Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / s390.cc
CommitLineData
e79a4bad
MK
1// s390.cc -- s390 target support for gold.
2
3// Copyright (C) 2015 Free Software Foundation, Inc.
4// Written by Marcin Koƛcielnicki <koriakin@0x04.net>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "s390.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44namespace
45{
46
47using namespace gold;
48
49// A class to handle the .got.plt section.
50
51template<int size>
52class Output_data_got_plt_s390 : public Output_section_data_build
53{
54 public:
55 Output_data_got_plt_s390(Layout* layout)
56 : Output_section_data_build(size/8),
57 layout_(layout)
58 { }
59
60 Output_data_got_plt_s390(Layout* layout, off_t data_size)
61 : Output_section_data_build(data_size, size/8),
62 layout_(layout)
63 { }
64
65 protected:
66 // Write out the PLT data.
67 void
68 do_write(Output_file*);
69
70 // Write to a map file.
71 void
72 do_print_to_mapfile(Mapfile* mapfile) const
73 { mapfile->print_output_data(this, "** GOT PLT"); }
74
75 private:
76 // A pointer to the Layout class, so that we can find the .dynamic
77 // section when we write out the GOT PLT section.
78 Layout* layout_;
79};
80
81// A class to handle the PLT data.
82
83template<int size>
84class Output_data_plt_s390 : public Output_section_data
85{
86 public:
87 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true>
88 Reloc_section;
89
90 Output_data_plt_s390(Layout* layout,
91 Output_data_got<size, true>* got,
92 Output_data_got_plt_s390<size>* got_plt,
93 Output_data_space* got_irelative)
94 : Output_section_data(4), layout_(layout),
95 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
96 got_irelative_(got_irelative), count_(0),
97 irelative_count_(0), free_list_()
98 { this->init(layout); }
99
100 Output_data_plt_s390(Layout* layout,
101 Output_data_got<size, true>* got,
102 Output_data_got_plt_s390<size>* got_plt,
103 Output_data_space* got_irelative,
104 unsigned int plt_count)
105 : Output_section_data((plt_count + 1) * plt_entry_size,
106 4, false),
107 layout_(layout), irelative_rel_(NULL), got_(got),
108 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
109 irelative_count_(0), free_list_()
110 {
111 this->init(layout);
112
113 // Initialize the free list and reserve the first entry.
114 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
115 this->free_list_.remove(0, plt_entry_size);
116 }
117
118 // Initialize the PLT section.
119 void
120 init(Layout* layout);
121
122 // Add an entry to the PLT.
123 void
124 add_entry(Symbol_table*, Layout*, Symbol* gsym);
125
126 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
127 unsigned int
128 add_local_ifunc_entry(Symbol_table*, Layout*,
129 Sized_relobj_file<size, true>*, unsigned int);
130
131 // Add the relocation for a PLT entry.
132 void
133 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
134
135 // Return the .rela.plt section data.
136 Reloc_section*
137 rela_plt()
138 { return this->rel_; }
139
140 // Return where the IRELATIVE relocations should go in the PLT
141 // relocations.
142 Reloc_section*
143 rela_irelative(Symbol_table*, Layout*);
144
145 // Return whether we created a section for IRELATIVE relocations.
146 bool
147 has_irelative_section() const
148 { return this->irelative_rel_ != NULL; }
149
150 // Return the number of PLT entries.
151 unsigned int
152 entry_count() const
153 { return this->count_ + this->irelative_count_; }
154
155 // Return the offset of the first non-reserved PLT entry.
156 unsigned int
157 first_plt_entry_offset()
158 { return plt_entry_size; }
159
160 // Return the size of a PLT entry.
161 unsigned int
162 get_plt_entry_size() const
163 { return plt_entry_size; }
164
165 // Reserve a slot in the PLT for an existing symbol in an incremental update.
166 void
167 reserve_slot(unsigned int plt_index)
168 {
169 this->free_list_.remove((plt_index + 1) * plt_entry_size,
170 (plt_index + 2) * plt_entry_size);
171 }
172
173 // Return the PLT address to use for a global symbol.
174 uint64_t
175 address_for_global(const Symbol*);
176
177 // Return the PLT address to use for a local symbol.
178 uint64_t
179 address_for_local(const Relobj*, unsigned int symndx);
180
181 // Add .eh_frame information for the PLT.
182 void
183 add_eh_frame(Layout* layout)
184 {
185 (void)layout;
186 layout->add_eh_frame_for_plt(this,
187 plt_eh_frame_cie,
188 plt_eh_frame_cie_size,
189 plt_eh_frame_fde,
190 plt_eh_frame_fde_size);
191 }
192
193 protected:
194 // Fill in the first PLT entry.
195 void
196 fill_first_plt_entry(unsigned char* pov,
197 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
198 typename elfcpp::Elf_types<size>::Elf_Addr plt_address);
199
200 // Fill in a normal PLT entry. Returns the offset into the entry that
201 // should be the initial GOT slot value.
202 unsigned int
203 fill_plt_entry(unsigned char* pov,
204 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
205 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
206 unsigned int got_offset,
207 unsigned int plt_offset,
208 unsigned int plt_rel_offset);
209
210 void
211 do_adjust_output_section(Output_section* os);
212
213 // Write to a map file.
214 void
215 do_print_to_mapfile(Mapfile* mapfile) const
216 { mapfile->print_output_data(this, _("** PLT")); }
217
218 private:
219 // Set the final size.
220 void
221 set_final_data_size();
222
223 // Write out the PLT data.
224 void
225 do_write(Output_file*);
226
227 // A pointer to the Layout class, so that we can find the .dynamic
228 // section when we write out the GOT PLT section.
229 Layout* layout_;
230 // The reloc section.
231 Reloc_section* rel_;
232 // The IRELATIVE relocs, if necessary. These must follow the
233 // regular PLT relocations.
234 Reloc_section* irelative_rel_;
235 // The .got section.
236 Output_data_got<size, true>* got_;
237 // The .got.plt section.
238 Output_data_got_plt_s390<size>* got_plt_;
239 // The part of the .got.plt section used for IRELATIVE relocs.
240 Output_data_space* got_irelative_;
241 // The number of PLT entries.
242 unsigned int count_;
243 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
244 // follow the regular PLT entries.
245 unsigned int irelative_count_;
246 // List of available regions within the section, for incremental
247 // update links.
248 Free_list free_list_;
249
250 // The size of an entry in the PLT.
251 static const int plt_entry_size = 0x20;
252 // The first entry in the PLT.
253 static const unsigned char first_plt_entry_32_abs[plt_entry_size];
254 static const unsigned char first_plt_entry_32_pic[plt_entry_size];
255 static const unsigned char first_plt_entry_64[plt_entry_size];
256 // Other entries in the PLT for an executable.
257 static const unsigned char plt_entry_32_abs[plt_entry_size];
258 static const unsigned char plt_entry_32_pic12[plt_entry_size];
259 static const unsigned char plt_entry_32_pic16[plt_entry_size];
260 static const unsigned char plt_entry_32_pic[plt_entry_size];
261 static const unsigned char plt_entry_64[plt_entry_size];
262
263 // The .eh_frame unwind information for the PLT.
264 static const int plt_eh_frame_cie_size = 12;
265 static const unsigned char plt_eh_frame_cie[plt_eh_frame_cie_size];
266 static const int plt_eh_frame_fde_size = 12;
267 static const unsigned char plt_eh_frame_fde[plt_eh_frame_fde_size];
268};
269
270
271template<int size>
272class Target_s390 : public Sized_target<size, true>
273{
274 public:
275 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, true> Reloc_section;
276
277 Target_s390()
278 : Sized_target<size, true>(&s390_info),
279 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
280 global_offset_table_(NULL), rela_dyn_(NULL),
281 rela_irelative_(NULL), copy_relocs_(elfcpp::R_390_COPY),
282 got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
283 layout_(NULL)
284 { }
285
286 // Scan the relocations to look for symbol adjustments.
287 void
288 gc_process_relocs(Symbol_table* symtab,
289 Layout* layout,
290 Sized_relobj_file<size, true>* object,
291 unsigned int data_shndx,
292 unsigned int sh_type,
293 const unsigned char* prelocs,
294 size_t reloc_count,
295 Output_section* output_section,
296 bool needs_special_offset_handling,
297 size_t local_symbol_count,
298 const unsigned char* plocal_symbols);
299
300 // Scan the relocations to look for symbol adjustments.
301 void
302 scan_relocs(Symbol_table* symtab,
303 Layout* layout,
304 Sized_relobj_file<size, true>* object,
305 unsigned int data_shndx,
306 unsigned int sh_type,
307 const unsigned char* prelocs,
308 size_t reloc_count,
309 Output_section* output_section,
310 bool needs_special_offset_handling,
311 size_t local_symbol_count,
312 const unsigned char* plocal_symbols);
313
314 // Finalize the sections.
315 void
316 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
317
318 // Return the value to use for a dynamic which requires special
319 // treatment.
320 uint64_t
321 do_dynsym_value(const Symbol*) const;
322
323 // Relocate a section.
324 void
325 relocate_section(const Relocate_info<size, true>*,
326 unsigned int sh_type,
327 const unsigned char* prelocs,
328 size_t reloc_count,
329 Output_section* output_section,
330 bool needs_special_offset_handling,
331 unsigned char* view,
332 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
333 section_size_type view_size,
334 const Reloc_symbol_changes*);
335
336 // Scan the relocs during a relocatable link.
337 void
338 scan_relocatable_relocs(Symbol_table* symtab,
339 Layout* layout,
340 Sized_relobj_file<size, true>* object,
341 unsigned int data_shndx,
342 unsigned int sh_type,
343 const unsigned char* prelocs,
344 size_t reloc_count,
345 Output_section* output_section,
346 bool needs_special_offset_handling,
347 size_t local_symbol_count,
348 const unsigned char* plocal_symbols,
349 Relocatable_relocs*);
350
351 // Return a string used to fill a code section with nops.
352 std::string
353 do_code_fill(section_size_type length) const;
354
355 // Emit relocations for a section.
356 void
357 relocate_relocs(
358 const Relocate_info<size, true>*,
359 unsigned int sh_type,
360 const unsigned char* prelocs,
361 size_t reloc_count,
362 Output_section* output_section,
363 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
364 const Relocatable_relocs*,
365 unsigned char* view,
366 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
367 section_size_type view_size,
368 unsigned char* reloc_view,
369 section_size_type reloc_view_size);
370
371 // Return whether SYM is defined by the ABI.
372 bool
373 do_is_defined_by_abi(const Symbol* sym) const
374 { return strcmp(sym->name(), "__tls_get_offset") == 0; }
375
376 // Return the PLT address to use for a global symbol.
377 uint64_t
378 do_plt_address_for_global(const Symbol* gsym) const
379 { return this->plt_section()->address_for_global(gsym); }
380
381 uint64_t
382 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
383 { return this->plt_section()->address_for_local(relobj, symndx); }
384
385 // Return the offset to use for the GOT_INDX'th got entry which is
386 // for a local tls symbol specified by OBJECT, SYMNDX.
387 int64_t
388 do_tls_offset_for_local(const Relobj* object,
389 unsigned int symndx,
390 unsigned int got_indx) const;
391
392 // Return the offset to use for the GOT_INDX'th got entry which is
393 // for global tls symbol GSYM.
394 int64_t
395 do_tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const;
396
397 // This function should be defined in targets that can use relocation
398 // types to determine (implemented in local_reloc_may_be_function_pointer
399 // and global_reloc_may_be_function_pointer)
400 // if a function's pointer is taken. ICF uses this in safe mode to only
401 // fold those functions whose pointer is defintely not taken.
402 bool
403 do_can_check_for_function_pointers() const
404 { return true; }
405
406 // Return the size of the GOT section.
407 section_size_type
408 got_size() const
409 {
410 gold_assert(this->got_ != NULL);
411 return this->got_->data_size();
412 }
413
414 // Return the number of entries in the GOT.
415 unsigned int
416 got_entry_count() const
417 {
418 if (this->got_ == NULL)
419 return 0;
420 return this->got_size() / (size / 8);
421 }
422
423 // Return the number of entries in the PLT.
424 unsigned int
425 plt_entry_count() const;
426
427 // Return the offset of the first non-reserved PLT entry.
428 unsigned int
429 first_plt_entry_offset() const;
430
431 // Return the size of each PLT entry.
432 unsigned int
433 plt_entry_size() const;
434
435 // Create the GOT section for an incremental update.
436 Output_data_got_base*
437 init_got_plt_for_update(Symbol_table* symtab,
438 Layout* layout,
439 unsigned int got_count,
440 unsigned int plt_count);
441
442 // Reserve a GOT entry for a local symbol, and regenerate any
443 // necessary dynamic relocations.
444 void
445 reserve_local_got_entry(unsigned int got_index,
446 Sized_relobj<size, true>* obj,
447 unsigned int r_sym,
448 unsigned int got_type);
449
450 // Reserve a GOT entry for a global symbol, and regenerate any
451 // necessary dynamic relocations.
452 void
453 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
454 unsigned int got_type);
455
456 // Register an existing PLT entry for a global symbol.
457 void
458 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
459 Symbol* gsym);
460
461 // Force a COPY relocation for a given symbol.
462 void
463 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
464
465 // Apply an incremental relocation.
466 void
467 apply_relocation(const Relocate_info<size, true>* relinfo,
468 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
469 unsigned int r_type,
470 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
471 const Symbol* gsym,
472 unsigned char* view,
473 typename elfcpp::Elf_types<size>::Elf_Addr address,
474 section_size_type view_size);
475
476 private:
477
478 // The class which scans relocations.
479 class Scan
480 {
481 public:
482 Scan()
483 : issued_non_pic_error_(false)
484 { }
485
486 static inline int
487 get_reference_flags(unsigned int r_type);
488
489 inline void
490 local(Symbol_table* symtab, Layout* layout, Target_s390* target,
491 Sized_relobj_file<size, true>* object,
492 unsigned int data_shndx,
493 Output_section* output_section,
494 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
495 const elfcpp::Sym<size, true>& lsym,
496 bool is_discarded);
497
498 inline void
499 global(Symbol_table* symtab, Layout* layout, Target_s390* target,
500 Sized_relobj_file<size, true>* object,
501 unsigned int data_shndx,
502 Output_section* output_section,
503 const elfcpp::Rela<size, true>& reloc, unsigned int r_type,
504 Symbol* gsym);
505
506 inline bool
507 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
508 Target_s390* target,
509 Sized_relobj_file<size, true>* object,
510 unsigned int data_shndx,
511 Output_section* output_section,
512 const elfcpp::Rela<size, true>& reloc,
513 unsigned int r_type,
514 const elfcpp::Sym<size, true>& lsym);
515
516 inline bool
517 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
518 Target_s390* target,
519 Sized_relobj_file<size, true>* object,
520 unsigned int data_shndx,
521 Output_section* output_section,
522 const elfcpp::Rela<size, true>& reloc,
523 unsigned int r_type,
524 Symbol* gsym);
525
526 private:
527 static void
528 unsupported_reloc_local(Sized_relobj_file<size, true>*,
529 unsigned int r_type);
530
531 static void
532 unsupported_reloc_global(Sized_relobj_file<size, true>*,
533 unsigned int r_type, Symbol*);
534
535 void
536 check_non_pic(Relobj*, unsigned int r_type);
537
538 inline bool
539 possible_function_pointer_reloc(unsigned int r_type);
540
541 bool
542 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, true>*,
543 unsigned int r_type);
544
545 // Whether we have issued an error about a non-PIC compilation.
546 bool issued_non_pic_error_;
547 };
548
549 // The class which implements relocation.
550 class Relocate
551 {
552 public:
553 // Do a relocation. Return false if the caller should not issue
554 // any warnings about this relocation.
555 inline bool
556 relocate(const Relocate_info<size, true>*, Target_s390*,
557 Output_section*,
558 size_t relnum, const elfcpp::Rela<size, true>&,
559 unsigned int r_type, const Sized_symbol<size>*,
560 const Symbol_value<size>*,
561 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
562 section_size_type);
563
564 private:
565 // Do a TLS relocation.
566 inline typename elfcpp::Elf_types<size>::Elf_Addr
567 relocate_tls(const Relocate_info<size, true>*, Target_s390*,
568 size_t relnum, const elfcpp::Rela<size, true>&,
569 unsigned int r_type, const Sized_symbol<size>*,
570 const Symbol_value<size>*,
571 unsigned char*, section_size_type);
572
573 // Do a TLS General-Dynamic to Initial-Exec transition.
574 inline void
575 tls_gd_to_ie(const Relocate_info<size, true>*, size_t relnum,
576 const elfcpp::Rela<size, true>&,
577 unsigned char* view,
578 section_size_type view_size);
579
580 // Do a TLS General-Dynamic to Local-Exec transition.
581 inline void
582 tls_gd_to_le(const Relocate_info<size, true>*, size_t relnum,
583 const elfcpp::Rela<size, true>&,
584 unsigned char* view,
585 section_size_type view_size);
586
587 // Do a TLS Local-Dynamic to Local-Exec transition.
588 inline void
589 tls_ld_to_le(const Relocate_info<size, true>*, size_t relnum,
590 const elfcpp::Rela<size, true>&,
591 unsigned char* view,
592 section_size_type view_size);
593
594 // Do a TLS Initial-Exec to Local-Exec transition.
595 static inline void
596 tls_ie_to_le(const Relocate_info<size, true>*, size_t relnum,
597 const elfcpp::Rela<size, true>&,
598 unsigned char* view,
599 section_size_type view_size);
600 };
601
602 // A class which returns the size required for a relocation type,
603 // used while scanning relocs during a relocatable link.
604 class Relocatable_size_for_reloc
605 {
606 public:
607 unsigned int
608 get_size_for_reloc(unsigned int, Relobj*);
609 };
610
611 // Adjust TLS relocation type based on the options and whether this
612 // is a local symbol.
613 static tls::Tls_optimization
614 optimize_tls_reloc(bool is_final, int r_type);
615
616 // Get the GOT section.
617 const Output_data_got<size, true>*
618 got_section() const
619 {
620 gold_assert(this->got_ != NULL);
621 return this->got_;
622 }
623
624 // Get the GOT section, creating it if necessary.
625 Output_data_got<size, true>*
626 got_section(Symbol_table*, Layout*);
627
628 typename elfcpp::Elf_types<size>::Elf_Addr
629 got_address() const
630 {
631 gold_assert(this->got_ != NULL);
632 return this->got_plt_->address();
633 }
634
635 typename elfcpp::Elf_types<size>::Elf_Addr
636 got_main_offset() const
637 {
638 gold_assert(this->got_ != NULL);
639 return this->got_->address() - this->got_address();
640 }
641
642 // Create the PLT section.
643 void
644 make_plt_section(Symbol_table* symtab, Layout* layout);
645
646 // Create a PLT entry for a global symbol.
647 void
648 make_plt_entry(Symbol_table*, Layout*, Symbol*);
649
650 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
651 void
652 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
653 Sized_relobj_file<size, true>* relobj,
654 unsigned int local_sym_index);
655
656 // Create a GOT entry for the TLS module index.
