Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / s390.cc
CommitLineData
e79a4bad
MK
1// s390.cc -- s390 target support for gold.
2
219d1afa 3// Copyright (C) 2015-2018 Free Software Foundation, Inc.
e79a4bad
MK
4// Written by Marcin Kościelnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
57 layout_(layout)
58 { }
59
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
62 layout_(layout)
63 { }
64
65 protected:
66 // Write out the PLT data.
67 void
68 do_write(Output_file*);
69
70 // Write to a map file.
71 void
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
78 Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88 Reloc_section;
89
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
99
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
106 4, false),
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
110 {
111 this->init(layout);
112
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
116 }
117
118 // Initialize the PLT section.
119 void
120 init(Layout* layout);
121
122 // Add an entry to the PLT.
123 void
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127 unsigned int
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
130
131 // Add the relocation for a PLT entry.
132 void
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135 // Return the .rela.plt section data.
136 Reloc_section*
137 rela_plt()
138 { return this->rel_; }
139
140 // Return where the IRELATIVE relocations should go in the PLT
141 // relocations.
142 Reloc_section*
143 rela_irelative(Symbol_table*, Layout*);
144
145 // Return whether we created a section for IRELATIVE relocations.
146 bool
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
149
150 // Return the number of PLT entries.
151 unsigned int
152 entry_count() const
153 { return this->count_ + this->irelative_count_; }
154
155 // Return the offset of the first non-reserved PLT entry.
156 unsigned int
157 first_plt_entry_offset()
158 { return plt_entry_size; }
159
160 // Return the size of a PLT entry.
161 unsigned int
162 get_plt_entry_size() const
163 { return plt_entry_size; }
164
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
166 void
167 reserve_slot(unsigned int plt_index)
168 {
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
171 }
172
173 // Return the PLT address to use for a global symbol.
174 uint64_t
175 address_for_global(const Symbol*);
176
177 // Return the PLT address to use for a local symbol.
178 uint64_t
179 address_for_local(const Relobj*, unsigned int symndx);
180
181 // Add .eh_frame information for the PLT.
182 void
183 add_eh_frame(Layout* layout)
184 {
185 (void)layout;
186 layout->add_eh_frame_for_plt(this,
187 plt_eh_frame_cie,
188 plt_eh_frame_cie_size,
189 plt_eh_frame_fde,
190 plt_eh_frame_fde_size);
191 }
192
193 protected:
194 // Fill in the first PLT entry.
195 void
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
202 unsigned int
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
209
210 void
211 do_adjust_output_section(Output_section* os);
212
213 // Write to a map file.
214 void
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219 // Set the final size.
220 void
221 set_final_data_size();
222
223 // Write out the PLT data.
224 void
225 do_write(Output_file*);
226
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
229 Layout* layout_;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
235 // The .got section.
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
242 unsigned int count_;
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
247 // update links.
248 Free_list free_list_;
249
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
262
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277 Target_s390()
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283 layout_(NULL)
284 { }
285
286 // Scan the relocations to look for symbol adjustments.
287 void
288 gc_process_relocs(Symbol_table* symtab,
289 Layout* layout,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
294 size_t reloc_count,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
299
300 // Scan the relocations to look for symbol adjustments.
301 void
302 scan_relocs(Symbol_table* symtab,
303 Layout* layout,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
308 size_t reloc_count,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
313
314 // Finalize the sections.
315 void
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318 // Return the value to use for a dynamic which requires special
319 // treatment.
320 uint64_t
321 do_dynsym_value(const Symbol*) const;
322
323 // Relocate a section.
324 void
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
328 size_t reloc_count,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
331 unsigned char* view,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
335
336 // Scan the relocs during a relocatable link.
337 void
338 scan_relocatable_relocs(Symbol_table* symtab,
339 Layout* layout,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
344 size_t reloc_count,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
350
4d625b70
CC
351 // Scan the relocs for --emit-relocs.
352 void
353 emit_relocs_scan(Symbol_table* symtab,
354 Layout* layout,
355 Sized_relobj_file<size, true>* object,
356 unsigned int data_shndx,
357 unsigned int sh_type,
358 const unsigned char* prelocs,
359 size_t reloc_count,
360 Output_section* output_section,
361 bool needs_special_offset_handling,
362 size_t local_symbol_count,
363 const unsigned char* plocal_syms,
364 Relocatable_relocs* rr);
365
e79a4bad
MK
366 // Return a string used to fill a code section with nops.
367 std::string
368 do_code_fill(section_size_type length) const;
369
370 // Emit relocations for a section.
371 void
372 relocate_relocs(
373 const Relocate_info<size, true>*,
374 unsigned int sh_type,
375 const unsigned char* prelocs,
376 size_t reloc_count,
377 Output_section* output_section,
378 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
379 unsigned char* view,
380 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
381 section_size_type view_size,
382 unsigned char* reloc_view,
383 section_size_type reloc_view_size);
384
385 // Return whether SYM is defined by the ABI.
386 bool
387 do_is_defined_by_abi(const Symbol* sym) const
388 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
389
390 // Return the PLT address to use for a global symbol.
391 uint64_t
392 do_plt_address_for_global(const Symbol* gsym) const
393 { return this->plt_section()->address_for_global(gsym); }
394
395 uint64_t
396 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
397 { return this->plt_section()->address_for_local(relobj, symndx); }
398
399 // Return the offset to use for the GOT_INDX'th got entry which is
400 // for a local tls symbol specified by OBJECT, SYMNDX.
401 int64_t
402 do_tls_offset_for_local(const Relobj* object,
403 unsigned int symndx,
404 unsigned int got_indx) const;
405
406 // Return the offset to use for the GOT_INDX'th got entry which is
407 // for global tls symbol GSYM.
408 int64_t
409 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
410
411 // This function should be defined in targets that can use relocation
412 // types to determine (implemented in local_reloc_may_be_function_pointer
413 // and global_reloc_may_be_function_pointer)
414 // if a function's pointer is taken. ICF uses this in safe mode to only
415 // fold those functions whose pointer is defintely not taken.
416 bool
417 do_can_check_for_function_pointers() const
418 { return true; }
419
2b63aca3
MK
420 // Return whether SYM is call to a non-split function.
421 bool
422 do_is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
423 const unsigned char* view,
424 section_size_type view_size) const;
425
426 // Adjust -fsplit-stack code which calls non-split-stack code.
427 void
428 do_calls_non_split(Relobj* object, unsigned int shndx,
429 section_offset_type fnoffset, section_size_type fnsize,
430 const unsigned char* prelocs, size_t reloc_count,
431 unsigned char* view, section_size_type view_size,
432 std::string* from, std::string* to) const;
433
e79a4bad
MK
434 // Return the size of the GOT section.
435 section_size_type
436 got_size() const
437 {
438 gold_assert(this->got_ != NULL);
439 return this->got_->data_size();
440 }
441
442 // Return the number of entries in the GOT.
443 unsigned int
444 got_entry_count() const
445 {
446 if (this->got_ == NULL)
447 return 0;
448 return this->got_size() / (size / 8);
449 }
450
451 // Return the number of entries in the PLT.
452 unsigned int
453 plt_entry_count() const;
454
455 // Return the offset of the first non-reserved PLT entry.
456 unsigned int
457 first_plt_entry_offset() const;
458
459 // Return the size of each PLT entry.
460 unsigned int
461 plt_entry_size() const;
462
463 // Create the GOT section for an incremental update.
464 Output_data_got_base*
465 init_got_plt_for_update(Symbol_table* symtab,
466 Layout* layout,
467 unsigned int got_count,
468 unsigned int plt_count);
469
470 // Reserve a GOT entry for a local symbol, and regenerate any
471 // necessary dynamic relocations.
472 void
473 reserve_local_got_entry(unsigned int got_index,
474 Sized_relobj<size, true>* obj,
475 unsigned int r_sym,
476 unsigned int got_type);
477
478 // Reserve a GOT entry for a global symbol, and regenerate any
479 // necessary dynamic relocations.
480 void
481 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
482 unsigned int got_type);
483
484 // Register an existing PLT entry for a global symbol.
485 void
486 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
487 Symbol* gsym);
488
489 // Force a COPY relocation for a given symbol.
490 void
491 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
492
493 // Apply an incremental relocation.
494 void
495 apply_relocation(const Relocate_info<size, true>* relinfo,
496 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
497 unsigned int r_type,
498 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
499 const Symbol* gsym,
500 unsigned char* view,
501 typename elfcpp::Elf_types<size>::Elf_Addr address,
502 section_size_type view_size);
503
504 private:
505
506 // The class which scans relocations.
507 class Scan
508 {
509 public:
510 Scan()
511 : issued_non_pic_error_(false)
512 { }
513
514 static inline int
515 get_reference_flags(unsigned int r_type);
516
517 inline void
518 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
519 Sized_relobj_file<size, true>* object,
520 unsigned int data_shndx,
521 Output_section* output_section,
522 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
523 const elfcpp::Sym<size, true>& lsym,
524 bool is_discarded);
525
526 inline void
527 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
528 Sized_relobj_file<size, true>* object,
529 unsigned int data_shndx,
530 Output_section* output_section,
531 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
532 Symbol* gsym);
533
534 inline bool
535 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
536 Target_s390* target,
537 Sized_relobj_file<size, true>* object,
538 unsigned int data_shndx,
539 Output_section* output_section,
540 const elfcpp::Rela<size, true>& reloc,
541 unsigned int r_type,
542 const elfcpp::Sym<size, true>& lsym);
543
544 inline bool
545 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
546 Target_s390* target,
547 Sized_relobj_file<size, true>* object,
548 unsigned int data_shndx,
549 Output_section* output_section,
550 const elfcpp::Rela<size, true>& reloc,
551 unsigned int r_type,
552 Symbol* gsym);
553
554 private:
555 static void
556 unsupported_reloc_local(Sized_relobj_file<size, true>*,
557 unsigned int r_type);
558
559 static void
560 unsupported_reloc_global(Sized_relobj_file<size, true>*,
561 unsigned int r_type, Symbol*);
562
563 void
564 check_non_pic(Relobj*, unsigned int r_type);
565
566 inline bool
567 possible_function_pointer_reloc(unsigned int r_type);
568
569 bool
570 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
571 unsigned int r_type);
572
573 // Whether we have issued an error about a non-PIC compilation.
574 bool issued_non_pic_error_;
575 };
576
577 // The class which implements relocation.
578 class Relocate
579 {
580 public:
581 // Do a relocation. Return false if the caller should not issue
582 // any warnings about this relocation.
583 inline bool
91a65d2f
AM
584 relocate(const Relocate_info<size, true>*, unsigned int,
585 Target_s390*, Output_section*, size_t, const unsigned char*,
586 const Sized_symbol<size>*, const Symbol_value<size>*,
e79a4bad
MK
587 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
588 section_size_type);
589
590 private:
591 // Do a TLS relocation.
592 inline typename elfcpp::Elf_types<size>::Elf_Addr
593 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
594 size_t relnum, const elfcpp::Rela<size, true>&,
595 unsigned int r_type, const Sized_symbol<size>*,
596 const Symbol_value<size>*,
597 unsigned char*, section_size_type);
598
599 // Do a TLS General-Dynamic to Initial-Exec transition.
600 inline void
601 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
602 const elfcpp::Rela<size, true>&,
603 unsigned char* view,
604 section_size_type view_size);
605
606 // Do a TLS General-Dynamic to Local-Exec transition.
607 inline void
608 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
609 const elfcpp::Rela<size, true>&,
610 unsigned char* view,
611 section_size_type view_size);
612
613 // Do a TLS Local-Dynamic to Local-Exec transition.
614 inline void
615 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
616 const elfcpp::Rela<size, true>&,
617 unsigned char* view,
618 section_size_type view_size);
619
620 // Do a TLS Initial-Exec to Local-Exec transition.
621 static inline void
622 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
623 const elfcpp::Rela<size, true>&,
624 unsigned char* view,
625 section_size_type view_size);
626 };
627
e79a4bad
MK
628 // Adjust TLS relocation type based on the options and whether this
629 // is a local symbol.
630 static tls::Tls_optimization
631 optimize_tls_reloc(bool is_final, int r_type);
632
633 // Get the GOT section.
634 const Output_data_got<size, true>*
635 got_section() const
636 {
637 gold_assert(this->got_ != NULL);
638 return this->got_;
639 }
640
641 // Get the GOT section, creating it if necessary.
642 Output_data_got<size, true>*
643 got_section(Symbol_table*, Layout*);
644
645 typename elfcpp::Elf_types<size>::Elf_Addr
646 got_address() const
647 {
648 gold_assert(this->got_ != NULL);
649 return this->got_plt_->address();
650 }
651
652 typename elfcpp::Elf_types<size>::Elf_Addr
653 got_main_offset() const
654 {
655 gold_assert(this->got_ != NULL);
656 return this->got_->address() - this->got_address();
657 }
658
659 // Create the PLT section.
660 void
661 make_plt_section(Symbol_table* symtab, Layout* layout);
662
663 // Create a PLT entry for a global symbol.
664 void
665 make_plt_entry(Symbol_table*, Layout*, Symbol*);
666
667 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
668 void
669 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
670 Sized_relobj_file<size, true>* relobj,
671 unsigned int local_sym_index);
672
673 // Create a GOT entry for the TLS module index.
674 unsigned int
675 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
676 Sized_relobj_file<size, true>* object);
677
678 // Get the PLT section.
679 Output_data_plt_s390<size>*
680 plt_section() const
681 {
682 gold_assert(this->plt_ != NULL);
683 return this->plt_;
684 }
685
686 // Get the dynamic reloc section, creating it if necessary.
687 Reloc_section*
688 rela_dyn_section(Layout*);
689
690 // Get the section to use for IRELATIVE relocations.
691 Reloc_section*
692 rela_irelative_section(Layout*);
693
694 // Add a potential copy relocation.
695 void
696 copy_reloc(Symbol_table* symtab, Layout* layout,
697 Sized_relobj_file<size, true>* object,
698 unsigned int shndx, Output_section* output_section,
699 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
700 {
859d7987 701 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
e79a4bad
MK
702 this->copy_relocs_.copy_reloc(symtab, layout,
703 symtab->get_sized_symbol<size>(sym),
704 object, shndx, output_section,
859d7987
CC
705 r_type, reloc.get_r_offset(),
706 reloc.get_r_addend(),
707 this->rela_dyn_section(layout));
e79a4bad
MK
708 }
709
2b63aca3
MK
710 // A function for targets to call. Return whether BYTES/LEN matches
711 // VIEW/VIEW_SIZE at OFFSET. Like the one in Target, but takes
712 // an unsigned char * parameter.
713 bool
714 match_view_u(const unsigned char* view, section_size_type view_size,
715 section_offset_type offset, const unsigned char* bytes, size_t len) const
716 {
717 return this->match_view(view, view_size, offset,
718 reinterpret_cast<const char*>(bytes), len);
719 }
720
e79a4bad
MK
721 // Information about this specific target which we pass to the
722 // general Target structure.
723 static Target::Target_info s390_info;
724
725 // The types of GOT entries needed for this platform.
726 // These values are exposed to the ABI in an incremental link.
727 // Do not renumber existing values without changing the version
728 // number of the .gnu_incremental_inputs section.
729 enum Got_type
730 {
731 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
732 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
733 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
734 };
735
736 // The GOT section.
737 Output_data_got<size, true>* got_;
738 // The PLT section.
739 Output_data_plt_s390<size>* plt_;
740 // The GOT PLT section.
741 Output_data_got_plt_s390<size>* got_plt_;
742 // The GOT section for IRELATIVE relocations.
743 Output_data_space* got_irelative_;
744 // The _GLOBAL_OFFSET_TABLE_ symbol.
745 Symbol* global_offset_table_;
746 // The dynamic reloc section.
747 Reloc_section* rela_dyn_;
748 // The section to use for IRELATIVE relocs.
749 Reloc_section* rela_irelative_;
750 // Relocs saved to avoid a COPY reloc.
751 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
752 // Offset of the GOT entry for the TLS module index.
753 unsigned int got_mod_index_offset_;
754 // True if the _TLS_MODULE_BASE_ symbol has been defined.
755 bool tls_base_symbol_defined_;
756 // For use in do_tls_offset_for_*
757 Layout *layout_;
2b63aca3
MK
758
759 // Code sequences for -fsplit-stack matching.
2b63aca3
MK
760 static const unsigned char ss_code_bras_8[];
761 static const unsigned char ss_code_l_basr[];
762 static const unsigned char ss_code_a_basr[];
2b63aca3
MK
763 static const unsigned char ss_code_larl[];
764 static const unsigned char ss_code_brasl[];
765 static const unsigned char ss_code_jg[];
766 static const unsigned char ss_code_jgl[];
767
768 // Variable code sequence matchers for -fsplit-stack.
