Fix compilation error in MSYS2 environment.
[deliverable/binutils-gdb.git] / gold / script-sections.cc
CommitLineData
494e05f4
ILT
1// script-sections.cc -- linker script SECTIONS for gold
2
6f2750fe 3// Copyright (C) 2008-2016 Free Software Foundation, Inc.
494e05f4
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
a445fddf
ILT
25#include <cstring>
26#include <algorithm>
27#include <list>
1c4f3631 28#include <map>
494e05f4
ILT
29#include <string>
30#include <vector>
a445fddf 31#include <fnmatch.h>
494e05f4 32
a445fddf
ILT
33#include "parameters.h"
34#include "object.h"
35#include "layout.h"
36#include "output.h"
494e05f4
ILT
37#include "script-c.h"
38#include "script.h"
39#include "script-sections.h"
40
41// Support for the SECTIONS clause in linker scripts.
42
43namespace gold
44{
45
7f8cd844
NC
46// A region of memory.
47class Memory_region
48{
49 public:
50 Memory_region(const char* name, size_t namelen, unsigned int attributes,
51 Expression* start, Expression* length)
52 : name_(name, namelen),
53 attributes_(attributes),
54 start_(start),
55 length_(length),
ea5cae92 56 current_offset_(0),
4ef28648 57 vma_sections_(),
ea5cae92
NC
58 lma_sections_(),
59 last_section_(NULL)
7f8cd844
NC
60 { }
61
62 // Return the name of this region.
63 const std::string&
64 name() const
65 { return this->name_; }
66
67 // Return the start address of this region.
68 Expression*
69 start_address() const
70 { return this->start_; }
71
72 // Return the length of this region.
73 Expression*
74 length() const
75 { return this->length_; }
76
77 // Print the region (when debugging).
78 void
79 print(FILE*) const;
80
81 // Return true if <name,namelen> matches this region.
82 bool
83 name_match(const char* name, size_t namelen)
84 {
85 return (this->name_.length() == namelen
86 && strncmp(this->name_.c_str(), name, namelen) == 0);
87 }
88
89 Expression*
ea5cae92 90 get_current_address() const
7f8cd844
NC
91 {
92 return
93 script_exp_binary_add(this->start_,
ea5cae92 94 script_exp_integer(this->current_offset_));
7f8cd844 95 }
7c61d651
CC
96
97 void
98 set_address(uint64_t addr, const Symbol_table* symtab, const Layout* layout)
99 {
100 uint64_t start = this->start_->eval(symtab, layout, false);
101 uint64_t len = this->length_->eval(symtab, layout, false);
102 if (addr < start || addr >= start + len)
103 gold_error(_("address 0x%llx is not within region %s"),
104 static_cast<unsigned long long>(addr),
105 this->name_.c_str());
106 else if (addr < start + this->current_offset_)
107 gold_error(_("address 0x%llx moves dot backwards in region %s"),
108 static_cast<unsigned long long>(addr),
109 this->name_.c_str());
110 this->current_offset_ = addr - start;
111 }
112
7f8cd844 113 void
ea5cae92
NC
114 increment_offset(std::string section_name, uint64_t amount,
115 const Symbol_table* symtab, const Layout* layout)
7f8cd844 116 {
ea5cae92 117 this->current_offset_ += amount;
7f8cd844 118
ea5cae92 119 if (this->current_offset_
7f8cd844 120 > this->length_->eval(symtab, layout, false))
ea5cae92
NC
121 gold_error(_("section %s overflows end of region %s"),
122 section_name.c_str(), this->name_.c_str());
7f8cd844 123 }
7c61d651 124
ea5cae92
NC
125 // Returns true iff there is room left in this region
126 // for AMOUNT more bytes of data.
127 bool
128 has_room_for(const Symbol_table* symtab, const Layout* layout,
129 uint64_t amount) const
7f8cd844 130 {
ea5cae92
NC
131 return (this->current_offset_ + amount
132 < this->length_->eval(symtab, layout, false));
7f8cd844
NC
133 }
134
ea5cae92
NC
135 // Return true if the provided section flags
136 // are compatible with this region's attributes.
137 bool
138 attributes_compatible(elfcpp::Elf_Xword flags, elfcpp::Elf_Xword type) const;
7c61d651 139
7f8cd844
NC
140 void
141 add_section(Output_section_definition* sec, bool vma)
142 {
143 if (vma)
144 this->vma_sections_.push_back(sec);
145 else
146 this->lma_sections_.push_back(sec);
147 }
148
149 typedef std::vector<Output_section_definition*> Section_list;
150
151 // Return the start of the list of sections
152 // whose VMAs are taken from this region.
153 Section_list::const_iterator
ea5cae92 154 get_vma_section_list_start() const
7f8cd844
NC
155 { return this->vma_sections_.begin(); }
156
157 // Return the start of the list of sections
158 // whose LMAs are taken from this region.
159 Section_list::const_iterator
ea5cae92 160 get_lma_section_list_start() const
7f8cd844
NC
161 { return this->lma_sections_.begin(); }
162
163 // Return the end of the list of sections
164 // whose VMAs are taken from this region.
165 Section_list::const_iterator
ea5cae92 166 get_vma_section_list_end() const
7f8cd844
NC
167 { return this->vma_sections_.end(); }
168
169 // Return the end of the list of sections
170 // whose LMAs are taken from this region.
171 Section_list::const_iterator
ea5cae92 172 get_lma_section_list_end() const
7f8cd844
NC
173 { return this->lma_sections_.end(); }
174
ea5cae92
NC
175 Output_section_definition*
176 get_last_section() const
177 { return this->last_section_; }
178
179 void
180 set_last_section(Output_section_definition* sec)
181 { this->last_section_ = sec; }
182
7f8cd844
NC
183 private:
184
185 std::string name_;
186 unsigned int attributes_;
187 Expression* start_;
188 Expression* length_;
ea5cae92
NC
189 // The offset to the next free byte in the region.
190 // Note - for compatibility with GNU LD we only maintain one offset
191 // regardless of whether the region is being used for VMA values,
192 // LMA values, or both.
193 uint64_t current_offset_;
7f8cd844
NC
194 // A list of sections whose VMAs are set inside this region.
195 Section_list vma_sections_;
196 // A list of sections whose LMAs are set inside this region.
197 Section_list lma_sections_;
ea5cae92
NC
198 // The latest section to make use of this region.
199 Output_section_definition* last_section_;
7f8cd844
NC
200};
201
ea5cae92
NC
202// Return true if the provided section flags
203// are compatible with this region's attributes.
204
205bool
206Memory_region::attributes_compatible(elfcpp::Elf_Xword flags,
207 elfcpp::Elf_Xword type) const
208{
209 unsigned int attrs = this->attributes_;
210
211 // No attributes means that this region is not compatible with anything.
212 if (attrs == 0)
213 return false;
214
215 bool match = true;
216 do
217 {
218 switch (attrs & - attrs)
219 {
220 case MEM_EXECUTABLE:
221 if ((flags & elfcpp::SHF_EXECINSTR) == 0)
222 match = false;
223 break;
224
225 case MEM_WRITEABLE:
226 if ((flags & elfcpp::SHF_WRITE) == 0)
227 match = false;
228 break;
229
230 case MEM_READABLE:
231 // All sections are presumed readable.
232 break;
233
234 case MEM_ALLOCATABLE:
235 if ((flags & elfcpp::SHF_ALLOC) == 0)
236 match = false;
237 break;
238
239 case MEM_INITIALIZED:
240 if ((type & elfcpp::SHT_NOBITS) != 0)
241 match = false;
242 break;
243 }
244 attrs &= ~ (attrs & - attrs);
245 }
246 while (attrs != 0);
247
248 return match;
249}
250
7f8cd844
NC
251// Print a memory region.
252
253void
254Memory_region::print(FILE* f) const
255{
256 fprintf(f, " %s", this->name_.c_str());
257
258 unsigned int attrs = this->attributes_;
259 if (attrs != 0)
260 {
261 fprintf(f, " (");
262 do
263 {
264 switch (attrs & - attrs)
265 {
266 case MEM_EXECUTABLE: fputc('x', f); break;
267 case MEM_WRITEABLE: fputc('w', f); break;
268 case MEM_READABLE: fputc('r', f); break;
269 case MEM_ALLOCATABLE: fputc('a', f); break;
270 case MEM_INITIALIZED: fputc('i', f); break;
271 default:
272 gold_unreachable();
273 }
274 attrs &= ~ (attrs & - attrs);
275 }
276 while (attrs != 0);
277 fputc(')', f);
278 }
279
280 fprintf(f, " : origin = ");
281 this->start_->print(f);
282 fprintf(f, ", length = ");
283 this->length_->print(f);
284 fprintf(f, "\n");
285}
286
0d371ad3
ILT
287// Manage orphan sections. This is intended to be largely compatible
288// with the GNU linker. The Linux kernel implicitly relies on
289// something similar to the GNU linker's orphan placement. We
290// originally used a simpler scheme here, but it caused the kernel
291// build to fail, and was also rather inefficient.
292
293class Orphan_section_placement
294{
295 private:
296 typedef Script_sections::Elements_iterator Elements_iterator;
297
298 public:
299 Orphan_section_placement();
300
301 // Handle an output section during initialization of this mapping.
302 void
303 output_section_init(const std::string& name, Output_section*,
304 Elements_iterator location);
305
306 // Initialize the last location.
307 void
308 last_init(Elements_iterator location);
309
310 // Set *PWHERE to the address of an iterator pointing to the
311 // location to use for an orphan section. Return true if the
312 // iterator has a value, false otherwise.
313 bool
314 find_place(Output_section*, Elements_iterator** pwhere);
315
316 // Return the iterator being used for sections at the very end of
317 // the linker script.
318 Elements_iterator
319 last_place() const;
320
321 private:
322 // The places that we specifically recognize. This list is copied
323 // from the GNU linker.
324 enum Place_index
325 {
326 PLACE_TEXT,
327 PLACE_RODATA,
328 PLACE_DATA,
6c93b22c
ILT
329 PLACE_TLS,
330 PLACE_TLS_BSS,
0d371ad3
ILT
331 PLACE_BSS,
332 PLACE_REL,
333 PLACE_INTERP,
334 PLACE_NONALLOC,
335 PLACE_LAST,
336 PLACE_MAX
337 };
338
339 // The information we keep for a specific place.
340 struct Place
341 {
342 // The name of sections for this place.
343 const char* name;
344 // Whether we have a location for this place.
345 bool have_location;
346 // The iterator for this place.
347 Elements_iterator location;
348 };
349
350 // Initialize one place element.
351 void
352 initialize_place(Place_index, const char*);
353
354 // The places.
355 Place places_[PLACE_MAX];
356 // True if this is the first call to output_section_init.
357 bool first_init_;
358};
359
360// Initialize Orphan_section_placement.
361
362Orphan_section_placement::Orphan_section_placement()
363 : first_init_(true)
364{
365 this->initialize_place(PLACE_TEXT, ".text");
366 this->initialize_place(PLACE_RODATA, ".rodata");
367 this->initialize_place(PLACE_DATA, ".data");
6c93b22c
ILT
368 this->initialize_place(PLACE_TLS, NULL);
369 this->initialize_place(PLACE_TLS_BSS, NULL);
0d371ad3
ILT
370 this->initialize_place(PLACE_BSS, ".bss");
371 this->initialize_place(PLACE_REL, NULL);
372 this->initialize_place(PLACE_INTERP, ".interp");
373 this->initialize_place(PLACE_NONALLOC, NULL);
374 this->initialize_place(PLACE_LAST, NULL);
375}
376
377// Initialize one place element.
378
379void
380Orphan_section_placement::initialize_place(Place_index index, const char* name)
381{
382 this->places_[index].name = name;
383 this->places_[index].have_location = false;
384}
385
386// While initializing the Orphan_section_placement information, this
387// is called once for each output section named in the linker script.
388// If we found an output section during the link, it will be passed in
389// OS.
390
391void
392Orphan_section_placement::output_section_init(const std::string& name,
393 Output_section* os,
394 Elements_iterator location)
395{
396 bool first_init = this->first_init_;
397 this->first_init_ = false;
398
399 for (int i = 0; i < PLACE_MAX; ++i)
400 {
401 if (this->places_[i].name != NULL && this->places_[i].name == name)
402 {
403 if (this->places_[i].have_location)
404 {
405 // We have already seen a section with this name.
406 return;
407 }
408
409 this->places_[i].location = location;
410 this->places_[i].have_location = true;
411
412 // If we just found the .bss section, restart the search for
413 // an unallocated section. This follows the GNU linker's
414 // behaviour.
415 if (i == PLACE_BSS)
416 this->places_[PLACE_NONALLOC].have_location = false;
417
418 return;
419 }
420 }
421
422 // Relocation sections.
423 if (!this->places_[PLACE_REL].have_location
424 && os != NULL
425 && (os->type() == elfcpp::SHT_REL || os->type() == elfcpp::SHT_RELA)
426 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
427 {
428 this->places_[PLACE_REL].location = location;
429 this->places_[PLACE_REL].have_location = true;
430 }
431
432 // We find the location for unallocated sections by finding the
433 // first debugging or comment section after the BSS section (if
434 // there is one).
435 if (!this->places_[PLACE_NONALLOC].have_location
436 && (name == ".comment" || Layout::is_debug_info_section(name.c_str())))
437 {
438 // We add orphan sections after the location in PLACES_. We
439 // want to store unallocated sections before LOCATION. If this
440 // is the very first section, we can't use it.
441 if (!first_init)
442 {
443 --location;
444 this->places_[PLACE_NONALLOC].location = location;
445 this->places_[PLACE_NONALLOC].have_location = true;
446 }
447 }
448}
449
450// Initialize the last location.
451
452void
453Orphan_section_placement::last_init(Elements_iterator location)
454{
455 this->places_[PLACE_LAST].location = location;
456 this->places_[PLACE_LAST].have_location = true;
457}
458
459// Set *PWHERE to the address of an iterator pointing to the location
460// to use for an orphan section. Return true if the iterator has a
461// value, false otherwise.
462
463bool
464Orphan_section_placement::find_place(Output_section* os,
465 Elements_iterator** pwhere)
466{
467 // Figure out where OS should go. This is based on the GNU linker
468 // code. FIXME: The GNU linker handles small data sections
469 // specially, but we don't.
470 elfcpp::Elf_Word type = os->type();
471 elfcpp::Elf_Xword flags = os->flags();
472 Place_index index;
473 if ((flags & elfcpp::SHF_ALLOC) == 0
474 && !Layout::is_debug_info_section(os->name()))
475 index = PLACE_NONALLOC;
476 else if ((flags & elfcpp::SHF_ALLOC) == 0)
477 index = PLACE_LAST;
478 else if (type == elfcpp::SHT_NOTE)
479 index = PLACE_INTERP;
6c93b22c
ILT
480 else if ((flags & elfcpp::SHF_TLS) != 0)
481 {
482 if (type == elfcpp::SHT_NOBITS)
483 index = PLACE_TLS_BSS;
484 else
485 index = PLACE_TLS;
486 }
0d371ad3
ILT
487 else if (type == elfcpp::SHT_NOBITS)
488 index = PLACE_BSS;
489 else if ((flags & elfcpp::SHF_WRITE) != 0)
490 index = PLACE_DATA;
491 else if (type == elfcpp::SHT_REL || type == elfcpp::SHT_RELA)
492 index = PLACE_REL;
493 else if ((flags & elfcpp::SHF_EXECINSTR) == 0)
494 index = PLACE_RODATA;
495 else
496 index = PLACE_TEXT;
497
498 // If we don't have a location yet, try to find one based on a
499 // plausible ordering of sections.
500 if (!this->places_[index].have_location)
501 {
502 Place_index follow;
503 switch (index)
504 {
505 default:
506 follow = PLACE_MAX;
507 break;
508 case PLACE_RODATA:
509 follow = PLACE_TEXT;
510 break;
511 case PLACE_BSS:
512 follow = PLACE_DATA;
513 break;
514 case PLACE_REL:
515 follow = PLACE_TEXT;
516 break;
517 case PLACE_INTERP:
518 follow = PLACE_TEXT;
519 break;
6c93b22c
ILT
520 case PLACE_TLS:
521 follow = PLACE_DATA;
522 break;
523 case PLACE_TLS_BSS:
524 follow = PLACE_TLS;
525 if (!this->places_[PLACE_TLS].have_location)
526 follow = PLACE_DATA;
527 break;
0d371ad3
ILT
528 }
529 if (follow != PLACE_MAX && this->places_[follow].have_location)
530 {
531 // Set the location of INDEX to the location of FOLLOW. The
532 // location of INDEX will then be incremented by the caller,
533 // so anything in INDEX will continue to be after anything
534 // in FOLLOW.
535 this->places_[index].location = this->places_[follow].location;
536 this->places_[index].have_location = true;
537 }
538 }
539
540 *pwhere = &this->places_[index].location;
541 bool ret = this->places_[index].have_location;
542
543 // The caller will set the location.
544 this->places_[index].have_location = true;
545
546 return ret;
547}
548
549// Return the iterator being used for sections at the very end of the
550// linker script.
551
552Orphan_section_placement::Elements_iterator
553Orphan_section_placement::last_place() const
554{
555 gold_assert(this->places_[PLACE_LAST].have_location);
556 return this->places_[PLACE_LAST].location;
557}
558
494e05f4
ILT
559// An element in a SECTIONS clause.
560
561class Sections_element
562{
563 public:
564 Sections_element()
565 { }
566
567 virtual ~Sections_element()
568 { }
569
0d371ad3
ILT
570 // Return whether an output section is relro.
571 virtual bool
572 is_relro() const
573 { return false; }
574
2d924fd9
ILT
575 // Record that an output section is relro.
576 virtual void
577 set_is_relro()
578 { }
579
919ed24c
ILT
580 // Create any required output sections. The only real
581 // implementation is in Output_section_definition.
582 virtual void
583 create_sections(Layout*)
584 { }
585
a445fddf
ILT
586 // Add any symbol being defined to the symbol table.
587 virtual void
588 add_symbols_to_table(Symbol_table*)
589 { }
590
591 // Finalize symbols and check assertions.
592 virtual void
77e65537 593 finalize_symbols(Symbol_table*, const Layout*, uint64_t*)
a445fddf
ILT
594 { }
595
596 // Return the output section name to use for an input file name and
597 // section name. This only real implementation is in
598 // Output_section_definition.
599 virtual const char*
1e5d2fb1 600 output_section_name(const char*, const char*, Output_section***,
b9b2ae8b 601 Script_sections::Section_type*, bool*)
a445fddf
ILT
602 { return NULL; }
603
0d371ad3
ILT
604 // Initialize OSP with an output section.
605 virtual void
606 orphan_section_init(Orphan_section_placement*,
607 Script_sections::Elements_iterator)
608 { }
a445fddf
ILT
609
610 // Set section addresses. This includes applying assignments if the
9b547ce6 611 // expression is an absolute value.
a445fddf 612 virtual void
f6973bdc
ILT
613 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
614 uint64_t*)
a445fddf
ILT
615 { }
616
3802b2dd
ILT
617 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
618 // this section is constrained, and the input sections do not match,
619 // return the constraint, and set *POSD.
620 virtual Section_constraint
621 check_constraint(Output_section_definition**)
622 { return CONSTRAINT_NONE; }
623
624 // See if this is the alternate output section for a constrained
625 // output section. If it is, transfer the Output_section and return
626 // true. Otherwise return false.
