Add tests for 64bit values in trace-condition.exp
[deliverable/binutils-gdb.git] / gold / s390.cc
CommitLineData
e79a4bad
MK
1// s390.cc -- s390 target support for gold.
2
6f2750fe 3// Copyright (C) 2015-2016 Free Software Foundation, Inc.
e79a4bad
MK
4// Written by Marcin Kościelnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
57 layout_(layout)
58 { }
59
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
62 layout_(layout)
63 { }
64
65 protected:
66 // Write out the PLT data.
67 void
68 do_write(Output_file*);
69
70 // Write to a map file.
71 void
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
78 Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88 Reloc_section;
89
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
99
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
106 4, false),
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
110 {
111 this->init(layout);
112
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
116 }
117
118 // Initialize the PLT section.
119 void
120 init(Layout* layout);
121
122 // Add an entry to the PLT.
123 void
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127 unsigned int
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
130
131 // Add the relocation for a PLT entry.
132 void
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135 // Return the .rela.plt section data.
136 Reloc_section*
137 rela_plt()
138 { return this->rel_; }
139
140 // Return where the IRELATIVE relocations should go in the PLT
141 // relocations.
142 Reloc_section*
143 rela_irelative(Symbol_table*, Layout*);
144
145 // Return whether we created a section for IRELATIVE relocations.
146 bool
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
149
150 // Return the number of PLT entries.
151 unsigned int
152 entry_count() const
153 { return this->count_ + this->irelative_count_; }
154
155 // Return the offset of the first non-reserved PLT entry.
156 unsigned int
157 first_plt_entry_offset()
158 { return plt_entry_size; }
159
160 // Return the size of a PLT entry.
161 unsigned int
162 get_plt_entry_size() const
163 { return plt_entry_size; }
164
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
166 void
167 reserve_slot(unsigned int plt_index)
168 {
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
171 }
172
173 // Return the PLT address to use for a global symbol.
174 uint64_t
175 address_for_global(const Symbol*);
176
177 // Return the PLT address to use for a local symbol.
178 uint64_t
179 address_for_local(const Relobj*, unsigned int symndx);
180
181 // Add .eh_frame information for the PLT.
182 void
183 add_eh_frame(Layout* layout)
184 {
185 (void)layout;
186 layout->add_eh_frame_for_plt(this,
187 plt_eh_frame_cie,
188 plt_eh_frame_cie_size,
189 plt_eh_frame_fde,
190 plt_eh_frame_fde_size);
191 }
192
193 protected:
194 // Fill in the first PLT entry.
195 void
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
202 unsigned int
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
209
210 void
211 do_adjust_output_section(Output_section* os);
212
213 // Write to a map file.
214 void
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219 // Set the final size.
220 void
221 set_final_data_size();
222
223 // Write out the PLT data.
224 void
225 do_write(Output_file*);
226
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
229 Layout* layout_;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
235 // The .got section.
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
242 unsigned int count_;
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
247 // update links.
248 Free_list free_list_;
249
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
262
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277 Target_s390()
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283 layout_(NULL)
284 { }
285
286 // Scan the relocations to look for symbol adjustments.
287 void
288 gc_process_relocs(Symbol_table* symtab,
289 Layout* layout,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
294 size_t reloc_count,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
299
300 // Scan the relocations to look for symbol adjustments.
301 void
302 scan_relocs(Symbol_table* symtab,
303 Layout* layout,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
308 size_t reloc_count,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
313
314 // Finalize the sections.
315 void
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318 // Return the value to use for a dynamic which requires special
319 // treatment.
320 uint64_t
321 do_dynsym_value(const Symbol*) const;
322
323 // Relocate a section.
324 void
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
328 size_t reloc_count,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
331 unsigned char* view,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
335
336 // Scan the relocs during a relocatable link.
337 void
338 scan_relocatable_relocs(Symbol_table* symtab,
339 Layout* layout,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
344 size_t reloc_count,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
350
4d625b70
CC
351 // Scan the relocs for --emit-relocs.
352 void
353 emit_relocs_scan(Symbol_table* symtab,
354 Layout* layout,
355 Sized_relobj_file<size, true>* object,
356 unsigned int data_shndx,
357 unsigned int sh_type,
358 const unsigned char* prelocs,
359 size_t reloc_count,
360 Output_section* output_section,
361 bool needs_special_offset_handling,
362 size_t local_symbol_count,
363 const unsigned char* plocal_syms,
364 Relocatable_relocs* rr);
365
e79a4bad
MK
366 // Return a string used to fill a code section with nops.
367 std::string
368 do_code_fill(section_size_type length) const;
369
370 // Emit relocations for a section.
371 void
372 relocate_relocs(
373 const Relocate_info<size, true>*,
374 unsigned int sh_type,
375 const unsigned char* prelocs,
376 size_t reloc_count,
377 Output_section* output_section,
378 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
379 unsigned char* view,
380 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381 section_size_type view_size,
382 unsigned char* reloc_view,
383 section_size_type reloc_view_size);
384
385 // Return whether SYM is defined by the ABI.
386 bool
387 do_is_defined_by_abi(const Symbol* sym) const
388 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
389
390 // Return the PLT address to use for a global symbol.
391 uint64_t
392 do_plt_address_for_global(const Symbol* gsym) const
393 { return this->plt_section()->address_for_global(gsym); }
394
395 uint64_t
396 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397 { return this->plt_section()->address_for_local(relobj, symndx); }
398
399 // Return the offset to use for the GOT_INDX'th got entry which is
400 // for a local tls symbol specified by OBJECT, SYMNDX.
401 int64_t
402 do_tls_offset_for_local(const Relobj* object,
403 unsigned int symndx,
404 unsigned int got_indx) const;
405
406 // Return the offset to use for the GOT_INDX'th got entry which is
407 // for global tls symbol GSYM.
408 int64_t
409 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
410
411 // This function should be defined in targets that can use relocation
412 // types to determine (implemented in local_reloc_may_be_function_pointer
413 // and global_reloc_may_be_function_pointer)
414 // if a function's pointer is taken. ICF uses this in safe mode to only
415 // fold those functions whose pointer is defintely not taken.
416 bool
417 do_can_check_for_function_pointers() const
418 { return true; }
419
2b63aca3
MK
420 // Return whether SYM is call to a non-split function.
421 bool
422 do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
423 const unsigned char* view,
424 section_size_type view_size) const;
425
426 // Adjust -fsplit-stack code which calls non-split-stack code.
427 void
428 do_calls_non_split(Relobj* object, unsigned int shndx,
429 section_offset_type fnoffset, section_size_type fnsize,
430 const unsigned char* prelocs, size_t reloc_count,
431 unsigned char* view, section_size_type view_size,
432 std::string* from, std::string* to) const;
433
e79a4bad
MK
434 // Return the size of the GOT section.
435 section_size_type
436 got_size() const
437 {
438 gold_assert(this->got_ != NULL);
439 return this->got_->data_size();
440 }
441
442 // Return the number of entries in the GOT.
443 unsigned int
444 got_entry_count() const
445 {
446 if (this->got_ == NULL)
447 return 0;
448 return this->got_size() / (size / 8);
449 }
450
451 // Return the number of entries in the PLT.
452 unsigned int
453 plt_entry_count() const;
454
455 // Return the offset of the first non-reserved PLT entry.
456 unsigned int
457 first_plt_entry_offset() const;
458
459 // Return the size of each PLT entry.
460 unsigned int
461 plt_entry_size() const;
462
463 // Create the GOT section for an incremental update.
464 Output_data_got_base*
465 init_got_plt_for_update(Symbol_table* symtab,
466 Layout* layout,
467 unsigned int got_count,
468 unsigned int plt_count);
469
470 // Reserve a GOT entry for a local symbol, and regenerate any
471 // necessary dynamic relocations.
472 void
473 reserve_local_got_entry(unsigned int got_index,
474 Sized_relobj<size, true>* obj,
475 unsigned int r_sym,
476 unsigned int got_type);
477
478 // Reserve a GOT entry for a global symbol, and regenerate any
479 // necessary dynamic relocations.
480 void
481 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
482 unsigned int got_type);
483
484 // Register an existing PLT entry for a global symbol.
485 void
486 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
487 Symbol* gsym);
488
489 // Force a COPY relocation for a given symbol.
490 void
491 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
492
493 // Apply an incremental relocation.
494 void
495 apply_relocation(const Relocate_info<size, true>* relinfo,
496 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
497 unsigned int r_type,
498 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
499 const Symbol* gsym,
500 unsigned char* view,
501 typename elfcpp::Elf_types<size>::Elf_Addr address,
502 section_size_type view_size);
503
504 private:
505
506 // The class which scans relocations.
507 class Scan
508 {
509 public:
510 Scan()
511 : issued_non_pic_error_(false)
512 { }
513
514 static inline int
515 get_reference_flags(unsigned int r_type);
516
517 inline void
518 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
519 Sized_relobj_file<size, true>* object,
520 unsigned int data_shndx,
521 Output_section* output_section,
522 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
523 const elfcpp::Sym<size, true>& lsym,
524 bool is_discarded);
525
526 inline void
527 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
528 Sized_relobj_file<size, true>* object,
529 unsigned int data_shndx,
530 Output_section* output_section,
531 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
532 Symbol* gsym);
533
534 inline bool
535 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
536 Target_s390* target,
537 Sized_relobj_file<size, true>* object,
538 unsigned int data_shndx,
539 Output_section* output_section,
540 const elfcpp::Rela<size, true>& reloc,
541 unsigned int r_type,
542 const elfcpp::Sym<size, true>& lsym);
543
544 inline bool
545 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
546 Target_s390* target,
547 Sized_relobj_file<size, true>* object,
548 unsigned int data_shndx,
549 Output_section* output_section,
550 const elfcpp::Rela<size, true>& reloc,
551 unsigned int r_type,
552 Symbol* gsym);
553
554 private:
555 static void
556 unsupported_reloc_local(Sized_relobj_file<size, true>*,
557 unsigned int r_type);
558
559 static void
560 unsupported_reloc_global(Sized_relobj_file<size, true>*,
561 unsigned int r_type, Symbol*);
562
563 void
564 check_non_pic(Relobj*, unsigned int r_type);
565
566 inline bool
567 possible_function_pointer_reloc(unsigned int r_type);
568
569 bool
570 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
571 unsigned int r_type);
572
573 // Whether we have issued an error about a non-PIC compilation.
574 bool issued_non_pic_error_;
575 };
576
577 // The class which implements relocation.
578 class Relocate
579 {
580 public:
581 // Do a relocation. Return false if the caller should not issue
582 // any warnings about this relocation.
583 inline bool
91a65d2f
AM
584 relocate(const Relocate_info<size, true>*, unsigned int,
585 Target_s390*, Output_section*, size_t, const unsigned char*,
586 const Sized_symbol<size>*, const Symbol_value<size>*,
e79a4bad
MK
587 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
588 section_size_type);
589
590 private:
591 // Do a TLS relocation.
592 inline typename elfcpp::Elf_types<size>::Elf_Addr
593 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
594 size_t relnum, const elfcpp::Rela<size, true>&,
595 unsigned int r_type, const Sized_symbol<size>*,
596 const Symbol_value<size>*,
597 unsigned char*, section_size_type);
598
599 // Do a TLS General-Dynamic to Initial-Exec transition.
600 inline void
601 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
602 const elfcpp::Rela<size, true>&,
603 unsigned char* view,
604 section_size_type view_size);
605
606 // Do a TLS General-Dynamic to Local-Exec transition.
607 inline void
608 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
609 const elfcpp::Rela<size, true>&,
610 unsigned char* view,
611 section_size_type view_size);
612
613 // Do a TLS Local-Dynamic to Local-Exec transition.
614 inline void
615 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
616 const elfcpp::Rela<size, true>&,
617 unsigned char* view,
618 section_size_type view_size);
619
620 // Do a TLS Initial-Exec to Local-Exec transition.
621 static inline void
622 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
623 const elfcpp::Rela<size, true>&,
624 unsigned char* view,
625 section_size_type view_size);
626 };
627
e79a4bad
MK
628 // Adjust TLS relocation type based on the options and whether this
629 // is a local symbol.
630 static tls::Tls_optimization
631 optimize_tls_reloc(bool is_final, int r_type);
632
633 // Get the GOT section.
634 const Output_data_got<size, true>*
635 got_section() const
636 {
637 gold_assert(this->got_ != NULL);
638 return this->got_;
639 }
640
641 // Get the GOT section, creating it if necessary.
642 Output_data_got<size, true>*
643 got_section(Symbol_table*, Layout*);
644
645 typename elfcpp::Elf_types<size>::Elf_Addr
646 got_address() const
647 {
648 gold_assert(this->got_ != NULL);
649 return this->got_plt_->address();
650 }
651
652 typename elfcpp::Elf_types<size>::Elf_Addr
653 got_main_offset() const
654 {
655 gold_assert(this->got_ != NULL);
656 return this->got_->address() - this->got_address();
657 }
658
659 // Create the PLT section.
660 void
661 make_plt_section(Symbol_table* symtab, Layout* layout);
662
663 // Create a PLT entry for a global symbol.
664 void
665 make_plt_entry(Symbol_table*, Layout*, Symbol*);
666
667 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
668 void
669 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
670 Sized_relobj_file<size, true>* relobj,
671 unsigned int local_sym_index);
672
673 // Create a GOT entry for the TLS module index.
674 unsigned int
675 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
676 Sized_relobj_file<size, true>* object);
677
678 // Get the PLT section.
679 Output_data_plt_s390<size>*
680 plt_section() const
681 {
682 gold_assert(this->plt_ != NULL);
683 return this->plt_;
684 }
685
686 // Get the dynamic reloc section, creating it if necessary.
687 Reloc_section*
688 rela_dyn_section(Layout*);
689
690 // Get the section to use for IRELATIVE relocations.
691 Reloc_section*
692 rela_irelative_section(Layout*);
693
694 // Add a potential copy relocation.
695 void
696 copy_reloc(Symbol_table* symtab, Layout* layout,
697 Sized_relobj_file<size, true>* object,
698 unsigned int shndx, Output_section* output_section,
699 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
700 {
859d7987 701 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
e79a4bad
MK
702 this->copy_relocs_.copy_reloc(symtab, layout,
703 symtab->get_sized_symbol<size>(sym),
704 object, shndx, output_section,
859d7987
CC
705 r_type, reloc.get_r_offset(),
706 reloc.get_r_addend(),
707 this->rela_dyn_section(layout));
e79a4bad
MK
708 }
709
2b63aca3
MK
710 // A function for targets to call. Return whether BYTES/LEN matches
711 // VIEW/VIEW_SIZE at OFFSET. Like the one in Target, but takes
712 // an unsigned char * parameter.
713 bool
714 match_view_u(const unsigned char* view, section_size_type view_size,
715 section_offset_type offset, const unsigned char* bytes, size_t len) const
716 {
717 return this->match_view(view, view_size, offset,
718 reinterpret_cast<const char*>(bytes), len);
719 }
720
e79a4bad
MK
721 // Information about this specific target which we pass to the
722 // general Target structure.
723 static Target::Target_info s390_info;
724
725 // The types of GOT entries needed for this platform.
726 // These values are exposed to the ABI in an incremental link.
727 // Do not renumber existing values without changing the version
728 // number of the .gnu_incremental_inputs section.
729 enum Got_type
730 {
731 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
732 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
733 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
734 };
735
736 // The GOT section.
737 Output_data_got<size, true>* got_;
738 // The PLT section.
739 Output_data_plt_s390<size>* plt_;
740 // The GOT PLT section.
741 Output_data_got_plt_s390<size>* got_plt_;
742 // The GOT section for IRELATIVE relocations.
743 Output_data_space* got_irelative_;
744 // The _GLOBAL_OFFSET_TABLE_ symbol.
745 Symbol* global_offset_table_;
746 // The dynamic reloc section.
747 Reloc_section* rela_dyn_;
748 // The section to use for IRELATIVE relocs.
749 Reloc_section* rela_irelative_;
750 // Relocs saved to avoid a COPY reloc.
751 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
752 // Offset of the GOT entry for the TLS module index.
753 unsigned int got_mod_index_offset_;
754 // True if the _TLS_MODULE_BASE_ symbol has been defined.
755 bool tls_base_symbol_defined_;
756 // For use in do_tls_offset_for_*
757 Layout *layout_;
2b63aca3
MK
758
759 // Code sequences for -fsplit-stack matching.
760 static const unsigned char ss_code_st_r14[];
761 static const unsigned char ss_code_l_r14[];
762 static const unsigned char ss_code_bras_8[];
763 static const unsigned char ss_code_l_basr[];
764 static const unsigned char ss_code_a_basr[];
765 static const unsigned char ss_code_ear[];
766 static const unsigned char ss_code_c[];
767 static const unsigned char ss_code_larl[];
768 static const unsigned char ss_code_brasl[];
769 static const unsigned char ss_code_jg[];
770 static const unsigned char ss_code_jgl[];
771
772 // Variable code sequence matchers for -fsplit-stack.