657 unsigned int
658 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
659 Sized_relobj_file<size, true>* object);
660
661 // Get the PLT section.
662 Output_data_plt_s390<size>*
663 plt_section() const
664 {
665 gold_assert(this->plt_ != NULL);
666 return this->plt_;
667 }
668
669 // Get the dynamic reloc section, creating it if necessary.
670 Reloc_section*
671 rela_dyn_section(Layout*);
672
673 // Get the section to use for IRELATIVE relocations.
674 Reloc_section*
675 rela_irelative_section(Layout*);
676
677 // Add a potential copy relocation.
678 void
679 copy_reloc(Symbol_table* symtab, Layout* layout,
680 Sized_relobj_file<size, true>* object,
681 unsigned int shndx, Output_section* output_section,
682 Symbol* sym, const elfcpp::Rela<size, true>& reloc)
683 {
859d7987 684 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
e79a4bad
MK
685 this->copy_relocs_.copy_reloc(symtab, layout,
686 symtab->get_sized_symbol<size>(sym),
687 object, shndx, output_section,
859d7987
CC
688 r_type, reloc.get_r_offset(),
689 reloc.get_r_addend(),
690 this->rela_dyn_section(layout));
e79a4bad
MK
691 }
692
693 // Information about this specific target which we pass to the
694 // general Target structure.
695 static Target::Target_info s390_info;
696
697 // The types of GOT entries needed for this platform.
698 // These values are exposed to the ABI in an incremental link.
699 // Do not renumber existing values without changing the version
700 // number of the .gnu_incremental_inputs section.
701 enum Got_type
702 {
703 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
704 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
705 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
706 };
707
708 // The GOT section.
709 Output_data_got<size, true>* got_;
710 // The PLT section.
711 Output_data_plt_s390<size>* plt_;
712 // The GOT PLT section.
713 Output_data_got_plt_s390<size>* got_plt_;
714 // The GOT section for IRELATIVE relocations.
715 Output_data_space* got_irelative_;
716 // The _GLOBAL_OFFSET_TABLE_ symbol.
717 Symbol* global_offset_table_;
718 // The dynamic reloc section.
719 Reloc_section* rela_dyn_;
720 // The section to use for IRELATIVE relocs.
721 Reloc_section* rela_irelative_;
722 // Relocs saved to avoid a COPY reloc.
723 Copy_relocs<elfcpp::SHT_RELA, size, true> copy_relocs_;
724 // Offset of the GOT entry for the TLS module index.
725 unsigned int got_mod_index_offset_;
726 // True if the _TLS_MODULE_BASE_ symbol has been defined.
727 bool tls_base_symbol_defined_;
728 // For use in do_tls_offset_for_*
729 Layout *layout_;
730};
731
732template<>
733Target::Target_info Target_s390<32>::s390_info =
734{
735 32, // size
736 true, // is_big_endian
737 elfcpp::EM_S390, // machine_code
738 false, // has_make_symbol
739 false, // has_resolve
740 true, // has_code_fill
741 true, // is_default_stack_executable
742 true, // can_icf_inline_merge_sections
743 '\0', // wrap_char
744 "/lib/ld.so.1", // dynamic_linker
745 0x00400000, // default_text_segment_address
746 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
747 4 * 1024, // common_pagesize (overridable by -z common-page-size)
748 false, // isolate_execinstr
749 0, // rosegment_gap
750 elfcpp::SHN_UNDEF, // small_common_shndx
751 elfcpp::SHN_UNDEF, // large_common_shndx
752 0, // small_common_section_flags
753 0, // large_common_section_flags
754 NULL, // attributes_section
755 NULL, // attributes_vendor
756 "_start", // entry_symbol_name
757 32, // hash_entry_size
758};
759
760template<>
761Target::Target_info Target_s390<64>::s390_info =
762{
763 64, // size
764 true, // is_big_endian
765 elfcpp::EM_S390, // machine_code
766 false, // has_make_symbol
767 false, // has_resolve
768 true, // has_code_fill
769 true, // is_default_stack_executable
770 true, // can_icf_inline_merge_sections
771 '\0', // wrap_char
772 "/lib/ld64.so.1", // dynamic_linker
773 0x80000000ll, // default_text_segment_address
774 4 * 1024, // abi_pagesize (overridable by -z max-page-size)
775 4 * 1024, // common_pagesize (overridable by -z common-page-size)
776 false, // isolate_execinstr
777 0, // rosegment_gap
778 elfcpp::SHN_UNDEF, // small_common_shndx
779 elfcpp::SHN_UNDEF, // large_common_shndx
780 0, // small_common_section_flags
781 0, // large_common_section_flags
782 NULL, // attributes_section
783 NULL, // attributes_vendor
784 "_start", // entry_symbol_name
785 64, // hash_entry_size
786};
787
788template<int size>
789class S390_relocate_functions
790{
791public:
792 enum Overflow_check
793 {
794 CHECK_NONE,
795 CHECK_SIGNED,
796 CHECK_UNSIGNED,
797 CHECK_BITFIELD,
798 CHECK_LOW_INSN,
799 CHECK_HIGH_INSN
800 };
801
802 enum Status
803 {
804 STATUS_OK,
805 STATUS_OVERFLOW
806 };
807
808private:
809 typedef S390_relocate_functions<size> This;
810 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
811
812 template<int valsize>
813 static inline bool
814 has_overflow_signed(Address value)
815 {
816 // limit = 1 << (valsize - 1) without shift count exceeding size of type
817 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
818 limit <<= ((valsize - 1) >> 1);
819 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
820 return value + limit > (limit << 1) - 1;
821 }
822
823 template<int valsize>
824 static inline bool
825 has_overflow_unsigned(Address value)
826 {
827 Address limit = static_cast<Address>(1) << ((valsize - 1) >> 1);
828 limit <<= ((valsize - 1) >> 1);
829 limit <<= ((valsize - 1) - 2 * ((valsize - 1) >> 1));
830 return value > (limit << 1) - 1;
831 }
832
833 template<int fieldsize>
834 static inline void
835 rela(unsigned char* view, Address mask, Address value)
836 {
837 typedef typename elfcpp::Swap<fieldsize, true>::Valtype Valtype;
838 Valtype* wv = reinterpret_cast<Valtype*>(view);
839 Valtype val = elfcpp::Swap<fieldsize, true>::readval(view);
840 val &= ~mask;
841 value &= mask;
842 elfcpp::Swap<fieldsize, true>::writeval(wv, val | value);
843 }
844
845public:
846 // R_390_12, R_390_GOT12, R_390_GOTPLT12, R_390_GOTIE12
847 static inline Status
848 rela12(unsigned char* view, Address value)
849 {
850 if (This::template has_overflow_unsigned<12>(value))
851 return STATUS_OVERFLOW;
852 This::template rela<16>(view, 0x0fff, value);
853 return STATUS_OK;
854 }
855
856 // R_390_16, R_390_GOT16, R_390_GOTPLT16, R_390_GOTOFF16, R_390_PLTOFF16
857 static inline Status
858 rela16(unsigned char* view, Address value)
859 {
860 if (This::template has_overflow_signed<16>(value))
861 return STATUS_OVERFLOW;
862 This::template rela<16>(view, 0xffff, value);
863 return STATUS_OK;
864 }
865
866 // R_390_20, R_390_GOT20, R_390_GOTPLT20, R_390_GOTIE20
867 static inline Status
868 rela20(unsigned char* view, Address value)
869 {
870 if (This::template has_overflow_signed<20>(value))
871 return STATUS_OVERFLOW;
872 This::template rela<16>(view, 0x0fff, value);
873 This::template rela<16>(view + 2, 0xff00, value >> (12 - 8));
874 return STATUS_OK;
875 }
876
877 // R_390_PC12DBL, R_390_PLT12DBL
878 static inline Status
879 pcrela12dbl(unsigned char* view, Address value, Address address)
880 {
881 value -= address;
882 if ((value & 1) != 0)
883 return STATUS_OVERFLOW;
884 if (This::template has_overflow_signed<13>(value))
885 return STATUS_OVERFLOW;
886 value >>= 1;
887 This::template rela<16>(view, 0x0fff, value);
888 return STATUS_OK;
889 }
890
891 // R_390_PC16DBL, R_390_PLT16DBL
892 static inline Status
893 pcrela16dbl(unsigned char* view, Address value, Address address)
894 {
895 value -= address;
896 if ((value & 1) != 0)
897 return STATUS_OVERFLOW;
898 if (This::template has_overflow_signed<17>(value))
899 return STATUS_OVERFLOW;
900 value >>= 1;
901 This::template rela<16>(view, 0xffff, value);
902 return STATUS_OK;
903 }
904
905 // R_390_PC24DBL, R_390_PLT24DBL
906 static inline Status
907 pcrela24dbl(unsigned char* view, Address value, Address address)
908 {
909 value -= address;
910 if ((value & 1) != 0)
911 return STATUS_OVERFLOW;
912 if (This::template has_overflow_signed<25>(value))
913 return STATUS_OVERFLOW;
914 value >>= 1;
915 // Swap doesn't take 24-bit fields well...
916 This::template rela<8>(view, 0xff, value >> 16);
917 This::template rela<16>(view + 1, 0xffff, value);
918 return STATUS_OK;
919 }
920
921 // R_390_PC32DBL, R_390_PLT32DBL, R_390_GOTPCDBL, R_390_GOTENT, R_390_GOTPLTENT
922 static inline Status
923 pcrela32dbl(unsigned char* view, Address value, Address address)
924 {
925 Address reloc = value - address;
926 if ((reloc & 1) != 0)
927 {
928 gold_warning(_("R_390_PC32DBL target misaligned at %llx"), (long long)address);
929 // Wait for a fix for https://sourceware.org/bugzilla/show_bug.cgi?id=18960
930 // return STATUS_OVERFLOW;
931 }
932 if (This::template has_overflow_signed<33>(reloc))
933 return STATUS_OVERFLOW;
934 reloc >>= 1;
935 if (value < address && size == 32)
936 reloc |= 0x80000000;
937 This::template rela<32>(view, 0xffffffff, reloc);
938 return STATUS_OK;
939 }
940
941};
942
943// Initialize the PLT section.
944
945template<int size>
946void
947Output_data_plt_s390<size>::init(Layout* layout)
948{
949 this->rel_ = new Reloc_section(false);
950 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
951 elfcpp::SHF_ALLOC, this->rel_,
952 ORDER_DYNAMIC_PLT_RELOCS, false);
953}
954
955template<int size>
956void
957Output_data_plt_s390<size>::do_adjust_output_section(Output_section* os)
958{
959 os->set_entsize(plt_entry_size);
960}
961
962// Add an entry to the PLT.
963
964template<int size>
965void
966Output_data_plt_s390<size>::add_entry(Symbol_table* symtab, Layout* layout,
967 Symbol* gsym)
968{
969 gold_assert(!gsym->has_plt_offset());
970
971 unsigned int plt_index;
972 off_t plt_offset;
973 section_offset_type got_offset;
974
975 unsigned int* pcount;
976 unsigned int offset;
977 unsigned int reserved;
978 Output_section_data_build* got;
979 if (gsym->type() == elfcpp::STT_GNU_IFUNC
980 && gsym->can_use_relative_reloc(false))
981 {
982 pcount = &this->irelative_count_;
983 offset = 0;
984 reserved = 0;
985 got = this->got_irelative_;
986 }
987 else
988 {
989 pcount = &this->count_;
990 offset = 1;
991 reserved = 3;
992 got = this->got_plt_;
993 }
994
995 if (!this->is_data_size_valid())
996 {
997 // Note that when setting the PLT offset for a non-IRELATIVE
998 // entry we skip the initial reserved PLT entry.
999 plt_index = *pcount + offset;
1000 plt_offset = plt_index * plt_entry_size;
1001
1002 ++*pcount;
1003
1004 got_offset = (plt_index - offset + reserved) * size / 8;
1005 gold_assert(got_offset == got->current_data_size());
1006
1007 // Every PLT entry needs a GOT entry which points back to the PLT
1008 // entry (this will be changed by the dynamic linker, normally
1009 // lazily when the function is called).
1010 got->set_current_data_size(got_offset + size / 8);
1011 }
1012 else
1013 {
1014 // FIXME: This is probably not correct for IRELATIVE relocs.
1015
1016 // For incremental updates, find an available slot.
1017 plt_offset = this->free_list_.allocate(plt_entry_size,
1018 plt_entry_size, 0);
1019 if (plt_offset == -1)
1020 gold_fallback(_("out of patch space (PLT);"
1021 " relink with --incremental-full"));
1022
1023 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
1024 // can be calculated from the PLT index, adjusting for the three
1025 // reserved entries at the beginning of the GOT.
1026 plt_index = plt_offset / plt_entry_size - 1;
1027 got_offset = (plt_index - offset + reserved) * size / 8;
1028 }
1029
1030 gsym->set_plt_offset(plt_offset);
1031
1032 // Every PLT entry needs a reloc.
1033 this->add_relocation(symtab, layout, gsym, got_offset);
1034
1035 // Note that we don't need to save the symbol. The contents of the
1036 // PLT are independent of which symbols are used. The symbols only
1037 // appear in the relocations.
1038}
1039
1040// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
1041// the PLT offset.
1042
1043template<int size>
1044unsigned int
1045Output_data_plt_s390<size>::add_local_ifunc_entry(
1046 Symbol_table* symtab,
1047 Layout* layout,
1048 Sized_relobj_file<size, true>* relobj,
1049 unsigned int local_sym_index)
1050{
1051 unsigned int plt_offset = this->irelative_count_ * plt_entry_size;
1052 ++this->irelative_count_;
1053
1054 section_offset_type got_offset = this->got_irelative_->current_data_size();
1055
1056 // Every PLT entry needs a GOT entry which points back to the PLT
1057 // entry.
1058 this->got_irelative_->set_current_data_size(got_offset + size / 8);
1059
1060 // Every PLT entry needs a reloc.
1061 Reloc_section* rela = this->rela_irelative(symtab, layout);
1062 rela->add_symbolless_local_addend(relobj, local_sym_index,
1063 elfcpp::R_390_IRELATIVE,
1064 this->got_irelative_, got_offset, 0);
1065
1066 return plt_offset;
1067}
1068
1069// Add the relocation for a PLT entry.
1070
1071template<int size>
1072void
1073Output_data_plt_s390<size>::add_relocation(Symbol_table* symtab,
1074 Layout* layout,
1075 Symbol* gsym,
1076 unsigned int got_offset)
1077{
1078 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1079 && gsym->can_use_relative_reloc(false))
1080 {
1081 Reloc_section* rela = this->rela_irelative(symtab, layout);
1082 rela->add_symbolless_global_addend(gsym, elfcpp::R_390_IRELATIVE,
1083 this->got_irelative_, got_offset, 0);
1084 }
1085 else
1086 {
1087 gsym->set_needs_dynsym_entry();
1088 this->rel_->add_global(gsym, elfcpp::R_390_JMP_SLOT, this->got_plt_,
1089 got_offset, 0);
1090 }
1091}
1092
1093// Return where the IRELATIVE relocations should go in the PLT. These
1094// follow the JUMP_SLOT and the TLSDESC relocations.
1095
1096template<int size>
1097typename Output_data_plt_s390<size>::Reloc_section*
1098Output_data_plt_s390<size>::rela_irelative(Symbol_table* symtab,
1099 Layout* layout)
1100{
1101 if (this->irelative_rel_ == NULL)
1102 {
1103 this->irelative_rel_ = new Reloc_section(false);
1104 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1105 elfcpp::SHF_ALLOC, this->irelative_rel_,
1106 ORDER_DYNAMIC_PLT_RELOCS, false);
1107 gold_assert(this->irelative_rel_->output_section()
1108 == this->rel_->output_section());
1109
1110 if (parameters->doing_static_link())
1111 {
1112 // A statically linked executable will only have a .rela.plt
1113 // section to hold R_390_IRELATIVE relocs for
1114 // STT_GNU_IFUNC symbols. The library will use these
1115 // symbols to locate the IRELATIVE relocs at program startup
1116 // time.
1117 symtab->define_in_output_data("__rela_iplt_start", NULL,
1118 Symbol_table::PREDEFINED,
1119 this->irelative_rel_, 0, 0,
1120 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1121 elfcpp::STV_HIDDEN, 0, false, true);
1122 symtab->define_in_output_data("__rela_iplt_end", NULL,
1123 Symbol_table::PREDEFINED,
1124 this->irelative_rel_, 0, 0,
1125 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
1126 elfcpp::STV_HIDDEN, 0, true, true);
1127 }
1128 }
1129 return this->irelative_rel_;
1130}
1131
1132// Return the PLT address to use for a global symbol.
1133
1134template<int size>
1135uint64_t
1136Output_data_plt_s390<size>::address_for_global(const Symbol* gsym)
1137{
1138 uint64_t offset = 0;
1139 if (gsym->type() == elfcpp::STT_GNU_IFUNC
1140 && gsym->can_use_relative_reloc(false))
1141 offset = (this->count_ + 1) * plt_entry_size;
1142 return this->address() + offset + gsym->plt_offset();
1143}
1144
1145// Return the PLT address to use for a local symbol. These are always
1146// IRELATIVE relocs.
1147
1148template<int size>
1149uint64_t
1150Output_data_plt_s390<size>::address_for_local(const Relobj* object,
1151 unsigned int r_sym)
1152{
1153 return (this->address()
1154 + (this->count_ + 1) * plt_entry_size
1155 + object->local_plt_offset(r_sym));
1156}
1157
1158// Set the final size.
