* tui/tui-data.c (tui_prev_win): Guard against NULL.
[deliverable/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
6cb15b7f
ILT
3// Copyright 2006, 2007 Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
14bfc3f5
ILT
25#include <stdint.h>
26#include <string>
27#include <utility>
28
29#include "object.h"
dbe717ef 30#include "dynobj.h"
75f65a3e 31#include "output.h"
61ba1cf9 32#include "target.h"
645f8123 33#include "workqueue.h"
14bfc3f5
ILT
34#include "symtab.h"
35
36namespace gold
37{
38
39// Class Symbol.
40
ead1e424
ILT
41// Initialize fields in Symbol. This initializes everything except u_
42// and source_.
14bfc3f5 43
14bfc3f5 44void
ead1e424
ILT
45Symbol::init_fields(const char* name, const char* version,
46 elfcpp::STT type, elfcpp::STB binding,
47 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
48{
49 this->name_ = name;
50 this->version_ = version;
c06b7b0b
ILT
51 this->symtab_index_ = 0;
52 this->dynsym_index_ = 0;
ead1e424 53 this->got_offset_ = 0;
f4151f89 54 this->plt_offset_ = 0;
ead1e424
ILT
55 this->type_ = type;
56 this->binding_ = binding;
57 this->visibility_ = visibility;
58 this->nonvis_ = nonvis;
59 this->is_target_special_ = false;
1564db8d
ILT
60 this->is_def_ = false;
61 this->is_forwarder_ = false;
aeddab66 62 this->has_alias_ = false;
c06b7b0b 63 this->needs_dynsym_entry_ = false;
008db82e 64 this->in_reg_ = false;
ead1e424
ILT
65 this->in_dyn_ = false;
66 this->has_got_offset_ = false;
f4151f89 67 this->has_plt_offset_ = false;
f6ce93d6 68 this->has_warning_ = false;
46fe1623 69 this->is_copied_from_dynobj_ = false;
d61c6bd4 70 this->needs_value_in_got_ = false;
ead1e424
ILT
71}
72
73// Initialize the fields in the base class Symbol for SYM in OBJECT.
74
75template<int size, bool big_endian>
76void
77Symbol::init_base(const char* name, const char* version, Object* object,
78 const elfcpp::Sym<size, big_endian>& sym)
79{
80 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
81 sym.get_st_visibility(), sym.get_st_nonvis());
82 this->u_.from_object.object = object;
83 // FIXME: Handle SHN_XINDEX.
16649710 84 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 85 this->source_ = FROM_OBJECT;
008db82e 86 this->in_reg_ = !object->is_dynamic();
1564db8d 87 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
88}
89
ead1e424
ILT
90// Initialize the fields in the base class Symbol for a symbol defined
91// in an Output_data.
92
93void
94Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
95 elfcpp::STB binding, elfcpp::STV visibility,
96 unsigned char nonvis, bool offset_is_from_end)
97{
98 this->init_fields(name, NULL, type, binding, visibility, nonvis);
99 this->u_.in_output_data.output_data = od;
100 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
101 this->source_ = IN_OUTPUT_DATA;
008db82e 102 this->in_reg_ = true;
ead1e424
ILT
103}
104
105// Initialize the fields in the base class Symbol for a symbol defined
106// in an Output_segment.
107
108void
109Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
110 elfcpp::STB binding, elfcpp::STV visibility,
111 unsigned char nonvis, Segment_offset_base offset_base)
112{
113 this->init_fields(name, NULL, type, binding, visibility, nonvis);
114 this->u_.in_output_segment.output_segment = os;
115 this->u_.in_output_segment.offset_base = offset_base;
116 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 117 this->in_reg_ = true;
ead1e424
ILT
118}
119
120// Initialize the fields in the base class Symbol for a symbol defined
121// as a constant.
122
123void
124Symbol::init_base(const char* name, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->source_ = CONSTANT;
008db82e 130 this->in_reg_ = true;
ead1e424
ILT
131}
132
133// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
134
135template<int size>
136template<bool big_endian>
137void
138Sized_symbol<size>::init(const char* name, const char* version, Object* object,
139 const elfcpp::Sym<size, big_endian>& sym)
140{
141 this->init_base(name, version, object, sym);
142 this->value_ = sym.get_st_value();
ead1e424
ILT
143 this->symsize_ = sym.get_st_size();
144}
145
146// Initialize the fields in Sized_symbol for a symbol defined in an
147// Output_data.