40d85a7f
MK
769 bool ss_match_st_r14(unsigned char* view,
770 section_size_type view_size,
771 section_offset_type *offset) const;
772 bool ss_match_l_r14(unsigned char* view,
773 section_size_type view_size,
774 section_offset_type *offset) const;
2b63aca3
MK
775 bool ss_match_mcount(unsigned char* view,
776 section_size_type view_size,
777 section_offset_type *offset) const;
40d85a7f
MK
778 bool ss_match_ear(unsigned char* view,
779 section_size_type view_size,
780 section_offset_type *offset) const;
781 bool ss_match_c(unsigned char* view,
782 section_size_type view_size,
783 section_offset_type *offset) const;
2b63aca3
MK
784 bool ss_match_l(unsigned char* view,
785 section_size_type view_size,
786 section_offset_type *offset,
787 int *guard_reg) const;
788 bool ss_match_ahi(unsigned char* view,
789 section_size_type view_size,
790 section_offset_type *offset,
791 int guard_reg,
792 uint32_t *arg) const;
793 bool ss_match_alfi(unsigned char* view,
794 section_size_type view_size,
795 section_offset_type *offset,
796 int guard_reg,
797 uint32_t *arg) const;
798 bool ss_match_cr(unsigned char* view,
799 section_size_type view_size,
800 section_offset_type *offset,
801 int guard_reg) const;
e79a4bad
MK
802};
803
804template<>
805Target::Target_info Target_s390<32>::s390_info =
806{
807 32, // size
808 true, // is_big_endian
809 elfcpp::EM_S390, // machine_code
810 false, // has_make_symbol
811 false, // has_resolve
812 true, // has_code_fill
813 true, // is_default_stack_executable
814 true, // can_icf_inline_merge_sections
815 '\0', // wrap_char
816 "/lib/ld.so.1", // dynamic_linker
817 0x00400000, // default_text_segment_address
818 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
819 4 * 1024, // common_pagesize (overridable by -z common-page-size)
820 false, // isolate_execinstr
821 0, // rosegment_gap
822 elfcpp::SHN_UNDEF, // small_common_shndx
823 elfcpp::SHN_UNDEF, // large_common_shndx
824 0, // small_common_section_flags
825 0, // large_common_section_flags
826 NULL, // attributes_section
827 NULL, // attributes_vendor
828 "_start", // entry_symbol_name
829 32, // hash_entry_size
830};
831
832template<>
833Target::Target_info Target_s390<64>::s390_info =
834{
835 64, // size
836 true, // is_big_endian
837 elfcpp::EM_S390, // machine_code
838 false, // has_make_symbol
839 false, // has_resolve
840 true, // has_code_fill
841 true, // is_default_stack_executable
842 true, // can_icf_inline_merge_sections
843 '\0', // wrap_char
844 "/lib/ld64.so.1", // dynamic_linker
845 0x80000000ll, // default_text_segment_address
846 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
847 4 * 1024, // common_pagesize (overridable by -z common-page-size)
848 false, // isolate_execinstr
849 0, // rosegment_gap
850 elfcpp::SHN_UNDEF, // small_common_shndx
851 elfcpp::SHN_UNDEF, // large_common_shndx
852 0, // small_common_section_flags
853 0, // large_common_section_flags
854 NULL, // attributes_section
855 NULL, // attributes_vendor
856 "_start", // entry_symbol_name
857 64, // hash_entry_size
858};
859
860template<int size>
861class S390_relocate_functions
862{
863public:
864 enum Overflow_check
865 {
866 CHECK_NONE,
867 CHECK_SIGNED,
868 CHECK_UNSIGNED,
869 CHECK_BITFIELD,
870 CHECK_LOW_INSN,
871 CHECK_HIGH_INSN
872 };
873
874 enum Status
875 {
876 STATUS_OK,
877 STATUS_OVERFLOW
878 };
879
880private:
881 typedef S390_relocate_functions<size> This;
882 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
883
884 template<int valsize>
885 static inline bool
886 has_overflow_signed(Address value)
887 {
888 // limit = 1 << (valsize - 1) without shift count exceeding size of type
889 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
890 limit <<= ((valsize - 1) >> 1);
891 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
892 return value + limit > (limit << 1) - 1;
893 }
894
895 template<int valsize>
896 static inline bool
897 has_overflow_unsigned(Address value)
898 {
899 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
900 limit <<= ((valsize - 1) >> 1);
901 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
902 return value > (limit << 1) - 1;
903 }
904
905 template<int fieldsize>
906 static inline void
907 rela(unsigned char* view, Address mask, Address value)
908 {
909 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
910 Valtype* wv = reinterpret_cast<Valtype*>(view);
911 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
912 val &= ~mask;
913 value &= mask;
914 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
915 }
916
917public:
918 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
919 static inline Status
920 rela12(unsigned char* view, Address value)
921 {
922 if (This::template has_overflow_unsigned<12>(value))
923 return STATUS_OVERFLOW;
924 This::template rela<16>(view, 0x0fff, value);
925 return STATUS_OK;
926 }
927
928 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
929 static inline Status
930 rela16(unsigned char* view, Address value)
931 {
932 if (This::template has_overflow_signed<16>(value))
933 return STATUS_OVERFLOW;
934 This::template rela<16>(view, 0xffff, value);
935 return STATUS_OK;
936 }
937
938 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
939 static inline Status
940 rela20(unsigned char* view, Address value)
941 {
942 if (This::template has_overflow_signed<20>(value))
943 return STATUS_OVERFLOW;
944 This::template rela<16>(view, 0x0fff, value);
945 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
946 return STATUS_OK;
947 }
948
949 // R_390_PC12DBL, R_390_PLT12DBL
950 static inline Status
951 pcrela12dbl(unsigned char* view, Address value, Address address)
952 {
953 value -= address;
954 if ((value & 1) != 0)
955 return STATUS_OVERFLOW;
956 if (This::template has_overflow_signed<13>(value))
957 return STATUS_OVERFLOW;
958 value >>= 1;
959 This::template rela<16>(view, 0x0fff, value);
960 return STATUS_OK;
961 }
962
963 // R_390_PC16DBL, R_390_PLT16DBL
964 static inline Status
965 pcrela16dbl(unsigned char* view, Address value, Address address)
966 {
967 value -= address;
968 if ((value & 1) != 0)
969 return STATUS_OVERFLOW;
970 if (This::template has_overflow_signed<17>(value))
971 return STATUS_OVERFLOW;
972 value >>= 1;
973 This::template rela<16>(view, 0xffff, value);
974 return STATUS_OK;
975 }
976
977 // R_390_PC24DBL, R_390_PLT24DBL
978 static inline Status
979 pcrela24dbl(unsigned char* view, Address value, Address address)
980 {
981 value -= address;
982 if ((value & 1) != 0)
983 return STATUS_OVERFLOW;
984 if (This::template has_overflow_signed<25>(value))
985 return STATUS_OVERFLOW;
986 value >>= 1;
987 // Swap doesn't take 24-bit fields well...
988 This::template rela<8>(view, 0xff, value >> 16);
989 This::template rela<16>(view + 1, 0xffff, value);
990 return STATUS_OK;
991 }
992
993 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
994 static inline Status
995 pcrela32dbl(unsigned char* view, Address value, Address address)
996 {
997 Address reloc = value - address;
998 if ((reloc & 1) != 0)
999 {
1000 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
1001 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
1002 // return STATUS_OVERFLOW;
1003 }
1004 if (This::template has_overflow_signed<33>(reloc))
1005 return STATUS_OVERFLOW;
1006 reloc >>= 1;
1007 if (value < address && size == 32)
1008 reloc |= 0x80000000;
1009 This::template rela<32>(view, 0xffffffff, reloc);
1010 return STATUS_OK;
1011 }
1012
1013};
1014
1015// Initialize the PLT section.
1016
1017template<int size>
1018void
1019Output_data_plt_s390<size>::init(Layout* layout)
1020{
1021 this->rel_ = new Reloc_section(false);
1022 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1023 elfcpp::SHF_ALLOC, this->rel_,
1024 ORDER_DYNAMIC_PLT_RELOCS, false);
1025}
1026
1027template<int size>
1028void
1029Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
1030{
1031 os->set_entsize(plt_entry_size);
1032}
1033
1034// Add an entry to the PLT.
1035
1036template<int size>
1037void
1038Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
1039 Symbol* gsym)
1040{
1041 gold_assert(!gsym->has_plt_offset());
1042
1043 unsigned int plt_index;
1044 off_t plt_offset;
1045 section_offset_type got_offset;
1046
1047 unsigned int* pcount;
1048 unsigned int offset;
1049 unsigned int reserved;
1050 Output_section_data_build* got;
1051 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1052 && gsym->can_use_relative_reloc(false))
1053 {
1054 pcount = &this->irelative_count_;
1055 offset = 0;
1056 reserved = 0;
1057 got = this->got_irelative_;
1058 }
1059 else
1060 {
1061 pcount = &this->count_;
1062 offset = 1;
1063 reserved = 3;
1064 got = this->got_plt_;
1065 }
1066
1067 if (!this->is_data_size_valid())
1068 {
1069 // Note that when setting the PLT offset for a non-IRELATIVE
1070 // entry we skip the initial reserved PLT entry.
1071 plt_index = *pcount + offset;
1072 plt_offset = plt_index * plt_entry_size;
1073
1074 ++*pcount;
1075
1076 got_offset = (plt_index - offset + reserved) * size / 8;
1077 gold_assert(got_offset == got->current_data_size());
1078
1079 // Every PLT entry needs a GOT entry which points back to the PLT
1080 // entry (this will be changed by the dynamic linker, normally
1081 // lazily when the function is called).
1082 got->set_current_data_size(got_offset + size / 8);
1083 }
1084 else
1085 {
1086 // FIXME: This is probably not correct for IRELATIVE relocs.
1087
1088 // For incremental updates, find an available slot.
1089 plt_offset = this->free_list_.allocate(plt_entry_size,
1090 plt_entry_size, 0);
1091 if (plt_offset == -1)
1092 gold_fallback(_("out of patch space (PLT);"
1093 " relink with --incremental-full"));
1094
1095 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1096 // can be calculated from the PLT index, adjusting for the three
1097 // reserved entries at the beginning of the GOT.
1098 plt_index = plt_offset / plt_entry_size - 1;
1099 got_offset = (plt_index - offset + reserved) * size / 8;
1100 }
1101
1102 gsym->set_plt_offset(plt_offset);
1103
1104 // Every PLT entry needs a reloc.
1105 this->add_relocation(symtab, layout, gsym, got_offset);
1106
1107 // Note that we don't need to save the symbol. The contents of the
1108 // PLT are independent of which symbols are used. The symbols only
1109 // appear in the relocations.
1110}
1111
1112// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1113// the PLT offset.
1114
1115template<int size>
1116unsigned int
1117Output_data_plt_s390<size>::add_local_ifunc_entry(
1118 Symbol_table* symtab,
1119 Layout* layout,
1120 Sized_relobj_file<size, true>* relobj,
1121 unsigned int local_sym_index)
1122{
1123 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1124 ++this->irelative_count_;
1125
1126 section_offset_type got_offset = this->got_irelative_->current_data_size();
1127
1128 // Every PLT entry needs a GOT entry which points back to the PLT
1129 // entry.
1130 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1131
1132 // Every PLT entry needs a reloc.
1133 Reloc_section* rela = this->rela_irelative(symtab, layout);
1134 rela->add_symbolless_local_addend(relobj, local_sym_index,
1135 elfcpp::R_390_IRELATIVE,
1136 this->got_irelative_, got_offset, 0);
1137
1138 return plt_offset;
1139}
1140
1141// Add the relocation for a PLT entry.
1142
1143template<int size>
1144void
1145Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1146 Layout* layout,
1147 Symbol* gsym,
1148 unsigned int got_offset)
1149{
1150 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1151 && gsym->can_use_relative_reloc(false))
1152 {
1153 Reloc_section* rela = this->rela_irelative(symtab, layout);
1154 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1155 this->got_irelative_, got_offset, 0);
1156 }
1157 else
1158 {
1159 gsym->set_needs_dynsym_entry();
1160 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1161 got_offset, 0);
1162 }
1163}
1164
1165// Return where the IRELATIVE relocations should go in the PLT. These
1166// follow the JUMP_SLOT and the TLSDESC relocations.
1167
1168template<int size>
1169typename Output_data_plt_s390<size>::Reloc_section*
1170Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1171 Layout* layout)
1172{
1173 if (this->irelative_rel_ == NULL)
1174 {
1175 this->irelative_rel_ = new Reloc_section(false);
1176 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1177 elfcpp::SHF_ALLOC, this->irelative_rel_,
1178 ORDER_DYNAMIC_PLT_RELOCS, false);
1179 gold_assert(this->irelative_rel_->output_section()
1180 == this->rel_->output_section());
1181
1182 if (parameters->doing_static_link())
1183 {
1184 // A statically linked executable will only have a .rela.plt
1185 // section to hold R_390_IRELATIVE relocs for
1186 // STT_GNU_IFUNC symbols. The library will use these
1187 // symbols to locate the IRELATIVE relocs at program startup
1188 // time.
1189 symtab->define_in_output_data("__rela_iplt_start", NULL,
1190 Symbol_table::PREDEFINED,
1191 this->irelative_rel_, 0, 0,
1192 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1193 elfcpp::STV_HIDDEN, 0, false, true);
1194 symtab->define_in_output_data("__rela_iplt_end", NULL,
1195 Symbol_table::PREDEFINED,
1196 this->irelative_rel_, 0, 0,
1197 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1198 elfcpp::STV_HIDDEN, 0, true, true);
1199 }
1200 }
1201 return this->irelative_rel_;
1202}
1203
1204// Return the PLT address to use for a global symbol.
1205
1206template<int size>
1207uint64_t
1208Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1209{
1210 uint64_t offset = 0;
1211 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1212 && gsym->can_use_relative_reloc(false))
1213 offset = (this->count_ + 1) * plt_entry_size;
1214 return this->address() + offset + gsym->plt_offset();
1215}
1216
1217// Return the PLT address to use for a local symbol. These are always
1218// IRELATIVE relocs.
1219
1220template<int size>
1221uint64_t
1222Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1223 unsigned int r_sym)
1224{
1225 return (this->address()
1226 + (this->count_ + 1) * plt_entry_size
1227 + object->local_plt_offset(r_sym));
1228}
1229
1230// Set the final size.
1231template<int size>
1232void
1233Output_data_plt_s390<size>::set_final_data_size()
1234{
1235 unsigned int count = this->count_ + this->irelative_count_;
1236 this->set_data_size((count + 1) * plt_entry_size);
1237}
1238
1239template<int size>
1240const unsigned char
1241Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1242{
1243 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1244 0x0d, 0x10, // basr %r1, %r0
1245 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1246 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1247 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1248 0x07, 0xf1, // br %r1
1249 0x00, 0x00, // padding
1250 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1251 0x00, 0x00, 0x00, 0x00, // padding
1252};
1253
1254template<int size>
1255const unsigned char
1256Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1257{
1258 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1259 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1260 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1261 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1262 0x07, 0xf1, // br %r1
1263 0x00, 0x00, // padding
1264 0x00, 0x00, 0x00, 0x00, // padding
1265 0x00, 0x00, 0x00, 0x00, // padding
1266 0x00, 0x00, 0x00, 0x00, // padding
1267};
1268
1269template<int size>
1270const unsigned char
1271Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1272{
1273 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1274 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1275 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1276 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1277 0x07, 0xf1, // br %r1
1278 0x07, 0x00, // nopr
1279 0x07, 0x00, // nopr
1280 0x07, 0x00, // nopr
1281};
1282
1283template<int size>
1284void
1285Output_data_plt_s390<size>::fill_first_plt_entry(
1286 unsigned char* pov,
1287 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1288 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1289{
1290 if (size == 64)
1291 {
1292 memcpy(pov, first_plt_entry_64, plt_entry_size);
1293 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1294 }
1295 else if (!parameters->options().output_is_position_independent())
1296 {
1297 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1298 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1299 }
1300 else
1301 {
1302 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1303 }
1304}
1305
1306template<int size>
1307const unsigned char
1308Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1309{
1310 // first part
1311 0x0d, 0x10, // basr %r1, %r0
1312 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1313 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1314 0x07, 0xf1, // br %r1
1315 // second part
1316 0x0d, 0x10, // basr %r1, %r0
1317 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1318 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1319 0x00, 0x00, // padding
1320 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1321 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1322};
1323
1324template<int size>
1325const unsigned char
1326Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1327{
1328 // first part
1329 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1330 0x07, 0xf1, // br %r1
1331 0x00, 0x00, // padding
1332 0x00, 0x00, 0x00, 0x00, // padding
1333 // second part
1334 0x0d, 0x10, // basr %r1, %r0
1335 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1336 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1337 0x00, 0x00, // padding
1338 0x00, 0x00, 0x00, 0x00, // padding
1339 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1340};
1341
1342template<int size>
1343const unsigned char
1344Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1345{
1346 // first part
1347 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1348 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1349 0x07, 0xf1, // br %r1
1350 0x00, 0x00, // padding
1351 // second part
1352 0x0d, 0x10, // basr %r1, %r0
1353 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1354 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1355 0x00, 0x00, // padding
1356 0x00, 0x00, 0x00, 0x00, // padding
1357 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1358};
1359
1360template<int size>
1361const unsigned char
1362Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1363{
1364 // first part
1365 0x0d, 0x10, // basr %r1, %r0
1366 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1367 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1368 0x07, 0xf1, // br %r1
1369 // second part
1370 0x0d, 0x10, // basr %r1, %r0
1371 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1372 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1373 0x00, 0x00, // padding
1374 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1375 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1376};
1377
1378template<int size>
1379const unsigned char
1380Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1381{
1382 // first part
1383 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1384 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1385 0x07, 0xf1, // br %r1
1386 // second part
1387 0x0d, 0x10, // basr %r1, %r0
1388 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1389 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1390 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1391};
1392
1393template<int size>
1394unsigned int
1395Output_data_plt_s390<size>::fill_plt_entry(
1396 unsigned char* pov,
1397 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1398 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1399 unsigned int got_offset,
1400 unsigned int plt_offset,
1401 unsigned int plt_rel_offset)
1402{
1403 if (size == 64)
1404 {
1405 memcpy(pov, plt_entry_64, plt_entry_size);
1406 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1407 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1408 }
1409 else
1410 {
1411 if (!parameters->options().output_is_position_independent())
1412 {
1413 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1414 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1415 }
1416 else
1417 {
1418 if (got_offset < 0x1000)
1419 {
1420 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1421 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1422 }
1423 else if (got_offset < 0x8000)
1424 {
1425 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1426 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1427 }
1428 else
1429 {
1430 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1431 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1432 }
1433 }
1434 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1435 if (plt_offset >= 0x10000)
1436 {
1437 // Would overflow pcrela16dbl - aim at the farthest previous jump
1438 // we can reach.
1439 if (plt_offset > 0x10000)
1440 {
1441 // Use the full range of pcrel16dbl.
1442 target = plt_address + plt_offset - 0x10000 + 18;
1443 }
1444 else
1445 {
1446 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1447 // of first_plt_entry, which doesn't have the jump back like the others.
1448 // Aim at the next entry instead.
1449 target = plt_address + plt_offset - 0xffe0 + 18;
1450 }
1451 }
1452 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1453 }
1454 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1455 if (size == 64)
1456 return 14;
1457 else
1458 return 12;
1459}
1460
1461// The .eh_frame unwind information for the PLT.
1462
1463template<>
1464const unsigned char
1465Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1466{
1467 1, // CIE version.
1468 'z', // Augmentation: augmentation size included.
1469 'R', // Augmentation: FDE encoding included.
1470 '\0', // End of augmentation string.
1471 1, // Code alignment factor.
1472 0x7c, // Data alignment factor.
1473 14, // Return address column.
1474 1, // Augmentation size.
1475 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1476 | elfcpp::DW_EH_PE_sdata4),
1477 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1478};
1479
1480template<>
1481const unsigned char
1482Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1483{
1484 1, // CIE version.
1485 'z', // Augmentation: augmentation size included.
1486 'R', // Augmentation: FDE encoding included.
1487 '\0', // End of augmentation string.
1488 1, // Code alignment factor.
1489 0x78, // Data alignment factor.
1490 14, // Return address column.
1491 1, // Augmentation size.
1492 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1493 | elfcpp::DW_EH_PE_sdata4),
1494 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1495};
1496
1497template<int size>
1498const unsigned char
1499Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1500{
1501 0, 0, 0, 0, // Replaced with offset to .plt.
1502 0, 0, 0, 0, // Replaced with size of .plt.
1503 0, // Augmentation size.
1504 elfcpp::DW_CFA_nop,
1505 elfcpp::DW_CFA_nop,
1506 elfcpp::DW_CFA_nop
1507};
1508
1509// Write out the PLT. This uses the hand-coded instructions above,
1510// and adjusts them as needed.
1511
1512template<int size>
1513void
1514Output_data_plt_s390<size>::do_write(Output_file* of)
1515{
1516 const off_t offset = this->offset();
1517 const section_size_type oview_size =
1518 convert_to_section_size_type(this->data_size());
1519 unsigned char* const oview = of->get_output_view(offset, oview_size);
1520
1521 const off_t got_file_offset = this->got_plt_->offset();
1522 gold_assert(parameters->incremental_update()
1523 || (got_file_offset + this->got_plt_->data_size()
1524 == this->got_irelative_->offset()));
1525 const section_size_type got_size =
1526 convert_to_section_size_type(this->got_plt_->data_size()
1527 + this->got_irelative_->data_size());
1528 unsigned char* const got_view = of->get_output_view(got_file_offset,
1529 got_size);
1530
1531 unsigned char* pov = oview;
1532
1533 // The base address of the .plt section.
1534 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1535 // The base address of the PLT portion of the .got section,
1536 // which is where the GOT pointer will point, and where the
1537 // three reserved GOT entries are located.