1159template<int size>
1160void
1161Output_data_plt_s390<size>::set_final_data_size()
1162{
1163 unsigned int count = this->count_ + this->irelative_count_;
1164 this->set_data_size((count + 1) * plt_entry_size);
1165}
1166
1167template<int size>
1168const unsigned char
1169Output_data_plt_s390<size>::first_plt_entry_32_abs[plt_entry_size] =
1170{
1171 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1172 0x0d, 0x10, // basr %r1, %r0
1173 0x58, 0x10, 0x10, 0x12, // l %r1, 18(%r1)
1174 0xd2, 0x03, 0xf0, 0x18, 0x10, 0x04, // mvc 24(4,%r15), 4(%r1)
1175 0x58, 0x10, 0x10, 0x08, // l %r1, 8(%r1)
1176 0x07, 0xf1, // br %r1
1177 0x00, 0x00, // padding
1178 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_ (to fill)
1179 0x00, 0x00, 0x00, 0x00, // padding
1180};
1181
1182template<int size>
1183const unsigned char
1184Output_data_plt_s390<size>::first_plt_entry_32_pic[plt_entry_size] =
1185{
1186 0x50, 0x10, 0xf0, 0x1c, // st %r1, 28(%r15)
1187 0x58, 0x10, 0xc0, 0x04, // l %r1, 4(%r12)
1188 0x50, 0x10, 0xf0, 0x18, // st %r1, 24(%r15)
1189 0x58, 0x10, 0xc0, 0x08, // l %r1, 8(%r12)
1190 0x07, 0xf1, // br %r1
1191 0x00, 0x00, // padding
1192 0x00, 0x00, 0x00, 0x00, // padding
1193 0x00, 0x00, 0x00, 0x00, // padding
1194 0x00, 0x00, 0x00, 0x00, // padding
1195};
1196
1197template<int size>
1198const unsigned char
1199Output_data_plt_s390<size>::first_plt_entry_64[plt_entry_size] =
1200{
1201 0xe3, 0x10, 0xf0, 0x38, 0x00, 0x24, // stg %r1, 56(%r15)
1202 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_ (to fill)
1203 0xd2, 0x07, 0xf0, 0x30, 0x10, 0x08, // mvc 48(8,%r15), 8(%r1)
1204 0xe3, 0x10, 0x10, 0x10, 0x00, 0x04, // lg %r1, 16(%r1)
1205 0x07, 0xf1, // br %r1
1206 0x07, 0x00, // nopr
1207 0x07, 0x00, // nopr
1208 0x07, 0x00, // nopr
1209};
1210
1211template<int size>
1212void
1213Output_data_plt_s390<size>::fill_first_plt_entry(
1214 unsigned char* pov,
1215 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1216 typename elfcpp::Elf_types<size>::Elf_Addr plt_address)
1217{
1218 if (size == 64)
1219 {
1220 memcpy(pov, first_plt_entry_64, plt_entry_size);
1221 S390_relocate_functions<size>::pcrela32dbl(pov + 8, got_address, (plt_address + 6));
1222 }
1223 else if (!parameters->options().output_is_position_independent())
1224 {
1225 memcpy(pov, first_plt_entry_32_abs, plt_entry_size);
1226 elfcpp::Swap<32, true>::writeval(pov + 24, got_address);
1227 }
1228 else
1229 {
1230 memcpy(pov, first_plt_entry_32_pic, plt_entry_size);
1231 }
1232}
1233
1234template<int size>
1235const unsigned char
1236Output_data_plt_s390<size>::plt_entry_32_abs[plt_entry_size] =
1237{
1238 // first part
1239 0x0d, 0x10, // basr %r1, %r0
1240 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1241 0x58, 0x10, 0x10, 0x00, // l %r1, 0(%r1)
1242 0x07, 0xf1, // br %r1
1243 // second part
1244 0x0d, 0x10, // basr %r1, %r0
1245 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1246 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1247 0x00, 0x00, // padding
1248 0x00, 0x00, 0x00, 0x00, // _GLOBAL_OFFSET_TABLE_+sym@gotplt (to fill)
1249 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1250};
1251
1252template<int size>
1253const unsigned char
1254Output_data_plt_s390<size>::plt_entry_32_pic12[plt_entry_size] =
1255{
1256 // first part
1257 0x58, 0x10, 0xc0, 0x00, // l %r1, sym@gotplt(%r12) (to fill)
1258 0x07, 0xf1, // br %r1
1259 0x00, 0x00, // padding
1260 0x00, 0x00, 0x00, 0x00, // padding
1261 // second part
1262 0x0d, 0x10, // basr %r1, %r0
1263 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1264 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1265 0x00, 0x00, // padding
1266 0x00, 0x00, 0x00, 0x00, // padding
1267 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1268};
1269
1270template<int size>
1271const unsigned char
1272Output_data_plt_s390<size>::plt_entry_32_pic16[plt_entry_size] =
1273{
1274 // first part
1275 0xa7, 0x18, 0x00, 0x00, // lhi %r1, sym@gotplt (to fill)
1276 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1277 0x07, 0xf1, // br %r1
1278 0x00, 0x00, // padding
1279 // second part
1280 0x0d, 0x10, // basr %r1, %r0
1281 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1282 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1283 0x00, 0x00, // padding
1284 0x00, 0x00, 0x00, 0x00, // padding
1285 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1286};
1287
1288template<int size>
1289const unsigned char
1290Output_data_plt_s390<size>::plt_entry_32_pic[plt_entry_size] =
1291{
1292 // first part
1293 0x0d, 0x10, // basr %r1, %r0
1294 0x58, 0x10, 0x10, 0x16, // l %r1, 22(%r1)
1295 0x58, 0x11, 0xc0, 0x00, // l %r1, 0(%r1, %r12)
1296 0x07, 0xf1, // br %r1
1297 // second part
1298 0x0d, 0x10, // basr %r1, %r0
1299 0x58, 0x10, 0x10, 0x0e, // l %r1, 14(%r1)
1300 0xa7, 0xf4, 0x00, 0x00, // j first_plt_entry (to fill)
1301 0x00, 0x00, // padding
1302 0x00, 0x00, 0x00, 0x00, // sym@gotplt (to fill)
1303 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1304};
1305
1306template<int size>
1307const unsigned char
1308Output_data_plt_s390<size>::plt_entry_64[plt_entry_size] =
1309{
1310 // first part
1311 0xc0, 0x10, 0x00, 0x00, 0x00, 0x00, // larl %r1, _GLOBAL_OFFSET_TABLE_+off (to fill)
1312 0xe3, 0x10, 0x10, 0x00, 0x00, 0x04, // lg %r1, 0(%r1)
1313 0x07, 0xf1, // br %r1
1314 // second part
1315 0x0d, 0x10, // basr %r1, %r0
1316 0xe3, 0x10, 0x10, 0x0c, 0x00, 0x14, // lgf %r1, 12(%r1)
1317 0xc0, 0xf4, 0x00, 0x00, 0x00, 0x00, // jg first_plt_entry (to fill)
1318 0x00, 0x00, 0x00, 0x00, // offset of relocation in .rela.plt (to fill)
1319};
1320
1321template<int size>
1322unsigned int
1323Output_data_plt_s390<size>::fill_plt_entry(
1324 unsigned char* pov,
1325 typename elfcpp::Elf_types<size>::Elf_Addr got_address,
1326 typename elfcpp::Elf_types<size>::Elf_Addr plt_address,
1327 unsigned int got_offset,
1328 unsigned int plt_offset,
1329 unsigned int plt_rel_offset)
1330{
1331 if (size == 64)
1332 {
1333 memcpy(pov, plt_entry_64, plt_entry_size);
1334 S390_relocate_functions<size>::pcrela32dbl(pov + 2, got_address + got_offset, plt_address + plt_offset);
1335 S390_relocate_functions<size>::pcrela32dbl(pov + 24, plt_address, plt_address + plt_offset + 22);
1336 }
1337 else
1338 {
1339 if (!parameters->options().output_is_position_independent())
1340 {
1341 memcpy(pov, plt_entry_32_abs, plt_entry_size);
1342 elfcpp::Swap<32, true>::writeval(pov + 24, got_address + got_offset);
1343 }
1344 else
1345 {
1346 if (got_offset < 0x1000)
1347 {
1348 memcpy(pov, plt_entry_32_pic12, plt_entry_size);
1349 S390_relocate_functions<size>::rela12(pov + 2, got_offset);
1350 }
1351 else if (got_offset < 0x8000)
1352 {
1353 memcpy(pov, plt_entry_32_pic16, plt_entry_size);
1354 S390_relocate_functions<size>::rela16(pov + 2, got_offset);
1355 }
1356 else
1357 {
1358 memcpy(pov, plt_entry_32_pic, plt_entry_size);
1359 elfcpp::Swap<32, true>::writeval(pov + 24, got_offset);
1360 }
1361 }
1362 typename elfcpp::Elf_types<size>::Elf_Addr target = plt_address;
1363 if (plt_offset >= 0x10000)
1364 {
1365 // Would overflow pcrela16dbl - aim at the farthest previous jump
1366 // we can reach.
1367 if (plt_offset > 0x10000)
1368 {
1369 // Use the full range of pcrel16dbl.
1370 target = plt_address + plt_offset - 0x10000 + 18;
1371 }
1372 else
1373 {
1374 // if plt_offset is exactly 0x10000, the above would aim at 18th byte
1375 // of first_plt_entry, which doesn't have the jump back like the others.
1376 // Aim at the next entry instead.
1377 target = plt_address + plt_offset - 0xffe0 + 18;
1378 }
1379 }
1380 S390_relocate_functions<size>::pcrela16dbl(pov + 20, target, plt_address + plt_offset + 18);
1381 }
1382 elfcpp::Swap<32, true>::writeval(pov + 28, plt_rel_offset);
1383 if (size == 64)
1384 return 14;
1385 else
1386 return 12;
1387}
1388
1389// The .eh_frame unwind information for the PLT.
1390
1391template<>
1392const unsigned char
1393Output_data_plt_s390<32>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1394{
1395 1, // CIE version.
1396 'z', // Augmentation: augmentation size included.
1397 'R', // Augmentation: FDE encoding included.
1398 '\0', // End of augmentation string.
1399 1, // Code alignment factor.
1400 0x7c, // Data alignment factor.
1401 14, // Return address column.
1402 1, // Augmentation size.
1403 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1404 | elfcpp::DW_EH_PE_sdata4),
1405 elfcpp::DW_CFA_def_cfa, 15, 0x60, // DW_CFA_def_cfa: r15 ofs 0x60.
1406};
1407
1408template<>
1409const unsigned char
1410Output_data_plt_s390<64>::plt_eh_frame_cie[plt_eh_frame_cie_size] =
1411{
1412 1, // CIE version.
1413 'z', // Augmentation: augmentation size included.
1414 'R', // Augmentation: FDE encoding included.
1415 '\0', // End of augmentation string.
1416 1, // Code alignment factor.
1417 0x78, // Data alignment factor.
1418 14, // Return address column.
1419 1, // Augmentation size.
1420 (elfcpp::DW_EH_PE_pcrel // FDE encoding.
1421 | elfcpp::DW_EH_PE_sdata4),
1422 elfcpp::DW_CFA_def_cfa, 15, 0xa0, // DW_CFA_def_cfa: r15 ofs 0xa0.
1423};
1424
1425template<int size>
1426const unsigned char
1427Output_data_plt_s390<size>::plt_eh_frame_fde[plt_eh_frame_fde_size] =
1428{
1429 0, 0, 0, 0, // Replaced with offset to .plt.
1430 0, 0, 0, 0, // Replaced with size of .plt.
1431 0, // Augmentation size.
1432 elfcpp::DW_CFA_nop,
1433 elfcpp::DW_CFA_nop,
1434 elfcpp::DW_CFA_nop
1435};
1436
1437// Write out the PLT. This uses the hand-coded instructions above,
1438// and adjusts them as needed.
1439
1440template<int size>
1441void
1442Output_data_plt_s390<size>::do_write(Output_file* of)
1443{
1444 const off_t offset = this->offset();
1445 const section_size_type oview_size =
1446 convert_to_section_size_type(this->data_size());
1447 unsigned char* const oview = of->get_output_view(offset, oview_size);
1448
1449 const off_t got_file_offset = this->got_plt_->offset();
1450 gold_assert(parameters->incremental_update()
1451 || (got_file_offset + this->got_plt_->data_size()
1452 == this->got_irelative_->offset()));
1453 const section_size_type got_size =
1454 convert_to_section_size_type(this->got_plt_->data_size()
1455 + this->got_irelative_->data_size());
1456 unsigned char* const got_view = of->get_output_view(got_file_offset,
1457 got_size);
1458
1459 unsigned char* pov = oview;
1460
1461 // The base address of the .plt section.
1462 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
1463 // The base address of the PLT portion of the .got section,
1464 // which is where the GOT pointer will point, and where the
1465 // three reserved GOT entries are located.
1466 typename elfcpp::Elf_types<size>::Elf_Addr got_address
1467 = this->got_plt_->address();
1468
1469 this->fill_first_plt_entry(pov, got_address, plt_address);
1470 pov += this->get_plt_entry_size();
1471
1472 unsigned char* got_pov = got_view;
1473
1474 const int rel_size = elfcpp::Elf_sizes<size>::rela_size;
1475
1476 unsigned int plt_offset = this->get_plt_entry_size();
1477 unsigned int plt_rel_offset = 0;
1478 unsigned int got_offset = 3 * size / 8;
1479 const unsigned int count = this->count_ + this->irelative_count_;
1480 // The first three entries in the GOT are reserved, and are written
1481 // by Output_data_got_plt_s390::do_write.
1482 got_pov += 3 * size / 8;
1483
1484 for (unsigned int plt_index = 0;
1485 plt_index < count;
1486 ++plt_index,
1487 pov += plt_entry_size,
1488 got_pov += size / 8,
1489 plt_offset += plt_entry_size,
1490 plt_rel_offset += rel_size,
1491 got_offset += size / 8)
1492 {
1493 // Set and adjust the PLT entry itself.
1494 unsigned int lazy_offset = this->fill_plt_entry(pov,
1495 got_address, plt_address,
1496 got_offset, plt_offset,
1497 plt_rel_offset);
1498
1499 // Set the entry in the GOT.
1500 elfcpp::Swap<size, true>::writeval(got_pov,
1501 plt_address + plt_offset + lazy_offset);
1502 }
1503
1504 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
1505 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
1506
1507 of->write_output_view(offset, oview_size, oview);
1508 of->write_output_view(got_file_offset, got_size, got_view);
1509}
1510
1511// Get the GOT section, creating it if necessary.
1512
1513template<int size>
1514Output_data_got<size, true>*
1515Target_s390<size>::got_section(Symbol_table* symtab, Layout* layout)
1516{
1517 if (this->got_ == NULL)
1518 {
1519 gold_assert(symtab != NULL && layout != NULL);
1520
1521 // When using -z now, we can treat .got as a relro section.
1522 // Without -z now, it is modified after program startup by lazy
1523 // PLT relocations.
1524 bool is_got_relro = parameters->options().now();
1525 Output_section_order got_order = (is_got_relro
1526 ? ORDER_RELRO_LAST
1527 : ORDER_DATA);
1528
1529 // The old GNU linker creates a .got.plt section. We just
1530 // create another set of data in the .got section. Note that we
1531 // always create a PLT if we create a GOT, although the PLT
1532 // might be empty.
1533 this->got_plt_ = new Output_data_got_plt_s390<size>(layout);
1534 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1535 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1536 this->got_plt_, got_order, is_got_relro);
1537
1538 // The first three entries are reserved.
1539 this->got_plt_->set_current_data_size(3 * size / 8);
1540
1541 // If there are any IRELATIVE relocations, they get GOT entries
1542 // in .got.plt after the jump slot entries.
1543 this->got_irelative_ = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1544 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1545 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1546 this->got_irelative_,
1547 got_order, is_got_relro);
1548
1549 // Unlike some targets (.e.g x86), S/390 does not use separate .got and
1550 // .got.plt sections in output. The output .got section contains both
1551 // PLT and non-PLT GOT entries.
1552 this->got_ = new Output_data_got<size, true>();
1553
1554 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1555 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
1556 this->got_, got_order, is_got_relro);
1557
1558 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
1559 this->global_offset_table_ =
1560 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1561 Symbol_table::PREDEFINED,
1562 this->got_plt_,
1563 0, 0, elfcpp::STT_OBJECT,
1564 elfcpp::STB_LOCAL,
1565 elfcpp::STV_HIDDEN, 0,
1566 false, false);
1567
1568 }
1569 return this->got_;
1570}
1571
1572// Get the dynamic reloc section, creating it if necessary.
1573
1574template<int size>
1575typename Target_s390<size>::Reloc_section*
1576Target_s390<size>::rela_dyn_section(Layout* layout)
1577{
1578 if (this->rela_dyn_ == NULL)
1579 {
1580 gold_assert(layout != NULL);
1581 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1582 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1583 elfcpp::SHF_ALLOC, this->rela_dyn_,
1584 ORDER_DYNAMIC_RELOCS, false);
1585 }
1586 return this->rela_dyn_;
1587}
1588
1589// Get the section to use for IRELATIVE relocs, creating it if
1590// necessary. These go in .rela.dyn, but only after all other dynamic
1591// relocations. They need to follow the other dynamic relocations so
1592// that they can refer to global variables initialized by those
1593// relocs.
1594
1595template<int size>
1596typename Target_s390<size>::Reloc_section*
1597Target_s390<size>::rela_irelative_section(Layout* layout)
1598{
1599 if (this->rela_irelative_ == NULL)
1600 {
1601 // Make sure we have already created the dynamic reloc section.
1602 this->rela_dyn_section(layout);
1603 this->rela_irelative_ = new Reloc_section(false);
1604 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1605 elfcpp::SHF_ALLOC, this->rela_irelative_,
1606 ORDER_DYNAMIC_RELOCS, false);
1607 gold_assert(this->rela_dyn_->output_section()
1608 == this->rela_irelative_->output_section());
1609 }
1610 return this->rela_irelative_;
1611}
1612
1613// Write the first three reserved words of the .got.plt section.
1614// The remainder of the section is written while writing the PLT
1615// in Output_data_plt_s390::do_write.
1616
1617template<int size>
1618void
1619Output_data_got_plt_s390<size>::do_write(Output_file* of)
1620{
1621 // The first entry in the GOT is the address of the .dynamic section
1622 // aka the PT_DYNAMIC segment. The next two entries are reserved.
1623 // We saved space for them when we created the section in
1624 // Target_x86_64::got_section.
1625 const off_t got_file_offset = this->offset();
1626 gold_assert(this->data_size() >= 3 * size / 8);
1627 unsigned char* const got_view =
1628 of->get_output_view(got_file_offset, 3 * size / 8);
1629 Output_section* dynamic = this->layout_->dynamic_section();
1630 uint64_t dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
1631 elfcpp::Swap<size, true>::writeval(got_view, dynamic_addr);
1632 memset(got_view + size / 8, 0, 2 * size / 8);
1633 of->write_output_view(got_file_offset, 3 * size / 8, got_view);
1634}
1635
1636// Create the PLT section.
1637
1638template<int size>
1639void
1640Target_s390<size>::make_plt_section(Symbol_table* symtab, Layout* layout)
1641{
1642 if (this->plt_ == NULL)
1643 {
1644 // Create the GOT sections first.
1645 this->got_section(symtab, layout);
1646
1647 // Ensure that .rela.dyn always appears before .rela.plt This is
1648 // necessary due to how, on 32-bit S/390 and some other targets,
1649 // .rela.dyn needs to include .rela.plt in it's range.
1650 this->rela_dyn_section(layout);
1651
1652 this->plt_ = new Output_data_plt_s390<size>(layout,
1653 this->got_, this->got_plt_, this->got_irelative_);
1654
1655 // Add unwind information if requested.
1656 if (parameters->options().ld_generated_unwind_info())
1657 this->plt_->add_eh_frame(layout);
1658
1659 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1660 (elfcpp::SHF_ALLOC
1661 | elfcpp::SHF_EXECINSTR),
1662 this->plt_, ORDER_PLT, false);
1663
1664 // Make the sh_info field of .rela.plt point to .plt.
1665 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1666 rela_plt_os->set_info_section(this->plt_->output_section());
1667 }
1668}
1669
1670// Create a PLT entry for a global symbol.
1671
1672template<int size>
1673void
1674Target_s390<size>::make_plt_entry(Symbol_table* symtab, Layout* layout,
1675 Symbol* gsym)
1676{
1677 if (gsym->has_plt_offset())
1678 return;
1679
1680 if (this->plt_ == NULL)
1681 this->make_plt_section(symtab, layout);
1682
1683 this->plt_->add_entry(symtab, layout, gsym);
1684}
1685
1686// Make a PLT entry for a local STT_GNU_IFUNC symbol.