627 virtual bool
628 alternate_constraint(Output_section_definition*, Section_constraint)
629 { return false; }
630
1c4f3631
ILT
631 // Get the list of segments to use for an allocated section when
632 // using a PHDRS clause. If this is an allocated section, return
2cefc357
ILT
633 // the Output_section, and set *PHDRS_LIST (the first parameter) to
634 // the list of PHDRS to which it should be attached. If the PHDRS
635 // were not specified, don't change *PHDRS_LIST. When not returning
636 // NULL, set *ORPHAN (the second parameter) according to whether
637 // this is an orphan section--one that is not mentioned in the
638 // linker script.
1c4f3631 639 virtual Output_section*
2cefc357 640 allocate_to_segment(String_list**, bool*)
1c4f3631
ILT
641 { return NULL; }
642
8f2eb564
ILT
643 // Look for an output section by name and return the address, the
644 // load address, the alignment, and the size. This is used when an
645 // expression refers to an output section which was not actually
646 // created. This returns true if the section was found, false
647 // otherwise. The only real definition is for
648 // Output_section_definition.
649 virtual bool
650 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
651 uint64_t*) const
652 { return false; }
653
2d924fd9
ILT
654 // Return the associated Output_section if there is one.
655 virtual Output_section*
656 get_output_section() const
657 { return NULL; }
658
7f8cd844
NC
659 // Set the section's memory regions.
660 virtual void
661 set_memory_region(Memory_region*, bool)
662 { gold_error(_("Attempt to set a memory region for a non-output section")); }
663
a445fddf 664 // Print the element for debugging purposes.
494e05f4
ILT
665 virtual void
666 print(FILE* f) const = 0;
667};
668
669// An assignment in a SECTIONS clause outside of an output section.
670
671class Sections_element_assignment : public Sections_element
672{
673 public:
674 Sections_element_assignment(const char* name, size_t namelen,
675 Expression* val, bool provide, bool hidden)
99fff23b 676 : assignment_(name, namelen, false, val, provide, hidden)
494e05f4
ILT
677 { }
678
a445fddf
ILT
679 // Add the symbol to the symbol table.
680 void
681 add_symbols_to_table(Symbol_table* symtab)
682 { this->assignment_.add_to_table(symtab); }
683
684 // Finalize the symbol.
685 void
686 finalize_symbols(Symbol_table* symtab, const Layout* layout,
77e65537 687 uint64_t* dot_value)
a445fddf 688 {
77e65537 689 this->assignment_.finalize_with_dot(symtab, layout, *dot_value, NULL);
a445fddf
ILT
690 }
691
692 // Set the section address. There is no section here, but if the
693 // value is absolute, we set the symbol. This permits us to use
694 // absolute symbols when setting dot.
695 void
696 set_section_addresses(Symbol_table* symtab, Layout* layout,
f6973bdc 697 uint64_t* dot_value, uint64_t*, uint64_t*)
a445fddf 698 {
286adcf4 699 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value, NULL);
a445fddf
ILT
700 }
701
702 // Print for debugging.
494e05f4
ILT
703 void
704 print(FILE* f) const
705 {
706 fprintf(f, " ");
707 this->assignment_.print(f);
708 }
709
710 private:
711 Symbol_assignment assignment_;
712};
713
a445fddf
ILT
714// An assignment to the dot symbol in a SECTIONS clause outside of an
715// output section.
716
717class Sections_element_dot_assignment : public Sections_element
718{
719 public:
720 Sections_element_dot_assignment(Expression* val)
721 : val_(val)
722 { }
723
724 // Finalize the symbol.
725 void
726 finalize_symbols(Symbol_table* symtab, const Layout* layout,
77e65537 727 uint64_t* dot_value)
a445fddf 728 {
77e65537
ILT
729 // We ignore the section of the result because outside of an
730 // output section definition the dot symbol is always considered
731 // to be absolute.
919ed24c 732 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
286adcf4 733 NULL, NULL, NULL, false);
a445fddf
ILT
734 }
735
736 // Update the dot symbol while setting section addresses.
737 void
738 set_section_addresses(Symbol_table* symtab, Layout* layout,
f6973bdc
ILT
739 uint64_t* dot_value, uint64_t* dot_alignment,
740 uint64_t* load_address)
a445fddf 741 {
919ed24c 742 *dot_value = this->val_->eval_with_dot(symtab, layout, false, *dot_value,
286adcf4 743 NULL, NULL, dot_alignment, false);
fd247bfe 744 *load_address = *dot_value;
a445fddf
ILT
745 }
746
747 // Print for debugging.
748 void
749 print(FILE* f) const
750 {
751 fprintf(f, " . = ");
752 this->val_->print(f);
753 fprintf(f, "\n");
754 }
755
756 private:
757 Expression* val_;
758};
759
494e05f4
ILT
760// An assertion in a SECTIONS clause outside of an output section.
761
762class Sections_element_assertion : public Sections_element
763{
764 public:
765 Sections_element_assertion(Expression* check, const char* message,
766 size_t messagelen)
767 : assertion_(check, message, messagelen)
768 { }
769
a445fddf
ILT
770 // Check the assertion.
771 void
77e65537 772 finalize_symbols(Symbol_table* symtab, const Layout* layout, uint64_t*)
a445fddf
ILT
773 { this->assertion_.check(symtab, layout); }
774
775 // Print for debugging.
494e05f4
ILT
776 void
777 print(FILE* f) const
778 {
779 fprintf(f, " ");
780 this->assertion_.print(f);
781 }
782
783 private:
784 Script_assertion assertion_;
785};
786
787// An element in an output section in a SECTIONS clause.
788
789class Output_section_element
790{
791 public:
a445fddf 792 // A list of input sections.
6625d24e 793 typedef std::list<Output_section::Input_section> Input_section_list;
a445fddf 794
494e05f4
ILT
795 Output_section_element()
796 { }
797
798 virtual ~Output_section_element()
799 { }
800
919ed24c
ILT
801 // Return whether this element requires an output section to exist.
802 virtual bool
803 needs_output_section() const
804 { return false; }
805
a445fddf
ILT
806 // Add any symbol being defined to the symbol table.
807 virtual void
808 add_symbols_to_table(Symbol_table*)
809 { }
810
811 // Finalize symbols and check assertions.
812 virtual void
77e65537 813 finalize_symbols(Symbol_table*, const Layout*, uint64_t*, Output_section**)
a445fddf
ILT
814 { }
815
816 // Return whether this element matches FILE_NAME and SECTION_NAME.
817 // The only real implementation is in Output_section_element_input.
818 virtual bool
b9b2ae8b 819 match_name(const char*, const char*, bool *) const
a445fddf
ILT
820 { return false; }
821
822 // Set section addresses. This includes applying assignments if the
9b547ce6 823 // expression is an absolute value.
a445fddf
ILT
824 virtual void
825 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
f6973bdc 826 uint64_t*, uint64_t*, Output_section**, std::string*,
77e65537 827 Input_section_list*)
a445fddf
ILT
828 { }
829
830 // Print the element for debugging purposes.
494e05f4
ILT
831 virtual void
832 print(FILE* f) const = 0;
a445fddf
ILT
833
834 protected:
835 // Return a fill string that is LENGTH bytes long, filling it with
836 // FILL.
837 std::string
838 get_fill_string(const std::string* fill, section_size_type length) const;
494e05f4
ILT
839};
840
a445fddf
ILT
841std::string
842Output_section_element::get_fill_string(const std::string* fill,
843 section_size_type length) const
844{
845 std::string this_fill;
846 this_fill.reserve(length);
847 while (this_fill.length() + fill->length() <= length)
848 this_fill += *fill;
849 if (this_fill.length() < length)
850 this_fill.append(*fill, 0, length - this_fill.length());
851 return this_fill;
852}
853
494e05f4
ILT
854// A symbol assignment in an output section.
855
856class Output_section_element_assignment : public Output_section_element
857{
858 public:
859 Output_section_element_assignment(const char* name, size_t namelen,
860 Expression* val, bool provide,
861 bool hidden)
99fff23b 862 : assignment_(name, namelen, false, val, provide, hidden)
494e05f4
ILT
863 { }
864
a445fddf
ILT
865 // Add the symbol to the symbol table.
866 void
867 add_symbols_to_table(Symbol_table* symtab)
868 { this->assignment_.add_to_table(symtab); }
869
870 // Finalize the symbol.
871 void
872 finalize_symbols(Symbol_table* symtab, const Layout* layout,
77e65537 873 uint64_t* dot_value, Output_section** dot_section)
a445fddf 874 {
77e65537
ILT
875 this->assignment_.finalize_with_dot(symtab, layout, *dot_value,
876 *dot_section);
a445fddf
ILT
877 }
878
879 // Set the section address. There is no section here, but if the
880 // value is absolute, we set the symbol. This permits us to use
881 // absolute symbols when setting dot.
882 void
883 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
f6973bdc 884 uint64_t, uint64_t* dot_value, uint64_t*,
286adcf4
CC
885 Output_section** dot_section, std::string*,
886 Input_section_list*)
a445fddf 887 {
286adcf4
CC
888 this->assignment_.set_if_absolute(symtab, layout, true, *dot_value,
889 *dot_section);
a445fddf
ILT
890 }
891
892 // Print for debugging.
494e05f4
ILT
893 void
894 print(FILE* f) const
895 {
896 fprintf(f, " ");
897 this->assignment_.print(f);
898 }
899
900 private:
901 Symbol_assignment assignment_;
902};
903
a445fddf
ILT
904// An assignment to the dot symbol in an output section.
905
906class Output_section_element_dot_assignment : public Output_section_element
907{
908 public:
909 Output_section_element_dot_assignment(Expression* val)
910 : val_(val)
911 { }
912
bfc34b3f
ILT
913 // An assignment to dot within an output section is enough to force
914 // the output section to exist.
915 bool
916 needs_output_section() const
917 { return true; }
918
a445fddf
ILT
919 // Finalize the symbol.
920 void
921 finalize_symbols(Symbol_table* symtab, const Layout* layout,
77e65537 922 uint64_t* dot_value, Output_section** dot_section)
a445fddf 923 {
919ed24c 924 *dot_value = this->val_->eval_with_dot(symtab, layout, true, *dot_value,
286adcf4
CC
925 *dot_section, dot_section, NULL,
926 true);
a445fddf
ILT
927 }
928
929 // Update the dot symbol while setting section addresses.
930 void
931 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
f6973bdc 932 uint64_t, uint64_t* dot_value, uint64_t*,
286adcf4
CC
933 Output_section** dot_section, std::string*,
934 Input_section_list*);
a445fddf
ILT
935
936 // Print for debugging.
937 void
938 print(FILE* f) const
939 {
940 fprintf(f, " . = ");
941 this->val_->print(f);
942 fprintf(f, "\n");
943 }
944
945 private:
946 Expression* val_;
947};
948
949// Update the dot symbol while setting section addresses.
950
951void
952Output_section_element_dot_assignment::set_section_addresses(
953 Symbol_table* symtab,
954 Layout* layout,
955 Output_section* output_section,
956 uint64_t,
957 uint64_t* dot_value,
f6973bdc 958 uint64_t* dot_alignment,
77e65537 959 Output_section** dot_section,
a445fddf
ILT
960 std::string* fill,
961 Input_section_list*)
962{
919ed24c
ILT
963 uint64_t next_dot = this->val_->eval_with_dot(symtab, layout, false,
964 *dot_value, *dot_section,
286adcf4
CC
965 dot_section, dot_alignment,
966 true);
a445fddf
ILT
967 if (next_dot < *dot_value)
968 gold_error(_("dot may not move backward"));
969 if (next_dot > *dot_value && output_section != NULL)
970 {
971 section_size_type length = convert_to_section_size_type(next_dot
972 - *dot_value);
973 Output_section_data* posd;
974 if (fill->empty())
7d9e3d98 975 posd = new Output_data_zero_fill(length, 0);
a445fddf
ILT
976 else
977 {
978 std::string this_fill = this->get_fill_string(fill, length);
979 posd = new Output_data_const(this_fill, 0);
980 }
981 output_section->add_output_section_data(posd);
20e6d0d6 982 layout->new_output_section_data_from_script(posd);
a445fddf
ILT
983 }
984 *dot_value = next_dot;
985}
986
494e05f4
ILT
987// An assertion in an output section.
988
989class Output_section_element_assertion : public Output_section_element
990{
991 public:
992 Output_section_element_assertion(Expression* check, const char* message,
993 size_t messagelen)
994 : assertion_(check, message, messagelen)
995 { }
996
997 void
998 print(FILE* f) const
999 {
1000 fprintf(f, " ");
1001 this->assertion_.print(f);
1002 }
1003
1004 private:
1005 Script_assertion assertion_;
1006};
1007
77e65537
ILT
1008// We use a special instance of Output_section_data to handle BYTE,
1009// SHORT, etc. This permits forward references to symbols in the
1010// expressions.
494e05f4 1011
77e65537 1012class Output_data_expression : public Output_section_data
494e05f4
ILT
1013{
1014 public:
77e65537
ILT
1015 Output_data_expression(int size, bool is_signed, Expression* val,
1016 const Symbol_table* symtab, const Layout* layout,
1017 uint64_t dot_value, Output_section* dot_section)
20e6d0d6 1018 : Output_section_data(size, 0, true),
77e65537
ILT
1019 is_signed_(is_signed), val_(val), symtab_(symtab),
1020 layout_(layout), dot_value_(dot_value), dot_section_(dot_section)
494e05f4
ILT
1021 { }
1022
77e65537
ILT
1023 protected:
1024 // Write the data to the output file.
a445fddf 1025 void
77e65537 1026 do_write(Output_file*);
a445fddf 1027
77e65537 1028 // Write the data to a buffer.
494e05f4 1029 void
77e65537 1030 do_write_to_buffer(unsigned char*);
494e05f4 1031
7d9e3d98
ILT
1032 // Write to a map file.
1033 void
1034 do_print_to_mapfile(Mapfile* mapfile) const
1035 { mapfile->print_output_data(this, _("** expression")); }
1036
494e05f4 1037 private:
a445fddf 1038 template<bool big_endian>
77e65537
ILT
1039 void
1040 endian_write_to_buffer(uint64_t, unsigned char*);
a445fddf 1041
494e05f4 1042 bool is_signed_;
494e05f4 1043 Expression* val_;
77e65537
ILT
1044 const Symbol_table* symtab_;
1045 const Layout* layout_;
1046 uint64_t dot_value_;
1047 Output_section* dot_section_;
494e05f4
ILT
1048};
1049
77e65537 1050// Write the data element to the output file.
a445fddf
ILT
1051
1052void
77e65537 1053Output_data_expression::do_write(Output_file* of)
a445fddf 1054{
77e65537
ILT
1055 unsigned char* view = of->get_output_view(this->offset(), this->data_size());
1056 this->write_to_buffer(view);
1057 of->write_output_view(this->offset(), this->data_size(), view);
1058}
a445fddf 1059
77e65537
ILT
1060// Write the data element to a buffer.
1061
1062void
1063Output_data_expression::do_write_to_buffer(unsigned char* buf)
1064{
77e65537 1065 uint64_t val = this->val_->eval_with_dot(this->symtab_, this->layout_,
919ed24c 1066 true, this->dot_value_,
286adcf4
CC
1067 this->dot_section_, NULL, NULL,
1068 false);
a445fddf 1069
8851ecca 1070 if (parameters->target().is_big_endian())
77e65537 1071 this->endian_write_to_buffer<true>(val, buf);
a445fddf 1072 else
77e65537 1073 this->endian_write_to_buffer<false>(val, buf);
a445fddf
ILT
1074}
1075
a445fddf 1076template<bool big_endian>
77e65537
ILT
1077void
1078Output_data_expression::endian_write_to_buffer(uint64_t val,
1079 unsigned char* buf)
a445fddf 1080{
77e65537 1081 switch (this->data_size())
a445fddf
ILT
1082 {
1083 case 1:
1084 elfcpp::Swap_unaligned<8, big_endian>::writeval(buf, val);
a445fddf
ILT
1085 break;
1086 case 2:
1087 elfcpp::Swap_unaligned<16, big_endian>::writeval(buf, val);
a445fddf
ILT
1088 break;
1089 case 4:
1090 elfcpp::Swap_unaligned<32, big_endian>::writeval(buf, val);
a445fddf
ILT
1091 break;
1092 case 8:
8851ecca 1093 if (parameters->target().get_size() == 32)
a445fddf
ILT
1094 {
1095 val &= 0xffffffff;
1096 if (this->is_signed_ && (val & 0x80000000) != 0)
1097 val |= 0xffffffff00000000LL;
1098 }
1099 elfcpp::Swap_unaligned<64, big_endian>::writeval(buf, val);
a445fddf
ILT
1100 break;
1101 default:
1102 gold_unreachable();
1103 }
77e65537
ILT
1104}
1105
1106// A data item in an output section.
1107
1108class Output_section_element_data : public Output_section_element
1109{
1110 public:
1111 Output_section_element_data(int size, bool is_signed, Expression* val)
1112 : size_(size), is_signed_(is_signed), val_(val)
1113 { }
1114
919ed24c
ILT
1115 // If there is a data item, then we must create an output section.
1116 bool
1117 needs_output_section() const
1118 { return true; }
1119
77e65537
ILT
1120 // Finalize symbols--we just need to update dot.
1121 void
1122 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1123 Output_section**)
1124 { *dot_value += this->size_; }
1125
1126 // Store the value in the section.
1127 void
1128 set_section_addresses(Symbol_table*, Layout*, Output_section*, uint64_t,
f6973bdc
ILT
1129 uint64_t* dot_value, uint64_t*, Output_section**,
1130 std::string*, Input_section_list*);
77e65537
ILT
1131
1132 // Print for debugging.
1133 void
1134 print(FILE*) const;
1135
1136 private:
1137 // The size in bytes.
1138 int size_;
1139 // Whether the value is signed.
1140 bool is_signed_;
1141 // The value.
1142 Expression* val_;
1143};
1144
1145// Store the value in the section.
1146
1147void
1148Output_section_element_data::set_section_addresses(
1149 Symbol_table* symtab,
1150 Layout* layout,
1151 Output_section* os,
1152 uint64_t,
1153 uint64_t* dot_value,
f6973bdc 1154 uint64_t*,
77e65537
ILT
1155 Output_section** dot_section,
1156 std::string*,
1157 Input_section_list*)
1158{
1159 gold_assert(os != NULL);
20e6d0d6
DK
1160 Output_data_expression* expression =
1161 new Output_data_expression(this->size_, this->is_signed_, this->val_,
1162 symtab, layout, *dot_value, *dot_section);
1163 os->add_output_section_data(expression);
1164 layout->new_output_section_data_from_script(expression);
77e65537 1165 *dot_value += this->size_;
a445fddf
ILT
1166}
1167
494e05f4
ILT
1168// Print for debugging.
1169
1170void
1171Output_section_element_data::print(FILE* f) const
1172{
1173 const char* s;
1174 switch (this->size_)
1175 {
1176 case 1:
1177 s = "BYTE";
1178 break;
1179 case 2:
1180 s = "SHORT";
1181 break;
1182 case 4:
1183 s = "LONG";
1184 break;
1185 case 8:
1186 if (this->is_signed_)
1187 s = "SQUAD";
1188 else
1189 s = "QUAD";
1190 break;
1191 default:
1192 gold_unreachable();
1193 }
1194 fprintf(f, " %s(", s);
1195 this->val_->print(f);
1196 fprintf(f, ")\n");
1197}
1198
1199// A fill value setting in an output section.
1200
1201class Output_section_element_fill : public Output_section_element
1202{
1203 public:
1204 Output_section_element_fill(Expression* val)
1205 : val_(val)
1206 { }
1207
a445fddf
ILT
1208 // Update the fill value while setting section addresses.