1538 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1539 = this->got_plt_->address();
1540
1541 this->fill_first_plt_entry(pov, got_address, plt_address);
1542 pov += this->get_plt_entry_size();
1543
1544 unsigned char* got_pov = got_view;
1545
1546 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1547
1548 unsigned int plt_offset = this->get_plt_entry_size();
1549 unsigned int plt_rel_offset = 0;
1550 unsigned int got_offset = 3 * size / 8;
1551 const unsigned int count = this->count_ + this->irelative_count_;
1552 // The first three entries in the GOT are reserved, and are written
1553 // by Output_data_got_plt_s390::do_write.
1554 got_pov += 3 * size / 8;
1555
1556 for (unsigned int plt_index = 0;
1557 plt_index < count;
1558 ++plt_index,
1559 pov += plt_entry_size,
1560 got_pov += size / 8,
1561 plt_offset += plt_entry_size,
1562 plt_rel_offset += rel_size,
1563 got_offset += size / 8)
1564 {
1565 // Set and adjust the PLT entry itself.
1566 unsigned int lazy_offset = this->fill_plt_entry(pov,
1567 got_address, plt_address,
1568 got_offset, plt_offset,
1569 plt_rel_offset);
1570
1571 // Set the entry in the GOT.
1572 elfcpp::Swap<size, true>::writeval(got_pov,
1573 plt_address + plt_offset + lazy_offset);
1574 }
1575
1576 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1577 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1578
1579 of->write_output_view(offset, oview_size, oview);
1580 of->write_output_view(got_file_offset, got_size, got_view);
1581}
1582
1583// Get the GOT section, creating it if necessary.
1584
1585template<int size>
1586Output_data_got<size, true>*
1587Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1588{
1589 if (this->got_ == NULL)
1590 {
1591 gold_assert(symtab != NULL && layout != NULL);
1592
1593 // When using -z now, we can treat .got as a relro section.
1594 // Without -z now, it is modified after program startup by lazy
1595 // PLT relocations.
1596 bool is_got_relro = parameters->options().now();
1597 Output_section_order got_order = (is_got_relro
1598 ? ORDER_RELRO_LAST
1599 : ORDER_DATA);
1600
1601 // The old GNU linker creates a .got.plt section. We just
1602 // create another set of data in the .got section. Note that we
1603 // always create a PLT if we create a GOT, although the PLT
1604 // might be empty.
1605 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1606 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1607 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1608 this->got_plt_, got_order, is_got_relro);
1609
1610 // The first three entries are reserved.
1611 this->got_plt_->set_current_data_size(3 * size / 8);
1612
1613 // If there are any IRELATIVE relocations, they get GOT entries
1614 // in .got.plt after the jump slot entries.
1615 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1616 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1617 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1618 this->got_irelative_,
1619 got_order, is_got_relro);
1620
1621 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1622 // .got.plt sections in output. The output .got section contains both
1623 // PLT and non-PLT GOT entries.
1624 this->got_ = new Output_data_got<size, true>();
1625
1626 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1627 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1628 this->got_, got_order, is_got_relro);
1629
1630 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1631 this->global_offset_table_ =
1632 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1633 Symbol_table::PREDEFINED,
1634 this->got_plt_,
1635 0, 0, elfcpp::STT_OBJECT,
1636 elfcpp::STB_LOCAL,
1637 elfcpp::STV_HIDDEN, 0,
1638 false, false);
1639
1640 }
1641 return this->got_;
1642}
1643
1644// Get the dynamic reloc section, creating it if necessary.
1645
1646template<int size>
1647typename Target_s390<size>::Reloc_section*
1648Target_s390<size>::rela_dyn_section(Layout* layout)
1649{
1650 if (this->rela_dyn_ == NULL)
1651 {
1652 gold_assert(layout != NULL);
1653 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1654 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1655 elfcpp::SHF_ALLOC, this->rela_dyn_,
1656 ORDER_DYNAMIC_RELOCS, false);
1657 }
1658 return this->rela_dyn_;
1659}
1660
1661// Get the section to use for IRELATIVE relocs, creating it if
1662// necessary. These go in .rela.dyn, but only after all other dynamic
1663// relocations. They need to follow the other dynamic relocations so
1664// that they can refer to global variables initialized by those
1665// relocs.
1666
1667template<int size>
1668typename Target_s390<size>::Reloc_section*
1669Target_s390<size>::rela_irelative_section(Layout* layout)
1670{
1671 if (this->rela_irelative_ == NULL)
1672 {
1673 // Make sure we have already created the dynamic reloc section.
1674 this->rela_dyn_section(layout);
1675 this->rela_irelative_ = new Reloc_section(false);
1676 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1677 elfcpp::SHF_ALLOC, this->rela_irelative_,
1678 ORDER_DYNAMIC_RELOCS, false);
1679 gold_assert(this->rela_dyn_->output_section()
1680 == this->rela_irelative_->output_section());
1681 }
1682 return this->rela_irelative_;
1683}
1684
1685// Write the first three reserved words of the .got.plt section.
1686// The remainder of the section is written while writing the PLT
1687// in Output_data_plt_s390::do_write.
1688
1689template<int size>
1690void
1691Output_data_got_plt_s390<size>::do_write(Output_file* of)
1692{
1693 // The first entry in the GOT is the address of the .dynamic section
1694 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1695 // We saved space for them when we created the section in
1696 // Target_x86_64::got_section.
1697 const off_t got_file_offset = this->offset();
1698 gold_assert(this->data_size() >= 3 * size / 8);
1699 unsigned char* const got_view =
1700 of->get_output_view(got_file_offset, 3 * size / 8);
1701 Output_section* dynamic = this->layout_->dynamic_section();
1702 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1703 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1704 memset(got_view + size / 8, 0, 2 * size / 8);
1705 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1706}
1707
1708// Create the PLT section.
1709
1710template<int size>
1711void
1712Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1713{
1714 if (this->plt_ == NULL)
1715 {
1716 // Create the GOT sections first.
1717 this->got_section(symtab, layout);
1718
1719 // Ensure that .rela.dyn always appears before .rela.plt This is
1720 // necessary due to how, on 32-bit S/390 and some other targets,
1721 // .rela.dyn needs to include .rela.plt in it's range.
1722 this->rela_dyn_section(layout);
1723
1724 this->plt_ = new Output_data_plt_s390<size>(layout,
1725 this->got_, this->got_plt_, this->got_irelative_);
1726
1727 // Add unwind information if requested.
1728 if (parameters->options().ld_generated_unwind_info())
1729 this->plt_->add_eh_frame(layout);
1730
1731 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1732 (elfcpp::SHF_ALLOC
1733 | elfcpp::SHF_EXECINSTR),
1734 this->plt_, ORDER_PLT, false);
1735
1736 // Make the sh_info field of .rela.plt point to .plt.
1737 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1738 rela_plt_os->set_info_section(this->plt_->output_section());
1739 }
1740}
1741
1742// Create a PLT entry for a global symbol.
1743
1744template<int size>
1745void
1746Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1747 Symbol* gsym)
1748{
1749 if (gsym->has_plt_offset())
1750 return;
1751
1752 if (this->plt_ == NULL)
1753 this->make_plt_section(symtab, layout);
1754
1755 this->plt_->add_entry(symtab, layout, gsym);
1756}
1757
1758// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1759
1760template<int size>
1761void
1762Target_s390<size>::make_local_ifunc_plt_entry(
1763 Symbol_table* symtab, Layout* layout,
1764 Sized_relobj_file<size, true>* relobj,
1765 unsigned int local_sym_index)
1766{
1767 if (relobj->local_has_plt_offset(local_sym_index))
1768 return;
1769 if (this->plt_ == NULL)
1770 this->make_plt_section(symtab, layout);
1771 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1772 relobj,
1773 local_sym_index);
1774 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1775}
1776
1777// Return the number of entries in the PLT.
1778
1779template<int size>
1780unsigned int
1781Target_s390<size>::plt_entry_count() const
1782{
1783 if (this->plt_ == NULL)
1784 return 0;
1785 return this->plt_->entry_count();
1786}
1787
1788// Return the offset of the first non-reserved PLT entry.
1789
1790template<int size>
1791unsigned int
1792Target_s390<size>::first_plt_entry_offset() const
1793{
1794 return this->plt_->first_plt_entry_offset();
1795}
1796
1797// Return the size of each PLT entry.
1798
1799template<int size>
1800unsigned int
1801Target_s390<size>::plt_entry_size() const
1802{
1803 return this->plt_->get_plt_entry_size();
1804}
1805
1806// Create the GOT and PLT sections for an incremental update.
1807
1808template<int size>
1809Output_data_got_base*
1810Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1811 Layout* layout,
1812 unsigned int got_count,
1813 unsigned int plt_count)
1814{
1815 gold_assert(this->got_ == NULL);
1816
1817 // Add the three reserved entries.
1818 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1819 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1820 (elfcpp::SHF_ALLOC
1821 | elfcpp::SHF_WRITE),
1822 this->got_plt_, ORDER_NON_RELRO_FIRST,
1823 false);
1824
1825 // If there are any IRELATIVE relocations, they get GOT entries in
1826 // .got.plt after the jump slot entries.
1827 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1828 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1829 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1830 this->got_irelative_,
1831 ORDER_NON_RELRO_FIRST, false);
1832
1833 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1834 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1835 (elfcpp::SHF_ALLOC
1836 | elfcpp::SHF_WRITE),
1837 this->got_, ORDER_RELRO_LAST,
1838 true);
1839
1840 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1841 this->global_offset_table_ =
1842 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1843 Symbol_table::PREDEFINED,
1844 this->got_plt_,
1845 0, 0, elfcpp::STT_OBJECT,
1846 elfcpp::STB_LOCAL,
1847 elfcpp::STV_HIDDEN, 0,
1848 false, false);
1849
1850 // Create the PLT section.
1851 this->plt_ = new Output_data_plt_s390<size>(layout,
1852 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1853
1854 // Add unwind information if requested.
1855 if (parameters->options().ld_generated_unwind_info())
1856 this->plt_->add_eh_frame(layout);
1857
1858 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1859 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1860 this->plt_, ORDER_PLT, false);
1861
1862 // Make the sh_info field of .rela.plt point to .plt.
1863 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1864 rela_plt_os->set_info_section(this->plt_->output_section());
1865
1866 // Create the rela_dyn section.
1867 this->rela_dyn_section(layout);
1868
1869 return this->got_;
1870}
1871
1872// Reserve a GOT entry for a local symbol, and regenerate any
1873// necessary dynamic relocations.
1874
1875template<int size>
1876void
1877Target_s390<size>::reserve_local_got_entry(
1878 unsigned int got_index,
1879 Sized_relobj<size, true>* obj,
1880 unsigned int r_sym,
1881 unsigned int got_type)
1882{
1883 unsigned int got_offset = got_index * size / 8;
1884 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1885
1886 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1887 switch (got_type)
1888 {
1889 case GOT_TYPE_STANDARD:
1890 if (parameters->options().output_is_position_independent())
1891 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1892 this->got_, got_offset, 0, false);
1893 break;
1894 case GOT_TYPE_TLS_OFFSET:
1895 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1896 this->got_, got_offset, 0);
1897 break;
1898 case GOT_TYPE_TLS_PAIR:
1899 this->got_->reserve_slot(got_index + 1);
1900 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1901 this->got_, got_offset, 0);
1902 break;
1903 default:
1904 gold_unreachable();
1905 }
1906}
1907
1908// Reserve a GOT entry for a global symbol, and regenerate any
1909// necessary dynamic relocations.
1910
1911template<int size>
1912void
1913Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1914 Symbol* gsym,
1915 unsigned int got_type)
1916{
1917 unsigned int got_offset = got_index * size / 8;
1918 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1919
1920 this->got_->reserve_global(got_index, gsym, got_type);
1921 switch (got_type)
1922 {
1923 case GOT_TYPE_STANDARD:
1924 if (!gsym->final_value_is_known())
1925 {
1926 if (gsym->is_from_dynobj()
1927 || gsym->is_undefined()
1928 || gsym->is_preemptible()
1929 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1930 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1931 this->got_, got_offset, 0);
1932 else
1933 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1934 this->got_, got_offset, 0, false);
1935 }
1936 break;
1937 case GOT_TYPE_TLS_OFFSET:
1938 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1939 this->got_, got_offset, 0, false);
1940 break;
1941 case GOT_TYPE_TLS_PAIR:
1942 this->got_->reserve_slot(got_index + 1);
1943 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1944 this->got_, got_offset, 0, false);
1945 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1946 this->got_, got_offset + size / 8, 0, false);
1947 break;
1948 default:
1949 gold_unreachable();
1950 }
1951}
1952
1953// Register an existing PLT entry for a global symbol.
1954
1955template<int size>
1956void
1957Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1958 Layout* layout,
1959 unsigned int plt_index,
1960 Symbol* gsym)
1961{
1962 gold_assert(this->plt_ != NULL);
1963 gold_assert(!gsym->has_plt_offset());
1964
1965 this->plt_->reserve_slot(plt_index);
1966
1967 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1968
1969 unsigned int got_offset = (plt_index + 3) * size / 8;
1970 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1971}
1972
1973// Force a COPY relocation for a given symbol.
1974
1975template<int size>
1976void
1977Target_s390<size>::emit_copy_reloc(
1978 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1979{
1980 this->copy_relocs_.emit_copy_reloc(symtab,
1981 symtab->get_sized_symbol<size>(sym),
1982 os,
1983 offset,
1984 this->rela_dyn_section(NULL));
1985}
1986
1987// Create a GOT entry for the TLS module index.
1988
1989template<int size>
1990unsigned int
1991Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1992 Sized_relobj_file<size, true>* object)
1993{
1994 if (this->got_mod_index_offset_ == -1U)
1995 {
1996 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1997 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1998 Output_data_got<size, true>* got = this->got_section(symtab, layout);
1999 unsigned int got_offset = got->add_constant(0);
2000 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
2001 got_offset, 0);
2002 got->add_constant(0);
2003 this->got_mod_index_offset_ = got_offset;
2004 }
2005 return this->got_mod_index_offset_;
2006}
2007
2008// Optimize the TLS relocation type based on what we know about the
2009// symbol. IS_FINAL is true if the final address of this symbol is
2010// known at link time.
2011
2012template<int size>
2013tls::Tls_optimization
2014Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
2015{
2016 // If we are generating a shared library, then we can't do anything
2017 // in the linker.
2018 if (parameters->options().shared())
2019 return tls::TLSOPT_NONE;
2020
2021 switch (r_type)
2022 {
2023 case elfcpp::R_390_TLS_GD32:
2024 case elfcpp::R_390_TLS_GD64:
2025 case elfcpp::R_390_TLS_GDCALL:
2026 // These are General-Dynamic which permits fully general TLS
2027 // access. Since we know that we are generating an executable,
2028 // we can convert this to Initial-Exec. If we also know that
2029 // this is a local symbol, we can further switch to Local-Exec.
2030 if (is_final)
2031 return tls::TLSOPT_TO_LE;
2032 return tls::TLSOPT_TO_IE;
2033
2034 case elfcpp::R_390_TLS_LDM32:
2035 case elfcpp::R_390_TLS_LDM64:
2036 case elfcpp::R_390_TLS_LDO32:
2037 case elfcpp::R_390_TLS_LDO64:
2038 case elfcpp::R_390_TLS_LDCALL:
2039 // This is Local-Dynamic, which refers to a local symbol in the
2040 // dynamic TLS block. Since we know that we generating an
2041 // executable, we can switch to Local-Exec.
2042 return tls::TLSOPT_TO_LE;
2043
2044 case elfcpp::R_390_TLS_IE32:
2045 case elfcpp::R_390_TLS_IE64:
2046 case elfcpp::R_390_TLS_GOTIE32:
2047 case elfcpp::R_390_TLS_GOTIE64:
2048 case elfcpp::R_390_TLS_LOAD:
2049 // These are Initial-Exec relocs which get the thread offset
2050 // from the GOT. If we know that we are linking against the
2051 // local symbol, we can switch to Local-Exec, which links the
2052 // thread offset into the instruction.
2053 if (is_final)
2054 return tls::TLSOPT_TO_LE;
2055 return tls::TLSOPT_NONE;
2056
2057 case elfcpp::R_390_TLS_GOTIE12:
2058 case elfcpp::R_390_TLS_IEENT:
2059 case elfcpp::R_390_TLS_GOTIE20:
2060 // These are Initial-Exec, but cannot be optimized.
2061 return tls::TLSOPT_NONE;
2062
2063 case elfcpp::R_390_TLS_LE32:
2064 case elfcpp::R_390_TLS_LE64:
2065 // When we already have Local-Exec, there is nothing further we
2066 // can do.
2067 return tls::TLSOPT_NONE;
2068
2069 default:
2070 gold_unreachable();
2071 }
2072}
2073
2074// Get the Reference_flags for a particular relocation.
2075
2076template<int size>
2077int
2078Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2079{
2080 switch (r_type)
2081 {
2082 case elfcpp::R_390_NONE:
2083 case elfcpp::R_390_GNU_VTINHERIT:
2084 case elfcpp::R_390_GNU_VTENTRY:
2085 case elfcpp::R_390_GOTPC:
2086 case elfcpp::R_390_GOTPCDBL:
2087 // No symbol reference.
2088 return 0;
2089
2090 case elfcpp::R_390_64:
2091 case elfcpp::R_390_32:
2092 case elfcpp::R_390_20:
2093 case elfcpp::R_390_16:
2094 case elfcpp::R_390_12:
2095 case elfcpp::R_390_8:
2096 return Symbol::ABSOLUTE_REF;
2097
2098 case elfcpp::R_390_PC12DBL:
2099 case elfcpp::R_390_PC16:
2100 case elfcpp::R_390_PC16DBL:
2101 case elfcpp::R_390_PC24DBL:
2102 case elfcpp::R_390_PC32:
2103 case elfcpp::R_390_PC32DBL:
2104 case elfcpp::R_390_PC64:
2105 case elfcpp::R_390_GOTOFF16:
2106 case elfcpp::R_390_GOTOFF32:
2107 case elfcpp::R_390_GOTOFF64:
2108 return Symbol::RELATIVE_REF;
2109
2110 case elfcpp::R_390_PLT12DBL:
2111 case elfcpp::R_390_PLT16DBL:
2112 case elfcpp::R_390_PLT24DBL:
2113 case elfcpp::R_390_PLT32:
2114 case elfcpp::R_390_PLT32DBL:
2115 case elfcpp::R_390_PLT64:
2116 case elfcpp::R_390_PLTOFF16:
2117 case elfcpp::R_390_PLTOFF32:
2118 case elfcpp::R_390_PLTOFF64:
2119 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2120
2121 case elfcpp::R_390_GOT12:
2122 case elfcpp::R_390_GOT16:
2123 case elfcpp::R_390_GOT20:
2124 case elfcpp::R_390_GOT32:
2125 case elfcpp::R_390_GOT64:
2126 case elfcpp::R_390_GOTENT:
2127 case elfcpp::R_390_GOTPLT12:
2128 case elfcpp::R_390_GOTPLT16:
2129 case elfcpp::R_390_GOTPLT20:
2130 case elfcpp::R_390_GOTPLT32:
2131 case elfcpp::R_390_GOTPLT64:
2132 case elfcpp::R_390_GOTPLTENT:
2133 // Absolute in GOT.
