, 0x00, // padding
1305 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1306 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1307};
1308
1309template<int size>
1310const unsigned char
1311Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1312{
1313 // first part
1314 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1315 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1316 0x07, 0xf1, // br %r1
1317 // second part
1318 0x0d, 0x10, // basr %r1, %r0
1319 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1320 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1321 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1322};
1323
1324template<int size>
1325unsigned int
1326Output_data_plt_s390<size>::fill_plt_entry(
1327 unsigned char* pov,
1328 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1329 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1330 unsigned int got_offset,
1331 unsigned int plt_offset,
1332 unsigned int plt_rel_offset)
1333{
1334 if (size == 64)
1335 {
1336 memcpy(pov, plt_entry_64, plt_entry_size);
1337 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1338 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1339 }
1340 else
1341 {
1342 if (!parameters->options().output_is_position_independent())
1343 {
1344 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1345 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1346 }
1347 else
1348 {
1349 if (got_offset < 0x1000)
1350 {
1351 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1352 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1353 }
1354 else if (got_offset < 0x8000)
1355 {
1356 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1357 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1358 }
1359 else
1360 {
1361 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1362 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1363 }
1364 }
1365 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1366 if (plt_offset >= 0x10000)
1367 {
1368 // Would overflow pcrela16dbl - aim at the farthest previous jump
1369 // we can reach.
1370 if (plt_offset > 0x10000)
1371 {
1372 // Use the full range of pcrel16dbl.
1373 target = plt_address + plt_offset - 0x10000 + 18;
1374 }
1375 else
1376 {
1377 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1378 // of first_plt_entry, which doesn't have the jump back like the others.
1379 // Aim at the next entry instead.
1380 target = plt_address + plt_offset - 0xffe0 + 18;
1381 }
1382 }
1383 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1384 }
1385 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1386 if (size == 64)
1387 return 14;
1388 else
1389 return 12;
1390}
1391
1392// The .eh_frame unwind information for the PLT.
1393
1394template<>
1395const unsigned char
1396Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1397{
1398 1, // CIE version.
1399 'z', // Augmentation: augmentation size included.
1400 'R', // Augmentation: FDE encoding included.
1401 '\0', // End of augmentation string.
1402 1, // Code alignment factor.
1403 0x7c, // Data alignment factor.
1404 14, // Return address column.
1405 1, // Augmentation size.
1406 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1407 | elfcpp::DW_EH_PE_sdata4),
1408 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1409};
1410
1411template<>
1412const unsigned char
1413Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1414{
1415 1, // CIE version.
1416 'z', // Augmentation: augmentation size included.
1417 'R', // Augmentation: FDE encoding included.
1418 '\0', // End of augmentation string.
1419 1, // Code alignment factor.
1420 0x78, // Data alignment factor.
1421 14, // Return address column.
1422 1, // Augmentation size.
1423 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1424 | elfcpp::DW_EH_PE_sdata4),
1425 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1426};
1427
1428template<int size>
1429const unsigned char
1430Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1431{
1432 0, 0, 0, 0, // Replaced with offset to .plt.
1433 0, 0, 0, 0, // Replaced with size of .plt.
1434 0, // Augmentation size.
1435 elfcpp::DW_CFA_nop,
1436 elfcpp::DW_CFA_nop,
1437 elfcpp::DW_CFA_nop
1438};
1439
1440// Write out the PLT. This uses the hand-coded instructions above,
1441// and adjusts them as needed.
1442
1443template<int size>
1444void
1445Output_data_plt_s390<size>::do_write(Output_file* of)
1446{
1447 const off_t offset = this->offset();
1448 const section_size_type oview_size =
1449 convert_to_section_size_type(this->data_size());
1450 unsigned char* const oview = of->get_output_view(offset, oview_size);
1451
1452 const off_t got_file_offset = this->got_plt_->offset();
1453 gold_assert(parameters->incremental_update()
1454 || (got_file_offset + this->got_plt_->data_size()
1455 == this->got_irelative_->offset()));
1456 const section_size_type got_size =
1457 convert_to_section_size_type(this->got_plt_->data_size()
1458 + this->got_irelative_->data_size());
1459 unsigned char* const got_view = of->get_output_view(got_file_offset,
1460 got_size);
1461
1462 unsigned char* pov = oview;
1463
1464 // The base address of the .plt section.
1465 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1466 // The base address of the PLT portion of the .got section,
1467 // which is where the GOT pointer will point, and where the
1468 // three reserved GOT entries are located.
1469 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1470 = this->got_plt_->address();
1471
1472 this->fill_first_plt_entry(pov, got_address, plt_address);
1473 pov += this->get_plt_entry_size();
1474
1475 unsigned char* got_pov = got_view;
1476
1477 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1478
1479 unsigned int plt_offset = this->get_plt_entry_size();
1480 unsigned int plt_rel_offset = 0;
1481 unsigned int got_offset = 3 * size / 8;
1482 const unsigned int count = this->count_ + this->irelative_count_;
1483 // The first three entries in the GOT are reserved, and are written
1484 // by Output_data_got_plt_s390::do_write.
1485 got_pov += 3 * size / 8;
1486
1487 for (unsigned int plt_index = 0;
1488 plt_index < count;
1489 ++plt_index,
1490 pov += plt_entry_size,
1491 got_pov += size / 8,
1492 plt_offset += plt_entry_size,
1493 plt_rel_offset += rel_size,
1494 got_offset += size / 8)
1495 {
1496 // Set and adjust the PLT entry itself.
1497 unsigned int lazy_offset = this->fill_plt_entry(pov,
1498 got_address, plt_address,
1499 got_offset, plt_offset,
1500 plt_rel_offset);
1501
1502 // Set the entry in the GOT.
1503 elfcpp::Swap<size, true>::writeval(got_pov,
1504 plt_address + plt_offset + lazy_offset);
1505 }
1506
1507 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1508 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1509
1510 of->write_output_view(offset, oview_size, oview);
1511 of->write_output_view(got_file_offset, got_size, got_view);
1512}
1513
1514// Get the GOT section, creating it if necessary.
1515
1516template<int size>
1517Output_data_got<size, true>*
1518Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1519{
1520 if (this->got_ == NULL)
1521 {
1522 gold_assert(symtab != NULL && layout != NULL);
1523
1524 // When using -z now, we can treat .got as a relro section.
1525 // Without -z now, it is modified after program startup by lazy
1526 // PLT relocations.
1527 bool is_got_relro = parameters->options().now();
1528 Output_section_order got_order = (is_got_relro
1529 ? ORDER_RELRO_LAST
1530 : ORDER_DATA);
1531
1532 // The old GNU linker creates a .got.plt section. We just
1533 // create another set of data in the .got section. Note that we
1534 // always create a PLT if we create a GOT, although the PLT
1535 // might be empty.
1536 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1537 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1538 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1539 this->got_plt_, got_order, is_got_relro);
1540
1541 // The first three entries are reserved.
1542 this->got_plt_->set_current_data_size(3 * size / 8);
1543
1544 // If there are any IRELATIVE relocations, they get GOT entries
1545 // in .got.plt after the jump slot entries.
1546 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1547 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1548 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1549 this->got_irelative_,
1550 got_order, is_got_relro);
1551
1552 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1553 // .got.plt sections in output. The output .got section contains both
1554 // PLT and non-PLT GOT entries.
1555 this->got_ = new Output_data_got<size, true>();
1556
1557 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1558 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1559 this->got_, got_order, is_got_relro);
1560
1561 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1562 this->global_offset_table_ =
1563 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1564 Symbol_table::PREDEFINED,
1565 this->got_plt_,
1566 0, 0, elfcpp::STT_OBJECT,
1567 elfcpp::STB_LOCAL,
1568 elfcpp::STV_HIDDEN, 0,
1569 false, false);
1570
1571 }
1572 return this->got_;
1573}
1574
1575// Get the dynamic reloc section, creating it if necessary.
1576
1577template<int size>
1578typename Target_s390<size>::Reloc_section*
1579Target_s390<size>::rela_dyn_section(Layout* layout)
1580{
1581 if (this->rela_dyn_ == NULL)
1582 {
1583 gold_assert(layout != NULL);
1584 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1585 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1586 elfcpp::SHF_ALLOC, this->rela_dyn_,
1587 ORDER_DYNAMIC_RELOCS, false);
1588 }
1589 return this->rela_dyn_;
1590}
1591
1592// Get the section to use for IRELATIVE relocs, creating it if
1593// necessary. These go in .rela.dyn, but only after all other dynamic
1594// relocations. They need to follow the other dynamic relocations so
1595// that they can refer to global variables initialized by those
1596// relocs.
1597
1598template<int size>
1599typename Target_s390<size>::Reloc_section*
1600Target_s390<size>::rela_irelative_section(Layout* layout)
1601{
1602 if (this->rela_irelative_ == NULL)
1603 {
1604 // Make sure we have already created the dynamic reloc section.
1605 this->rela_dyn_section(layout);
1606 this->rela_irelative_ = new Reloc_section(false);
1607 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1608 elfcpp::SHF_ALLOC, this->rela_irelative_,
1609 ORDER_DYNAMIC_RELOCS, false);
1610 gold_assert(this->rela_dyn_->output_section()
1611 == this->rela_irelative_->output_section());
1612 }
1613 return this->rela_irelative_;
1614}
1615
1616// Write the first three reserved words of the .got.plt section.
1617// The remainder of the section is written while writing the PLT
1618// in Output_data_plt_s390::do_write.
1619
1620template<int size>
1621void
1622Output_data_got_plt_s390<size>::do_write(Output_file* of)
1623{
1624 // The first entry in the GOT is the address of the .dynamic section
1625 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1626 // We saved space for them when we created the section in
1627 // Target_x86_64::got_section.
1628 const off_t got_file_offset = this->offset();
1629 gold_assert(this->data_size() >= 3 * size / 8);
1630 unsigned char* const got_view =
1631 of->get_output_view(got_file_offset, 3 * size / 8);
1632 Output_section* dynamic = this->layout_->dynamic_section();
1633 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1634 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1635 memset(got_view + size / 8, 0, 2 * size / 8);
1636 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1637}
1638
1639// Create the PLT section.
1640
1641template<int size>
1642void
1643Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1644{
1645 if (this->plt_ == NULL)
1646 {
1647 // Create the GOT sections first.
1648 this->got_section(symtab, layout);
1649
1650 // Ensure that .rela.dyn always appears before .rela.plt This is
1651 // necessary due to how, on 32-bit S/390 and some other targets,
1652 // .rela.dyn needs to include .rela.plt in it's range.
1653 this->rela_dyn_section(layout);
1654
1655 this->plt_ = new Output_data_plt_s390<size>(layout,
1656 this->got_, this->got_plt_, this->got_irelative_);
1657
1658 // Add unwind information if requested.
1659 if (parameters->options().ld_generated_unwind_info())
1660 this->plt_->add_eh_frame(layout);
1661
1662 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1663 (elfcpp::SHF_ALLOC
1664 | elfcpp::SHF_EXECINSTR),
1665 this->plt_, ORDER_PLT, false);
1666
1667 // Make the sh_info field of .rela.plt point to .plt.
1668 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1669 rela_plt_os->set_info_section(this->plt_->output_section());
1670 }
1671}
1672
1673// Create a PLT entry for a global symbol.
1674
1675template<int size>
1676void
1677Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1678 Symbol* gsym)
1679{
1680 if (gsym->has_plt_offset())
1681 return;
1682
1683 if (this->plt_ == NULL)
1684 this->make_plt_section(symtab, layout);
1685
1686 this->plt_->add_entry(symtab, layout, gsym);
1687}
1688
1689// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1690
1691template<int size>
1692void
1693Target_s390<size>::make_local_ifunc_plt_entry(
1694 Symbol_table* symtab, Layout* layout,
1695 Sized_relobj_file<size, true>* relobj,
1696 unsigned int local_sym_index)
1697{
1698 if (relobj->local_has_plt_offset(local_sym_index))
1699 return;
1700 if (this->plt_ == NULL)
1701 this->make_plt_section(symtab, layout);
1702 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1703 relobj,
1704 local_sym_index);
1705 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1706}
1707
1708// Return the number of entries in the PLT.
1709
1710template<int size>
1711unsigned int
1712Target_s390<size>::plt_entry_count() const
1713{
1714 if (this->plt_ == NULL)
1715 return 0;
1716 return this->plt_->entry_count();
1717}
1718
1719// Return the offset of the first non-reserved PLT entry.