773 bool ss_match_mcount(unsigned char* view,
774 section_size_type view_size,
775 section_offset_type *offset) const;
776 bool ss_match_l(unsigned char* view,
777 section_size_type view_size,
778 section_offset_type *offset,
779 int *guard_reg) const;
780 bool ss_match_ahi(unsigned char* view,
781 section_size_type view_size,
782 section_offset_type *offset,
783 int guard_reg,
784 uint32_t *arg) const;
785 bool ss_match_alfi(unsigned char* view,
786 section_size_type view_size,
787 section_offset_type *offset,
788 int guard_reg,
789 uint32_t *arg) const;
790 bool ss_match_cr(unsigned char* view,
791 section_size_type view_size,
792 section_offset_type *offset,
793 int guard_reg) const;
e79a4bad
MK
794};
795
796template<>
797Target::Target_info Target_s390<32>::s390_info =
798{
799 32, // size
800 true, // is_big_endian
801 elfcpp::EM_S390, // machine_code
802 false, // has_make_symbol
803 false, // has_resolve
804 true, // has_code_fill
805 true, // is_default_stack_executable
806 true, // can_icf_inline_merge_sections
807 '\0', // wrap_char
808 "/lib/ld.so.1", // dynamic_linker
809 0x00400000, // default_text_segment_address
810 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
811 4 * 1024, // common_pagesize (overridable by -z common-page-size)
812 false, // isolate_execinstr
813 0, // rosegment_gap
814 elfcpp::SHN_UNDEF, // small_common_shndx
815 elfcpp::SHN_UNDEF, // large_common_shndx
816 0, // small_common_section_flags
817 0, // large_common_section_flags
818 NULL, // attributes_section
819 NULL, // attributes_vendor
820 "_start", // entry_symbol_name
821 32, // hash_entry_size
822};
823
824template<>
825Target::Target_info Target_s390<64>::s390_info =
826{
827 64, // size
828 true, // is_big_endian
829 elfcpp::EM_S390, // machine_code
830 false, // has_make_symbol
831 false, // has_resolve
832 true, // has_code_fill
833 true, // is_default_stack_executable
834 true, // can_icf_inline_merge_sections
835 '\0', // wrap_char
836 "/lib/ld64.so.1", // dynamic_linker
837 0x80000000ll, // default_text_segment_address
838 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
839 4 * 1024, // common_pagesize (overridable by -z common-page-size)
840 false, // isolate_execinstr
841 0, // rosegment_gap
842 elfcpp::SHN_UNDEF, // small_common_shndx
843 elfcpp::SHN_UNDEF, // large_common_shndx
844 0, // small_common_section_flags
845 0, // large_common_section_flags
846 NULL, // attributes_section
847 NULL, // attributes_vendor
848 "_start", // entry_symbol_name
849 64, // hash_entry_size
850};
851
852template<int size>
853class S390_relocate_functions
854{
855public:
856 enum Overflow_check
857 {
858 CHECK_NONE,
859 CHECK_SIGNED,
860 CHECK_UNSIGNED,
861 CHECK_BITFIELD,
862 CHECK_LOW_INSN,
863 CHECK_HIGH_INSN
864 };
865
866 enum Status
867 {
868 STATUS_OK,
869 STATUS_OVERFLOW
870 };
871
872private:
873 typedef S390_relocate_functions<size> This;
874 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
875
876 template<int valsize>
877 static inline bool
878 has_overflow_signed(Address value)
879 {
880 // limit = 1 << (valsize - 1) without shift count exceeding size of type
881 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
882 limit <<= ((valsize - 1) >> 1);
883 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
884 return value + limit > (limit << 1) - 1;
885 }
886
887 template<int valsize>
888 static inline bool
889 has_overflow_unsigned(Address value)
890 {
891 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
892 limit <<= ((valsize - 1) >> 1);
893 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
894 return value > (limit << 1) - 1;
895 }
896
897 template<int fieldsize>
898 static inline void
899 rela(unsigned char* view, Address mask, Address value)
900 {
901 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
902 Valtype* wv = reinterpret_cast<Valtype*>(view);
903 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
904 val &= ~mask;
905 value &= mask;
906 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
907 }
908
909public:
910 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
911 static inline Status
912 rela12(unsigned char* view, Address value)
913 {
914 if (This::template has_overflow_unsigned<12>(value))
915 return STATUS_OVERFLOW;
916 This::template rela<16>(view, 0x0fff, value);
917 return STATUS_OK;
918 }
919
920 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
921 static inline Status
922 rela16(unsigned char* view, Address value)
923 {
924 if (This::template has_overflow_signed<16>(value))
925 return STATUS_OVERFLOW;
926 This::template rela<16>(view, 0xffff, value);
927 return STATUS_OK;
928 }
929
930 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
931 static inline Status
932 rela20(unsigned char* view, Address value)
933 {
934 if (This::template has_overflow_signed<20>(value))
935 return STATUS_OVERFLOW;
936 This::template rela<16>(view, 0x0fff, value);
937 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
938 return STATUS_OK;
939 }
940
941 // R_390_PC12DBL, R_390_PLT12DBL
942 static inline Status
943 pcrela12dbl(unsigned char* view, Address value, Address address)
944 {
945 value -= address;
946 if ((value & 1) != 0)
947 return STATUS_OVERFLOW;
948 if (This::template has_overflow_signed<13>(value))
949 return STATUS_OVERFLOW;
950 value >>= 1;
951 This::template rela<16>(view, 0x0fff, value);
952 return STATUS_OK;
953 }
954
955 // R_390_PC16DBL, R_390_PLT16DBL
956 static inline Status
957 pcrela16dbl(unsigned char* view, Address value, Address address)
958 {
959 value -= address;
960 if ((value & 1) != 0)
961 return STATUS_OVERFLOW;
962 if (This::template has_overflow_signed<17>(value))
963 return STATUS_OVERFLOW;
964 value >>= 1;
965 This::template rela<16>(view, 0xffff, value);
966 return STATUS_OK;
967 }
968
969 // R_390_PC24DBL, R_390_PLT24DBL
970 static inline Status
971 pcrela24dbl(unsigned char* view, Address value, Address address)
972 {
973 value -= address;
974 if ((value & 1) != 0)
975 return STATUS_OVERFLOW;
976 if (This::template has_overflow_signed<25>(value))
977 return STATUS_OVERFLOW;
978 value >>= 1;
979 // Swap doesn't take 24-bit fields well...
980 This::template rela<8>(view, 0xff, value >> 16);
981 This::template rela<16>(view + 1, 0xffff, value);
982 return STATUS_OK;
983 }
984
985 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
986 static inline Status
987 pcrela32dbl(unsigned char* view, Address value, Address address)
988 {
989 Address reloc = value - address;
990 if ((reloc & 1) != 0)
991 {
992 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
993 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
994 // return STATUS_OVERFLOW;
995 }
996 if (This::template has_overflow_signed<33>(reloc))
997 return STATUS_OVERFLOW;
998 reloc >>= 1;
999 if (value < address && size == 32)
1000 reloc |= 0x80000000;
1001 This::template rela<32>(view, 0xffffffff, reloc);
1002 return STATUS_OK;
1003 }
1004
1005};
1006
1007// Initialize the PLT section.
1008
1009template<int size>
1010void
1011Output_data_plt_s390<size>::init(Layout* layout)
1012{
1013 this->rel_ = new Reloc_section(false);
1014 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1015 elfcpp::SHF_ALLOC, this->rel_,
1016 ORDER_DYNAMIC_PLT_RELOCS, false);
1017}
1018
1019template<int size>
1020void
1021Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
1022{
1023 os->set_entsize(plt_entry_size);
1024}
1025
1026// Add an entry to the PLT.
1027
1028template<int size>
1029void
1030Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
1031 Symbol* gsym)
1032{
1033 gold_assert(!gsym->has_plt_offset());
1034
1035 unsigned int plt_index;
1036 off_t plt_offset;
1037 section_offset_type got_offset;
1038
1039 unsigned int* pcount;
1040 unsigned int offset;
1041 unsigned int reserved;
1042 Output_section_data_build* got;
1043 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1044 && gsym->can_use_relative_reloc(false))
1045 {
1046 pcount = &this->irelative_count_;
1047 offset = 0;
1048 reserved = 0;
1049 got = this->got_irelative_;
1050 }
1051 else
1052 {
1053 pcount = &this->count_;
1054 offset = 1;
1055 reserved = 3;
1056 got = this->got_plt_;
1057 }
1058
1059 if (!this->is_data_size_valid())
1060 {
1061 // Note that when setting the PLT offset for a non-IRELATIVE
1062 // entry we skip the initial reserved PLT entry.
1063 plt_index = *pcount + offset;
1064 plt_offset = plt_index * plt_entry_size;
1065
1066 ++*pcount;
1067
1068 got_offset = (plt_index - offset + reserved) * size / 8;
1069 gold_assert(got_offset == got->current_data_size());
1070
1071 // Every PLT entry needs a GOT entry which points back to the PLT
1072 // entry (this will be changed by the dynamic linker, normally
1073 // lazily when the function is called).
1074 got->set_current_data_size(got_offset + size / 8);
1075 }
1076 else
1077 {
1078 // FIXME: This is probably not correct for IRELATIVE relocs.
1079
1080 // For incremental updates, find an available slot.
1081 plt_offset = this->free_list_.allocate(plt_entry_size,
1082 plt_entry_size, 0);
1083 if (plt_offset == -1)
1084 gold_fallback(_("out of patch space (PLT);"
1085 " relink with --incremental-full"));
1086
1087 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1088 // can be calculated from the PLT index, adjusting for the three
1089 // reserved entries at the beginning of the GOT.
1090 plt_index = plt_offset / plt_entry_size - 1;
1091 got_offset = (plt_index - offset + reserved) * size / 8;
1092 }
1093
1094 gsym->set_plt_offset(plt_offset);
1095
1096 // Every PLT entry needs a reloc.
1097 this->add_relocation(symtab, layout, gsym, got_offset);
1098
1099 // Note that we don't need to save the symbol. The contents of the
1100 // PLT are independent of which symbols are used. The symbols only
1101 // appear in the relocations.
1102}
1103
1104// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1105// the PLT offset.
1106
1107template<int size>
1108unsigned int
1109Output_data_plt_s390<size>::add_local_ifunc_entry(
1110 Symbol_table* symtab,
1111 Layout* layout,
1112 Sized_relobj_file<size, true>* relobj,
1113 unsigned int local_sym_index)
1114{
1115 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1116 ++this->irelative_count_;
1117
1118 section_offset_type got_offset = this->got_irelative_->current_data_size();
1119
1120 // Every PLT entry needs a GOT entry which points back to the PLT
1121 // entry.
1122 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1123
1124 // Every PLT entry needs a reloc.
1125 Reloc_section* rela = this->rela_irelative(symtab, layout);
1126 rela->add_symbolless_local_addend(relobj, local_sym_index,
1127 elfcpp::R_390_IRELATIVE,
1128 this->got_irelative_, got_offset, 0);
1129
1130 return plt_offset;
1131}
1132
1133// Add the relocation for a PLT entry.
1134
1135template<int size>
1136void
1137Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1138 Layout* layout,
1139 Symbol* gsym,
1140 unsigned int got_offset)
1141{
1142 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1143 && gsym->can_use_relative_reloc(false))
1144 {
1145 Reloc_section* rela = this->rela_irelative(symtab, layout);
1146 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1147 this->got_irelative_, got_offset, 0);
1148 }
1149 else
1150 {
1151 gsym->set_needs_dynsym_entry();
1152 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1153 got_offset, 0);
1154 }
1155}
1156
1157// Return where the IRELATIVE relocations should go in the PLT. These
1158// follow the JUMP_SLOT and the TLSDESC relocations.
1159
1160template<int size>
1161typename Output_data_plt_s390<size>::Reloc_section*
1162Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1163 Layout* layout)
1164{
1165 if (this->irelative_rel_ == NULL)
1166 {
1167 this->irelative_rel_ = new Reloc_section(false);
1168 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1169 elfcpp::SHF_ALLOC, this->irelative_rel_,
1170 ORDER_DYNAMIC_PLT_RELOCS, false);
1171 gold_assert(this->irelative_rel_->output_section()
1172 == this->rel_->output_section());
1173
1174 if (parameters->doing_static_link())
1175 {
1176 // A statically linked executable will only have a .rela.plt
1177 // section to hold R_390_IRELATIVE relocs for
1178 // STT_GNU_IFUNC symbols. The library will use these
1179 // symbols to locate the IRELATIVE relocs at program startup
1180 // time.
1181 symtab->define_in_output_data("__rela_iplt_start", NULL,
1182 Symbol_table::PREDEFINED,
1183 this->irelative_rel_, 0, 0,
1184 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1185 elfcpp::STV_HIDDEN, 0, false, true);
1186 symtab->define_in_output_data("__rela_iplt_end", NULL,
1187 Symbol_table::PREDEFINED,
1188 this->irelative_rel_, 0, 0,
1189 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1190 elfcpp::STV_HIDDEN, 0, true, true);
1191 }
1192 }
1193 return this->irelative_rel_;
1194}
1195
1196// Return the PLT address to use for a global symbol.
1197
1198template<int size>
1199uint64_t
1200Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1201{
1202 uint64_t offset = 0;
1203 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1204 && gsym->can_use_relative_reloc(false))
1205 offset = (this->count_ + 1) * plt_entry_size;
1206 return this->address() + offset + gsym->plt_offset();
1207}
1208
1209// Return the PLT address to use for a local symbol. These are always
1210// IRELATIVE relocs.
1211
1212template<int size>
1213uint64_t
1214Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1215 unsigned int r_sym)
1216{
1217 return (this->address()
1218 + (this->count_ + 1) * plt_entry_size
1219 + object->local_plt_offset(r_sym));
1220}
1221
1222// Set the final size.
1223template<int size>
1224void
1225Output_data_plt_s390<size>::set_final_data_size()
1226{
1227 unsigned int count = this->count_ + this->irelative_count_;
1228 this->set_data_size((count + 1) * plt_entry_size);
1229}
1230
1231template<int size>
1232const unsigned char
1233Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1234{
1235 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1236 0x0d, 0x10, // basr %r1, %r0
1237 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1238 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1239 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1240 0x07, 0xf1, // br %r1
1241 0x00, 0x00, // padding
1242 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1243 0x00, 0x00, 0x00, 0x00, // padding
1244};
1245
1246template<int size>
1247const unsigned char
1248Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1249{
1250 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1251 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1252 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1253 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1254 0x07, 0xf1, // br %r1
1255 0x00, 0x00, // padding
1256 0x00, 0x00, 0x00, 0x00, // padding
1257 0x00, 0x00, 0x00, 0x00, // padding
1258 0x00, 0x00, 0x00, 0x00, // padding
1259};
1260
1261template<int size>
1262const unsigned char
1263Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1264{
1265 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1266 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1267 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1268 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1269 0x07, 0xf1, // br %r1
1270 0x07, 0x00, // nopr
1271 0x07, 0x00, // nopr
1272 0x07, 0x00, // nopr
1273};
1274
1275template<int size>
1276void
1277Output_data_plt_s390<size>::fill_first_plt_entry(
1278 unsigned char* pov,
1279 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1280 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1281{
1282 if (size == 64)
1283 {
1284 memcpy(pov, first_plt_entry_64, plt_entry_size);
1285 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1286 }
1287 else if (!parameters->options().output_is_position_independent())
1288 {
1289 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1290 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1291 }
1292 else
1293 {
1294 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1295 }
1296}
1297
1298template<int size>
1299const unsigned char
1300Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1301{
1302 // first part
1303 0x0d, 0x10, // basr %r1, %r0
1304 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1305 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1306 0x07, 0xf1, // br %r1
1307 // second part
1308 0x0d, 0x10, // basr %r1, %r0
1309 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1310 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1311 0x00, 0x00, // padding
1312 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1313 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1314};
1315
1316template<int size>
1317const unsigned char
1318Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1319{
1320 // first part
1321 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1322 0x07, 0xf1, // br %r1
1323 0x00, 0x00, // padding
1324 0x00, 0x00, 0x00, 0x00, // padding
1325 // second part
1326 0x0d, 0x10, // basr %r1, %r0
1327 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1328 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1329 0x00, 0x00, // padding
1330 0x00, 0x00, 0x00, 0x00, // padding
1331 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1332};
1333
1334template<int size>
1335const unsigned char
1336Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1337{
1338 // first part
1339 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1340 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1341 0x07, 0xf1, // br %r1
1342 0x00, 0x00, // padding
1343 // second part
1344 0x0d, 0x10, // basr %r1, %r0
1345 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1346 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1347 0x00, 0x00, // padding
1348 0x00, 0x00, 0x00, 0x00, // padding
1349 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1350};
1351
1352template<int size>
1353const unsigned char
1354Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1355{
1356 // first part
1357 0x0d, 0x10, // basr %r1, %r0
1358 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1359 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1360 0x07, 0xf1, // br %r1
1361 // second part
1362 0x0d, 0x10, // basr %r1, %r0
1363 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1364 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1365 0x00, 0x00, // padding
1366 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1367 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1368};
1369
1370template<int size>
1371const unsigned char
1372Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1373{
1374 // first part
1375 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1376 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1377 0x07, 0xf1, // br %r1
1378 // second part
1379 0x0d, 0x10, // basr %r1, %r0
1380 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1381 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1382 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1383};
1384
1385template<int size>
1386unsigned int
1387Output_data_plt_s390<size>::fill_plt_entry(
1388 unsigned char* pov,
1389 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1390 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1391 unsigned int got_offset,
1392 unsigned int plt_offset,
1393 unsigned int plt_rel_offset)
1394{
1395 if (size == 64)
1396 {
1397 memcpy(pov, plt_entry_64, plt_entry_size);
1398 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1399 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1400 }
1401 else
1402 {
1403 if (!parameters->options().output_is_position_independent())
1404 {
1405 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1406 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1407 }
1408 else
1409 {
1410 if (got_offset < 0x1000)
1411 {
1412 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1413 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1414 }
1415 else if (got_offset < 0x8000)
1416 {
1417 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1418 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1419 }
1420 else
1421 {
1422 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1423 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1424 }
1425 }
1426 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1427 if (plt_offset >= 0x10000)
1428 {
1429 // Would overflow pcrela16dbl - aim at the farthest previous jump
1430 // we can reach.
1431 if (plt_offset > 0x10000)
1432 {
1433 // Use the full range of pcrel16dbl.
1434 target = plt_address + plt_offset - 0x10000 + 18;
1435 }
1436 else
1437 {
1438 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1439 // of first_plt_entry, which doesn't have the jump back like the others.
1440 // Aim at the next entry instead.
1441 target = plt_address + plt_offset - 0xffe0 + 18;
1442 }
1443 }
1444 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1445 }
1446 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1447 if (size == 64)
1448 return 14;
1449 else
1450 return 12;
1451}
1452
1453// The .eh_frame unwind information for the PLT.
1454
1455template<>
1456const unsigned char
1457Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1458{
1459 1, // CIE version.
1460 'z', // Augmentation: augmentation size included.
1461 'R', // Augmentation: FDE encoding included.
1462 '\0', // End of augmentation string.
1463 1, // Code alignment factor.
1464 0x7c, // Data alignment factor.
1465 14, // Return address column.
1466 1, // Augmentation size.
1467 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1468 | elfcpp::DW_EH_PE_sdata4),
1469 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1470};
1471
1472template<>
1473const unsigned char
1474Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1475{
1476 1, // CIE version.
1477 'z', // Augmentation: augmentation size included.
1478 'R', // Augmentation: FDE encoding included.
1479 '\0', // End of augmentation string.
1480 1, // Code alignment factor.
1481 0x78, // Data alignment factor.
1482 14, // Return address column.
1483 1, // Augmentation size.
1484 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1485 | elfcpp::DW_EH_PE_sdata4),
1486 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1487};
1488
1489template<int size>
1490const unsigned char
1491Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1492{
1493 0, 0, 0, 0, // Replaced with offset to .plt.
1494 0, 0, 0, 0, // Replaced with size of .plt.
1495 0, // Augmentation size.
1496 elfcpp::DW_CFA_nop,
1497 elfcpp::DW_CFA_nop,
1498 elfcpp::DW_CFA_nop
1499};
1500
1501// Write out the PLT. This uses the hand-coded instructions above,
1502// and adjusts them as needed.