2134 return Symbol::ABSOLUTE_REF;
2135
2136 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2137 case elfcpp::R_390_TLS_GD64:
2138 case elfcpp::R_390_TLS_GDCALL:
2139 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2140 case elfcpp::R_390_TLS_LDM64:
2141 case elfcpp::R_390_TLS_LDO32:
2142 case elfcpp::R_390_TLS_LDO64:
2143 case elfcpp::R_390_TLS_LDCALL:
2144 case elfcpp::R_390_TLS_IE32: // Initial-exec
2145 case elfcpp::R_390_TLS_IE64:
2146 case elfcpp::R_390_TLS_IEENT:
2147 case elfcpp::R_390_TLS_GOTIE12:
2148 case elfcpp::R_390_TLS_GOTIE20:
2149 case elfcpp::R_390_TLS_GOTIE32:
2150 case elfcpp::R_390_TLS_GOTIE64:
2151 case elfcpp::R_390_TLS_LOAD:
2152 case elfcpp::R_390_TLS_LE32: // Local-exec
2153 case elfcpp::R_390_TLS_LE64:
2154 return Symbol::TLS_REF;
2155
2156 case elfcpp::R_390_COPY:
2157 case elfcpp::R_390_GLOB_DAT:
2158 case elfcpp::R_390_JMP_SLOT:
2159 case elfcpp::R_390_RELATIVE:
2160 case elfcpp::R_390_IRELATIVE:
2161 case elfcpp::R_390_TLS_TPOFF:
2162 case elfcpp::R_390_TLS_DTPOFF:
2163 case elfcpp::R_390_TLS_DTPMOD:
2164 default:
2165 // Not expected. We will give an error later.
2166 return 0;
2167 }
2168}
2169
2170// Report an unsupported relocation against a local symbol.
2171
2172template<int size>
2173void
2174Target_s390<size>::Scan::unsupported_reloc_local(
2175 Sized_relobj_file<size, true>* object,
2176 unsigned int r_type)
2177{
2178 gold_error(_("%s: unsupported reloc %u against local symbol"),
2179 object->name().c_str(), r_type);
2180}
2181
2182// We are about to emit a dynamic relocation of type R_TYPE. If the
2183// dynamic linker does not support it, issue an error.
2184
2185template<int size>
2186void
2187Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2188{
2189 gold_assert(r_type != elfcpp::R_390_NONE);
2190
2191 if (size == 64)
2192 {
2193 switch (r_type)
2194 {
2195 // These are the relocation types supported by glibc for s390 64-bit.
2196 case elfcpp::R_390_RELATIVE:
2197 case elfcpp::R_390_IRELATIVE:
2198 case elfcpp::R_390_COPY:
2199 case elfcpp::R_390_GLOB_DAT:
2200 case elfcpp::R_390_JMP_SLOT:
2201 case elfcpp::R_390_TLS_DTPMOD:
2202 case elfcpp::R_390_TLS_DTPOFF:
2203 case elfcpp::R_390_TLS_TPOFF:
2204 case elfcpp::R_390_8:
2205 case elfcpp::R_390_16:
2206 case elfcpp::R_390_32:
2207 case elfcpp::R_390_64:
2208 case elfcpp::R_390_PC16:
2209 case elfcpp::R_390_PC16DBL:
2210 case elfcpp::R_390_PC32:
2211 case elfcpp::R_390_PC32DBL:
2212 case elfcpp::R_390_PC64:
2213 return;
2214
2215 default:
2216 break;
2217 }
2218 }
2219 else
2220 {
2221 switch (r_type)
2222 {
2223 // These are the relocation types supported by glibc for s390 32-bit.
2224 case elfcpp::R_390_RELATIVE:
2225 case elfcpp::R_390_IRELATIVE:
2226 case elfcpp::R_390_COPY:
2227 case elfcpp::R_390_GLOB_DAT:
2228 case elfcpp::R_390_JMP_SLOT:
2229 case elfcpp::R_390_TLS_DTPMOD:
2230 case elfcpp::R_390_TLS_DTPOFF:
2231 case elfcpp::R_390_TLS_TPOFF:
2232 case elfcpp::R_390_8:
2233 case elfcpp::R_390_16:
2234 case elfcpp::R_390_32:
2235 case elfcpp::R_390_PC16:
2236 case elfcpp::R_390_PC16DBL:
2237 case elfcpp::R_390_PC32:
2238 case elfcpp::R_390_PC32DBL:
2239 return;
2240
2241 default:
2242 break;
2243 }
2244 }
2245
2246 // This prevents us from issuing more than one error per reloc
2247 // section. But we can still wind up issuing more than one
2248 // error per object file.
2249 if (this->issued_non_pic_error_)
2250 return;
2251 gold_assert(parameters->options().output_is_position_independent());
2252 object->error(_("requires unsupported dynamic reloc; "
2253 "recompile with -fPIC"));
2254 this->issued_non_pic_error_ = true;
2255 return;
2256}
2257
2258// Return whether we need to make a PLT entry for a relocation of the
2259// given type against a STT_GNU_IFUNC symbol.
2260
2261template<int size>
2262bool
2263Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2264 Sized_relobj_file<size, true>* object,
2265 unsigned int r_type)
2266{
2267 int flags = Scan::get_reference_flags(r_type);
2268 if (flags & Symbol::TLS_REF)
2269 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2270 object->name().c_str(), r_type);
2271 return flags != 0;
2272}
2273
2274// Scan a relocation for a local symbol.
2275
2276template<int size>
2277inline void
2278Target_s390<size>::Scan::local(Symbol_table* symtab,
2279 Layout* layout,
2280 Target_s390<size>* target,
2281 Sized_relobj_file<size, true>* object,
2282 unsigned int data_shndx,
2283 Output_section* output_section,
2284 const elfcpp::Rela<size, true>& reloc,
2285 unsigned int r_type,
2286 const elfcpp::Sym<size, true>& lsym,
2287 bool is_discarded)
2288{
2289 if (is_discarded)
2290 return;
2291
2292 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2293 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2294
2295 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2296 {
2297 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2298 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2299 }
2300
2301 switch (r_type)
2302 {
2303 case elfcpp::R_390_NONE:
2304 case elfcpp::R_390_GNU_VTINHERIT:
2305 case elfcpp::R_390_GNU_VTENTRY:
2306 break;
2307
2308 case elfcpp::R_390_64:
2309 // If building a shared library (or a position-independent
2310 // executable), we need to create a dynamic relocation for this
2311 // location. The relocation applied at link time will apply the
2312 // link-time value, so we flag the location with an
2313 // R_390_RELATIVE relocation so the dynamic loader can
2314 // relocate it easily.
2315 if (parameters->options().output_is_position_independent() && size == 64)
2316 {
2317 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2318 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2319 rela_dyn->add_local_relative(object, r_sym,
2320 elfcpp::R_390_RELATIVE,
2321 output_section, data_shndx,
2322 reloc.get_r_offset(),
2323 reloc.get_r_addend(), is_ifunc);
2324 }
2325 break;
2326
2327 case elfcpp::R_390_32:
2328 case elfcpp::R_390_20:
2329 case elfcpp::R_390_16:
2330 case elfcpp::R_390_12:
2331 case elfcpp::R_390_8:
2332 if (parameters->options().output_is_position_independent())
2333 {
2334 if (size == 32 && r_type == elfcpp::R_390_32)
2335 {
2336 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2337 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2338 rela_dyn->add_local_relative(object, r_sym,
2339 elfcpp::R_390_RELATIVE,
2340 output_section, data_shndx,
2341 reloc.get_r_offset(),
2342 reloc.get_r_addend(), is_ifunc);
2343 break;
2344 }
2345
2346 check_non_pic(object, r_type);
2347
2348 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2349 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2350 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2351 rela_dyn->add_local(object, r_sym, r_type, output_section,
2352 data_shndx, reloc.get_r_offset(),
2353 reloc.get_r_addend());
2354 else
2355 {
2356 gold_assert(lsym.get_st_value() == 0);
2357 unsigned int shndx = lsym.get_st_shndx();
2358 bool is_ordinary;
2359 shndx = object->adjust_sym_shndx(r_sym, shndx,
2360 &is_ordinary);
2361 if (!is_ordinary)
2362 object->error(_("section symbol %u has bad shndx %u"),
2363 r_sym, shndx);
2364 else
2365 rela_dyn->add_local_section(object, shndx,
2366 r_type, output_section,
2367 data_shndx, reloc.get_r_offset(),
2368 reloc.get_r_addend());
2369 }
2370 }
2371 break;
2372
2373 case elfcpp::R_390_PC12DBL:
2374 case elfcpp::R_390_PC16:
2375 case elfcpp::R_390_PC16DBL:
2376 case elfcpp::R_390_PC24DBL:
2377 case elfcpp::R_390_PC32:
2378 case elfcpp::R_390_PC32DBL:
2379 case elfcpp::R_390_PC64:
2380 break;
2381
2382 case elfcpp::R_390_PLT12DBL:
2383 case elfcpp::R_390_PLT16DBL:
2384 case elfcpp::R_390_PLT24DBL:
2385 case elfcpp::R_390_PLT32:
2386 case elfcpp::R_390_PLT32DBL:
2387 case elfcpp::R_390_PLT64:
2388 // Since we know this is a local symbol, we can handle this as a
2389 // PC32 reloc.
2390 break;
2391
2392 case elfcpp::R_390_GOTPC:
2393 case elfcpp::R_390_GOTPCDBL:
2394 case elfcpp::R_390_GOTOFF16:
2395 case elfcpp::R_390_GOTOFF32:
2396 case elfcpp::R_390_GOTOFF64:
2397 case elfcpp::R_390_PLTOFF16:
2398 case elfcpp::R_390_PLTOFF32:
2399 case elfcpp::R_390_PLTOFF64:
2400 // We need a GOT section.
2401 target->got_section(symtab, layout);
2402 // For PLTOFF*, we'd normally want a PLT section, but since we
2403 // know this is a local symbol, no PLT is needed.
2404 break;
2405
2406 case elfcpp::R_390_GOT12:
2407 case elfcpp::R_390_GOT16:
2408 case elfcpp::R_390_GOT20:
2409 case elfcpp::R_390_GOT32:
2410 case elfcpp::R_390_GOT64:
2411 case elfcpp::R_390_GOTENT:
2412 case elfcpp::R_390_GOTPLT12:
2413 case elfcpp::R_390_GOTPLT16:
2414 case elfcpp::R_390_GOTPLT20:
2415 case elfcpp::R_390_GOTPLT32:
2416 case elfcpp::R_390_GOTPLT64:
2417 case elfcpp::R_390_GOTPLTENT:
2418 {
2419 // The symbol requires a GOT section.
2420 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2421
2422 // The symbol requires a GOT entry.
2423 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2424
2425 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2426 // lets function pointers compare correctly with shared
2427 // libraries. Otherwise we would need an IRELATIVE reloc.
2428 bool is_new;
2429 if (is_ifunc)
2430 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2431 else
2432 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2433 if (is_new)
2434 {
2435 // If we are generating a shared object, we need to add a
2436 // dynamic relocation for this symbol's GOT entry.
2437 if (parameters->options().output_is_position_independent())
2438 {
2439 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2440 unsigned int got_offset =
2441 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2442 rela_dyn->add_local_relative(object, r_sym,
2443 elfcpp::R_390_RELATIVE,
2444 got, got_offset, 0, is_ifunc);
2445 }
2446 }
2447 // For GOTPLT*, we'd normally want a PLT section, but since
2448 // we know this is a local symbol, no PLT is needed.
2449 }
2450 break;
2451
2452 case elfcpp::R_390_COPY:
2453 case elfcpp::R_390_GLOB_DAT:
2454 case elfcpp::R_390_JMP_SLOT:
2455 case elfcpp::R_390_RELATIVE:
2456 case elfcpp::R_390_IRELATIVE:
2457 // These are outstanding tls relocs, which are unexpected when linking
2458 case elfcpp::R_390_TLS_TPOFF:
2459 case elfcpp::R_390_TLS_DTPOFF:
2460 case elfcpp::R_390_TLS_DTPMOD:
2461 gold_error(_("%s: unexpected reloc %u in object file"),
2462 object->name().c_str(), r_type);
2463 break;
2464
2465 // These are initial tls relocs, which are expected when linking
2466 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2467 case elfcpp::R_390_TLS_GD64:
2468 case elfcpp::R_390_TLS_GDCALL:
2469 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2470 case elfcpp::R_390_TLS_LDM64:
2471 case elfcpp::R_390_TLS_LDO32:
2472 case elfcpp::R_390_TLS_LDO64:
2473 case elfcpp::R_390_TLS_LDCALL:
2474 case elfcpp::R_390_TLS_IE32: // Initial-exec
2475 case elfcpp::R_390_TLS_IE64:
2476 case elfcpp::R_390_TLS_IEENT:
2477 case elfcpp::R_390_TLS_GOTIE12:
2478 case elfcpp::R_390_TLS_GOTIE20:
2479 case elfcpp::R_390_TLS_GOTIE32:
2480 case elfcpp::R_390_TLS_GOTIE64:
2481 case elfcpp::R_390_TLS_LOAD:
2482 case elfcpp::R_390_TLS_LE32: // Local-exec
2483 case elfcpp::R_390_TLS_LE64:
2484 {
2485 bool output_is_shared = parameters->options().shared();
2486 const tls::Tls_optimization optimized_type
2487 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2488 r_type);
2489 switch (r_type)
2490 {
2491 case elfcpp::R_390_TLS_GD32: // General-dynamic
2492 case elfcpp::R_390_TLS_GD64:
2493 case elfcpp::R_390_TLS_GDCALL:
2494 if (optimized_type == tls::TLSOPT_NONE)
2495 {
2496 // Create a pair of GOT entries for the module index and
2497 // dtv-relative offset.
2498 Output_data_got<size, true>* got
2499 = target->got_section(symtab, layout);
2500 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2501 unsigned int shndx = lsym.get_st_shndx();
2502 bool is_ordinary;
2503 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2504 if (!is_ordinary)
2505 object->error(_("local symbol %u has bad shndx %u"),
2506 r_sym, shndx);
2507 else
2508 got->add_local_pair_with_rel(object, r_sym,
2509 shndx,
2510 GOT_TYPE_TLS_PAIR,
2511 target->rela_dyn_section(layout),
2512 elfcpp::R_390_TLS_DTPMOD);
2513 }
2514 else if (optimized_type != tls::TLSOPT_TO_LE)
2515 unsupported_reloc_local(object, r_type);
2516 break;
2517
2518 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2519 case elfcpp::R_390_TLS_LDM64:
2520 case elfcpp::R_390_TLS_LDCALL:
2521 if (optimized_type == tls::TLSOPT_NONE)
2522 {
2523 // Create a GOT entry for the module index.
2524 target->got_mod_index_entry(symtab, layout, object);
2525 }
2526 else if (optimized_type != tls::TLSOPT_TO_LE)
2527 unsupported_reloc_local(object, r_type);
2528 break;
2529
2530 case elfcpp::R_390_TLS_LDO32:
2531 case elfcpp::R_390_TLS_LDO64:
2532 break;
2533
2534 case elfcpp::R_390_TLS_IE32: // Initial-exec
2535 case elfcpp::R_390_TLS_IE64:
2536 // These two involve an absolute address
2537 if (parameters->options().shared()
2538 && optimized_type == tls::TLSOPT_NONE)
2539 {
2540 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2541 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2542 {
2543 // We need to create a dynamic relocation.
2544 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2545 unsigned int r_sym =
2546 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2547 rela_dyn->add_local_relative(object, r_sym,
2548 elfcpp::R_390_RELATIVE,
2549 output_section, data_shndx,
2550 reloc.get_r_offset(),
2551 reloc.get_r_addend(), false);
2552 }
2553 else
2554 {
2555 unsupported_reloc_local(object, r_type);
2556 }
2557 }
d8e90251 2558 // Fall through.
e79a4bad
MK
2559 case elfcpp::R_390_TLS_IEENT:
2560 case elfcpp::R_390_TLS_GOTIE12:
2561 case elfcpp::R_390_TLS_GOTIE20:
2562 case elfcpp::R_390_TLS_GOTIE32:
2563 case elfcpp::R_390_TLS_GOTIE64:
2564 case elfcpp::R_390_TLS_LOAD:
2565 layout->set_has_static_tls();
2566 if (optimized_type == tls::TLSOPT_NONE)
2567 {
2568 if (!output_is_shared)
2569 {
2570 // We're making an executable, and the symbol is local, but
2571 // we cannot optimize to LE. Make a const GOT entry instead.
2572 Output_data_got<size, true>* got
2573 = target->got_section(symtab, layout);
2574 unsigned int r_sym
2575 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2576 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2577 }
2578 else
2579 {
2580 // Create a GOT entry for the tp-relative offset.
2581 Output_data_got<size, true>* got
2582 = target->got_section(symtab, layout);
2583 unsigned int r_sym
2584 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2585 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2586 target->rela_dyn_section(layout),
2587 elfcpp::R_390_TLS_TPOFF);
2588 }
2589 }
2590 else if (optimized_type != tls::TLSOPT_TO_LE)
2591 unsupported_reloc_local(object, r_type);
2592 break;
2593
2594 case elfcpp::R_390_TLS_LE32: // Local-exec
2595 case elfcpp::R_390_TLS_LE64:
2596 layout->set_has_static_tls();
2597 if (output_is_shared)
2598 {
2599 // We need to create a dynamic relocation.
2600 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2601 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2602 {
2603 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2604 unsigned int r_sym
2605 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2606 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2607 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2608 output_section, data_shndx,
2609 reloc.get_r_offset(),
2610 reloc.get_r_addend());
2611 }
2612 else
2613 {
2614 unsupported_reloc_local(object, r_type);
2615 }
2616 }
2617 break;
2618
2619 default:
2620 gold_unreachable();
2621 }
2622 }
2623 break;
2624
2625 default:
2626 gold_error(_("%s: unsupported reloc %u against local symbol"),
2627 object->name().c_str(), r_type);
2628 break;
2629 }
2630}
2631
2632// Scan a relocation for a global symbol.
2633
2634template<int size>
2635inline void
2636Target_s390<size>::Scan::global(Symbol_table* symtab,
2637 Layout* layout,
2638 Target_s390<size>* target,
2639 Sized_relobj_file<size, true>* object,
2640 unsigned int data_shndx,
2641 Output_section* output_section,
2642 const elfcpp::Rela<size, true>& reloc,
2643 unsigned int r_type,
2644 Symbol* gsym)
2645{
2646 // A STT_GNU_IFUNC symbol may require a PLT entry.
2647 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2648 && this->reloc_needs_plt_for_ifunc(object, r_type))
2649 target->make_plt_entry(symtab, layout, gsym);
2650
2651 switch (r_type)
2652 {
2653 case elfcpp::R_390_NONE:
2654 case elfcpp::R_390_GNU_VTINHERIT:
2655 case elfcpp::R_390_GNU_VTENTRY:
2656 break;
2657
2658 case elfcpp::R_390_64:
2659 case elfcpp::R_390_32:
2660 case elfcpp::R_390_20:
2661 case elfcpp::R_390_16:
2662 case elfcpp::R_390_12:
2663 case elfcpp::R_390_8:
2664 {
2665 // Make a PLT entry if necessary.
2666 if (gsym->needs_plt_entry())
2667 {
2668 target->make_plt_entry(symtab, layout, gsym);
2669 // Since this is not a PC-relative relocation, we may be
2670 // taking the address of a function. In that case we need to
2671 // set the entry in the dynamic symbol table to the address of
2672 // the PLT entry.
2673 if (gsym->is_from_dynobj() && !parameters->options().shared())
2674 gsym->set_needs_dynsym_value();
2675 }
2676 // Make a dynamic relocation if necessary.