1720
1721template<int size>
1722unsigned int
1723Target_s390<size>::first_plt_entry_offset() const
1724{
1725 return this->plt_->first_plt_entry_offset();
1726}
1727
1728// Return the size of each PLT entry.
1729
1730template<int size>
1731unsigned int
1732Target_s390<size>::plt_entry_size() const
1733{
1734 return this->plt_->get_plt_entry_size();
1735}
1736
1737// Create the GOT and PLT sections for an incremental update.
1738
1739template<int size>
1740Output_data_got_base*
1741Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1742 Layout* layout,
1743 unsigned int got_count,
1744 unsigned int plt_count)
1745{
1746 gold_assert(this->got_ == NULL);
1747
1748 // Add the three reserved entries.
1749 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1750 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1751 (elfcpp::SHF_ALLOC
1752 | elfcpp::SHF_WRITE),
1753 this->got_plt_, ORDER_NON_RELRO_FIRST,
1754 false);
1755
1756 // If there are any IRELATIVE relocations, they get GOT entries in
1757 // .got.plt after the jump slot entries.
1758 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1759 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1760 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1761 this->got_irelative_,
1762 ORDER_NON_RELRO_FIRST, false);
1763
1764 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1765 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1766 (elfcpp::SHF_ALLOC
1767 | elfcpp::SHF_WRITE),
1768 this->got_, ORDER_RELRO_LAST,
1769 true);
1770
1771 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1772 this->global_offset_table_ =
1773 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1774 Symbol_table::PREDEFINED,
1775 this->got_plt_,
1776 0, 0, elfcpp::STT_OBJECT,
1777 elfcpp::STB_LOCAL,
1778 elfcpp::STV_HIDDEN, 0,
1779 false, false);
1780
1781 // Create the PLT section.
1782 this->plt_ = new Output_data_plt_s390<size>(layout,
1783 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1784
1785 // Add unwind information if requested.
1786 if (parameters->options().ld_generated_unwind_info())
1787 this->plt_->add_eh_frame(layout);
1788
1789 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1790 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1791 this->plt_, ORDER_PLT, false);
1792
1793 // Make the sh_info field of .rela.plt point to .plt.
1794 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1795 rela_plt_os->set_info_section(this->plt_->output_section());
1796
1797 // Create the rela_dyn section.
1798 this->rela_dyn_section(layout);
1799
1800 return this->got_;
1801}
1802
1803// Reserve a GOT entry for a local symbol, and regenerate any
1804// necessary dynamic relocations.
1805
1806template<int size>
1807void
1808Target_s390<size>::reserve_local_got_entry(
1809 unsigned int got_index,
1810 Sized_relobj<size, true>* obj,
1811 unsigned int r_sym,
1812 unsigned int got_type)
1813{
1814 unsigned int got_offset = got_index * size / 8;
1815 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1816
1817 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1818 switch (got_type)
1819 {
1820 case GOT_TYPE_STANDARD:
1821 if (parameters->options().output_is_position_independent())
1822 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1823 this->got_, got_offset, 0, false);
1824 break;
1825 case GOT_TYPE_TLS_OFFSET:
1826 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1827 this->got_, got_offset, 0);
1828 break;
1829 case GOT_TYPE_TLS_PAIR:
1830 this->got_->reserve_slot(got_index + 1);
1831 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1832 this->got_, got_offset, 0);
1833 break;
1834 default:
1835 gold_unreachable();
1836 }
1837}
1838
1839// Reserve a GOT entry for a global symbol, and regenerate any
1840// necessary dynamic relocations.
1841
1842template<int size>
1843void
1844Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1845 Symbol* gsym,
1846 unsigned int got_type)
1847{
1848 unsigned int got_offset = got_index * size / 8;
1849 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1850
1851 this->got_->reserve_global(got_index, gsym, got_type);
1852 switch (got_type)
1853 {
1854 case GOT_TYPE_STANDARD:
1855 if (!gsym->final_value_is_known())
1856 {
1857 if (gsym->is_from_dynobj()
1858 || gsym->is_undefined()
1859 || gsym->is_preemptible()
1860 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1861 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1862 this->got_, got_offset, 0);
1863 else
1864 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1865 this->got_, got_offset, 0, false);
1866 }
1867 break;
1868 case GOT_TYPE_TLS_OFFSET:
1869 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1870 this->got_, got_offset, 0, false);
1871 break;
1872 case GOT_TYPE_TLS_PAIR:
1873 this->got_->reserve_slot(got_index + 1);
1874 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1875 this->got_, got_offset, 0, false);
1876 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1877 this->got_, got_offset + size / 8, 0, false);
1878 break;
1879 default:
1880 gold_unreachable();
1881 }
1882}
1883
1884// Register an existing PLT entry for a global symbol.
1885
1886template<int size>
1887void
1888Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1889 Layout* layout,
1890 unsigned int plt_index,
1891 Symbol* gsym)
1892{
1893 gold_assert(this->plt_ != NULL);
1894 gold_assert(!gsym->has_plt_offset());
1895
1896 this->plt_->reserve_slot(plt_index);
1897
1898 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1899
1900 unsigned int got_offset = (plt_index + 3) * size / 8;
1901 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1902}
1903
1904// Force a COPY relocation for a given symbol.
1905
1906template<int size>
1907void
1908Target_s390<size>::emit_copy_reloc(
1909 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1910{
1911 this->copy_relocs_.emit_copy_reloc(symtab,
1912 symtab->get_sized_symbol<size>(sym),
1913 os,
1914 offset,
1915 this->rela_dyn_section(NULL));
1916}
1917
1918// Create a GOT entry for the TLS module index.
1919
1920template<int size>
1921unsigned int
1922Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1923 Sized_relobj_file<size, true>* object)
1924{
1925 if (this->got_mod_index_offset_ == -1U)
1926 {
1927 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1928 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1929 Output_data_got<size, true>* got = this->got_section(symtab, layout);
1930 unsigned int got_offset = got->add_constant(0);
1931 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
1932 got_offset, 0);
1933 got->add_constant(0);
1934 this->got_mod_index_offset_ = got_offset;
1935 }
1936 return this->got_mod_index_offset_;
1937}
1938
1939// Optimize the TLS relocation type based on what we know about the
1940// symbol. IS_FINAL is true if the final address of this symbol is
1941// known at link time.
1942
1943template<int size>
1944tls::Tls_optimization
1945Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
1946{
1947 // If we are generating a shared library, then we can't do anything
1948 // in the linker.
1949 if (parameters->options().shared())
1950 return tls::TLSOPT_NONE;
1951
1952 switch (r_type)
1953 {
1954 case elfcpp::R_390_TLS_GD32:
1955 case elfcpp::R_390_TLS_GD64:
1956 case elfcpp::R_390_TLS_GDCALL:
1957 // These are General-Dynamic which permits fully general TLS
1958 // access. Since we know that we are generating an executable,
1959 // we can convert this to Initial-Exec. If we also know that
1960 // this is a local symbol, we can further switch to Local-Exec.
1961 if (is_final)
1962 return tls::TLSOPT_TO_LE;
1963 return tls::TLSOPT_TO_IE;
1964
1965 case elfcpp::R_390_TLS_LDM32:
1966 case elfcpp::R_390_TLS_LDM64:
1967 case elfcpp::R_390_TLS_LDO32:
1968 case elfcpp::R_390_TLS_LDO64:
1969 case elfcpp::R_390_TLS_LDCALL:
1970 // This is Local-Dynamic, which refers to a local symbol in the
1971 // dynamic TLS block. Since we know that we generating an
1972 // executable, we can switch to Local-Exec.
1973 return tls::TLSOPT_TO_LE;
1974
1975 case elfcpp::R_390_TLS_IE32:
1976 case elfcpp::R_390_TLS_IE64:
1977 case elfcpp::R_390_TLS_GOTIE32:
1978 case elfcpp::R_390_TLS_GOTIE64:
1979 case elfcpp::R_390_TLS_LOAD:
1980 // These are Initial-Exec relocs which get the thread offset
1981 // from the GOT. If we know that we are linking against the
1982 // local symbol, we can switch to Local-Exec, which links the
1983 // thread offset into the instruction.
1984 if (is_final)
1985 return tls::TLSOPT_TO_LE;
1986 return tls::TLSOPT_NONE;
1987
1988 case elfcpp::R_390_TLS_GOTIE12:
1989 case elfcpp::R_390_TLS_IEENT:
1990 case elfcpp::R_390_TLS_GOTIE20:
1991 // These are Initial-Exec, but cannot be optimized.
1992 return tls::TLSOPT_NONE;
1993
1994 case elfcpp::R_390_TLS_LE32:
1995 case elfcpp::R_390_TLS_LE64:
1996 // When we already have Local-Exec, there is nothing further we
1997 // can do.
1998 return tls::TLSOPT_NONE;
1999
2000 default:
2001 gold_unreachable();
2002 }
2003}
2004
2005// Get the Reference_flags for a particular relocation.
2006
2007template<int size>
2008int
2009Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2010{
2011 switch (r_type)
2012 {
2013 case elfcpp::R_390_NONE:
2014 case elfcpp::R_390_GNU_VTINHERIT:
2015 case elfcpp::R_390_GNU_VTENTRY:
2016 case elfcpp::R_390_GOTPC:
2017 case elfcpp::R_390_GOTPCDBL:
2018 // No symbol reference.
2019 return 0;
2020
2021 case elfcpp::R_390_64:
2022 case elfcpp::R_390_32:
2023 case elfcpp::R_390_20:
2024 case elfcpp::R_390_16:
2025 case elfcpp::R_390_12:
2026 case elfcpp::R_390_8:
2027 return Symbol::ABSOLUTE_REF;
2028
2029 case elfcpp::R_390_PC12DBL:
2030 case elfcpp::R_390_PC16:
2031 case elfcpp::R_390_PC16DBL:
2032 case elfcpp::R_390_PC24DBL:
2033 case elfcpp::R_390_PC32:
2034 case elfcpp::R_390_PC32DBL:
2035 case elfcpp::R_390_PC64:
2036 case elfcpp::R_390_GOTOFF16:
2037 case elfcpp::R_390_GOTOFF32:
2038 case elfcpp::R_390_GOTOFF64:
2039 return Symbol::RELATIVE_REF;
2040
2041 case elfcpp::R_390_PLT12DBL:
2042 case elfcpp::R_390_PLT16DBL:
2043 case elfcpp::R_390_PLT24DBL:
2044 case elfcpp::R_390_PLT32:
2045 case elfcpp::R_390_PLT32DBL:
2046 case elfcpp::R_390_PLT64:
2047 case elfcpp::R_390_PLTOFF16:
2048 case elfcpp::R_390_PLTOFF32:
2049 case elfcpp::R_390_PLTOFF64:
2050 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2051
2052 case elfcpp::R_390_GOT12:
2053 case elfcpp::R_390_GOT16:
2054 case elfcpp::R_390_GOT20:
2055 case elfcpp::R_390_GOT32:
2056 case elfcpp::R_390_GOT64:
2057 case elfcpp::R_390_GOTENT:
2058 case elfcpp::R_390_GOTPLT12:
2059 case elfcpp::R_390_GOTPLT16:
2060 case elfcpp::R_390_GOTPLT20:
2061 case elfcpp::R_390_GOTPLT32:
2062 case elfcpp::R_390_GOTPLT64:
2063 case elfcpp::R_390_GOTPLTENT:
2064 // Absolute in GOT.