1209 void
1210 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
f6973bdc 1211 uint64_t, uint64_t* dot_value, uint64_t*,
77e65537
ILT
1212 Output_section** dot_section,
1213 std::string* fill, Input_section_list*)
a445fddf 1214 {
77e65537 1215 Output_section* fill_section;
919ed24c 1216 uint64_t fill_val = this->val_->eval_with_dot(symtab, layout, false,
77e65537 1217 *dot_value, *dot_section,
286adcf4 1218 &fill_section, NULL, false);
77e65537
ILT
1219 if (fill_section != NULL)
1220 gold_warning(_("fill value is not absolute"));
a445fddf
ILT
1221 // FIXME: The GNU linker supports fill values of arbitrary length.
1222 unsigned char fill_buff[4];
1223 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
1224 fill->assign(reinterpret_cast<char*>(fill_buff), 4);
1225 }
1226
1227 // Print for debugging.
494e05f4
ILT
1228 void
1229 print(FILE* f) const
1230 {
1231 fprintf(f, " FILL(");
1232 this->val_->print(f);
1233 fprintf(f, ")\n");
1234 }
1235
1236 private:
1237 // The new fill value.
1238 Expression* val_;
1239};
1240
1241// An input section specification in an output section
1242
1243class Output_section_element_input : public Output_section_element
1244{
1245 public:
494e05f4
ILT
1246 Output_section_element_input(const Input_section_spec* spec, bool keep);
1247
a445fddf
ILT
1248 // Finalize symbols--just update the value of the dot symbol.
1249 void
77e65537
ILT
1250 finalize_symbols(Symbol_table*, const Layout*, uint64_t* dot_value,
1251 Output_section** dot_section)
a445fddf
ILT
1252 {
1253 *dot_value = this->final_dot_value_;
77e65537 1254 *dot_section = this->final_dot_section_;
a445fddf
ILT
1255 }
1256
b9b2ae8b
NC
1257 // See whether we match FILE_NAME and SECTION_NAME as an input section.
1258 // If we do then also indicate whether the section should be KEPT.
a445fddf 1259 bool
b9b2ae8b 1260 match_name(const char* file_name, const char* section_name, bool* keep) const;
a445fddf
ILT
1261
1262 // Set the section address.
1263 void
1264 set_section_addresses(Symbol_table* symtab, Layout* layout, Output_section*,
f6973bdc 1265 uint64_t subalign, uint64_t* dot_value, uint64_t*,
77e65537
ILT
1266 Output_section**, std::string* fill,
1267 Input_section_list*);
a445fddf
ILT
1268
1269 // Print for debugging.
494e05f4
ILT
1270 void
1271 print(FILE* f) const;
1272
1273 private:
1274 // An input section pattern.
1275 struct Input_section_pattern
1276 {
1277 std::string pattern;
a445fddf 1278 bool pattern_is_wildcard;
494e05f4
ILT
1279 Sort_wildcard sort;
1280
1281 Input_section_pattern(const char* patterna, size_t patternlena,
1282 Sort_wildcard sorta)
a445fddf 1283 : pattern(patterna, patternlena),
6e9ba2ca 1284 pattern_is_wildcard(is_wildcard_string(this->pattern.c_str())),
a445fddf 1285 sort(sorta)
494e05f4
ILT
1286 { }
1287 };
1288
1289 typedef std::vector<Input_section_pattern> Input_section_patterns;
1290
a445fddf
ILT
1291 // Filename_exclusions is a pair of filename pattern and a bool
1292 // indicating whether the filename is a wildcard.
1293 typedef std::vector<std::pair<std::string, bool> > Filename_exclusions;
1294
1295 // Return whether STRING matches PATTERN, where IS_WILDCARD_PATTERN
1296 // indicates whether this is a wildcard pattern.
1297 static inline bool
1298 match(const char* string, const char* pattern, bool is_wildcard_pattern)
1299 {
1300 return (is_wildcard_pattern
1301 ? fnmatch(pattern, string, 0) == 0
1302 : strcmp(string, pattern) == 0);
1303 }
494e05f4 1304
a445fddf
ILT
1305 // See if we match a file name.
1306 bool
1307 match_file_name(const char* file_name) const;
1308
1309 // The file name pattern. If this is the empty string, we match all
1310 // files.
494e05f4 1311 std::string filename_pattern_;
a445fddf
ILT
1312 // Whether the file name pattern is a wildcard.
1313 bool filename_is_wildcard_;
494e05f4
ILT
1314 // How the file names should be sorted. This may only be
1315 // SORT_WILDCARD_NONE or SORT_WILDCARD_BY_NAME.
1316 Sort_wildcard filename_sort_;
1317 // The list of file names to exclude.
1318 Filename_exclusions filename_exclusions_;
1319 // The list of input section patterns.
1320 Input_section_patterns input_section_patterns_;
1321 // Whether to keep this section when garbage collecting.
1322 bool keep_;
a445fddf
ILT
1323 // The value of dot after including all matching sections.
1324 uint64_t final_dot_value_;
77e65537
ILT
1325 // The section where dot is defined after including all matching
1326 // sections.
1327 Output_section* final_dot_section_;
494e05f4
ILT
1328};
1329
1330// Construct Output_section_element_input. The parser records strings
1331// as pointers into a copy of the script file, which will go away when
1332// parsing is complete. We make sure they are in std::string objects.
1333
1334Output_section_element_input::Output_section_element_input(
1335 const Input_section_spec* spec,
1336 bool keep)
a445fddf
ILT
1337 : filename_pattern_(),
1338 filename_is_wildcard_(false),
494e05f4
ILT
1339 filename_sort_(spec->file.sort),
1340 filename_exclusions_(),
1341 input_section_patterns_(),
a445fddf 1342 keep_(keep),
77e65537
ILT
1343 final_dot_value_(0),
1344 final_dot_section_(NULL)
494e05f4 1345{
a445fddf
ILT
1346 // The filename pattern "*" is common, and matches all files. Turn
1347 // it into the empty string.
1348 if (spec->file.name.length != 1 || spec->file.name.value[0] != '*')
1349 this->filename_pattern_.assign(spec->file.name.value,
1350 spec->file.name.length);
6e9ba2ca 1351 this->filename_is_wildcard_ = is_wildcard_string(this->filename_pattern_.c_str());
a445fddf 1352
494e05f4
ILT
1353 if (spec->input_sections.exclude != NULL)
1354 {
1355 for (String_list::const_iterator p =
1356 spec->input_sections.exclude->begin();
1357 p != spec->input_sections.exclude->end();
1358 ++p)
a445fddf 1359 {
6e9ba2ca 1360 bool is_wildcard = is_wildcard_string((*p).c_str());
a445fddf
ILT
1361 this->filename_exclusions_.push_back(std::make_pair(*p,
1362 is_wildcard));
1363 }
494e05f4
ILT
1364 }
1365
1366 if (spec->input_sections.sections != NULL)
1367 {
1368 Input_section_patterns& isp(this->input_section_patterns_);
1369 for (String_sort_list::const_iterator p =
1370 spec->input_sections.sections->begin();
1371 p != spec->input_sections.sections->end();
1372 ++p)
1373 isp.push_back(Input_section_pattern(p->name.value, p->name.length,
1374 p->sort));
1375 }
1376}
1377
a445fddf
ILT
1378// See whether we match FILE_NAME.
1379
1380bool
1381Output_section_element_input::match_file_name(const char* file_name) const
1382{
1383 if (!this->filename_pattern_.empty())
1384 {
1385 // If we were called with no filename, we refuse to match a
1386 // pattern which requires a file name.
1387 if (file_name == NULL)
1388 return false;
1389
1390 if (!match(file_name, this->filename_pattern_.c_str(),
1391 this->filename_is_wildcard_))
1392 return false;
1393 }
1394
1395 if (file_name != NULL)
1396 {
1397 // Now we have to see whether FILE_NAME matches one of the
1398 // exclusion patterns, if any.
1399 for (Filename_exclusions::const_iterator p =
1400 this->filename_exclusions_.begin();
1401 p != this->filename_exclusions_.end();
1402 ++p)
1403 {
1404 if (match(file_name, p->first.c_str(), p->second))
1405 return false;
1406 }
1407 }
1408
1409 return true;
1410}
1411
b9b2ae8b
NC
1412// See whether we match FILE_NAME and SECTION_NAME. If we do then
1413// KEEP indicates whether the section should survive garbage collection.
a445fddf
ILT
1414
1415bool
1416Output_section_element_input::match_name(const char* file_name,
b9b2ae8b
NC
1417 const char* section_name,
1418 bool *keep) const
a445fddf
ILT
1419{
1420 if (!this->match_file_name(file_name))
1421 return false;
1422
b9b2ae8b
NC
1423 *keep = this->keep_;
1424
a445fddf
ILT
1425 // If there are no section name patterns, then we match.
1426 if (this->input_section_patterns_.empty())
1427 return true;
1428
1429 // See whether we match the section name patterns.
1430 for (Input_section_patterns::const_iterator p =
1431 this->input_section_patterns_.begin();
1432 p != this->input_section_patterns_.end();
1433 ++p)
1434 {
1435 if (match(section_name, p->pattern.c_str(), p->pattern_is_wildcard))
1436 return true;
1437 }
1438
1439 // We didn't match any section names, so we didn't match.
1440 return false;
1441}
1442
1443// Information we use to sort the input sections.
1444
20e6d0d6 1445class Input_section_info
a445fddf 1446{
20e6d0d6 1447 public:
6625d24e 1448 Input_section_info(const Output_section::Input_section& input_section)
2ea97941 1449 : input_section_(input_section), section_name_(),
20e6d0d6
DK
1450 size_(0), addralign_(1)
1451 { }
1452
1453 // Return the simple input section.
6625d24e 1454 const Output_section::Input_section&
20e6d0d6
DK
1455 input_section() const
1456 { return this->input_section_; }
1457
1458 // Return the object.
1459 Relobj*
1460 relobj() const
1461 { return this->input_section_.relobj(); }
1462
1463 // Return the section index.
1464 unsigned int
1465 shndx()
1466 { return this->input_section_.shndx(); }
1467
1468 // Return the section name.
1469 const std::string&
1470 section_name() const
1471 { return this->section_name_; }
1472
1473 // Set the section name.
1474 void
2ea97941 1475 set_section_name(const std::string name)
dd68f8fa
CC
1476 {
1477 if (is_compressed_debug_section(name.c_str()))
1478 this->section_name_ = corresponding_uncompressed_section_name(name);
1479 else
1480 this->section_name_ = name;
1481 }
20e6d0d6
DK
1482
1483 // Return the section size.
1484 uint64_t
1485 size() const
1486 { return this->size_; }
1487
1488 // Set the section size.
1489 void
2ea97941
ILT
1490 set_size(uint64_t size)
1491 { this->size_ = size; }
20e6d0d6
DK
1492
1493 // Return the address alignment.
1494 uint64_t
1495 addralign() const
1496 { return this->addralign_; }
1497
1498 // Set the address alignment.
1499 void
2ea97941
ILT
1500 set_addralign(uint64_t addralign)
1501 { this->addralign_ = addralign; }
20e6d0d6
DK
1502
1503 private:
1504 // Input section, can be a relaxed section.
6625d24e 1505 Output_section::Input_section input_section_;
20e6d0d6
DK
1506 // Name of the section.
1507 std::string section_name_;
1508 // Section size.
1509 uint64_t size_;
1510 // Address alignment.
1511 uint64_t addralign_;
a445fddf
ILT
1512};
1513
1514// A class to sort the input sections.
1515
1516class Input_section_sorter
1517{
1518 public:
1519 Input_section_sorter(Sort_wildcard filename_sort, Sort_wildcard section_sort)
1520 : filename_sort_(filename_sort), section_sort_(section_sort)
1521 { }
1522
1523 bool
1524 operator()(const Input_section_info&, const Input_section_info&) const;
1525
1526 private:
1527 Sort_wildcard filename_sort_;
1528 Sort_wildcard section_sort_;
1529};
1530
1531bool
1532Input_section_sorter::operator()(const Input_section_info& isi1,
1533 const Input_section_info& isi2) const
1534{
1535 if (this->section_sort_ == SORT_WILDCARD_BY_NAME
1536 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1537 || (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME
20e6d0d6 1538 && isi1.addralign() == isi2.addralign()))
a445fddf 1539 {
20e6d0d6
DK
1540 if (isi1.section_name() != isi2.section_name())
1541 return isi1.section_name() < isi2.section_name();
a445fddf
ILT
1542 }
1543 if (this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT
1544 || this->section_sort_ == SORT_WILDCARD_BY_NAME_BY_ALIGNMENT
1545 || this->section_sort_ == SORT_WILDCARD_BY_ALIGNMENT_BY_NAME)
1546 {
20e6d0d6
DK
1547 if (isi1.addralign() != isi2.addralign())
1548 return isi1.addralign() < isi2.addralign();
a445fddf
ILT
1549 }
1550 if (this->filename_sort_ == SORT_WILDCARD_BY_NAME)
1551 {
20e6d0d6
DK
1552 if (isi1.relobj()->name() != isi2.relobj()->name())
1553 return (isi1.relobj()->name() < isi2.relobj()->name());
a445fddf
ILT
1554 }
1555
1556 // Otherwise we leave them in the same order.
1557 return false;
1558}
1559
1560// Set the section address. Look in INPUT_SECTIONS for sections which
1561// match this spec, sort them as specified, and add them to the output
1562// section.
1563
1564void
1565Output_section_element_input::set_section_addresses(
1566 Symbol_table*,
20e6d0d6 1567 Layout* layout,
a445fddf
ILT
1568 Output_section* output_section,
1569 uint64_t subalign,
1570 uint64_t* dot_value,
f6973bdc 1571 uint64_t*,
77e65537 1572 Output_section** dot_section,
a445fddf
ILT
1573 std::string* fill,
1574 Input_section_list* input_sections)
1575{
1576 // We build a list of sections which match each
1577 // Input_section_pattern.
1578
374082df
CC
1579 // If none of the patterns specify a sort option, we throw all
1580 // matching input sections into a single bin, in the order we
1581 // find them. Otherwise, we put matching input sections into
1582 // a separate bin for each pattern, and sort each one as
1583 // specified. Thus, an input section spec like this:
1584 // *(.foo .bar)
1585 // will group all .foo and .bar sections in the order seen,
1586 // whereas this:
1587 // *(.foo) *(.bar)
1588 // will group all .foo sections followed by all .bar sections.
1589 // This matches Gnu ld behavior.
1590
1591 // Things get really weird, though, when you add a sort spec
1592 // on some, but not all, of the patterns, like this:
1593 // *(SORT_BY_NAME(.foo) .bar)
1594 // We do not attempt to match Gnu ld behavior in this case.
1595
a445fddf
ILT
1596 typedef std::vector<std::vector<Input_section_info> > Matching_sections;
1597 size_t input_pattern_count = this->input_section_patterns_.size();
374082df
CC
1598 bool any_patterns_with_sort = false;
1599 for (size_t i = 0; i < input_pattern_count; ++i)
1600 {
1601 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1602 if (isp.sort != SORT_WILDCARD_NONE)
1603 any_patterns_with_sort = true;
1604 }
1605 if (input_pattern_count == 0 || !any_patterns_with_sort)
a445fddf
ILT
1606 input_pattern_count = 1;
1607 Matching_sections matching_sections(input_pattern_count);
1608
1609 // Look through the list of sections for this output section. Add
1610 // each one which matches to one of the elements of
1611 // MATCHING_SECTIONS.
1612
1613 Input_section_list::iterator p = input_sections->begin();
1614 while (p != input_sections->end())
1615 {
20e6d0d6
DK
1616 Relobj* relobj = p->relobj();
1617 unsigned int shndx = p->shndx();
1618 Input_section_info isi(*p);
1619
a445fddf
ILT
1620 // Calling section_name and section_addralign is not very
1621 // efficient.
a445fddf
ILT
1622
1623 // Lock the object so that we can get information about the
1624 // section. This is OK since we know we are single-threaded
1625 // here.
1626 {
1627 const Task* task = reinterpret_cast<const Task*>(-1);
20e6d0d6
DK
1628 Task_lock_obj<Object> tl(task, relobj);
1629
1630 isi.set_section_name(relobj->section_name(shndx));
1631 if (p->is_relaxed_input_section())
c0a62865 1632 {
ea5cae92 1633 // We use current data size because relaxed section sizes may not
c0a62865
DK
1634 // have finalized yet.
1635 isi.set_size(p->relaxed_input_section()->current_data_size());
1636 isi.set_addralign(p->relaxed_input_section()->addralign());
1637 }
20e6d0d6 1638 else
c0a62865
DK
1639 {
1640 isi.set_size(relobj->section_size(shndx));
1641 isi.set_addralign(relobj->section_addralign(shndx));
1642 }
a445fddf
ILT
1643 }
1644
20e6d0d6 1645 if (!this->match_file_name(relobj->name().c_str()))
a445fddf
ILT
1646 ++p;
1647 else if (this->input_section_patterns_.empty())
1648 {
1649 matching_sections[0].push_back(isi);
1650 p = input_sections->erase(p);
1651 }
1652 else
1653 {
1654 size_t i;
1655 for (i = 0; i < input_pattern_count; ++i)
1656 {
1657 const Input_section_pattern&
1658 isp(this->input_section_patterns_[i]);
20e6d0d6 1659 if (match(isi.section_name().c_str(), isp.pattern.c_str(),
a445fddf
ILT
1660 isp.pattern_is_wildcard))
1661 break;
1662 }
1663
1664 if (i >= this->input_section_patterns_.size())
1665 ++p;
1666 else
1667 {
374082df
CC
1668 if (!any_patterns_with_sort)
1669 i = 0;
a445fddf
ILT
1670 matching_sections[i].push_back(isi);
1671 p = input_sections->erase(p);
1672 }
1673 }
1674 }
1675
1676 // Look through MATCHING_SECTIONS. Sort each one as specified,
1677 // using a stable sort so that we get the default order when
1678 // sections are otherwise equal. Add each input section to the
1679 // output section.
1680
661be1e2 1681 uint64_t dot = *dot_value;
a445fddf
ILT
1682 for (size_t i = 0; i < input_pattern_count; ++i)
1683 {
1684 if (matching_sections[i].empty())
1685 continue;
1686
1687 gold_assert(output_section != NULL);
1688
1689 const Input_section_pattern& isp(this->input_section_patterns_[i]);
1690 if (isp.sort != SORT_WILDCARD_NONE
1691 || this->filename_sort_ != SORT_WILDCARD_NONE)
1692 std::stable_sort(matching_sections[i].begin(),
1693 matching_sections[i].end(),
1694 Input_section_sorter(this->filename_sort_,
1695 isp.sort));
1696
2ea97941 1697 for (std::vector<Input_section_info>::const_iterator p =
a445fddf 1698 matching_sections[i].begin();
2ea97941
ILT
1699 p != matching_sections[i].end();
1700 ++p)
a445fddf 1701 {
6625d24e
DK
1702 // Override the original address alignment if SUBALIGN is specified
1703 // and is greater than the original alignment. We need to make a
1704 // copy of the input section to modify the alignment.
1705 Output_section::Input_section sis(p->input_section());
1706
1707 uint64_t this_subalign = sis.addralign();
1708 if (!sis.is_input_section())
1709 sis.output_section_data()->finalize_data_size();
1710 uint64_t data_size = sis.data_size();
a445fddf 1711 if (this_subalign < subalign)
6625d24e
DK
1712 {
1713 this_subalign = subalign;
1714 sis.set_addralign(subalign);
1715 }
a445fddf 1716
661be1e2 1717 uint64_t address = align_address(dot, this_subalign);
a445fddf 1718
661be1e2 1719 if (address > dot && !fill->empty())
a445fddf
ILT
1720 {
1721 section_size_type length =
661be1e2 1722 convert_to_section_size_type(address - dot);
a445fddf
ILT
1723 std::string this_fill = this->get_fill_string(fill, length);
1724 Output_section_data* posd = new Output_data_const(this_fill, 0);
1725 output_section->add_output_section_data(posd);
20e6d0d6 1726 layout->new_output_section_data_from_script(posd);
a445fddf
ILT
1727 }
1728
6625d24e
DK
1729 output_section->add_script_input_section(sis);
1730 dot = address + data_size;
a445fddf
ILT
1731 }
1732 }
1733
661be1e2
ILT
1734 // An SHF_TLS/SHT_NOBITS section does not take up any
1735 // address space.