2677 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2678 {
2679 if (!parameters->options().output_is_position_independent()
2680 && gsym->may_need_copy_reloc())
2681 {
2682 target->copy_reloc(symtab, layout, object,
2683 data_shndx, output_section, gsym, reloc);
2684 }
2685 else if (((size == 64 && r_type == elfcpp::R_390_64)
2686 || (size == 32 && r_type == elfcpp::R_390_32))
2687 && gsym->type() == elfcpp::STT_GNU_IFUNC
2688 && gsym->can_use_relative_reloc(false)
2689 && !gsym->is_from_dynobj()
2690 && !gsym->is_undefined()
2691 && !gsym->is_preemptible())
2692 {
2693 // Use an IRELATIVE reloc for a locally defined
2694 // STT_GNU_IFUNC symbol. This makes a function
2695 // address in a PIE executable match the address in a
2696 // shared library that it links against.
2697 Reloc_section* rela_dyn =
2698 target->rela_irelative_section(layout);
2699 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2700 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2701 output_section, object,
2702 data_shndx,
2703 reloc.get_r_offset(),
2704 reloc.get_r_addend());
2705 }
2706 else if (((size == 64 && r_type == elfcpp::R_390_64)
2707 || (size == 32 && r_type == elfcpp::R_390_32))
2708 && gsym->can_use_relative_reloc(false))
2709 {
2710 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2711 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2712 output_section, object,
2713 data_shndx,
2714 reloc.get_r_offset(),
2715 reloc.get_r_addend(), false);
2716 }
2717 else
2718 {
2719 check_non_pic(object, r_type);
2720 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2721 rela_dyn->add_global(gsym, r_type, output_section, object,
2722 data_shndx, reloc.get_r_offset(),
2723 reloc.get_r_addend());
2724 }
2725 }
2726 }
2727 break;
2728
2729 case elfcpp::R_390_PC12DBL:
2730 case elfcpp::R_390_PC16:
2731 case elfcpp::R_390_PC16DBL:
2732 case elfcpp::R_390_PC24DBL:
2733 case elfcpp::R_390_PC32:
2734 case elfcpp::R_390_PC32DBL:
2735 case elfcpp::R_390_PC64:
2736 {
2737 // Make a PLT entry if necessary.
2738 if (gsym->needs_plt_entry())
2739 {
2740 target->make_plt_entry(symtab, layout, gsym);
2741 // larl is often used to take address of a function. Aim the
2742 // symbol at the PLT entry.
2743 if (gsym->is_from_dynobj() && !parameters->options().shared())
2744 gsym->set_needs_dynsym_value();
2745 }
2746 // Make a dynamic relocation if necessary.
2747 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2748 {
2749 if (parameters->options().output_is_executable()
2750 && gsym->may_need_copy_reloc())
2751 {
2752 target->copy_reloc(symtab, layout, object,
2753 data_shndx, output_section, gsym, reloc);
2754 }
2755 else
2756 {
2757 check_non_pic(object, r_type);
2758 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2759 rela_dyn->add_global(gsym, r_type, output_section, object,
2760 data_shndx, reloc.get_r_offset(),
2761 reloc.get_r_addend());
2762 }
2763 }
2764 }
2765 break;
2766
2767 case elfcpp::R_390_PLT12DBL:
2768 case elfcpp::R_390_PLT16DBL:
2769 case elfcpp::R_390_PLT24DBL:
2770 case elfcpp::R_390_PLT32:
2771 case elfcpp::R_390_PLT32DBL:
2772 case elfcpp::R_390_PLT64:
2773 // If the symbol is fully resolved, this is just a PC32 reloc.
2774 // Otherwise we need a PLT entry.
2775 if (gsym->final_value_is_known())
2776 break;
2777 // If building a shared library, we can also skip the PLT entry
2778 // if the symbol is defined in the output file and is protected
2779 // or hidden.
2780 if (gsym->is_defined()
2781 && !gsym->is_from_dynobj()
2782 && !gsym->is_preemptible())
2783 break;
2784 target->make_plt_entry(symtab, layout, gsym);
2785 break;
2786
2787 case elfcpp::R_390_GOTPC:
2788 case elfcpp::R_390_GOTPCDBL:
2789 case elfcpp::R_390_GOTOFF16:
2790 case elfcpp::R_390_GOTOFF32:
2791 case elfcpp::R_390_GOTOFF64:
2792 case elfcpp::R_390_PLTOFF16:
2793 case elfcpp::R_390_PLTOFF32:
2794 case elfcpp::R_390_PLTOFF64:
2795 // We need a GOT section.
2796 target->got_section(symtab, layout);
2797 // For PLTOFF*, we also need a PLT entry (but only if the
2798 // symbol is not fully resolved).
2799 if ((r_type == elfcpp::R_390_PLTOFF16
2800 || r_type == elfcpp::R_390_PLTOFF32
2801 || r_type == elfcpp::R_390_PLTOFF64)
2802 && !gsym->final_value_is_known())
2803 target->make_plt_entry(symtab, layout, gsym);
2804 break;
2805
2806 case elfcpp::R_390_GOT12:
2807 case elfcpp::R_390_GOT16:
2808 case elfcpp::R_390_GOT20:
2809 case elfcpp::R_390_GOT32:
2810 case elfcpp::R_390_GOT64:
2811 case elfcpp::R_390_GOTENT:
2812 case elfcpp::R_390_GOTPLT12:
2813 case elfcpp::R_390_GOTPLT16:
2814 case elfcpp::R_390_GOTPLT20:
2815 case elfcpp::R_390_GOTPLT32:
2816 case elfcpp::R_390_GOTPLT64:
2817 case elfcpp::R_390_GOTPLTENT:
2818 {
2819 // The symbol requires a GOT entry.
2820 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2821
2822 if (gsym->final_value_is_known())
2823 {
2824 // For a STT_GNU_IFUNC symbol we want the PLT address.
2825 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2826 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2827 else
2828 got->add_global(gsym, GOT_TYPE_STANDARD);
2829 }
2830 else
2831 {
2832 // If this symbol is not fully resolved, we need to add a
2833 // dynamic relocation for it.
2834 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2835
2836 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2837 //
2838 // 1) The symbol may be defined in some other module.
2839 //
2840 // 2) We are building a shared library and this is a
2841 // protected symbol; using GLOB_DAT means that the dynamic
2842 // linker can use the address of the PLT in the main
2843 // executable when appropriate so that function address
2844 // comparisons work.
2845 //
2846 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2847 // code, again so that function address comparisons work.
2848 if (gsym->is_from_dynobj()
2849 || gsym->is_undefined()
2850 || gsym->is_preemptible()
2851 || (gsym->visibility() == elfcpp::STV_PROTECTED
2852 && parameters->options().shared())
2853 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2854 && parameters->options().output_is_position_independent()))
2855 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2856 elfcpp::R_390_GLOB_DAT);
2857 else
2858 {
2859 // For a STT_GNU_IFUNC symbol we want to write the PLT
2860 // offset into the GOT, so that function pointer
2861 // comparisons work correctly.
2862 bool is_new;
2863 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2864 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2865 else
2866 {
2867 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2868 // Tell the dynamic linker to use the PLT address
2869 // when resolving relocations.
2870 if (gsym->is_from_dynobj()
2871 && !parameters->options().shared())
2872 gsym->set_needs_dynsym_value();
2873 }
2874 if (is_new)
2875 {
2876 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2877 rela_dyn->add_global_relative(gsym,
2878 elfcpp::R_390_RELATIVE,
2879 got, got_off, 0, false);
2880 }
2881 }
2882 }
2883 }
2884 break;
2885
2886 case elfcpp::R_390_COPY:
2887 case elfcpp::R_390_GLOB_DAT:
2888 case elfcpp::R_390_JMP_SLOT:
2889 case elfcpp::R_390_RELATIVE:
2890 case elfcpp::R_390_IRELATIVE:
2891 // These are outstanding tls relocs, which are unexpected when linking
2892 case elfcpp::R_390_TLS_TPOFF:
2893 case elfcpp::R_390_TLS_DTPOFF:
2894 case elfcpp::R_390_TLS_DTPMOD:
2895 gold_error(_("%s: unexpected reloc %u in object file"),
2896 object->name().c_str(), r_type);
2897 break;
2898
2899 // These are initial tls relocs, which are expected for global()
2900 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2901 case elfcpp::R_390_TLS_GD64:
2902 case elfcpp::R_390_TLS_GDCALL:
2903 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2904 case elfcpp::R_390_TLS_LDM64:
2905 case elfcpp::R_390_TLS_LDO32:
2906 case elfcpp::R_390_TLS_LDO64:
2907 case elfcpp::R_390_TLS_LDCALL:
2908 case elfcpp::R_390_TLS_IE32: // Initial-exec
2909 case elfcpp::R_390_TLS_IE64:
2910 case elfcpp::R_390_TLS_IEENT:
2911 case elfcpp::R_390_TLS_GOTIE12:
2912 case elfcpp::R_390_TLS_GOTIE20:
2913 case elfcpp::R_390_TLS_GOTIE32:
2914 case elfcpp::R_390_TLS_GOTIE64:
2915 case elfcpp::R_390_TLS_LOAD:
2916 case elfcpp::R_390_TLS_LE32: // Local-exec
2917 case elfcpp::R_390_TLS_LE64:
2918 {
2919 // For the optimizable Initial-Exec model, we can treat undef symbols
2920 // as final when building an executable.
2921 const bool is_final = (gsym->final_value_is_known() ||
2922 ((r_type == elfcpp::R_390_TLS_IE32 ||
2923 r_type == elfcpp::R_390_TLS_IE64 ||
2924 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2925 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2926 gsym->is_undefined() &&
2927 parameters->options().output_is_executable()));
2928 const tls::Tls_optimization optimized_type
2929 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2930 switch (r_type)
2931 {
2932 case elfcpp::R_390_TLS_GD32: // General-dynamic
2933 case elfcpp::R_390_TLS_GD64:
2934 case elfcpp::R_390_TLS_GDCALL:
2935 if (optimized_type == tls::TLSOPT_NONE)
2936 {
2937 // Create a pair of GOT entries for the module index and
2938 // dtv-relative offset.
2939 Output_data_got<size, true>* got
2940 = target->got_section(symtab, layout);
2941 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2942 target->rela_dyn_section(layout),
2943 elfcpp::R_390_TLS_DTPMOD,
2944 elfcpp::R_390_TLS_DTPOFF);
2945 }
2946 else if (optimized_type == tls::TLSOPT_TO_IE)
2947 {
2948 // Create a GOT entry for the tp-relative offset.
2949 Output_data_got<size, true>* got
2950 = target->got_section(symtab, layout);
2951 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2952 target->rela_dyn_section(layout),
2953 elfcpp::R_390_TLS_TPOFF);
2954 }
2955 else if (optimized_type != tls::TLSOPT_TO_LE)
2956 unsupported_reloc_global(object, r_type, gsym);
2957 break;
2958
2959 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2960 case elfcpp::R_390_TLS_LDM64:
2961 case elfcpp::R_390_TLS_LDCALL:
2962 if (optimized_type == tls::TLSOPT_NONE)
2963 {
2964 // Create a GOT entry for the module index.
2965 target->got_mod_index_entry(symtab, layout, object);
2966 }
2967 else if (optimized_type != tls::TLSOPT_TO_LE)
2968 unsupported_reloc_global(object, r_type, gsym);
2969 break;
2970
2971 case elfcpp::R_390_TLS_LDO32:
2972 case elfcpp::R_390_TLS_LDO64:
2973 break;
2974
2975 case elfcpp::R_390_TLS_IE32: // Initial-exec
2976 case elfcpp::R_390_TLS_IE64:
2977 // These two involve an absolute address
2978 if (parameters->options().shared())
2979 {
2980 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2981 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2982 {
2983 // We need to create a dynamic relocation.
2984 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2985 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2986 output_section, object,
2987 data_shndx,
2988 reloc.get_r_offset(),
2989 reloc.get_r_addend(), false);
2990 }
2991 else
2992 {
2993 unsupported_reloc_global(object, r_type, gsym);
2994 }
2995 }
d8e90251 2996 // Fall through.
e79a4bad
MK
2997 case elfcpp::R_390_TLS_IEENT:
2998 case elfcpp::R_390_TLS_GOTIE12:
2999 case elfcpp::R_390_TLS_GOTIE20:
3000 case elfcpp::R_390_TLS_GOTIE32:
3001 case elfcpp::R_390_TLS_GOTIE64:
3002 case elfcpp::R_390_TLS_LOAD:
3003 layout->set_has_static_tls();
3004 if (optimized_type == tls::TLSOPT_NONE)
3005 {
3006 if (is_final && !parameters->options().shared())
3007 {
3008 // We're making an executable, and the symbol is local, but
3009 // we cannot optimize to LE. Make a const GOT entry instead.
3010 Output_data_got<size, true>* got
3011 = target->got_section(symtab, layout);
3012 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
3013 }
3014 else
3015 {
3016 // Create a GOT entry for the tp-relative offset.
3017 Output_data_got<size, true>* got
3018 = target->got_section(symtab, layout);
3019 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
3020 target->rela_dyn_section(layout),
3021 elfcpp::R_390_TLS_TPOFF);
3022 }
3023 }
3024 else if (optimized_type != tls::TLSOPT_TO_LE)
3025 unsupported_reloc_global(object, r_type, gsym);
3026 break;
3027
3028 case elfcpp::R_390_TLS_LE32: // Local-exec
3029 case elfcpp::R_390_TLS_LE64:
3030 layout->set_has_static_tls();
3031 if (parameters->options().shared())
3032 {
3033 // We need to create a dynamic relocation.
3034 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
3035 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
3036 {
3037 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3038 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
3039 output_section, object,
3040 data_shndx, reloc.get_r_offset(),
3041 reloc.get_r_addend());
3042 }
3043 else
3044 {
3045 unsupported_reloc_global(object, r_type, gsym);
3046 }
3047 }
3048 break;
3049
3050 default:
3051 gold_unreachable();
3052 }
3053 }
3054 break;
3055
3056 default:
3057 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3058 object->name().c_str(), r_type,
3059 gsym->demangled_name().c_str());
3060 break;
3061 }
3062}
3063
3064
3065// Report an unsupported relocation against a global symbol.
3066
3067template<int size>
3068void
3069Target_s390<size>::Scan::unsupported_reloc_global(
3070 Sized_relobj_file<size, true>* object,
3071 unsigned int r_type,
3072 Symbol* gsym)
3073{
3074 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3075 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3076}
3077
3078// Returns true if this relocation type could be that of a function pointer.
3079template<int size>
3080inline bool
3081Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3082{
3083 switch (r_type)
3084 {
3085 case elfcpp::R_390_32:
3086 case elfcpp::R_390_64:
3087 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3088 case elfcpp::R_390_GOT12:
3089 case elfcpp::R_390_GOT16:
3090 case elfcpp::R_390_GOT20:
3091 case elfcpp::R_390_GOT32:
3092 case elfcpp::R_390_GOT64:
3093 case elfcpp::R_390_GOTENT:
3094 case elfcpp::R_390_GOTOFF16:
3095 case elfcpp::R_390_GOTOFF32:
3096 case elfcpp::R_390_GOTOFF64:
3097 return true;
3098 }
3099 return false;
3100}
3101
3102// For safe ICF, scan a relocation for a local symbol to check if it
3103// corresponds to a function pointer being taken. In that case mark
3104// the function whose pointer was taken as not foldable.
3105
3106template<int size>
3107inline bool
3108Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3109 Symbol_table* ,
3110 Layout* ,
3111 Target_s390<size>* ,
3112 Sized_relobj_file<size, true>* ,
3113 unsigned int ,
3114 Output_section* ,
3115 const elfcpp::Rela<size, true>& ,
3116 unsigned int r_type,
3117 const elfcpp::Sym<size, true>&)
3118{
3119 // When building a shared library, do not fold any local symbols.
3120 return (parameters->options().shared()
3121 || possible_function_pointer_reloc(r_type));
3122}
3123
3124// For safe ICF, scan a relocation for a global symbol to check if it
3125// corresponds to a function pointer being taken. In that case mark
3126// the function whose pointer was taken as not foldable.
3127
3128template<int size>
3129inline bool
3130Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3131 Symbol_table*,
3132 Layout* ,
3133 Target_s390<size>* ,
3134 Sized_relobj_file<size, true>* ,
3135 unsigned int ,
3136 Output_section* ,
3137 const elfcpp::Rela<size, true>& ,
3138 unsigned int r_type,
3139 Symbol* gsym)
3140{
3141 // When building a shared library, do not fold symbols whose visibility
3142 // is hidden, internal or protected.
3143 return ((parameters->options().shared()
3144 && (gsym->visibility() == elfcpp::STV_INTERNAL
3145 || gsym->visibility() == elfcpp::STV_PROTECTED
3146 || gsym->visibility() == elfcpp::STV_HIDDEN))
3147 || possible_function_pointer_reloc(r_type));
3148}
3149
3150template<int size>
3151void
3152Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3153 Layout* layout,
3154 Sized_relobj_file<size, true>* object,
3155 unsigned int data_shndx,
3156 unsigned int sh_type,
3157 const unsigned char* prelocs,
3158 size_t reloc_count,
3159 Output_section* output_section,
3160 bool needs_special_offset_handling,
3161 size_t local_symbol_count,
3162 const unsigned char* plocal_symbols)
3163{
4d625b70
CC
3164 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
3165 Classify_reloc;
e79a4bad
MK
3166
3167 if (sh_type == elfcpp::SHT_REL)
3168 return;
3169
4d625b70 3170 gold::gc_process_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
3171 symtab,
3172 layout,
3173 this,
3174 object,
3175 data_shndx,
3176 prelocs,
3177 reloc_count,
3178 output_section,
3179 needs_special_offset_handling,
3180 local_symbol_count,
3181 plocal_symbols);
3182}
3183
3184// Perform a relocation.
3185
3186template<int size>
3187inline bool
3188Target_s390<size>::Relocate::relocate(
3189 const Relocate_info<size, true>* relinfo,
91a65d2f 3190 unsigned int,
e79a4bad
MK
3191 Target_s390<size>* target,
3192 Output_section*,
3193 size_t relnum,
91a65d2f 3194 const unsigned char* preloc,
e79a4bad
MK
3195 const Sized_symbol<size>* gsym,
3196 const Symbol_value<size>* psymval,
3197 unsigned char* view,
3198 typename elfcpp::Elf_types<size>::Elf_Addr address,
3199 section_size_type view_size)
3200{
3201 if (view == NULL)
3202 return true;
3203
91a65d2f
AM
3204 const elfcpp::Rela<size, true> rela(preloc);
3205 unsigned int r_type = elfcpp::elf_r_type<size>(rela.get_r_info());
e79a4bad
MK
3206 const Sized_relobj_file<size, true>* object = relinfo->object;
3207
3208 // Pick the value to use for symbols defined in the PLT.