2065 return Symbol::ABSOLUTE_REF;
2066
2067 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2068 case elfcpp::R_390_TLS_GD64:
2069 case elfcpp::R_390_TLS_GDCALL:
2070 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2071 case elfcpp::R_390_TLS_LDM64:
2072 case elfcpp::R_390_TLS_LDO32:
2073 case elfcpp::R_390_TLS_LDO64:
2074 case elfcpp::R_390_TLS_LDCALL:
2075 case elfcpp::R_390_TLS_IE32: // Initial-exec
2076 case elfcpp::R_390_TLS_IE64:
2077 case elfcpp::R_390_TLS_IEENT:
2078 case elfcpp::R_390_TLS_GOTIE12:
2079 case elfcpp::R_390_TLS_GOTIE20:
2080 case elfcpp::R_390_TLS_GOTIE32:
2081 case elfcpp::R_390_TLS_GOTIE64:
2082 case elfcpp::R_390_TLS_LOAD:
2083 case elfcpp::R_390_TLS_LE32: // Local-exec
2084 case elfcpp::R_390_TLS_LE64:
2085 return Symbol::TLS_REF;
2086
2087 case elfcpp::R_390_COPY:
2088 case elfcpp::R_390_GLOB_DAT:
2089 case elfcpp::R_390_JMP_SLOT:
2090 case elfcpp::R_390_RELATIVE:
2091 case elfcpp::R_390_IRELATIVE:
2092 case elfcpp::R_390_TLS_TPOFF:
2093 case elfcpp::R_390_TLS_DTPOFF:
2094 case elfcpp::R_390_TLS_DTPMOD:
2095 default:
2096 // Not expected. We will give an error later.
2097 return 0;
2098 }
2099}
2100
2101// Report an unsupported relocation against a local symbol.
2102
2103template<int size>
2104void
2105Target_s390<size>::Scan::unsupported_reloc_local(
2106 Sized_relobj_file<size, true>* object,
2107 unsigned int r_type)
2108{
2109 gold_error(_("%s: unsupported reloc %u against local symbol"),
2110 object->name().c_str(), r_type);
2111}
2112
2113// We are about to emit a dynamic relocation of type R_TYPE. If the
2114// dynamic linker does not support it, issue an error.
2115
2116template<int size>
2117void
2118Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2119{
2120 gold_assert(r_type != elfcpp::R_390_NONE);
2121
2122 if (size == 64)
2123 {
2124 switch (r_type)
2125 {
2126 // These are the relocation types supported by glibc for s390 64-bit.
2127 case elfcpp::R_390_RELATIVE:
2128 case elfcpp::R_390_IRELATIVE:
2129 case elfcpp::R_390_COPY:
2130 case elfcpp::R_390_GLOB_DAT:
2131 case elfcpp::R_390_JMP_SLOT:
2132 case elfcpp::R_390_TLS_DTPMOD:
2133 case elfcpp::R_390_TLS_DTPOFF:
2134 case elfcpp::R_390_TLS_TPOFF:
2135 case elfcpp::R_390_8:
2136 case elfcpp::R_390_16:
2137 case elfcpp::R_390_32:
2138 case elfcpp::R_390_64:
2139 case elfcpp::R_390_PC16:
2140 case elfcpp::R_390_PC16DBL:
2141 case elfcpp::R_390_PC32:
2142 case elfcpp::R_390_PC32DBL:
2143 case elfcpp::R_390_PC64:
2144 return;
2145
2146 default:
2147 break;
2148 }
2149 }
2150 else
2151 {
2152 switch (r_type)
2153 {
2154 // These are the relocation types supported by glibc for s390 32-bit.
2155 case elfcpp::R_390_RELATIVE:
2156 case elfcpp::R_390_IRELATIVE:
2157 case elfcpp::R_390_COPY:
2158 case elfcpp::R_390_GLOB_DAT:
2159 case elfcpp::R_390_JMP_SLOT:
2160 case elfcpp::R_390_TLS_DTPMOD:
2161 case elfcpp::R_390_TLS_DTPOFF:
2162 case elfcpp::R_390_TLS_TPOFF:
2163 case elfcpp::R_390_8:
2164 case elfcpp::R_390_16:
2165 case elfcpp::R_390_32:
2166 case elfcpp::R_390_PC16:
2167 case elfcpp::R_390_PC16DBL:
2168 case elfcpp::R_390_PC32:
2169 case elfcpp::R_390_PC32DBL:
2170 return;
2171
2172 default:
2173 break;
2174 }
2175 }
2176
2177 // This prevents us from issuing more than one error per reloc
2178 // section. But we can still wind up issuing more than one
2179 // error per object file.
2180 if (this->issued_non_pic_error_)
2181 return;
2182 gold_assert(parameters->options().output_is_position_independent());
2183 object->error(_("requires unsupported dynamic reloc; "
2184 "recompile with -fPIC"));
2185 this->issued_non_pic_error_ = true;
2186 return;
2187}
2188
2189// Return whether we need to make a PLT entry for a relocation of the
2190// given type against a STT_GNU_IFUNC symbol.
2191
2192template<int size>
2193bool
2194Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2195 Sized_relobj_file<size, true>* object,
2196 unsigned int r_type)
2197{
2198 int flags = Scan::get_reference_flags(r_type);
2199 if (flags & Symbol::TLS_REF)
2200 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2201 object->name().c_str(), r_type);
2202 return flags != 0;
2203}
2204
2205// Scan a relocation for a local symbol.
2206
2207template<int size>
2208inline void
2209Target_s390<size>::Scan::local(Symbol_table* symtab,
2210 Layout* layout,
2211 Target_s390<size>* target,
2212 Sized_relobj_file<size, true>* object,
2213 unsigned int data_shndx,
2214 Output_section* output_section,
2215 const elfcpp::Rela<size, true>& reloc,
2216 unsigned int r_type,
2217 const elfcpp::Sym<size, true>& lsym,
2218 bool is_discarded)
2219{
2220 if (is_discarded)
2221 return;
2222
2223 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2224 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2225
2226 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2227 {
2228 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2229 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2230 }
2231
2232 switch (r_type)
2233 {
2234 case elfcpp::R_390_NONE:
2235 case elfcpp::R_390_GNU_VTINHERIT:
2236 case elfcpp::R_390_GNU_VTENTRY:
2237 break;
2238
2239 case elfcpp::R_390_64:
2240 // If building a shared library (or a position-independent
2241 // executable), we need to create a dynamic relocation for this
2242 // location. The relocation applied at link time will apply the
2243 // link-time value, so we flag the location with an
2244 // R_390_RELATIVE relocation so the dynamic loader can
2245 // relocate it easily.
2246 if (parameters->options().output_is_position_independent() && size == 64)
2247 {
2248 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2249 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2250 rela_dyn->add_local_relative(object, r_sym,
2251 elfcpp::R_390_RELATIVE,
2252 output_section, data_shndx,
2253 reloc.get_r_offset(),
2254 reloc.get_r_addend(), is_ifunc);
2255 }
2256 break;
2257
2258 case elfcpp::R_390_32:
2259 case elfcpp::R_390_20:
2260 case elfcpp::R_390_16:
2261 case elfcpp::R_390_12:
2262 case elfcpp::R_390_8:
2263 if (parameters->options().output_is_position_independent())
2264 {
2265 if (size == 32 && r_type == elfcpp::R_390_32)
2266 {
2267 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2268 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2269 rela_dyn->add_local_relative(object, r_sym,
2270 elfcpp::R_390_RELATIVE,
2271 output_section, data_shndx,
2272 reloc.get_r_offset(),
2273 reloc.get_r_addend(), is_ifunc);
2274 break;
2275 }
2276
2277 check_non_pic(object, r_type);
2278
2279 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2280 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2281 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2282 rela_dyn->add_local(object, r_sym, r_type, output_section,
2283 data_shndx, reloc.get_r_offset(),
2284 reloc.get_r_addend());
2285 else
2286 {
2287 gold_assert(lsym.get_st_value() == 0);
2288 unsigned int shndx = lsym.get_st_shndx();
2289 bool is_ordinary;
2290 shndx = object->adjust_sym_shndx(r_sym, shndx,
2291 &is_ordinary);
2292 if (!is_ordinary)
2293 object->error(_("section symbol %u has bad shndx %u"),
2294 r_sym, shndx);
2295 else
2296 rela_dyn->add_local_section(object, shndx,
2297 r_type, output_section,
2298 data_shndx, reloc.get_r_offset(),
2299 reloc.get_r_addend());
2300 }
2301 }
2302 break;
2303
2304 case elfcpp::R_390_PC12DBL:
2305 case elfcpp::R_390_PC16:
2306 case elfcpp::R_390_PC16DBL:
2307 case elfcpp::R_390_PC24DBL:
2308 case elfcpp::R_390_PC32:
2309 case elfcpp::R_390_PC32DBL:
2310 case elfcpp::R_390_PC64:
2311 break;
2312
2313 case elfcpp::R_390_PLT12DBL:
2314 case elfcpp::R_390_PLT16DBL:
2315 case elfcpp::R_390_PLT24DBL:
2316 case elfcpp::R_390_PLT32:
2317 case elfcpp::R_390_PLT32DBL:
2318 case elfcpp::R_390_PLT64:
2319 // Since we know this is a local symbol, we can handle this as a
2320 // PC32 reloc.
2321 break;
2322
2323 case elfcpp::R_390_GOTPC:
2324 case elfcpp::R_390_GOTPCDBL:
2325 case elfcpp::R_390_GOTOFF16:
2326 case elfcpp::R_390_GOTOFF32:
2327 case elfcpp::R_390_GOTOFF64:
2328 case elfcpp::R_390_PLTOFF16:
2329 case elfcpp::R_390_PLTOFF32:
2330 case elfcpp::R_390_PLTOFF64:
2331 // We need a GOT section.
2332 target->got_section(symtab, layout);
2333 // For PLTOFF*, we'd normally want a PLT section, but since we
2334 // know this is a local symbol, no PLT is needed.
2335 break;
2336
2337 case elfcpp::R_390_GOT12:
2338 case elfcpp::R_390_GOT16:
2339 case elfcpp::R_390_GOT20:
2340 case elfcpp::R_390_GOT32:
2341 case elfcpp::R_390_GOT64:
2342 case elfcpp::R_390_GOTENT:
2343 case elfcpp::R_390_GOTPLT12:
2344 case elfcpp::R_390_GOTPLT16:
2345 case elfcpp::R_390_GOTPLT20:
2346 case elfcpp::R_390_GOTPLT32:
2347 case elfcpp::R_390_GOTPLT64:
2348 case elfcpp::R_390_GOTPLTENT:
2349 {
2350 // The symbol requires a GOT section.
2351 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2352
2353 // The symbol requires a GOT entry.
2354 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2355
2356 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2357 // lets function pointers compare correctly with shared
2358 // libraries. Otherwise we would need an IRELATIVE reloc.
2359 bool is_new;
2360 if (is_ifunc)
2361 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2362 else
2363 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2364 if (is_new)
2365 {
2366 // If we are generating a shared object, we need to add a
2367 // dynamic relocation for this symbol's GOT entry.
2368 if (parameters->options().output_is_position_independent())
2369 {
2370 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2371 unsigned int got_offset =
2372 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2373 rela_dyn->add_local_relative(object, r_sym,
2374 elfcpp::R_390_RELATIVE,
2375 got, got_offset, 0, is_ifunc);
2376 }
2377 }
2378 // For GOTPLT*, we'd normally want a PLT section, but since
2379 // we know this is a local symbol, no PLT is needed.
2380 }
2381 break;
2382
2383 case elfcpp::R_390_COPY:
2384 case elfcpp::R_390_GLOB_DAT:
2385 case elfcpp::R_390_JMP_SLOT:
2386 case elfcpp::R_390_RELATIVE:
2387 case elfcpp::R_390_IRELATIVE:
2388 // These are outstanding tls relocs, which are unexpected when linking
2389 case elfcpp::R_390_TLS_TPOFF:
2390 case elfcpp::R_390_TLS_DTPOFF:
2391 case elfcpp::R_390_TLS_DTPMOD:
2392 gold_error(_("%s: unexpected reloc %u in object file"),
2393 object->name().c_str(), r_type);
2394 break;
2395
2396 // These are initial tls relocs, which are expected when linking
2397 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2398 case elfcpp::R_390_TLS_GD64:
2399 case elfcpp::R_390_TLS_GDCALL:
2400 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2401 case elfcpp::R_390_TLS_LDM64:
2402 case elfcpp::R_390_TLS_LDO32:
2403 case elfcpp::R_390_TLS_LDO64:
2404 case elfcpp::R_390_TLS_LDCALL:
2405 case elfcpp::R_390_TLS_IE32: // Initial-exec
2406 case elfcpp::R_390_TLS_IE64:
2407 case elfcpp::R_390_TLS_IEENT:
2408 case elfcpp::R_390_TLS_GOTIE12:
2409 case elfcpp::R_390_TLS_GOTIE20:
2410 case elfcpp::R_390_TLS_GOTIE32:
2411 case elfcpp::R_390_TLS_GOTIE64:
2412 case elfcpp::R_390_TLS_LOAD:
2413 case elfcpp::R_390_TLS_LE32: // Local-exec
2414 case elfcpp::R_390_TLS_LE64:
2415 {
2416 bool output_is_shared = parameters->options().shared();
2417 const tls::Tls_optimization optimized_type
2418 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2419 r_type);
2420 switch (r_type)
2421 {
2422 case elfcpp::R_390_TLS_GD32: // General-dynamic
2423 case elfcpp::R_390_TLS_GD64:
2424 case elfcpp::R_390_TLS_GDCALL:
2425 if (optimized_type == tls::TLSOPT_NONE)
2426 {
2427 // Create a pair of GOT entries for the module index and
2428 // dtv-relative offset.