1503
1504template<int size>
1505void
1506Output_data_plt_s390<size>::do_write(Output_file* of)
1507{
1508 const off_t offset = this->offset();
1509 const section_size_type oview_size =
1510 convert_to_section_size_type(this->data_size());
1511 unsigned char* const oview = of->get_output_view(offset, oview_size);
1512
1513 const off_t got_file_offset = this->got_plt_->offset();
1514 gold_assert(parameters->incremental_update()
1515 || (got_file_offset + this->got_plt_->data_size()
1516 == this->got_irelative_->offset()));
1517 const section_size_type got_size =
1518 convert_to_section_size_type(this->got_plt_->data_size()
1519 + this->got_irelative_->data_size());
1520 unsigned char* const got_view = of->get_output_view(got_file_offset,
1521 got_size);
1522
1523 unsigned char* pov = oview;
1524
1525 // The base address of the .plt section.
1526 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1527 // The base address of the PLT portion of the .got section,
1528 // which is where the GOT pointer will point, and where the
1529 // three reserved GOT entries are located.
1530 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1531 = this->got_plt_->address();
1532
1533 this->fill_first_plt_entry(pov, got_address, plt_address);
1534 pov += this->get_plt_entry_size();
1535
1536 unsigned char* got_pov = got_view;
1537
1538 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1539
1540 unsigned int plt_offset = this->get_plt_entry_size();
1541 unsigned int plt_rel_offset = 0;
1542 unsigned int got_offset = 3 * size / 8;
1543 const unsigned int count = this->count_ + this->irelative_count_;
1544 // The first three entries in the GOT are reserved, and are written
1545 // by Output_data_got_plt_s390::do_write.
1546 got_pov += 3 * size / 8;
1547
1548 for (unsigned int plt_index = 0;
1549 plt_index < count;
1550 ++plt_index,
1551 pov += plt_entry_size,
1552 got_pov += size / 8,
1553 plt_offset += plt_entry_size,
1554 plt_rel_offset += rel_size,
1555 got_offset += size / 8)
1556 {
1557 // Set and adjust the PLT entry itself.
1558 unsigned int lazy_offset = this->fill_plt_entry(pov,
1559 got_address, plt_address,
1560 got_offset, plt_offset,
1561 plt_rel_offset);
1562
1563 // Set the entry in the GOT.
1564 elfcpp::Swap<size, true>::writeval(got_pov,
1565 plt_address + plt_offset + lazy_offset);
1566 }
1567
1568 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1569 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1570
1571 of->write_output_view(offset, oview_size, oview);
1572 of->write_output_view(got_file_offset, got_size, got_view);
1573}
1574
1575// Get the GOT section, creating it if necessary.
1576
1577template<int size>
1578Output_data_got<size, true>*
1579Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1580{
1581 if (this->got_ == NULL)
1582 {
1583 gold_assert(symtab != NULL && layout != NULL);
1584
1585 // When using -z now, we can treat .got as a relro section.
1586 // Without -z now, it is modified after program startup by lazy
1587 // PLT relocations.
1588 bool is_got_relro = parameters->options().now();
1589 Output_section_order got_order = (is_got_relro
1590 ? ORDER_RELRO_LAST
1591 : ORDER_DATA);
1592
1593 // The old GNU linker creates a .got.plt section. We just
1594 // create another set of data in the .got section. Note that we
1595 // always create a PLT if we create a GOT, although the PLT
1596 // might be empty.
1597 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1598 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1599 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1600 this->got_plt_, got_order, is_got_relro);
1601
1602 // The first three entries are reserved.
1603 this->got_plt_->set_current_data_size(3 * size / 8);
1604
1605 // If there are any IRELATIVE relocations, they get GOT entries
1606 // in .got.plt after the jump slot entries.
1607 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1608 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1609 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1610 this->got_irelative_,
1611 got_order, is_got_relro);
1612
1613 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1614 // .got.plt sections in output. The output .got section contains both
1615 // PLT and non-PLT GOT entries.
1616 this->got_ = new Output_data_got<size, true>();
1617
1618 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1619 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1620 this->got_, got_order, is_got_relro);
1621
1622 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1623 this->global_offset_table_ =
1624 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1625 Symbol_table::PREDEFINED,
1626 this->got_plt_,
1627 0, 0, elfcpp::STT_OBJECT,
1628 elfcpp::STB_LOCAL,
1629 elfcpp::STV_HIDDEN, 0,
1630 false, false);
1631
1632 }
1633 return this->got_;
1634}
1635
1636// Get the dynamic reloc section, creating it if necessary.
1637
1638template<int size>
1639typename Target_s390<size>::Reloc_section*
1640Target_s390<size>::rela_dyn_section(Layout* layout)
1641{
1642 if (this->rela_dyn_ == NULL)
1643 {
1644 gold_assert(layout != NULL);
1645 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1646 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1647 elfcpp::SHF_ALLOC, this->rela_dyn_,
1648 ORDER_DYNAMIC_RELOCS, false);
1649 }
1650 return this->rela_dyn_;
1651}
1652
1653// Get the section to use for IRELATIVE relocs, creating it if
1654// necessary. These go in .rela.dyn, but only after all other dynamic
1655// relocations. They need to follow the other dynamic relocations so
1656// that they can refer to global variables initialized by those
1657// relocs.
1658
1659template<int size>
1660typename Target_s390<size>::Reloc_section*
1661Target_s390<size>::rela_irelative_section(Layout* layout)
1662{
1663 if (this->rela_irelative_ == NULL)
1664 {
1665 // Make sure we have already created the dynamic reloc section.
1666 this->rela_dyn_section(layout);
1667 this->rela_irelative_ = new Reloc_section(false);
1668 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1669 elfcpp::SHF_ALLOC, this->rela_irelative_,
1670 ORDER_DYNAMIC_RELOCS, false);
1671 gold_assert(this->rela_dyn_->output_section()
1672 == this->rela_irelative_->output_section());
1673 }
1674 return this->rela_irelative_;
1675}
1676
1677// Write the first three reserved words of the .got.plt section.
1678// The remainder of the section is written while writing the PLT
1679// in Output_data_plt_s390::do_write.
1680
1681template<int size>
1682void
1683Output_data_got_plt_s390<size>::do_write(Output_file* of)
1684{
1685 // The first entry in the GOT is the address of the .dynamic section
1686 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1687 // We saved space for them when we created the section in
1688 // Target_x86_64::got_section.
1689 const off_t got_file_offset = this->offset();
1690 gold_assert(this->data_size() >= 3 * size / 8);
1691 unsigned char* const got_view =
1692 of->get_output_view(got_file_offset, 3 * size / 8);
1693 Output_section* dynamic = this->layout_->dynamic_section();
1694 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1695 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1696 memset(got_view + size / 8, 0, 2 * size / 8);
1697 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1698}
1699
1700// Create the PLT section.
1701
1702template<int size>
1703void
1704Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1705{
1706 if (this->plt_ == NULL)
1707 {
1708 // Create the GOT sections first.
1709 this->got_section(symtab, layout);
1710
1711 // Ensure that .rela.dyn always appears before .rela.plt This is
1712 // necessary due to how, on 32-bit S/390 and some other targets,
1713 // .rela.dyn needs to include .rela.plt in it's range.
1714 this->rela_dyn_section(layout);
1715
1716 this->plt_ = new Output_data_plt_s390<size>(layout,
1717 this->got_, this->got_plt_, this->got_irelative_);
1718
1719 // Add unwind information if requested.
1720 if (parameters->options().ld_generated_unwind_info())
1721 this->plt_->add_eh_frame(layout);
1722
1723 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1724 (elfcpp::SHF_ALLOC
1725 | elfcpp::SHF_EXECINSTR),
1726 this->plt_, ORDER_PLT, false);
1727
1728 // Make the sh_info field of .rela.plt point to .plt.
1729 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1730 rela_plt_os->set_info_section(this->plt_->output_section());
1731 }
1732}
1733
1734// Create a PLT entry for a global symbol.
1735
1736template<int size>
1737void
1738Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1739 Symbol* gsym)
1740{
1741 if (gsym->has_plt_offset())
1742 return;
1743
1744 if (this->plt_ == NULL)
1745 this->make_plt_section(symtab, layout);
1746
1747 this->plt_->add_entry(symtab, layout, gsym);
1748}
1749
1750// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1751
1752template<int size>
1753void
1754Target_s390<size>::make_local_ifunc_plt_entry(
1755 Symbol_table* symtab, Layout* layout,
1756 Sized_relobj_file<size, true>* relobj,
1757 unsigned int local_sym_index)
1758{
1759 if (relobj->local_has_plt_offset(local_sym_index))
1760 return;
1761 if (this->plt_ == NULL)
1762 this->make_plt_section(symtab, layout);
1763 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1764 relobj,
1765 local_sym_index);
1766 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1767}
1768
1769// Return the number of entries in the PLT.
1770
1771template<int size>
1772unsigned int
1773Target_s390<size>::plt_entry_count() const
1774{
1775 if (this->plt_ == NULL)
1776 return 0;
1777 return this->plt_->entry_count();
1778}
1779
1780// Return the offset of the first non-reserved PLT entry.
1781
1782template<int size>
1783unsigned int
1784Target_s390<size>::first_plt_entry_offset() const
1785{
1786 return this->plt_->first_plt_entry_offset();
1787}
1788
1789// Return the size of each PLT entry.
1790
1791template<int size>
1792unsigned int
1793Target_s390<size>::plt_entry_size() const
1794{
1795 return this->plt_->get_plt_entry_size();
1796}
1797
1798// Create the GOT and PLT sections for an incremental update.
1799
1800template<int size>
1801Output_data_got_base*
1802Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1803 Layout* layout,
1804 unsigned int got_count,
1805 unsigned int plt_count)
1806{
1807 gold_assert(this->got_ == NULL);
1808
1809 // Add the three reserved entries.
1810 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1811 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1812 (elfcpp::SHF_ALLOC
1813 | elfcpp::SHF_WRITE),
1814 this->got_plt_, ORDER_NON_RELRO_FIRST,
1815 false);
1816
1817 // If there are any IRELATIVE relocations, they get GOT entries in
1818 // .got.plt after the jump slot entries.
1819 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1820 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1821 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1822 this->got_irelative_,
1823 ORDER_NON_RELRO_FIRST, false);
1824
1825 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1826 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1827 (elfcpp::SHF_ALLOC
1828 | elfcpp::SHF_WRITE),
1829 this->got_, ORDER_RELRO_LAST,
1830 true);
1831
1832 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1833 this->global_offset_table_ =
1834 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1835 Symbol_table::PREDEFINED,
1836 this->got_plt_,
1837 0, 0, elfcpp::STT_OBJECT,
1838 elfcpp::STB_LOCAL,
1839 elfcpp::STV_HIDDEN, 0,
1840 false, false);
1841
1842 // Create the PLT section.
1843 this->plt_ = new Output_data_plt_s390<size>(layout,
1844 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1845
1846 // Add unwind information if requested.
1847 if (parameters->options().ld_generated_unwind_info())
1848 this->plt_->add_eh_frame(layout);
1849
1850 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1851 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1852 this->plt_, ORDER_PLT, false);
1853
1854 // Make the sh_info field of .rela.plt point to .plt.
1855 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1856 rela_plt_os->set_info_section(this->plt_->output_section());
1857
1858 // Create the rela_dyn section.
1859 this->rela_dyn_section(layout);
1860
1861 return this->got_;
1862}
1863
1864// Reserve a GOT entry for a local symbol, and regenerate any
1865// necessary dynamic relocations.
1866
1867template<int size>
1868void
1869Target_s390<size>::reserve_local_got_entry(
1870 unsigned int got_index,
1871 Sized_relobj<size, true>* obj,
1872 unsigned int r_sym,
1873 unsigned int got_type)
1874{
1875 unsigned int got_offset = got_index * size / 8;
1876 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1877
1878 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1879 switch (got_type)
1880 {
1881 case GOT_TYPE_STANDARD:
1882 if (parameters->options().output_is_position_independent())
1883 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1884 this->got_, got_offset, 0, false);
1885 break;
1886 case GOT_TYPE_TLS_OFFSET:
1887 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1888 this->got_, got_offset, 0);
1889 break;
1890 case GOT_TYPE_TLS_PAIR:
1891 this->got_->reserve_slot(got_index + 1);
1892 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1893 this->got_, got_offset, 0);
1894 break;
1895 default:
1896 gold_unreachable();
1897 }
1898}
1899
1900// Reserve a GOT entry for a global symbol, and regenerate any
1901// necessary dynamic relocations.
1902
1903template<int size>
1904void
1905Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1906 Symbol* gsym,
1907 unsigned int got_type)
1908{
1909 unsigned int got_offset = got_index * size / 8;
1910 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1911
1912 this->got_->reserve_global(got_index, gsym, got_type);
1913 switch (got_type)
1914 {
1915 case GOT_TYPE_STANDARD:
1916 if (!gsym->final_value_is_known())
1917 {
1918 if (gsym->is_from_dynobj()
1919 || gsym->is_undefined()
1920 || gsym->is_preemptible()
1921 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1922 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1923 this->got_, got_offset, 0);
1924 else
1925 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1926 this->got_, got_offset, 0, false);
1927 }
1928 break;
1929 case GOT_TYPE_TLS_OFFSET:
1930 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1931 this->got_, got_offset, 0, false);
1932 break;
1933 case GOT_TYPE_TLS_PAIR:
1934 this->got_->reserve_slot(got_index + 1);
1935 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1936 this->got_, got_offset, 0, false);
1937 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1938 this->got_, got_offset + size / 8, 0, false);
1939 break;
1940 default:
1941 gold_unreachable();
1942 }
1943}
1944
1945// Register an existing PLT entry for a global symbol.
1946
1947template<int size>
1948void
1949Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1950 Layout* layout,
1951 unsigned int plt_index,
1952 Symbol* gsym)
1953{
1954 gold_assert(this->plt_ != NULL);
1955 gold_assert(!gsym->has_plt_offset());
1956
1957 this->plt_->reserve_slot(plt_index);
1958
1959 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1960
1961 unsigned int got_offset = (plt_index + 3) * size / 8;
1962 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1963}
1964
1965// Force a COPY relocation for a given symbol.
1966
1967template<int size>
1968void
1969Target_s390<size>::emit_copy_reloc(
1970 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1971{
1972 this->copy_relocs_.emit_copy_reloc(symtab,
1973 symtab->get_sized_symbol<size>(sym),
1974 os,
1975 offset,
1976 this->rela_dyn_section(NULL));
1977}
1978
1979// Create a GOT entry for the TLS module index.
1980
1981template<int size>
1982unsigned int
1983Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1984 Sized_relobj_file<size, true>* object)
1985{
1986 if (this->got_mod_index_offset_ == -1U)
1987 {
1988 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1989 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1990 Output_data_got<size, true>* got = this->got_section(symtab, layout);
1991 unsigned int got_offset = got->add_constant(0);
1992 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
1993 got_offset, 0);
1994 got->add_constant(0);
1995 this->got_mod_index_offset_ = got_offset;
1996 }
1997 return this->got_mod_index_offset_;
1998}
1999
2000// Optimize the TLS relocation type based on what we know about the
2001// symbol. IS_FINAL is true if the final address of this symbol is
2002// known at link time.
2003
2004template<int size>
2005tls::Tls_optimization
2006Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
2007{
2008 // If we are generating a shared library, then we can't do anything
2009 // in the linker.
2010 if (parameters->options().shared())
2011 return tls::TLSOPT_NONE;
2012
2013 switch (r_type)
2014 {
2015 case elfcpp::R_390_TLS_GD32:
2016 case elfcpp::R_390_TLS_GD64:
2017 case elfcpp::R_390_TLS_GDCALL:
2018 // These are General-Dynamic which permits fully general TLS
2019 // access. Since we know that we are generating an executable,
2020 // we can convert this to Initial-Exec. If we also know that
2021 // this is a local symbol, we can further switch to Local-Exec.
2022 if (is_final)
2023 return tls::TLSOPT_TO_LE;
2024 return tls::TLSOPT_TO_IE;
2025
2026 case elfcpp::R_390_TLS_LDM32:
2027 case elfcpp::R_390_TLS_LDM64:
2028 case elfcpp::R_390_TLS_LDO32:
2029 case elfcpp::R_390_TLS_LDO64:
2030 case elfcpp::R_390_TLS_LDCALL:
2031 // This is Local-Dynamic, which refers to a local symbol in the
2032 // dynamic TLS block. Since we know that we generating an
2033 // executable, we can switch to Local-Exec.
2034 return tls::TLSOPT_TO_LE;
2035
2036 case elfcpp::R_390_TLS_IE32:
2037 case elfcpp::R_390_TLS_IE64:
2038 case elfcpp::R_390_TLS_GOTIE32:
2039 case elfcpp::R_390_TLS_GOTIE64:
2040 case elfcpp::R_390_TLS_LOAD:
2041 // These are Initial-Exec relocs which get the thread offset
2042 // from the GOT. If we know that we are linking against the
2043 // local symbol, we can switch to Local-Exec, which links the
2044 // thread offset into the instruction.
2045 if (is_final)
2046 return tls::TLSOPT_TO_LE;
2047 return tls::TLSOPT_NONE;
2048
2049 case elfcpp::R_390_TLS_GOTIE12:
2050 case elfcpp::R_390_TLS_IEENT:
2051 case elfcpp::R_390_TLS_GOTIE20:
2052 // These are Initial-Exec, but cannot be optimized.
2053 return tls::TLSOPT_NONE;
2054
2055 case elfcpp::R_390_TLS_LE32:
2056 case elfcpp::R_390_TLS_LE64:
2057 // When we already have Local-Exec, there is nothing further we
2058 // can do.
2059 return tls::TLSOPT_NONE;
2060
2061 default:
2062 gold_unreachable();
2063 }
2064}
2065
2066// Get the Reference_flags for a particular relocation.
2067
2068template<int size>
2069int
2070Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2071{
2072 switch (r_type)
2073 {
2074 case elfcpp::R_390_NONE:
2075 case elfcpp::R_390_GNU_VTINHERIT:
2076 case elfcpp::R_390_GNU_VTENTRY:
2077 case elfcpp::R_390_GOTPC:
2078 case elfcpp::R_390_GOTPCDBL:
2079 // No symbol reference.