3209 Symbol_value<size> symval;
3210 if (gsym != NULL
3211 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3212 {
3213 symval.set_output_value(target->plt_address_for_global(gsym));
3214 psymval = &symval;
3215 }
3216 else if (gsym == NULL && psymval->is_ifunc_symbol())
3217 {
3218 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3219 if (object->local_has_plt_offset(r_sym))
3220 {
3221 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3222 psymval = &symval;
3223 }
3224 }
3225
3226 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3227
3228 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3229
3230 switch (r_type)
3231 {
3232 case elfcpp::R_390_PLT64:
3233 case elfcpp::R_390_PLT32:
3234 case elfcpp::R_390_PLT32DBL:
3235 case elfcpp::R_390_PLT24DBL:
3236 case elfcpp::R_390_PLT16DBL:
3237 case elfcpp::R_390_PLT12DBL:
3238 gold_assert(gsym == NULL
3239 || gsym->has_plt_offset()
3240 || gsym->final_value_is_known()
3241 || (gsym->is_defined()
3242 && !gsym->is_from_dynobj()
3243 && !gsym->is_preemptible()));
d8e90251 3244 // Fall through.
e79a4bad
MK
3245 case elfcpp::R_390_8:
3246 case elfcpp::R_390_12:
3247 case elfcpp::R_390_16:
3248 case elfcpp::R_390_20:
3249 case elfcpp::R_390_32:
3250 case elfcpp::R_390_64:
3251 case elfcpp::R_390_PC16:
3252 case elfcpp::R_390_PC32:
3253 case elfcpp::R_390_PC64:
3254 case elfcpp::R_390_PC32DBL:
3255 case elfcpp::R_390_PC24DBL:
3256 case elfcpp::R_390_PC16DBL:
3257 case elfcpp::R_390_PC12DBL:
3258 value = psymval->value(object, addend);
3259 break;
3260
3261 case elfcpp::R_390_GOTPC:
3262 case elfcpp::R_390_GOTPCDBL:
3263 gold_assert(gsym != NULL);
3264 value = target->got_address() + addend;
3265 break;
3266
3267 case elfcpp::R_390_PLTOFF64:
3268 case elfcpp::R_390_PLTOFF32:
3269 case elfcpp::R_390_PLTOFF16:
3270 gold_assert(gsym == NULL
3271 || gsym->has_plt_offset()
3272 || gsym->final_value_is_known());
d8e90251 3273 // Fall through.
e79a4bad
MK
3274 case elfcpp::R_390_GOTOFF64:
3275 case elfcpp::R_390_GOTOFF32:
3276 case elfcpp::R_390_GOTOFF16:
3277 value = (psymval->value(object, addend)
3278 - target->got_address());
3279 break;
3280
3281 case elfcpp::R_390_GOT12:
3282 case elfcpp::R_390_GOT16:
3283 case elfcpp::R_390_GOT20:
3284 case elfcpp::R_390_GOT32:
3285 case elfcpp::R_390_GOT64:
3286 case elfcpp::R_390_GOTENT:
3287 case elfcpp::R_390_GOTPLT12:
3288 case elfcpp::R_390_GOTPLT16:
3289 case elfcpp::R_390_GOTPLT20:
3290 case elfcpp::R_390_GOTPLT32:
3291 case elfcpp::R_390_GOTPLT64:
3292 case elfcpp::R_390_GOTPLTENT:
3293 {
3294 unsigned int got_offset = 0;
3295 if (gsym != NULL)
3296 {
3297 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3298 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3299 }
3300 else
3301 {
3302 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3303 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3304 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3305 }
3306 value = got_offset + target->got_main_offset() + addend;
3307 }
3308 break;
3309
3310 // These are initial tls relocs, which are expected when linking
3311 case elfcpp::R_390_TLS_LOAD:
3312 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3313 case elfcpp::R_390_TLS_GD32:
3314 case elfcpp::R_390_TLS_GD64:
3315 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3316 case elfcpp::R_390_TLS_LDM32:
3317 case elfcpp::R_390_TLS_LDM64:
3318 case elfcpp::R_390_TLS_LDO32:
3319 case elfcpp::R_390_TLS_LDO64:
3320 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3321 case elfcpp::R_390_TLS_GOTIE20:
3322 case elfcpp::R_390_TLS_GOTIE32:
3323 case elfcpp::R_390_TLS_GOTIE64:
3324 case elfcpp::R_390_TLS_IE32:
3325 case elfcpp::R_390_TLS_IE64:
3326 case elfcpp::R_390_TLS_IEENT:
3327 case elfcpp::R_390_TLS_LE32: // Local-exec
3328 case elfcpp::R_390_TLS_LE64:
3329 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3330 view, view_size);
3331 break;
3332
3333 default:
3334 break;
3335 }
3336
3337 typename S390_relocate_functions<size>::Status status
3338 = S390_relocate_functions<size>::STATUS_OK;
3339
3340 switch (r_type)
3341 {
3342 case elfcpp::R_390_NONE:
3343 case elfcpp::R_390_GNU_VTINHERIT:
3344 case elfcpp::R_390_GNU_VTENTRY:
3345 case elfcpp::R_390_TLS_GDCALL:
3346 case elfcpp::R_390_TLS_LDCALL:
3347 case elfcpp::R_390_TLS_LOAD:
3348 break;
3349
3350 case elfcpp::R_390_64:
3351 case elfcpp::R_390_GOT64:
3352 case elfcpp::R_390_GOTPLT64:
3353 case elfcpp::R_390_PLTOFF64:
3354 case elfcpp::R_390_GOTOFF64:
3355 case elfcpp::R_390_TLS_GD64:
3356 case elfcpp::R_390_TLS_LDM64:
3357 case elfcpp::R_390_TLS_LDO64:
3358 case elfcpp::R_390_TLS_GOTIE64:
3359 case elfcpp::R_390_TLS_IE64:
3360 case elfcpp::R_390_TLS_LE64:
3361 Relocate_functions<size, true>::rela64(view, value, 0);
3362 break;
3363
3364 case elfcpp::R_390_32:
3365 case elfcpp::R_390_GOT32:
3366 case elfcpp::R_390_GOTPLT32:
3367 case elfcpp::R_390_PLTOFF32:
3368 case elfcpp::R_390_GOTOFF32:
3369 case elfcpp::R_390_TLS_GD32:
3370 case elfcpp::R_390_TLS_LDM32:
3371 case elfcpp::R_390_TLS_LDO32:
3372 case elfcpp::R_390_TLS_GOTIE32:
3373 case elfcpp::R_390_TLS_IE32:
3374 case elfcpp::R_390_TLS_LE32:
3375 Relocate_functions<size, true>::rela32(view, value, 0);
3376 break;
3377
3378 case elfcpp::R_390_20:
3379 case elfcpp::R_390_GOT20:
3380 case elfcpp::R_390_GOTPLT20:
3381 case elfcpp::R_390_TLS_GOTIE20:
3382 status = S390_relocate_functions<size>::rela20(view, value);
3383 break;
3384
3385 case elfcpp::R_390_16:
3386 case elfcpp::R_390_GOT16:
3387 case elfcpp::R_390_GOTPLT16:
3388 case elfcpp::R_390_PLTOFF16:
3389 case elfcpp::R_390_GOTOFF16:
3390 status = S390_relocate_functions<size>::rela16(view, value);
3391 break;
3392
3393 case elfcpp::R_390_12:
3394 case elfcpp::R_390_GOT12:
3395 case elfcpp::R_390_GOTPLT12:
3396 case elfcpp::R_390_TLS_GOTIE12:
3397 status = S390_relocate_functions<size>::rela12(view, value);
3398 break;
3399
3400 case elfcpp::R_390_8:
3401 Relocate_functions<size, true>::rela8(view, value, 0);
3402 break;
3403
3404 case elfcpp::R_390_PC16:
3405 Relocate_functions<size, true>::pcrela16(view, value, 0,
3406 address);
3407 break;
3408
3409 case elfcpp::R_390_PLT64:
3410 case elfcpp::R_390_PC64:
3411 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3412 break;
3413
3414 case elfcpp::R_390_PLT32:
3415 case elfcpp::R_390_PC32:
3416 case elfcpp::R_390_GOTPC:
3417 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3418 break;
3419
3420 case elfcpp::R_390_PLT32DBL:
3421 case elfcpp::R_390_PC32DBL:
3422 case elfcpp::R_390_GOTPCDBL:
3423 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3424 break;
3425
3426 case elfcpp::R_390_PLT24DBL:
3427 case elfcpp::R_390_PC24DBL:
3428 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3429 break;
3430
3431 case elfcpp::R_390_PLT16DBL:
3432 case elfcpp::R_390_PC16DBL:
3433 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3434 break;
3435
3436 case elfcpp::R_390_PLT12DBL:
3437 case elfcpp::R_390_PC12DBL:
3438 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3439 break;
3440
3441 case elfcpp::R_390_GOTENT:
3442 case elfcpp::R_390_GOTPLTENT:
3443 case elfcpp::R_390_TLS_IEENT:
3444 value += target->got_address();
3445 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3446 break;
3447
3448 case elfcpp::R_390_COPY:
3449 case elfcpp::R_390_GLOB_DAT:
3450 case elfcpp::R_390_JMP_SLOT:
3451 case elfcpp::R_390_RELATIVE:
3452 case elfcpp::R_390_IRELATIVE:
3453 // These are outstanding tls relocs, which are unexpected when linking
3454 case elfcpp::R_390_TLS_TPOFF:
3455 case elfcpp::R_390_TLS_DTPMOD:
3456 case elfcpp::R_390_TLS_DTPOFF:
3457 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3458 _("unexpected reloc %u in object file"),
3459 r_type);
3460 break;
3461
3462 default:
3463 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3464 _("unsupported reloc %u"),
3465 r_type);
3466 break;
3467 }
3468
3469 if (status != S390_relocate_functions<size>::STATUS_OK)
3470 {
3471 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3472 _("relocation overflow"));
3473 }
3474
3475 return true;
3476}
3477
3478// Perform a TLS relocation.
3479
3480template<int size>
3481inline typename elfcpp::Elf_types<size>::Elf_Addr
3482Target_s390<size>::Relocate::relocate_tls(
3483 const Relocate_info<size, true>* relinfo,
3484 Target_s390<size>* target,
3485 size_t relnum,
3486 const elfcpp::Rela<size, true>& rela,
3487 unsigned int r_type,
3488 const Sized_symbol<size>* gsym,
3489 const Symbol_value<size>* psymval,
3490 unsigned char* view,
3491 section_size_type view_size)
3492{
3493 Output_segment* tls_segment = relinfo->layout->tls_segment();
3494
3495 const Sized_relobj_file<size, true>* object = relinfo->object;
3496 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3497 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3498 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3499
3500 typename elfcpp::Elf_types<size>::Elf_Addr value
3501 = psymval->value(relinfo->object, addend);
3502
3503 const bool is_final = (gsym == NULL
3504 ? !parameters->options().shared()
3505 : gsym->final_value_is_known());
3506 tls::Tls_optimization optimized_type
3507 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3508 switch (r_type)
3509 {
3510 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3511 if (optimized_type == tls::TLSOPT_TO_LE)
3512 {
3513 if (tls_segment == NULL)
3514 {
3515 gold_assert(parameters->errors()->error_count() > 0
3516 || issue_undefined_symbol_error(gsym));
3517 return 0;
3518 }
3519 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3520 break;
3521 }
3522 else
3523 {
3524 if (optimized_type == tls::TLSOPT_TO_IE)
3525 {
3526 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3527 break;
3528 }
3529 else if (optimized_type == tls::TLSOPT_NONE)
3530 {
3531 break;
3532 }
3533 }
3534 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3535 _("unsupported reloc %u"), r_type);
3536 break;
3537
3538 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3539 case elfcpp::R_390_TLS_GD64:
3540 if (optimized_type == tls::TLSOPT_TO_LE)
3541 {
3542 if (tls_segment == NULL)
3543 {
3544 gold_assert(parameters->errors()->error_count() > 0
3545 || issue_undefined_symbol_error(gsym));
3546 return 0;
3547 }
3548 return value - tls_segment->memsz();
3549 }
3550 else
3551 {
3552 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3553 ? GOT_TYPE_TLS_OFFSET
3554 : GOT_TYPE_TLS_PAIR);
3555 if (gsym != NULL)
3556 {
3557 gold_assert(gsym->has_got_offset(got_type));
3558 return (gsym->got_offset(got_type)
3559 + target->got_main_offset()
3560 + addend);
3561 }
3562 else
3563 {
3564 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3565 gold_assert(object->local_has_got_offset(r_sym, got_type));
3566 return (object->local_got_offset(r_sym, got_type)
3567 + target->got_main_offset()
3568 + addend);
3569 }
3570 }
3571 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3572 _("unsupported reloc %u"), r_type);
3573 break;
3574
3575 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3576 // This is a marker relocation. If the sequence is being turned to LE,
3577 // we modify the instruction, otherwise the instruction is untouched.
3578 if (optimized_type == tls::TLSOPT_TO_LE)
3579 {
3580 if (tls_segment == NULL)
3581 {
3582 gold_assert(parameters->errors()->error_count() > 0
3583 || issue_undefined_symbol_error(gsym));
3584 return 0;
3585 }
3586 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3587 break;
3588 }
3589 else if (optimized_type == tls::TLSOPT_NONE)
3590 {
3591 break;
3592 }
3593 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3594 _("unsupported reloc %u"), r_type);
3595 break;
3596
3597 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3598 case elfcpp::R_390_TLS_LDM64:
3599 if (optimized_type == tls::TLSOPT_TO_LE)
3600 {
3601 if (tls_segment == NULL)
3602 {
3603 gold_assert(parameters->errors()->error_count() > 0
3604 || issue_undefined_symbol_error(gsym));
3605 return 0;
3606 }
3607 // Doesn't matter what we fill it with - it's going to be unused.
3608 return 0;
3609 }
3610 else if (optimized_type == tls::TLSOPT_NONE)
3611 {
3612 // Relocate the field with the offset of the GOT entry for
3613 // the module index.
3614 return (target->got_mod_index_entry(NULL, NULL, NULL)
3615 + addend
3616 + target->got_main_offset());
3617 }
3618 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3619 _("unsupported reloc %u"), r_type);
3620 break;
3621
3622 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3623 case elfcpp::R_390_TLS_LDO64:
3624 // This relocation type is used in debugging information.
3625 // In that case we need to not optimize the value. If the
3626 // section is not allocatable, then we assume we should not
3627 // optimize this reloc.
3628 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3629 {
3630 if (tls_segment == NULL)
3631 {
3632 gold_assert(parameters->errors()->error_count() > 0
3633 || issue_undefined_symbol_error(gsym));
3634 return 0;
3635 }
3636 value -= tls_segment->memsz();
3637 }
3638 return value;
3639
3640 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3641 // This is a marker relocation. If the sequence is being turned to LE,
3642 // we modify the instruction, otherwise the instruction is untouched.
3643 if (gsym != NULL
3644 && gsym->is_undefined()
3645 && parameters->options().output_is_executable())
3646 {
3647 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3648 rela, view,
3649 view_size);
3650 break;
3651 }
3652 else if (optimized_type == tls::TLSOPT_TO_LE)
3653 {
3654 if (tls_segment == NULL)
3655 {
3656 gold_assert(parameters->errors()->error_count() > 0
3657 || issue_undefined_symbol_error(gsym));
3658 return 0;
3659 }
3660 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3661 rela, view,
3662 view_size);
3663 break;
3664 }
3665 else if (optimized_type == tls::TLSOPT_NONE)
3666 {
3667 break;
3668 }
3669 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3670 _("unsupported reloc type %u"),
3671 r_type);
3672 break;
3673
3674 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3675 case elfcpp::R_390_TLS_GOTIE20:
3676 case elfcpp::R_390_TLS_IEENT:
3677 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3678 case elfcpp::R_390_TLS_GOTIE64:
3679 case elfcpp::R_390_TLS_IE32:
3680 case elfcpp::R_390_TLS_IE64:
3681 if (gsym != NULL
3682 && gsym->is_undefined()
3683 && parameters->options().output_is_executable()
3684 // These three cannot be optimized to LE, no matter what
3685 && r_type != elfcpp::R_390_TLS_GOTIE12
3686 && r_type != elfcpp::R_390_TLS_GOTIE20
3687 && r_type != elfcpp::R_390_TLS_IEENT)
3688 {
3689 return value;
3690 }
3691 else if (optimized_type == tls::TLSOPT_TO_LE)
3692 {
3693 if (tls_segment == NULL)
3694 {
3695 gold_assert(parameters->errors()->error_count() > 0
3696 || issue_undefined_symbol_error(gsym));
3697 return 0;
3698 }
3699 return value - tls_segment->memsz();
3700 }
3701 else if (optimized_type == tls::TLSOPT_NONE)
3702 {
3703 // Relocate the field with the offset of the GOT entry for
3704 // the tp-relative offset of the symbol.
3705 unsigned int got_offset;
3706 if (gsym != NULL)
3707 {
3708 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3709 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3710 }
3711 else
3712 {
3713 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3714 gold_assert(object->local_has_got_offset(r_sym,
3715 GOT_TYPE_TLS_OFFSET));
3716 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3717 }
3718 got_offset += target->got_main_offset();
3719 if (r_type == elfcpp::R_390_TLS_IE32
3720 || r_type == elfcpp::R_390_TLS_IE64)
3721 return target->got_address() + got_offset + addend;
3722 else
3723 return got_offset + addend;
3724 }
3725 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3726 _("unsupported reloc type %u"),
3727 r_type);
3728 break;
3729
3730 case elfcpp::R_390_TLS_LE32: // Local-exec
3731 case elfcpp::R_390_TLS_LE64:
3732 if (tls_segment == NULL)
3733 {
3734 gold_assert(parameters->errors()->error_count() > 0
3735 || issue_undefined_symbol_error(gsym));
3736 return 0;
3737 }
3738 return value - tls_segment->memsz();
3739 }
3740 return 0;
3741}
3742
3743// Do a relocation in which we convert a TLS General-Dynamic to an
3744// Initial-Exec.
3745
3746template<int size>
3747inline void
3748Target_s390<size>::Relocate::tls_gd_to_ie(
3749 const Relocate_info<size, true>* relinfo,
3750 size_t relnum,
3751 const elfcpp::Rela<size, true>& rela,
3752 unsigned char* view,
3753 section_size_type view_size)
3754{
3755 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3756 if (view[0] == 0x4d)
3757 {
3758 // bas, don't care about details
3759 // Change to l %r2, 0(%r2, %r12)
3760 view[0] = 0x58;
3761 view[1] = 0x22;
3762 view[2] = 0xc0;
3763 view[3] = 0x00;
3764 return;
3765 }
3766 else if (view[0] == 0xc0)
3767 {
3768 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3769 // brasl %r14, __tls_get_offset@plt
3770 if (view[1] == 0xe5)
3771 {
3772 // Change to l/lg %r2, 0(%r2, %r12)
3773 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3774 if (size == 32)
3775 {
3776 // l
3777 view[0] = 0x58;
3778 view[1] = 0x22;
3779 view[2] = 0xc0;
3780 view[3] = 0x00;
3781 // nop
3782 view[4] = 0x07;
3783 view[5] = 0x07;
3784 }
3785 else
3786 {
3787 // lg
3788 view[0] = 0xe3;
3789 view[1] = 0x22;
3790 view[2] = 0xc0;
3791 view[3] = 0;
3792 view[4] = 0;
3793 view[5] = 0x04;
3794 }
3795 return;
3796 }
3797 }
3798 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3799 _("unsupported op for GD to IE"));
3800}
3801
3802// Do a relocation in which we convert a TLS General-Dynamic to a
3803// Local-Exec.