1736 if (output_section == NULL
1737 || (output_section->flags() & elfcpp::SHF_TLS) == 0
1738 || output_section->type() != elfcpp::SHT_NOBITS)
1739 *dot_value = dot;
1740
a445fddf 1741 this->final_dot_value_ = *dot_value;
77e65537 1742 this->final_dot_section_ = *dot_section;
a445fddf
ILT
1743}
1744
494e05f4
ILT
1745// Print for debugging.
1746
1747void
1748Output_section_element_input::print(FILE* f) const
1749{
1750 fprintf(f, " ");
1751
1752 if (this->keep_)
1753 fprintf(f, "KEEP(");
1754
1755 if (!this->filename_pattern_.empty())
1756 {
1757 bool need_close_paren = false;
1758 switch (this->filename_sort_)
1759 {
1760 case SORT_WILDCARD_NONE:
1761 break;
1762 case SORT_WILDCARD_BY_NAME:
1763 fprintf(f, "SORT_BY_NAME(");
1764 need_close_paren = true;
1765 break;
1766 default:
1767 gold_unreachable();
1768 }
1769
1770 fprintf(f, "%s", this->filename_pattern_.c_str());
1771
1772 if (need_close_paren)
1773 fprintf(f, ")");
1774 }
1775
1776 if (!this->input_section_patterns_.empty()
1777 || !this->filename_exclusions_.empty())
1778 {
1779 fprintf(f, "(");
1780
1781 bool need_space = false;
1782 if (!this->filename_exclusions_.empty())
1783 {
1784 fprintf(f, "EXCLUDE_FILE(");
1785 bool need_comma = false;
1786 for (Filename_exclusions::const_iterator p =
1787 this->filename_exclusions_.begin();
1788 p != this->filename_exclusions_.end();
1789 ++p)
1790 {
1791 if (need_comma)
1792 fprintf(f, ", ");
a445fddf 1793 fprintf(f, "%s", p->first.c_str());
494e05f4
ILT
1794 need_comma = true;
1795 }
1796 fprintf(f, ")");
1797 need_space = true;
1798 }
1799
1800 for (Input_section_patterns::const_iterator p =
1801 this->input_section_patterns_.begin();
1802 p != this->input_section_patterns_.end();
1803 ++p)
1804 {
1805 if (need_space)
1806 fprintf(f, " ");
1807
1808 int close_parens = 0;
1809 switch (p->sort)
1810 {
1811 case SORT_WILDCARD_NONE:
1812 break;
1813 case SORT_WILDCARD_BY_NAME:
1814 fprintf(f, "SORT_BY_NAME(");
1815 close_parens = 1;
1816 break;
1817 case SORT_WILDCARD_BY_ALIGNMENT:
1818 fprintf(f, "SORT_BY_ALIGNMENT(");
1819 close_parens = 1;
1820 break;
1821 case SORT_WILDCARD_BY_NAME_BY_ALIGNMENT:
1822 fprintf(f, "SORT_BY_NAME(SORT_BY_ALIGNMENT(");
1823 close_parens = 2;
1824 break;
1825 case SORT_WILDCARD_BY_ALIGNMENT_BY_NAME:
1826 fprintf(f, "SORT_BY_ALIGNMENT(SORT_BY_NAME(");
1827 close_parens = 2;
1828 break;
1829 default:
1830 gold_unreachable();
1831 }
1832
1833 fprintf(f, "%s", p->pattern.c_str());
1834
1835 for (int i = 0; i < close_parens; ++i)
1836 fprintf(f, ")");
1837
1838 need_space = true;
1839 }
1840
1841 fprintf(f, ")");
1842 }
1843
1844 if (this->keep_)
1845 fprintf(f, ")");
1846
1847 fprintf(f, "\n");
1848}
1849
1850// An output section.
1851
1852class Output_section_definition : public Sections_element
1853{
1854 public:
a445fddf
ILT
1855 typedef Output_section_element::Input_section_list Input_section_list;
1856
494e05f4
ILT
1857 Output_section_definition(const char* name, size_t namelen,
1858 const Parser_output_section_header* header);
1859
1860 // Finish the output section with the information in the trailer.
1861 void
1862 finish(const Parser_output_section_trailer* trailer);
1863
1864 // Add a symbol to be defined.
1865 void
1866 add_symbol_assignment(const char* name, size_t length, Expression* value,
1867 bool provide, bool hidden);
a445fddf
ILT
1868
1869 // Add an assignment to the special dot symbol.
1870 void
1871 add_dot_assignment(Expression* value);
1872
494e05f4
ILT
1873 // Add an assertion.
1874 void
1875 add_assertion(Expression* check, const char* message, size_t messagelen);
1876
1877 // Add a data item to the current output section.
1878 void
1879 add_data(int size, bool is_signed, Expression* val);
1880
1881 // Add a setting for the fill value.
1882 void
1883 add_fill(Expression* val);
1884
1885 // Add an input section specification.
1886 void
1887 add_input_section(const Input_section_spec* spec, bool keep);
1888
0d371ad3
ILT
1889 // Return whether the output section is relro.
1890 bool
1891 is_relro() const
1892 { return this->is_relro_; }
1893
2d924fd9
ILT
1894 // Record that the output section is relro.
1895 void
1896 set_is_relro()
1897 { this->is_relro_ = true; }
1898
919ed24c
ILT
1899 // Create any required output sections.
1900 void
1901 create_sections(Layout*);
1902
a445fddf
ILT
1903 // Add any symbols being defined to the symbol table.
1904 void
1905 add_symbols_to_table(Symbol_table* symtab);
1906
1907 // Finalize symbols and check assertions.
1908 void
77e65537 1909 finalize_symbols(Symbol_table*, const Layout*, uint64_t*);
a445fddf
ILT
1910
1911 // Return the output section name to use for an input file name and
1912 // section name.
1913 const char*
1914 output_section_name(const char* file_name, const char* section_name,
b9b2ae8b
NC
1915 Output_section***, Script_sections::Section_type*,
1916 bool*);
a445fddf 1917
0d371ad3
ILT
1918 // Initialize OSP with an output section.
1919 void
1920 orphan_section_init(Orphan_section_placement* osp,
1921 Script_sections::Elements_iterator p)
1922 { osp->output_section_init(this->name_, this->output_section_, p); }
a445fddf
ILT
1923
1924 // Set the section address.
1925 void
1926 set_section_addresses(Symbol_table* symtab, Layout* layout,
f6973bdc
ILT
1927 uint64_t* dot_value, uint64_t*,
1928 uint64_t* load_address);
a445fddf 1929
3802b2dd
ILT
1930 // Check a constraint (ONLY_IF_RO, etc.) on an output section. If
1931 // this section is constrained, and the input sections do not match,
1932 // return the constraint, and set *POSD.
1933 Section_constraint
1934 check_constraint(Output_section_definition** posd);
1935
1936 // See if this is the alternate output section for a constrained
1937 // output section. If it is, transfer the Output_section and return
1938 // true. Otherwise return false.
1939 bool
1940 alternate_constraint(Output_section_definition*, Section_constraint);
1941
1c4f3631 1942 // Get the list of segments to use for an allocated section when
2cefc357 1943 // using a PHDRS clause.
1c4f3631 1944 Output_section*
2cefc357 1945 allocate_to_segment(String_list** phdrs_list, bool* orphan);
1c4f3631 1946
8f2eb564
ILT
1947 // Look for an output section by name and return the address, the
1948 // load address, the alignment, and the size. This is used when an
1949 // expression refers to an output section which was not actually
1950 // created. This returns true if the section was found, false
1951 // otherwise.
1952 bool
1953 get_output_section_info(const char*, uint64_t*, uint64_t*, uint64_t*,
1954 uint64_t*) const;
1955
2d924fd9
ILT
1956 // Return the associated Output_section if there is one.
1957 Output_section*
1958 get_output_section() const
1959 { return this->output_section_; }
1960
494e05f4
ILT
1961 // Print the contents to the FILE. This is for debugging.
1962 void
1963 print(FILE*) const;
1964
1e5d2fb1
DK
1965 // Return the output section type if specified or Script_sections::ST_NONE.
1966 Script_sections::Section_type
1967 section_type() const;
1968
7f8cd844
NC
1969 // Store the memory region to use.
1970 void
1971 set_memory_region(Memory_region*, bool set_vma);
1972
1973 void
1974 set_section_vma(Expression* address)
1975 { this->address_ = address; }
1976
1977 void
1978 set_section_lma(Expression* address)
1979 { this->load_address_ = address; }
1980
ea5cae92
NC
1981 const std::string&
1982 get_section_name() const
7f8cd844
NC
1983 { return this->name_; }
1984
494e05f4 1985 private:
1e5d2fb1
DK
1986 static const char*
1987 script_section_type_name(Script_section_type);
1988
494e05f4
ILT
1989 typedef std::vector<Output_section_element*> Output_section_elements;
1990
1991 // The output section name.
1992 std::string name_;
1993 // The address. This may be NULL.
1994 Expression* address_;
1995 // The load address. This may be NULL.
1996 Expression* load_address_;
1997 // The alignment. This may be NULL.
1998 Expression* align_;
1999 // The input section alignment. This may be NULL.
2000 Expression* subalign_;
3802b2dd
ILT
2001 // The constraint, if any.
2002 Section_constraint constraint_;
494e05f4
ILT
2003 // The fill value. This may be NULL.
2004 Expression* fill_;
1c4f3631
ILT
2005 // The list of segments this section should go into. This may be
2006 // NULL.
2007 String_list* phdrs_;
494e05f4
ILT
2008 // The list of elements defining the section.
2009 Output_section_elements elements_;
a445fddf
ILT
2010 // The Output_section created for this definition. This will be
2011 // NULL if none was created.
2012 Output_section* output_section_;
8f2eb564
ILT
2013 // The address after it has been evaluated.
2014 uint64_t evaluated_address_;
2015 // The load address after it has been evaluated.
2016 uint64_t evaluated_load_address_;
2017 // The alignment after it has been evaluated.
2018 uint64_t evaluated_addralign_;
2d924fd9
ILT
2019 // The output section is relro.
2020 bool is_relro_;
1e5d2fb1
DK
2021 // The output section type if specified.
2022 enum Script_section_type script_section_type_;
494e05f4
ILT
2023};
2024
2025// Constructor.
2026
2027Output_section_definition::Output_section_definition(
2028 const char* name,
2029 size_t namelen,
2030 const Parser_output_section_header* header)
2031 : name_(name, namelen),
2032 address_(header->address),
2033 load_address_(header->load_address),
2034 align_(header->align),
2035 subalign_(header->subalign),
3802b2dd 2036 constraint_(header->constraint),
494e05f4 2037 fill_(NULL),
1c4f3631 2038 phdrs_(NULL),
a445fddf 2039 elements_(),
2d924fd9
ILT
2040 output_section_(NULL),
2041 evaluated_address_(0),
2042 evaluated_load_address_(0),
2043 evaluated_addralign_(0),
1e5d2fb1
DK
2044 is_relro_(false),
2045 script_section_type_(header->section_type)
494e05f4
ILT
2046{
2047}
2048
2049// Finish an output section.
2050
2051void
2052Output_section_definition::finish(const Parser_output_section_trailer* trailer)
2053{
2054 this->fill_ = trailer->fill;
1c4f3631 2055 this->phdrs_ = trailer->phdrs;
494e05f4
ILT
2056}
2057
2058// Add a symbol to be defined.
2059
2060void
2061Output_section_definition::add_symbol_assignment(const char* name,
2062 size_t length,
2063 Expression* value,
2064 bool provide,
2065 bool hidden)
2066{
2067 Output_section_element* p = new Output_section_element_assignment(name,
2068 length,
2069 value,
2070 provide,
2071 hidden);
2072 this->elements_.push_back(p);
2073}
2074
a445fddf 2075// Add an assignment to the special dot symbol.
494e05f4
ILT
2076
2077void
a445fddf
ILT
2078Output_section_definition::add_dot_assignment(Expression* value)
2079{
2080 Output_section_element* p = new Output_section_element_dot_assignment(value);
2081 this->elements_.push_back(p);
2082}
2083
2084// Add an assertion.
2085
2086void
2087Output_section_definition::add_assertion(Expression* check,
2088 const char* message,
494e05f4
ILT
2089 size_t messagelen)
2090{
2091 Output_section_element* p = new Output_section_element_assertion(check,
2092 message,
2093 messagelen);
2094 this->elements_.push_back(p);
2095}
2096
2097// Add a data item to the current output section.
2098
2099void
2100Output_section_definition::add_data(int size, bool is_signed, Expression* val)
2101{
2102 Output_section_element* p = new Output_section_element_data(size, is_signed,
2103 val);
2104 this->elements_.push_back(p);
2105}
2106
2107// Add a setting for the fill value.
2108
2109void
2110Output_section_definition::add_fill(Expression* val)
2111{
2112 Output_section_element* p = new Output_section_element_fill(val);
2113 this->elements_.push_back(p);
2114}
2115
2116// Add an input section specification.
2117
2118void
2119Output_section_definition::add_input_section(const Input_section_spec* spec,
2120 bool keep)
2121{
2122 Output_section_element* p = new Output_section_element_input(spec, keep);
2123 this->elements_.push_back(p);
2124}
2125
919ed24c
ILT
2126// Create any required output sections. We need an output section if
2127// there is a data statement here.
2128
2129void
2130Output_section_definition::create_sections(Layout* layout)
2131{
2132 if (this->output_section_ != NULL)
2133 return;
2134 for (Output_section_elements::const_iterator p = this->elements_.begin();
2135 p != this->elements_.end();
2136 ++p)
2137 {
2138 if ((*p)->needs_output_section())
2139 {
2140 const char* name = this->name_.c_str();
1e5d2fb1
DK
2141 this->output_section_ =
2142 layout->make_output_section_for_script(name, this->section_type());
919ed24c
ILT
2143 return;
2144 }
2145 }
2146}
2147
a445fddf
ILT
2148// Add any symbols being defined to the symbol table.
2149
2150void
2151Output_section_definition::add_symbols_to_table(Symbol_table* symtab)
2152{
2153 for (Output_section_elements::iterator p = this->elements_.begin();
2154 p != this->elements_.end();
2155 ++p)
2156 (*p)->add_symbols_to_table(symtab);
2157}
2158
2159// Finalize symbols and check assertions.
2160
2161void
2162Output_section_definition::finalize_symbols(Symbol_table* symtab,
2163 const Layout* layout,
a445fddf
ILT
2164 uint64_t* dot_value)
2165{
2166 if (this->output_section_ != NULL)
2167 *dot_value = this->output_section_->address();
2168 else
2169 {
2170 uint64_t address = *dot_value;
2171 if (this->address_ != NULL)
2172 {
919ed24c 2173 address = this->address_->eval_with_dot(symtab, layout, true,
77e65537 2174 *dot_value, NULL,
286adcf4 2175 NULL, NULL, false);
a445fddf
ILT
2176 }
2177 if (this->align_ != NULL)
2178 {
919ed24c 2179 uint64_t align = this->align_->eval_with_dot(symtab, layout, true,
bacff3ab 2180 *dot_value, NULL,
286adcf4 2181 NULL, NULL, false);
a445fddf
ILT
2182 address = align_address(address, align);
2183 }
2184 *dot_value = address;
2185 }
a445fddf 2186
77e65537 2187 Output_section* dot_section = this->output_section_;
a445fddf
ILT
2188 for (Output_section_elements::iterator p = this->elements_.begin();
2189 p != this->elements_.end();
2190 ++p)
77e65537 2191 (*p)->finalize_symbols(symtab, layout, dot_value, &dot_section);
a445fddf
ILT
2192}
2193
2194// Return the output section name to use for an input section name.
2195
2196const char*
1e5d2fb1
DK
2197Output_section_definition::output_section_name(
2198 const char* file_name,
2199 const char* section_name,
2200 Output_section*** slot,
b9b2ae8b
NC
2201 Script_sections::Section_type* psection_type,
2202 bool* keep)
a445fddf
ILT
2203{
2204 // Ask each element whether it matches NAME.
2205 for (Output_section_elements::const_iterator p = this->elements_.begin();
2206 p != this->elements_.end();
2207 ++p)
2208 {
b9b2ae8b 2209 if ((*p)->match_name(file_name, section_name, keep))
a445fddf
ILT
2210 {
2211 // We found a match for NAME, which means that it should go
2212 // into this output section.
2213 *slot = &this->output_section_;
1e5d2fb1 2214 *psection_type = this->section_type();
a445fddf
ILT
2215 return this->name_.c_str();
2216 }
2217 }
2218
2219 // We don't know about this section name.
2220 return NULL;
2221}
2222
ea5cae92
NC
2223// Return true if memory from START to START + LENGTH is contained
2224// within a memory region.
2225
2226bool
2227Script_sections::block_in_region(Symbol_table* symtab, Layout* layout,
2228 uint64_t start, uint64_t length) const
2229{
2230 if (this->memory_regions_ == NULL)
2231 return false;
2232
2233 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2234 mr != this->memory_regions_->end();
2235 ++mr)
2236 {
2237 uint64_t s = (*mr)->start_address()->eval(symtab, layout, false);
2238 uint64_t l = (*mr)->length()->eval(symtab, layout, false);
2239
2240 if (s <= start
2241 && (s + l) >= (start + length))
2242 return true;
2243 }
2244
2245 return false;
2246}
2247
2248// Find a memory region that should be used by a given output SECTION.
2249// If provided set PREVIOUS_SECTION_RETURN to point to the last section
2250// that used the return memory region.
2251
2252Memory_region*
2253Script_sections::find_memory_region(
2254 Output_section_definition* section,
2255 bool find_vma_region,
7c61d651 2256 bool explicit_only,
ea5cae92
NC
2257 Output_section_definition** previous_section_return)
2258{
2259 if (previous_section_return != NULL)
2260 * previous_section_return = NULL;
2261
2262 // Walk the memory regions specified in this script, if any.
2263 if (this->memory_regions_ == NULL)
2264 return NULL;
2265
2266 // The /DISCARD/ section never gets assigned to any region.
2267 if (section->get_section_name() == "/DISCARD/")
2268 return NULL;
2269
2270 Memory_region* first_match = NULL;
2271
2272 // First check to see if a region has been assigned to this section.
2273 for (Memory_regions::const_iterator mr = this->memory_regions_->begin();
2274 mr != this->memory_regions_->end();
2275 ++mr)
2276 {
2277 if (find_vma_region)
2278 {
2279 for (Memory_region::Section_list::const_iterator s =
2280 (*mr)->get_vma_section_list_start();
2281 s != (*mr)->get_vma_section_list_end();
2282 ++s)
2283 if ((*s) == section)
2284 {
2285 (*mr)->set_last_section(section);
2286 return *mr;
2287 }
2288 }
2289 else
2290 {
2291 for (Memory_region::Section_list::const_iterator s =
2292 (*mr)->get_lma_section_list_start();
2293 s != (*mr)->get_lma_section_list_end();
2294 ++s)
2295 if ((*s) == section)
2296 {
2297 (*mr)->set_last_section(section);
2298 return *mr;
2299 }
2300 }
2301
7c61d651
CC
2302 if (!explicit_only)
2303 {
2304 // Make a note of the first memory region whose attributes
2305 // are compatible with the section. If we do not find an
2306 // explicit region assignment, then we will return this region.