2429 Output_data_got<size, true>* got
2430 = target->got_section(symtab, layout);
2431 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2432 unsigned int shndx = lsym.get_st_shndx();
2433 bool is_ordinary;
2434 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2435 if (!is_ordinary)
2436 object->error(_("local symbol %u has bad shndx %u"),
2437 r_sym, shndx);
2438 else
2439 got->add_local_pair_with_rel(object, r_sym,
2440 shndx,
2441 GOT_TYPE_TLS_PAIR,
2442 target->rela_dyn_section(layout),
2443 elfcpp::R_390_TLS_DTPMOD);
2444 }
2445 else if (optimized_type != tls::TLSOPT_TO_LE)
2446 unsupported_reloc_local(object, r_type);
2447 break;
2448
2449 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2450 case elfcpp::R_390_TLS_LDM64:
2451 case elfcpp::R_390_TLS_LDCALL:
2452 if (optimized_type == tls::TLSOPT_NONE)
2453 {
2454 // Create a GOT entry for the module index.
2455 target->got_mod_index_entry(symtab, layout, object);
2456 }
2457 else if (optimized_type != tls::TLSOPT_TO_LE)
2458 unsupported_reloc_local(object, r_type);
2459 break;
2460
2461 case elfcpp::R_390_TLS_LDO32:
2462 case elfcpp::R_390_TLS_LDO64:
2463 break;
2464
2465 case elfcpp::R_390_TLS_IE32: // Initial-exec
2466 case elfcpp::R_390_TLS_IE64:
2467 // These two involve an absolute address
2468 if (parameters->options().shared()
2469 && optimized_type == tls::TLSOPT_NONE)
2470 {
2471 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2472 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2473 {
2474 // We need to create a dynamic relocation.
2475 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2476 unsigned int r_sym =
2477 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2478 rela_dyn->add_local_relative(object, r_sym,
2479 elfcpp::R_390_RELATIVE,
2480 output_section, data_shndx,
2481 reloc.get_r_offset(),
2482 reloc.get_r_addend(), false);
2483 }
2484 else
2485 {
2486 unsupported_reloc_local(object, r_type);
2487 }
2488 }
2489 // fall through
2490 case elfcpp::R_390_TLS_IEENT:
2491 case elfcpp::R_390_TLS_GOTIE12:
2492 case elfcpp::R_390_TLS_GOTIE20:
2493 case elfcpp::R_390_TLS_GOTIE32:
2494 case elfcpp::R_390_TLS_GOTIE64:
2495 case elfcpp::R_390_TLS_LOAD:
2496 layout->set_has_static_tls();
2497 if (optimized_type == tls::TLSOPT_NONE)
2498 {
2499 if (!output_is_shared)
2500 {
2501 // We're making an executable, and the symbol is local, but
2502 // we cannot optimize to LE. Make a const GOT entry instead.
2503 Output_data_got<size, true>* got
2504 = target->got_section(symtab, layout);
2505 unsigned int r_sym
2506 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2507 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2508 }
2509 else
2510 {
2511 // Create a GOT entry for the tp-relative offset.
2512 Output_data_got<size, true>* got
2513 = target->got_section(symtab, layout);
2514 unsigned int r_sym
2515 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2516 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2517 target->rela_dyn_section(layout),
2518 elfcpp::R_390_TLS_TPOFF);
2519 }
2520 }
2521 else if (optimized_type != tls::TLSOPT_TO_LE)
2522 unsupported_reloc_local(object, r_type);
2523 break;
2524
2525 case elfcpp::R_390_TLS_LE32: // Local-exec
2526 case elfcpp::R_390_TLS_LE64:
2527 layout->set_has_static_tls();
2528 if (output_is_shared)
2529 {
2530 // We need to create a dynamic relocation.
2531 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2532 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2533 {
2534 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2535 unsigned int r_sym
2536 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2537 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2538 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2539 output_section, data_shndx,
2540 reloc.get_r_offset(),
2541 reloc.get_r_addend());
2542 }
2543 else
2544 {
2545 unsupported_reloc_local(object, r_type);
2546 }
2547 }
2548 break;
2549
2550 default:
2551 gold_unreachable();
2552 }
2553 }
2554 break;
2555
2556 default:
2557 gold_error(_("%s: unsupported reloc %u against local symbol"),
2558 object->name().c_str(), r_type);
2559 break;
2560 }
2561}
2562
2563// Scan a relocation for a global symbol.
2564
2565template<int size>
2566inline void
2567Target_s390<size>::Scan::global(Symbol_table* symtab,
2568 Layout* layout,
2569 Target_s390<size>* target,
2570 Sized_relobj_file<size, true>* object,
2571 unsigned int data_shndx,
2572 Output_section* output_section,
2573 const elfcpp::Rela<size, true>& reloc,
2574 unsigned int r_type,
2575 Symbol* gsym)
2576{
2577 // A STT_GNU_IFUNC symbol may require a PLT entry.
2578 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2579 && this->reloc_needs_plt_for_ifunc(object, r_type))
2580 target->make_plt_entry(symtab, layout, gsym);
2581
2582 switch (r_type)
2583 {
2584 case elfcpp::R_390_NONE:
2585 case elfcpp::R_390_GNU_VTINHERIT:
2586 case elfcpp::R_390_GNU_VTENTRY:
2587 break;
2588
2589 case elfcpp::R_390_64:
2590 case elfcpp::R_390_32:
2591 case elfcpp::R_390_20:
2592 case elfcpp::R_390_16:
2593 case elfcpp::R_390_12:
2594 case elfcpp::R_390_8:
2595 {
2596 // Make a PLT entry if necessary.
2597 if (gsym->needs_plt_entry())
2598 {
2599 target->make_plt_entry(symtab, layout, gsym);
2600 // Since this is not a PC-relative relocation, we may be
2601 // taking the address of a function. In that case we need to
2602 // set the entry in the dynamic symbol table to the address of
2603 // the PLT entry.
2604 if (gsym->is_from_dynobj() && !parameters->options().shared())
2605 gsym->set_needs_dynsym_value();
2606 }
2607 // Make a dynamic relocation if necessary.
2608 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2609 {
2610 if (!parameters->options().output_is_position_independent()
2611 && gsym->may_need_copy_reloc())
2612 {
2613 target->copy_reloc(symtab, layout, object,
2614 data_shndx, output_section, gsym, reloc);
2615 }
2616 else if (((size == 64 && r_type == elfcpp::R_390_64)
2617 || (size == 32 && r_type == elfcpp::R_390_32))
2618 && gsym->type() == elfcpp::STT_GNU_IFUNC
2619 && gsym->can_use_relative_reloc(false)
2620 && !gsym->is_from_dynobj()
2621 && !gsym->is_undefined()
2622 && !gsym->is_preemptible())
2623 {
2624 // Use an IRELATIVE reloc for a locally defined
2625 // STT_GNU_IFUNC symbol. This makes a function
2626 // address in a PIE executable match the address in a
2627 // shared library that it links against.
2628 Reloc_section* rela_dyn =
2629 target->rela_irelative_section(layout);
2630 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2631 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2632 output_section, object,
2633 data_shndx,
2634 reloc.get_r_offset(),
2635 reloc.get_r_addend());
2636 }
2637 else if (((size == 64 && r_type == elfcpp::R_390_64)
2638 || (size == 32 && r_type == elfcpp::R_390_32))
2639 && gsym->can_use_relative_reloc(false))
2640 {
2641 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2642 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2643 output_section, object,
2644 data_shndx,
2645 reloc.get_r_offset(),
2646 reloc.get_r_addend(), false);
2647 }
2648 else
2649 {
2650 check_non_pic(object, r_type);
2651 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2652 rela_dyn->add_global(gsym, r_type, output_section, object,
2653 data_shndx, reloc.get_r_offset(),
2654 reloc.get_r_addend());
2655 }
2656 }
2657 }
2658 break;
2659
2660 case elfcpp::R_390_PC12DBL:
2661 case elfcpp::R_390_PC16:
2662 case elfcpp::R_390_PC16DBL:
2663 case elfcpp::R_390_PC24DBL:
2664 case elfcpp::R_390_PC32:
2665 case elfcpp::R_390_PC32DBL:
2666 case elfcpp::R_390_PC64:
2667 {
2668 // Make a PLT entry if necessary.
2669 if (gsym->needs_plt_entry())
2670 {
2671 target->make_plt_entry(symtab, layout, gsym);
2672 // larl is often used to take address of a function. Aim the
2673 // symbol at the PLT entry.
2674 if (gsym->is_from_dynobj() && !parameters->options().shared())
2675 gsym->set_needs_dynsym_value();
2676 }
2677 // Make a dynamic relocation if necessary.
2678 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2679 {
2680 if (parameters->options().output_is_executable()
2681 && gsym->may_need_copy_reloc())
2682 {
2683 target->copy_reloc(symtab, layout, object,
2684 data_shndx, output_section, gsym, reloc);
2685 }
2686 else
2687 {
2688 check_non_pic(object, r_type);
2689 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2690 rela_dyn->add_global(gsym, r_type, output_section, object,
2691 data_shndx, reloc.get_r_offset(),
2692 reloc.get_r_addend());
2693 }
2694 }
2695 }
2696 break;
2697
2698 case elfcpp::R_390_PLT12DBL:
2699 case elfcpp::R_390_PLT16DBL:
2700 case elfcpp::R_390_PLT24DBL:
2701 case elfcpp::R_390_PLT32:
2702 case elfcpp::R_390_PLT32DBL:
2703 case elfcpp::R_390_PLT64:
2704 // If the symbol is fully resolved, this is just a PC32 reloc.
2705 // Otherwise we need a PLT entry.
2706 if (gsym->final_value_is_known())
2707 break;
2708 // If building a shared library, we can also skip the PLT entry
2709 // if the symbol is defined in the output file and is protected
2710 // or hidden.
2711 if (gsym->is_defined()
2712 && !gsym->is_from_dynobj()
2713 && !gsym->is_preemptible())
2714 break;
2715 target->make_plt_entry(symtab, layout, gsym);
2716 break;
2717
2718 case elfcpp::R_390_GOTPC:
2719 case elfcpp::R_390_GOTPCDBL:
2720 case elfcpp::R_390_GOTOFF16:
2721 case elfcpp::R_390_GOTOFF32:
2722 case elfcpp::R_390_GOTOFF64:
2723 case elfcpp::R_390_PLTOFF16:
2724 case elfcpp::R_390_PLTOFF32:
2725 case elfcpp::R_390_PLTOFF64:
2726 // We need a GOT section.
2727 target->got_section(symtab, layout);
2728 // For PLTOFF*, we also need a PLT entry (but only if the
2729 // symbol is not fully resolved).
2730 if ((r_type == elfcpp::R_390_PLTOFF16
2731 || r_type == elfcpp::R_390_PLTOFF32
2732 || r_type == elfcpp::R_390_PLTOFF64)
2733 && !gsym->final_value_is_known())
2734 target->make_plt_entry(symtab, layout, gsym);
2735 break;
2736
2737 case elfcpp::R_390_GOT12:
2738 case elfcpp::R_390_GOT16:
2739 case elfcpp::R_390_GOT20:
2740 case elfcpp::R_390_GOT32:
2741 case elfcpp::R_390_GOT64:
2742 case elfcpp::R_390_GOTENT:
2743 case elfcpp::R_390_GOTPLT12:
2744 case elfcpp::R_390_GOTPLT16:
2745 case elfcpp::R_390_GOTPLT20:
2746 case elfcpp::R_390_GOTPLT32:
2747 case elfcpp::R_390_GOTPLT64:
2748 case elfcpp::R_390_GOTPLTENT:
2749 {
2750 // The symbol requires a GOT entry.