3804
3805template<int size>
3806inline void
3807Target_s390<size>::Relocate::tls_gd_to_le(
3808 const Relocate_info<size, true>* relinfo,
3809 size_t relnum,
3810 const elfcpp::Rela<size, true>& rela,
3811 unsigned char* view,
3812 section_size_type view_size)
3813{
3814 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3815 if (view[0] == 0x0d)
3816 {
3817 // basr, change to nop
3818 view[0] = 0x07;
3819 view[1] = 0x07;
3820 }
3821 else if (view[0] == 0x4d)
3822 {
3823 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3824 // bas, don't care about details, change to nop
3825 view[0] = 0x47;
3826 view[1] = 0;
3827 view[2] = 0;
3828 view[3] = 0;
3829 return;
3830 }
3831 else if (view[0] == 0xc0)
3832 {
3833 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3834 // brasl %r14, __tls_get_offset@plt
3835 if (view[1] == 0xe5)
3836 {
3837 // Change to nop jump. There was a PLT32DBL reloc at the last
3838 // 4 bytes, overwrite its result.
3839 view[1] = 0x04;
3840 view[2] = 0;
3841 view[3] = 0;
3842 view[4] = 0;
3843 view[5] = 0;
3844 return;
3845 }
3846 }
3847 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3848 _("unsupported op for GD to LE"));
3849}
3850
3851template<int size>
3852inline void
3853Target_s390<size>::Relocate::tls_ld_to_le(
3854 const Relocate_info<size, true>* relinfo,
3855 size_t relnum,
3856 const elfcpp::Rela<size, true>& rela,
3857 unsigned char* view,
3858 section_size_type view_size)
3859{
3860 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3861
3862 if (view[0] == 0x0d)
3863 {
3864 // basr, change to nop
3865 view[0] = 0x07;
3866 view[1] = 0x07;
3867 }
3868 else if (view[0] == 0x4d)
3869 {
3870 // bas, don't care about details, change to nop
3871 view[0] = 0x47;
3872 view[1] = 0;
3873 view[2] = 0;
3874 view[3] = 0;
3875 return;
3876 }
3877 else if (view[0] == 0xc0)
3878 {
3879 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3880 // brasl %r14, __tls_get_offset@plt
3881 if (view[1] == 0xe5)
3882 {
3883 // Change to nop jump. There was a PLT32DBL reloc at the last
3884 // 4 bytes, overwrite its result.
3885 view[1] = 0x04;
3886 view[2] = 0;
3887 view[3] = 0;
3888 view[4] = 0;
3889 view[5] = 0;
3890 return;
3891 }
3892 }
3893 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3894 _("unsupported op for LD to LE"));
3895}
3896
3897// Do a relocation in which we convert a TLS Initial-Exec to a
3898// Local-Exec.
3899
3900template<int size>
3901inline void
3902Target_s390<size>::Relocate::tls_ie_to_le(
3903 const Relocate_info<size, true>* relinfo,
3904 size_t relnum,
3905 const elfcpp::Rela<size, true>& rela,
3906 unsigned char* view,
3907 section_size_type view_size)
3908{
3909 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3910
3911 if (view[0] == 0x58)
3912 {
3913 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3914 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3915 goto err;
3916 int rx = view[1] >> 4 & 0xf;
3917 int ry = view[1] & 0xf;
3918 int rz = view[2] >> 4 & 0xf;
3919 if (rz == 0)
3920 {
3921 }
3922 else if (ry == 0)
3923 {
3924 ry = rz;
3925 }
3926 else if (rz == 12)
3927 {
3928 }
3929 else if (ry == 12)
3930 {
3931 ry = rz;
3932 }
3933 else
3934 goto err;
3935 // to lr %rX, $rY
3936 view[0] = 0x18;
3937 view[1] = rx << 4 | ry;
3938 // and insert a nop
3939 view[2] = 0x07;
3940 view[3] = 0x00;
3941 }
3942 else if (view[0] == 0xe3)
3943 {
3944 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3945 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3946 if ((view[2] & 0x0f) != 0 ||
3947 view[3] != 0 ||
3948 view[4] != 0 ||
3949 view[5] != 0x04)
3950 goto err;
3951 int rx = view[1] >> 4 & 0xf;
3952 int ry = view[1] & 0xf;
3953 int rz = view[2] >> 4 & 0xf;
3954 if (rz == 0)
3955 {
3956 }
3957 else if (ry == 0)
3958 {
3959 ry = rz;
3960 }
3961 else if (rz == 12)
3962 {
3963 }
3964 else if (ry == 12)
3965 {
3966 ry = rz;
3967 }
3968 else
3969 goto err;
3970 // to sllg %rX, $rY, 0
3971 view[0] = 0xeb;
3972 view[1] = rx << 4 | ry;
3973 view[2] = 0x00;
3974 view[3] = 0x00;
3975 view[4] = 0x00;
3976 view[5] = 0x0d;
3977 }
3978 else
3979 {
3980err:
3981 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3982 _("unsupported op for IE to LE"));
3983 }
3984}
3985
3986// Scan relocations for a section.
3987
3988template<int size>
3989void
3990Target_s390<size>::scan_relocs(Symbol_table* symtab,
3991 Layout* layout,
3992 Sized_relobj_file<size, true>* object,
3993 unsigned int data_shndx,
3994 unsigned int sh_type,
3995 const unsigned char* prelocs,
3996 size_t reloc_count,
3997 Output_section* output_section,
3998 bool needs_special_offset_handling,
3999 size_t local_symbol_count,
4000 const unsigned char* plocal_symbols)
4001{
4d625b70
CC
4002 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4003 Classify_reloc;
4004
e79a4bad
MK
4005 if (sh_type == elfcpp::SHT_REL)
4006 {
4007 gold_error(_("%s: unsupported REL reloc section"),
4008 object->name().c_str());
4009 return;
4010 }
4011
4d625b70 4012 gold::scan_relocs<size, true, Target_s390<size>, Scan, Classify_reloc>(
e79a4bad
MK
4013 symtab,
4014 layout,
4015 this,
4016 object,
4017 data_shndx,
4018 prelocs,
4019 reloc_count,
4020 output_section,
4021 needs_special_offset_handling,
4022 local_symbol_count,
4023 plocal_symbols);
4024}
4025
4026// Finalize the sections.
4027
4028template<int size>
4029void
4030Target_s390<size>::do_finalize_sections(
4031 Layout* layout,
4032 const Input_objects*,
4033 Symbol_table* symtab)
4034{
4035 const Reloc_section* rel_plt = (this->plt_ == NULL
4036 ? NULL
4037 : this->plt_->rela_plt());
4038 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4039 this->rela_dyn_, true, size == 32);
4040
4041 this->layout_ = layout;
4042
4043 // Emit any relocs we saved in an attempt to avoid generating COPY
4044 // relocs.
4045 if (this->copy_relocs_.any_saved_relocs())
4046 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4047
4048 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4049 // the .got section.
4050 Symbol* sym = this->global_offset_table_;
4051 if (sym != NULL)
4052 {
4053 uint64_t data_size = this->got_->current_data_size();
4054 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
4055 }
4056
4057 if (parameters->doing_static_link()
4058 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4059 {
4060 // If linking statically, make sure that the __rela_iplt symbols
4061 // were defined if necessary, even if we didn't create a PLT.
4062 static const Define_symbol_in_segment syms[] =
4063 {
4064 {
4065 "__rela_iplt_start", // name
4066 elfcpp::PT_LOAD, // segment_type
4067 elfcpp::PF_W, // segment_flags_set
4068 elfcpp::PF(0), // segment_flags_clear
4069 0, // value
4070 0, // size
4071 elfcpp::STT_NOTYPE, // type
4072 elfcpp::STB_GLOBAL, // binding
4073 elfcpp::STV_HIDDEN, // visibility
4074 0, // nonvis
4075 Symbol::SEGMENT_START, // offset_from_base
4076 true // only_if_ref
4077 },
4078 {
4079 "__rela_iplt_end", // name
4080 elfcpp::PT_LOAD, // segment_type
4081 elfcpp::PF_W, // segment_flags_set
4082 elfcpp::PF(0), // segment_flags_clear
4083 0, // value
4084 0, // size
4085 elfcpp::STT_NOTYPE, // type
4086 elfcpp::STB_GLOBAL, // binding
4087 elfcpp::STV_HIDDEN, // visibility
4088 0, // nonvis
4089 Symbol::SEGMENT_START, // offset_from_base
4090 true // only_if_ref
4091 }
4092 };
4093
4094 symtab->define_symbols(layout, 2, syms,
4095 layout->script_options()->saw_sections_clause());
4096 }
4097}
4098
4d625b70 4099// Scan the relocs during a relocatable link.
e79a4bad
MK
4100
4101template<int size>
4d625b70
CC
4102void
4103Target_s390<size>::scan_relocatable_relocs(
4104 Symbol_table* symtab,
4105 Layout* layout,
4106 Sized_relobj_file<size, true>* object,
4107 unsigned int data_shndx,
4108 unsigned int sh_type,
4109 const unsigned char* prelocs,
4110 size_t reloc_count,
4111 Output_section* output_section,
4112 bool needs_special_offset_handling,
4113 size_t local_symbol_count,
4114 const unsigned char* plocal_symbols,
4115 Relocatable_relocs* rr)
e79a4bad 4116{
4d625b70
CC
4117 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4118 Classify_reloc;
4119 typedef gold::Default_scan_relocatable_relocs<Classify_reloc>
4120 Scan_relocatable_relocs;
e79a4bad 4121
4d625b70 4122 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4123
4d625b70
CC
4124 gold::scan_relocatable_relocs<size, true, Scan_relocatable_relocs>(
4125 symtab,
4126 layout,
4127 object,
4128 data_shndx,
4129 prelocs,
4130 reloc_count,
4131 output_section,
4132 needs_special_offset_handling,
4133 local_symbol_count,
4134 plocal_symbols,
4135 rr);
e79a4bad
MK
4136}
4137
4d625b70 4138// Scan the relocs for --emit-relocs.
e79a4bad
MK
4139
4140template<int size>
4141void
4d625b70 4142Target_s390<size>::emit_relocs_scan(
e79a4bad
MK
4143 Symbol_table* symtab,
4144 Layout* layout,
4145 Sized_relobj_file<size, true>* object,
4146 unsigned int data_shndx,
4147 unsigned int sh_type,
4148 const unsigned char* prelocs,
4149 size_t reloc_count,
4150 Output_section* output_section,
4151 bool needs_special_offset_handling,
4152 size_t local_symbol_count,
4d625b70 4153 const unsigned char* plocal_syms,
e79a4bad
MK
4154 Relocatable_relocs* rr)
4155{
4d625b70
CC
4156 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4157 Classify_reloc;
4158 typedef gold::Default_emit_relocs_strategy<Classify_reloc>
4159 Emit_relocs_strategy;
e79a4bad 4160
4d625b70 4161 gold_assert(sh_type == elfcpp::SHT_RELA);
e79a4bad 4162
4d625b70 4163 gold::scan_relocatable_relocs<size, true, Emit_relocs_strategy>(
e79a4bad
MK
4164 symtab,
4165 layout,
4166 object,
4167 data_shndx,
4168 prelocs,
4169 reloc_count,
4170 output_section,
4171 needs_special_offset_handling,
4172 local_symbol_count,
4d625b70 4173 plocal_syms,
e79a4bad
MK
4174 rr);
4175}
4176
4177// Relocate a section during a relocatable link.
4178
4179template<int size>
4180void
4181Target_s390<size>::relocate_relocs(
4182 const Relocate_info<size, true>* relinfo,
4183 unsigned int sh_type,
4184 const unsigned char* prelocs,
4185 size_t reloc_count,
4186 Output_section* output_section,
4187 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
e79a4bad
MK
4188 unsigned char* view,
4189 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4190 section_size_type view_size,
4191 unsigned char* reloc_view,
4192 section_size_type reloc_view_size)
4193{
4d625b70
CC
4194 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4195 Classify_reloc;
4196
e79a4bad
MK
4197 gold_assert(sh_type == elfcpp::SHT_RELA);
4198
4d625b70 4199 gold::relocate_relocs<size, true, Classify_reloc>(
e79a4bad
MK
4200 relinfo,
4201 prelocs,
4202 reloc_count,
4203 output_section,
4204 offset_in_output_section,
e79a4bad
MK
4205 view,
4206 view_address,
4207 view_size,
4208 reloc_view,
4209 reloc_view_size);
4210}
4211
4212// Return the offset to use for the GOT_INDX'th got entry which is
4213// for a local tls symbol specified by OBJECT, SYMNDX.
4214template<int size>
4215int64_t
4216Target_s390<size>::do_tls_offset_for_local(
4217 const Relobj*,
4218 unsigned int,
4219 unsigned int) const
4220{
4221 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4222 // couldn't be optimised to LE.
4223 Output_segment* tls_segment = layout_->tls_segment();
4224 return -tls_segment->memsz();
4225}
4226
4227// Return the offset to use for the GOT_INDX'th got entry which is
4228// for global tls symbol GSYM.
4229template<int size>
4230int64_t
4231Target_s390<size>::do_tls_offset_for_global(
4232 Symbol*,
4233 unsigned int) const
4234{
4235 Output_segment* tls_segment = layout_->tls_segment();
4236 return -tls_segment->memsz();
4237}
4238
4239// Return the value to use for a dynamic which requires special
4240// treatment. This is how we support equality comparisons of function
4241// pointers across shared library boundaries, as described in the
4242// processor specific ABI supplement.
4243
4244template<int size>
4245uint64_t
4246Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4247{
4248 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4249 return this->plt_address_for_global(gsym);
4250}
4251
4252// Return a string used to fill a code section with nops to take up
4253// the specified length.
4254
4255template<int size>
4256std::string
4257Target_s390<size>::do_code_fill(section_size_type length) const
4258{
4259 if (length & 1)
4260 gold_warning(_("S/390 code fill of odd length requested"));
4261 return std::string(length, static_cast<char>(0x07));
4262}
4263
2b63aca3
MK
4264// Return whether SYM should be treated as a call to a non-split
4265// function. We don't want that to be true of a larl instruction
4266// that merely loads its address.
4267
4268template<int size>
4269bool
4270Target_s390<size>::do_is_call_to_non_split(const Symbol* sym,
4271 const unsigned char* preloc,
4272 const unsigned char* view,
4273 section_size_type view_size) const
4274{
4275 if (sym->type() != elfcpp::STT_FUNC)
4276 return false;
4277 typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc reloc(preloc);
4278 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4279 = reloc.get_r_info();
4280 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4281 section_offset_type offset = reloc.get_r_offset();
4282 switch (r_type)
4283 {
4284 // PLT refs always involve calling the function.
4285 case elfcpp::R_390_PLT12DBL:
4286 case elfcpp::R_390_PLT16DBL:
4287 case elfcpp::R_390_PLT24DBL:
4288 case elfcpp::R_390_PLT32:
4289 case elfcpp::R_390_PLT32DBL:
4290 case elfcpp::R_390_PLT64:
4291 case elfcpp::R_390_PLTOFF16:
4292 case elfcpp::R_390_PLTOFF32:
4293 case elfcpp::R_390_PLTOFF64:
4294 // Could be used for calls for -msmall-exec.
4295 case elfcpp::R_390_PC16DBL:
4296 return true;
4297
4298 // Tricky case. When used in a brasl, jg, and other branch instructions,
4299 // it's a call or a sibcall. However, when used in larl, it only loads
4300 // the function's address - not a call.
4301 case elfcpp::R_390_PC32DBL:
4302 {
4303 if (offset < 2
4304 || offset + 4 > static_cast<section_offset_type>(view_size))
4305 {
4306 // Should not happen.
4307 gold_error(_("instruction with PC32DBL not wholly within section"));
4308 return false;
4309 }
4310
4311 uint8_t op0 = view[offset-2];
4312 uint8_t op1 = view[offset-1] & 0xf;
4313
4314 // LARL
4315 if (op0 == 0xc0 && op1 == 0)
4316 return false;
4317
4318 // Otherwise, it's either a call instruction, a branch instruction
4319 // (used as a sibcall), or a data manipulation instruction (which
4320 // has no business being used on a function, and can be ignored).
4321 return true;
4322 }
4323
4324 // Otherwise, it's probably not a call.
4325 default:
4326 return false;
4327 }
4328}
4329
4330// Code sequences to match below.
4331
2b63aca3
MK
4332template<int size>
4333const unsigned char
4334Target_s390<size>::ss_code_bras_8[] = {
4335 0xa7, 0x15, 0x00, 0x06, // bras %r1, .+0xc
4336};
4337
4338template<int size>
4339const unsigned char
4340Target_s390<size>::ss_code_l_basr[] = {
4341 0x58, 0xe0, 0x10, 0x00, // l %r14, 0(%r1)
4342 0x58, 0x10, 0x10, 0x04, // l %r1, 4(%r1)
4343 0x0d, 0xee, // basr %r14, %r14
4344};
4345
4346template<int size>
4347const unsigned char
4348Target_s390<size>::ss_code_a_basr[] = {
4349 0x18, 0xe1, // lr %r14, %r1
4350 0x5a, 0xe0, 0x10, 0x00, // a %r14, 0(%r1)
4351 0x5a, 0x10, 0x10, 0x04, // a %r1, 4(%r1)
4352 0x0d, 0xee, // basr %r14, %r14
4353};
4354
2b63aca3
MK
4355template<int size>
4356const unsigned char
4357Target_s390<size>::ss_code_larl[] = {
4358 0xc0, 0x10, // larl %r1, ...
4359};
4360
4361template<int size>
4362const unsigned char
4363Target_s390<size>::ss_code_brasl[] = {
4364 0xc0, 0xe5, // brasl %r14, ...
4365};
4366
4367template<int size>
4368const unsigned char
4369Target_s390<size>::ss_code_jg[] = {
4370 0xc0, 0xf4, // jg ...
4371};
4372
4373template<int size>
4374const unsigned char
4375Target_s390<size>::ss_code_jgl[] = {
4376 0xc0, 0x44, // jgl ...
4377};
4378
40d85a7f
MK
4379template<>
4380bool
4381Target_s390<32>::ss_match_st_r14(unsigned char* view,
4382 section_size_type view_size,
4383 section_offset_type *offset) const
4384{
4385 static const unsigned char ss_code_st_r14[] = {
4386 0x50, 0xe0, 0xf0, 0x04, // st %r14, 4(%r15)
4387 };
4388 if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4389 sizeof ss_code_st_r14))
4390 return false;
4391 *offset += sizeof ss_code_st_r14;
4392 return true;
4393}
4394
4395template<>
4396bool
4397Target_s390<64>::ss_match_st_r14(unsigned char* view,
4398 section_size_type view_size,
4399 section_offset_type *offset) const
4400{
4401 static const unsigned char ss_code_st_r14[] = {
4402 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x24 // stg %r14, 8(%r15)
4403 };
4404 if (!this->match_view_u(view, view_size, *offset, ss_code_st_r14,
4405 sizeof ss_code_st_r14))
4406 return false;
4407 *offset += sizeof ss_code_st_r14;
4408 return true;
4409}
4410
4411template<>
4412bool
4413Target_s390<32>::ss_match_l_r14(unsigned char* view,
4414 section_size_type view_size,
4415 section_offset_type *offset) const
4416{
4417 static const unsigned char ss_code_l_r14[] = {
4418 0x58, 0xe0, 0xf0, 0x04, // l %r14, 4(%r15)
4419 };
4420 if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4421 sizeof ss_code_l_r14))
4422 return false;
4423 *offset += sizeof ss_code_l_r14;
4424 return true;
4425}
4426
4427template<>
4428bool
4429Target_s390<64>::ss_match_l_r14(unsigned char* view,
4430 section_size_type view_size,
4431 section_offset_type *offset) const
4432{
4433 static const unsigned char ss_code_l_r14[] = {
4434 0xe3, 0xe0, 0xf0, 0x08, 0x00, 0x04 // lg %r14, 8(%r15)
4435 };
4436 if (!this->match_view_u(view, view_size, *offset, ss_code_l_r14,
4437 sizeof ss_code_l_r14))
4438 return false;
4439 *offset += sizeof ss_code_l_r14;
4440 return true;
4441}
4442
2b63aca3
MK
4443template<int size>
4444bool
4445Target_s390<size>::ss_match_mcount(unsigned char* view,
4446 section_size_type view_size,
4447 section_offset_type *offset) const
4448{
4449 // Match the mcount call sequence.