2307 Output_section* out_sec = section->get_output_section();
2308 if (first_match == NULL
2309 && out_sec != NULL
2310 && (*mr)->attributes_compatible(out_sec->flags(),
2311 out_sec->type()))
2312 first_match = *mr;
2313 }
ea5cae92
NC
2314 }
2315
2316 // With LMA computations, if an explicit region has not been specified then
2317 // we will want to set the difference between the VMA and the LMA of the
2318 // section were searching for to be the same as the difference between the
2319 // VMA and LMA of the last section to be added to first matched region.
2320 // Hence, if it was asked for, we return a pointer to the last section
2321 // known to be used by the first matched region.
2322 if (first_match != NULL
2323 && previous_section_return != NULL)
2324 *previous_section_return = first_match->get_last_section();
2325
2326 return first_match;
2327}
2328
a445fddf
ILT
2329// Set the section address. Note that the OUTPUT_SECTION_ field will
2330// be NULL if no input sections were mapped to this output section.
2331// We still have to adjust dot and process symbol assignments.
2332
2333void
2334Output_section_definition::set_section_addresses(Symbol_table* symtab,
2335 Layout* layout,
fd247bfe 2336 uint64_t* dot_value,
f6973bdc 2337 uint64_t* dot_alignment,
fd247bfe 2338 uint64_t* load_address)
a445fddf 2339{
ea5cae92
NC
2340 Memory_region* vma_region = NULL;
2341 Memory_region* lma_region = NULL;
2342 Script_sections* script_sections =
2343 layout->script_options()->script_sections();
a445fddf 2344 uint64_t address;
1e5d2fb1
DK
2345 uint64_t old_dot_value = *dot_value;
2346 uint64_t old_load_address = *load_address;
2347
9e9143bc
ST
2348 // If input section sorting is requested via --section-ordering-file or
2349 // linker plugins, then do it here. This is important because we want
2350 // any sorting specified in the linker scripts, which will be done after
2351 // this, to take precedence. The final order of input sections is then
2352 // guaranteed to be according to the linker script specification.
2353 if (this->output_section_ != NULL
2354 && this->output_section_->input_section_order_specified())
2355 this->output_section_->sort_attached_input_sections();
2356
ea5cae92
NC
2357 // Decide the start address for the section. The algorithm is:
2358 // 1) If an address has been specified in a linker script, use that.
2359 // 2) Otherwise if a memory region has been specified for the section,
2360 // use the next free address in the region.
2361 // 3) Otherwise if memory regions have been specified find the first
2362 // region whose attributes are compatible with this section and
2363 // install it into that region.
2364 // 4) Otherwise use the current location counter.
2365
2366 if (this->output_section_ != NULL
2367 // Check for --section-start.
2368 && parameters->options().section_start(this->output_section_->name(),
2369 &address))
2370 ;
2371 else if (this->address_ == NULL)
a445fddf 2372 {
7c61d651 2373 vma_region = script_sections->find_memory_region(this, true, false, NULL);
ea5cae92
NC
2374 if (vma_region != NULL)
2375 address = vma_region->get_current_address()->eval(symtab, layout,
2376 false);
f4187277 2377 else
ea5cae92 2378 address = *dot_value;
a445fddf 2379 }
ea5cae92 2380 else
7c61d651
CC
2381 {
2382 vma_region = script_sections->find_memory_region(this, true, true, NULL);
2383 address = this->address_->eval_with_dot(symtab, layout, true,
2384 *dot_value, NULL, NULL,
2385 dot_alignment, false);
2386 if (vma_region != NULL)
2387 vma_region->set_address(address, symtab, layout);
2388 }
2389
a445fddf
ILT
2390 uint64_t align;
2391 if (this->align_ == NULL)
2392 {
2393 if (this->output_section_ == NULL)
2394 align = 0;
2395 else
2396 align = this->output_section_->addralign();
2397 }
2398 else
2399 {
77e65537 2400 Output_section* align_section;
919ed24c 2401 align = this->align_->eval_with_dot(symtab, layout, true, *dot_value,
286adcf4 2402 NULL, &align_section, NULL, false);
77e65537
ILT
2403 if (align_section != NULL)
2404 gold_warning(_("alignment of section %s is not absolute"),
2405 this->name_.c_str());
a445fddf
ILT
2406 if (this->output_section_ != NULL)
2407 this->output_section_->set_addralign(align);
2408 }
2409
2410 address = align_address(address, align);
2411
fd247bfe
ILT
2412 uint64_t start_address = address;
2413
a445fddf 2414 *dot_value = address;
a445fddf 2415
1e5d2fb1
DK
2416 // Except for NOLOAD sections, the address of non-SHF_ALLOC sections is
2417 // forced to zero, regardless of what the linker script wants.
a445fddf 2418 if (this->output_section_ != NULL
1e5d2fb1
DK
2419 && ((this->output_section_->flags() & elfcpp::SHF_ALLOC) != 0
2420 || this->output_section_->is_noload()))
a445fddf
ILT
2421 this->output_section_->set_address(address);
2422
8f2eb564
ILT
2423 this->evaluated_address_ = address;
2424 this->evaluated_addralign_ = align;
2425
ea5cae92
NC
2426 uint64_t laddr;
2427
8f2eb564 2428 if (this->load_address_ == NULL)
ea5cae92
NC
2429 {
2430 Output_section_definition* previous_section;
2431
2432 // Determine if an LMA region has been set for this section.
7c61d651 2433 lma_region = script_sections->find_memory_region(this, false, false,
ea5cae92
NC
2434 &previous_section);
2435
2436 if (lma_region != NULL)
2437 {
2438 if (previous_section == NULL)
2439 // The LMA address was explicitly set to the given region.
2440 laddr = lma_region->get_current_address()->eval(symtab, layout,
2441 false);
2442 else
2443 {
2444 // We are not going to use the discovered lma_region, so
2445 // make sure that we do not update it in the code below.
2446 lma_region = NULL;
2447
2448 if (this->address_ != NULL || previous_section == this)
2449 {
2450 // Either an explicit VMA address has been set, or an
2451 // explicit VMA region has been set, so set the LMA equal to
2452 // the VMA.
2453 laddr = address;
2454 }
2455 else
2456 {
2457 // The LMA address was not explicitly or implicitly set.
2458 //
2459 // We have been given the first memory region that is
2460 // compatible with the current section and a pointer to the
2461 // last section to use this region. Set the LMA of this
2462 // section so that the difference between its' VMA and LMA
2463 // is the same as the difference between the VMA and LMA of
2464 // the last section in the given region.
2465 laddr = address + (previous_section->evaluated_load_address_
2466 - previous_section->evaluated_address_);
2467 }
2468 }
2469
2470 if (this->output_section_ != NULL)
2471 this->output_section_->set_load_address(laddr);
2472 }
2473 else
2474 {
2475 // Do not set the load address of the output section, if one exists.
2476 // This allows future sections to determine what the load address
2477 // should be. If none is ever set, it will default to being the
2478 // same as the vma address.
2479 laddr = address;
2480 }
2481 }
8f2eb564 2482 else
a445fddf 2483 {
ea5cae92
NC
2484 laddr = this->load_address_->eval_with_dot(symtab, layout, true,
2485 *dot_value,
2486 this->output_section_,
286adcf4 2487 NULL, NULL, false);
8f2eb564 2488 if (this->output_section_ != NULL)
55458500 2489 this->output_section_->set_load_address(laddr);
a445fddf
ILT
2490 }
2491
ea5cae92
NC
2492 this->evaluated_load_address_ = laddr;
2493
a445fddf
ILT
2494 uint64_t subalign;
2495 if (this->subalign_ == NULL)
2496 subalign = 0;
2497 else
2498 {
77e65537 2499 Output_section* subalign_section;
919ed24c
ILT
2500 subalign = this->subalign_->eval_with_dot(symtab, layout, true,
2501 *dot_value, NULL,
286adcf4
CC
2502 &subalign_section, NULL,
2503 false);
77e65537
ILT
2504 if (subalign_section != NULL)
2505 gold_warning(_("subalign of section %s is not absolute"),
2506 this->name_.c_str());
a445fddf
ILT
2507 }
2508
2509 std::string fill;
2510 if (this->fill_ != NULL)
2511 {
2512 // FIXME: The GNU linker supports fill values of arbitrary
2513 // length.
77e65537 2514 Output_section* fill_section;
919ed24c 2515 uint64_t fill_val = this->fill_->eval_with_dot(symtab, layout, true,
a445fddf 2516 *dot_value,
f6973bdc 2517 NULL, &fill_section,
286adcf4 2518 NULL, false);
77e65537
ILT
2519 if (fill_section != NULL)
2520 gold_warning(_("fill of section %s is not absolute"),
2521 this->name_.c_str());
a445fddf
ILT
2522 unsigned char fill_buff[4];
2523 elfcpp::Swap_unaligned<32, true>::writeval(fill_buff, fill_val);
2524 fill.assign(reinterpret_cast<char*>(fill_buff), 4);
2525 }
2526
2527 Input_section_list input_sections;
2528 if (this->output_section_ != NULL)
2529 {
2530 // Get the list of input sections attached to this output
2531 // section. This will leave the output section with only
2532 // Output_section_data entries.
2533 address += this->output_section_->get_input_sections(address,
2534 fill,
2535 &input_sections);
2536 *dot_value = address;
2537 }
2538
77e65537 2539 Output_section* dot_section = this->output_section_;
a445fddf
ILT
2540 for (Output_section_elements::iterator p = this->elements_.begin();
2541 p != this->elements_.end();
2542 ++p)
2543 (*p)->set_section_addresses(symtab, layout, this->output_section_,
f6973bdc
ILT
2544 subalign, dot_value, dot_alignment,
2545 &dot_section, &fill, &input_sections);
a445fddf
ILT
2546
2547 gold_assert(input_sections.empty());
fd247bfe 2548
ea5cae92
NC
2549 if (vma_region != NULL)
2550 {
2551 // Update the VMA region being used by the section now that we know how
2552 // big it is. Use the current address in the region, rather than
2553 // start_address because that might have been aligned upwards and we
2554 // need to allow for the padding.
2555 Expression* addr = vma_region->get_current_address();
2556 uint64_t size = *dot_value - addr->eval(symtab, layout, false);
2557
2558 vma_region->increment_offset(this->get_section_name(), size,
2559 symtab, layout);
2560 }
2561
2562 // If the LMA region is different from the VMA region, then increment the
2563 // offset there as well. Note that we use the same "dot_value -
2564 // start_address" formula that is used in the load_address assignment below.
2565 if (lma_region != NULL && lma_region != vma_region)
2566 lma_region->increment_offset(this->get_section_name(),
2567 *dot_value - start_address,
2568 symtab, layout);
2569
2570 // Compute the load address for the following section.
2571 if (this->output_section_ == NULL)
fd247bfe 2572 *load_address = *dot_value;
ea5cae92
NC
2573 else if (this->load_address_ == NULL)
2574 {
2575 if (lma_region == NULL)
2576 *load_address = *dot_value;
2577 else
2578 *load_address =
2579 lma_region->get_current_address()->eval(symtab, layout, false);
2580 }
fd247bfe
ILT
2581 else
2582 *load_address = (this->output_section_->load_address()
2583 + (*dot_value - start_address));
2d924fd9
ILT
2584
2585 if (this->output_section_ != NULL)
2586 {
2587 if (this->is_relro_)
2588 this->output_section_->set_is_relro();
2589 else
2590 this->output_section_->clear_is_relro();
1e5d2fb1
DK
2591
2592 // If this is a NOLOAD section, keep dot and load address unchanged.
2593 if (this->output_section_->is_noload())
2594 {
2595 *dot_value = old_dot_value;
2596 *load_address = old_load_address;
2597 }
2d924fd9 2598 }
a445fddf
ILT
2599}
2600
3802b2dd
ILT
2601// Check a constraint (ONLY_IF_RO, etc.) on an output section. If
2602// this section is constrained, and the input sections do not match,
2603// return the constraint, and set *POSD.
2604
2605Section_constraint
2606Output_section_definition::check_constraint(Output_section_definition** posd)
2607{
2608 switch (this->constraint_)
2609 {
2610 case CONSTRAINT_NONE:
2611 return CONSTRAINT_NONE;
2612
2613 case CONSTRAINT_ONLY_IF_RO:
2614 if (this->output_section_ != NULL
2615 && (this->output_section_->flags() & elfcpp::SHF_WRITE) != 0)
2616 {
2617 *posd = this;
2618 return CONSTRAINT_ONLY_IF_RO;
2619 }
2620 return CONSTRAINT_NONE;
2621
2622 case CONSTRAINT_ONLY_IF_RW:
2623 if (this->output_section_ != NULL
2624 && (this->output_section_->flags() & elfcpp::SHF_WRITE) == 0)
2625 {
2626 *posd = this;
2627 return CONSTRAINT_ONLY_IF_RW;
2628 }
2629 return CONSTRAINT_NONE;
2630
2631 case CONSTRAINT_SPECIAL:
2632 if (this->output_section_ != NULL)
2633 gold_error(_("SPECIAL constraints are not implemented"));
2634 return CONSTRAINT_NONE;
2635
2636 default:
2637 gold_unreachable();
2638 }
2639}
2640
2641// See if this is the alternate output section for a constrained
2642// output section. If it is, transfer the Output_section and return
2643// true. Otherwise return false.
2644
2645bool
2646Output_section_definition::alternate_constraint(
2647 Output_section_definition* posd,
2648 Section_constraint constraint)
2649{
2650 if (this->name_ != posd->name_)
2651 return false;
2652
2653 switch (constraint)
2654 {
2655 case CONSTRAINT_ONLY_IF_RO:
2656 if (this->constraint_ != CONSTRAINT_ONLY_IF_RW)
2657 return false;
2658 break;
2659
2660 case CONSTRAINT_ONLY_IF_RW:
2661 if (this->constraint_ != CONSTRAINT_ONLY_IF_RO)
2662 return false;
2663 break;
2664
2665 default:
2666 gold_unreachable();
2667 }
2668
2669 // We have found the alternate constraint. We just need to move
2670 // over the Output_section. When constraints are used properly,
2671 // THIS should not have an output_section pointer, as all the input
2672 // sections should have matched the other definition.
2673
2674 if (this->output_section_ != NULL)
2675 gold_error(_("mismatched definition for constrained sections"));
2676
2677 this->output_section_ = posd->output_section_;
2678 posd->output_section_ = NULL;
2679
2d924fd9
ILT
2680 if (this->is_relro_)
2681 this->output_section_->set_is_relro();
2682 else
2683 this->output_section_->clear_is_relro();
2684
3802b2dd
ILT
2685 return true;
2686}
2687
1c4f3631 2688// Get the list of segments to use for an allocated section when using
2cefc357 2689// a PHDRS clause.
1c4f3631
ILT
2690
2691Output_section*
2cefc357
ILT
2692Output_section_definition::allocate_to_segment(String_list** phdrs_list,
2693 bool* orphan)
1c4f3631 2694{
d103a984
RÁE
2695 // Update phdrs_list even if we don't have an output section. It
2696 // might be used by the following sections.
2697 if (this->phdrs_ != NULL)
2698 *phdrs_list = this->phdrs_;
2699
1c4f3631
ILT
2700 if (this->output_section_ == NULL)
2701 return NULL;
2702 if ((this->output_section_->flags() & elfcpp::SHF_ALLOC) == 0)
2703 return NULL;
2cefc357 2704 *orphan = false;
1c4f3631
ILT
2705 return this->output_section_;
2706}
2707
8f2eb564
ILT
2708// Look for an output section by name and return the address, the load
2709// address, the alignment, and the size. This is used when an
2710// expression refers to an output section which was not actually
2711// created. This returns true if the section was found, false
2712// otherwise.
2713
2714bool
2715Output_section_definition::get_output_section_info(const char* name,
2716 uint64_t* address,
2717 uint64_t* load_address,
2ea97941 2718 uint64_t* addralign,
8f2eb564
ILT
2719 uint64_t* size) const
2720{
2721 if (this->name_ != name)
2722 return false;
2723
2724 if (this->output_section_ != NULL)
2725 {
2726 *address = this->output_section_->address();
2727 if (this->output_section_->has_load_address())
2728 *load_address = this->output_section_->load_address();
2729 else
2730 *load_address = *address;
2ea97941 2731 *addralign = this->output_section_->addralign();
8f2eb564
ILT
2732 *size = this->output_section_->current_data_size();
2733 }
2734 else
2735 {
2736 *address = this->evaluated_address_;
2737 *load_address = this->evaluated_load_address_;
2ea97941 2738 *addralign = this->evaluated_addralign_;
8f2eb564
ILT
2739 *size = 0;
2740 }
2741
2742 return true;
2743}
2744
494e05f4
ILT
2745// Print for debugging.
2746
2747void
2748Output_section_definition::print(FILE* f) const
2749{
2750 fprintf(f, " %s ", this->name_.c_str());
2751
2752 if (this->address_ != NULL)
2753 {
2754 this->address_->print(f);
2755 fprintf(f, " ");
2756 }
2757
1e5d2fb1
DK
2758 if (this->script_section_type_ != SCRIPT_SECTION_TYPE_NONE)
2759 fprintf(f, "(%s) ",
2760 this->script_section_type_name(this->script_section_type_));
2761
494e05f4
ILT
2762 fprintf(f, ": ");
2763
2764 if (this->load_address_ != NULL)
2765 {
2766 fprintf(f, "AT(");
2767 this->load_address_->print(f);
2768 fprintf(f, ") ");
2769 }
2770
2771 if (this->align_ != NULL)
2772 {
2773 fprintf(f, "ALIGN(");
2774 this->align_->print(f);
2775 fprintf(f, ") ");
2776 }
2777
2778 if (this->subalign_ != NULL)
2779 {
2780 fprintf(f, "SUBALIGN(");
2781 this->subalign_->print(f);
2782 fprintf(f, ") ");
2783 }
2784
2785 fprintf(f, "{\n");
2786
2787 for (Output_section_elements::const_iterator p = this->elements_.begin();
2788 p != this->elements_.end();
2789 ++p)
2790 (*p)->print(f);
2791
2792 fprintf(f, " }");
2793
2794 if (this->fill_ != NULL)
2795 {
2796 fprintf(f, " = ");
2797 this->fill_->print(f);
2798 }
2799
7d26c6cc
ILT
2800 if (this->phdrs_ != NULL)
2801 {
2802 for (String_list::const_iterator p = this->phdrs_->begin();
2803 p != this->phdrs_->end();
2804 ++p)
2805 fprintf(f, " :%s", p->c_str());
2806 }
2807
494e05f4
ILT
2808 fprintf(f, "\n");
2809}
2810
1e5d2fb1
DK
2811Script_sections::Section_type
2812Output_section_definition::section_type() const
2813{
2814 switch (this->script_section_type_)
2815 {
2816 case SCRIPT_SECTION_TYPE_NONE:
2817 return Script_sections::ST_NONE;
2818 case SCRIPT_SECTION_TYPE_NOLOAD:
2819 return Script_sections::ST_NOLOAD;
2820 case SCRIPT_SECTION_TYPE_COPY:
2821 case SCRIPT_SECTION_TYPE_DSECT:
2822 case SCRIPT_SECTION_TYPE_INFO:
2823 case SCRIPT_SECTION_TYPE_OVERLAY:
2824 // There are not really support so we treat them as ST_NONE. The
2825 // parse should have issued errors for them already.
2826 return Script_sections::ST_NONE;
2827 default:
2828 gold_unreachable();
2829 }
2830}
2831
2832// Return the name of a script section type.