1687
1688template<int size>
1689void
1690Target_s390<size>::make_local_ifunc_plt_entry(
1691 Symbol_table* symtab, Layout* layout,
1692 Sized_relobj_file<size, true>* relobj,
1693 unsigned int local_sym_index)
1694{
1695 if (relobj->local_has_plt_offset(local_sym_index))
1696 return;
1697 if (this->plt_ == NULL)
1698 this->make_plt_section(symtab, layout);
1699 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
1700 relobj,
1701 local_sym_index);
1702 relobj->set_local_plt_offset(local_sym_index, plt_offset);
1703}
1704
1705// Return the number of entries in the PLT.
1706
1707template<int size>
1708unsigned int
1709Target_s390<size>::plt_entry_count() const
1710{
1711 if (this->plt_ == NULL)
1712 return 0;
1713 return this->plt_->entry_count();
1714}
1715
1716// Return the offset of the first non-reserved PLT entry.
1717
1718template<int size>
1719unsigned int
1720Target_s390<size>::first_plt_entry_offset() const
1721{
1722 return this->plt_->first_plt_entry_offset();
1723}
1724
1725// Return the size of each PLT entry.
1726
1727template<int size>
1728unsigned int
1729Target_s390<size>::plt_entry_size() const
1730{
1731 return this->plt_->get_plt_entry_size();
1732}
1733
1734// Create the GOT and PLT sections for an incremental update.
1735
1736template<int size>
1737Output_data_got_base*
1738Target_s390<size>::init_got_plt_for_update(Symbol_table* symtab,
1739 Layout* layout,
1740 unsigned int got_count,
1741 unsigned int plt_count)
1742{
1743 gold_assert(this->got_ == NULL);
1744
1745 // Add the three reserved entries.
1746 this->got_plt_ = new Output_data_got_plt_s390<size>(layout, (plt_count + 3) * size / 8);
1747 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1748 (elfcpp::SHF_ALLOC
1749 | elfcpp::SHF_WRITE),
1750 this->got_plt_, ORDER_NON_RELRO_FIRST,
1751 false);
1752
1753 // If there are any IRELATIVE relocations, they get GOT entries in
1754 // .got.plt after the jump slot entries.
1755 this->got_irelative_ = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
1756 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1757 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
1758 this->got_irelative_,
1759 ORDER_NON_RELRO_FIRST, false);
1760
1761 this->got_ = new Output_data_got<size, true>(got_count * size / 8);
1762 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1763 (elfcpp::SHF_ALLOC
1764 | elfcpp::SHF_WRITE),
1765 this->got_, ORDER_RELRO_LAST,
1766 true);
1767
1768 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1769 this->global_offset_table_ =
1770 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1771 Symbol_table::PREDEFINED,
1772 this->got_plt_,
1773 0, 0, elfcpp::STT_OBJECT,
1774 elfcpp::STB_LOCAL,
1775 elfcpp::STV_HIDDEN, 0,
1776 false, false);
1777
1778 // Create the PLT section.
1779 this->plt_ = new Output_data_plt_s390<size>(layout,
1780 this->got_, this->got_plt_, this->got_irelative_, plt_count);
1781
1782 // Add unwind information if requested.
1783 if (parameters->options().ld_generated_unwind_info())
1784 this->plt_->add_eh_frame(layout);
1785
1786 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
1787 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
1788 this->plt_, ORDER_PLT, false);
1789
1790 // Make the sh_info field of .rela.plt point to .plt.
1791 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
1792 rela_plt_os->set_info_section(this->plt_->output_section());
1793
1794 // Create the rela_dyn section.
1795 this->rela_dyn_section(layout);
1796
1797 return this->got_;
1798}
1799
1800// Reserve a GOT entry for a local symbol, and regenerate any
1801// necessary dynamic relocations.
1802
1803template<int size>
1804void
1805Target_s390<size>::reserve_local_got_entry(
1806 unsigned int got_index,
1807 Sized_relobj<size, true>* obj,
1808 unsigned int r_sym,
1809 unsigned int got_type)
1810{
1811 unsigned int got_offset = got_index * size / 8;
1812 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1813
1814 this->got_->reserve_local(got_index, obj, r_sym, got_type);
1815 switch (got_type)
1816 {
1817 case GOT_TYPE_STANDARD:
1818 if (parameters->options().output_is_position_independent())
1819 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_390_RELATIVE,
1820 this->got_, got_offset, 0, false);
1821 break;
1822 case GOT_TYPE_TLS_OFFSET:
1823 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_TPOFF,
1824 this->got_, got_offset, 0);
1825 break;
1826 case GOT_TYPE_TLS_PAIR:
1827 this->got_->reserve_slot(got_index + 1);
1828 rela_dyn->add_local(obj, r_sym, elfcpp::R_390_TLS_DTPMOD,
1829 this->got_, got_offset, 0);
1830 break;
1831 default:
1832 gold_unreachable();
1833 }
1834}
1835
1836// Reserve a GOT entry for a global symbol, and regenerate any
1837// necessary dynamic relocations.
1838
1839template<int size>
1840void
1841Target_s390<size>::reserve_global_got_entry(unsigned int got_index,
1842 Symbol* gsym,
1843 unsigned int got_type)
1844{
1845 unsigned int got_offset = got_index * size / 8;
1846 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
1847
1848 this->got_->reserve_global(got_index, gsym, got_type);
1849 switch (got_type)
1850 {
1851 case GOT_TYPE_STANDARD:
1852 if (!gsym->final_value_is_known())
1853 {
1854 if (gsym->is_from_dynobj()
1855 || gsym->is_undefined()
1856 || gsym->is_preemptible()
1857 || gsym->type() == elfcpp::STT_GNU_IFUNC)
1858 rela_dyn->add_global(gsym, elfcpp::R_390_GLOB_DAT,
1859 this->got_, got_offset, 0);
1860 else
1861 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
1862 this->got_, got_offset, 0, false);
1863 }
1864 break;
1865 case GOT_TYPE_TLS_OFFSET:
1866 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_TPOFF,
1867 this->got_, got_offset, 0, false);
1868 break;
1869 case GOT_TYPE_TLS_PAIR:
1870 this->got_->reserve_slot(got_index + 1);
1871 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPMOD,
1872 this->got_, got_offset, 0, false);
1873 rela_dyn->add_global_relative(gsym, elfcpp::R_390_TLS_DTPOFF,
1874 this->got_, got_offset + size / 8, 0, false);
1875 break;
1876 default:
1877 gold_unreachable();
1878 }
1879}
1880
1881// Register an existing PLT entry for a global symbol.
1882
1883template<int size>
1884void
1885Target_s390<size>::register_global_plt_entry(Symbol_table* symtab,
1886 Layout* layout,
1887 unsigned int plt_index,
1888 Symbol* gsym)
1889{
1890 gold_assert(this->plt_ != NULL);
1891 gold_assert(!gsym->has_plt_offset());
1892
1893 this->plt_->reserve_slot(plt_index);
1894
1895 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
1896
1897 unsigned int got_offset = (plt_index + 3) * size / 8;
1898 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
1899}
1900
1901// Force a COPY relocation for a given symbol.
1902
1903template<int size>
1904void
1905Target_s390<size>::emit_copy_reloc(
1906 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
1907{
1908 this->copy_relocs_.emit_copy_reloc(symtab,
1909 symtab->get_sized_symbol<size>(sym),
1910 os,
1911 offset,
1912 this->rela_dyn_section(NULL));
1913}
1914
1915// Create a GOT entry for the TLS module index.
1916
1917template<int size>
1918unsigned int
1919Target_s390<size>::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
1920 Sized_relobj_file<size, true>* object)
1921{
1922 if (this->got_mod_index_offset_ == -1U)
1923 {
1924 gold_assert(symtab != NULL && layout != NULL && object != NULL);
1925 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1926 Output_data_got<size, true>* got = this->got_section(symtab, layout);
1927 unsigned int got_offset = got->add_constant(0);
1928 rela_dyn->add_local(object, 0, elfcpp::R_390_TLS_DTPMOD, got,
1929 got_offset, 0);
1930 got->add_constant(0);
1931 this->got_mod_index_offset_ = got_offset;
1932 }
1933 return this->got_mod_index_offset_;
1934}
1935
1936// Optimize the TLS relocation type based on what we know about the
1937// symbol. IS_FINAL is true if the final address of this symbol is
1938// known at link time.
1939
1940template<int size>
1941tls::Tls_optimization
1942Target_s390<size>::optimize_tls_reloc(bool is_final, int r_type)
1943{
1944 // If we are generating a shared library, then we can't do anything
1945 // in the linker.
1946 if (parameters->options().shared())
1947 return tls::TLSOPT_NONE;
1948
1949 switch (r_type)
1950 {
1951 case elfcpp::R_390_TLS_GD32:
1952 case elfcpp::R_390_TLS_GD64:
1953 case elfcpp::R_390_TLS_GDCALL:
1954 // These are General-Dynamic which permits fully general TLS
1955 // access. Since we know that we are generating an executable,
1956 // we can convert this to Initial-Exec. If we also know that
1957 // this is a local symbol, we can further switch to Local-Exec.
1958 if (is_final)
1959 return tls::TLSOPT_TO_LE;
1960 return tls::TLSOPT_TO_IE;
1961
1962 case elfcpp::R_390_TLS_LDM32:
1963 case elfcpp::R_390_TLS_LDM64:
1964 case elfcpp::R_390_TLS_LDO32:
1965 case elfcpp::R_390_TLS_LDO64:
1966 case elfcpp::R_390_TLS_LDCALL:
1967 // This is Local-Dynamic, which refers to a local symbol in the
1968 // dynamic TLS block. Since we know that we generating an
1969 // executable, we can switch to Local-Exec.
1970 return tls::TLSOPT_TO_LE;
1971
1972 case elfcpp::R_390_TLS_IE32:
1973 case elfcpp::R_390_TLS_IE64:
1974 case elfcpp::R_390_TLS_GOTIE32:
1975 case elfcpp::R_390_TLS_GOTIE64:
1976 case elfcpp::R_390_TLS_LOAD:
1977 // These are Initial-Exec relocs which get the thread offset
1978 // from the GOT. If we know that we are linking against the
1979 // local symbol, we can switch to Local-Exec, which links the
1980 // thread offset into the instruction.
1981 if (is_final)
1982 return tls::TLSOPT_TO_LE;
1983 return tls::TLSOPT_NONE;
1984
1985 case elfcpp::R_390_TLS_GOTIE12:
1986 case elfcpp::R_390_TLS_IEENT:
1987 case elfcpp::R_390_TLS_GOTIE20:
1988 // These are Initial-Exec, but cannot be optimized.
1989 return tls::TLSOPT_NONE;
1990
1991 case elfcpp::R_390_TLS_LE32:
1992 case elfcpp::R_390_TLS_LE64:
1993 // When we already have Local-Exec, there is nothing further we
1994 // can do.
1995 return tls::TLSOPT_NONE;
1996
1997 default:
1998 gold_unreachable();
1999 }
2000}
2001
2002// Get the Reference_flags for a particular relocation.
2003
2004template<int size>
2005int
2006Target_s390<size>::Scan::get_reference_flags(unsigned int r_type)
2007{
2008 switch (r_type)
2009 {
2010 case elfcpp::R_390_NONE:
2011 case elfcpp::R_390_GNU_VTINHERIT:
2012 case elfcpp::R_390_GNU_VTENTRY:
2013 case elfcpp::R_390_GOTPC:
2014 case elfcpp::R_390_GOTPCDBL:
2015 // No symbol reference.
2016 return 0;
2017
2018 case elfcpp::R_390_64:
2019 case elfcpp::R_390_32:
2020 case elfcpp::R_390_20:
2021 case elfcpp::R_390_16:
2022 case elfcpp::R_390_12:
2023 case elfcpp::R_390_8:
2024 return Symbol::ABSOLUTE_REF;
2025
2026 case elfcpp::R_390_PC12DBL:
2027 case elfcpp::R_390_PC16:
2028 case elfcpp::R_390_PC16DBL:
2029 case elfcpp::R_390_PC24DBL:
2030 case elfcpp::R_390_PC32:
2031 case elfcpp::R_390_PC32DBL:
2032 case elfcpp::R_390_PC64:
2033 case elfcpp::R_390_GOTOFF16:
2034 case elfcpp::R_390_GOTOFF32:
2035 case elfcpp::R_390_GOTOFF64:
2036 return Symbol::RELATIVE_REF;
2037
2038 case elfcpp::R_390_PLT12DBL:
2039 case elfcpp::R_390_PLT16DBL:
2040 case elfcpp::R_390_PLT24DBL:
2041 case elfcpp::R_390_PLT32:
2042 case elfcpp::R_390_PLT32DBL:
2043 case elfcpp::R_390_PLT64:
2044 case elfcpp::R_390_PLTOFF16:
2045 case elfcpp::R_390_PLTOFF32:
2046 case elfcpp::R_390_PLTOFF64:
2047 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
2048
2049 case elfcpp::R_390_GOT12:
2050 case elfcpp::R_390_GOT16:
2051 case elfcpp::R_390_GOT20:
2052 case elfcpp::R_390_GOT32:
2053 case elfcpp::R_390_GOT64:
2054 case elfcpp::R_390_GOTENT:
2055 case elfcpp::R_390_GOTPLT12:
2056 case elfcpp::R_390_GOTPLT16:
2057 case elfcpp::R_390_GOTPLT20:
2058 case elfcpp::R_390_GOTPLT32:
2059 case elfcpp::R_390_GOTPLT64:
2060 case elfcpp::R_390_GOTPLTENT:
2061 // Absolute in GOT.
2062 return Symbol::ABSOLUTE_REF;
2063
2064 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2065 case elfcpp::R_390_TLS_GD64:
2066 case elfcpp::R_390_TLS_GDCALL:
2067 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2068 case elfcpp::R_390_TLS_LDM64:
2069 case elfcpp::R_390_TLS_LDO32:
2070 case elfcpp::R_390_TLS_LDO64:
2071 case elfcpp::R_390_TLS_LDCALL:
2072 case elfcpp::R_390_TLS_IE32: // Initial-exec
2073 case elfcpp::R_390_TLS_IE64:
2074 case elfcpp::R_390_TLS_IEENT:
2075 case elfcpp::R_390_TLS_GOTIE12:
2076 case elfcpp::R_390_TLS_GOTIE20:
2077 case elfcpp::R_390_TLS_GOTIE32:
2078 case elfcpp::R_390_TLS_GOTIE64:
2079 case elfcpp::R_390_TLS_LOAD:
2080 case elfcpp::R_390_TLS_LE32: // Local-exec
2081 case elfcpp::R_390_TLS_LE64:
2082 return Symbol::TLS_REF;
2083
2084 case elfcpp::R_390_COPY:
2085 case elfcpp::R_390_GLOB_DAT:
2086 case elfcpp::R_390_JMP_SLOT:
2087 case elfcpp::R_390_RELATIVE:
2088 case elfcpp::R_390_IRELATIVE:
2089 case elfcpp::R_390_TLS_TPOFF:
2090 case elfcpp::R_390_TLS_DTPOFF:
2091 case elfcpp::R_390_TLS_DTPMOD:
2092 default:
2093 // Not expected. We will give an error later.
2094 return 0;
2095 }
2096}
2097
2098// Report an unsupported relocation against a local symbol.
2099
2100template<int size>
2101void
2102Target_s390<size>::Scan::unsupported_reloc_local(
2103 Sized_relobj_file<size, true>* object,
2104 unsigned int r_type)
2105{
2106 gold_error(_("%s: unsupported reloc %u against local symbol"),
2107 object->name().c_str(), r_type);
2108}
2109
2110// We are about to emit a dynamic relocation of type R_TYPE. If the
2111// dynamic linker does not support it, issue an error.
2112
2113template<int size>
2114void
2115Target_s390<size>::Scan::check_non_pic(Relobj* object, unsigned int r_type)
2116{
2117 gold_assert(r_type != elfcpp::R_390_NONE);
2118
2119 if (size == 64)
2120 {
2121 switch (r_type)
2122 {
2123 // These are the relocation types supported by glibc for s390 64-bit.
2124 case elfcpp::R_390_RELATIVE:
2125 case elfcpp::R_390_IRELATIVE:
2126 case elfcpp::R_390_COPY:
2127 case elfcpp::R_390_GLOB_DAT:
2128 case elfcpp::R_390_JMP_SLOT:
2129 case elfcpp::R_390_TLS_DTPMOD:
2130 case elfcpp::R_390_TLS_DTPOFF:
2131 case elfcpp::R_390_TLS_TPOFF:
2132 case elfcpp::R_390_8:
2133 case elfcpp::R_390_16:
2134 case elfcpp::R_390_32:
2135 case elfcpp::R_390_64:
2136 case elfcpp::R_390_PC16:
2137 case elfcpp::R_390_PC16DBL:
2138 case elfcpp::R_390_PC32:
2139 case elfcpp::R_390_PC32DBL:
2140 case elfcpp::R_390_PC64:
2141 return;
2142
2143 default:
2144 break;
2145 }
2146 }
2147 else
2148 {
2149 switch (r_type)
2150 {
2151 // These are the relocation types supported by glibc for s390 32-bit.
2152 case elfcpp::R_390_RELATIVE:
2153 case elfcpp::R_390_IRELATIVE:
2154 case elfcpp::R_390_COPY:
2155 case elfcpp::R_390_GLOB_DAT:
2156 case elfcpp::R_390_JMP_SLOT:
2157 case elfcpp::R_390_TLS_DTPMOD:
2158 case elfcpp::R_390_TLS_DTPOFF:
2159 case elfcpp::R_390_TLS_TPOFF:
2160 case elfcpp::R_390_8:
2161 case elfcpp::R_390_16:
2162 case elfcpp::R_390_32:
2163 case elfcpp::R_390_PC16:
2164 case elfcpp::R_390_PC16DBL:
2165 case elfcpp::R_390_PC32:
2166 case elfcpp::R_390_PC32DBL:
2167 return;
2168
2169 default:
2170 break;
2171 }
2172 }
2173
2174 // This prevents us from issuing more than one error per reloc
2175 // section. But we can still wind up issuing more than one
2176 // error per object file.
2177 if (this->issued_non_pic_error_)
2178 return;
2179 gold_assert(parameters->options().output_is_position_independent());
2180 object->error(_("requires unsupported dynamic reloc; "
2181 "recompile with -fPIC"));
2182 this->issued_non_pic_error_ = true;
2183 return;
2184}
2185
2186// Return whether we need to make a PLT entry for a relocation of the
2187// given type against a STT_GNU_IFUNC symbol.
2188
2189template<int size>
2190bool
2191Target_s390<size>::Scan::reloc_needs_plt_for_ifunc(
2192 Sized_relobj_file<size, true>* object,
2193 unsigned int r_type)
2194{
2195 int flags = Scan::get_reference_flags(r_type);
2196 if (flags & Symbol::TLS_REF)
2197 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
2198 object->name().c_str(), r_type);
2199 return flags != 0;
2200}
2201
2202// Scan a relocation for a local symbol.