2751 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2752
2753 if (gsym->final_value_is_known())
2754 {
2755 // For a STT_GNU_IFUNC symbol we want the PLT address.
2756 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2757 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2758 else
2759 got->add_global(gsym, GOT_TYPE_STANDARD);
2760 }
2761 else
2762 {
2763 // If this symbol is not fully resolved, we need to add a
2764 // dynamic relocation for it.
2765 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2766
2767 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2768 //
2769 // 1) The symbol may be defined in some other module.
2770 //
2771 // 2) We are building a shared library and this is a
2772 // protected symbol; using GLOB_DAT means that the dynamic
2773 // linker can use the address of the PLT in the main
2774 // executable when appropriate so that function address
2775 // comparisons work.
2776 //
2777 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2778 // code, again so that function address comparisons work.
2779 if (gsym->is_from_dynobj()
2780 || gsym->is_undefined()
2781 || gsym->is_preemptible()
2782 || (gsym->visibility() == elfcpp::STV_PROTECTED
2783 && parameters->options().shared())
2784 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2785 && parameters->options().output_is_position_independent()))
2786 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2787 elfcpp::R_390_GLOB_DAT);
2788 else
2789 {
2790 // For a STT_GNU_IFUNC symbol we want to write the PLT
2791 // offset into the GOT, so that function pointer
2792 // comparisons work correctly.
2793 bool is_new;
2794 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2795 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2796 else
2797 {
2798 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2799 // Tell the dynamic linker to use the PLT address
2800 // when resolving relocations.
2801 if (gsym->is_from_dynobj()
2802 && !parameters->options().shared())
2803 gsym->set_needs_dynsym_value();
2804 }
2805 if (is_new)
2806 {
2807 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2808 rela_dyn->add_global_relative(gsym,
2809 elfcpp::R_390_RELATIVE,
2810 got, got_off, 0, false);
2811 }
2812 }
2813 }
2814 }
2815 break;
2816
2817 case elfcpp::R_390_COPY:
2818 case elfcpp::R_390_GLOB_DAT:
2819 case elfcpp::R_390_JMP_SLOT:
2820 case elfcpp::R_390_RELATIVE:
2821 case elfcpp::R_390_IRELATIVE:
2822 // These are outstanding tls relocs, which are unexpected when linking
2823 case elfcpp::R_390_TLS_TPOFF:
2824 case elfcpp::R_390_TLS_DTPOFF:
2825 case elfcpp::R_390_TLS_DTPMOD:
2826 gold_error(_("%s: unexpected reloc %u in object file"),
2827 object->name().c_str(), r_type);
2828 break;
2829
2830 // These are initial tls relocs, which are expected for global()
2831 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2832 case elfcpp::R_390_TLS_GD64:
2833 case elfcpp::R_390_TLS_GDCALL:
2834 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2835 case elfcpp::R_390_TLS_LDM64:
2836 case elfcpp::R_390_TLS_LDO32:
2837 case elfcpp::R_390_TLS_LDO64:
2838 case elfcpp::R_390_TLS_LDCALL:
2839 case elfcpp::R_390_TLS_IE32: // Initial-exec
2840 case elfcpp::R_390_TLS_IE64:
2841 case elfcpp::R_390_TLS_IEENT:
2842 case elfcpp::R_390_TLS_GOTIE12:
2843 case elfcpp::R_390_TLS_GOTIE20:
2844 case elfcpp::R_390_TLS_GOTIE32:
2845 case elfcpp::R_390_TLS_GOTIE64:
2846 case elfcpp::R_390_TLS_LOAD:
2847 case elfcpp::R_390_TLS_LE32: // Local-exec
2848 case elfcpp::R_390_TLS_LE64:
2849 {
2850 // For the optimizable Initial-Exec model, we can treat undef symbols
2851 // as final when building an executable.
2852 const bool is_final = (gsym->final_value_is_known() ||
2853 ((r_type == elfcpp::R_390_TLS_IE32 ||
2854 r_type == elfcpp::R_390_TLS_IE64 ||
2855 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2856 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2857 gsym->is_undefined() &&
2858 parameters->options().output_is_executable()));
2859 const tls::Tls_optimization optimized_type
2860 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2861 switch (r_type)
2862 {
2863 case elfcpp::R_390_TLS_GD32: // General-dynamic
2864 case elfcpp::R_390_TLS_GD64:
2865 case elfcpp::R_390_TLS_GDCALL:
2866 if (optimized_type == tls::TLSOPT_NONE)
2867 {
2868 // Create a pair of GOT entries for the module index and
2869 // dtv-relative offset.
2870 Output_data_got<size, true>* got
2871 = target->got_section(symtab, layout);
2872 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2873 target->rela_dyn_section(layout),
2874 elfcpp::R_390_TLS_DTPMOD,
2875 elfcpp::R_390_TLS_DTPOFF);
2876 }
2877 else if (optimized_type == tls::TLSOPT_TO_IE)
2878 {
2879 // Create a GOT entry for the tp-relative offset.
2880 Output_data_got<size, true>* got
2881 = target->got_section(symtab, layout);
2882 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2883 target->rela_dyn_section(layout),
2884 elfcpp::R_390_TLS_TPOFF);
2885 }
2886 else if (optimized_type != tls::TLSOPT_TO_LE)
2887 unsupported_reloc_global(object, r_type, gsym);
2888 break;
2889
2890 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2891 case elfcpp::R_390_TLS_LDM64:
2892 case elfcpp::R_390_TLS_LDCALL:
2893 if (optimized_type == tls::TLSOPT_NONE)
2894 {
2895 // Create a GOT entry for the module index.
2896 target->got_mod_index_entry(symtab, layout, object);
2897 }
2898 else if (optimized_type != tls::TLSOPT_TO_LE)
2899 unsupported_reloc_global(object, r_type, gsym);
2900 break;
2901
2902 case elfcpp::R_390_TLS_LDO32:
2903 case elfcpp::R_390_TLS_LDO64:
2904 break;
2905
2906 case elfcpp::R_390_TLS_IE32: // Initial-exec
2907 case elfcpp::R_390_TLS_IE64:
2908 // These two involve an absolute address
2909 if (parameters->options().shared())
2910 {
2911 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2912 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2913 {
2914 // We need to create a dynamic relocation.
2915 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2916 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2917 output_section, object,
2918 data_shndx,
2919 reloc.get_r_offset(),
2920 reloc.get_r_addend(), false);
2921 }
2922 else
2923 {
2924 unsupported_reloc_global(object, r_type, gsym);
2925 }
2926 }
2927 // fall through
2928 case elfcpp::R_390_TLS_IEENT:
2929 case elfcpp::R_390_TLS_GOTIE12:
2930 case elfcpp::R_390_TLS_GOTIE20:
2931 case elfcpp::R_390_TLS_GOTIE32:
2932 case elfcpp::R_390_TLS_GOTIE64:
2933 case elfcpp::R_390_TLS_LOAD:
2934 layout->set_has_static_tls();
2935 if (optimized_type == tls::TLSOPT_NONE)
2936 {
2937 if (is_final && !parameters->options().shared())
2938 {
2939 // We're making an executable, and the symbol is local, but
2940 // we cannot optimize to LE. Make a const GOT entry instead.
2941 Output_data_got<size, true>* got
2942 = target->got_section(symtab, layout);
2943 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
2944 }
2945 else
2946 {
2947 // Create a GOT entry for the tp-relative offset.
2948 Output_data_got<size, true>* got
2949 = target->got_section(symtab, layout);
2950 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2951 target->rela_dyn_section(layout),
2952 elfcpp::R_390_TLS_TPOFF);
2953 }
2954 }
2955 else if (optimized_type != tls::TLSOPT_TO_LE)
2956 unsupported_reloc_global(object, r_type, gsym);
2957 break;
2958
2959 case elfcpp::R_390_TLS_LE32: // Local-exec
2960 case elfcpp::R_390_TLS_LE64:
2961 layout->set_has_static_tls();
2962 if (parameters->options().shared())
2963 {
2964 // We need to create a dynamic relocation.
2965 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2966 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2967 {
2968 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2969 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
2970 output_section, object,
2971 data_shndx, reloc.get_r_offset(),
2972 reloc.get_r_addend());
2973 }
2974 else
2975 {
2976 unsupported_reloc_global(object, r_type, gsym);
2977 }
2978 }
2979 break;
2980
2981 default:
2982 gold_unreachable();
2983 }
2984 }
2985 break;
2986
2987 default:
2988 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2989 object->name().c_str(), r_type,
2990 gsym->demangled_name().c_str());
2991 break;
2992 }
2993}
2994
2995
2996// Report an unsupported relocation against a global symbol.
2997
2998template<int size>
2999void
3000Target_s390<size>::Scan::unsupported_reloc_global(
3001 Sized_relobj_file<size, true>* object,
3002 unsigned int r_type,
3003 Symbol* gsym)
3004{
3005 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3006 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3007}
3008
3009// Returns true if this relocation type could be that of a function pointer.
3010template<int size>
3011inline bool
3012Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3013{
3014 switch (r_type)
3015 {
3016 case elfcpp::R_390_32:
3017 case elfcpp::R_390_64:
3018 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3019 case elfcpp::R_390_GOT12:
3020 case elfcpp::R_390_GOT16:
3021 case elfcpp::R_390_GOT20:
3022 case elfcpp::R_390_GOT32:
3023 case elfcpp::R_390_GOT64:
3024 case elfcpp::R_390_GOTENT:
3025 case elfcpp::R_390_GOTOFF16:
3026 case elfcpp::R_390_GOTOFF32:
3027 case elfcpp::R_390_GOTOFF64:
3028 return true;
3029 }
3030 return false;
3031}
3032
3033// For safe ICF, scan a relocation for a local symbol to check if it
3034// corresponds to a function pointer being taken. In that case mark
3035// the function whose pointer was taken as not foldable.
3036
3037template<int size>
3038inline bool
3039Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3040 Symbol_table* ,
3041 Layout* ,
3042 Target_s390<size>* ,
3043 Sized_relobj_file<size, true>* ,
3044 unsigned int ,
3045 Output_section* ,
3046 const elfcpp::Rela<size, true>& ,
3047 unsigned int r_type,
3048 const elfcpp::Sym<size, true>&)
3049{
3050 // When building a shared library, do not fold any local symbols.
3051 return (parameters->options().shared()
3052 || possible_function_pointer_reloc(r_type));
3053}
3054
3055// For safe ICF, scan a relocation for a global symbol to check if it
3056// corresponds to a function pointer being taken. In that case mark
3057// the function whose pointer was taken as not foldable.
3058
3059template<int size>
3060inline bool
3061Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3062 Symbol_table*,
3063 Layout* ,
3064 Target_s390<size>* ,
3065 Sized_relobj_file<size, true>* ,
3066 unsigned int ,
3067 Output_section* ,
3068 const elfcpp::Rela<size, true>& ,
3069 unsigned int r_type,
3070 Symbol* gsym)
3071{
3072 // When building a shared library, do not fold symbols whose visibility
3073 // is hidden, internal or protected.
3074 return ((parameters->options().shared()
3075 && (gsym->visibility() == elfcpp::STV_INTERNAL
3076 || gsym->visibility() == elfcpp::STV_PROTECTED
3077 || gsym->visibility() == elfcpp::STV_HIDDEN))
3078 || possible_function_pointer_reloc(r_type));
3079}
3080
3081template<int size>
3082void
3083Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3084 Layout* layout,
3085 Sized_relobj_file<size, true>* object,
3086 unsigned int data_shndx,
3087 unsigned int sh_type,
3088 const unsigned char* prelocs,
3089 size_t reloc_count,
3090 Output_section* output_section,
3091 bool needs_special_offset_handling,
3092 size_t local_symbol_count,
3093 const unsigned char* plocal_symbols)
3094{
4d625b70
CC
3095 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3096 Classify_reloc;
e79a4bad
MK
3097
3098 if (sh_type == elfcpp::SHT_REL)
3099 return;
3100
4d625b70 3101 gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
3102 symtab,
3103 layout,
3104 this,
3105 object,
3106 data_shndx,
3107 prelocs,
3108 reloc_count,
3109 output_section,
3110 needs_special_offset_handling,
3111 local_symbol_count,
3112 plocal_symbols);
3113}
3114
3115// Perform a relocation.