2833
2834const char*
ca09d69a 2835Output_section_definition::script_section_type_name(
1e5d2fb1
DK
2836 Script_section_type script_section_type)
2837{
2838 switch (script_section_type)
2839 {
2840 case SCRIPT_SECTION_TYPE_NONE:
2841 return "NONE";
2842 case SCRIPT_SECTION_TYPE_NOLOAD:
2843 return "NOLOAD";
2844 case SCRIPT_SECTION_TYPE_DSECT:
2845 return "DSECT";
2846 case SCRIPT_SECTION_TYPE_COPY:
2847 return "COPY";
2848 case SCRIPT_SECTION_TYPE_INFO:
2849 return "INFO";
2850 case SCRIPT_SECTION_TYPE_OVERLAY:
2851 return "OVERLAY";
2852 default:
2853 gold_unreachable();
2854 }
2855}
2856
7f8cd844
NC
2857void
2858Output_section_definition::set_memory_region(Memory_region* mr, bool set_vma)
2859{
2860 gold_assert(mr != NULL);
2861 // Add the current section to the specified region's list.
2862 mr->add_section(this, set_vma);
2863}
2864
a445fddf
ILT
2865// An output section created to hold orphaned input sections. These
2866// do not actually appear in linker scripts. However, for convenience
2867// when setting the output section addresses, we put a marker to these
2868// sections in the appropriate place in the list of SECTIONS elements.
2869
2870class Orphan_output_section : public Sections_element
2871{
2872 public:
2873 Orphan_output_section(Output_section* os)
2874 : os_(os)
2875 { }
2876
0d371ad3
ILT
2877 // Return whether the orphan output section is relro. We can just
2878 // check the output section because we always set the flag, if
2879 // needed, just after we create the Orphan_output_section.
a445fddf 2880 bool
0d371ad3
ILT
2881 is_relro() const
2882 { return this->os_->is_relro(); }
2883
2884 // Initialize OSP with an output section. This should have been
2885 // done already.
2886 void
2887 orphan_section_init(Orphan_section_placement*,
2888 Script_sections::Elements_iterator)
2889 { gold_unreachable(); }
a445fddf
ILT
2890
2891 // Set section addresses.
2892 void
f6973bdc
ILT
2893 set_section_addresses(Symbol_table*, Layout*, uint64_t*, uint64_t*,
2894 uint64_t*);
a445fddf 2895
1c4f3631 2896 // Get the list of segments to use for an allocated section when
2cefc357 2897 // using a PHDRS clause.
1c4f3631 2898 Output_section*
2cefc357 2899 allocate_to_segment(String_list**, bool*);
1c4f3631 2900
2d924fd9
ILT
2901 // Return the associated Output_section.
2902 Output_section*
2903 get_output_section() const
2904 { return this->os_; }
2905
a445fddf
ILT
2906 // Print for debugging.
2907 void
2908 print(FILE* f) const
2909 {
2910 fprintf(f, " marker for orphaned output section %s\n",
2911 this->os_->name());
2912 }
2913
2914 private:
2915 Output_section* os_;
2916};
2917
a445fddf
ILT
2918// Set section addresses.
2919
2920void
2921Orphan_output_section::set_section_addresses(Symbol_table*, Layout*,
fd247bfe 2922 uint64_t* dot_value,
f6973bdc 2923 uint64_t*,
fd247bfe 2924 uint64_t* load_address)
a445fddf 2925{
6625d24e 2926 typedef std::list<Output_section::Input_section> Input_section_list;
a445fddf 2927
fd247bfe
ILT
2928 bool have_load_address = *load_address != *dot_value;
2929
a445fddf
ILT
2930 uint64_t address = *dot_value;
2931 address = align_address(address, this->os_->addralign());
2932
9e9143bc
ST
2933 // If input section sorting is requested via --section-ordering-file or
2934 // linker plugins, then do it here. This is important because we want
2935 // any sorting specified in the linker scripts, which will be done after
2936 // this, to take precedence. The final order of input sections is then
2937 // guaranteed to be according to the linker script specification.
2938 if (this->os_ != NULL
2939 && this->os_->input_section_order_specified())
2940 this->os_->sort_attached_input_sections();
2941
a94907d9
ILT
2942 // For a relocatable link, all orphan sections are put at
2943 // address 0. In general we expect all sections to be at
2944 // address 0 for a relocatable link, but we permit the linker
2945 // script to override that for specific output sections.
2946 if (parameters->options().relocatable())
2947 {
2948 address = 0;
2949 *load_address = 0;
2950 have_load_address = false;
2951 }
2952
a445fddf 2953 if ((this->os_->flags() & elfcpp::SHF_ALLOC) != 0)
fd247bfe
ILT
2954 {
2955 this->os_->set_address(address);
2956 if (have_load_address)
2957 this->os_->set_load_address(align_address(*load_address,
2958 this->os_->addralign()));
2959 }
a445fddf
ILT
2960
2961 Input_section_list input_sections;
2962 address += this->os_->get_input_sections(address, "", &input_sections);
2963
2964 for (Input_section_list::iterator p = input_sections.begin();
2965 p != input_sections.end();
2966 ++p)
2967 {
6625d24e
DK
2968 uint64_t addralign = p->addralign();
2969 if (!p->is_input_section())
2970 p->output_section_data()->finalize_data_size();
2971 uint64_t size = p->data_size();
2ea97941 2972 address = align_address(address, addralign);
6625d24e 2973 this->os_->add_script_input_section(*p);
a445fddf
ILT
2974 address += size;
2975 }
2976
2199fbe7
CC
2977 if (parameters->options().relocatable())
2978 {
2979 // For a relocatable link, reset DOT_VALUE to 0.
2980 *dot_value = 0;
2981 *load_address = 0;
2982 }
2983 else if (this->os_ == NULL
2984 || (this->os_->flags() & elfcpp::SHF_TLS) == 0
2985 || this->os_->type() != elfcpp::SHT_NOBITS)
661be1e2 2986 {
2199fbe7 2987 // An SHF_TLS/SHT_NOBITS section does not take up any address space.
661be1e2
ILT
2988 if (!have_load_address)
2989 *load_address = address;
2990 else
2991 *load_address += address - *dot_value;
fd247bfe 2992
661be1e2
ILT
2993 *dot_value = address;
2994 }
a445fddf
ILT
2995}
2996
1c4f3631
ILT
2997// Get the list of segments to use for an allocated section when using
2998// a PHDRS clause. If this is an allocated section, return the
2999// Output_section. We don't change the list of segments.
3000
3001Output_section*
2cefc357 3002Orphan_output_section::allocate_to_segment(String_list**, bool* orphan)
1c4f3631
ILT
3003{
3004 if ((this->os_->flags() & elfcpp::SHF_ALLOC) == 0)
3005 return NULL;
2cefc357 3006 *orphan = true;
1c4f3631
ILT
3007 return this->os_;
3008}
3009
3010// Class Phdrs_element. A program header from a PHDRS clause.
3011
3012class Phdrs_element
3013{
3014 public:
2ea97941
ILT
3015 Phdrs_element(const char* name, size_t namelen, unsigned int type,
3016 bool includes_filehdr, bool includes_phdrs,
1c4f3631 3017 bool is_flags_valid, unsigned int flags,
2ea97941
ILT
3018 Expression* load_address)
3019 : name_(name, namelen), type_(type), includes_filehdr_(includes_filehdr),
3020 includes_phdrs_(includes_phdrs), is_flags_valid_(is_flags_valid),
3021 flags_(flags), load_address_(load_address), load_address_value_(0),
1c4f3631
ILT
3022 segment_(NULL)
3023 { }
3024
3025 // Return the name of this segment.
3026 const std::string&
3027 name() const
3028 { return this->name_; }
3029
3030 // Return the type of the segment.
3031 unsigned int
3032 type() const
3033 { return this->type_; }
3034
3035 // Whether to include the file header.
3036 bool
3037 includes_filehdr() const
3038 { return this->includes_filehdr_; }
3039
3040 // Whether to include the program headers.
3041 bool
3042 includes_phdrs() const
3043 { return this->includes_phdrs_; }
3044
3045 // Return whether there is a load address.
3046 bool
3047 has_load_address() const
3048 { return this->load_address_ != NULL; }
3049
3050 // Evaluate the load address expression if there is one.
3051 void
2ea97941 3052 eval_load_address(Symbol_table* symtab, Layout* layout)
1c4f3631
ILT
3053 {
3054 if (this->load_address_ != NULL)
2ea97941 3055 this->load_address_value_ = this->load_address_->eval(symtab, layout,
919ed24c 3056 true);
1c4f3631
ILT
3057 }
3058
3059 // Return the load address.
3060 uint64_t
3061 load_address() const
3062 {
3063 gold_assert(this->load_address_ != NULL);
3064 return this->load_address_value_;
3065 }
3066
3067 // Create the segment.
3068 Output_segment*
3069 create_segment(Layout* layout)
3070 {
3071 this->segment_ = layout->make_output_segment(this->type_, this->flags_);
3072 return this->segment_;
3073 }
3074
3075 // Return the segment.
3076 Output_segment*
3077 segment()
3078 { return this->segment_; }
3079
20e6d0d6
DK
3080 // Release the segment.
3081 void
3082 release_segment()
3083 { this->segment_ = NULL; }
3084
1c4f3631
ILT
3085 // Set the segment flags if appropriate.
3086 void
3087 set_flags_if_valid()
3088 {
3089 if (this->is_flags_valid_)
3090 this->segment_->set_flags(this->flags_);
3091 }
3092
7d26c6cc
ILT
3093 // Print for debugging.
3094 void
3095 print(FILE*) const;
3096
1c4f3631
ILT
3097 private:
3098 // The name used in the script.
3099 std::string name_;
3100 // The type of the segment (PT_LOAD, etc.).
3101 unsigned int type_;
3102 // Whether this segment includes the file header.
3103 bool includes_filehdr_;
3104 // Whether this segment includes the section headers.
3105 bool includes_phdrs_;
3106 // Whether the flags were explicitly specified.
3107 bool is_flags_valid_;
3108 // The flags for this segment (PF_R, etc.) if specified.
3109 unsigned int flags_;
3110 // The expression for the load address for this segment. This may
3111 // be NULL.
3112 Expression* load_address_;
3113 // The actual load address from evaluating the expression.
3114 uint64_t load_address_value_;
3115 // The segment itself.
3116 Output_segment* segment_;
3117};
3118
7d26c6cc
ILT
3119// Print for debugging.
3120
3121void
3122Phdrs_element::print(FILE* f) const
3123{
3124 fprintf(f, " %s 0x%x", this->name_.c_str(), this->type_);
3125 if (this->includes_filehdr_)
3126 fprintf(f, " FILEHDR");
3127 if (this->includes_phdrs_)
3128 fprintf(f, " PHDRS");
3129 if (this->is_flags_valid_)
3130 fprintf(f, " FLAGS(%u)", this->flags_);
3131 if (this->load_address_ != NULL)
3132 {
3133 fprintf(f, " AT(");
3134 this->load_address_->print(f);
3135 fprintf(f, ")");
3136 }
3137 fprintf(f, ";\n");
3138}
3139
7f8cd844
NC
3140// Add a memory region.
3141
3142void
3143Script_sections::add_memory_region(const char* name, size_t namelen,
3144 unsigned int attributes,
3145 Expression* start, Expression* length)
3146{
3147 if (this->memory_regions_ == NULL)
3148 this->memory_regions_ = new Memory_regions();
3149 else if (this->find_memory_region(name, namelen))
3150 {
ea5cae92 3151 gold_error(_("region '%.*s' already defined"), static_cast<int>(namelen),
33dbc701 3152 name);
7f8cd844
NC
3153 // FIXME: Add a GOLD extension to allow multiple regions with the same
3154 // name. This would amount to a single region covering disjoint blocks
3155 // of memory, which is useful for embedded devices.
3156 }
3157
3158 // FIXME: Check the length and start values. Currently we allow
3159 // non-constant expressions for these values, whereas LD does not.
3160
3161 // FIXME: Add a GOLD extension to allow NEGATIVE LENGTHS. This would
3162 // describe a region that packs from the end address going down, rather
3163 // than the start address going up. This would be useful for embedded
3164 // devices.
3165
3166 this->memory_regions_->push_back(new Memory_region(name, namelen, attributes,
3167 start, length));
3168}
3169
3170// Find a memory region.
3171
3172Memory_region*
3173Script_sections::find_memory_region(const char* name, size_t namelen)
3174{
3175 if (this->memory_regions_ == NULL)
3176 return NULL;
3177
3178 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
3179 m != this->memory_regions_->end();
3180 ++m)
3181 if ((*m)->name_match(name, namelen))
3182 return *m;
3183
3184 return NULL;
3185}
3186
3187// Find a memory region's origin.
3188
3189Expression*
3190Script_sections::find_memory_region_origin(const char* name, size_t namelen)
3191{
3192 Memory_region* mr = find_memory_region(name, namelen);
3193 if (mr == NULL)
3194 return NULL;
3195
3196 return mr->start_address();
3197}
3198
3199// Find a memory region's length.
3200
3201Expression*
3202Script_sections::find_memory_region_length(const char* name, size_t namelen)
3203{
3204 Memory_region* mr = find_memory_region(name, namelen);
3205 if (mr == NULL)
3206 return NULL;
3207
3208 return mr->length();
3209}
3210
3211// Set the memory region to use for the current section.
3212
3213void
3214Script_sections::set_memory_region(Memory_region* mr, bool set_vma)
3215{
3216 gold_assert(!this->sections_elements_->empty());
3217 this->sections_elements_->back()->set_memory_region(mr, set_vma);
3218}
3219
494e05f4
ILT
3220// Class Script_sections.
3221
3222Script_sections::Script_sections()
3223 : saw_sections_clause_(false),
3224 in_sections_clause_(false),
3225 sections_elements_(NULL),
1c4f3631 3226 output_section_(NULL),
7f8cd844 3227 memory_regions_(NULL),
2d924fd9 3228 phdrs_elements_(NULL),
0d371ad3
ILT
3229 orphan_section_placement_(NULL),
3230 data_segment_align_start_(),
3231 saw_data_segment_align_(false),
3c12dcdb 3232 saw_relro_end_(false),
8086551f
CC
3233 saw_segment_start_expression_(false),
3234 segments_created_(false)
494e05f4
ILT
3235{
3236}
3237
3238// Start a SECTIONS clause.
3239
3240void
3241Script_sections::start_sections()
3242{
3243 gold_assert(!this->in_sections_clause_ && this->output_section_ == NULL);
3244 this->saw_sections_clause_ = true;
3245 this->in_sections_clause_ = true;
3246 if (this->sections_elements_ == NULL)
3247 this->sections_elements_ = new Sections_elements;
3248}
3249
3250// Finish a SECTIONS clause.
3251
3252void
3253Script_sections::finish_sections()
3254{
3255 gold_assert(this->in_sections_clause_ && this->output_section_ == NULL);
3256 this->in_sections_clause_ = false;
3257}
3258
3259// Add a symbol to be defined.
3260
3261void
3262Script_sections::add_symbol_assignment(const char* name, size_t length,
3263 Expression* val, bool provide,
3264 bool hidden)
3265{
3266 if (this->output_section_ != NULL)
3267 this->output_section_->add_symbol_assignment(name, length, val,
3268 provide, hidden);
3269 else
3270 {
3271 Sections_element* p = new Sections_element_assignment(name, length,
3272 val, provide,
3273 hidden);
3274 this->sections_elements_->push_back(p);
3275 }
3276}
3277
a445fddf
ILT
3278// Add an assignment to the special dot symbol.
3279
3280void
3281Script_sections::add_dot_assignment(Expression* val)
3282{
3283 if (this->output_section_ != NULL)
3284 this->output_section_->add_dot_assignment(val);
3285 else
3286 {
12edd763
ILT
3287 // The GNU linker permits assignments to . to appears outside of
3288 // a SECTIONS clause, and treats it as appearing inside, so
3289 // sections_elements_ may be NULL here.
3290 if (this->sections_elements_ == NULL)
3291 {
3292 this->sections_elements_ = new Sections_elements;
3293 this->saw_sections_clause_ = true;
3294 }
3295
a445fddf
ILT
3296 Sections_element* p = new Sections_element_dot_assignment(val);
3297 this->sections_elements_->push_back(p);
3298 }
3299}
3300
494e05f4
ILT
3301// Add an assertion.
3302
3303void
3304Script_sections::add_assertion(Expression* check, const char* message,
3305 size_t messagelen)
3306{
3307 if (this->output_section_ != NULL)
3308 this->output_section_->add_assertion(check, message, messagelen);
3309 else
3310 {
3311 Sections_element* p = new Sections_element_assertion(check, message,
3312 messagelen);
3313 this->sections_elements_->push_back(p);
3314 }
3315}
3316
3317// Start processing entries for an output section.
3318
3319void
3320Script_sections::start_output_section(
3321 const char* name,
3322 size_t namelen,
ca09d69a 3323 const Parser_output_section_header* header)
494e05f4
ILT
3324{
3325 Output_section_definition* posd = new Output_section_definition(name,
3326 namelen,
3327 header);
3328 this->sections_elements_->push_back(posd);
3329 gold_assert(this->output_section_ == NULL);
3330 this->output_section_ = posd;
3331}
3332
3333// Stop processing entries for an output section.
3334
3335void
3336Script_sections::finish_output_section(
3337 const Parser_output_section_trailer* trailer)
3338{
3339 gold_assert(this->output_section_ != NULL);
3340 this->output_section_->finish(trailer);
3341 this->output_section_ = NULL;
3342}
3343
3344// Add a data item to the current output section.
3345
3346void
3347Script_sections::add_data(int size, bool is_signed, Expression* val)
3348{
3349 gold_assert(this->output_section_ != NULL);
3350 this->output_section_->add_data(size, is_signed, val);
3351}
3352
3353// Add a fill value setting to the current output section.
3354
3355void
3356Script_sections::add_fill(Expression* val)
3357{
3358 gold_assert(this->output_section_ != NULL);
3359 this->output_section_->add_fill(val);
3360}
3361
3362// Add an input section specification to the current output section.
3363
3364void
3365Script_sections::add_input_section(const Input_section_spec* spec, bool keep)
3366{
3367 gold_assert(this->output_section_ != NULL);
3368 this->output_section_->add_input_section(spec, keep);
3369}
3370
2d924fd9
ILT
3371// This is called when we see DATA_SEGMENT_ALIGN. It means that any
3372// subsequent output sections may be relro.
3373
3374void
3375Script_sections::data_segment_align()
3376{
0d371ad3 3377 if (this->saw_data_segment_align_)
2d924fd9 3378 gold_error(_("DATA_SEGMENT_ALIGN may only appear once in a linker script"));
0d371ad3
ILT
3379 gold_assert(!this->sections_elements_->empty());
3380 Sections_elements::iterator p = this->sections_elements_->end();
3381 --p;
3382 this->data_segment_align_start_ = p;
3383 this->saw_data_segment_align_ = true;
2d924fd9
ILT
3384}
3385
3386// This is called when we see DATA_SEGMENT_RELRO_END. It means that
3387// any output sections seen since DATA_SEGMENT_ALIGN are relro.
3388
3389void
3390Script_sections::data_segment_relro_end()
3391{
3392 if (this->saw_relro_end_)
3393 gold_error(_("DATA_SEGMENT_RELRO_END may only appear once "
3394 "in a linker script"));
3395 this->saw_relro_end_ = true;
3396
0d371ad3 3397 if (!this->saw_data_segment_align_)
2d924fd9
ILT
3398 gold_error(_("DATA_SEGMENT_RELRO_END must follow DATA_SEGMENT_ALIGN"));
3399 else
3400 {
0d371ad3
ILT
3401 Sections_elements::iterator p = this->data_segment_align_start_;
3402 for (++p; p != this->sections_elements_->end(); ++p)
3403 (*p)->set_is_relro();
2d924fd9
ILT
3404 }
3405}
3406
919ed24c
ILT
3407// Create any required sections.