2203
2204template<int size>
2205inline void
2206Target_s390<size>::Scan::local(Symbol_table* symtab,
2207 Layout* layout,
2208 Target_s390<size>* target,
2209 Sized_relobj_file<size, true>* object,
2210 unsigned int data_shndx,
2211 Output_section* output_section,
2212 const elfcpp::Rela<size, true>& reloc,
2213 unsigned int r_type,
2214 const elfcpp::Sym<size, true>& lsym,
2215 bool is_discarded)
2216{
2217 if (is_discarded)
2218 return;
2219
2220 // A local STT_GNU_IFUNC symbol may require a PLT entry.
2221 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
2222
2223 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
2224 {
2225 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2226 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
2227 }
2228
2229 switch (r_type)
2230 {
2231 case elfcpp::R_390_NONE:
2232 case elfcpp::R_390_GNU_VTINHERIT:
2233 case elfcpp::R_390_GNU_VTENTRY:
2234 break;
2235
2236 case elfcpp::R_390_64:
2237 // If building a shared library (or a position-independent
2238 // executable), we need to create a dynamic relocation for this
2239 // location. The relocation applied at link time will apply the
2240 // link-time value, so we flag the location with an
2241 // R_390_RELATIVE relocation so the dynamic loader can
2242 // relocate it easily.
2243 if (parameters->options().output_is_position_independent() && size == 64)
2244 {
2245 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2246 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2247 rela_dyn->add_local_relative(object, r_sym,
2248 elfcpp::R_390_RELATIVE,
2249 output_section, data_shndx,
2250 reloc.get_r_offset(),
2251 reloc.get_r_addend(), is_ifunc);
2252 }
2253 break;
2254
2255 case elfcpp::R_390_32:
2256 case elfcpp::R_390_20:
2257 case elfcpp::R_390_16:
2258 case elfcpp::R_390_12:
2259 case elfcpp::R_390_8:
2260 if (parameters->options().output_is_position_independent())
2261 {
2262 if (size == 32 && r_type == elfcpp::R_390_32)
2263 {
2264 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2265 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2266 rela_dyn->add_local_relative(object, r_sym,
2267 elfcpp::R_390_RELATIVE,
2268 output_section, data_shndx,
2269 reloc.get_r_offset(),
2270 reloc.get_r_addend(), is_ifunc);
2271 break;
2272 }
2273
2274 check_non_pic(object, r_type);
2275
2276 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2277 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2278 if (lsym.get_st_type() != elfcpp::STT_SECTION)
2279 rela_dyn->add_local(object, r_sym, r_type, output_section,
2280 data_shndx, reloc.get_r_offset(),
2281 reloc.get_r_addend());
2282 else
2283 {
2284 gold_assert(lsym.get_st_value() == 0);
2285 unsigned int shndx = lsym.get_st_shndx();
2286 bool is_ordinary;
2287 shndx = object->adjust_sym_shndx(r_sym, shndx,
2288 &is_ordinary);
2289 if (!is_ordinary)
2290 object->error(_("section symbol %u has bad shndx %u"),
2291 r_sym, shndx);
2292 else
2293 rela_dyn->add_local_section(object, shndx,
2294 r_type, output_section,
2295 data_shndx, reloc.get_r_offset(),
2296 reloc.get_r_addend());
2297 }
2298 }
2299 break;
2300
2301 case elfcpp::R_390_PC12DBL:
2302 case elfcpp::R_390_PC16:
2303 case elfcpp::R_390_PC16DBL:
2304 case elfcpp::R_390_PC24DBL:
2305 case elfcpp::R_390_PC32:
2306 case elfcpp::R_390_PC32DBL:
2307 case elfcpp::R_390_PC64:
2308 break;
2309
2310 case elfcpp::R_390_PLT12DBL:
2311 case elfcpp::R_390_PLT16DBL:
2312 case elfcpp::R_390_PLT24DBL:
2313 case elfcpp::R_390_PLT32:
2314 case elfcpp::R_390_PLT32DBL:
2315 case elfcpp::R_390_PLT64:
2316 // Since we know this is a local symbol, we can handle this as a
2317 // PC32 reloc.
2318 break;
2319
2320 case elfcpp::R_390_GOTPC:
2321 case elfcpp::R_390_GOTPCDBL:
2322 case elfcpp::R_390_GOTOFF16:
2323 case elfcpp::R_390_GOTOFF32:
2324 case elfcpp::R_390_GOTOFF64:
2325 case elfcpp::R_390_PLTOFF16:
2326 case elfcpp::R_390_PLTOFF32:
2327 case elfcpp::R_390_PLTOFF64:
2328 // We need a GOT section.
2329 target->got_section(symtab, layout);
2330 // For PLTOFF*, we'd normally want a PLT section, but since we
2331 // know this is a local symbol, no PLT is needed.
2332 break;
2333
2334 case elfcpp::R_390_GOT12:
2335 case elfcpp::R_390_GOT16:
2336 case elfcpp::R_390_GOT20:
2337 case elfcpp::R_390_GOT32:
2338 case elfcpp::R_390_GOT64:
2339 case elfcpp::R_390_GOTENT:
2340 case elfcpp::R_390_GOTPLT12:
2341 case elfcpp::R_390_GOTPLT16:
2342 case elfcpp::R_390_GOTPLT20:
2343 case elfcpp::R_390_GOTPLT32:
2344 case elfcpp::R_390_GOTPLT64:
2345 case elfcpp::R_390_GOTPLTENT:
2346 {
2347 // The symbol requires a GOT section.
2348 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2349
2350 // The symbol requires a GOT entry.
2351 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2352
2353 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
2354 // lets function pointers compare correctly with shared
2355 // libraries. Otherwise we would need an IRELATIVE reloc.
2356 bool is_new;
2357 if (is_ifunc)
2358 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
2359 else
2360 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
2361 if (is_new)
2362 {
2363 // If we are generating a shared object, we need to add a
2364 // dynamic relocation for this symbol's GOT entry.
2365 if (parameters->options().output_is_position_independent())
2366 {
2367 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2368 unsigned int got_offset =
2369 object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
2370 rela_dyn->add_local_relative(object, r_sym,
2371 elfcpp::R_390_RELATIVE,
2372 got, got_offset, 0, is_ifunc);
2373 }
2374 }
2375 // For GOTPLT*, we'd normally want a PLT section, but since
2376 // we know this is a local symbol, no PLT is needed.
2377 }
2378 break;
2379
2380 case elfcpp::R_390_COPY:
2381 case elfcpp::R_390_GLOB_DAT:
2382 case elfcpp::R_390_JMP_SLOT:
2383 case elfcpp::R_390_RELATIVE:
2384 case elfcpp::R_390_IRELATIVE:
2385 // These are outstanding tls relocs, which are unexpected when linking
2386 case elfcpp::R_390_TLS_TPOFF:
2387 case elfcpp::R_390_TLS_DTPOFF:
2388 case elfcpp::R_390_TLS_DTPMOD:
2389 gold_error(_("%s: unexpected reloc %u in object file"),
2390 object->name().c_str(), r_type);
2391 break;
2392
2393 // These are initial tls relocs, which are expected when linking
2394 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2395 case elfcpp::R_390_TLS_GD64:
2396 case elfcpp::R_390_TLS_GDCALL:
2397 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2398 case elfcpp::R_390_TLS_LDM64:
2399 case elfcpp::R_390_TLS_LDO32:
2400 case elfcpp::R_390_TLS_LDO64:
2401 case elfcpp::R_390_TLS_LDCALL:
2402 case elfcpp::R_390_TLS_IE32: // Initial-exec
2403 case elfcpp::R_390_TLS_IE64:
2404 case elfcpp::R_390_TLS_IEENT:
2405 case elfcpp::R_390_TLS_GOTIE12:
2406 case elfcpp::R_390_TLS_GOTIE20:
2407 case elfcpp::R_390_TLS_GOTIE32:
2408 case elfcpp::R_390_TLS_GOTIE64:
2409 case elfcpp::R_390_TLS_LOAD:
2410 case elfcpp::R_390_TLS_LE32: // Local-exec
2411 case elfcpp::R_390_TLS_LE64:
2412 {
2413 bool output_is_shared = parameters->options().shared();
2414 const tls::Tls_optimization optimized_type
2415 = Target_s390<size>::optimize_tls_reloc(!output_is_shared,
2416 r_type);
2417 switch (r_type)
2418 {
2419 case elfcpp::R_390_TLS_GD32: // General-dynamic
2420 case elfcpp::R_390_TLS_GD64:
2421 case elfcpp::R_390_TLS_GDCALL:
2422 if (optimized_type == tls::TLSOPT_NONE)
2423 {
2424 // Create a pair of GOT entries for the module index and
2425 // dtv-relative offset.
2426 Output_data_got<size, true>* got
2427 = target->got_section(symtab, layout);
2428 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2429 unsigned int shndx = lsym.get_st_shndx();
2430 bool is_ordinary;
2431 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
2432 if (!is_ordinary)
2433 object->error(_("local symbol %u has bad shndx %u"),
2434 r_sym, shndx);
2435 else
2436 got->add_local_pair_with_rel(object, r_sym,
2437 shndx,
2438 GOT_TYPE_TLS_PAIR,
2439 target->rela_dyn_section(layout),
2440 elfcpp::R_390_TLS_DTPMOD);
2441 }
2442 else if (optimized_type != tls::TLSOPT_TO_LE)
2443 unsupported_reloc_local(object, r_type);
2444 break;
2445
2446 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2447 case elfcpp::R_390_TLS_LDM64:
2448 case elfcpp::R_390_TLS_LDCALL:
2449 if (optimized_type == tls::TLSOPT_NONE)
2450 {
2451 // Create a GOT entry for the module index.
2452 target->got_mod_index_entry(symtab, layout, object);
2453 }
2454 else if (optimized_type != tls::TLSOPT_TO_LE)
2455 unsupported_reloc_local(object, r_type);
2456 break;
2457
2458 case elfcpp::R_390_TLS_LDO32:
2459 case elfcpp::R_390_TLS_LDO64:
2460 break;
2461
2462 case elfcpp::R_390_TLS_IE32: // Initial-exec
2463 case elfcpp::R_390_TLS_IE64:
2464 // These two involve an absolute address
2465 if (parameters->options().shared()
2466 && optimized_type == tls::TLSOPT_NONE)
2467 {
2468 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2469 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2470 {
2471 // We need to create a dynamic relocation.
2472 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2473 unsigned int r_sym =
2474 elfcpp::elf_r_sym<size>(reloc.get_r_info());
2475 rela_dyn->add_local_relative(object, r_sym,
2476 elfcpp::R_390_RELATIVE,
2477 output_section, data_shndx,
2478 reloc.get_r_offset(),
2479 reloc.get_r_addend(), false);
2480 }
2481 else
2482 {
2483 unsupported_reloc_local(object, r_type);
2484 }
2485 }
2486 // fall through
2487 case elfcpp::R_390_TLS_IEENT:
2488 case elfcpp::R_390_TLS_GOTIE12:
2489 case elfcpp::R_390_TLS_GOTIE20:
2490 case elfcpp::R_390_TLS_GOTIE32:
2491 case elfcpp::R_390_TLS_GOTIE64:
2492 case elfcpp::R_390_TLS_LOAD:
2493 layout->set_has_static_tls();
2494 if (optimized_type == tls::TLSOPT_NONE)
2495 {
2496 if (!output_is_shared)
2497 {
2498 // We're making an executable, and the symbol is local, but
2499 // we cannot optimize to LE. Make a const GOT entry instead.
2500 Output_data_got<size, true>* got
2501 = target->got_section(symtab, layout);
2502 unsigned int r_sym
2503 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2504 got->add_local_plt(object, r_sym, GOT_TYPE_TLS_OFFSET);
2505 }
2506 else
2507 {
2508 // Create a GOT entry for the tp-relative offset.
2509 Output_data_got<size, true>* got
2510 = target->got_section(symtab, layout);
2511 unsigned int r_sym
2512 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2513 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
2514 target->rela_dyn_section(layout),
2515 elfcpp::R_390_TLS_TPOFF);
2516 }
2517 }
2518 else if (optimized_type != tls::TLSOPT_TO_LE)
2519 unsupported_reloc_local(object, r_type);
2520 break;
2521
2522 case elfcpp::R_390_TLS_LE32: // Local-exec
2523 case elfcpp::R_390_TLS_LE64:
2524 layout->set_has_static_tls();
2525 if (output_is_shared)
2526 {
2527 // We need to create a dynamic relocation.
2528 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2529 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2530 {
2531 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2532 unsigned int r_sym
2533 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
2534 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
2535 rela_dyn->add_local(object, r_sym, elfcpp::R_390_TLS_TPOFF,
2536 output_section, data_shndx,
2537 reloc.get_r_offset(),
2538 reloc.get_r_addend());
2539 }
2540 else
2541 {
2542 unsupported_reloc_local(object, r_type);
2543 }
2544 }
2545 break;
2546
2547 default:
2548 gold_unreachable();
2549 }
2550 }
2551 break;
2552
2553 default:
2554 gold_error(_("%s: unsupported reloc %u against local symbol"),
2555 object->name().c_str(), r_type);
2556 break;
2557 }
2558}
2559
2560// Scan a relocation for a global symbol.
2561
2562template<int size>
2563inline void
2564Target_s390<size>::Scan::global(Symbol_table* symtab,
2565 Layout* layout,
2566 Target_s390<size>* target,
2567 Sized_relobj_file<size, true>* object,
2568 unsigned int data_shndx,
2569 Output_section* output_section,
2570 const elfcpp::Rela<size, true>& reloc,
2571 unsigned int r_type,
2572 Symbol* gsym)
2573{
2574 // A STT_GNU_IFUNC symbol may require a PLT entry.
2575 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2576 && this->reloc_needs_plt_for_ifunc(object, r_type))
2577 target->make_plt_entry(symtab, layout, gsym);
2578
2579 switch (r_type)
2580 {
2581 case elfcpp::R_390_NONE:
2582 case elfcpp::R_390_GNU_VTINHERIT:
2583 case elfcpp::R_390_GNU_VTENTRY:
2584 break;
2585
2586 case elfcpp::R_390_64:
2587 case elfcpp::R_390_32:
2588 case elfcpp::R_390_20:
2589 case elfcpp::R_390_16:
2590 case elfcpp::R_390_12:
2591 case elfcpp::R_390_8:
2592 {
2593 // Make a PLT entry if necessary.
2594 if (gsym->needs_plt_entry())
2595 {
2596 target->make_plt_entry(symtab, layout, gsym);
2597 // Since this is not a PC-relative relocation, we may be
2598 // taking the address of a function. In that case we need to
2599 // set the entry in the dynamic symbol table to the address of
2600 // the PLT entry.
2601 if (gsym->is_from_dynobj() && !parameters->options().shared())
2602 gsym->set_needs_dynsym_value();
2603 }
2604 // Make a dynamic relocation if necessary.
2605 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2606 {
2607 if (!parameters->options().output_is_position_independent()
2608 && gsym->may_need_copy_reloc())
2609 {
2610 target->copy_reloc(symtab, layout, object,
2611 data_shndx, output_section, gsym, reloc);
2612 }
2613 else if (((size == 64 && r_type == elfcpp::R_390_64)
2614 || (size == 32 && r_type == elfcpp::R_390_32))
2615 && gsym->type() == elfcpp::STT_GNU_IFUNC
2616 && gsym->can_use_relative_reloc(false)
2617 && !gsym->is_from_dynobj()
2618 && !gsym->is_undefined()
2619 && !gsym->is_preemptible())
2620 {
2621 // Use an IRELATIVE reloc for a locally defined
2622 // STT_GNU_IFUNC symbol. This makes a function
2623 // address in a PIE executable match the address in a
2624 // shared library that it links against.
2625 Reloc_section* rela_dyn =
2626 target->rela_irelative_section(layout);
2627 unsigned int r_type = elfcpp::R_390_IRELATIVE;
2628 rela_dyn->add_symbolless_global_addend(gsym, r_type,
2629 output_section, object,
2630 data_shndx,
2631 reloc.get_r_offset(),
2632 reloc.get_r_addend());
2633 }
2634 else if (((size == 64 && r_type == elfcpp::R_390_64)
2635 || (size == 32 && r_type == elfcpp::R_390_32))
2636 && gsym->can_use_relative_reloc(false))
2637 {
2638 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2639 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2640 output_section, object,
2641 data_shndx,
2642 reloc.get_r_offset(),
2643 reloc.get_r_addend(), false);
2644 }
2645 else
2646 {
2647 check_non_pic(object, r_type);
2648 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2649 rela_dyn->add_global(gsym, r_type, output_section, object,
2650 data_shndx, reloc.get_r_offset(),
2651 reloc.get_r_addend());
2652 }
2653 }
2654 }
2655 break;
2656
2657 case elfcpp::R_390_PC12DBL:
2658 case elfcpp::R_390_PC16:
2659 case elfcpp::R_390_PC16DBL:
2660 case elfcpp::R_390_PC24DBL:
2661 case elfcpp::R_390_PC32:
2662 case elfcpp::R_390_PC32DBL:
2663 case elfcpp::R_390_PC64:
2664 {
2665 // Make a PLT entry if necessary.
2666 if (gsym->needs_plt_entry())
2667 {
2668 target->make_plt_entry(symtab, layout, gsym);
2669 // larl is often used to take address of a function. Aim the
2670 // symbol at the PLT entry.
2671 if (gsym->is_from_dynobj() && !parameters->options().shared())
2672 gsym->set_needs_dynsym_value();
2673 }
2674 // Make a dynamic relocation if necessary.
2675 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
2676 {
2677 if (parameters->options().output_is_executable()
2678 && gsym->may_need_copy_reloc())
2679 {
2680 target->copy_reloc(symtab, layout, object,
2681 data_shndx, output_section, gsym, reloc);
2682 }
2683 else
2684 {
2685 check_non_pic(object, r_type);
2686 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2687 rela_dyn->add_global(gsym, r_type, output_section, object,
2688 data_shndx, reloc.get_r_offset(),
2689 reloc.get_r_addend());
2690 }
2691 }
2692 }
2693 break;
2694
2695 case elfcpp::R_390_PLT12DBL:
2696 case elfcpp::R_390_PLT16DBL:
2697 case elfcpp::R_390_PLT24DBL:
2698 case elfcpp::R_390_PLT32:
2699 case elfcpp::R_390_PLT32DBL:
2700 case elfcpp::R_390_PLT64:
2701 // If the symbol is fully resolved, this is just a PC32 reloc.
2702 // Otherwise we need a PLT entry.
2703 if (gsym->final_value_is_known())
2704 break;
2705 // If building a shared library, we can also skip the PLT entry
2706 // if the symbol is defined in the output file and is protected
2707 // or hidden.
2708 if (gsym->is_defined()
2709 && !gsym->is_from_dynobj()
2710 && !gsym->is_preemptible())
2711 break;
2712 target->make_plt_entry(symtab, layout, gsym);
2713 break;
2714
2715 case elfcpp::R_390_GOTPC:
2716 case elfcpp::R_390_GOTPCDBL:
2717 case elfcpp::R_390_GOTOFF16:
2718 case elfcpp::R_390_GOTOFF32:
2719 case elfcpp::R_390_GOTOFF64:
2720 case elfcpp::R_390_PLTOFF16:
2721 case elfcpp::R_390_PLTOFF32:
2722 case elfcpp::R_390_PLTOFF64:
2723 // We need a GOT section.