148
149template<int size>
150void
151Sized_symbol<size>::init(const char* name, Output_data* od,
152 Value_type value, Size_type symsize,
153 elfcpp::STT type, elfcpp::STB binding,
154 elfcpp::STV visibility, unsigned char nonvis,
155 bool offset_is_from_end)
156{
157 this->init_base(name, od, type, binding, visibility, nonvis,
158 offset_is_from_end);
159 this->value_ = value;
160 this->symsize_ = symsize;
161}
162
163// Initialize the fields in Sized_symbol for a symbol defined in an
164// Output_segment.
165
166template<int size>
167void
168Sized_symbol<size>::init(const char* name, Output_segment* os,
169 Value_type value, Size_type symsize,
170 elfcpp::STT type, elfcpp::STB binding,
171 elfcpp::STV visibility, unsigned char nonvis,
172 Segment_offset_base offset_base)
173{
174 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
175 this->value_ = value;
176 this->symsize_ = symsize;
177}
178
179// Initialize the fields in Sized_symbol for a symbol defined as a
180// constant.
181
182template<int size>
183void
184Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
185 elfcpp::STT type, elfcpp::STB binding,
186 elfcpp::STV visibility, unsigned char nonvis)
187{
188 this->init_base(name, type, binding, visibility, nonvis);
189 this->value_ = value;
190 this->symsize_ = symsize;
14bfc3f5
ILT
191}
192
436ca963
ILT
193// Return true if this symbol should be added to the dynamic symbol
194// table.
195
196inline bool
197Symbol::should_add_dynsym_entry() const
198{
199 // If the symbol is used by a dynamic relocation, we need to add it.
200 if (this->needs_dynsym_entry())
201 return true;
202
203 // If exporting all symbols or building a shared library,
204 // and the symbol is defined in a regular object and is
205 // externally visible, we need to add it.
206 if ((parameters->export_dynamic() || parameters->output_is_shared())
207 && !this->is_from_dynobj()
208 && this->is_externally_visible())
209 return true;
210
211 return false;
212}
213
b3b74ddc
ILT
214// Return true if the final value of this symbol is known at link
215// time.
216
217bool
218Symbol::final_value_is_known() const
219{
220 // If we are not generating an executable, then no final values are
221 // known, since they will change at runtime.
222 if (!parameters->output_is_executable())
223 return false;
224
225 // If the symbol is not from an object file, then it is defined, and
226 // known.
227 if (this->source_ != FROM_OBJECT)
228 return true;
229
230 // If the symbol is from a dynamic object, then the final value is
231 // not known.
232 if (this->object()->is_dynamic())
233 return false;
234
235 // If the symbol is not undefined (it is defined or common), then
236 // the final value is known.
237 if (!this->is_undefined())
238 return true;
239
240 // If the symbol is undefined, then whether the final value is known
241 // depends on whether we are doing a static link. If we are doing a
242 // dynamic link, then the final value could be filled in at runtime.
243 // This could reasonably be the case for a weak undefined symbol.
244 return parameters->doing_static_link();
245}
246
14bfc3f5
ILT
247// Class Symbol_table.
248
249Symbol_table::Symbol_table()
9025d29d 250 : saw_undefined_(0), offset_(0), table_(), namepool_(),
f6ce93d6 251 forwarders_(), commons_(), warnings_()
14bfc3f5
ILT
252{
253}
254
255Symbol_table::~Symbol_table()
256{
257}
258
259// The hash function. The key is always canonicalized, so we use a
260// simple combination of the pointers.
261
262size_t
263Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
264{
f0641a0b 265 return key.first ^ key.second;
14bfc3f5
ILT
266}
267
268// The symbol table key equality function. This is only called with
269// canonicalized name and version strings, so we can use pointer
270// comparison.
271
272bool
273Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
274 const Symbol_table_key& k2) const
275{
276 return k1.first == k2.first && k1.second == k2.second;
277}
278
279// Make TO a symbol which forwards to FROM.
280
281void
282Symbol_table::make_forwarder(Symbol* from, Symbol* to)
283{
a3ad94ed
ILT
284 gold_assert(from != to);
285 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
286 this->forwarders_[from] = to;
287 from->set_forwarder();
288}
289
61ba1cf9
ILT
290// Resolve the forwards from FROM, returning the real symbol.