2080 return 0;
2081
2082 case elfcpp::R_390_64:
2083 case elfcpp::R_390_32:
2084 case elfcpp::R_390_20:
2085 case elfcpp::R_390_16:
2086 case elfcpp::R_390_12:
2087 case elfcpp::R_390_8:
2088 return Symbol::ABSOLUTE_REF;
2089
2090 case elfcpp::R_390_PC12DBL:
2091 case elfcpp::R_390_PC16:
2092 case elfcpp::R_390_PC16DBL:
2093 case elfcpp::R_390_PC24DBL:
2094 case elfcpp::R_390_PC32:
2095 case elfcpp::R_390_PC32DBL:
2096 case elfcpp::R_390_PC64:
2097 case elfcpp::R_390_GOTOFF16:
2098 case elfcpp::R_390_GOTOFF32:
2099 case elfcpp::R_390_GOTOFF64:
2100 return Symbol::RELATIVE_REF;
2101
2102 case elfcpp::R_390_PLT12DBL:
2103 case elfcpp::R_390_PLT16DBL:
2104 case elfcpp::R_390_PLT24DBL:
2105 case elfcpp::R_390_PLT32:
2106 case elfcpp::R_390_PLT32DBL:
2107 case elfcpp::R_390_PLT64:
2108 case elfcpp::R_390_PLTOFF16:
2109 case elfcpp::R_390_PLTOFF32:
2110 case elfcpp::R_390_PLTOFF64:
2111 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2112
2113 case elfcpp::R_390_GOT12:
2114 case elfcpp::R_390_GOT16:
2115 case elfcpp::R_390_GOT20:
2116 case elfcpp::R_390_GOT32:
2117 case elfcpp::R_390_GOT64:
2118 case elfcpp::R_390_GOTENT:
2119 case elfcpp::R_390_GOTPLT12:
2120 case elfcpp::R_390_GOTPLT16:
2121 case elfcpp::R_390_GOTPLT20:
2122 case elfcpp::R_390_GOTPLT32:
2123 case elfcpp::R_390_GOTPLT64:
2124 case elfcpp::R_390_GOTPLTENT:
2125 // Absolute in GOT.
2126 return Symbol::ABSOLUTE_REF;
2127
2128 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2129 case elfcpp::R_390_TLS_GD64:
2130 case elfcpp::R_390_TLS_GDCALL:
2131 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2132 case elfcpp::R_390_TLS_LDM64:
2133 case elfcpp::R_390_TLS_LDO32:
2134 case elfcpp::R_390_TLS_LDO64:
2135 case elfcpp::R_390_TLS_LDCALL:
2136 case elfcpp::R_390_TLS_IE32: // Initial-exec
2137 case elfcpp::R_390_TLS_IE64:
2138 case elfcpp::R_390_TLS_IEENT:
2139 case elfcpp::R_390_TLS_GOTIE12:
2140 case elfcpp::R_390_TLS_GOTIE20:
2141 case elfcpp::R_390_TLS_GOTIE32:
2142 case elfcpp::R_390_TLS_GOTIE64:
2143 case elfcpp::R_390_TLS_LOAD:
2144 case elfcpp::R_390_TLS_LE32: // Local-exec
2145 case elfcpp::R_390_TLS_LE64:
2146 return Symbol::TLS_REF;
2147
2148 case elfcpp::R_390_COPY:
2149 case elfcpp::R_390_GLOB_DAT:
2150 case elfcpp::R_390_JMP_SLOT:
2151 case elfcpp::R_390_RELATIVE:
2152 case elfcpp::R_390_IRELATIVE:
2153 case elfcpp::R_390_TLS_TPOFF:
2154 case elfcpp::R_390_TLS_DTPOFF:
2155 case elfcpp::R_390_TLS_DTPMOD:
2156 default:
2157 // Not expected. We will give an error later.
2158 return 0;
2159 }
2160}
2161
2162// Report an unsupported relocation against a local symbol.
2163
2164template<int size>
2165void
2166Target_s390<size>::Scan::unsupported_reloc_local(
2167 Sized_relobj_file<size, true>* object,
2168 unsigned int r_type)
2169{
2170 gold_error(_("%s: unsupported reloc %u against local symbol"),
2171 object->name().c_str(), r_type);
2172}
2173
2174// We are about to emit a dynamic relocation of type R_TYPE. If the
2175// dynamic linker does not support it, issue an error.
2176
2177template<int size>
2178void
2179Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2180{
2181 gold_assert(r_type != elfcpp::R_390_NONE);
2182
2183 if (size == 64)
2184 {
2185 switch (r_type)
2186 {
2187 // These are the relocation types supported by glibc for s390 64-bit.
2188 case elfcpp::R_390_RELATIVE:
2189 case elfcpp::R_390_IRELATIVE:
2190 case elfcpp::R_390_COPY:
2191 case elfcpp::R_390_GLOB_DAT:
2192 case elfcpp::R_390_JMP_SLOT:
2193 case elfcpp::R_390_TLS_DTPMOD:
2194 case elfcpp::R_390_TLS_DTPOFF:
2195 case elfcpp::R_390_TLS_TPOFF:
2196 case elfcpp::R_390_8:
2197 case elfcpp::R_390_16:
2198 case elfcpp::R_390_32:
2199 case elfcpp::R_390_64:
2200 case elfcpp::R_390_PC16:
2201 case elfcpp::R_390_PC16DBL:
2202 case elfcpp::R_390_PC32:
2203 case elfcpp::R_390_PC32DBL:
2204 case elfcpp::R_390_PC64:
2205 return;
2206
2207 default:
2208 break;
2209 }
2210 }
2211 else
2212 {
2213 switch (r_type)
2214 {
2215 // These are the relocation types supported by glibc for s390 32-bit.
2216 case elfcpp::R_390_RELATIVE:
2217 case elfcpp::R_390_IRELATIVE:
2218 case elfcpp::R_390_COPY:
2219 case elfcpp::R_390_GLOB_DAT:
2220 case elfcpp::R_390_JMP_SLOT:
2221 case elfcpp::R_390_TLS_DTPMOD:
2222 case elfcpp::R_390_TLS_DTPOFF:
2223 case elfcpp::R_390_TLS_TPOFF:
2224 case elfcpp::R_390_8:
2225 case elfcpp::R_390_16:
2226 case elfcpp::R_390_32:
2227 case elfcpp::R_390_PC16:
2228 case elfcpp::R_390_PC16DBL:
2229 case elfcpp::R_390_PC32:
2230 case elfcpp::R_390_PC32DBL:
2231 return;
2232
2233 default:
2234 break;
2235 }
2236 }
2237
2238 // This prevents us from issuing more than one error per reloc
2239 // section. But we can still wind up issuing more than one
2240 // error per object file.
2241 if (this->issued_non_pic_error_)
2242 return;
2243 gold_assert(parameters->options().output_is_position_independent());
2244 object->error(_("requires unsupported dynamic reloc; "
2245 "recompile with -fPIC"));
2246 this->issued_non_pic_error_ = true;
2247 return;
2248}
2249
2250// Return whether we need to make a PLT entry for a relocation of the
2251// given type against a STT_GNU_IFUNC symbol.
2252
2253template<int size>
2254bool
2255Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2256 Sized_relobj_file<size, true>* object,
2257 unsigned int r_type)
2258{
2259 int flags = Scan::get_reference_flags(r_type);
2260 if (flags & Symbol::TLS_REF)
2261 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2262 object->name().c_str(), r_type);
2263 return flags != 0;
2264}
2265
2266// Scan a relocation for a local symbol.
2267
2268template<int size>
2269inline void
2270Target_s390<size>::Scan::local(Symbol_table* symtab,
2271 Layout* layout,
2272 Target_s390<size>* target,
2273 Sized_relobj_file<size, true>* object,
2274 unsigned int data_shndx,
2275 Output_section* output_section,
2276 const elfcpp::Rela<size, true>& reloc,
2277 unsigned int r_type,
2278 const elfcpp::Sym<size, true>& lsym,
2279 bool is_discarded)
2280{
2281 if (is_discarded)
2282 return;
2283
2284 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2285 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2286
2287 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2288 {
2289 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2290 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2291 }
2292
2293 switch (r_type)
2294 {
2295 case elfcpp::R_390_NONE:
2296 case elfcpp::R_390_GNU_VTINHERIT:
2297 case elfcpp::R_390_GNU_VTENTRY:
2298 break;
2299
2300 case elfcpp::R_390_64:
2301 // If building a shared library (or a position-independent
2302 // executable), we need to create a dynamic relocation for this
2303 // location. The relocation applied at link time will apply the
2304 // link-time value, so we flag the location with an
2305 // R_390_RELATIVE relocation so the dynamic loader can
2306 // relocate it easily.
2307 if (parameters->options().output_is_position_independent() && size == 64)
2308 {
2309 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2310 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2311 rela_dyn->add_local_relative(object, r_sym,
2312 elfcpp::R_390_RELATIVE,
2313 output_section, data_shndx,
2314 reloc.get_r_offset(),
2315 reloc.get_r_addend(), is_ifunc);
2316 }
2317 break;
2318
2319 case elfcpp::R_390_32:
2320 case elfcpp::R_390_20:
2321 case elfcpp::R_390_16:
2322 case elfcpp::R_390_12:
2323 case elfcpp::R_390_8:
2324 if (parameters->options().output_is_position_independent())
2325 {
2326 if (size == 32 && r_type == elfcpp::R_390_32)
2327 {
2328 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2329 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2330 rela_dyn->add_local_relative(object, r_sym,
2331 elfcpp::R_390_RELATIVE,
2332 output_section, data_shndx,
2333 reloc.get_r_offset(),
2334 reloc.get_r_addend(), is_ifunc);
2335 break;
2336 }
2337
2338 check_non_pic(object, r_type);
2339
2340 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2341 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2342 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2343 rela_dyn->add_local(object, r_sym, r_type, output_section,
2344 data_shndx, reloc.get_r_offset(),
2345 reloc.get_r_addend());
2346 else
2347 {
2348 gold_assert(lsym.get_st_value() == 0);
2349 unsigned int shndx = lsym.get_st_shndx();
2350 bool is_ordinary;
2351 shndx = object->adjust_sym_shndx(r_sym, shndx,
2352 &is_ordinary);
2353 if (!is_ordinary)
2354 object->error(_("section symbol %u has bad shndx %u"),
2355 r_sym, shndx);
2356 else
2357 rela_dyn->add_local_section(object, shndx,
2358 r_type, output_section,
2359 data_shndx, reloc.get_r_offset(),
2360 reloc.get_r_addend());
2361 }
2362 }
2363 break;
2364
2365 case elfcpp::R_390_PC12DBL:
2366 case elfcpp::R_390_PC16:
2367 case elfcpp::R_390_PC16DBL:
2368 case elfcpp::R_390_PC24DBL:
2369 case elfcpp::R_390_PC32:
2370 case elfcpp::R_390_PC32DBL:
2371 case elfcpp::R_390_PC64:
2372 break;
2373
2374 case elfcpp::R_390_PLT12DBL:
2375 case elfcpp::R_390_PLT16DBL:
2376 case elfcpp::R_390_PLT24DBL:
2377 case elfcpp::R_390_PLT32:
2378 case elfcpp::R_390_PLT32DBL:
2379 case elfcpp::R_390_PLT64:
2380 // Since we know this is a local symbol, we can handle this as a
2381 // PC32 reloc.
2382 break;
2383
2384 case elfcpp::R_390_GOTPC:
2385 case elfcpp::R_390_GOTPCDBL:
2386 case elfcpp::R_390_GOTOFF16:
2387 case elfcpp::R_390_GOTOFF32:
2388 case elfcpp::R_390_GOTOFF64:
2389 case elfcpp::R_390_PLTOFF16:
2390 case elfcpp::R_390_PLTOFF32:
2391 case elfcpp::R_390_PLTOFF64:
2392 // We need a GOT section.
2393 target->got_section(symtab, layout);
2394 // For PLTOFF*, we'd normally want a PLT section, but since we
2395 // know this is a local symbol, no PLT is needed.
2396 break;
2397
2398 case elfcpp::R_390_GOT12:
2399 case elfcpp::R_390_GOT16:
2400 case elfcpp::R_390_GOT20:
2401 case elfcpp::R_390_GOT32:
2402 case elfcpp::R_390_GOT64:
2403 case elfcpp::R_390_GOTENT:
2404 case elfcpp::R_390_GOTPLT12:
2405 case elfcpp::R_390_GOTPLT16:
2406 case elfcpp::R_390_GOTPLT20:
2407 case elfcpp::R_390_GOTPLT32:
2408 case elfcpp::R_390_GOTPLT64:
2409 case elfcpp::R_390_GOTPLTENT:
2410 {
2411 // The symbol requires a GOT section.
2412 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2413
2414 // The symbol requires a GOT entry.
2415 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2416
2417 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2418 // lets function pointers compare correctly with shared
2419 // libraries. Otherwise we would need an IRELATIVE reloc.
2420 bool is_new;
2421 if (is_ifunc)
2422 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2423 else
2424 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2425 if (is_new)
2426 {
2427 // If we are generating a shared object, we need to add a
2428 // dynamic relocation for this symbol's GOT entry.
2429 if (parameters->options().output_is_position_independent())
2430 {
2431 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2432 unsigned int got_offset =
2433 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2434 rela_dyn->add_local_relative(object, r_sym,
2435 elfcpp::R_390_RELATIVE,
2436 got, got_offset, 0, is_ifunc);
2437 }
2438 }
2439 // For GOTPLT*, we'd normally want a PLT section, but since
2440 // we know this is a local symbol, no PLT is needed.
2441 }
2442 break;
2443
2444 case elfcpp::R_390_COPY:
2445 case elfcpp::R_390_GLOB_DAT:
2446 case elfcpp::R_390_JMP_SLOT:
2447 case elfcpp::R_390_RELATIVE:
2448 case elfcpp::R_390_IRELATIVE:
2449 // These are outstanding tls relocs, which are unexpected when linking
2450 case elfcpp::R_390_TLS_TPOFF:
2451 case elfcpp::R_390_TLS_DTPOFF:
2452 case elfcpp::R_390_TLS_DTPMOD:
2453 gold_error(_("%s: unexpected reloc %u in object file"),
2454 object->name().c_str(), r_type);
2455 break;
2456
2457 // These are initial tls relocs, which are expected when linking
2458 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2459 case elfcpp::R_390_TLS_GD64:
2460 case elfcpp::R_390_TLS_GDCALL:
2461 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2462 case elfcpp::R_390_TLS_LDM64:
2463 case elfcpp::R_390_TLS_LDO32:
2464 case elfcpp::R_390_TLS_LDO64:
2465 case elfcpp::R_390_TLS_LDCALL:
2466 case elfcpp::R_390_TLS_IE32: // Initial-exec
2467 case elfcpp::R_390_TLS_IE64:
2468 case elfcpp::R_390_TLS_IEENT:
2469 case elfcpp::R_390_TLS_GOTIE12:
2470 case elfcpp::R_390_TLS_GOTIE20:
2471 case elfcpp::R_390_TLS_GOTIE32:
2472 case elfcpp::R_390_TLS_GOTIE64:
2473 case elfcpp::R_390_TLS_LOAD:
2474 case elfcpp::R_390_TLS_LE32: // Local-exec
2475 case elfcpp::R_390_TLS_LE64:
2476 {
2477 bool output_is_shared = parameters->options().shared();
2478 const tls::Tls_optimization optimized_type
2479 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2480 r_type);
2481 switch (r_type)
2482 {
2483 case elfcpp::R_390_TLS_GD32: // General-dynamic
2484 case elfcpp::R_390_TLS_GD64:
2485 case elfcpp::R_390_TLS_GDCALL:
2486 if (optimized_type == tls::TLSOPT_NONE)
2487 {
2488 // Create a pair of GOT entries for the module index and
2489 // dtv-relative offset.
2490 Output_data_got<size, true>* got
2491 = target->got_section(symtab, layout);
2492 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2493 unsigned int shndx = lsym.get_st_shndx();
2494 bool is_ordinary;
2495 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2496 if (!is_ordinary)
2497 object->error(_("local symbol %u has bad shndx %u"),
2498 r_sym, shndx);
2499 else
2500 got->add_local_pair_with_rel(object, r_sym,
2501 shndx,
2502 GOT_TYPE_TLS_PAIR,
2503 target->rela_dyn_section(layout),
2504 elfcpp::R_390_TLS_DTPMOD);
2505 }
2506 else if (optimized_type != tls::TLSOPT_TO_LE)
2507 unsupported_reloc_local(object, r_type);
2508 break;
2509
2510 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2511 case elfcpp::R_390_TLS_LDM64:
2512 case elfcpp::R_390_TLS_LDCALL:
2513 if (optimized_type == tls::TLSOPT_NONE)
2514 {
2515 // Create a GOT entry for the module index.
2516 target->got_mod_index_entry(symtab, layout, object);
2517 }
2518 else if (optimized_type != tls::TLSOPT_TO_LE)
2519 unsupported_reloc_local(object, r_type);
2520 break;
2521
2522 case elfcpp::R_390_TLS_LDO32:
2523 case elfcpp::R_390_TLS_LDO64:
2524 break;
2525
2526 case elfcpp::R_390_TLS_IE32: // Initial-exec
2527 case elfcpp::R_390_TLS_IE64:
2528 // These two involve an absolute address
2529 if (parameters->options().shared()
2530 && optimized_type == tls::TLSOPT_NONE)
2531 {
2532 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2533 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2534 {
2535 // We need to create a dynamic relocation.
2536 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2537 unsigned int r_sym =
2538 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2539 rela_dyn->add_local_relative(object, r_sym,
2540 elfcpp::R_390_RELATIVE,
2541 output_section, data_shndx,
2542 reloc.get_r_offset(),
2543 reloc.get_r_addend(), false);
2544 }
2545 else
2546 {
2547 unsupported_reloc_local(object, r_type);
2548 }
2549 }
2550 // fall through
2551 case elfcpp::R_390_TLS_IEENT:
2552 case elfcpp::R_390_TLS_GOTIE12:
2553 case elfcpp::R_390_TLS_GOTIE20:
2554 case elfcpp::R_390_TLS_GOTIE32:
2555 case elfcpp::R_390_TLS_GOTIE64:
2556 case elfcpp::R_390_TLS_LOAD:
2557 layout->set_has_static_tls();
2558 if (optimized_type == tls::TLSOPT_NONE)
2559 {
2560 if (!output_is_shared)
2561 {
2562 // We're making an executable, and the symbol is local, but
2563 // we cannot optimize to LE. Make a const GOT entry instead.
2564 Output_data_got<size, true>* got
2565 = target->got_section(symtab, layout);
2566 unsigned int r_sym
2567 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2568 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2569 }
2570 else
2571 {
2572 // Create a GOT entry for the tp-relative offset.
2573 Output_data_got<size, true>* got
2574 = target->got_section(symtab, layout);
2575 unsigned int r_sym
2576 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2577 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2578 target->rela_dyn_section(layout),
2579 elfcpp::R_390_TLS_TPOFF);
2580 }
2581 }
2582 else if (optimized_type != tls::TLSOPT_TO_LE)
2583 unsupported_reloc_local(object, r_type);
2584 break;
2585
2586 case elfcpp::R_390_TLS_LE32: // Local-exec
2587 case elfcpp::R_390_TLS_LE64:
2588 layout->set_has_static_tls();
2589 if (output_is_shared)
2590 {
2591 // We need to create a dynamic relocation.