2724 target->got_section(symtab, layout);
2725 // For PLTOFF*, we also need a PLT entry (but only if the
2726 // symbol is not fully resolved).
2727 if ((r_type == elfcpp::R_390_PLTOFF16
2728 || r_type == elfcpp::R_390_PLTOFF32
2729 || r_type == elfcpp::R_390_PLTOFF64)
2730 && !gsym->final_value_is_known())
2731 target->make_plt_entry(symtab, layout, gsym);
2732 break;
2733
2734 case elfcpp::R_390_GOT12:
2735 case elfcpp::R_390_GOT16:
2736 case elfcpp::R_390_GOT20:
2737 case elfcpp::R_390_GOT32:
2738 case elfcpp::R_390_GOT64:
2739 case elfcpp::R_390_GOTENT:
2740 case elfcpp::R_390_GOTPLT12:
2741 case elfcpp::R_390_GOTPLT16:
2742 case elfcpp::R_390_GOTPLT20:
2743 case elfcpp::R_390_GOTPLT32:
2744 case elfcpp::R_390_GOTPLT64:
2745 case elfcpp::R_390_GOTPLTENT:
2746 {
2747 // The symbol requires a GOT entry.
2748 Output_data_got<size, true>* got = target->got_section(symtab, layout);
2749
2750 if (gsym->final_value_is_known())
2751 {
2752 // For a STT_GNU_IFUNC symbol we want the PLT address.
2753 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
2754 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2755 else
2756 got->add_global(gsym, GOT_TYPE_STANDARD);
2757 }
2758 else
2759 {
2760 // If this symbol is not fully resolved, we need to add a
2761 // dynamic relocation for it.
2762 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2763
2764 // Use a GLOB_DAT rather than a RELATIVE reloc if:
2765 //
2766 // 1) The symbol may be defined in some other module.
2767 //
2768 // 2) We are building a shared library and this is a
2769 // protected symbol; using GLOB_DAT means that the dynamic
2770 // linker can use the address of the PLT in the main
2771 // executable when appropriate so that function address
2772 // comparisons work.
2773 //
2774 // 3) This is a STT_GNU_IFUNC symbol in position dependent
2775 // code, again so that function address comparisons work.
2776 if (gsym->is_from_dynobj()
2777 || gsym->is_undefined()
2778 || gsym->is_preemptible()
2779 || (gsym->visibility() == elfcpp::STV_PROTECTED
2780 && parameters->options().shared())
2781 || (gsym->type() == elfcpp::STT_GNU_IFUNC
2782 && parameters->options().output_is_position_independent()))
2783 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
2784 elfcpp::R_390_GLOB_DAT);
2785 else
2786 {
2787 // For a STT_GNU_IFUNC symbol we want to write the PLT
2788 // offset into the GOT, so that function pointer
2789 // comparisons work correctly.
2790 bool is_new;
2791 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
2792 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
2793 else
2794 {
2795 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
2796 // Tell the dynamic linker to use the PLT address
2797 // when resolving relocations.
2798 if (gsym->is_from_dynobj()
2799 && !parameters->options().shared())
2800 gsym->set_needs_dynsym_value();
2801 }
2802 if (is_new)
2803 {
2804 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
2805 rela_dyn->add_global_relative(gsym,
2806 elfcpp::R_390_RELATIVE,
2807 got, got_off, 0, false);
2808 }
2809 }
2810 }
2811 }
2812 break;
2813
2814 case elfcpp::R_390_COPY:
2815 case elfcpp::R_390_GLOB_DAT:
2816 case elfcpp::R_390_JMP_SLOT:
2817 case elfcpp::R_390_RELATIVE:
2818 case elfcpp::R_390_IRELATIVE:
2819 // These are outstanding tls relocs, which are unexpected when linking
2820 case elfcpp::R_390_TLS_TPOFF:
2821 case elfcpp::R_390_TLS_DTPOFF:
2822 case elfcpp::R_390_TLS_DTPMOD:
2823 gold_error(_("%s: unexpected reloc %u in object file"),
2824 object->name().c_str(), r_type);
2825 break;
2826
2827 // These are initial tls relocs, which are expected for global()
2828 case elfcpp::R_390_TLS_GD32: // Global-dynamic
2829 case elfcpp::R_390_TLS_GD64:
2830 case elfcpp::R_390_TLS_GDCALL:
2831 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2832 case elfcpp::R_390_TLS_LDM64:
2833 case elfcpp::R_390_TLS_LDO32:
2834 case elfcpp::R_390_TLS_LDO64:
2835 case elfcpp::R_390_TLS_LDCALL:
2836 case elfcpp::R_390_TLS_IE32: // Initial-exec
2837 case elfcpp::R_390_TLS_IE64:
2838 case elfcpp::R_390_TLS_IEENT:
2839 case elfcpp::R_390_TLS_GOTIE12:
2840 case elfcpp::R_390_TLS_GOTIE20:
2841 case elfcpp::R_390_TLS_GOTIE32:
2842 case elfcpp::R_390_TLS_GOTIE64:
2843 case elfcpp::R_390_TLS_LOAD:
2844 case elfcpp::R_390_TLS_LE32: // Local-exec
2845 case elfcpp::R_390_TLS_LE64:
2846 {
2847 // For the optimizable Initial-Exec model, we can treat undef symbols
2848 // as final when building an executable.
2849 const bool is_final = (gsym->final_value_is_known() ||
2850 ((r_type == elfcpp::R_390_TLS_IE32 ||
2851 r_type == elfcpp::R_390_TLS_IE64 ||
2852 r_type == elfcpp::R_390_TLS_GOTIE32 ||
2853 r_type == elfcpp::R_390_TLS_GOTIE64) &&
2854 gsym->is_undefined() &&
2855 parameters->options().output_is_executable()));
2856 const tls::Tls_optimization optimized_type
2857 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
2858 switch (r_type)
2859 {
2860 case elfcpp::R_390_TLS_GD32: // General-dynamic
2861 case elfcpp::R_390_TLS_GD64:
2862 case elfcpp::R_390_TLS_GDCALL:
2863 if (optimized_type == tls::TLSOPT_NONE)
2864 {
2865 // Create a pair of GOT entries for the module index and
2866 // dtv-relative offset.
2867 Output_data_got<size, true>* got
2868 = target->got_section(symtab, layout);
2869 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
2870 target->rela_dyn_section(layout),
2871 elfcpp::R_390_TLS_DTPMOD,
2872 elfcpp::R_390_TLS_DTPOFF);
2873 }
2874 else if (optimized_type == tls::TLSOPT_TO_IE)
2875 {
2876 // Create a GOT entry for the tp-relative offset.
2877 Output_data_got<size, true>* got
2878 = target->got_section(symtab, layout);
2879 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2880 target->rela_dyn_section(layout),
2881 elfcpp::R_390_TLS_TPOFF);
2882 }
2883 else if (optimized_type != tls::TLSOPT_TO_LE)
2884 unsupported_reloc_global(object, r_type, gsym);
2885 break;
2886
2887 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
2888 case elfcpp::R_390_TLS_LDM64:
2889 case elfcpp::R_390_TLS_LDCALL:
2890 if (optimized_type == tls::TLSOPT_NONE)
2891 {
2892 // Create a GOT entry for the module index.
2893 target->got_mod_index_entry(symtab, layout, object);
2894 }
2895 else if (optimized_type != tls::TLSOPT_TO_LE)
2896 unsupported_reloc_global(object, r_type, gsym);
2897 break;
2898
2899 case elfcpp::R_390_TLS_LDO32:
2900 case elfcpp::R_390_TLS_LDO64:
2901 break;
2902
2903 case elfcpp::R_390_TLS_IE32: // Initial-exec
2904 case elfcpp::R_390_TLS_IE64:
2905 // These two involve an absolute address
2906 if (parameters->options().shared())
2907 {
2908 if ((size == 32 && r_type == elfcpp::R_390_TLS_IE32) ||
2909 (size == 64 && r_type == elfcpp::R_390_TLS_IE64))
2910 {
2911 // We need to create a dynamic relocation.
2912 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2913 rela_dyn->add_global_relative(gsym, elfcpp::R_390_RELATIVE,
2914 output_section, object,
2915 data_shndx,
2916 reloc.get_r_offset(),
2917 reloc.get_r_addend(), false);
2918 }
2919 else
2920 {
2921 unsupported_reloc_global(object, r_type, gsym);
2922 }
2923 }
2924 // fall through
2925 case elfcpp::R_390_TLS_IEENT:
2926 case elfcpp::R_390_TLS_GOTIE12:
2927 case elfcpp::R_390_TLS_GOTIE20:
2928 case elfcpp::R_390_TLS_GOTIE32:
2929 case elfcpp::R_390_TLS_GOTIE64:
2930 case elfcpp::R_390_TLS_LOAD:
2931 layout->set_has_static_tls();
2932 if (optimized_type == tls::TLSOPT_NONE)
2933 {
2934 if (is_final && !parameters->options().shared())
2935 {
2936 // We're making an executable, and the symbol is local, but
2937 // we cannot optimize to LE. Make a const GOT entry instead.
2938 Output_data_got<size, true>* got
2939 = target->got_section(symtab, layout);
2940 got->add_global_plt(gsym, GOT_TYPE_TLS_OFFSET);
2941 }
2942 else
2943 {
2944 // Create a GOT entry for the tp-relative offset.
2945 Output_data_got<size, true>* got
2946 = target->got_section(symtab, layout);
2947 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
2948 target->rela_dyn_section(layout),
2949 elfcpp::R_390_TLS_TPOFF);
2950 }
2951 }
2952 else if (optimized_type != tls::TLSOPT_TO_LE)
2953 unsupported_reloc_global(object, r_type, gsym);
2954 break;
2955
2956 case elfcpp::R_390_TLS_LE32: // Local-exec
2957 case elfcpp::R_390_TLS_LE64:
2958 layout->set_has_static_tls();
2959 if (parameters->options().shared())
2960 {
2961 // We need to create a dynamic relocation.
2962 if ((size == 32 && r_type == elfcpp::R_390_TLS_LE32) ||
2963 (size == 64 && r_type == elfcpp::R_390_TLS_LE64))
2964 {
2965 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
2966 rela_dyn->add_global(gsym, elfcpp::R_390_TLS_TPOFF,
2967 output_section, object,
2968 data_shndx, reloc.get_r_offset(),
2969 reloc.get_r_addend());
2970 }
2971 else
2972 {
2973 unsupported_reloc_global(object, r_type, gsym);
2974 }
2975 }
2976 break;
2977
2978 default:
2979 gold_unreachable();
2980 }
2981 }
2982 break;
2983
2984 default:
2985 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
2986 object->name().c_str(), r_type,
2987 gsym->demangled_name().c_str());
2988 break;
2989 }
2990}
2991
2992
2993// Report an unsupported relocation against a global symbol.
2994
2995template<int size>
2996void
2997Target_s390<size>::Scan::unsupported_reloc_global(
2998 Sized_relobj_file<size, true>* object,
2999 unsigned int r_type,
3000 Symbol* gsym)
3001{
3002 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3003 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3004}
3005
3006// Returns true if this relocation type could be that of a function pointer.
3007template<int size>
3008inline bool
3009Target_s390<size>::Scan::possible_function_pointer_reloc(unsigned int r_type)
3010{
3011 switch (r_type)
3012 {
3013 case elfcpp::R_390_32:
3014 case elfcpp::R_390_64:
3015 case elfcpp::R_390_PC32DBL: // could be used by larl insn
3016 case elfcpp::R_390_GOT12:
3017 case elfcpp::R_390_GOT16:
3018 case elfcpp::R_390_GOT20:
3019 case elfcpp::R_390_GOT32:
3020 case elfcpp::R_390_GOT64:
3021 case elfcpp::R_390_GOTENT:
3022 case elfcpp::R_390_GOTOFF16:
3023 case elfcpp::R_390_GOTOFF32:
3024 case elfcpp::R_390_GOTOFF64:
3025 return true;
3026 }
3027 return false;
3028}
3029
3030// For safe ICF, scan a relocation for a local symbol to check if it
3031// corresponds to a function pointer being taken. In that case mark
3032// the function whose pointer was taken as not foldable.
3033
3034template<int size>
3035inline bool
3036Target_s390<size>::Scan::local_reloc_may_be_function_pointer(
3037 Symbol_table* ,
3038 Layout* ,
3039 Target_s390<size>* ,
3040 Sized_relobj_file<size, true>* ,
3041 unsigned int ,
3042 Output_section* ,
3043 const elfcpp::Rela<size, true>& ,
3044 unsigned int r_type,
3045 const elfcpp::Sym<size, true>&)
3046{
3047 // When building a shared library, do not fold any local symbols.
3048 return (parameters->options().shared()
3049 || possible_function_pointer_reloc(r_type));
3050}
3051
3052// For safe ICF, scan a relocation for a global symbol to check if it
3053// corresponds to a function pointer being taken. In that case mark
3054// the function whose pointer was taken as not foldable.
3055
3056template<int size>
3057inline bool
3058Target_s390<size>::Scan::global_reloc_may_be_function_pointer(
3059 Symbol_table*,
3060 Layout* ,
3061 Target_s390<size>* ,
3062 Sized_relobj_file<size, true>* ,
3063 unsigned int ,
3064 Output_section* ,
3065 const elfcpp::Rela<size, true>& ,
3066 unsigned int r_type,
3067 Symbol* gsym)
3068{
3069 // When building a shared library, do not fold symbols whose visibility
3070 // is hidden, internal or protected.
3071 return ((parameters->options().shared()
3072 && (gsym->visibility() == elfcpp::STV_INTERNAL
3073 || gsym->visibility() == elfcpp::STV_PROTECTED
3074 || gsym->visibility() == elfcpp::STV_HIDDEN))
3075 || possible_function_pointer_reloc(r_type));
3076}
3077
3078template<int size>
3079void
3080Target_s390<size>::gc_process_relocs(Symbol_table* symtab,
3081 Layout* layout,
3082 Sized_relobj_file<size, true>* object,
3083 unsigned int data_shndx,
3084 unsigned int sh_type,
3085 const unsigned char* prelocs,
3086 size_t reloc_count,
3087 Output_section* output_section,
3088 bool needs_special_offset_handling,
3089 size_t local_symbol_count,
3090 const unsigned char* plocal_symbols)
3091{
3092
3093 if (sh_type == elfcpp::SHT_REL)
3094 return;
3095
3096 gold::gc_process_relocs<size, true, Target_s390<size>, elfcpp::SHT_RELA,
3097 typename Target_s390<size>::Scan,
3098 typename Target_s390<size>::Relocatable_size_for_reloc>(
3099 symtab,
3100 layout,
3101 this,
3102 object,
3103 data_shndx,
3104 prelocs,
3105 reloc_count,
3106 output_section,
3107 needs_special_offset_handling,
3108 local_symbol_count,
3109 plocal_symbols);
3110}
3111
3112// Perform a relocation.
3113
3114template<int size>
3115inline bool
3116Target_s390<size>::Relocate::relocate(
3117 const Relocate_info<size, true>* relinfo,
3118 Target_s390<size>* target,
3119 Output_section*,
3120 size_t relnum,
3121 const elfcpp::Rela<size, true>& rela,
3122 unsigned int r_type,
3123 const Sized_symbol<size>* gsym,
3124 const Symbol_value<size>* psymval,
3125 unsigned char* view,
3126 typename elfcpp::Elf_types<size>::Elf_Addr address,
3127 section_size_type view_size)
3128{
3129 if (view == NULL)
3130 return true;
3131
3132 const Sized_relobj_file<size, true>* object = relinfo->object;
3133
3134 // Pick the value to use for symbols defined in the PLT.