3408
3409void
3410Script_sections::create_sections(Layout* layout)
3411{
3412 if (!this->saw_sections_clause_)
3413 return;
3414 for (Sections_elements::iterator p = this->sections_elements_->begin();
3415 p != this->sections_elements_->end();
3416 ++p)
3417 (*p)->create_sections(layout);
3418}
3419
a445fddf
ILT
3420// Add any symbols we are defining to the symbol table.
3421
3422void
3423Script_sections::add_symbols_to_table(Symbol_table* symtab)
3424{
3425 if (!this->saw_sections_clause_)
3426 return;
3427 for (Sections_elements::iterator p = this->sections_elements_->begin();
3428 p != this->sections_elements_->end();
3429 ++p)
3430 (*p)->add_symbols_to_table(symtab);
3431}
3432
3433// Finalize symbols and check assertions.
3434
3435void
3436Script_sections::finalize_symbols(Symbol_table* symtab, const Layout* layout)
3437{
3438 if (!this->saw_sections_clause_)
3439 return;
a445fddf
ILT
3440 uint64_t dot_value = 0;
3441 for (Sections_elements::iterator p = this->sections_elements_->begin();
3442 p != this->sections_elements_->end();
3443 ++p)
77e65537 3444 (*p)->finalize_symbols(symtab, layout, &dot_value);
a445fddf
ILT
3445}
3446
3447// Return the name of the output section to use for an input file name
3448// and section name.
3449
3450const char*
1e5d2fb1
DK
3451Script_sections::output_section_name(
3452 const char* file_name,
3453 const char* section_name,
3454 Output_section*** output_section_slot,
b9b2ae8b
NC
3455 Script_sections::Section_type* psection_type,
3456 bool* keep)
a445fddf
ILT
3457{
3458 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3459 p != this->sections_elements_->end();
3460 ++p)
3461 {
3462 const char* ret = (*p)->output_section_name(file_name, section_name,
1e5d2fb1 3463 output_section_slot,
b9b2ae8b 3464 psection_type, keep);
a445fddf
ILT
3465
3466 if (ret != NULL)
3467 {
3468 // The special name /DISCARD/ means that the input section
3469 // should be discarded.
3470 if (strcmp(ret, "/DISCARD/") == 0)
3471 {
3472 *output_section_slot = NULL;
1e5d2fb1 3473 *psection_type = Script_sections::ST_NONE;
a445fddf
ILT
3474 return NULL;
3475 }
3476 return ret;
3477 }
3478 }
3479
3480 // If we couldn't find a mapping for the name, the output section
3481 // gets the name of the input section.
3482
3483 *output_section_slot = NULL;
1e5d2fb1 3484 *psection_type = Script_sections::ST_NONE;
a445fddf
ILT
3485
3486 return section_name;
3487}
3488
3489// Place a marker for an orphan output section into the SECTIONS
3490// clause.
3491
3492void
3493Script_sections::place_orphan(Output_section* os)
3494{
0d371ad3
ILT
3495 Orphan_section_placement* osp = this->orphan_section_placement_;
3496 if (osp == NULL)
a445fddf 3497 {
0d371ad3
ILT
3498 // Initialize the Orphan_section_placement structure.
3499 osp = new Orphan_section_placement();
3500 for (Sections_elements::iterator p = this->sections_elements_->begin();
3501 p != this->sections_elements_->end();
3502 ++p)
3503 (*p)->orphan_section_init(osp, p);
3504 gold_assert(!this->sections_elements_->empty());
3505 Sections_elements::iterator last = this->sections_elements_->end();
3506 --last;
3507 osp->last_init(last);
3508 this->orphan_section_placement_ = osp;
a445fddf
ILT
3509 }
3510
0d371ad3 3511 Orphan_output_section* orphan = new Orphan_output_section(os);
2d924fd9 3512
0d371ad3
ILT
3513 // Look for where to put ORPHAN.
3514 Sections_elements::iterator* where;
3515 if (osp->find_place(os, &where))
3516 {
3517 if ((**where)->is_relro())
3518 os->set_is_relro();
3519 else
3520 os->clear_is_relro();
3521
3522 // We want to insert ORPHAN after *WHERE, and then update *WHERE
3523 // so that the next one goes after this one.
3524 Sections_elements::iterator p = *where;
3525 gold_assert(p != this->sections_elements_->end());
3526 ++p;
3527 *where = this->sections_elements_->insert(p, orphan);
3528 }
2d924fd9 3529 else
0d371ad3
ILT
3530 {
3531 os->clear_is_relro();
3532 // We don't have a place to put this orphan section. Put it,
3533 // and all other sections like it, at the end, but before the
3534 // sections which always come at the end.
3535 Sections_elements::iterator last = osp->last_place();
3536 *where = this->sections_elements_->insert(last, orphan);
3537 }
a445fddf
ILT
3538}
3539
3540// Set the addresses of all the output sections. Walk through all the
3541// elements, tracking the dot symbol. Apply assignments which set
3542// absolute symbol values, in case they are used when setting dot.
3543// Fill in data statement values. As we find output sections, set the
3544// address, set the address of all associated input sections, and
3545// update dot. Return the segment which should hold the file header
3546// and segment headers, if any.
3547
3548Output_segment*
3549Script_sections::set_section_addresses(Symbol_table* symtab, Layout* layout)
3550{
3551 gold_assert(this->saw_sections_clause_);
7f8cd844 3552
3802b2dd
ILT
3553 // Implement ONLY_IF_RO/ONLY_IF_RW constraints. These are a pain
3554 // for our representation.
3555 for (Sections_elements::iterator p = this->sections_elements_->begin();
3556 p != this->sections_elements_->end();
3557 ++p)
3558 {
3559 Output_section_definition* posd;
3560 Section_constraint failed_constraint = (*p)->check_constraint(&posd);
3561 if (failed_constraint != CONSTRAINT_NONE)
3562 {
3563 Sections_elements::iterator q;
3564 for (q = this->sections_elements_->begin();
3565 q != this->sections_elements_->end();
3566 ++q)
3567 {
3568 if (q != p)
3569 {
3570 if ((*q)->alternate_constraint(posd, failed_constraint))
3571 break;
3572 }
3573 }
3574
3575 if (q == this->sections_elements_->end())
3576 gold_error(_("no matching section constraint"));
3577 }
3578 }
3579
2d924fd9
ILT
3580 // Force the alignment of the first TLS section to be the maximum
3581 // alignment of all TLS sections.
3582 Output_section* first_tls = NULL;
3583 uint64_t tls_align = 0;
3584 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
3585 p != this->sections_elements_->end();
3586 ++p)
3587 {
ca09d69a 3588 Output_section* os = (*p)->get_output_section();
2d924fd9
ILT
3589 if (os != NULL && (os->flags() & elfcpp::SHF_TLS) != 0)
3590 {
3591 if (first_tls == NULL)
3592 first_tls = os;
3593 if (os->addralign() > tls_align)
3594 tls_align = os->addralign();
3595 }
3596 }
3597 if (first_tls != NULL)
3598 first_tls->set_addralign(tls_align);
3599
77e65537 3600 // For a relocatable link, we implicitly set dot to zero.
a445fddf 3601 uint64_t dot_value = 0;
f6973bdc 3602 uint64_t dot_alignment = 0;
fd247bfe 3603 uint64_t load_address = 0;
3c12dcdb
DK
3604
3605 // Check to see if we want to use any of -Ttext, -Tdata and -Tbss options
3606 // to set section addresses. If the script has any SEGMENT_START
3607 // expression, we do not set the section addresses.
3608 bool use_tsection_options =
3609 (!this->saw_segment_start_expression_
3610 && (parameters->options().user_set_Ttext()
3611 || parameters->options().user_set_Tdata()
3612 || parameters->options().user_set_Tbss()));
3613
a445fddf
ILT
3614 for (Sections_elements::iterator p = this->sections_elements_->begin();
3615 p != this->sections_elements_->end();
3616 ++p)
3c12dcdb
DK
3617 {
3618 Output_section* os = (*p)->get_output_section();
3619
3620 // Handle -Ttext, -Tdata and -Tbss options. We do this by looking for
3621 // the special sections by names and doing dot assignments.
3622 if (use_tsection_options
3623 && os != NULL
3624 && (os->flags() & elfcpp::SHF_ALLOC) != 0)
3625 {
3626 uint64_t new_dot_value = dot_value;
3627
3628 if (parameters->options().user_set_Ttext()
3629 && strcmp(os->name(), ".text") == 0)
3630 new_dot_value = parameters->options().Ttext();
3631 else if (parameters->options().user_set_Tdata()
3632 && strcmp(os->name(), ".data") == 0)
3633 new_dot_value = parameters->options().Tdata();
3634 else if (parameters->options().user_set_Tbss()
3635 && strcmp(os->name(), ".bss") == 0)
3636 new_dot_value = parameters->options().Tbss();
3637
3638 // Update dot and load address if necessary.
3639 if (new_dot_value < dot_value)
3640 gold_error(_("dot may not move backward"));
3641 else if (new_dot_value != dot_value)
3642 {
3643 dot_value = new_dot_value;
3644 load_address = new_dot_value;
3645 }
3646 }
3647
f6973bdc
ILT
3648 (*p)->set_section_addresses(symtab, layout, &dot_value, &dot_alignment,
3649 &load_address);
3c12dcdb 3650 }
a445fddf 3651
1c4f3631
ILT
3652 if (this->phdrs_elements_ != NULL)
3653 {
3654 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
3655 p != this->phdrs_elements_->end();
3656 ++p)
3657 (*p)->eval_load_address(symtab, layout);
3658 }
3659
f6973bdc 3660 return this->create_segments(layout, dot_alignment);
a445fddf
ILT
3661}
3662
3663// Sort the sections in order to put them into segments.
3664
3665class Sort_output_sections
3666{
3667 public:
eb373049
ILT
3668 Sort_output_sections(const Script_sections::Sections_elements* elements)
3669 : elements_(elements)
3670 { }
3671
a445fddf
ILT
3672 bool
3673 operator()(const Output_section* os1, const Output_section* os2) const;
eb373049
ILT
3674
3675 private:
fd7a005d
ILT
3676 int
3677 script_compare(const Output_section* os1, const Output_section* os2) const;
eb373049
ILT
3678
3679 private:
3680 const Script_sections::Sections_elements* elements_;
a445fddf
ILT
3681};
3682
3683bool
3684Sort_output_sections::operator()(const Output_section* os1,
3685 const Output_section* os2) const
3686{
3687 // Sort first by the load address.
3688 uint64_t lma1 = (os1->has_load_address()
3689 ? os1->load_address()
3690 : os1->address());
3691 uint64_t lma2 = (os2->has_load_address()
3692 ? os2->load_address()
3693 : os2->address());
3694 if (lma1 != lma2)
3695 return lma1 < lma2;
3696
3697 // Then sort by the virtual address.
3698 if (os1->address() != os2->address())
3699 return os1->address() < os2->address();
3700
fd7a005d
ILT
3701 // If the linker script says which of these sections is first, go
3702 // with what it says.
3703 int i = this->script_compare(os1, os2);
3704 if (i != 0)
3705 return i < 0;
3706
0aa45fac
CC
3707 // Sort PROGBITS before NOBITS.
3708 bool nobits1 = os1->type() == elfcpp::SHT_NOBITS;
3709 bool nobits2 = os2->type() == elfcpp::SHT_NOBITS;
3710 if (nobits1 != nobits2)
3711 return nobits2;
3712
3713 // Sort PROGBITS TLS sections to the end, NOBITS TLS sections to the
3714 // beginning.
a445fddf
ILT
3715 bool tls1 = (os1->flags() & elfcpp::SHF_TLS) != 0;
3716 bool tls2 = (os2->flags() & elfcpp::SHF_TLS) != 0;
3717 if (tls1 != tls2)
0aa45fac 3718 return nobits1 ? tls1 : tls2;
a445fddf 3719
1e5d2fb1
DK
3720 // Sort non-NOLOAD before NOLOAD.
3721 if (os1->is_noload() && !os2->is_noload())
3722 return true;
3723 if (!os1->is_noload() && os2->is_noload())
3724 return true;
fd7a005d
ILT
3725
3726 // The sections seem practically identical. Sort by name to get a
3727 // stable sort.
3728 return os1->name() < os2->name();
eb373049
ILT
3729}
3730
fd7a005d
ILT
3731// Return -1 if OS1 comes before OS2 in ELEMENTS_, 1 if comes after, 0
3732// if either OS1 or OS2 is not mentioned. This ensures that we keep
3733// empty sections in the order in which they appear in a linker
3734// script.
eb373049 3735
fd7a005d
ILT
3736int
3737Sort_output_sections::script_compare(const Output_section* os1,
3738 const Output_section* os2) const
eb373049
ILT
3739{
3740 if (this->elements_ == NULL)
fd7a005d 3741 return 0;
eb373049 3742
fd7a005d
ILT
3743 bool found_os1 = false;
3744 bool found_os2 = false;
eb373049
ILT
3745 for (Script_sections::Sections_elements::const_iterator
3746 p = this->elements_->begin();
3747 p != this->elements_->end();
3748 ++p)
3749 {
fd7a005d 3750 if (os2 == (*p)->get_output_section())
eb373049 3751 {
fd7a005d
ILT
3752 if (found_os1)
3753 return -1;
3754 found_os2 = true;
3755 }
3756 else if (os1 == (*p)->get_output_section())
3757 {
3758 if (found_os2)
3759 return 1;
3760 found_os1 = true;
eb373049
ILT
3761 }
3762 }
3763
fd7a005d 3764 return 0;
a445fddf
ILT
3765}
3766
3767// Return whether OS is a BSS section. This is a SHT_NOBITS section.
3768// We treat a section with the SHF_TLS flag set as taking up space
3769// even if it is SHT_NOBITS (this is true of .tbss), as we allocate
3770// space for them in the file.
3771
3772bool
3773Script_sections::is_bss_section(const Output_section* os)
3774{
3775 return (os->type() == elfcpp::SHT_NOBITS
3776 && (os->flags() & elfcpp::SHF_TLS) == 0);
3777}
3778
1c4f3631
ILT
3779// Return the size taken by the file header and the program headers.
3780
3781size_t
3782Script_sections::total_header_size(Layout* layout) const
3783{
3784 size_t segment_count = layout->segment_count();
3785 size_t file_header_size;
3786 size_t segment_headers_size;
8851ecca 3787 if (parameters->target().get_size() == 32)
1c4f3631
ILT
3788 {
3789 file_header_size = elfcpp::Elf_sizes<32>::ehdr_size;
3790 segment_headers_size = segment_count * elfcpp::Elf_sizes<32>::phdr_size;
3791 }
8851ecca 3792 else if (parameters->target().get_size() == 64)
1c4f3631
ILT
3793 {
3794 file_header_size = elfcpp::Elf_sizes<64>::ehdr_size;
3795 segment_headers_size = segment_count * elfcpp::Elf_sizes<64>::phdr_size;
3796 }
3797 else
3798 gold_unreachable();
3799
3800 return file_header_size + segment_headers_size;
3801}
3802
9b547ce6 3803// Return the amount we have to subtract from the LMA to accommodate
1c4f3631
ILT
3804// headers of the given size. The complication is that the file
3805// header have to be at the start of a page, as otherwise it will not
3806// be at the start of the file.
3807
3808uint64_t
3809Script_sections::header_size_adjustment(uint64_t lma,
3810 size_t sizeof_headers) const
3811{
8851ecca 3812 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
1c4f3631
ILT
3813 uint64_t hdr_lma = lma - sizeof_headers;
3814 hdr_lma &= ~(abi_pagesize - 1);
3815 return lma - hdr_lma;
3816}
3817
a445fddf
ILT
3818// Create the PT_LOAD segments when using a SECTIONS clause. Returns
3819// the segment which should hold the file header and segment headers,
3820// if any.
3821
3822Output_segment*
f6973bdc 3823Script_sections::create_segments(Layout* layout, uint64_t dot_alignment)
a445fddf
ILT
3824{
3825 gold_assert(this->saw_sections_clause_);
3826
8851ecca 3827 if (parameters->options().relocatable())
a445fddf
ILT
3828 return NULL;
3829
1c4f3631 3830 if (this->saw_phdrs_clause())
f6973bdc 3831 return create_segments_from_phdrs_clause(layout, dot_alignment);
1c4f3631 3832
a445fddf
ILT
3833 Layout::Section_list sections;
3834 layout->get_allocated_sections(&sections);
3835
3836 // Sort the sections by address.
eb373049
ILT
3837 std::stable_sort(sections.begin(), sections.end(),
3838 Sort_output_sections(this->sections_elements_));
a445fddf
ILT
3839
3840 this->create_note_and_tls_segments(layout, &sections);
3841
3842 // Walk through the sections adding them to PT_LOAD segments.
8851ecca 3843 const uint64_t abi_pagesize = parameters->target().abi_pagesize();
a445fddf
ILT
3844 Output_segment* first_seg = NULL;
3845 Output_segment* current_seg = NULL;
3846 bool is_current_seg_readonly = true;
3847 Layout::Section_list::iterator plast = sections.end();
3848 uint64_t last_vma = 0;
3849 uint64_t last_lma = 0;
3850 uint64_t last_size = 0;
3851 for (Layout::Section_list::iterator p = sections.begin();
3852 p != sections.end();
3853 ++p)
3854 {
3855 const uint64_t vma = (*p)->address();
3856 const uint64_t lma = ((*p)->has_load_address()
3857 ? (*p)->load_address()
3858 : vma);
3859 const uint64_t size = (*p)->current_data_size();
3860
3861 bool need_new_segment;
3862 if (current_seg == NULL)
3863 need_new_segment = true;
3864 else if (lma - vma != last_lma - last_vma)
3865 {
3866 // This section has a different LMA relationship than the
3867 // last one; we need a new segment.
3868 need_new_segment = true;
3869 }
3870 else if (align_address(last_lma + last_size, abi_pagesize)
3871 < align_address(lma, abi_pagesize))
3872 {
3873 // Putting this section in the segment would require
3874 // skipping a page.
3875 need_new_segment = true;
3876 }
3877 else if (is_bss_section(*plast) && !is_bss_section(*p))
3878 {
3879 // A non-BSS section can not follow a BSS section in the
3880 // same segment.
3881 need_new_segment = true;
3882 }
3883 else if (is_current_seg_readonly
af6156ef
ILT
3884 && ((*p)->flags() & elfcpp::SHF_WRITE) != 0
3885 && !parameters->options().omagic())
a445fddf
ILT
3886 {
3887 // Don't put a writable section in the same segment as a
3888 // non-writable section.
3889 need_new_segment = true;
3890 }
3891 else
3892 {
3893 // Otherwise, reuse the existing segment.
3894 need_new_segment = false;
3895 }
3896
3897 elfcpp::Elf_Word seg_flags =
3898 Layout::section_flags_to_segment((*p)->flags());
3899
3900 if (need_new_segment)
3901 {
3902 current_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3903 seg_flags);
3904 current_seg->set_addresses(vma, lma);
f6973bdc 3905 current_seg->set_minimum_p_align(dot_alignment);
a445fddf
ILT
3906 if (first_seg == NULL)
3907 first_seg = current_seg;
3908 is_current_seg_readonly = true;
3909 }
3910
22f0da72 3911 current_seg->add_output_section_to_load(layout, *p, seg_flags);
a445fddf
ILT
3912
3913 if (((*p)->flags() & elfcpp::SHF_WRITE) != 0)
3914 is_current_seg_readonly = false;
3915
3916 plast = p;
3917 last_vma = vma;
3918 last_lma = lma;
3919 last_size = size;
3920 }
3921
3922 // An ELF program should work even if the program headers are not in
3923 // a PT_LOAD segment. However, it appears that the Linux kernel
3924 // does not set the AT_PHDR auxiliary entry in that case. It sets
3925 // the load address to p_vaddr - p_offset of the first PT_LOAD
3926 // segment. It then sets AT_PHDR to the load address plus the
3927 // offset to the program headers, e_phoff in the file header. This
3928 // fails when the program headers appear in the file before the
3929 // first PT_LOAD segment. Therefore, we always create a PT_LOAD
3930 // segment to hold the file header and the program headers. This is
3931 // effectively what the GNU linker does, and it is slightly more
3932 // efficient in any case. We try to use the first PT_LOAD segment
3933 // if we can, otherwise we make a new one.