2592 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2593 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2594 {
2595 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2596 unsigned int r_sym
2597 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2598 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2599 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2600 output_section, data_shndx,
2601 reloc.get_r_offset(),
2602 reloc.get_r_addend());
2603 }
2604 else
2605 {
2606 unsupported_reloc_local(object, r_type);
2607 }
2608 }
2609 break;
2610
2611 default:
2612 gold_unreachable();
2613 }
2614 }
2615 break;
2616
2617 default:
2618 gold_error(_("%s: unsupported reloc %u against local symbol"),
2619 object->name().c_str(), r_type);
2620 break;
2621 }
2622}
2623
2624// Scan a relocation for a global symbol.
2625
2626template<int size>
2627inline void
2628Target_s390<size>::Scan::global(Symbol_table* symtab,
2629 Layout* layout,
2630 Target_s390<size>* target,
2631 Sized_relobj_file<size, true>* object,
2632 unsigned int data_shndx,
2633 Output_section* output_section,
2634 const elfcpp::Rela<size, true>& reloc,
2635 unsigned int r_type,
2636 Symbol* gsym)
2637{
2638 // A STT_GNU_IFUNC symbol may require a PLT entry.
2639 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2640 && this->reloc_needs_plt_for_ifunc(object, r_type))
2641 target->make_plt_entry(symtab, layout, gsym);
2642
2643 switch (r_type)
2644 {
2645 case elfcpp::R_390_NONE:
2646 case elfcpp::R_390_GNU_VTINHERIT:
2647 case elfcpp::R_390_GNU_VTENTRY:
2648 break;
2649
2650 case elfcpp::R_390_64:
2651 case elfcpp::R_390_32:
2652 case elfcpp::R_390_20:
2653 case elfcpp::R_390_16:
2654 case elfcpp::R_390_12:
2655 case elfcpp::R_390_8:
2656 {
2657 // Make a PLT entry if necessary.
2658 if (gsym->needs_plt_entry())
2659 {
2660 target->make_plt_entry(symtab, layout, gsym);
2661 // Since this is not a PC-relative relocation, we may be
2662 // taking the address of a function. In that case we need to
2663 // set the entry in the dynamic symbol table to the address of
2664 // the PLT entry.
2665 if (gsym->is_from_dynobj() && !parameters->options().shared())
2666 gsym->set_needs_dynsym_value();
2667 }
2668 // Make a dynamic relocation if necessary.
2669 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2670 {
2671 if (!parameters->options().output_is_position_independent()
2672 && gsym->may_need_copy_reloc())
2673 {
2674 target->copy_reloc(symtab, layout, object,
2675 data_shndx, output_section, gsym, reloc);
2676 }
2677 else if (((size == 64 && r_type == elfcpp::R_390_64)
2678 || (size == 32 && r_type == elfcpp::R_390_32))
2679 && gsym->type() == elfcpp::STT_GNU_IFUNC
2680 && gsym->can_use_relative_reloc(false)
2681 && !gsym->is_from_dynobj()
2682 && !gsym->is_undefined()
2683 && !gsym->is_preemptible())
2684 {
2685 // Use an IRELATIVE reloc for a locally defined
2686 // STT_GNU_IFUNC symbol. This makes a function
2687 // address in a PIE executable match the address in a
2688 // shared library that it links against.
2689 Reloc_section* rela_dyn =
2690 target->rela_irelative_section(layout);
2691 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2692 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2693 output_section, object,
2694 data_shndx,
2695 reloc.get_r_offset(),
2696 reloc.get_r_addend());
2697 }
2698 else if (((size == 64 && r_type == elfcpp::R_390_64)
2699 || (size == 32 && r_type == elfcpp::R_390_32))
2700 && gsym->can_use_relative_reloc(false))
2701 {
2702 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2703 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2704 output_section, object,
2705 data_shndx,
2706 reloc.get_r_offset(),
2707 reloc.get_r_addend(), false);
2708 }
2709 else
2710 {
2711 check_non_pic(object, r_type);
2712 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2713 rela_dyn->add_global(gsym, r_type, output_section, object,
2714 data_shndx, reloc.get_r_offset(),
2715 reloc.get_r_addend());
2716 }
2717 }
2718 }
2719 break;
2720
2721 case elfcpp::R_390_PC12DBL:
2722 case elfcpp::R_390_PC16:
2723 case elfcpp::R_390_PC16DBL:
2724 case elfcpp::R_390_PC24DBL:
2725 case elfcpp::R_390_PC32:
2726 case elfcpp::R_390_PC32DBL:
2727 case elfcpp::R_390_PC64:
2728 {
2729 // Make a PLT entry if necessary.
2730 if (gsym->needs_plt_entry())
2731 {
2732 target->make_plt_entry(symtab, layout, gsym);
2733 // larl is often used to take address of a function. Aim the
2734 // symbol at the PLT entry.
2735 if (gsym->is_from_dynobj() && !parameters->options().shared())
2736 gsym->set_needs_dynsym_value();
2737 }
2738 // Make a dynamic relocation if necessary.
2739 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2740 {
2741 if (parameters->options().output_is_executable()
2742 && gsym->may_need_copy_reloc())
2743 {
2744 target->copy_reloc(symtab, layout, object,
2745 data_shndx, output_section, gsym, reloc);
2746 }
2747 else
2748 {
2749 check_non_pic(object, r_type);
2750 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2751 rela_dyn->add_global(gsym, r_type, output_section, object,
2752 data_shndx, reloc.get_r_offset(),
2753 reloc.get_r_addend());
2754 }
2755 }
2756 }
2757 break;
2758
2759 case elfcpp::R_390_PLT12DBL:
2760 case elfcpp::R_390_PLT16DBL:
2761 case elfcpp::R_390_PLT24DBL:
2762 case elfcpp::R_390_PLT32:
2763 case elfcpp::R_390_PLT32DBL:
2764 case elfcpp::R_390_PLT64:
2765 // If the symbol is fully resolved, this is just a PC32 reloc.
2766 // Otherwise we need a PLT entry.
2767 if (gsym->final_value_is_known())
2768 break;
2769 // If building a shared library, we can also skip the PLT entry
2770 // if the symbol is defined in the output file and is protected
2771 // or hidden.
2772 if (gsym->is_defined()
2773 && !gsym->is_from_dynobj()
2774 && !gsym->is_preemptible())
2775 break;
2776 target->make_plt_entry(symtab, layout, gsym);
2777 break;
2778
2779 case elfcpp::R_390_GOTPC:
2780 case elfcpp::R_390_GOTPCDBL:
2781 case elfcpp::R_390_GOTOFF16:
2782 case elfcpp::R_390_GOTOFF32:
2783 case elfcpp::R_390_GOTOFF64:
2784 case elfcpp::R_390_PLTOFF16:
2785 case elfcpp::R_390_PLTOFF32:
2786 case elfcpp::R_390_PLTOFF64:
2787 // We need a GOT section.
2788 target->got_section(symtab, layout);
2789 // For PLTOFF*, we also need a PLT entry (but only if the
2790 // symbol is not fully resolved).
2791 if ((r_type == elfcpp::R_390_PLTOFF16
2792 || r_type == elfcpp::R_390_PLTOFF32
2793 || r_type == elfcpp::R_390_PLTOFF64)
2794 && !gsym->final_value_is_known())
2795 target->make_plt_entry(symtab, layout, gsym);
2796 break;
2797
2798 case elfcpp::R_390_GOT12:
2799 case elfcpp::R_390_GOT16:
2800 case elfcpp::R_390_GOT20:
2801 case elfcpp::R_390_GOT32:
2802 case elfcpp::R_390_GOT64:
2803 case elfcpp::R_390_GOTENT:
2804 case elfcpp::R_390_GOTPLT12:
2805 case elfcpp::R_390_GOTPLT16:
2806 case elfcpp::R_390_GOTPLT20:
2807 case elfcpp::R_390_GOTPLT32:
2808 case elfcpp::R_390_GOTPLT64:
2809 case elfcpp::R_390_GOTPLTENT:
2810 {
2811 // The symbol requires a GOT entry.
2812 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2813
2814 if (gsym->final_value_is_known())
2815 {
2816 // For a STT_GNU_IFUNC symbol we want the PLT address.
2817 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2818 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2819 else
2820 got->add_global(gsym, GOT_TYPE_STANDARD);
2821 }
2822 else
2823 {
2824 // If this symbol is not fully resolved, we need to add a
2825 // dynamic relocation for it.
2826 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2827
2828 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2829 //
2830 // 1) The symbol may be defined in some other module.
2831 //
2832 // 2) We are building a shared library and this is a
2833 // protected symbol; using GLOB_DAT means that the dynamic
2834 // linker can use the address of the PLT in the main
2835 // executable when appropriate so that function address
2836 // comparisons work.
2837 //
2838 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2839 // code, again so that function address comparisons work.
2840 if (gsym->is_from_dynobj()
2841 || gsym->is_undefined()
2842 || gsym->is_preemptible()
2843 || (gsym->visibility() == elfcpp::STV_PROTECTED
2844 && parameters->options().shared())
2845 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2846 && parameters->options().output_is_position_independent()))
2847 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2848 elfcpp::R_390_GLOB_DAT);
2849 else
2850 {
2851 // For a STT_GNU_IFUNC symbol we want to write the PLT
2852 // offset into the GOT, so that function pointer
2853 // comparisons work correctly.
2854 bool is_new;
2855 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2856 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2857 else
2858 {
2859 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2860 // Tell the dynamic linker to use the PLT address
2861 // when resolving relocations.
2862 if (gsym->is_from_dynobj()
2863 && !parameters->options().shared())
2864 gsym->set_needs_dynsym_value();
2865 }
2866 if (is_new)
2867 {
2868 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2869 rela_dyn->add_global_relative(gsym,
2870 elfcpp::R_390_RELATIVE,
2871 got, got_off, 0, false);
2872 }
2873 }
2874 }
2875 }
2876 break;
2877
2878 case elfcpp::R_390_COPY:
2879 case elfcpp::R_390_GLOB_DAT:
2880 case elfcpp::R_390_JMP_SLOT:
2881 case elfcpp::R_390_RELATIVE:
2882 case elfcpp::R_390_IRELATIVE:
2883 // These are outstanding tls relocs, which are unexpected when linking
2884 case elfcpp::R_390_TLS_TPOFF:
2885 case elfcpp::R_390_TLS_DTPOFF:
2886 case elfcpp::R_390_TLS_DTPMOD:
2887 gold_error(_("%s: unexpected reloc %u in object file"),
2888 object->name().c_str(), r_type);
2889 break;
2890
2891 // These are initial tls relocs, which are expected for global()
2892 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2893 case elfcpp::R_390_TLS_GD64:
2894 case elfcpp::R_390_TLS_GDCALL:
2895 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2896 case elfcpp::R_390_TLS_LDM64:
2897 case elfcpp::R_390_TLS_LDO32:
2898 case elfcpp::R_390_TLS_LDO64:
2899 case elfcpp::R_390_TLS_LDCALL:
2900 case elfcpp::R_390_TLS_IE32: // Initial-exec
2901 case elfcpp::R_390_TLS_IE64:
2902 case elfcpp::R_390_TLS_IEENT:
2903 case elfcpp::R_390_TLS_GOTIE12:
2904 case elfcpp::R_390_TLS_GOTIE20:
2905 case elfcpp::R_390_TLS_GOTIE32:
2906 case elfcpp::R_390_TLS_GOTIE64:
2907 case elfcpp::R_390_TLS_LOAD:
2908 case elfcpp::R_390_TLS_LE32: // Local-exec
2909 case elfcpp::R_390_TLS_LE64:
2910 {
2911 // For the optimizable Initial-Exec model, we can treat undef symbols
2912 // as final when building an executable.
2913 const bool is_final = (gsym->final_value_is_known() ||
2914 ((r_type == elfcpp::R_390_TLS_IE32 ||
2915 r_type == elfcpp::R_390_TLS_IE64 ||
2916 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2917 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2918 gsym->is_undefined() &&
2919 parameters->options().output_is_executable()));
2920 const tls::Tls_optimization optimized_type
2921 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2922 switch (r_type)
2923 {
2924 case elfcpp::R_390_TLS_GD32: // General-dynamic
2925 case elfcpp::R_390_TLS_GD64:
2926 case elfcpp::R_390_TLS_GDCALL:
2927 if (optimized_type == tls::TLSOPT_NONE)
2928 {
2929 // Create a pair of GOT entries for the module index and
2930 // dtv-relative offset.
2931 Output_data_got<size, true>* got
2932 = target->got_section(symtab, layout);
2933 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2934 target->rela_dyn_section(layout),
2935 elfcpp::R_390_TLS_DTPMOD,
2936 elfcpp::R_390_TLS_DTPOFF);
2937 }
2938 else if (optimized_type == tls::TLSOPT_TO_IE)
2939 {
2940 // Create a GOT entry for the tp-relative offset.
2941 Output_data_got<size, true>* got
2942 = target->got_section(symtab, layout);
2943 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2944 target->rela_dyn_section(layout),
2945 elfcpp::R_390_TLS_TPOFF);
2946 }
2947 else if (optimized_type != tls::TLSOPT_TO_LE)
2948 unsupported_reloc_global(object, r_type, gsym);
2949 break;
2950
2951 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2952 case elfcpp::R_390_TLS_LDM64:
2953 case elfcpp::R_390_TLS_LDCALL:
2954 if (optimized_type == tls::TLSOPT_NONE)
2955 {
2956 // Create a GOT entry for the module index.
2957 target->got_mod_index_entry(symtab, layout, object);
2958 }
2959 else if (optimized_type != tls::TLSOPT_TO_LE)
2960 unsupported_reloc_global(object, r_type, gsym);
2961 break;
2962
2963 case elfcpp::R_390_TLS_LDO32:
2964 case elfcpp::R_390_TLS_LDO64:
2965 break;
2966
2967 case elfcpp::R_390_TLS_IE32: // Initial-exec
2968 case elfcpp::R_390_TLS_IE64:
2969 // These two involve an absolute address
2970 if (parameters->options().shared())
2971 {
2972 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2973 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2974 {
2975 // We need to create a dynamic relocation.
2976 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2977 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2978 output_section, object,
2979 data_shndx,
2980 reloc.get_r_offset(),
2981 reloc.get_r_addend(), false);
2982 }
2983 else
2984 {
2985 unsupported_reloc_global(object, r_type, gsym);
2986 }
2987 }
2988 // fall through
2989 case elfcpp::R_390_TLS_IEENT:
2990 case elfcpp::R_390_TLS_GOTIE12:
2991 case elfcpp::R_390_TLS_GOTIE20:
2992 case elfcpp::R_390_TLS_GOTIE32:
2993 case elfcpp::R_390_TLS_GOTIE64:
2994 case elfcpp::R_390_TLS_LOAD:
2995 layout->set_has_static_tls();
2996 if (optimized_type == tls::TLSOPT_NONE)
2997 {
2998 if (is_final && !parameters->options().shared())
2999 {
3000 // We're making an executable, and the symbol is local, but
3001 // we cannot optimize to LE. Make a const GOT entry instead.
3002 Output_data_got<size, true>* got
3003 = target->got_section(symtab, layout);
3004 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
3005 }
3006 else
3007 {
3008 // Create a GOT entry for the tp-relative offset.
3009 Output_data_got<size, true>* got
3010 = target->got_section(symtab, layout);
3011 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3012 target->rela_dyn_section(layout),
3013 elfcpp::R_390_TLS_TPOFF);
3014 }
3015 }
3016 else if (optimized_type != tls::TLSOPT_TO_LE)
3017 unsupported_reloc_global(object, r_type, gsym);
3018 break;
3019
3020 case elfcpp::R_390_TLS_LE32: // Local-exec
3021 case elfcpp::R_390_TLS_LE64:
3022 layout->set_has_static_tls();
3023 if (parameters->options().shared())
3024 {
3025 // We need to create a dynamic relocation.
3026 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
3027 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
3028 {
3029 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3030 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
3031 output_section, object,
3032 data_shndx, reloc.get_r_offset(),
3033 reloc.get_r_addend());
3034 }
3035 else
3036 {
3037 unsupported_reloc_global(object, r_type, gsym);
3038 }
3039 }
3040 break;
3041
3042 default:
3043 gold_unreachable();
3044 }
3045 }
3046 break;
3047
3048 default:
3049 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3050 object->name().c_str(), r_type,
3051 gsym->demangled_name().c_str());
3052 break;
3053 }
3054}
3055
3056
3057// Report an unsupported relocation against a global symbol.
3058
3059template<int size>
3060void
3061Target_s390<size>::Scan::unsupported_reloc_global(
3062 Sized_relobj_file<size, true>* object,
3063 unsigned int r_type,
3064 Symbol* gsym)
3065{
3066 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3067 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3068}
3069
3070// Returns true if this relocation type could be that of a function pointer.
3071template<int size>
3072inline bool
3073Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3074{
3075 switch (r_type)
3076 {
3077 case elfcpp::R_390_32:
3078 case elfcpp::R_390_64:
3079 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3080 case elfcpp::R_390_GOT12:
3081 case elfcpp::R_390_GOT16:
3082 case elfcpp::R_390_GOT20:
3083 case elfcpp::R_390_GOT32:
3084 case elfcpp::R_390_GOT64:
3085 case elfcpp::R_390_GOTENT:
3086 case elfcpp::R_390_GOTOFF16:
3087 case elfcpp::R_390_GOTOFF32:
3088 case elfcpp::R_390_GOTOFF64:
3089 return true;
3090 }
3091 return false;
3092}
3093
3094// For safe ICF, scan a relocation for a local symbol to check if it
3095// corresponds to a function pointer being taken. In that case mark
3096// the function whose pointer was taken as not foldable.
3097
3098template<int size>
3099inline bool
3100Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3101 Symbol_table* ,
3102 Layout* ,
3103 Target_s390<size>* ,
3104 Sized_relobj_file<size, true>* ,
3105 unsigned int ,
3106 Output_section* ,
3107 const elfcpp::Rela<size, true>& ,
3108 unsigned int r_type,
3109 const elfcpp::Sym<size, true>&)
3110{
3111 // When building a shared library, do not fold any local symbols.
3112 return (parameters->options().shared()
3113 || possible_function_pointer_reloc(r_type));
3114}
3115
3116// For safe ICF, scan a relocation for a global symbol to check if it
3117// corresponds to a function pointer being taken. In that case mark
3118// the function whose pointer was taken as not foldable.
3119
3120template<int size>
3121inline bool
3122Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3123 Symbol_table*,
3124 Layout* ,
3125 Target_s390<size>* ,
3126 Sized_relobj_file<size, true>* ,
3127 unsigned int ,
3128 Output_section* ,
3129 const elfcpp::Rela<size, true>& ,
3130 unsigned int r_type,
3131 Symbol* gsym)
3132{
3133 // When building a shared library, do not fold symbols whose visibility
3134 // is hidden, internal or protected.