3135 Symbol_value<size> symval;
3136 if (gsym != NULL
3137 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
3138 {
3139 symval.set_output_value(target->plt_address_for_global(gsym));
3140 psymval = &symval;
3141 }
3142 else if (gsym == NULL && psymval->is_ifunc_symbol())
3143 {
3144 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3145 if (object->local_has_plt_offset(r_sym))
3146 {
3147 symval.set_output_value(target->plt_address_for_local(object, r_sym));
3148 psymval = &symval;
3149 }
3150 }
3151
3152 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3153
3154 typename elfcpp::Elf_types<size>::Elf_Addr value = 0;
3155
3156 switch (r_type)
3157 {
3158 case elfcpp::R_390_PLT64:
3159 case elfcpp::R_390_PLT32:
3160 case elfcpp::R_390_PLT32DBL:
3161 case elfcpp::R_390_PLT24DBL:
3162 case elfcpp::R_390_PLT16DBL:
3163 case elfcpp::R_390_PLT12DBL:
3164 gold_assert(gsym == NULL
3165 || gsym->has_plt_offset()
3166 || gsym->final_value_is_known()
3167 || (gsym->is_defined()
3168 && !gsym->is_from_dynobj()
3169 && !gsym->is_preemptible()));
3170 // fallthru
3171 case elfcpp::R_390_8:
3172 case elfcpp::R_390_12:
3173 case elfcpp::R_390_16:
3174 case elfcpp::R_390_20:
3175 case elfcpp::R_390_32:
3176 case elfcpp::R_390_64:
3177 case elfcpp::R_390_PC16:
3178 case elfcpp::R_390_PC32:
3179 case elfcpp::R_390_PC64:
3180 case elfcpp::R_390_PC32DBL:
3181 case elfcpp::R_390_PC24DBL:
3182 case elfcpp::R_390_PC16DBL:
3183 case elfcpp::R_390_PC12DBL:
3184 value = psymval->value(object, addend);
3185 break;
3186
3187 case elfcpp::R_390_GOTPC:
3188 case elfcpp::R_390_GOTPCDBL:
3189 gold_assert(gsym != NULL);
3190 value = target->got_address() + addend;
3191 break;
3192
3193 case elfcpp::R_390_PLTOFF64:
3194 case elfcpp::R_390_PLTOFF32:
3195 case elfcpp::R_390_PLTOFF16:
3196 gold_assert(gsym == NULL
3197 || gsym->has_plt_offset()
3198 || gsym->final_value_is_known());
3199 // fallthru
3200 case elfcpp::R_390_GOTOFF64:
3201 case elfcpp::R_390_GOTOFF32:
3202 case elfcpp::R_390_GOTOFF16:
3203 value = (psymval->value(object, addend)
3204 - target->got_address());
3205 break;
3206
3207 case elfcpp::R_390_GOT12:
3208 case elfcpp::R_390_GOT16:
3209 case elfcpp::R_390_GOT20:
3210 case elfcpp::R_390_GOT32:
3211 case elfcpp::R_390_GOT64:
3212 case elfcpp::R_390_GOTENT:
3213 case elfcpp::R_390_GOTPLT12:
3214 case elfcpp::R_390_GOTPLT16:
3215 case elfcpp::R_390_GOTPLT20:
3216 case elfcpp::R_390_GOTPLT32:
3217 case elfcpp::R_390_GOTPLT64:
3218 case elfcpp::R_390_GOTPLTENT:
3219 {
3220 unsigned int got_offset = 0;
3221 if (gsym != NULL)
3222 {
3223 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
3224 got_offset = gsym->got_offset(GOT_TYPE_STANDARD);
3225 }
3226 else
3227 {
3228 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3229 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
3230 got_offset = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3231 }
3232 value = got_offset + target->got_main_offset() + addend;
3233 }
3234 break;
3235
3236 // These are initial tls relocs, which are expected when linking
3237 case elfcpp::R_390_TLS_LOAD:
3238 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic
3239 case elfcpp::R_390_TLS_GD32:
3240 case elfcpp::R_390_TLS_GD64:
3241 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic
3242 case elfcpp::R_390_TLS_LDM32:
3243 case elfcpp::R_390_TLS_LDM64:
3244 case elfcpp::R_390_TLS_LDO32:
3245 case elfcpp::R_390_TLS_LDO64:
3246 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec
3247 case elfcpp::R_390_TLS_GOTIE20:
3248 case elfcpp::R_390_TLS_GOTIE32:
3249 case elfcpp::R_390_TLS_GOTIE64:
3250 case elfcpp::R_390_TLS_IE32:
3251 case elfcpp::R_390_TLS_IE64:
3252 case elfcpp::R_390_TLS_IEENT:
3253 case elfcpp::R_390_TLS_LE32: // Local-exec
3254 case elfcpp::R_390_TLS_LE64:
3255 value = this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
3256 view, view_size);
3257 break;
3258
3259 default:
3260 break;
3261 }
3262
3263 typename S390_relocate_functions<size>::Status status
3264 = S390_relocate_functions<size>::STATUS_OK;
3265
3266 switch (r_type)
3267 {
3268 case elfcpp::R_390_NONE:
3269 case elfcpp::R_390_GNU_VTINHERIT:
3270 case elfcpp::R_390_GNU_VTENTRY:
3271 case elfcpp::R_390_TLS_GDCALL:
3272 case elfcpp::R_390_TLS_LDCALL:
3273 case elfcpp::R_390_TLS_LOAD:
3274 break;
3275
3276 case elfcpp::R_390_64:
3277 case elfcpp::R_390_GOT64:
3278 case elfcpp::R_390_GOTPLT64:
3279 case elfcpp::R_390_PLTOFF64:
3280 case elfcpp::R_390_GOTOFF64:
3281 case elfcpp::R_390_TLS_GD64:
3282 case elfcpp::R_390_TLS_LDM64:
3283 case elfcpp::R_390_TLS_LDO64:
3284 case elfcpp::R_390_TLS_GOTIE64:
3285 case elfcpp::R_390_TLS_IE64:
3286 case elfcpp::R_390_TLS_LE64:
3287 Relocate_functions<size, true>::rela64(view, value, 0);
3288 break;
3289
3290 case elfcpp::R_390_32:
3291 case elfcpp::R_390_GOT32:
3292 case elfcpp::R_390_GOTPLT32:
3293 case elfcpp::R_390_PLTOFF32:
3294 case elfcpp::R_390_GOTOFF32:
3295 case elfcpp::R_390_TLS_GD32:
3296 case elfcpp::R_390_TLS_LDM32:
3297 case elfcpp::R_390_TLS_LDO32:
3298 case elfcpp::R_390_TLS_GOTIE32:
3299 case elfcpp::R_390_TLS_IE32:
3300 case elfcpp::R_390_TLS_LE32:
3301 Relocate_functions<size, true>::rela32(view, value, 0);
3302 break;
3303
3304 case elfcpp::R_390_20:
3305 case elfcpp::R_390_GOT20:
3306 case elfcpp::R_390_GOTPLT20:
3307 case elfcpp::R_390_TLS_GOTIE20:
3308 status = S390_relocate_functions<size>::rela20(view, value);
3309 break;
3310
3311 case elfcpp::R_390_16:
3312 case elfcpp::R_390_GOT16:
3313 case elfcpp::R_390_GOTPLT16:
3314 case elfcpp::R_390_PLTOFF16:
3315 case elfcpp::R_390_GOTOFF16:
3316 status = S390_relocate_functions<size>::rela16(view, value);
3317 break;
3318
3319 case elfcpp::R_390_12:
3320 case elfcpp::R_390_GOT12:
3321 case elfcpp::R_390_GOTPLT12:
3322 case elfcpp::R_390_TLS_GOTIE12:
3323 status = S390_relocate_functions<size>::rela12(view, value);
3324 break;
3325
3326 case elfcpp::R_390_8:
3327 Relocate_functions<size, true>::rela8(view, value, 0);
3328 break;
3329
3330 case elfcpp::R_390_PC16:
3331 Relocate_functions<size, true>::pcrela16(view, value, 0,
3332 address);
3333 break;
3334
3335 case elfcpp::R_390_PLT64:
3336 case elfcpp::R_390_PC64:
3337 Relocate_functions<size, true>::pcrela64(view, value, 0, address);
3338 break;
3339
3340 case elfcpp::R_390_PLT32:
3341 case elfcpp::R_390_PC32:
3342 case elfcpp::R_390_GOTPC:
3343 Relocate_functions<size, true>::pcrela32(view, value, 0, address);
3344 break;
3345
3346 case elfcpp::R_390_PLT32DBL:
3347 case elfcpp::R_390_PC32DBL:
3348 case elfcpp::R_390_GOTPCDBL:
3349 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3350 break;
3351
3352 case elfcpp::R_390_PLT24DBL:
3353 case elfcpp::R_390_PC24DBL:
3354 status = S390_relocate_functions<size>::pcrela24dbl(view, value, address);
3355 break;
3356
3357 case elfcpp::R_390_PLT16DBL:
3358 case elfcpp::R_390_PC16DBL:
3359 status = S390_relocate_functions<size>::pcrela16dbl(view, value, address);
3360 break;
3361
3362 case elfcpp::R_390_PLT12DBL:
3363 case elfcpp::R_390_PC12DBL:
3364 status = S390_relocate_functions<size>::pcrela12dbl(view, value, address);
3365 break;
3366
3367 case elfcpp::R_390_GOTENT:
3368 case elfcpp::R_390_GOTPLTENT:
3369 case elfcpp::R_390_TLS_IEENT:
3370 value += target->got_address();
3371 status = S390_relocate_functions<size>::pcrela32dbl(view, value, address);
3372 break;
3373
3374 case elfcpp::R_390_COPY:
3375 case elfcpp::R_390_GLOB_DAT:
3376 case elfcpp::R_390_JMP_SLOT:
3377 case elfcpp::R_390_RELATIVE:
3378 case elfcpp::R_390_IRELATIVE:
3379 // These are outstanding tls relocs, which are unexpected when linking
3380 case elfcpp::R_390_TLS_TPOFF:
3381 case elfcpp::R_390_TLS_DTPMOD:
3382 case elfcpp::R_390_TLS_DTPOFF:
3383 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3384 _("unexpected reloc %u in object file"),
3385 r_type);
3386 break;
3387
3388 default:
3389 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3390 _("unsupported reloc %u"),
3391 r_type);
3392 break;
3393 }
3394
3395 if (status != S390_relocate_functions<size>::STATUS_OK)
3396 {
3397 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3398 _("relocation overflow"));
3399 }
3400
3401 return true;
3402}
3403
3404// Perform a TLS relocation.
3405
3406template<int size>
3407inline typename elfcpp::Elf_types<size>::Elf_Addr
3408Target_s390<size>::Relocate::relocate_tls(
3409 const Relocate_info<size, true>* relinfo,
3410 Target_s390<size>* target,
3411 size_t relnum,
3412 const elfcpp::Rela<size, true>& rela,
3413 unsigned int r_type,
3414 const Sized_symbol<size>* gsym,
3415 const Symbol_value<size>* psymval,
3416 unsigned char* view,
3417 section_size_type view_size)
3418{
3419 Output_segment* tls_segment = relinfo->layout->tls_segment();
3420
3421 const Sized_relobj_file<size, true>* object = relinfo->object;
3422 const elfcpp::Elf_Xword addend = rela.get_r_addend();
3423 elfcpp::Shdr<size, true> data_shdr(relinfo->data_shdr);
3424 bool is_allocatable = (data_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0;
3425
3426 typename elfcpp::Elf_types<size>::Elf_Addr value
3427 = psymval->value(relinfo->object, addend);
3428
3429 const bool is_final = (gsym == NULL
3430 ? !parameters->options().shared()
3431 : gsym->final_value_is_known());
3432 tls::Tls_optimization optimized_type
3433 = Target_s390<size>::optimize_tls_reloc(is_final, r_type);
3434 switch (r_type)
3435 {
3436 case elfcpp::R_390_TLS_GDCALL: // Global-dynamic marker
3437 if (optimized_type == tls::TLSOPT_TO_LE)
3438 {
3439 if (tls_segment == NULL)
3440 {
3441 gold_assert(parameters->errors()->error_count() > 0
3442 || issue_undefined_symbol_error(gsym));
3443 return 0;
3444 }
3445 this->tls_gd_to_le(relinfo, relnum, rela, view, view_size);
3446 break;
3447 }
3448 else
3449 {
3450 if (optimized_type == tls::TLSOPT_TO_IE)
3451 {
3452 this->tls_gd_to_ie(relinfo, relnum, rela, view, view_size);
3453 break;
3454 }
3455 else if (optimized_type == tls::TLSOPT_NONE)
3456 {
3457 break;
3458 }
3459 }
3460 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3461 _("unsupported reloc %u"), r_type);
3462 break;
3463
3464 case elfcpp::R_390_TLS_GD32: // Global-dynamic
3465 case elfcpp::R_390_TLS_GD64:
3466 if (optimized_type == tls::TLSOPT_TO_LE)
3467 {
3468 if (tls_segment == NULL)
3469 {
3470 gold_assert(parameters->errors()->error_count() > 0
3471 || issue_undefined_symbol_error(gsym));
3472 return 0;
3473 }
3474 return value - tls_segment->memsz();
3475 }
3476 else
3477 {
3478 unsigned int got_type = (optimized_type == tls::TLSOPT_TO_IE
3479 ? GOT_TYPE_TLS_OFFSET
3480 : GOT_TYPE_TLS_PAIR);
3481 if (gsym != NULL)
3482 {
3483 gold_assert(gsym->has_got_offset(got_type));
3484 return (gsym->got_offset(got_type)
3485 + target->got_main_offset()
3486 + addend);
3487 }
3488 else
3489 {
3490 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3491 gold_assert(object->local_has_got_offset(r_sym, got_type));
3492 return (object->local_got_offset(r_sym, got_type)
3493 + target->got_main_offset()
3494 + addend);
3495 }
3496 }
3497 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3498 _("unsupported reloc %u"), r_type);
3499 break;
3500
3501 case elfcpp::R_390_TLS_LDCALL: // Local-dynamic marker
3502 // This is a marker relocation. If the sequence is being turned to LE,
3503 // we modify the instruction, otherwise the instruction is untouched.
3504 if (optimized_type == tls::TLSOPT_TO_LE)
3505 {
3506 if (tls_segment == NULL)
3507 {
3508 gold_assert(parameters->errors()->error_count() > 0
3509 || issue_undefined_symbol_error(gsym));
3510 return 0;
3511 }
3512 this->tls_ld_to_le(relinfo, relnum, rela, view, view_size);
3513 break;
3514 }
3515 else if (optimized_type == tls::TLSOPT_NONE)
3516 {
3517 break;
3518 }
3519 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3520 _("unsupported reloc %u"), r_type);
3521 break;
3522
3523 case elfcpp::R_390_TLS_LDM32: // Local-dynamic module
3524 case elfcpp::R_390_TLS_LDM64:
3525 if (optimized_type == tls::TLSOPT_TO_LE)
3526 {
3527 if (tls_segment == NULL)
3528 {
3529 gold_assert(parameters->errors()->error_count() > 0
3530 || issue_undefined_symbol_error(gsym));
3531 return 0;
3532 }
3533 // Doesn't matter what we fill it with - it's going to be unused.
3534 return 0;
3535 }
3536 else if (optimized_type == tls::TLSOPT_NONE)
3537 {
3538 // Relocate the field with the offset of the GOT entry for
3539 // the module index.
3540 return (target->got_mod_index_entry(NULL, NULL, NULL)
3541 + addend
3542 + target->got_main_offset());
3543 }
3544 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3545 _("unsupported reloc %u"), r_type);
3546 break;
3547
3548 case elfcpp::R_390_TLS_LDO32: // Local-dynamic offset
3549 case elfcpp::R_390_TLS_LDO64:
3550 // This relocation type is used in debugging information.
3551 // In that case we need to not optimize the value. If the
3552 // section is not allocatable, then we assume we should not
3553 // optimize this reloc.
3554 if (optimized_type == tls::TLSOPT_TO_LE && is_allocatable)
3555 {
3556 if (tls_segment == NULL)
3557 {
3558 gold_assert(parameters->errors()->error_count() > 0
3559 || issue_undefined_symbol_error(gsym));
3560 return 0;
3561 }
3562 value -= tls_segment->memsz();
3563 }
3564 return value;
3565
3566 case elfcpp::R_390_TLS_LOAD: // Initial-exec marker
3567 // This is a marker relocation. If the sequence is being turned to LE,
3568 // we modify the instruction, otherwise the instruction is untouched.
3569 if (gsym != NULL
3570 && gsym->is_undefined()
3571 && parameters->options().output_is_executable())
3572 {
3573 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3574 rela, view,
3575 view_size);
3576 break;
3577 }
3578 else if (optimized_type == tls::TLSOPT_TO_LE)
3579 {
3580 if (tls_segment == NULL)
3581 {
3582 gold_assert(parameters->errors()->error_count() > 0
3583 || issue_undefined_symbol_error(gsym));
3584 return 0;
3585 }
3586 Target_s390<size>::Relocate::tls_ie_to_le(relinfo, relnum,
3587 rela, view,
3588 view_size);
3589 break;
3590 }
3591 else if (optimized_type == tls::TLSOPT_NONE)
3592 {
3593 break;
3594 }
3595 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3596 _("unsupported reloc type %u"),
3597 r_type);
3598 break;
3599
3600 case elfcpp::R_390_TLS_GOTIE12: // Initial-exec, not optimizable
3601 case elfcpp::R_390_TLS_GOTIE20:
3602 case elfcpp::R_390_TLS_IEENT:
3603 case elfcpp::R_390_TLS_GOTIE32: // Initial-exec, optimizable
3604 case elfcpp::R_390_TLS_GOTIE64:
3605 case elfcpp::R_390_TLS_IE32:
3606 case elfcpp::R_390_TLS_IE64:
3607 if (gsym != NULL
3608 && gsym->is_undefined()
3609 && parameters->options().output_is_executable()
3610 // These three cannot be optimized to LE, no matter what
3611 && r_type != elfcpp::R_390_TLS_GOTIE12
3612 && r_type != elfcpp::R_390_TLS_GOTIE20
3613 && r_type != elfcpp::R_390_TLS_IEENT)
3614 {
3615 return value;
3616 }
3617 else if (optimized_type == tls::TLSOPT_TO_LE)
3618 {
3619 if (tls_segment == NULL)
3620 {
3621 gold_assert(parameters->errors()->error_count() > 0
3622 || issue_undefined_symbol_error(gsym));
3623 return 0;
3624 }
3625 return value - tls_segment->memsz();
3626 }
3627 else if (optimized_type == tls::TLSOPT_NONE)
3628 {
3629 // Relocate the field with the offset of the GOT entry for
3630 // the tp-relative offset of the symbol.
3631 unsigned int got_offset;
3632 if (gsym != NULL)
3633 {
3634 gold_assert(gsym->has_got_offset(GOT_TYPE_TLS_OFFSET));
3635 got_offset = gsym->got_offset(GOT_TYPE_TLS_OFFSET);
3636 }
3637 else
3638 {
3639 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
3640 gold_assert(object->local_has_got_offset(r_sym,
3641 GOT_TYPE_TLS_OFFSET));
3642 got_offset = object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
3643 }
3644 got_offset += target->got_main_offset();
3645 if (r_type == elfcpp::R_390_TLS_IE32
3646 || r_type == elfcpp::R_390_TLS_IE64)
3647 return target->got_address() + got_offset + addend;
3648 else
3649 return got_offset + addend;
3650 }
3651 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3652 _("unsupported reloc type %u"),
3653 r_type);
3654 break;
3655
3656 case elfcpp::R_390_TLS_LE32: // Local-exec
3657 case elfcpp::R_390_TLS_LE64:
3658 if (tls_segment == NULL)
3659 {
3660 gold_assert(parameters->errors()->error_count() > 0
3661 || issue_undefined_symbol_error(gsym));
3662 return 0;
3663 }
3664 return value - tls_segment->memsz();
3665 }
3666 return 0;
3667}
3668
3669// Do a relocation in which we convert a TLS General-Dynamic to an
3670// Initial-Exec.
3671
3672template<int size>
3673inline void
3674Target_s390<size>::Relocate::tls_gd_to_ie(
3675 const Relocate_info<size, true>* relinfo,
3676 size_t relnum,
3677 const elfcpp::Rela<size, true>& rela,
3678 unsigned char* view,
3679 section_size_type view_size)
3680{
3681 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3682 if (view[0] == 0x4d)
3683 {
3684 // bas, don't care about details
3685 // Change to l %r2, 0(%r2, %r12)
3686 view[0] = 0x58;
3687 view[1] = 0x22;
3688 view[2] = 0xc0;
3689 view[3] = 0x00;
3690 return;
3691 }
3692 else if (view[0] == 0xc0)
3693 {
3694 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3695 // brasl %r14, __tls_get_offset@plt
3696 if (view[1] == 0xe5)
3697 {
3698 // Change to l/lg %r2, 0(%r2, %r12)
3699 // There was a PLT32DBL reloc at the last 4 bytes, overwrite its result.
3700 if (size == 32)
3701 {
3702 // l
3703 view[0] = 0x58;
3704 view[1] = 0x22;
3705 view[2] = 0xc0;
3706 view[3] = 0x00;
3707 // nop
3708 view[4] = 0x07;
3709 view[5] = 0x07;
3710 }
3711 else
3712 {
3713 // lg
3714 view[0] = 0xe3;
3715 view[1] = 0x22;
3716 view[2] = 0xc0;
3717 view[3] = 0;
3718 view[4] = 0;
3719 view[5] = 0x04;
3720 }
3721 return;
3722 }
3723 }
3724 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3725 _("unsupported op for GD to IE"));
3726}
3727
3728// Do a relocation in which we convert a TLS General-Dynamic to a
3729// Local-Exec.
3730
3731template<int size>
3732inline void
3733Target_s390<size>::Relocate::tls_gd_to_le(
3734 const Relocate_info<size, true>* relinfo,
3735 size_t relnum,
3736 const elfcpp::Rela<size, true>& rela,
3737 unsigned char* view,
3738 section_size_type view_size)
3739{
3740 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 2);
3741 if (view[0] == 0x0d)
3742 {
3743 // basr, change to nop
3744 view[0] = 0x07;
3745 view[1] = 0x07;
3746 }
3747 else if (view[0] == 0x4d)
3748 {
3749 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3750 // bas, don't care about details, change to nop
3751 view[0] = 0x47;
3752 view[1] = 0;
3753 view[2] = 0;
3754 view[3] = 0;
3755 return;
3756 }
3757 else if (view[0] == 0xc0)
3758 {
3759 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3760 // brasl %r14, __tls_get_offset@plt
3761 if (view[1] == 0xe5)
3762 {
3763 // Change to nop jump. There was a PLT32DBL reloc at the last
3764 // 4 bytes, overwrite its result.