3934
919ed24c
ILT
3935 if (first_seg == NULL)
3936 return NULL;
3937
3ee173de
ILT
3938 // -n or -N mean that the program is not demand paged and there is
3939 // no need to put the program headers in a PT_LOAD segment.
3940 if (parameters->options().nmagic() || parameters->options().omagic())
3941 return NULL;
3942
1c4f3631 3943 size_t sizeof_headers = this->total_header_size(layout);
3802b2dd 3944
919ed24c
ILT
3945 uint64_t vma = first_seg->vaddr();
3946 uint64_t lma = first_seg->paddr();
3947
3948 uint64_t subtract = this->header_size_adjustment(lma, sizeof_headers);
3949
e6188289
ILT
3950 if ((lma & (abi_pagesize - 1)) >= sizeof_headers)
3951 {
3952 first_seg->set_addresses(vma - subtract, lma - subtract);
3953 return first_seg;
3954 }
3955
919ed24c
ILT
3956 // If there is no room to squeeze in the headers, then punt. The
3957 // resulting executable probably won't run on GNU/Linux, but we
3958 // trust that the user knows what they are doing.
3959 if (lma < subtract || vma < subtract)
3960 return NULL;
3961
ea5cae92
NC
3962 // If memory regions have been specified and the address range
3963 // we are about to use is not contained within any region then
3964 // issue a warning message about the segment we are going to
3965 // create. It will be outside of any region and so possibly
3966 // using non-existent or protected memory. We test LMA rather
3967 // than VMA since we assume that the headers will never be
3968 // relocated.
3969 if (this->memory_regions_ != NULL
3970 && !this->block_in_region (NULL, layout, lma - subtract, subtract))
3971 gold_warning(_("creating a segment to contain the file and program"
3972 " headers outside of any MEMORY region"));
3973
a445fddf
ILT
3974 Output_segment* load_seg = layout->make_output_segment(elfcpp::PT_LOAD,
3975 elfcpp::PF_R);
919ed24c 3976 load_seg->set_addresses(vma - subtract, lma - subtract);
a445fddf
ILT
3977
3978 return load_seg;
3979}
3980
3981// Create a PT_NOTE segment for each SHT_NOTE section and a PT_TLS
3982// segment if there are any SHT_TLS sections.
3983
3984void
3985Script_sections::create_note_and_tls_segments(
3986 Layout* layout,
3987 const Layout::Section_list* sections)
3988{
1c4f3631
ILT
3989 gold_assert(!this->saw_phdrs_clause());
3990
a445fddf
ILT
3991 bool saw_tls = false;
3992 for (Layout::Section_list::const_iterator p = sections->begin();
3993 p != sections->end();
3994 ++p)
3995 {
3996 if ((*p)->type() == elfcpp::SHT_NOTE)
3997 {
3998 elfcpp::Elf_Word seg_flags =
3999 Layout::section_flags_to_segment((*p)->flags());
4000 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_NOTE,
4001 seg_flags);
22f0da72 4002 oseg->add_output_section_to_nonload(*p, seg_flags);
a445fddf
ILT
4003
4004 // Incorporate any subsequent SHT_NOTE sections, in the
4005 // hopes that the script is sensible.
4006 Layout::Section_list::const_iterator pnext = p + 1;
4007 while (pnext != sections->end()
4008 && (*pnext)->type() == elfcpp::SHT_NOTE)
4009 {
4010 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
22f0da72 4011 oseg->add_output_section_to_nonload(*pnext, seg_flags);
a445fddf
ILT
4012 p = pnext;
4013 ++pnext;
4014 }
4015 }
4016
4017 if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4018 {
4019 if (saw_tls)
4020 gold_error(_("TLS sections are not adjacent"));
4021
4022 elfcpp::Elf_Word seg_flags =
4023 Layout::section_flags_to_segment((*p)->flags());
4024 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_TLS,
4025 seg_flags);
22f0da72 4026 oseg->add_output_section_to_nonload(*p, seg_flags);
a445fddf
ILT
4027
4028 Layout::Section_list::const_iterator pnext = p + 1;
4029 while (pnext != sections->end()
4030 && ((*pnext)->flags() & elfcpp::SHF_TLS) != 0)
4031 {
4032 seg_flags = Layout::section_flags_to_segment((*pnext)->flags());
22f0da72 4033 oseg->add_output_section_to_nonload(*pnext, seg_flags);
a445fddf
ILT
4034 p = pnext;
4035 ++pnext;
4036 }
4037
4038 saw_tls = true;
4039 }
10b4f102 4040
8086551f
CC
4041 // If we see a section named .interp then put the .interp section
4042 // in a PT_INTERP segment.
e1f74f98
ILT
4043 // This is for GNU ld compatibility.
4044 if (strcmp((*p)->name(), ".interp") == 0)
10b4f102
ILT
4045 {
4046 elfcpp::Elf_Word seg_flags =
4047 Layout::section_flags_to_segment((*p)->flags());
4048 Output_segment* oseg = layout->make_output_segment(elfcpp::PT_INTERP,
4049 seg_flags);
4050 oseg->add_output_section_to_nonload(*p, seg_flags);
4051 }
a445fddf 4052 }
8086551f
CC
4053
4054 this->segments_created_ = true;
a445fddf
ILT
4055}
4056
1c4f3631
ILT
4057// Add a program header. The PHDRS clause is syntactically distinct
4058// from the SECTIONS clause, but we implement it with the SECTIONS
55458500 4059// support because PHDRS is useless if there is no SECTIONS clause.
1c4f3631
ILT
4060
4061void
4062Script_sections::add_phdr(const char* name, size_t namelen, unsigned int type,
4063 bool includes_filehdr, bool includes_phdrs,
4064 bool is_flags_valid, unsigned int flags,
4065 Expression* load_address)
4066{
4067 if (this->phdrs_elements_ == NULL)
4068 this->phdrs_elements_ = new Phdrs_elements();
4069 this->phdrs_elements_->push_back(new Phdrs_element(name, namelen, type,
4070 includes_filehdr,
4071 includes_phdrs,
4072 is_flags_valid, flags,
4073 load_address));
4074}
4075
3802b2dd
ILT
4076// Return the number of segments we expect to create based on the
4077// SECTIONS clause. This is used to implement SIZEOF_HEADERS.
4078
4079size_t
4080Script_sections::expected_segment_count(const Layout* layout) const
4081{
8086551f
CC
4082 // If we've already created the segments, we won't be adding any more.
4083 if (this->segments_created_)
4084 return 0;
4085
1c4f3631
ILT
4086 if (this->saw_phdrs_clause())
4087 return this->phdrs_elements_->size();
4088
3802b2dd
ILT
4089 Layout::Section_list sections;
4090 layout->get_allocated_sections(&sections);
4091
4092 // We assume that we will need two PT_LOAD segments.
4093 size_t ret = 2;
4094
4095 bool saw_note = false;
4096 bool saw_tls = false;
8086551f 4097 bool saw_interp = false;
3802b2dd
ILT
4098 for (Layout::Section_list::const_iterator p = sections.begin();
4099 p != sections.end();
4100 ++p)
4101 {
4102 if ((*p)->type() == elfcpp::SHT_NOTE)
4103 {
4104 // Assume that all note sections will fit into a single
4105 // PT_NOTE segment.
4106 if (!saw_note)
4107 {
4108 ++ret;
4109 saw_note = true;
4110 }
4111 }
4112 else if (((*p)->flags() & elfcpp::SHF_TLS) != 0)
4113 {
4114 // There can only be one PT_TLS segment.
4115 if (!saw_tls)
4116 {
4117 ++ret;
4118 saw_tls = true;
4119 }
4120 }
8086551f
CC
4121 else if (strcmp((*p)->name(), ".interp") == 0)
4122 {
4123 // There can only be one PT_INTERP segment.
4124 if (!saw_interp)
4125 {
4126 ++ret;
4127 saw_interp = true;
4128 }
4129 }
3802b2dd
ILT
4130 }
4131
4132 return ret;
4133}
4134
1c4f3631
ILT
4135// Create the segments from a PHDRS clause. Return the segment which
4136// should hold the file header and program headers, if any.
4137
4138Output_segment*
f6973bdc
ILT
4139Script_sections::create_segments_from_phdrs_clause(Layout* layout,
4140 uint64_t dot_alignment)
1c4f3631
ILT
4141{
4142 this->attach_sections_using_phdrs_clause(layout);
f6973bdc 4143 return this->set_phdrs_clause_addresses(layout, dot_alignment);
1c4f3631
ILT
4144}
4145
4146// Create the segments from the PHDRS clause, and put the output
4147// sections in them.
4148
4149void
4150Script_sections::attach_sections_using_phdrs_clause(Layout* layout)
4151{
4152 typedef std::map<std::string, Output_segment*> Name_to_segment;
4153 Name_to_segment name_to_segment;
4154 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4155 p != this->phdrs_elements_->end();
4156 ++p)
4157 name_to_segment[(*p)->name()] = (*p)->create_segment(layout);
8086551f 4158 this->segments_created_ = true;
1c4f3631
ILT
4159
4160 // Walk through the output sections and attach them to segments.
4161 // Output sections in the script which do not list segments are
4162 // attached to the same set of segments as the immediately preceding
4163 // output section.
20e6d0d6 4164
1c4f3631 4165 String_list* phdr_names = NULL;
20e6d0d6 4166 bool load_segments_only = false;
1c4f3631
ILT
4167 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4168 p != this->sections_elements_->end();
4169 ++p)
4170 {
aecf301f 4171 bool is_orphan;
20e6d0d6 4172 String_list* old_phdr_names = phdr_names;
aecf301f 4173 Output_section* os = (*p)->allocate_to_segment(&phdr_names, &is_orphan);
1c4f3631
ILT
4174 if (os == NULL)
4175 continue;
4176
aecf301f
ILT
4177 elfcpp::Elf_Word seg_flags =
4178 Layout::section_flags_to_segment(os->flags());
4179
1c4f3631
ILT
4180 if (phdr_names == NULL)
4181 {
aecf301f
ILT
4182 // Don't worry about empty orphan sections.
4183 if (is_orphan && os->current_data_size() > 0)
4184 gold_error(_("allocated section %s not in any segment"),
4185 os->name());
4186
4187 // To avoid later crashes drop this section into the first
4188 // PT_LOAD segment.
4189 for (Phdrs_elements::const_iterator ppe =
4190 this->phdrs_elements_->begin();
4191 ppe != this->phdrs_elements_->end();
4192 ++ppe)
4193 {
4194 Output_segment* oseg = (*ppe)->segment();
4195 if (oseg->type() == elfcpp::PT_LOAD)
4196 {
4197 oseg->add_output_section_to_load(layout, os, seg_flags);
4198 break;
4199 }
4200 }
4201
1c4f3631
ILT
4202 continue;
4203 }
4204
20e6d0d6
DK
4205 // We see a list of segments names. Disable PT_LOAD segment only
4206 // filtering.
4207 if (old_phdr_names != phdr_names)
4208 load_segments_only = false;
4209
2cefc357
ILT
4210 // If this is an orphan section--one that was not explicitly
4211 // mentioned in the linker script--then it should not inherit
4212 // any segment type other than PT_LOAD. Otherwise, e.g., the
4213 // PT_INTERP segment will pick up following orphan sections,
4214 // which does not make sense. If this is not an orphan section,
4215 // we trust the linker script.
aecf301f 4216 if (is_orphan)
2cefc357 4217 {
20e6d0d6
DK
4218 // Enable PT_LOAD segments only filtering until we see another
4219 // list of segment names.
4220 load_segments_only = true;
2cefc357
ILT
4221 }
4222
1c4f3631
ILT
4223 bool in_load_segment = false;
4224 for (String_list::const_iterator q = phdr_names->begin();
4225 q != phdr_names->end();
4226 ++q)
4227 {
4228 Name_to_segment::const_iterator r = name_to_segment.find(*q);
4229 if (r == name_to_segment.end())
4230 gold_error(_("no segment %s"), q->c_str());
4231 else
4232 {
20e6d0d6
DK
4233 if (load_segments_only
4234 && r->second->type() != elfcpp::PT_LOAD)
4235 continue;
4236
22f0da72
ILT
4237 if (r->second->type() != elfcpp::PT_LOAD)
4238 r->second->add_output_section_to_nonload(os, seg_flags);
4239 else
1c4f3631 4240 {
22f0da72 4241 r->second->add_output_section_to_load(layout, os, seg_flags);
1c4f3631
ILT
4242 if (in_load_segment)
4243 gold_error(_("section in two PT_LOAD segments"));
4244 in_load_segment = true;
4245 }
4246 }
4247 }
4248
4249 if (!in_load_segment)
4250 gold_error(_("allocated section not in any PT_LOAD segment"));
4251 }
4252}
4253
4254// Set the addresses for segments created from a PHDRS clause. Return
4255// the segment which should hold the file header and program headers,
4256// if any.
4257
4258Output_segment*
f6973bdc
ILT
4259Script_sections::set_phdrs_clause_addresses(Layout* layout,
4260 uint64_t dot_alignment)
1c4f3631
ILT
4261{
4262 Output_segment* load_seg = NULL;
4263 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4264 p != this->phdrs_elements_->end();
4265 ++p)
4266 {
4267 // Note that we have to set the flags after adding the output
4268 // sections to the segment, as adding an output segment can
4269 // change the flags.
4270 (*p)->set_flags_if_valid();
4271
4272 Output_segment* oseg = (*p)->segment();
4273
4274 if (oseg->type() != elfcpp::PT_LOAD)
4275 {
4276 // The addresses of non-PT_LOAD segments are set from the
4277 // PT_LOAD segments.
4278 if ((*p)->has_load_address())
4279 gold_error(_("may only specify load address for PT_LOAD segment"));
4280 continue;
4281 }
4282
f6973bdc
ILT
4283 oseg->set_minimum_p_align(dot_alignment);
4284
1c4f3631
ILT
4285 // The output sections should have addresses from the SECTIONS
4286 // clause. The addresses don't have to be in order, so find the
4287 // one with the lowest load address. Use that to set the
4288 // address of the segment.
4289
4290 Output_section* osec = oseg->section_with_lowest_load_address();
4291 if (osec == NULL)
4292 {
4293 oseg->set_addresses(0, 0);
4294 continue;
4295 }
4296
4297 uint64_t vma = osec->address();
4298 uint64_t lma = osec->has_load_address() ? osec->load_address() : vma;
4299
4300 // Override the load address of the section with the load
4301 // address specified for the segment.
4302 if ((*p)->has_load_address())
4303 {
4304 if (osec->has_load_address())
4305 gold_warning(_("PHDRS load address overrides "
4306 "section %s load address"),
4307 osec->name());
4308
4309 lma = (*p)->load_address();
4310 }
4311
4312 bool headers = (*p)->includes_filehdr() && (*p)->includes_phdrs();
4313 if (!headers && ((*p)->includes_filehdr() || (*p)->includes_phdrs()))
4314 {
4315 // We could support this if we wanted to.
4316 gold_error(_("using only one of FILEHDR and PHDRS is "
4317 "not currently supported"));
4318 }
4319 if (headers)
4320 {
4321 size_t sizeof_headers = this->total_header_size(layout);
4322 uint64_t subtract = this->header_size_adjustment(lma,
4323 sizeof_headers);
4324 if (lma >= subtract && vma >= subtract)
4325 {
4326 lma -= subtract;
4327 vma -= subtract;
4328 }
4329 else
4330 {
4331 gold_error(_("sections loaded on first page without room "
4332 "for file and program headers "
4333 "are not supported"));
4334 }
4335
4336 if (load_seg != NULL)
4337 gold_error(_("using FILEHDR and PHDRS on more than one "
4338 "PT_LOAD segment is not currently supported"));
4339 load_seg = oseg;
4340 }
4341
4342 oseg->set_addresses(vma, lma);
4343 }
4344
4345 return load_seg;
4346}
4347
4348// Add the file header and segment headers to non-load segments
4349// specified in the PHDRS clause.
4350
4351void
4352Script_sections::put_headers_in_phdrs(Output_data* file_header,
4353 Output_data* segment_headers)
4354{
4355 gold_assert(this->saw_phdrs_clause());
4356 for (Phdrs_elements::iterator p = this->phdrs_elements_->begin();
4357 p != this->phdrs_elements_->end();
4358 ++p)
4359 {
4360 if ((*p)->type() != elfcpp::PT_LOAD)
4361 {
4362 if ((*p)->includes_phdrs())
4363 (*p)->segment()->add_initial_output_data(segment_headers);
4364 if ((*p)->includes_filehdr())
4365 (*p)->segment()->add_initial_output_data(file_header);
4366 }
4367 }
4368}
4369
8f2eb564
ILT
4370// Look for an output section by name and return the address, the load
4371// address, the alignment, and the size. This is used when an
4372// expression refers to an output section which was not actually
4373// created. This returns true if the section was found, false
4374// otherwise.
4375
4376bool
4377Script_sections::get_output_section_info(const char* name, uint64_t* address,
4378 uint64_t* load_address,
2ea97941 4379 uint64_t* addralign,
8f2eb564
ILT
4380 uint64_t* size) const
4381{
4382 if (!this->saw_sections_clause_)
4383 return false;
4384 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4385 p != this->sections_elements_->end();
4386 ++p)
2ea97941 4387 if ((*p)->get_output_section_info(name, address, load_address, addralign,
8f2eb564
ILT
4388 size))
4389 return true;
4390 return false;
4391}
4392
20e6d0d6
DK
4393// Release all Output_segments. This remove all pointers to all
4394// Output_segments.
4395
4396void
4397Script_sections::release_segments()
4398{
4399 if (this->saw_phdrs_clause())
4400 {
4401 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4402 p != this->phdrs_elements_->end();
4403 ++p)
4404 (*p)->release_segment();
4405 }
4406}
4407
494e05f4
ILT
4408// Print the SECTIONS clause to F for debugging.
4409
4410void
4411Script_sections::print(FILE* f) const
4412{
7f8cd844
NC
4413 if (this->phdrs_elements_ != NULL)
4414 {
4415 fprintf(f, "PHDRS {\n");
4416 for (Phdrs_elements::const_iterator p = this->phdrs_elements_->begin();
4417 p != this->phdrs_elements_->end();
4418 ++p)
4419 (*p)->print(f);
4420 fprintf(f, "}\n");
4421 }
4422
4423 if (this->memory_regions_ != NULL)
4424 {
4425 fprintf(f, "MEMORY {\n");
4426 for (Memory_regions::const_iterator m = this->memory_regions_->begin();
4427 m != this->memory_regions_->end();
4428 ++m)
4429 (*m)->print(f);
4430 fprintf(f, "}\n");
4431 }
4432
494e05f4
ILT
4433 if (!this->saw_sections_clause_)
4434 return;
4435
4436 fprintf(f, "SECTIONS {\n");
4437
4438 for (Sections_elements::const_iterator p = this->sections_elements_->begin();
4439 p != this->sections_elements_->end();
4440 ++p)
4441 (*p)->print(f);
4442
4443 fprintf(f, "}\n");
4444}
4445
4446} // End namespace gold.
This page took 0.575833 seconds and 4 git commands to generate.