3135 return ((parameters->options().shared()
3136 && (gsym->visibility() == elfcpp::STV_INTERNAL
3137 || gsym->visibility() == elfcpp::STV_PROTECTED
3138 || gsym->visibility() == elfcpp::STV_HIDDEN))
3139 || possible_function_pointer_reloc(r_type));
3140}
3141
3142template<int size>
3143void
3144Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3145 Layout* layout,
3146 Sized_relobj_file<size, true>* object,
3147 unsigned int data_shndx,
3148 unsigned int sh_type,
3149 const unsigned char* prelocs,
3150 size_t reloc_count,
3151 Output_section* output_section,
3152 bool needs_special_offset_handling,
3153 size_t local_symbol_count,
3154 const unsigned char* plocal_symbols)
3155{
4d625b70
CC
3156 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3157 Classify_reloc;
e79a4bad
MK
3158
3159 if (sh_type == elfcpp::SHT_REL)
3160 return;
3161
4d625b70 3162 gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
3163 symtab,
3164 layout,
3165 this,
3166 object,
3167 data_shndx,
3168 prelocs,
3169 reloc_count,
3170 output_section,
3171 needs_special_offset_handling,
3172 local_symbol_count,
3173 plocal_symbols);
3174}
3175
3176// Perform a relocation.
3177
3178template<int size>
3179inline bool
3180Target_s390<size>::Relocate::relocate(
3181 const Relocate_info<size, true>* relinfo,
91a65d2f 3182 unsigned int,
e79a4bad
MK
3183 Target_s390<size>* target,
3184 Output_section*,
3185 size_t relnum,
91a65d2f 3186 const unsigned char* preloc,
e79a4bad
MK
3187 const Sized_symbol<size>* gsym,
3188 const Symbol_value<size>* psymval,
3189 unsigned char* view,
3190 typename elfcpp::Elf_types<size>::Elf_Addr address,
3191 section_size_type view_size)
3192{
3193 if (view == NULL)
3194 return true;
3195
91a65d2f
AM
3196 const elfcpp::Rela<size, true> rela(preloc);
3197 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
e79a4bad
MK
3198 const Sized_relobj_file<size, true>* object = relinfo->object;
3199
3200 // Pick the value to use for symbols defined in the PLT.
3201 Symbol_value<size> symval;
3202 if (gsym != NULL
3203 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3204 {
3205 symval.set_output_value(target->plt_address_for_global(gsym));
3206 psymval = &symval;
3207 }
3208 else if (gsym == NULL && psymval->is_ifunc_symbol())
3209 {
3210 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3211 if (object->local_has_plt_offset(r_sym))
3212 {
3213 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3214 psymval = &symval;
3215 }
3216 }
3217
3218 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3219
3220 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3221
3222 switch (r_type)
3223 {
3224 case elfcpp::R_390_PLT64:
3225 case elfcpp::R_390_PLT32:
3226 case elfcpp::R_390_PLT32DBL:
3227 case elfcpp::R_390_PLT24DBL:
3228 case elfcpp::R_390_PLT16DBL:
3229 case elfcpp::R_390_PLT12DBL:
3230 gold_assert(gsym == NULL
3231 || gsym->has_plt_offset()
3232 || gsym->final_value_is_known()
3233 || (gsym->is_defined()
3234 && !gsym->is_from_dynobj()
3235 && !gsym->is_preemptible()));
3236 // fallthru
3237 case elfcpp::R_390_8:
3238 case elfcpp::R_390_12:
3239 case elfcpp::R_390_16:
3240 case elfcpp::R_390_20:
3241 case elfcpp::R_390_32:
3242 case elfcpp::R_390_64:
3243 case elfcpp::R_390_PC16:
3244 case elfcpp::R_390_PC32:
3245 case elfcpp::R_390_PC64:
3246 case elfcpp::R_390_PC32DBL:
3247 case elfcpp::R_390_PC24DBL:
3248 case elfcpp::R_390_PC16DBL:
3249 case elfcpp::R_390_PC12DBL:
3250 value = psymval->value(object, addend);
3251 break;
3252
3253 case elfcpp::R_390_GOTPC:
3254 case elfcpp::R_390_GOTPCDBL:
3255 gold_assert(gsym != NULL);
3256 value = target->got_address() + addend;
3257 break;
3258
3259 case elfcpp::R_390_PLTOFF64:
3260 case elfcpp::R_390_PLTOFF32:
3261 case elfcpp::R_390_PLTOFF16:
3262 gold_assert(gsym == NULL
3263 || gsym->has_plt_offset()
3264 || gsym->final_value_is_known());
3265 // fallthru
3266 case elfcpp::R_390_GOTOFF64:
3267 case elfcpp::R_390_GOTOFF32:
3268 case elfcpp::R_390_GOTOFF16:
3269 value = (psymval->value(object, addend)
3270 - target->got_address());
3271 break;
3272
3273 case elfcpp::R_390_GOT12:
3274 case elfcpp::R_390_GOT16:
3275 case elfcpp::R_390_GOT20:
3276 case elfcpp::R_390_GOT32:
3277 case elfcpp::R_390_GOT64:
3278 case elfcpp::R_390_GOTENT:
3279 case elfcpp::R_390_GOTPLT12:
3280 case elfcpp::R_390_GOTPLT16:
3281 case elfcpp::R_390_GOTPLT20:
3282 case elfcpp::R_390_GOTPLT32:
3283 case elfcpp::R_390_GOTPLT64:
3284 case elfcpp::R_390_GOTPLTENT:
3285 {
3286 unsigned int got_offset = 0;
3287 if (gsym != NULL)
3288 {
3289 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3290 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3291 }
3292 else
3293 {
3294 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3295 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3296 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3297 }
3298 value = got_offset + target->got_main_offset() + addend;
3299 }
3300 break;
3301
3302 // These are initial tls relocs, which are expected when linking
3303 case elfcpp::R_390_TLS_LOAD:
3304 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3305 case elfcpp::R_390_TLS_GD32:
3306 case elfcpp::R_390_TLS_GD64:
3307 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3308 case elfcpp::R_390_TLS_LDM32:
3309 case elfcpp::R_390_TLS_LDM64:
3310 case elfcpp::R_390_TLS_LDO32:
3311 case elfcpp::R_390_TLS_LDO64:
3312 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3313 case elfcpp::R_390_TLS_GOTIE20:
3314 case elfcpp::R_390_TLS_GOTIE32:
3315 case elfcpp::R_390_TLS_GOTIE64:
3316 case elfcpp::R_390_TLS_IE32:
3317 case elfcpp::R_390_TLS_IE64:
3318 case elfcpp::R_390_TLS_IEENT:
3319 case elfcpp::R_390_TLS_LE32: // Local-exec
3320 case elfcpp::R_390_TLS_LE64:
3321 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3322 view, view_size);
3323 break;
3324
3325 default:
3326 break;
3327 }
3328
3329 typename S390_relocate_functions<size>::Status status
3330 = S390_relocate_functions<size>::STATUS_OK;
3331
3332 switch (r_type)
3333 {
3334 case elfcpp::R_390_NONE:
3335 case elfcpp::R_390_GNU_VTINHERIT:
3336 case elfcpp::R_390_GNU_VTENTRY:
3337 case elfcpp::R_390_TLS_GDCALL:
3338 case elfcpp::R_390_TLS_LDCALL:
3339 case elfcpp::R_390_TLS_LOAD:
3340 break;
3341
3342 case elfcpp::R_390_64:
3343 case elfcpp::R_390_GOT64:
3344 case elfcpp::R_390_GOTPLT64:
3345 case elfcpp::R_390_PLTOFF64:
3346 case elfcpp::R_390_GOTOFF64:
3347 case elfcpp::R_390_TLS_GD64:
3348 case elfcpp::R_390_TLS_LDM64:
3349 case elfcpp::R_390_TLS_LDO64:
3350 case elfcpp::R_390_TLS_GOTIE64:
3351 case elfcpp::R_390_TLS_IE64:
3352 case elfcpp::R_390_TLS_LE64:
3353 Relocate_functions<size, true>::rela64(view, value, 0);
3354 break;
3355
3356 case elfcpp::R_390_32:
3357 case elfcpp::R_390_GOT32:
3358 case elfcpp::R_390_GOTPLT32:
3359 case elfcpp::R_390_PLTOFF32:
3360 case elfcpp::R_390_GOTOFF32:
3361 case elfcpp::R_390_TLS_GD32:
3362 case elfcpp::R_390_TLS_LDM32:
3363 case elfcpp::R_390_TLS_LDO32:
3364 case elfcpp::R_390_TLS_GOTIE32:
3365 case elfcpp::R_390_TLS_IE32:
3366 case elfcpp::R_390_TLS_LE32:
3367 Relocate_functions<size, true>::rela32(view, value, 0);
3368 break;
3369
3370 case elfcpp::R_390_20:
3371 case elfcpp::R_390_GOT20:
3372 case elfcpp::R_390_GOTPLT20:
3373 case elfcpp::R_390_TLS_GOTIE20:
3374 status = S390_relocate_functions<size>::rela20(view, value);
3375 break;
3376
3377 case elfcpp::R_390_16:
3378 case elfcpp::R_390_GOT16:
3379 case elfcpp::R_390_GOTPLT16:
3380 case elfcpp::R_390_PLTOFF16:
3381 case elfcpp::R_390_GOTOFF16:
3382 status = S390_relocate_functions<size>::rela16(view, value);
3383 break;
3384
3385 case elfcpp::R_390_12:
3386 case elfcpp::R_390_GOT12:
3387 case elfcpp::R_390_GOTPLT12:
3388 case elfcpp::R_390_TLS_GOTIE12:
3389 status = S390_relocate_functions<size>::rela12(view, value);
3390 break;
3391
3392 case elfcpp::R_390_8:
3393 Relocate_functions<size, true>::rela8(view, value, 0);
3394 break;
3395
3396 case elfcpp::R_390_PC16:
3397 Relocate_functions<size, true>::pcrela16(view, value, 0,
3398 address);
3399 break;
3400
3401 case elfcpp::R_390_PLT64:
3402 case elfcpp::R_390_PC64:
3403 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3404 break;
3405
3406 case elfcpp::R_390_PLT32:
3407 case elfcpp::R_390_PC32:
3408 case elfcpp::R_390_GOTPC:
3409 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3410 break;
3411
3412 case elfcpp::R_390_PLT32DBL:
3413 case elfcpp::R_390_PC32DBL:
3414 case elfcpp::R_390_GOTPCDBL:
3415 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3416 break;
3417
3418 case elfcpp::R_390_PLT24DBL:
3419 case elfcpp::R_390_PC24DBL:
3420 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3421 break;
3422
3423 case elfcpp::R_390_PLT16DBL:
3424 case elfcpp::R_390_PC16DBL:
3425 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3426 break;
3427
3428 case elfcpp::R_390_PLT12DBL:
3429 case elfcpp::R_390_PC12DBL:
3430 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3431 break;
3432
3433 case elfcpp::R_390_GOTENT:
3434 case elfcpp::R_390_GOTPLTENT:
3435 case elfcpp::R_390_TLS_IEENT:
3436 value += target->got_address();
3437 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3438 break;
3439
3440 case elfcpp::R_390_COPY:
3441 case elfcpp::R_390_GLOB_DAT:
3442 case elfcpp::R_390_JMP_SLOT:
3443 case elfcpp::R_390_RELATIVE:
3444 case elfcpp::R_390_IRELATIVE:
3445 // These are outstanding tls relocs, which are unexpected when linking
3446 case elfcpp::R_390_TLS_TPOFF:
3447 case elfcpp::R_390_TLS_DTPMOD:
3448 case elfcpp::R_390_TLS_DTPOFF:
3449 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3450 _("unexpected reloc %u in object file"),
3451 r_type);
3452 break;
3453
3454 default:
3455 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3456 _("unsupported reloc %u"),
3457 r_type);
3458 break;
3459 }
3460
3461 if (status != S390_relocate_functions<size>::STATUS_OK)
3462 {
3463 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3464 _("relocation overflow"));
3465 }
3466
3467 return true;
3468}
3469
3470// Perform a TLS relocation.
3471
3472template<int size>
3473inline typename elfcpp::Elf_types<size>::Elf_Addr
3474Target_s390<size>::Relocate::relocate_tls(
3475 const Relocate_info<size, true>* relinfo,
3476 Target_s390<size>* target,
3477 size_t relnum,
3478 const elfcpp::Rela<size, true>& rela,
3479 unsigned int r_type,
3480 const Sized_symbol<size>* gsym,
3481 const Symbol_value<size>* psymval,
3482 unsigned char* view,
3483 section_size_type view_size)
3484{
3485 Output_segment* tls_segment = relinfo->layout->tls_segment();
3486
3487 const Sized_relobj_file<size, true>* object = relinfo->object;
3488 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3489 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3490 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3491
3492 typename elfcpp::Elf_types<size>::Elf_Addr value
3493 = psymval->value(relinfo->object, addend);
3494
3495 const bool is_final = (gsym == NULL
3496 ? !parameters->options().shared()
3497 : gsym->final_value_is_known());
3498 tls::Tls_optimization optimized_type
3499 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3500 switch (r_type)
3501 {
3502 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3503 if (optimized_type == tls::TLSOPT_TO_LE)
3504 {
3505 if (tls_segment == NULL)
3506 {
3507 gold_assert(parameters->errors()->error_count() > 0
3508 || issue_undefined_symbol_error(gsym));
3509 return 0;
3510 }
3511 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3512 break;
3513 }
3514 else
3515 {
3516 if (optimized_type == tls::TLSOPT_TO_IE)
3517 {
3518 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3519 break;
3520 }
3521 else if (optimized_type == tls::TLSOPT_NONE)
3522 {
3523 break;
3524 }
3525 }
3526 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3527 _("unsupported reloc %u"), r_type);
3528 break;
3529
3530 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3531 case elfcpp::R_390_TLS_GD64:
3532 if (optimized_type == tls::TLSOPT_TO_LE)
3533 {
3534 if (tls_segment == NULL)
3535 {
3536 gold_assert(parameters->errors()->error_count() > 0
3537 || issue_undefined_symbol_error(gsym));
3538 return 0;
3539 }
3540 return value - tls_segment->memsz();
3541 }
3542 else
3543 {
3544 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3545 ? GOT_TYPE_TLS_OFFSET
3546 : GOT_TYPE_TLS_PAIR);
3547 if (gsym != NULL)
3548 {
3549 gold_assert(gsym->has_got_offset(got_type));
3550 return (gsym->got_offset(got_type)
3551 + target->got_main_offset()
3552 + addend);
3553 }
3554 else
3555 {
3556 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3557 gold_assert(object->local_has_got_offset(r_sym, got_type));
3558 return (object->local_got_offset(r_sym, got_type)
3559 + target->got_main_offset()
3560 + addend);
3561 }
3562 }
3563 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3564 _("unsupported reloc %u"), r_type);
3565 break;
3566
3567 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3568 // This is a marker relocation. If the sequence is being turned to LE,
3569 // we modify the instruction, otherwise the instruction is untouched.
3570 if (optimized_type == tls::TLSOPT_TO_LE)
3571 {
3572 if (tls_segment == NULL)
3573 {
3574 gold_assert(parameters->errors()->error_count() > 0
3575 || issue_undefined_symbol_error(gsym));
3576 return 0;
3577 }
3578 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3579 break;
3580 }
3581 else if (optimized_type == tls::TLSOPT_NONE)
3582 {
3583 break;
3584 }
3585 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3586 _("unsupported reloc %u"), r_type);
3587 break;
3588
3589 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3590 case elfcpp::R_390_TLS_LDM64:
3591 if (optimized_type == tls::TLSOPT_TO_LE)
3592 {
3593 if (tls_segment == NULL)
3594 {
3595 gold_assert(parameters->errors()->error_count() > 0
3596 || issue_undefined_symbol_error(gsym));
3597 return 0;
3598 }
3599 // Doesn't matter what we fill it with - it's going to be unused.
3600 return 0;
3601 }
3602 else if (optimized_type == tls::TLSOPT_NONE)
3603 {
3604 // Relocate the field with the offset of the GOT entry for
3605 // the module index.
3606 return (target->got_mod_index_entry(NULL, NULL, NULL)
3607 + addend
3608 + target->got_main_offset());
3609 }
3610 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3611 _("unsupported reloc %u"), r_type);
3612 break;
3613
3614 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3615 case elfcpp::R_390_TLS_LDO64:
3616 // This relocation type is used in debugging information.
3617 // In that case we need to not optimize the value. If the
3618 // section is not allocatable, then we assume we should not
3619 // optimize this reloc.
3620 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3621 {
3622 if (tls_segment == NULL)
3623 {
3624 gold_assert(parameters->errors()->error_count() > 0
3625 || issue_undefined_symbol_error(gsym));
3626 return 0;
3627 }
3628 value -= tls_segment->memsz();
3629 }
3630 return value;
3631
3632 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3633 // This is a marker relocation. If the sequence is being turned to LE,
3634 // we modify the instruction, otherwise the instruction is untouched.
3635 if (gsym != NULL
3636 && gsym->is_undefined()
3637 && parameters->options().output_is_executable())
3638 {
3639 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3640 rela, view,
3641 view_size);
3642 break;
3643 }
3644 else if (optimized_type == tls::TLSOPT_TO_LE)
3645 {
3646 if (tls_segment == NULL)
3647 {
3648 gold_assert(parameters->errors()->error_count() > 0
3649 || issue_undefined_symbol_error(gsym));
3650 return 0;
3651 }
3652 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3653 rela, view,
3654 view_size);
3655 break;
3656 }
3657 else if (optimized_type == tls::TLSOPT_NONE)
3658 {
3659 break;
3660 }
3661 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3662 _("unsupported reloc type %u"),
3663 r_type);
3664 break;
3665
3666 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3667 case elfcpp::R_390_TLS_GOTIE20:
3668 case elfcpp::R_390_TLS_IEENT:
3669 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3670 case elfcpp::R_390_TLS_GOTIE64:
3671 case elfcpp::R_390_TLS_IE32:
3672 case elfcpp::R_390_TLS_IE64:
3673 if (gsym != NULL
3674 && gsym->is_undefined()
3675 && parameters->options().output_is_executable()
3676 // These three cannot be optimized to LE, no matter what
3677 && r_type != elfcpp::R_390_TLS_GOTIE12
3678 && r_type != elfcpp::R_390_TLS_GOTIE20
3679 && r_type != elfcpp::R_390_TLS_IEENT)
3680 {
3681 return value;
3682 }
3683 else if (optimized_type == tls::TLSOPT_TO_LE)
3684 {
3685 if (tls_segment == NULL)
3686 {
3687 gold_assert(parameters->errors()->error_count() > 0
3688 || issue_undefined_symbol_error(gsym));
3689 return 0;
3690 }
3691 return value - tls_segment->memsz();
3692 }
3693 else if (optimized_type == tls::TLSOPT_NONE)
3694 {
3695 // Relocate the field with the offset of the GOT entry for
3696 // the tp-relative offset of the symbol.