3116
3117template<int size>
3118inline bool
3119Target_s390<size>::Relocate::relocate(
3120 const Relocate_info<size, true>* relinfo,
91a65d2f 3121 unsigned int,
e79a4bad
MK
3122 Target_s390<size>* target,
3123 Output_section*,
3124 size_t relnum,
91a65d2f 3125 const unsigned char* preloc,
e79a4bad
MK
3126 const Sized_symbol<size>* gsym,
3127 const Symbol_value<size>* psymval,
3128 unsigned char* view,
3129 typename elfcpp::Elf_types<size>::Elf_Addr address,
3130 section_size_type view_size)
3131{
3132 if (view == NULL)
3133 return true;
3134
91a65d2f
AM
3135 const elfcpp::Rela<size, true> rela(preloc);
3136 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
e79a4bad
MK
3137 const Sized_relobj_file<size, true>* object = relinfo->object;
3138
3139 // Pick the value to use for symbols defined in the PLT.
3140 Symbol_value<size> symval;
3141 if (gsym != NULL
3142 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3143 {
3144 symval.set_output_value(target->plt_address_for_global(gsym));
3145 psymval = &symval;
3146 }
3147 else if (gsym == NULL && psymval->is_ifunc_symbol())
3148 {
3149 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3150 if (object->local_has_plt_offset(r_sym))
3151 {
3152 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3153 psymval = &symval;
3154 }
3155 }
3156
3157 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3158
3159 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3160
3161 switch (r_type)
3162 {
3163 case elfcpp::R_390_PLT64:
3164 case elfcpp::R_390_PLT32:
3165 case elfcpp::R_390_PLT32DBL:
3166 case elfcpp::R_390_PLT24DBL:
3167 case elfcpp::R_390_PLT16DBL:
3168 case elfcpp::R_390_PLT12DBL:
3169 gold_assert(gsym == NULL
3170 || gsym->has_plt_offset()
3171 || gsym->final_value_is_known()
3172 || (gsym->is_defined()
3173 && !gsym->is_from_dynobj()
3174 && !gsym->is_preemptible()));
3175 // fallthru
3176 case elfcpp::R_390_8:
3177 case elfcpp::R_390_12:
3178 case elfcpp::R_390_16:
3179 case elfcpp::R_390_20:
3180 case elfcpp::R_390_32:
3181 case elfcpp::R_390_64:
3182 case elfcpp::R_390_PC16:
3183 case elfcpp::R_390_PC32:
3184 case elfcpp::R_390_PC64:
3185 case elfcpp::R_390_PC32DBL:
3186 case elfcpp::R_390_PC24DBL:
3187 case elfcpp::R_390_PC16DBL:
3188 case elfcpp::R_390_PC12DBL:
3189 value = psymval->value(object, addend);
3190 break;
3191
3192 case elfcpp::R_390_GOTPC:
3193 case elfcpp::R_390_GOTPCDBL:
3194 gold_assert(gsym != NULL);
3195 value = target->got_address() + addend;
3196 break;
3197
3198 case elfcpp::R_390_PLTOFF64:
3199 case elfcpp::R_390_PLTOFF32:
3200 case elfcpp::R_390_PLTOFF16:
3201 gold_assert(gsym == NULL
3202 || gsym->has_plt_offset()
3203 || gsym->final_value_is_known());
3204 // fallthru
3205 case elfcpp::R_390_GOTOFF64:
3206 case elfcpp::R_390_GOTOFF32:
3207 case elfcpp::R_390_GOTOFF16:
3208 value = (psymval->value(object, addend)
3209 - target->got_address());
3210 break;
3211
3212 case elfcpp::R_390_GOT12:
3213 case elfcpp::R_390_GOT16:
3214 case elfcpp::R_390_GOT20:
3215 case elfcpp::R_390_GOT32:
3216 case elfcpp::R_390_GOT64:
3217 case elfcpp::R_390_GOTENT:
3218 case elfcpp::R_390_GOTPLT12:
3219 case elfcpp::R_390_GOTPLT16:
3220 case elfcpp::R_390_GOTPLT20:
3221 case elfcpp::R_390_GOTPLT32:
3222 case elfcpp::R_390_GOTPLT64:
3223 case elfcpp::R_390_GOTPLTENT:
3224 {
3225 unsigned int got_offset = 0;
3226 if (gsym != NULL)
3227 {
3228 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3229 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3230 }
3231 else
3232 {
3233 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3234 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3235 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3236 }
3237 value = got_offset + target->got_main_offset() + addend;
3238 }
3239 break;
3240
3241 // These are initial tls relocs, which are expected when linking
3242 case elfcpp::R_390_TLS_LOAD:
3243 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3244 case elfcpp::R_390_TLS_GD32:
3245 case elfcpp::R_390_TLS_GD64:
3246 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3247 case elfcpp::R_390_TLS_LDM32:
3248 case elfcpp::R_390_TLS_LDM64:
3249 case elfcpp::R_390_TLS_LDO32:
3250 case elfcpp::R_390_TLS_LDO64:
3251 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3252 case elfcpp::R_390_TLS_GOTIE20:
3253 case elfcpp::R_390_TLS_GOTIE32:
3254 case elfcpp::R_390_TLS_GOTIE64:
3255 case elfcpp::R_390_TLS_IE32:
3256 case elfcpp::R_390_TLS_IE64:
3257 case elfcpp::R_390_TLS_IEENT:
3258 case elfcpp::R_390_TLS_LE32: // Local-exec
3259 case elfcpp::R_390_TLS_LE64:
3260 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3261 view, view_size);
3262 break;
3263
3264 default:
3265 break;
3266 }
3267
3268 typename S390_relocate_functions<size>::Status status
3269 = S390_relocate_functions<size>::STATUS_OK;
3270
3271 switch (r_type)
3272 {
3273 case elfcpp::R_390_NONE:
3274 case elfcpp::R_390_GNU_VTINHERIT:
3275 case elfcpp::R_390_GNU_VTENTRY:
3276 case elfcpp::R_390_TLS_GDCALL:
3277 case elfcpp::R_390_TLS_LDCALL:
3278 case elfcpp::R_390_TLS_LOAD:
3279 break;
3280
3281 case elfcpp::R_390_64:
3282 case elfcpp::R_390_GOT64:
3283 case elfcpp::R_390_GOTPLT64:
3284 case elfcpp::R_390_PLTOFF64:
3285 case elfcpp::R_390_GOTOFF64:
3286 case elfcpp::R_390_TLS_GD64:
3287 case elfcpp::R_390_TLS_LDM64:
3288 case elfcpp::R_390_TLS_LDO64:
3289 case elfcpp::R_390_TLS_GOTIE64:
3290 case elfcpp::R_390_TLS_IE64:
3291 case elfcpp::R_390_TLS_LE64:
3292 Relocate_functions<size, true>::rela64(view, value, 0);
3293 break;
3294
3295 case elfcpp::R_390_32:
3296 case elfcpp::R_390_GOT32:
3297 case elfcpp::R_390_GOTPLT32:
3298 case elfcpp::R_390_PLTOFF32:
3299 case elfcpp::R_390_GOTOFF32:
3300 case elfcpp::R_390_TLS_GD32:
3301 case elfcpp::R_390_TLS_LDM32:
3302 case elfcpp::R_390_TLS_LDO32:
3303 case elfcpp::R_390_TLS_GOTIE32:
3304 case elfcpp::R_390_TLS_IE32:
3305 case elfcpp::R_390_TLS_LE32:
3306 Relocate_functions<size, true>::rela32(view, value, 0);
3307 break;
3308
3309 case elfcpp::R_390_20:
3310 case elfcpp::R_390_GOT20:
3311 case elfcpp::R_390_GOTPLT20:
3312 case elfcpp::R_390_TLS_GOTIE20:
3313 status = S390_relocate_functions<size>::rela20(view, value);
3314 break;
3315
3316 case elfcpp::R_390_16:
3317 case elfcpp::R_390_GOT16:
3318 case elfcpp::R_390_GOTPLT16:
3319 case elfcpp::R_390_PLTOFF16:
3320 case elfcpp::R_390_GOTOFF16:
3321 status = S390_relocate_functions<size>::rela16(view, value);
3322 break;
3323
3324 case elfcpp::R_390_12:
3325 case elfcpp::R_390_GOT12:
3326 case elfcpp::R_390_GOTPLT12:
3327 case elfcpp::R_390_TLS_GOTIE12:
3328 status = S390_relocate_functions<size>::rela12(view, value);
3329 break;
3330
3331 case elfcpp::R_390_8:
3332 Relocate_functions<size, true>::rela8(view, value, 0);
3333 break;
3334
3335 case elfcpp::R_390_PC16:
3336 Relocate_functions<size, true>::pcrela16(view, value, 0,
3337 address);
3338 break;
3339
3340 case elfcpp::R_390_PLT64:
3341 case elfcpp::R_390_PC64:
3342 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3343 break;
3344
3345 case elfcpp::R_390_PLT32:
3346 case elfcpp::R_390_PC32:
3347 case elfcpp::R_390_GOTPC:
3348 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3349 break;
3350
3351 case elfcpp::R_390_PLT32DBL:
3352 case elfcpp::R_390_PC32DBL:
3353 case elfcpp::R_390_GOTPCDBL:
3354 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3355 break;
3356
3357 case elfcpp::R_390_PLT24DBL:
3358 case elfcpp::R_390_PC24DBL:
3359 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3360 break;
3361
3362 case elfcpp::R_390_PLT16DBL:
3363 case elfcpp::R_390_PC16DBL:
3364 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3365 break;
3366
3367 case elfcpp::R_390_PLT12DBL:
3368 case elfcpp::R_390_PC12DBL:
3369 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3370 break;
3371
3372 case elfcpp::R_390_GOTENT:
3373 case elfcpp::R_390_GOTPLTENT:
3374 case elfcpp::R_390_TLS_IEENT:
3375 value += target->got_address();
3376 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3377 break;
3378
3379 case elfcpp::R_390_COPY:
3380 case elfcpp::R_390_GLOB_DAT:
3381 case elfcpp::R_390_JMP_SLOT:
3382 case elfcpp::R_390_RELATIVE:
3383 case elfcpp::R_390_IRELATIVE:
3384 // These are outstanding tls relocs, which are unexpected when linking
3385 case elfcpp::R_390_TLS_TPOFF:
3386 case elfcpp::R_390_TLS_DTPMOD:
3387 case elfcpp::R_390_TLS_DTPOFF:
3388 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3389 _("unexpected reloc %u in object file"),
3390 r_type);
3391 break;
3392
3393 default:
3394 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3395 _("unsupported reloc %u"),
3396 r_type);
3397 break;
3398 }
3399
3400 if (status != S390_relocate_functions<size>::STATUS_OK)
3401 {
3402 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3403 _("relocation overflow"));
3404 }
3405
3406 return true;
3407}
3408
3409// Perform a TLS relocation.