291
14bfc3f5 292Symbol*
c06b7b0b 293Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 294{
a3ad94ed 295 gold_assert(from->is_forwarder());
c06b7b0b 296 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 297 this->forwarders_.find(from);
a3ad94ed 298 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
299 return p->second;
300}
301
61ba1cf9
ILT
302// Look up a symbol by name.
303
304Symbol*
305Symbol_table::lookup(const char* name, const char* version) const
306{
f0641a0b
ILT
307 Stringpool::Key name_key;
308 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
309 if (name == NULL)
310 return NULL;
f0641a0b
ILT
311
312 Stringpool::Key version_key = 0;
61ba1cf9
ILT
313 if (version != NULL)
314 {
f0641a0b 315 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
316 if (version == NULL)
317 return NULL;
318 }
319
f0641a0b 320 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
321 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
322 if (p == this->table_.end())
323 return NULL;
324 return p->second;
325}
326
14bfc3f5
ILT
327// Resolve a Symbol with another Symbol. This is only used in the
328// unusual case where there are references to both an unversioned
329// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
330// version is the default version. Because this is unusual, we do
331// this the slow way, by converting back to an ELF symbol.
14bfc3f5 332
1564db8d 333template<int size, bool big_endian>
14bfc3f5 334void
14b31740
ILT
335Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
336 const char* version ACCEPT_SIZE_ENDIAN)
14bfc3f5 337{
1564db8d
ILT
338 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
339 elfcpp::Sym_write<size, big_endian> esym(buf);
340 // We don't bother to set the st_name field.
341 esym.put_st_value(from->value());
342 esym.put_st_size(from->symsize());
343 esym.put_st_info(from->binding(), from->type());
ead1e424 344 esym.put_st_other(from->visibility(), from->nonvis());
16649710 345 esym.put_st_shndx(from->shndx());
aeddab66 346 this->resolve(to, esym.sym(), from->object(), version);
1ebd95fd
ILT
347 if (from->in_reg())
348 to->set_in_reg();
349 if (from->in_dyn())
350 to->set_in_dyn();
14bfc3f5
ILT
351}
352
353// Add one symbol from OBJECT to the symbol table. NAME is symbol
354// name and VERSION is the version; both are canonicalized. DEF is
355// whether this is the default version.
356
357// If DEF is true, then this is the definition of a default version of
358// a symbol. That means that any lookup of NAME/NULL and any lookup
359// of NAME/VERSION should always return the same symbol. This is
360// obvious for references, but in particular we want to do this for
361// definitions: overriding NAME/NULL should also override
362// NAME/VERSION. If we don't do that, it would be very hard to
363// override functions in a shared library which uses versioning.
364
365// We implement this by simply making both entries in the hash table
366// point to the same Symbol structure. That is easy enough if this is
367// the first time we see NAME/NULL or NAME/VERSION, but it is possible
368// that we have seen both already, in which case they will both have
369// independent entries in the symbol table. We can't simply change
370// the symbol table entry, because we have pointers to the entries
371// attached to the object files. So we mark the entry attached to the
372// object file as a forwarder, and record it in the forwarders_ map.
373// Note that entries in the hash table will never be marked as
374// forwarders.
375
376template<int size, bool big_endian>
aeddab66 377Sized_symbol<size>*
f6ce93d6 378Symbol_table::add_from_object(Object* object,
14bfc3f5 379 const char *name,
f0641a0b
ILT
380 Stringpool::Key name_key,
381 const char *version,
382 Stringpool::Key version_key,
383 bool def,
14bfc3f5
ILT
384 const elfcpp::Sym<size, big_endian>& sym)
385{
386 Symbol* const snull = NULL;
387 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
388 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
389 snull));
14bfc3f5
ILT
390
391 std::pair<typename Symbol_table_type::iterator, bool> insdef =
392 std::make_pair(this->table_.end(), false);
393 if (def)
394 {
f0641a0b
ILT
395 const Stringpool::Key vnull_key = 0;
396 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
397 vnull_key),
14bfc3f5
ILT
398 snull));
399 }
400
401 // ins.first: an iterator, which is a pointer to a pair.
402 // ins.first->first: the key (a pair of name and version).
403 // ins.first->second: the value (Symbol*).
404 // ins.second: true if new entry was inserted, false if not.
405
1564db8d 406 Sized_symbol<size>* ret;
ead1e424
ILT
407 bool was_undefined;
408 bool was_common;
14bfc3f5
ILT
409 if (!ins.second)
410 {
411 // We already have an entry for NAME/VERSION.