3765 view[1] = 0x04;
3766 view[2] = 0;
3767 view[3] = 0;
3768 view[4] = 0;
3769 view[5] = 0;
3770 return;
3771 }
3772 }
3773 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3774 _("unsupported op for GD to LE"));
3775}
3776
3777template<int size>
3778inline void
3779Target_s390<size>::Relocate::tls_ld_to_le(
3780 const Relocate_info<size, true>* relinfo,
3781 size_t relnum,
3782 const elfcpp::Rela<size, true>& rela,
3783 unsigned char* view,
3784 section_size_type view_size)
3785{
3786 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3787
3788 if (view[0] == 0x0d)
3789 {
3790 // basr, change to nop
3791 view[0] = 0x07;
3792 view[1] = 0x07;
3793 }
3794 else if (view[0] == 0x4d)
3795 {
3796 // bas, don't care about details, change to nop
3797 view[0] = 0x47;
3798 view[1] = 0;
3799 view[2] = 0;
3800 view[3] = 0;
3801 return;
3802 }
3803 else if (view[0] == 0xc0)
3804 {
3805 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3806 // brasl %r14, __tls_get_offset@plt
3807 if (view[1] == 0xe5)
3808 {
3809 // Change to nop jump. There was a PLT32DBL reloc at the last
3810 // 4 bytes, overwrite its result.
3811 view[1] = 0x04;
3812 view[2] = 0;
3813 view[3] = 0;
3814 view[4] = 0;
3815 view[5] = 0;
3816 return;
3817 }
3818 }
3819 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3820 _("unsupported op for LD to LE"));
3821}
3822
3823// Do a relocation in which we convert a TLS Initial-Exec to a
3824// Local-Exec.
3825
3826template<int size>
3827inline void
3828Target_s390<size>::Relocate::tls_ie_to_le(
3829 const Relocate_info<size, true>* relinfo,
3830 size_t relnum,
3831 const elfcpp::Rela<size, true>& rela,
3832 unsigned char* view,
3833 section_size_type view_size)
3834{
3835 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
3836
3837 if (view[0] == 0x58)
3838 {
3839 // l %rX, 0(%rY) or l %rX, 0(%rY, %r12)
3840 if ((view[2] & 0x0f) != 0 || view[3] != 0)
3841 goto err;
3842 int rx = view[1] >> 4 & 0xf;
3843 int ry = view[1] & 0xf;
3844 int rz = view[2] >> 4 & 0xf;
3845 if (rz == 0)
3846 {
3847 }
3848 else if (ry == 0)
3849 {
3850 ry = rz;
3851 }
3852 else if (rz == 12)
3853 {
3854 }
3855 else if (ry == 12)
3856 {
3857 ry = rz;
3858 }
3859 else
3860 goto err;
3861 // to lr %rX, $rY
3862 view[0] = 0x18;
3863 view[1] = rx << 4 | ry;
3864 // and insert a nop
3865 view[2] = 0x07;
3866 view[3] = 0x00;
3867 }
3868 else if (view[0] == 0xe3)
3869 {
3870 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 6);
3871 // lg %rX, 0(%rY) or lg %rX, 0(%rY, %r12)
3872 if ((view[2] & 0x0f) != 0 ||
3873 view[3] != 0 ||
3874 view[4] != 0 ||
3875 view[5] != 0x04)
3876 goto err;
3877 int rx = view[1] >> 4 & 0xf;
3878 int ry = view[1] & 0xf;
3879 int rz = view[2] >> 4 & 0xf;
3880 if (rz == 0)
3881 {
3882 }
3883 else if (ry == 0)
3884 {
3885 ry = rz;
3886 }
3887 else if (rz == 12)
3888 {
3889 }
3890 else if (ry == 12)
3891 {
3892 ry = rz;
3893 }
3894 else
3895 goto err;
3896 // to sllg %rX, $rY, 0
3897 view[0] = 0xeb;
3898 view[1] = rx << 4 | ry;
3899 view[2] = 0x00;
3900 view[3] = 0x00;
3901 view[4] = 0x00;
3902 view[5] = 0x0d;
3903 }
3904 else
3905 {
3906err:
3907 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
3908 _("unsupported op for IE to LE"));
3909 }
3910}
3911
3912// Scan relocations for a section.
3913
3914template<int size>
3915void
3916Target_s390<size>::scan_relocs(Symbol_table* symtab,
3917 Layout* layout,
3918 Sized_relobj_file<size, true>* object,
3919 unsigned int data_shndx,
3920 unsigned int sh_type,
3921 const unsigned char* prelocs,
3922 size_t reloc_count,
3923 Output_section* output_section,
3924 bool needs_special_offset_handling,
3925 size_t local_symbol_count,
3926 const unsigned char* plocal_symbols)
3927{
3928 if (sh_type == elfcpp::SHT_REL)
3929 {
3930 gold_error(_("%s: unsupported REL reloc section"),
3931 object->name().c_str());
3932 return;
3933 }
3934
3935 gold::scan_relocs<size, true, Target_s390<size>, elfcpp::SHT_RELA,
3936 typename Target_s390<size>::Scan>(
3937 symtab,
3938 layout,
3939 this,
3940 object,
3941 data_shndx,
3942 prelocs,
3943 reloc_count,
3944 output_section,
3945 needs_special_offset_handling,
3946 local_symbol_count,
3947 plocal_symbols);
3948}
3949
3950// Finalize the sections.
3951
3952template<int size>
3953void
3954Target_s390<size>::do_finalize_sections(
3955 Layout* layout,
3956 const Input_objects*,
3957 Symbol_table* symtab)
3958{
3959 const Reloc_section* rel_plt = (this->plt_ == NULL
3960 ? NULL
3961 : this->plt_->rela_plt());
3962 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
3963 this->rela_dyn_, true, size == 32);
3964
3965 this->layout_ = layout;
3966
3967 // Emit any relocs we saved in an attempt to avoid generating COPY
3968 // relocs.
3969 if (this->copy_relocs_.any_saved_relocs())
3970 this->copy_relocs_.emit(this->rela_dyn_section(layout));
3971
3972 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
3973 // the .got section.
3974 Symbol* sym = this->global_offset_table_;
3975 if (sym != NULL)
3976 {
3977 uint64_t data_size = this->got_->current_data_size();
3978 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
3979 }
3980
3981 if (parameters->doing_static_link()
3982 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
3983 {
3984 // If linking statically, make sure that the __rela_iplt symbols
3985 // were defined if necessary, even if we didn't create a PLT.
3986 static const Define_symbol_in_segment syms[] =
3987 {
3988 {
3989 "__rela_iplt_start", // name
3990 elfcpp::PT_LOAD, // segment_type
3991 elfcpp::PF_W, // segment_flags_set
3992 elfcpp::PF(0), // segment_flags_clear
3993 0, // value
3994 0, // size
3995 elfcpp::STT_NOTYPE, // type
3996 elfcpp::STB_GLOBAL, // binding
3997 elfcpp::STV_HIDDEN, // visibility
3998 0, // nonvis
3999 Symbol::SEGMENT_START, // offset_from_base
4000 true // only_if_ref
4001 },
4002 {
4003 "__rela_iplt_end", // name
4004 elfcpp::PT_LOAD, // segment_type
4005 elfcpp::PF_W, // segment_flags_set
4006 elfcpp::PF(0), // segment_flags_clear
4007 0, // value
4008 0, // size
4009 elfcpp::STT_NOTYPE, // type
4010 elfcpp::STB_GLOBAL, // binding
4011 elfcpp::STV_HIDDEN, // visibility
4012 0, // nonvis
4013 Symbol::SEGMENT_START, // offset_from_base
4014 true // only_if_ref
4015 }
4016 };
4017
4018 symtab->define_symbols(layout, 2, syms,
4019 layout->script_options()->saw_sections_clause());
4020 }
4021}
4022
4023// Return the size of a relocation while scanning during a relocatable
4024// link.
4025
4026template<int size>
4027unsigned int
4028Target_s390<size>::Relocatable_size_for_reloc::get_size_for_reloc(
4029 unsigned int r_type,
4030 Relobj* object)
4031{
4032 switch (r_type)
4033 {
4034 case elfcpp::R_390_NONE:
4035 case elfcpp::R_390_GNU_VTINHERIT:
4036 case elfcpp::R_390_GNU_VTENTRY:
4037 case elfcpp::R_390_TLS_GD32: // Global-dynamic
4038 case elfcpp::R_390_TLS_GD64:
4039 case elfcpp::R_390_TLS_GDCALL:
4040 case elfcpp::R_390_TLS_LDM32: // Local-dynamic
4041 case elfcpp::R_390_TLS_LDM64:
4042 case elfcpp::R_390_TLS_LDO32:
4043 case elfcpp::R_390_TLS_LDO64:
4044 case elfcpp::R_390_TLS_LDCALL:
4045 case elfcpp::R_390_TLS_IE32: // Initial-exec
4046 case elfcpp::R_390_TLS_IE64:
4047 case elfcpp::R_390_TLS_IEENT:
4048 case elfcpp::R_390_TLS_GOTIE12:
4049 case elfcpp::R_390_TLS_GOTIE20:
4050 case elfcpp::R_390_TLS_GOTIE32:
4051 case elfcpp::R_390_TLS_GOTIE64:
4052 case elfcpp::R_390_TLS_LOAD:
4053 case elfcpp::R_390_TLS_LE32: // Local-exec
4054 case elfcpp::R_390_TLS_LE64:
4055 return 0;
4056
4057 case elfcpp::R_390_64:
4058 case elfcpp::R_390_PC64:
4059 case elfcpp::R_390_GOT64:
4060 case elfcpp::R_390_PLT64:
4061 case elfcpp::R_390_GOTOFF64:
4062 case elfcpp::R_390_GOTPLT64:
4063 case elfcpp::R_390_PLTOFF64:
4064 return 8;
4065
4066 case elfcpp::R_390_32:
4067 case elfcpp::R_390_PC32:
4068 case elfcpp::R_390_GOT32:
4069 case elfcpp::R_390_PLT32:
4070 case elfcpp::R_390_GOTOFF32:
4071 case elfcpp::R_390_GOTPC:
4072 case elfcpp::R_390_PC32DBL:
4073 case elfcpp::R_390_PLT32DBL:
4074 case elfcpp::R_390_GOTPCDBL:
4075 case elfcpp::R_390_GOTENT:
4076 case elfcpp::R_390_GOTPLT32:
4077 case elfcpp::R_390_GOTPLTENT:
4078 case elfcpp::R_390_PLTOFF32:
4079 case elfcpp::R_390_20:
4080 case elfcpp::R_390_GOT20:
4081 case elfcpp::R_390_GOTPLT20:
4082 return 4;
4083
4084 case elfcpp::R_390_PC24DBL:
4085 case elfcpp::R_390_PLT24DBL:
4086 return 3;
4087
4088 case elfcpp::R_390_12:
4089 case elfcpp::R_390_GOT12:
4090 case elfcpp::R_390_GOTPLT12:
4091 case elfcpp::R_390_PC12DBL:
4092 case elfcpp::R_390_PLT12DBL:
4093 case elfcpp::R_390_16:
4094 case elfcpp::R_390_GOT16:
4095 case elfcpp::R_390_PC16:
4096 case elfcpp::R_390_PC16DBL:
4097 case elfcpp::R_390_PLT16DBL:
4098 case elfcpp::R_390_GOTOFF16:
4099 case elfcpp::R_390_GOTPLT16:
4100 case elfcpp::R_390_PLTOFF16:
4101 return 2;
4102
4103 case elfcpp::R_390_8:
4104 return 1;
4105
4106 // These are relocations which should only be seen by the
4107 // dynamic linker, and should never be seen here.
4108 case elfcpp::R_390_COPY:
4109 case elfcpp::R_390_GLOB_DAT:
4110 case elfcpp::R_390_JMP_SLOT:
4111 case elfcpp::R_390_RELATIVE:
4112 case elfcpp::R_390_IRELATIVE:
4113 case elfcpp::R_390_TLS_DTPMOD:
4114 case elfcpp::R_390_TLS_DTPOFF:
4115 case elfcpp::R_390_TLS_TPOFF:
4116 object->error(_("unexpected reloc %u in object file"), r_type);
4117 return 0;
4118
4119 default:
4120 object->error(_("unsupported reloc %u in object file"), r_type);
4121 return 0;
4122 }
4123}
4124
4125// Scan the relocs during a relocatable link.
4126
4127template<int size>
4128void
4129Target_s390<size>::scan_relocatable_relocs(
4130 Symbol_table* symtab,
4131 Layout* layout,
4132 Sized_relobj_file<size, true>* object,
4133 unsigned int data_shndx,
4134 unsigned int sh_type,
4135 const unsigned char* prelocs,
4136 size_t reloc_count,
4137 Output_section* output_section,
4138 bool needs_special_offset_handling,
4139 size_t local_symbol_count,
4140 const unsigned char* plocal_symbols,
4141 Relocatable_relocs* rr)
4142{
4143 gold_assert(sh_type == elfcpp::SHT_RELA);
4144
4145 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4146 Relocatable_size_for_reloc> Scan_relocatable_relocs;
4147
4148 gold::scan_relocatable_relocs<size, true, elfcpp::SHT_RELA,
4149 Scan_relocatable_relocs>(
4150 symtab,
4151 layout,
4152 object,
4153 data_shndx,
4154 prelocs,
4155 reloc_count,
4156 output_section,
4157 needs_special_offset_handling,
4158 local_symbol_count,
4159 plocal_symbols,
4160 rr);
4161}
4162
4163// Relocate a section during a relocatable link.
4164
4165template<int size>
4166void
4167Target_s390<size>::relocate_relocs(
4168 const Relocate_info<size, true>* relinfo,
4169 unsigned int sh_type,
4170 const unsigned char* prelocs,
4171 size_t reloc_count,
4172 Output_section* output_section,
4173 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
4174 const Relocatable_relocs* rr,
4175 unsigned char* view,
4176 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4177 section_size_type view_size,
4178 unsigned char* reloc_view,
4179 section_size_type reloc_view_size)
4180{
4181 gold_assert(sh_type == elfcpp::SHT_RELA);
4182
4183 gold::relocate_relocs<size, true, elfcpp::SHT_RELA>(
4184 relinfo,
4185 prelocs,
4186 reloc_count,
4187 output_section,
4188 offset_in_output_section,
4189 rr,
4190 view,
4191 view_address,
4192 view_size,
4193 reloc_view,
4194 reloc_view_size);
4195}
4196
4197// Return the offset to use for the GOT_INDX'th got entry which is
4198// for a local tls symbol specified by OBJECT, SYMNDX.
4199template<int size>
4200int64_t
4201Target_s390<size>::do_tls_offset_for_local(
4202 const Relobj*,
4203 unsigned int,
4204 unsigned int) const
4205{
4206 // The only way we can get called is when IEENT/GOTIE12/GOTIE20
4207 // couldn't be optimised to LE.
4208 Output_segment* tls_segment = layout_->tls_segment();
4209 return -tls_segment->memsz();
4210}
4211
4212// Return the offset to use for the GOT_INDX'th got entry which is
4213// for global tls symbol GSYM.
4214template<int size>
4215int64_t
4216Target_s390<size>::do_tls_offset_for_global(
4217 Symbol*,
4218 unsigned int) const
4219{
4220 Output_segment* tls_segment = layout_->tls_segment();
4221 return -tls_segment->memsz();
4222}
4223
4224// Return the value to use for a dynamic which requires special
4225// treatment. This is how we support equality comparisons of function
4226// pointers across shared library boundaries, as described in the
4227// processor specific ABI supplement.
4228
4229template<int size>
4230uint64_t
4231Target_s390<size>::do_dynsym_value(const Symbol* gsym) const
4232{
4233 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
4234 return this->plt_address_for_global(gsym);
4235}
4236
4237// Return a string used to fill a code section with nops to take up
4238// the specified length.
4239
4240template<int size>
4241std::string
4242Target_s390<size>::do_code_fill(section_size_type length) const
4243{
4244 if (length & 1)
4245 gold_warning(_("S/390 code fill of odd length requested"));
4246 return std::string(length, static_cast<char>(0x07));
4247}
4248
4249// Relocate section data.
4250
4251template<int size>
4252void
4253Target_s390<size>::relocate_section(
4254 const Relocate_info<size, true>* relinfo,
4255 unsigned int sh_type,
4256 const unsigned char* prelocs,
4257 size_t reloc_count,
4258 Output_section* output_section,
4259 bool needs_special_offset_handling,
4260 unsigned char* view,
4261 typename elfcpp::Elf_types<size>::Elf_Addr address,
4262 section_size_type view_size,
4263 const Reloc_symbol_changes* reloc_symbol_changes)
4264{
4265 gold_assert(sh_type == elfcpp::SHT_RELA);
4266
4267 gold::relocate_section<size, true, Target_s390<size>, elfcpp::SHT_RELA,
4268 typename Target_s390<size>::Relocate,
4269 gold::Default_comdat_behavior>(
4270 relinfo,
4271 this,
4272 prelocs,
4273 reloc_count,
4274 output_section,
4275 needs_special_offset_handling,
4276 view,
4277 address,
4278 view_size,
4279 reloc_symbol_changes);
4280}
4281
4282// Apply an incremental relocation. Incremental relocations always refer
4283// to global symbols.
4284
4285template<int size>
4286void
4287Target_s390<size>::apply_relocation(
4288 const Relocate_info<size, true>* relinfo,
4289 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4290 unsigned int r_type,
4291 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4292 const Symbol* gsym,
4293 unsigned char* view,
4294 typename elfcpp::Elf_types<size>::Elf_Addr address,
4295 section_size_type view_size)
4296{
4297 gold::apply_relocation<size, true, Target_s390<size>,
4298 typename Target_s390<size>::Relocate>(
4299 relinfo,
4300 this,
4301 r_offset,
4302 r_type,
4303 r_addend,
4304 gsym,
4305 view,
4306 address,
4307 view_size);
4308}
4309
4310// The selector for s390 object files.
4311
4312template<int size>
4313class Target_selector_s390 : public Target_selector
4314{
4315public:
4316 Target_selector_s390()
4317 : Target_selector(elfcpp::EM_S390, size, true,
4318 (size == 64 ? "elf64-s390" : "elf32-s390"),
4319 (size == 64 ? "elf64_s390" : "elf32_s390"))
4320 { }
4321
4322 virtual Target*
4323 do_instantiate_target()
4324 { return new Target_s390<size>(); }
4325};
4326
4327Target_selector_s390<32> target_selector_s390;
4328Target_selector_s390<64> target_selector_s390x;
4329
4330} // End anonymous namespace.
This page took 0.18661 seconds and 4 git commands to generate.