3410
3411template<int size>
3412inline typename elfcpp::Elf_types<size>::Elf_Addr
3413Target_s390<size>::Relocate::relocate_tls(
3414 const Relocate_info<size, true>* relinfo,
3415 Target_s390<size>* target,
3416 size_t relnum,
3417 const elfcpp::Rela<size, true>& rela,
3418 unsigned int r_type,
3419 const Sized_symbol<size>* gsym,
3420 const Symbol_value<size>* psymval,
3421 unsigned char* view,
3422 section_size_type view_size)
3423{
3424 Output_segment* tls_segment = relinfo->layout->tls_segment();
3425
3426 const Sized_relobj_file<size, true>* object = relinfo->object;
3427 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3428 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3429 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3430
3431 typename elfcpp::Elf_types<size>::Elf_Addr value
3432 = psymval->value(relinfo->object, addend);
3433
3434 const bool is_final = (gsym == NULL
3435 ? !parameters->options().shared()
3436 : gsym->final_value_is_known());
3437 tls::Tls_optimization optimized_type
3438 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3439 switch (r_type)
3440 {
3441 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3442 if (optimized_type == tls::TLSOPT_TO_LE)
3443 {
3444 if (tls_segment == NULL)
3445 {
3446 gold_assert(parameters->errors()->error_count() > 0
3447 || issue_undefined_symbol_error(gsym));
3448 return 0;
3449 }
3450 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3451 break;
3452 }
3453 else
3454 {
3455 if (optimized_type == tls::TLSOPT_TO_IE)
3456 {
3457 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3458 break;
3459 }
3460 else if (optimized_type == tls::TLSOPT_NONE)
3461 {
3462 break;
3463 }
3464 }
3465 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3466 _("unsupported reloc %u"), r_type);
3467 break;
3468
3469 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3470 case elfcpp::R_390_TLS_GD64:
3471 if (optimized_type == tls::TLSOPT_TO_LE)
3472 {
3473 if (tls_segment == NULL)
3474 {
3475 gold_assert(parameters->errors()->error_count() > 0
3476 || issue_undefined_symbol_error(gsym));
3477 return 0;
3478 }
3479 return value - tls_segment->memsz();
3480 }
3481 else
3482 {
3483 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3484 ? GOT_TYPE_TLS_OFFSET
3485 : GOT_TYPE_TLS_PAIR);
3486 if (gsym != NULL)
3487 {
3488 gold_assert(gsym->has_got_offset(got_type));
3489 return (gsym->got_offset(got_type)
3490 + target->got_main_offset()
3491 + addend);
3492 }
3493 else
3494 {
3495 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3496 gold_assert(object->local_has_got_offset(r_sym, got_type));
3497 return (object->local_got_offset(r_sym, got_type)
3498 + target->got_main_offset()
3499 + addend);
3500 }
3501 }
3502 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3503 _("unsupported reloc %u"), r_type);
3504 break;
3505
3506 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3507 // This is a marker relocation. If the sequence is being turned to LE,
3508 // we modify the instruction, otherwise the instruction is untouched.
3509 if (optimized_type == tls::TLSOPT_TO_LE)
3510 {
3511 if (tls_segment == NULL)
3512 {
3513 gold_assert(parameters->errors()->error_count() > 0
3514 || issue_undefined_symbol_error(gsym));
3515 return 0;
3516 }
3517 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3518 break;
3519 }
3520 else if (optimized_type == tls::TLSOPT_NONE)
3521 {
3522 break;
3523 }
3524 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3525 _("unsupported reloc %u"), r_type);
3526 break;
3527
3528 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3529 case elfcpp::R_390_TLS_LDM64:
3530 if (optimized_type == tls::TLSOPT_TO_LE)
3531 {
3532 if (tls_segment == NULL)
3533 {
3534 gold_assert(parameters->errors()->error_count() > 0
3535 || issue_undefined_symbol_error(gsym));
3536 return 0;
3537 }
3538 // Doesn't matter what we fill it with - it's going to be unused.
3539 return 0;
3540 }
3541 else if (optimized_type == tls::TLSOPT_NONE)
3542 {
3543 // Relocate the field with the offset of the GOT entry for
3544 // the module index.
3545 return (target->got_mod_index_entry(NULL, NULL, NULL)
3546 + addend
3547 + target->got_main_offset());
3548 }
3549 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3550 _("unsupported reloc %u"), r_type);
3551 break;
3552
3553 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3554 case elfcpp::R_390_TLS_LDO64:
3555 // This relocation type is used in debugging information.
3556 // In that case we need to not optimize the value. If the
3557 // section is not allocatable, then we assume we should not
3558 // optimize this reloc.
3559 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3560 {
3561 if (tls_segment == NULL)
3562 {
3563 gold_assert(parameters->errors()->error_count() > 0
3564 || issue_undefined_symbol_error(gsym));
3565 return 0;
3566 }
3567 value -= tls_segment->memsz();
3568 }
3569 return value;
3570
3571 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3572 // This is a marker relocation. If the sequence is being turned to LE,
3573 // we modify the instruction, otherwise the instruction is untouched.
3574 if (gsym != NULL
3575 && gsym->is_undefined()
3576 && parameters->options().output_is_executable())
3577 {
3578 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3579 rela, view,
3580 view_size);
3581 break;
3582 }
3583 else if (optimized_type == tls::TLSOPT_TO_LE)
3584 {
3585 if (tls_segment == NULL)
3586 {
3587 gold_assert(parameters->errors()->error_count() > 0
3588 || issue_undefined_symbol_error(gsym));
3589 return 0;
3590 }
3591 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3592 rela, view,
3593 view_size);
3594 break;
3595 }
3596 else if (optimized_type == tls::TLSOPT_NONE)
3597 {
3598 break;
3599 }
3600 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3601 _("unsupported reloc type %u"),
3602 r_type);
3603 break;
3604
3605 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3606 case elfcpp::R_390_TLS_GOTIE20:
3607 case elfcpp::R_390_TLS_IEENT:
3608 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3609 case elfcpp::R_390_TLS_GOTIE64:
3610 case elfcpp::R_390_TLS_IE32:
3611 case elfcpp::R_390_TLS_IE64:
3612 if (gsym != NULL
3613 && gsym->is_undefined()
3614 && parameters->options().output_is_executable()
3615 // These three cannot be optimized to LE, no matter what
3616 && r_type != elfcpp::R_390_TLS_GOTIE12
3617 && r_type != elfcpp::R_390_TLS_GOTIE20
3618 && r_type != elfcpp::R_390_TLS_IEENT)
3619 {
3620 return value;
3621 }
3622 else if (optimized_type == tls::TLSOPT_TO_LE)
3623 {
3624 if (tls_segment == NULL)
3625 {
3626 gold_assert(parameters->errors()->error_count() > 0
3627 || issue_undefined_symbol_error(gsym));
3628 return 0;
3629 }
3630 return value - tls_segment->memsz();
3631 }
3632 else if (optimized_type == tls::TLSOPT_NONE)
3633 {
3634 // Relocate the field with the offset of the GOT entry for
3635 // the tp-relative offset of the symbol.
3636 unsigned int got_offset;
3637 if (gsym != NULL)
3638 {
3639 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3640 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3641 }
3642 else
3643 {
3644 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3645 gold_assert(object->local_has_got_offset(r_sym,
3646 GOT_TYPE_TLS_OFFSET));
3647 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3648 }
3649 got_offset += target->got_main_offset();
3650 if (r_type == elfcpp::R_390_TLS_IE32
3651 || r_type == elfcpp::R_390_TLS_IE64)
3652 return target->got_address() + got_offset + addend;
3653 else
3654 return got_offset + addend;
3655 }
3656 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3657 _("unsupported reloc type %u"),
3658 r_type);
3659 break;
3660
3661 case elfcpp::R_390_TLS_LE32: // Local-exec
3662 case elfcpp::R_390_TLS_LE64:
3663 if (tls_segment == NULL)
3664 {
3665 gold_assert(parameters->errors()->error_count() > 0
3666 || issue_undefined_symbol_error(gsym));
3667 return 0;
3668 }
3669 return value - tls_segment->memsz();
3670 }
3671 return 0;
3672}
3673
3674// Do a relocation in which we convert a TLS General-Dynamic to an
3675// Initial-Exec.
3676
3677template<int size>
3678inline void
3679Target_s390<size>::Relocate::tls_gd_to_ie(
3680 const Relocate_info<size, true>* relinfo,
3681 size_t relnum,
3682 const elfcpp::Rela<size, true>& rela,
3683 unsigned char* view,
3684 section_size_type view_size)
3685{
3686 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3687 if (view[0] == 0x4d)
3688 {
3689 // bas, don't care about details
3690 // Change to l %r2, 0(%r2, %r12)
3691 view[0] = 0x58;
3692 view[1] = 0x22;
3693 view[2] = 0xc0;
3694 view[3] = 0x00;
3695 return;
3696 }
3697 else if (view[0] == 0xc0)
3698 {
3699 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3700 // brasl %r14, __tls_get_offset@plt
3701 if (view[1] == 0xe5)
3702 {
3703 // Change to l/lg %r2, 0(%r2, %r12)
3704 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3705 if (size == 32)
3706 {
3707 // l
3708 view[0] = 0x58;
3709 view[1] = 0x22;
3710 view[2] = 0xc0;
3711 view[3] = 0x00;
3712 // nop
3713 view[4] = 0x07;
3714 view[5] = 0x07;
3715 }
3716 else
3717 {
3718 // lg
3719 view[0] = 0xe3;
3720 view[1] = 0x22;
3721 view[2] = 0xc0;
3722 view[3] = 0;
3723 view[4] = 0;
3724 view[5] = 0x04;
3725 }
3726 return;
3727 }
3728 }
3729 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3730 _("unsupported op for GD to IE"));
3731}
3732
3733// Do a relocation in which we convert a TLS General-Dynamic to a
3734// Local-Exec.
3735
3736template<int size>
3737inline void
3738Target_s390<size>::Relocate::tls_gd_to_le(
3739 const Relocate_info<size, true>* relinfo,
3740 size_t relnum,
3741 const elfcpp::Rela<size, true>& rela,
3742 unsigned char* view,
3743 section_size_type view_size)
3744{
3745 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3746 if (view[0] == 0x0d)
3747 {
3748 // basr, change to nop
3749 view[0] = 0x07;
3750 view[1] = 0x07;
3751 }
3752 else if (view[0] == 0x4d)
3753 {
3754 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3755 // bas, don't care about details, change to nop
3756 view[0] = 0x47;
3757 view[1] = 0;
3758 view[2] = 0;
3759 view[3] = 0;
3760 return;
3761 }
3762 else if (view[0] == 0xc0)
3763 {
3764 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3765 // brasl %r14, __tls_get_offset@plt
3766 if (view[1] == 0xe5)
3767 {
3768 // Change to nop jump. There was a PLT32DBL reloc at the last
3769 // 4 bytes, overwrite its result.
3770 view[1] = 0x04;
3771 view[2] = 0;
3772 view[3] = 0;
3773 view[4] = 0;
3774 view[5] = 0;
3775 return;
3776 }
3777 }
3778 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3779 _("unsupported op for GD to LE"));
3780}
3781
3782template<int size>
3783inline void
3784Target_s390<size>::Relocate::tls_ld_to_le(
3785 const Relocate_info<size, true>* relinfo,
3786 size_t relnum,
3787 const elfcpp::Rela<size, true>& rela,
3788 unsigned char* view,
3789 section_size_type view_size)
3790{
3791 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3792
3793 if (view[0] == 0x0d)
3794 {
3795 // basr, change to nop
3796 view[0] = 0x07;
3797 view[1] = 0x07;
3798 }
3799 else if (view[0] == 0x4d)
3800 {
3801 // bas, don't care about details, change to nop
3802 view[0] = 0x47;
3803 view[1] = 0;
3804 view[2] = 0;
3805 view[3] = 0;
3806 return;
3807 }
3808 else if (view[0] == 0xc0)
3809 {
3810 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3811 // brasl %r14, __tls_get_offset@plt
3812 if (view[1] == 0xe5)
3813 {
3814 // Change to nop jump. There was a PLT32DBL reloc at the last
3815 // 4 bytes, overwrite its result.
3816 view[1] = 0x04;
3817 view[2] = 0;
3818 view[3] = 0;
3819 view[4] = 0;
3820 view[5] = 0;
3821 return;
3822 }
3823 }
3824 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3825 _("unsupported op for LD to LE"));
3826}
3827
3828// Do a relocation in which we convert a TLS Initial-Exec to a
3829// Local-Exec.
3830
3831template<int size>
3832inline void
3833Target_s390<size>::Relocate::tls_ie_to_le(
3834 const Relocate_info<size, true>* relinfo,
3835 size_t relnum,
3836 const elfcpp::Rela<size, true>& rela,
3837 unsigned char* view,
3838 section_size_type view_size)
3839{
3840 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3841
3842 if (view[0] == 0x58)
3843 {
3844 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3845 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3846 goto err;
3847 int rx = view[1] >> 4 & 0xf;
3848 int ry = view[1] & 0xf;
3849 int rz = view[2] >> 4 & 0xf;
3850 if (rz == 0)
3851 {
3852 }
3853 else if (ry == 0)
3854 {
3855 ry = rz;
3856 }
3857 else if (rz == 12)
3858 {
3859 }
3860 else if (ry == 12)
3861 {
3862 ry = rz;
3863 }
3864 else
3865 goto err;
3866 // to lr %rX, $rY
3867 view[0] = 0x18;
3868 view[1] = rx << 4 | ry;
3869 // and insert a nop
3870 view[2] = 0x07;
3871 view[3] = 0x00;
3872 }
3873 else if (view[0] == 0xe3)
3874 {
3875 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3876 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3877 if ((view[2] & 0x0f) != 0 ||
3878 view[3] != 0 ||
3879 view[4] != 0 ||
3880 view[5] != 0x04)
3881 goto err;
3882 int rx = view[1] >> 4 & 0xf;
3883 int ry = view[1] & 0xf;
3884 int rz = view[2] >> 4 & 0xf;
3885 if (rz == 0)
3886 {
3887 }
3888 else if (ry == 0)
3889 {
3890 ry = rz;
3891 }
3892 else if (rz == 12)
3893 {
3894 }
3895 else if (ry == 12)
3896 {
3897 ry = rz;
3898 }
3899 else
3900 goto err;
3901 // to sllg %rX, $rY, 0
3902 view[0] = 0xeb;
3903 view[1] = rx << 4 | ry;
3904 view[2] = 0x00;
3905 view[3] = 0x00;
3906 view[4] = 0x00;
3907 view[5] = 0x0d;
3908 }
3909 else
3910 {
3911err:
3912 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3913 _("unsupported op for IE to LE"));
3914 }
3915}
3916
3917// Scan relocations for a section.