3697 unsigned int got_offset;
3698 if (gsym != NULL)
3699 {
3700 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3701 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3702 }
3703 else
3704 {
3705 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3706 gold_assert(object->local_has_got_offset(r_sym,
3707 GOT_TYPE_TLS_OFFSET));
3708 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3709 }
3710 got_offset += target->got_main_offset();
3711 if (r_type == elfcpp::R_390_TLS_IE32
3712 || r_type == elfcpp::R_390_TLS_IE64)
3713 return target->got_address() + got_offset + addend;
3714 else
3715 return got_offset + addend;
3716 }
3717 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3718 _("unsupported reloc type %u"),
3719 r_type);
3720 break;
3721
3722 case elfcpp::R_390_TLS_LE32: // Local-exec
3723 case elfcpp::R_390_TLS_LE64:
3724 if (tls_segment == NULL)
3725 {
3726 gold_assert(parameters->errors()->error_count() > 0
3727 || issue_undefined_symbol_error(gsym));
3728 return 0;
3729 }
3730 return value - tls_segment->memsz();
3731 }
3732 return 0;
3733}
3734
3735// Do a relocation in which we convert a TLS General-Dynamic to an
3736// Initial-Exec.
3737
3738template<int size>
3739inline void
3740Target_s390<size>::Relocate::tls_gd_to_ie(
3741 const Relocate_info<size, true>* relinfo,
3742 size_t relnum,
3743 const elfcpp::Rela<size, true>& rela,
3744 unsigned char* view,
3745 section_size_type view_size)
3746{
3747 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3748 if (view[0] == 0x4d)
3749 {
3750 // bas, don't care about details
3751 // Change to l %r2, 0(%r2, %r12)
3752 view[0] = 0x58;
3753 view[1] = 0x22;
3754 view[2] = 0xc0;
3755 view[3] = 0x00;
3756 return;
3757 }
3758 else if (view[0] == 0xc0)
3759 {
3760 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3761 // brasl %r14, __tls_get_offset@plt
3762 if (view[1] == 0xe5)
3763 {
3764 // Change to l/lg %r2, 0(%r2, %r12)
3765 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3766 if (size == 32)
3767 {
3768 // l
3769 view[0] = 0x58;
3770 view[1] = 0x22;
3771 view[2] = 0xc0;
3772 view[3] = 0x00;
3773 // nop
3774 view[4] = 0x07;
3775 view[5] = 0x07;
3776 }
3777 else
3778 {
3779 // lg
3780 view[0] = 0xe3;
3781 view[1] = 0x22;
3782 view[2] = 0xc0;
3783 view[3] = 0;
3784 view[4] = 0;
3785 view[5] = 0x04;
3786 }
3787 return;
3788 }
3789 }
3790 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3791 _("unsupported op for GD to IE"));
3792}
3793
3794// Do a relocation in which we convert a TLS General-Dynamic to a
3795// Local-Exec.
3796
3797template<int size>
3798inline void
3799Target_s390<size>::Relocate::tls_gd_to_le(
3800 const Relocate_info<size, true>* relinfo,
3801 size_t relnum,
3802 const elfcpp::Rela<size, true>& rela,
3803 unsigned char* view,
3804 section_size_type view_size)
3805{
3806 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3807 if (view[0] == 0x0d)
3808 {
3809 // basr, change to nop
3810 view[0] = 0x07;
3811 view[1] = 0x07;
3812 }
3813 else if (view[0] == 0x4d)
3814 {
3815 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3816 // bas, don't care about details, change to nop
3817 view[0] = 0x47;
3818 view[1] = 0;
3819 view[2] = 0;
3820 view[3] = 0;
3821 return;
3822 }
3823 else if (view[0] == 0xc0)
3824 {
3825 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3826 // brasl %r14, __tls_get_offset@plt
3827 if (view[1] == 0xe5)
3828 {
3829 // Change to nop jump. There was a PLT32DBL reloc at the last
3830 // 4 bytes, overwrite its result.
3831 view[1] = 0x04;
3832 view[2] = 0;
3833 view[3] = 0;
3834 view[4] = 0;
3835 view[5] = 0;
3836 return;
3837 }
3838 }
3839 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3840 _("unsupported op for GD to LE"));
3841}
3842
3843template<int size>
3844inline void
3845Target_s390<size>::Relocate::tls_ld_to_le(
3846 const Relocate_info<size, true>* relinfo,
3847 size_t relnum,
3848 const elfcpp::Rela<size, true>& rela,
3849 unsigned char* view,
3850 section_size_type view_size)
3851{
3852 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3853
3854 if (view[0] == 0x0d)
3855 {
3856 // basr, change to nop
3857 view[0] = 0x07;
3858 view[1] = 0x07;
3859 }
3860 else if (view[0] == 0x4d)
3861 {
3862 // bas, don't care about details, change to nop
3863 view[0] = 0x47;
3864 view[1] = 0;
3865 view[2] = 0;
3866 view[3] = 0;
3867 return;
3868 }
3869 else if (view[0] == 0xc0)
3870 {
3871 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3872 // brasl %r14, __tls_get_offset@plt
3873 if (view[1] == 0xe5)
3874 {
3875 // Change to nop jump. There was a PLT32DBL reloc at the last
3876 // 4 bytes, overwrite its result.
3877 view[1] = 0x04;
3878 view[2] = 0;
3879 view[3] = 0;
3880 view[4] = 0;
3881 view[5] = 0;
3882 return;
3883 }
3884 }
3885 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3886 _("unsupported op for LD to LE"));
3887}
3888
3889// Do a relocation in which we convert a TLS Initial-Exec to a
3890// Local-Exec.
3891
3892template<int size>
3893inline void
3894Target_s390<size>::Relocate::tls_ie_to_le(
3895 const Relocate_info<size, true>* relinfo,
3896 size_t relnum,
3897 const elfcpp::Rela<size, true>& rela,
3898 unsigned char* view,
3899 section_size_type view_size)
3900{
3901 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3902
3903 if (view[0] == 0x58)
3904 {
3905 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3906 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3907 goto err;
3908 int rx = view[1] >> 4 & 0xf;
3909 int ry = view[1] & 0xf;
3910 int rz = view[2] >> 4 & 0xf;
3911 if (rz == 0)
3912 {
3913 }
3914 else if (ry == 0)
3915 {
3916 ry = rz;
3917 }
3918 else if (rz == 12)
3919 {
3920 }
3921 else if (ry == 12)
3922 {
3923 ry = rz;
3924 }
3925 else
3926 goto err;
3927 // to lr %rX, $rY
3928 view[0] = 0x18;
3929 view[1] = rx << 4 | ry;
3930 // and insert a nop
3931 view[2] = 0x07;
3932 view[3] = 0x00;
3933 }
3934 else if (view[0] == 0xe3)
3935 {
3936 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3937 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3938 if ((view[2] & 0x0f) != 0 ||
3939 view[3] != 0 ||
3940 view[4] != 0 ||
3941 view[5] != 0x04)
3942 goto err;
3943 int rx = view[1] >> 4 & 0xf;
3944 int ry = view[1] & 0xf;
3945 int rz = view[2] >> 4 & 0xf;
3946 if (rz == 0)
3947 {
3948 }
3949 else if (ry == 0)
3950 {
3951 ry = rz;
3952 }
3953 else if (rz == 12)
3954 {
3955 }
3956 else if (ry == 12)
3957 {
3958 ry = rz;
3959 }
3960 else
3961 goto err;
3962 // to sllg %rX, $rY, 0
3963 view[0] = 0xeb;
3964 view[1] = rx << 4 | ry;
3965 view[2] = 0x00;
3966 view[3] = 0x00;
3967 view[4] = 0x00;
3968 view[5] = 0x0d;
3969 }
3970 else
3971 {
3972err:
3973 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3974 _("unsupported op for IE to LE"));
3975 }
3976}
3977
3978// Scan relocations for a section.
3979
3980template<int size>
3981void
3982Target_s390<size>::scan_relocs(Symbol_table* symtab,
3983 Layout* layout,
3984 Sized_relobj_file<size, true>* object,
3985 unsigned int data_shndx,
3986 unsigned int sh_type,
3987 const unsigned char* prelocs,
3988 size_t reloc_count,
3989 Output_section* output_section,
3990 bool needs_special_offset_handling,
3991 size_t local_symbol_count,
3992 const unsigned char* plocal_symbols)
3993{
4d625b70
CC
3994 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3995 Classify_reloc;
3996
e79a4bad
MK
3997 if (sh_type == elfcpp::SHT_REL)
3998 {
3999 gold_error(_("%s: unsupported REL reloc section"),
4000 object->name().c_str());
4001 return;
4002 }
4003
4d625b70 4004 gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
4005 symtab,
4006 layout,
4007 this,
4008 object,
4009 data_shndx,
4010 prelocs,
4011 reloc_count,
4012 output_section,
4013 needs_special_offset_handling,
4014 local_symbol_count,
4015 plocal_symbols);
4016}
4017
4018// Finalize the sections.
4019
4020template<int size>
4021void
4022Target_s390<size>::do_finalize_sections(
4023 Layout* layout,
4024 const Input_objects*,
4025 Symbol_table* symtab)
4026{
4027 const Reloc_section* rel_plt = (this->plt_ == NULL
4028 ? NULL
4029 : this->plt_->rela_plt());
4030 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4031 this->rela_dyn_, true, size == 32);
4032
4033 this->layout_ = layout;
4034
4035 // Emit any relocs we saved in an attempt to avoid generating COPY
4036 // relocs.
4037 if (this->copy_relocs_.any_saved_relocs())
4038 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4039
4040 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4041 // the .got section.
4042 Symbol* sym = this->global_offset_table_;
4043 if (sym != NULL)
4044 {
4045 uint64_t data_size = this->got_->current_data_size();
4046 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4047 }
4048
4049 if (parameters->doing_static_link()
4050 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4051 {
4052 // If linking statically, make sure that the __rela_iplt symbols
4053 // were defined if necessary, even if we didn't create a PLT.
4054 static const Define_symbol_in_segment syms[] =
4055 {
4056 {
4057 "__rela_iplt_start", // name
4058 elfcpp::PT_LOAD, // segment_type
4059 elfcpp::PF_W, // segment_flags_set
4060 elfcpp::PF(0), // segment_flags_clear
4061 0, // value
4062 0, // size
4063 elfcpp::STT_NOTYPE, // type
4064 elfcpp::STB_GLOBAL, // binding
4065 elfcpp::STV_HIDDEN, // visibility
4066 0, // nonvis
4067 Symbol::SEGMENT_START, // offset_from_base
4068 true // only_if_ref
4069 },
4070 {
4071 "__rela_iplt_end", // name
4072 elfcpp::PT_LOAD, // segment_type
4073 elfcpp::PF_W, // segment_flags_set
4074 elfcpp::PF(0), // segment_flags_clear
4075 0, // value
4076 0, // size
4077 elfcpp::STT_NOTYPE, // type
4078 elfcpp::STB_GLOBAL, // binding
4079 elfcpp::STV_HIDDEN, // visibility
4080 0, // nonvis
4081 Symbol::SEGMENT_START, // offset_from_base
4082 true // only_if_ref
4083 }
4084 };
4085
4086 symtab->define_symbols(layout, 2, syms,
4087 layout->script_options()->saw_sections_clause());
4088 }
4089}
4090
4d625b70 4091// Scan the relocs during a relocatable link.
e79a4bad
MK
4092
4093template<int size>
4d625b70
CC
4094void
4095Target_s390<size>::scan_relocatable_relocs(
4096 Symbol_table* symtab,
4097 Layout* layout,
4098 Sized_relobj_file<size, true>* object,
4099 unsigned int data_shndx,
4100 unsigned int sh_type,
4101 const unsigned char* prelocs,
4102 size_t reloc_count,
4103 Output_section* output_section,
4104 bool needs_special_offset_handling,
4105 size_t local_symbol_count,
4106 const unsigned char* plocal_symbols,
4107 Relocatable_relocs* rr)
e79a4bad 4108{
4d625b70
CC
4109 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4110 Classify_reloc;
4111 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4112 Scan_relocatable_relocs;
e79a4bad 4113
4d625b70 4114 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4115
4d625b70
CC
4116 gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4117 symtab,
4118 layout,
4119 object,
4120 data_shndx,
4121 prelocs,
4122 reloc_count,
4123 output_section,
4124 needs_special_offset_handling,
4125 local_symbol_count,
4126 plocal_symbols,
4127 rr);
e79a4bad
MK
4128}
4129
4d625b70 4130// Scan the relocs for --emit-relocs.
e79a4bad
MK
4131
4132template<int size>
4133void
4d625b70 4134Target_s390<size>::emit_relocs_scan(
e79a4bad
MK
4135 Symbol_table* symtab,
4136 Layout* layout,
4137 Sized_relobj_file<size, true>* object,
4138 unsigned int data_shndx,
4139 unsigned int sh_type,
4140 const unsigned char* prelocs,
4141 size_t reloc_count,
4142 Output_section* output_section,
4143 bool needs_special_offset_handling,
4144 size_t local_symbol_count,
4d625b70 4145 const unsigned char* plocal_syms,
e79a4bad
MK
4146 Relocatable_relocs* rr)
4147{
4d625b70
CC
4148 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4149 Classify_reloc;
4150 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4151 Emit_relocs_strategy;
e79a4bad 4152
4d625b70 4153 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4154
4d625b70 4155 gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
e79a4bad
MK
4156 symtab,
4157 layout,
4158 object,
4159 data_shndx,
4160 prelocs,
4161 reloc_count,
4162 output_section,
4163 needs_special_offset_handling,
4164 local_symbol_count,
4d625b70 4165 plocal_syms,
e79a4bad
MK
4166 rr);
4167}
4168
4169// Relocate a section during a relocatable link.
4170
4171template<int size>
4172void
4173Target_s390<size>::relocate_relocs(
4174 const Relocate_info<size, true>* relinfo,
4175 unsigned int sh_type,
4176 const unsigned char* prelocs,
4177 size_t reloc_count,
4178 Output_section* output_section,
4179 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
4180 unsigned char* view,
4181 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4182 section_size_type view_size,
4183 unsigned char* reloc_view,
4184 section_size_type reloc_view_size)
4185{
4d625b70
CC
4186 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4187 Classify_reloc;
4188
e79a4bad
MK
4189 gold_assert(sh_type == elfcpp::SHT_RELA);
4190
4d625b70 4191 gold::relocate_relocs<size, true, Classify_reloc>(
e79a4bad
MK
4192 relinfo,
4193 prelocs,
4194 reloc_count,
4195 output_section,
4196 offset_in_output_section,
e79a4bad
MK
4197 view,
4198 view_address,
4199 view_size,
4200 reloc_view,
4201 reloc_view_size);
4202}
4203
4204// Return the offset to use for the GOT_INDX'th got entry which is
4205// for a local tls symbol specified by OBJECT, SYMNDX.
4206template<int size>
4207int64_t
4208Target_s390<size>::do_tls_offset_for_local(
4209 const Relobj*,
4210 unsigned int,
4211 unsigned int) const
4212{
4213 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4214 // couldn't be optimised to LE.
4215 Output_segment* tls_segment = layout_->tls_segment();
4216 return -tls_segment->memsz();
4217}
4218
4219// Return the offset to use for the GOT_INDX'th got entry which is
4220// for global tls symbol GSYM.
4221template<int size>
4222int64_t
4223Target_s390<size>::do_tls_offset_for_global(
4224 Symbol*,
4225 unsigned int) const
4226{
4227 Output_segment* tls_segment = layout_->tls_segment();
4228 return -tls_segment->memsz();
4229}
4230
4231// Return the value to use for a dynamic which requires special
4232// treatment. This is how we support equality comparisons of function
4233// pointers across shared library boundaries, as described in the
4234// processor specific ABI supplement.
4235
4236template<int size>
4237uint64_t
4238Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4239{
4240 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4241 return this->plt_address_for_global(gsym);
4242}
4243
4244// Return a string used to fill a code section with nops to take up
4245// the specified length.
4246
4247template<int size>
4248std::string
4249Target_s390<size>::do_code_fill(section_size_type length) const
4250{
4251 if (length & 1)
4252 gold_warning(_("S/390 code fill of odd length requested"));
4253 return std::string(length, static_cast<char>(0x07));
4254}
4255
2b63aca3
MK
4256// Return whether SYM should be treated as a call to a non-split
4257// function. We don't want that to be true of a larl instruction
4258// that merely loads its address.
4259
4260template<int size>
4261bool
4262Target_s390<size>::do_is_call_to_non_split(const Symbol* sym,
4263 const unsigned char* preloc,
4264 const unsigned char* view,
4265 section_size_type view_size) const
4266{
4267 if (sym->type() != elfcpp::STT_FUNC)
4268 return false;
4269 typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc reloc(preloc);
4270 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4271 = reloc.get_r_info();
4272 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4273 section_offset_type offset = reloc.get_r_offset();
4274 switch (r_type)
4275 {
4276 // PLT refs always involve calling the function.
4277 case elfcpp::R_390_PLT12DBL:
4278 case elfcpp::R_390_PLT16DBL:
4279 case elfcpp::R_390_PLT24DBL:
4280 case elfcpp::R_390_PLT32:
4281 case elfcpp::R_390_PLT32DBL:
4282 case elfcpp::R_390_PLT64:
4283 case elfcpp::R_390_PLTOFF16:
4284 case elfcpp::R_390_PLTOFF32:
4285 case elfcpp::R_390_PLTOFF64:
4286 // Could be used for calls for -msmall-exec.
4287 case elfcpp::R_390_PC16DBL:
4288 return true;
4289
4290 // Tricky case. When used in a brasl, jg, and other branch instructions,
4291 // it's a call or a sibcall. However, when used in larl, it only loads
4292 // the function's address - not a call.
4293 case elfcpp::R_390_PC32DBL:
4294 {
4295 if (offset < 2
4296 || offset + 4 > static_cast<section_offset_type>(view_size))
4297 {
4298 // Should not happen.
4299 gold_error(_("instruction with PC32DBL not wholly within section"));
4300 return false;
4301 }
4302
4303 uint8_t op0 = view[offset-2];
4304 uint8_t op1 = view[offset-1] & 0xf;
4305
4306 // LARL
4307 if (op0 == 0xc0 && op1 == 0)
4308 return false;
4309
4310 // Otherwise, it's either a call instruction, a branch instruction
4311 // (used as a sibcall), or a data manipulation instruction (which
4312 // has no business being used on a function, and can be ignored).