4450 section_offset_type myoff = *offset;
4451
4452 // First, look for the store instruction saving %r14.
40d85a7f 4453 if (!this->ss_match_st_r14(view, view_size, &myoff))
2b63aca3 4454 return false;
2b63aca3
MK
4455
4456 // Now, param load and the actual call.
4457 if (this->match_view_u(view, view_size, myoff, ss_code_larl,
4458 sizeof ss_code_larl))
4459 {
4460 myoff += sizeof ss_code_larl + 4;
4461
4462 // After larl, expect a brasl.
4463 if (!this->match_view_u(view, view_size, myoff, ss_code_brasl,
4464 sizeof ss_code_brasl))
4465 return false;
4466 myoff += sizeof ss_code_brasl + 4;
4467 }
4468 else if (size == 32 &&
4469 this->match_view_u(view, view_size, myoff, ss_code_bras_8,
4470 sizeof ss_code_bras_8))
4471 {
4472 // The bras skips over a block of 8 bytes, loading its address
4473 // to %r1.
4474 myoff += sizeof ss_code_bras_8 + 8;
4475
4476 // Now, there are two sequences used for actual load and call,
4477 // absolute and PIC.
4478 if (this->match_view_u(view, view_size, myoff, ss_code_l_basr,
4479 sizeof ss_code_l_basr))
4480 myoff += sizeof ss_code_l_basr;
4481 else if (this->match_view_u(view, view_size, myoff, ss_code_a_basr,
4482 sizeof ss_code_a_basr))
4483 myoff += sizeof ss_code_a_basr;
4484 else
4485 return false;
4486 }
4487 else
4488 return false;
4489
4490 // Finally, a load bringing %r14 back.
40d85a7f 4491 if (!this->ss_match_l_r14(view, view_size, &myoff))
2b63aca3 4492 return false;
2b63aca3
MK
4493
4494 // Found it.
4495 *offset = myoff;
4496 return true;
4497}
4498
40d85a7f
MK
4499template<>
4500bool
4501Target_s390<32>::ss_match_ear(unsigned char* view,
4502 section_size_type view_size,
4503 section_offset_type *offset) const
4504{
4505 static const unsigned char ss_code_ear[] = {
4506 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4507 };
4508 if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4509 sizeof ss_code_ear))
4510 return false;
4511 *offset += sizeof ss_code_ear;
4512 return true;
4513}
4514
4515template<>
4516bool
4517Target_s390<64>::ss_match_ear(unsigned char* view,
4518 section_size_type view_size,
4519 section_offset_type *offset) const
4520{
4521 static const unsigned char ss_code_ear[] = {
4522 0xb2, 0x4f, 0x00, 0x10, // ear %r1, %a0
4523 0xeb, 0x11, 0x00, 0x20, 0x00, 0x0d, // sllg %r1,%r1,32
4524 0xb2, 0x4f, 0x00, 0x11, // ear %r1, %a1
4525 };
4526 if (!this->match_view_u(view, view_size, *offset, ss_code_ear,
4527 sizeof ss_code_ear))
4528 return false;
4529 *offset += sizeof ss_code_ear;
4530 return true;
4531}
4532
4533template<>
4534bool
4535Target_s390<32>::ss_match_c(unsigned char* view,
4536 section_size_type view_size,
4537 section_offset_type *offset) const
4538{
4539 static const unsigned char ss_code_c[] = {
4540 0x59, 0xf0, 0x10, 0x20, // c %r15, 0x20(%r1)
4541 };
4542 if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4543 sizeof ss_code_c))
4544 return false;
4545 *offset += sizeof ss_code_c;
4546 return true;
4547}
4548
4549template<>
4550bool
4551Target_s390<64>::ss_match_c(unsigned char* view,
4552 section_size_type view_size,
4553 section_offset_type *offset) const
4554{
4555 static const unsigned char ss_code_c[] = {
4556 0xe3, 0xf0, 0x10, 0x38, 0x00, 0x20, // cg %r15, 0x38(%r1)
4557 };
4558 if (!this->match_view_u(view, view_size, *offset, ss_code_c,
4559 sizeof ss_code_c))
4560 return false;
4561 *offset += sizeof ss_code_c;
4562 return true;
4563}
4564
2b63aca3
MK
4565template<>
4566bool
4567Target_s390<32>::ss_match_l(unsigned char* view,
4568 section_size_type view_size,
4569 section_offset_type *offset,
4570 int *guard_reg) const
4571{
4572 // l %guard_reg, 0x20(%r1)
4573 if (convert_to_section_size_type(*offset + 4) > view_size
4574 || view[*offset] != 0x58
4575 || (view[*offset + 1] & 0xf) != 0x0
4576 || view[*offset + 2] != 0x10
4577 || view[*offset + 3] != 0x20)
4578 return false;
4579 *offset += 4;
4580 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4581 return true;
4582}
4583
4584template<>
4585bool
4586Target_s390<64>::ss_match_l(unsigned char* view,
4587 section_size_type view_size,
4588 section_offset_type *offset,
4589 int *guard_reg) const
4590{
4591 // lg %guard_reg, 0x38(%r1)
4592 if (convert_to_section_size_type(*offset + 6) > view_size
4593 || view[*offset] != 0xe3
4594 || (view[*offset + 1] & 0xf) != 0x0
4595 || view[*offset + 2] != 0x10
4596 || view[*offset + 3] != 0x38
4597 || view[*offset + 4] != 0x00
4598 || view[*offset + 5] != 0x04)
4599 return false;
4600 *offset += 6;
4601 *guard_reg = view[*offset + 1] >> 4 & 0xf;
4602 return true;
4603}
4604
4605template<int size>
4606bool
4607Target_s390<size>::ss_match_ahi(unsigned char* view,
4608 section_size_type view_size,
4609 section_offset_type *offset,
4610 int guard_reg,
4611 uint32_t *arg) const
4612{
4613 int op = size == 32 ? 0xa : 0xb;
4614 // a[g]hi %guard_reg, <arg>
4615 if (convert_to_section_size_type(*offset + 4) > view_size
4616 || view[*offset] != 0xa7
4617 || view[*offset + 1] != (guard_reg << 4 | op)
4618 // Disallow negative size.
4619 || view[*offset + 2] & 0x80)
4620 return false;
4621 *arg = elfcpp::Swap<16, true>::readval(view + *offset + 2);
4622 *offset += 4;
4623 return true;
4624}
4625
4626template<int size>
4627bool
4628Target_s390<size>::ss_match_alfi(unsigned char* view,
4629 section_size_type view_size,
4630 section_offset_type *offset,
4631 int guard_reg,
4632 uint32_t *arg) const
4633{
4634 int op = size == 32 ? 0xb : 0xa;
4635 // al[g]fi %guard_reg, <arg>
4636 if (convert_to_section_size_type(*offset + 6) > view_size
4637 || view[*offset] != 0xc2
4638 || view[*offset + 1] != (guard_reg << 4 | op))
4639 return false;
4640 *arg = elfcpp::Swap<32, true>::readval(view + *offset + 2);
4641 *offset += 6;
4642 return true;
4643}
4644
4645template<>
4646bool
4647Target_s390<32>::ss_match_cr(unsigned char* view,
4648 section_size_type view_size,
4649 section_offset_type *offset,
4650 int guard_reg) const
4651{
4652 // cr %r15, %guard_reg
4653 if (convert_to_section_size_type(*offset + 2) > view_size
4654 || view[*offset] != 0x19
4655 || view[*offset + 1] != (0xf0 | guard_reg))
4656 return false;
4657 *offset += 2;
4658 return true;
4659}
4660
4661template<>
4662bool
4663Target_s390<64>::ss_match_cr(unsigned char* view,
4664 section_size_type view_size,
4665 section_offset_type *offset,
4666 int guard_reg) const
4667{
4668 // cgr %r15, %guard_reg
4669 if (convert_to_section_size_type(*offset + 4) > view_size
4670 || view[*offset] != 0xb9
4671 || view[*offset + 1] != 0x20
4672 || view[*offset + 2] != 0x00
4673 || view[*offset + 3] != (0xf0 | guard_reg))
4674 return false;
4675 *offset += 4;
4676 return true;
4677}
4678
4679
4680// FNOFFSET in section SHNDX in OBJECT is the start of a function
4681// compiled with -fsplit-stack. The function calls non-split-stack
4682// code. We have to change the function so that it always ensures
4683// that it has enough stack space to run some random function.
4684
4685template<int size>
4686void
4687Target_s390<size>::do_calls_non_split(Relobj* object, unsigned int shndx,
4688 section_offset_type fnoffset,
4689 section_size_type,
4690 const unsigned char *prelocs,
4691 size_t reloc_count,
4692 unsigned char* view,
4693 section_size_type view_size,
4694 std::string*,
4695 std::string*) const
4696{
4697 // true if there's a conditional call to __morestack in the function,
4698 // false if there's an unconditional one.
4699 bool conditional = false;
4700 // Offset of the byte after the compare insn, if conditional.
4701 section_offset_type cmpend = 0;
4702 // Type and immediate offset of the add instruction that adds frame size
4703 // to guard.
4704 enum {
4705 SS_ADD_NONE,
4706 SS_ADD_AHI,
4707 SS_ADD_ALFI,
4708 } fsadd_type = SS_ADD_NONE;
4709 section_offset_type fsadd_offset = 0;
4710 uint32_t fsadd_frame_size = 0;
4711 // Register used for loading guard. Usually r1, but can also be r0 or r2-r5.
4712 int guard_reg;
4713 // Offset of the conditional jump.
4714 section_offset_type jump_offset = 0;
4715 // Section view and offset of param block.
4716 section_offset_type param_offset = 0;
4717 unsigned char *param_view = 0;
4718 section_size_type param_view_size = 0;
4719 // Current position in function.
4720 section_offset_type curoffset = fnoffset;
4721 // And the position of split-stack prologue.
4722 section_offset_type ssoffset;
4723 // Frame size.
4724 typename elfcpp::Elf_types<size>::Elf_Addr frame_size;
4725 // Relocation parsing.
4726 typedef typename Reloc_types<elfcpp::SHT_RELA, size, true>::Reloc Reltype;
4727 const int reloc_size = Reloc_types<elfcpp::SHT_RELA, size, true>::reloc_size;
4728 const unsigned char *pr = prelocs;
4729
4730 // If the function was compiled with -pg, the profiling code may come before
4731 // the split-stack prologue. Skip it.
4732
4733 this->ss_match_mcount(view, view_size, &curoffset);
4734 ssoffset = curoffset;
4735
4736 // First, figure out if there's a conditional call by looking for the
4737 // extract-tp, add, cmp sequence.
4738
40d85a7f 4739 if (this->ss_match_ear(view, view_size, &curoffset))
2b63aca3
MK
4740 {
4741 // Found extract-tp, now look for an add and compare.
2b63aca3 4742 conditional = true;
40d85a7f 4743 if (this->ss_match_c(view, view_size, &curoffset))
2b63aca3
MK
4744 {
4745 // Found a direct compare of stack pointer with the guard,
4746 // we're done here.
2b63aca3
MK
4747 }
4748 else if (this->ss_match_l(view, view_size, &curoffset, &guard_reg))
4749 {
4750 // Found a load of guard to register, look for an add and compare.
4751 if (this->ss_match_ahi(view, view_size, &curoffset, guard_reg,
4752 &fsadd_frame_size))
4753 {
4754 fsadd_type = SS_ADD_AHI;
4755 fsadd_offset = curoffset - 2;
4756 }
4757 else if (this->ss_match_alfi(view, view_size, &curoffset, guard_reg,
4758 &fsadd_frame_size))
4759 {
4760 fsadd_type = SS_ADD_ALFI;
4761 fsadd_offset = curoffset - 4;
4762 }
4763 else
4764 {
4765 goto bad;
4766 }
4767 // Now, there has to be a compare.
4768 if (!this->ss_match_cr(view, view_size, &curoffset, guard_reg))
4769 goto bad;
4770 }
4771 else
4772 {
4773 goto bad;
4774 }
4775 cmpend = curoffset;
4776 }
4777
4778 // Second, look for the call.
4779 if (!this->match_view_u(view, view_size, curoffset, ss_code_larl,
4780 sizeof ss_code_larl))
4781 goto bad;
4782 curoffset += sizeof ss_code_larl;
4783
4784 // Find out larl's operand. It should be a local symbol in .rodata
4785 // section.
4786 for (size_t i = 0; i < reloc_count; ++i, pr += reloc_size)
4787 {
4788 Reltype reloc(pr);
4789 if (static_cast<section_offset_type>(reloc.get_r_offset())
4790 == curoffset)
4791 {
4792 typename elfcpp::Elf_types<size>::Elf_WXword r_info
4793 = reloc.get_r_info();
4794 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
4795 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
4796 if (r_type != elfcpp::R_390_PC32DBL)
4797 goto bad;
4798 if (r_sym >= object->local_symbol_count())
4799 goto bad;
4800 Sized_relobj_file<size, true> *object_sized =
4801 static_cast<Sized_relobj_file<size, true> *>(object);
4802 const Symbol_value<size>* sym = object_sized->local_symbol(r_sym);
4803 bool param_shndx_ordinary;
4804 const unsigned int param_shndx =
4805 sym->input_shndx(&param_shndx_ordinary);
4806 if (!param_shndx_ordinary)
4807 goto bad;
4808 param_offset = sym->input_value() + reloc.get_r_addend() - 2
4809 - object->output_section(param_shndx)->address()
4810 - object->output_section_offset(param_shndx);
4811 param_view = object->get_output_view(param_shndx,
4812 &param_view_size);
4813 break;
4814 }
4815 }
4816
4817 if (!param_view)
4818 goto bad;
4819
4820 curoffset += 4;
4821
4822 // Now, there has to be a jump to __morestack.
4823 jump_offset = curoffset;
4824
4825 if (this->match_view_u(view, view_size, curoffset,
4826 conditional ? ss_code_jgl : ss_code_jg,
4827 sizeof ss_code_jg))
4828 curoffset += sizeof ss_code_jg;
4829 else
4830 goto bad;
4831
4832 curoffset += 4;
4833
4834 // Read the frame size.
4835 if (convert_to_section_size_type(param_offset + size / 8) > param_view_size)
4836 goto bad;
4837 frame_size = elfcpp::Swap<size, true>::readval(param_view + param_offset);
4838
4839 // Sanity check.
4840 if (fsadd_type != SS_ADD_NONE && fsadd_frame_size != frame_size)
4841 goto bad;
4842
4843 // Bump the frame size.
4844 frame_size += parameters->options().split_stack_adjust_size();
4845
4846 // Store it to the param block.
4847 elfcpp::Swap<size, true>::writeval(param_view + param_offset, frame_size);
4848
4849 if (!conditional)
4850 {
4851 // If the call was already unconditional, we're done.
4852 }
4853 else if (frame_size <= 0xffffffff && fsadd_type == SS_ADD_ALFI)
4854 {
4855 // Using alfi to add the frame size, and it still fits. Adjust it.
4856 elfcpp::Swap_unaligned<32, true>::writeval(view + fsadd_offset,
4857 frame_size);
4858 }
4859 else
4860 {
4861 // We were either relying on the backoff area, or used ahi to load
4862 // frame size. This won't fly, as our new frame size is too large.
4863 // Convert the sequence to unconditional by nopping out the comparison,
4864 // and rewiring the jump.
4865 this->set_view_to_nop(view, view_size, ssoffset, cmpend - ssoffset);
4866
4867 // The jump is jgl, we'll mutate it to jg.
4868 view[jump_offset+1] = 0xf4;
4869 }
4870
4871 return;
4872
4873bad:
4874 if (!object->has_no_split_stack())
4875 object->error(_("failed to match split-stack sequence at "
4876 "section %u offset %0zx"),
4877 shndx, static_cast<size_t>(fnoffset));
4878}
4879
e79a4bad
MK
4880// Relocate section data.
4881
4882template<int size>
4883void
4884Target_s390<size>::relocate_section(
4885 const Relocate_info<size, true>* relinfo,
4886 unsigned int sh_type,
4887 const unsigned char* prelocs,
4888 size_t reloc_count,
4889 Output_section* output_section,
4890 bool needs_special_offset_handling,
4891 unsigned char* view,
4892 typename elfcpp::Elf_types<size>::Elf_Addr address,
4893 section_size_type view_size,
4894 const Reloc_symbol_changes* reloc_symbol_changes)
4895{
4d625b70
CC
4896 typedef gold::Default_classify_reloc<elfcpp::SHT_RELA, size, true>
4897 Classify_reloc;
4898
e79a4bad
MK
4899 gold_assert(sh_type == elfcpp::SHT_RELA);
4900
4d625b70
CC
4901 gold::relocate_section<size, true, Target_s390<size>, Relocate,
4902 gold::Default_comdat_behavior, Classify_reloc>(
e79a4bad
MK
4903 relinfo,
4904 this,
4905 prelocs,
4906 reloc_count,
4907 output_section,
4908 needs_special_offset_handling,
4909 view,
4910 address,
4911 view_size,
4912 reloc_symbol_changes);
4913}
4914
4915// Apply an incremental relocation. Incremental relocations always refer
4916// to global symbols.
4917
4918template<int size>
4919void
4920Target_s390<size>::apply_relocation(
4921 const Relocate_info<size, true>* relinfo,
4922 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4923 unsigned int r_type,
4924 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4925 const Symbol* gsym,
4926 unsigned char* view,
4927 typename elfcpp::Elf_types<size>::Elf_Addr address,
4928 section_size_type view_size)
4929{
4930 gold::apply_relocation<size, true, Target_s390<size>,
4931 typename Target_s390<size>::Relocate>(
4932 relinfo,
4933 this,
4934 r_offset,
4935 r_type,
4936 r_addend,
4937 gsym,
4938 view,
4939 address,
4940 view_size);
4941}
4942
4943// The selector for s390 object files.
4944
4945template<int size>
4946class Target_selector_s390 : public Target_selector
4947{
4948public:
4949 Target_selector_s390()
4950 : Target_selector(elfcpp::EM_S390, size, true,
4951 (size == 64 ? "elf64-s390" : "elf32-s390"),
4952 (size == 64 ? "elf64_s390" : "elf32_s390"))
4953 { }
4954
4955 virtual Target*
4956 do_instantiate_target()
4957 { return new Target_s390<size>(); }
4958};
4959
4960Target_selector_s390<32> target_selector_s390;
4961Target_selector_s390<64> target_selector_s390x;
4962
4963} // End anonymous namespace.
This page took 0.310407 seconds and 4 git commands to generate.