3918
3919template<int size>
3920void
3921Target_s390<size>::scan_relocs(Symbol_table* symtab,
3922 Layout* layout,
3923 Sized_relobj_file<size, true>* object,
3924 unsigned int data_shndx,
3925 unsigned int sh_type,
3926 const unsigned char* prelocs,
3927 size_t reloc_count,
3928 Output_section* output_section,
3929 bool needs_special_offset_handling,
3930 size_t local_symbol_count,
3931 const unsigned char* plocal_symbols)
3932{
4d625b70
CC
3933 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3934 Classify_reloc;
3935
e79a4bad
MK
3936 if (sh_type == elfcpp::SHT_REL)
3937 {
3938 gold_error(_("%s: unsupported REL reloc section"),
3939 object->name().c_str());
3940 return;
3941 }
3942
4d625b70 3943 gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
3944 symtab,
3945 layout,
3946 this,
3947 object,
3948 data_shndx,
3949 prelocs,
3950 reloc_count,
3951 output_section,
3952 needs_special_offset_handling,
3953 local_symbol_count,
3954 plocal_symbols);
3955}
3956
3957// Finalize the sections.
3958
3959template<int size>
3960void
3961Target_s390<size>::do_finalize_sections(
3962 Layout* layout,
3963 const Input_objects*,
3964 Symbol_table* symtab)
3965{
3966 const Reloc_section* rel_plt = (this->plt_ == NULL
3967 ? NULL
3968 : this->plt_->rela_plt());
3969 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3970 this->rela_dyn_, true, size == 32);
3971
3972 this->layout_ = layout;
3973
3974 // Emit any relocs we saved in an attempt to avoid generating COPY
3975 // relocs.
3976 if (this->copy_relocs_.any_saved_relocs())
3977 this->copy_relocs_.emit(this->rela_dyn_section(layout));
3978
3979 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3980 // the .got section.
3981 Symbol* sym = this->global_offset_table_;
3982 if (sym != NULL)
3983 {
3984 uint64_t data_size = this->got_->current_data_size();
3985 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3986 }
3987
3988 if (parameters->doing_static_link()
3989 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3990 {
3991 // If linking statically, make sure that the __rela_iplt symbols
3992 // were defined if necessary, even if we didn't create a PLT.
3993 static const Define_symbol_in_segment syms[] =
3994 {
3995 {
3996 "__rela_iplt_start", // name
3997 elfcpp::PT_LOAD, // segment_type
3998 elfcpp::PF_W, // segment_flags_set
3999 elfcpp::PF(0), // segment_flags_clear
4000 0, // value
4001 0, // size
4002 elfcpp::STT_NOTYPE, // type
4003 elfcpp::STB_GLOBAL, // binding
4004 elfcpp::STV_HIDDEN, // visibility
4005 0, // nonvis
4006 Symbol::SEGMENT_START, // offset_from_base
4007 true // only_if_ref
4008 },
4009 {
4010 "__rela_iplt_end", // name
4011 elfcpp::PT_LOAD, // segment_type
4012 elfcpp::PF_W, // segment_flags_set
4013 elfcpp::PF(0), // segment_flags_clear
4014 0, // value
4015 0, // size
4016 elfcpp::STT_NOTYPE, // type
4017 elfcpp::STB_GLOBAL, // binding
4018 elfcpp::STV_HIDDEN, // visibility
4019 0, // nonvis
4020 Symbol::SEGMENT_START, // offset_from_base
4021 true // only_if_ref
4022 }
4023 };
4024
4025 symtab->define_symbols(layout, 2, syms,
4026 layout->script_options()->saw_sections_clause());
4027 }
4028}
4029
4d625b70 4030// Scan the relocs during a relocatable link.
e79a4bad
MK
4031
4032template<int size>
4d625b70
CC
4033void
4034Target_s390<size>::scan_relocatable_relocs(
4035 Symbol_table* symtab,
4036 Layout* layout,
4037 Sized_relobj_file<size, true>* object,
4038 unsigned int data_shndx,
4039 unsigned int sh_type,
4040 const unsigned char* prelocs,
4041 size_t reloc_count,
4042 Output_section* output_section,
4043 bool needs_special_offset_handling,
4044 size_t local_symbol_count,
4045 const unsigned char* plocal_symbols,
4046 Relocatable_relocs* rr)
e79a4bad 4047{
4d625b70
CC
4048 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4049 Classify_reloc;
4050 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4051 Scan_relocatable_relocs;
e79a4bad 4052
4d625b70 4053 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4054
4d625b70
CC
4055 gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4056 symtab,
4057 layout,
4058 object,
4059 data_shndx,
4060 prelocs,
4061 reloc_count,
4062 output_section,
4063 needs_special_offset_handling,
4064 local_symbol_count,
4065 plocal_symbols,
4066 rr);
e79a4bad
MK
4067}
4068
4d625b70 4069// Scan the relocs for --emit-relocs.
e79a4bad
MK
4070
4071template<int size>
4072void
4d625b70 4073Target_s390<size>::emit_relocs_scan(
e79a4bad
MK
4074 Symbol_table* symtab,
4075 Layout* layout,
4076 Sized_relobj_file<size, true>* object,
4077 unsigned int data_shndx,
4078 unsigned int sh_type,
4079 const unsigned char* prelocs,
4080 size_t reloc_count,
4081 Output_section* output_section,
4082 bool needs_special_offset_handling,
4083 size_t local_symbol_count,
4d625b70 4084 const unsigned char* plocal_syms,
e79a4bad
MK
4085 Relocatable_relocs* rr)
4086{
4d625b70
CC
4087 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4088 Classify_reloc;
4089 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4090 Emit_relocs_strategy;
e79a4bad 4091
4d625b70 4092 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4093
4d625b70 4094 gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
e79a4bad
MK
4095 symtab,
4096 layout,
4097 object,
4098 data_shndx,
4099 prelocs,
4100 reloc_count,
4101 output_section,
4102 needs_special_offset_handling,
4103 local_symbol_count,
4d625b70 4104 plocal_syms,
e79a4bad
MK
4105 rr);
4106}
4107
4108// Relocate a section during a relocatable link.
4109
4110template<int size>
4111void
4112Target_s390<size>::relocate_relocs(
4113 const Relocate_info<size, true>* relinfo,
4114 unsigned int sh_type,
4115 const unsigned char* prelocs,
4116 size_t reloc_count,
4117 Output_section* output_section,
4118 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
4119 unsigned char* view,
4120 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4121 section_size_type view_size,
4122 unsigned char* reloc_view,
4123 section_size_type reloc_view_size)
4124{
4d625b70
CC
4125 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4126 Classify_reloc;
4127
e79a4bad
MK
4128 gold_assert(sh_type == elfcpp::SHT_RELA);
4129
4d625b70 4130 gold::relocate_relocs<size, true, Classify_reloc>(
e79a4bad
MK
4131 relinfo,
4132 prelocs,
4133 reloc_count,
4134 output_section,
4135 offset_in_output_section,
e79a4bad
MK
4136 view,
4137 view_address,
4138 view_size,
4139 reloc_view,
4140 reloc_view_size);
4141}
4142
4143// Return the offset to use for the GOT_INDX'th got entry which is
4144// for a local tls symbol specified by OBJECT, SYMNDX.
4145template<int size>
4146int64_t
4147Target_s390<size>::do_tls_offset_for_local(
4148 const Relobj*,
4149 unsigned int,
4150 unsigned int) const
4151{
4152 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4153 // couldn't be optimised to LE.
4154 Output_segment* tls_segment = layout_->tls_segment();
4155 return -tls_segment->memsz();
4156}
4157
4158// Return the offset to use for the GOT_INDX'th got entry which is
4159// for global tls symbol GSYM.
4160template<int size>
4161int64_t
4162Target_s390<size>::do_tls_offset_for_global(
4163 Symbol*,
4164 unsigned int) const
4165{
4166 Output_segment* tls_segment = layout_->tls_segment();
4167 return -tls_segment->memsz();
4168}
4169
4170// Return the value to use for a dynamic which requires special
4171// treatment. This is how we support equality comparisons of function
4172// pointers across shared library boundaries, as described in the
4173// processor specific ABI supplement.
4174
4175template<int size>
4176uint64_t
4177Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4178{
4179 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4180 return this->plt_address_for_global(gsym);
4181}
4182
4183// Return a string used to fill a code section with nops to take up
4184// the specified length.
4185
4186template<int size>
4187std::string
4188Target_s390<size>::do_code_fill(section_size_type length) const
4189{
4190 if (length & 1)
4191 gold_warning(_("S/390 code fill of odd length requested"));
4192 return std::string(length, static_cast<char>(0x07));
4193}
4194
4195// Relocate section data.
4196
4197template<int size>
4198void
4199Target_s390<size>::relocate_section(
4200 const Relocate_info<size, true>* relinfo,
4201 unsigned int sh_type,
4202 const unsigned char* prelocs,
4203 size_t reloc_count,
4204 Output_section* output_section,
4205 bool needs_special_offset_handling,
4206 unsigned char* view,
4207 typename elfcpp::Elf_types<size>::Elf_Addr address,
4208 section_size_type view_size,
4209 const Reloc_symbol_changes* reloc_symbol_changes)
4210{
4d625b70
CC
4211 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4212 Classify_reloc;
4213
e79a4bad
MK
4214 gold_assert(sh_type == elfcpp::SHT_RELA);
4215
4d625b70
CC
4216 gold::relocate_section<size, true, Target_s390<size>, Relocate,
4217 gold::Default_comdat_behavior, Classify_reloc>(
e79a4bad
MK
4218 relinfo,
4219 this,
4220 prelocs,
4221 reloc_count,
4222 output_section,
4223 needs_special_offset_handling,
4224 view,
4225 address,
4226 view_size,
4227 reloc_symbol_changes);
4228}
4229
4230// Apply an incremental relocation. Incremental relocations always refer
4231// to global symbols.
4232
4233template<int size>
4234void
4235Target_s390<size>::apply_relocation(
4236 const Relocate_info<size, true>* relinfo,
4237 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4238 unsigned int r_type,
4239 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4240 const Symbol* gsym,
4241 unsigned char* view,
4242 typename elfcpp::Elf_types<size>::Elf_Addr address,
4243 section_size_type view_size)
4244{
4245 gold::apply_relocation<size, true, Target_s390<size>,
4246 typename Target_s390<size>::Relocate>(
4247 relinfo,
4248 this,
4249 r_offset,
4250 r_type,
4251 r_addend,
4252 gsym,
4253 view,
4254 address,
4255 view_size);
4256}
4257
4258// The selector for s390 object files.
4259
4260template<int size>
4261class Target_selector_s390 : public Target_selector
4262{
4263public:
4264 Target_selector_s390()
4265 : Target_selector(elfcpp::EM_S390, size, true,
4266 (size == 64 ? "elf64-s390" : "elf32-s390"),
4267 (size == 64 ? "elf64_s390" : "elf32_s390"))
4268 { }
4269
4270 virtual Target*
4271 do_instantiate_target()
4272 { return new Target_s390<size>(); }
4273};
4274
4275Target_selector_s390<32> target_selector_s390;
4276Target_selector_s390<64> target_selector_s390x;
4277
4278} // End anonymous namespace.
This page took 0.206975 seconds and 4 git commands to generate.