4313 return true;
4314 }
4315
4316 // Otherwise, it's probably not a call.
4317 default:
4318 return false;
4319 }
4320}
4321
4322// Code sequences to match below.
4323
4324template<>
4325const unsigned char
4326Target_s390<32>::ss_code_st_r14[] = {
4327 0x50, 0xe0, 0xf0, 0x04, // st %r14, 4(%r15)
4328};
4329
4330template<>
4331const unsigned char
4332Target_s390<64>::ss_code_st_r14[] = {
4333 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24 // stg %r14, 8(%r15)
4334};
4335
4336template<>
4337const unsigned char
4338Target_s390<32>::ss_code_l_r14[] = {
4339 0x58, 0xe0, 0xf0, 0x04, // l %r14, 4(%r15)
4340};
4341
4342template<>
4343const unsigned char
4344Target_s390<64>::ss_code_l_r14[] = {
4345 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04 // lg %r14, 8(%r15)
4346};
4347
4348template<int size>
4349const unsigned char
4350Target_s390<size>::ss_code_bras_8[] = {
4351 0xa7, 0x15, 0x00, 0x06, // bras %r1, .+0xc
4352};
4353
4354template<int size>
4355const unsigned char
4356Target_s390<size>::ss_code_l_basr[] = {
4357 0x58, 0xe0, 0x10, 0x00, // l %r14, 0(%r1)
4358 0x58, 0x10, 0x10, 0x04, // l %r1, 4(%r1)
4359 0x0d, 0xee, // basr %r14, %r14
4360};
4361
4362template<int size>
4363const unsigned char
4364Target_s390<size>::ss_code_a_basr[] = {
4365 0x18, 0xe1, // lr %r14, %r1
4366 0x5a, 0xe0, 0x10, 0x00, // a %r14, 0(%r1)
4367 0x5a, 0x10, 0x10, 0x04, // a %r1, 4(%r1)
4368 0x0d, 0xee, // basr %r14, %r14
4369};
4370
4371template<>
4372const unsigned char
4373Target_s390<32>::ss_code_ear[] = {
4374 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4375};
4376
4377template<>
4378const unsigned char
4379Target_s390<64>::ss_code_ear[] = {
4380 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4381 0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d, // sllg %r1,%r1,32
4382 0xb2, 0x4f, 0x00, 0x11, // ear %r1, %a1
4383};
4384
4385template<>
4386const unsigned char
4387Target_s390<32>::ss_code_c[] = {
4388 0x59, 0xf0, 0x10, 0x20, // c %r15, 0x20(%r1)
4389};
4390
4391template<>
4392const unsigned char
4393Target_s390<64>::ss_code_c[] = {
4394 0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20, // cg %r15, 0x38(%r1)
4395};
4396
4397template<int size>
4398const unsigned char
4399Target_s390<size>::ss_code_larl[] = {
4400 0xc0, 0x10, // larl %r1, ...
4401};
4402
4403template<int size>
4404const unsigned char
4405Target_s390<size>::ss_code_brasl[] = {
4406 0xc0, 0xe5, // brasl %r14, ...
4407};
4408
4409template<int size>
4410const unsigned char
4411Target_s390<size>::ss_code_jg[] = {
4412 0xc0, 0xf4, // jg ...
4413};
4414
4415template<int size>
4416const unsigned char
4417Target_s390<size>::ss_code_jgl[] = {
4418 0xc0, 0x44, // jgl ...
4419};
4420
4421template<int size>
4422bool
4423Target_s390<size>::ss_match_mcount(unsigned char* view,
4424 section_size_type view_size,
4425 section_offset_type *offset) const
4426{
4427 // Match the mcount call sequence.
4428 section_offset_type myoff = *offset;
4429
4430 // First, look for the store instruction saving %r14.
4431 if (!this->match_view_u(view, view_size, myoff, ss_code_st_r14,
4432 sizeof ss_code_st_r14))
4433 return false;
4434 myoff += sizeof ss_code_st_r14;
4435
4436 // Now, param load and the actual call.
4437 if (this->match_view_u(view, view_size, myoff, ss_code_larl,
4438 sizeof ss_code_larl))
4439 {
4440 myoff += sizeof ss_code_larl + 4;
4441
4442 // After larl, expect a brasl.
4443 if (!this->match_view_u(view, view_size, myoff, ss_code_brasl,
4444 sizeof ss_code_brasl))
4445 return false;
4446 myoff += sizeof ss_code_brasl + 4;
4447 }
4448 else if (size == 32 &&
4449 this->match_view_u(view, view_size, myoff, ss_code_bras_8,
4450 sizeof ss_code_bras_8))
4451 {
4452 // The bras skips over a block of 8 bytes, loading its address
4453 // to %r1.
4454 myoff += sizeof ss_code_bras_8 + 8;
4455
4456 // Now, there are two sequences used for actual load and call,
4457 // absolute and PIC.
4458 if (this->match_view_u(view, view_size, myoff, ss_code_l_basr,
4459 sizeof ss_code_l_basr))
4460 myoff += sizeof ss_code_l_basr;
4461 else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr,
4462 sizeof ss_code_a_basr))
4463 myoff += sizeof ss_code_a_basr;
4464 else
4465 return false;
4466 }
4467 else
4468 return false;
4469
4470 // Finally, a load bringing %r14 back.
4471 if (!this->match_view_u(view, view_size, myoff, ss_code_l_r14,
4472 sizeof ss_code_l_r14))
4473 return false;
4474 myoff += sizeof ss_code_l_r14;
4475
4476 // Found it.
4477 *offset = myoff;
4478 return true;
4479}
4480
4481template<>
4482bool
4483Target_s390<32>::ss_match_l(unsigned char* view,
4484 section_size_type view_size,
4485 section_offset_type *offset,
4486 int *guard_reg) const
4487{
4488 // l %guard_reg, 0x20(%r1)
4489 if (convert_to_section_size_type(*offset + 4) > view_size
4490 || view[*offset] != 0x58
4491 || (view[*offset + 1] & 0xf) != 0x0
4492 || view[*offset + 2] != 0x10
4493 || view[*offset + 3] != 0x20)
4494 return false;
4495 *offset += 4;
4496 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4497 return true;
4498}
4499
4500template<>
4501bool
4502Target_s390<64>::ss_match_l(unsigned char* view,
4503 section_size_type view_size,
4504 section_offset_type *offset,
4505 int *guard_reg) const
4506{
4507 // lg %guard_reg, 0x38(%r1)
4508 if (convert_to_section_size_type(*offset + 6) > view_size
4509 || view[*offset] != 0xe3
4510 || (view[*offset + 1] & 0xf) != 0x0
4511 || view[*offset + 2] != 0x10
4512 || view[*offset + 3] != 0x38
4513 || view[*offset + 4] != 0x00
4514 || view[*offset + 5] != 0x04)
4515 return false;
4516 *offset += 6;
4517 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4518 return true;
4519}
4520
4521template<int size>
4522bool
4523Target_s390<size>::ss_match_ahi(unsigned char* view,
4524 section_size_type view_size,
4525 section_offset_type *offset,
4526 int guard_reg,
4527 uint32_t *arg) const
4528{
4529 int op = size == 32 ? 0xa : 0xb;
4530 // a[g]hi %guard_reg, <arg>
4531 if (convert_to_section_size_type(*offset + 4) > view_size
4532 || view[*offset] != 0xa7
4533 || view[*offset + 1] != (guard_reg << 4 | op)
4534 // Disallow negative size.
4535 || view[*offset + 2] & 0x80)
4536 return false;
4537 *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2);
4538 *offset += 4;
4539 return true;
4540}
4541
4542template<int size>
4543bool
4544Target_s390<size>::ss_match_alfi(unsigned char* view,
4545 section_size_type view_size,
4546 section_offset_type *offset,
4547 int guard_reg,
4548 uint32_t *arg) const
4549{
4550 int op = size == 32 ? 0xb : 0xa;
4551 // al[g]fi %guard_reg, <arg>
4552 if (convert_to_section_size_type(*offset + 6) > view_size
4553 || view[*offset] != 0xc2
4554 || view[*offset + 1] != (guard_reg << 4 | op))
4555 return false;
4556 *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2);
4557 *offset += 6;
4558 return true;
4559}
4560
4561template<>
4562bool
4563Target_s390<32>::ss_match_cr(unsigned char* view,
4564 section_size_type view_size,
4565 section_offset_type *offset,
4566 int guard_reg) const
4567{
4568 // cr %r15, %guard_reg
4569 if (convert_to_section_size_type(*offset + 2) > view_size
4570 || view[*offset] != 0x19
4571 || view[*offset + 1] != (0xf0 | guard_reg))
4572 return false;
4573 *offset += 2;
4574 return true;
4575}
4576
4577template<>
4578bool
4579Target_s390<64>::ss_match_cr(unsigned char* view,
4580 section_size_type view_size,
4581 section_offset_type *offset,
4582 int guard_reg) const
4583{
4584 // cgr %r15, %guard_reg
4585 if (convert_to_section_size_type(*offset + 4) > view_size
4586 || view[*offset] != 0xb9
4587 || view[*offset + 1] != 0x20
4588 || view[*offset + 2] != 0x00
4589 || view[*offset + 3] != (0xf0 | guard_reg))
4590 return false;
4591 *offset += 4;
4592 return true;
4593}
4594
4595
4596// FNOFFSET in section SHNDX in OBJECT is the start of a function
4597// compiled with -fsplit-stack. The function calls non-split-stack
4598// code. We have to change the function so that it always ensures
4599// that it has enough stack space to run some random function.
4600
4601template<int size>
4602void
4603Target_s390<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4604 section_offset_type fnoffset,
4605 section_size_type,
4606 const unsigned char *prelocs,
4607 size_t reloc_count,
4608 unsigned char* view,
4609 section_size_type view_size,
4610 std::string*,
4611 std::string*) const
4612{
4613 // true if there's a conditional call to __morestack in the function,
4614 // false if there's an unconditional one.
4615 bool conditional = false;
4616 // Offset of the byte after the compare insn, if conditional.
4617 section_offset_type cmpend = 0;
4618 // Type and immediate offset of the add instruction that adds frame size
4619 // to guard.
4620 enum {
4621 SS_ADD_NONE,
4622 SS_ADD_AHI,
4623 SS_ADD_ALFI,
4624 } fsadd_type = SS_ADD_NONE;
4625 section_offset_type fsadd_offset = 0;
4626 uint32_t fsadd_frame_size = 0;
4627 // Register used for loading guard. Usually r1, but can also be r0 or r2-r5.
4628 int guard_reg;
4629 // Offset of the conditional jump.
4630 section_offset_type jump_offset = 0;
4631 // Section view and offset of param block.
4632 section_offset_type param_offset = 0;
4633 unsigned char *param_view = 0;
4634 section_size_type param_view_size = 0;
4635 // Current position in function.
4636 section_offset_type curoffset = fnoffset;
4637 // And the position of split-stack prologue.
4638 section_offset_type ssoffset;
4639 // Frame size.
4640 typename elfcpp::Elf_types<size>::Elf_Addr frame_size;
4641 // Relocation parsing.
4642 typedef typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc Reltype;
4643 const int reloc_size = Reloc_types<elfcpp::SHT_RELA, size, true>::reloc_size;
4644 const unsigned char *pr = prelocs;
4645
4646 // If the function was compiled with -pg, the profiling code may come before
4647 // the split-stack prologue. Skip it.
4648
4649 this->ss_match_mcount(view, view_size, &curoffset);
4650 ssoffset = curoffset;
4651
4652 // First, figure out if there's a conditional call by looking for the
4653 // extract-tp, add, cmp sequence.
4654
4655 if (this->match_view_u(view, view_size, curoffset, ss_code_ear,
4656 sizeof ss_code_ear))
4657 {
4658 // Found extract-tp, now look for an add and compare.
4659 curoffset += sizeof ss_code_ear;
4660 conditional = true;
4661 if (this->match_view_u(view, view_size, curoffset, ss_code_c,
4662 sizeof ss_code_c))
4663 {
4664 // Found a direct compare of stack pointer with the guard,
4665 // we're done here.
4666 curoffset += sizeof ss_code_c;
4667 }
4668 else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg))
4669 {
4670 // Found a load of guard to register, look for an add and compare.
4671 if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg,
4672 &fsadd_frame_size))
4673 {
4674 fsadd_type = SS_ADD_AHI;
4675 fsadd_offset = curoffset - 2;
4676 }
4677 else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg,
4678 &fsadd_frame_size))
4679 {
4680 fsadd_type = SS_ADD_ALFI;
4681 fsadd_offset = curoffset - 4;
4682 }
4683 else
4684 {
4685 goto bad;
4686 }
4687 // Now, there has to be a compare.
4688 if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg))
4689 goto bad;
4690 }
4691 else
4692 {
4693 goto bad;
4694 }
4695 cmpend = curoffset;
4696 }
4697
4698 // Second, look for the call.
4699 if (!this->match_view_u(view, view_size, curoffset, ss_code_larl,
4700 sizeof ss_code_larl))
4701 goto bad;
4702 curoffset += sizeof ss_code_larl;
4703
4704 // Find out larl's operand. It should be a local symbol in .rodata
4705 // section.
4706 for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
4707 {
4708 Reltype reloc(pr);
4709 if (static_cast<section_offset_type>(reloc.get_r_offset())
4710 == curoffset)
4711 {
4712 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4713 = reloc.get_r_info();
4714 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4715 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4716 if (r_type != elfcpp::R_390_PC32DBL)
4717 goto bad;
4718 if (r_sym >= object->local_symbol_count())
4719 goto bad;
4720 Sized_relobj_file<size, true> *object_sized =
4721 static_cast<Sized_relobj_file<size, true> *>(object);
4722 const Symbol_value<size>* sym = object_sized->local_symbol(r_sym);
4723 bool param_shndx_ordinary;
4724 const unsigned int param_shndx =
4725 sym->input_shndx(&param_shndx_ordinary);
4726 if (!param_shndx_ordinary)
4727 goto bad;
4728 param_offset = sym->input_value() + reloc.get_r_addend() - 2
4729 - object->output_section(param_shndx)->address()
4730 - object->output_section_offset(param_shndx);
4731 param_view = object->get_output_view(param_shndx,
4732 &param_view_size);
4733 break;
4734 }
4735 }
4736
4737 if (!param_view)
4738 goto bad;
4739
4740 curoffset += 4;
4741
4742 // Now, there has to be a jump to __morestack.
4743 jump_offset = curoffset;
4744
4745 if (this->match_view_u(view, view_size, curoffset,
4746 conditional ? ss_code_jgl : ss_code_jg,
4747 sizeof ss_code_jg))
4748 curoffset += sizeof ss_code_jg;
4749 else
4750 goto bad;
4751
4752 curoffset += 4;
4753
4754 // Read the frame size.
4755 if (convert_to_section_size_type(param_offset + size / 8) > param_view_size)
4756 goto bad;
4757 frame_size = elfcpp::Swap<size, true>::readval(param_view + param_offset);
4758
4759 // Sanity check.
4760 if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size)
4761 goto bad;
4762
4763 // Bump the frame size.
4764 frame_size += parameters->options().split_stack_adjust_size();
4765
4766 // Store it to the param block.
4767 elfcpp::Swap<size, true>::writeval(param_view + param_offset, frame_size);
4768
4769 if (!conditional)
4770 {
4771 // If the call was already unconditional, we're done.
4772 }
4773 else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI)
4774 {
4775 // Using alfi to add the frame size, and it still fits. Adjust it.
4776 elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset,
4777 frame_size);
4778 }
4779 else
4780 {
4781 // We were either relying on the backoff area, or used ahi to load
4782 // frame size. This won't fly, as our new frame size is too large.
4783 // Convert the sequence to unconditional by nopping out the comparison,
4784 // and rewiring the jump.
4785 this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset);
4786
4787 // The jump is jgl, we'll mutate it to jg.
4788 view[jump_offset+1] = 0xf4;
4789 }
4790
4791 return;
4792
4793bad:
4794 if (!object->has_no_split_stack())
4795 object->error(_("failed to match split-stack sequence at "
4796 "section %u offset %0zx"),
4797 shndx, static_cast<size_t>(fnoffset));
4798}
4799
e79a4bad
MK
4800// Relocate section data.
4801
4802template<int size>
4803void
4804Target_s390<size>::relocate_section(
4805 const Relocate_info<size, true>* relinfo,
4806 unsigned int sh_type,
4807 const unsigned char* prelocs,
4808 size_t reloc_count,
4809 Output_section* output_section,
4810 bool needs_special_offset_handling,
4811 unsigned char* view,
4812 typename elfcpp::Elf_types<size>::Elf_Addr address,
4813 section_size_type view_size,
4814 const Reloc_symbol_changes* reloc_symbol_changes)
4815{
4d625b70
CC
4816 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4817 Classify_reloc;
4818
e79a4bad
MK
4819 gold_assert(sh_type == elfcpp::SHT_RELA);
4820
4d625b70
CC
4821 gold::relocate_section<size, true, Target_s390<size>, Relocate,
4822 gold::Default_comdat_behavior, Classify_reloc>(
e79a4bad
MK
4823 relinfo,
4824 this,
4825 prelocs,
4826 reloc_count,
4827 output_section,
4828 needs_special_offset_handling,
4829 view,
4830 address,
4831 view_size,
4832 reloc_symbol_changes);
4833}
4834
4835// Apply an incremental relocation. Incremental relocations always refer
4836// to global symbols.
4837
4838template<int size>
4839void
4840Target_s390<size>::apply_relocation(
4841 const Relocate_info<size, true>* relinfo,
4842 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4843 unsigned int r_type,
4844 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4845 const Symbol* gsym,
4846 unsigned char* view,
4847 typename elfcpp::Elf_types<size>::Elf_Addr address,
4848 section_size_type view_size)
4849{
4850 gold::apply_relocation<size, true, Target_s390<size>,
4851 typename Target_s390<size>::Relocate>(
4852 relinfo,
4853 this,
4854 r_offset,
4855 r_type,
4856 r_addend,
4857 gsym,
4858 view,
4859 address,
4860 view_size);
4861}
4862
4863// The selector for s390 object files.
4864
4865template<int size>
4866class Target_selector_s390 : public Target_selector
4867{
4868public:
4869 Target_selector_s390()
4870 : Target_selector(elfcpp::EM_S390, size, true,
4871 (size == 64 ? "elf64-s390" : "elf32-s390"),
4872 (size == 64 ? "elf64_s390" : "elf32_s390"))
4873 { }
4874
4875 virtual Target*
4876 do_instantiate_target()
4877 { return new Target_s390<size>(); }
4878};
4879
4880Target_selector_s390<32> target_selector_s390;
4881Target_selector_s390<64> target_selector_s390x;
4882
4883} // End anonymous namespace.
This page took 0.312507 seconds and 4 git commands to generate.