593f47df
ILT
412 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (ins.first->second
413 SELECT_SIZE(size));
a3ad94ed 414 gold_assert(ret != NULL);
ead1e424
ILT
415
416 was_undefined = ret->is_undefined();
417 was_common = ret->is_common();
418
aeddab66 419 this->resolve(ret, sym, object, version);
14bfc3f5
ILT
420
421 if (def)
422 {
423 if (insdef.second)
424 {
425 // This is the first time we have seen NAME/NULL. Make
426 // NAME/NULL point to NAME/VERSION.
427 insdef.first->second = ret;
428 }
dbe717ef 429 else if (insdef.first->second != ret)
14bfc3f5
ILT
430 {
431 // This is the unfortunate case where we already have
432 // entries for both NAME/VERSION and NAME/NULL.
274e99f9 433 const Sized_symbol<size>* sym2;
593f47df 434 sym2 = this->get_sized_symbol SELECT_SIZE_NAME(size) (
5482377d
ILT
435 insdef.first->second
436 SELECT_SIZE(size));
593f47df 437 Symbol_table::resolve SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
14b31740 438 ret, sym2, version SELECT_SIZE_ENDIAN(size, big_endian));
14bfc3f5
ILT
439 this->make_forwarder(insdef.first->second, ret);
440 insdef.first->second = ret;
441 }
442 }
443 }
444 else
445 {
446 // This is the first time we have seen NAME/VERSION.
a3ad94ed 447 gold_assert(ins.first->second == NULL);
ead1e424
ILT
448
449 was_undefined = false;
450 was_common = false;
451
14bfc3f5
ILT
452 if (def && !insdef.second)
453 {
14b31740
ILT
454 // We already have an entry for NAME/NULL. If we override
455 // it, then change it to NAME/VERSION.
593f47df
ILT
456 ret = this->get_sized_symbol SELECT_SIZE_NAME(size) (
457 insdef.first->second
458 SELECT_SIZE(size));
aeddab66 459 this->resolve(ret, sym, object, version);
14bfc3f5
ILT
460 ins.first->second = ret;
461 }
462 else
463 {
f6ce93d6
ILT
464 Sized_target<size, big_endian>* target =
465 object->sized_target SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
466 SELECT_SIZE_ENDIAN_ONLY(size, big_endian));
1564db8d
ILT
467 if (!target->has_make_symbol())
468 ret = new Sized_symbol<size>();
469 else
14bfc3f5 470 {
1564db8d
ILT
471 ret = target->make_symbol();
472 if (ret == NULL)
14bfc3f5
ILT
473 {
474 // This means that we don't want a symbol table
475 // entry after all.
476 if (!def)
477 this->table_.erase(ins.first);
478 else
479 {
480 this->table_.erase(insdef.first);
481 // Inserting insdef invalidated ins.
f0641a0b
ILT
482 this->table_.erase(std::make_pair(name_key,
483 version_key));
14bfc3f5
ILT
484 }
485 return NULL;
486 }
487 }
14bfc3f5 488
1564db8d
ILT
489 ret->init(name, version, object, sym);
490
14bfc3f5
ILT
491 ins.first->second = ret;
492 if (def)
493 {
494 // This is the first time we have seen NAME/NULL. Point
495 // it at the new entry for NAME/VERSION.
a3ad94ed 496 gold_assert(insdef.second);
14bfc3f5
ILT
497 insdef.first->second = ret;
498 }
499 }
500 }
501
ead1e424
ILT
502 // Record every time we see a new undefined symbol, to speed up
503 // archive groups.
504 if (!was_undefined && ret->is_undefined())
505 ++this->saw_undefined_;
506
507 // Keep track of common symbols, to speed up common symbol
508 // allocation.
509 if (!was_common && ret->is_common())
510 this->commons_.push_back(ret);
511
14bfc3f5
ILT
512 return ret;
513}
514
f6ce93d6 515// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
516
517template<int size, bool big_endian>
518void
dbe717ef
ILT
519Symbol_table::add_from_relobj(
520 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 521 const unsigned char* syms,
14bfc3f5
ILT
522 size_t count,
523 const char* sym_names,
524 size_t sym_name_size,
730cdc88 525 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 526{
9025d29d
ILT
527 gold_assert(size == relobj->target()->get_size());
528 gold_assert(size == parameters->get_size());
14bfc3f5 529
a783673b
ILT
530 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
531
f6ce93d6 532 const unsigned char* p = syms;
a783673b 533 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
534 {
535 elfcpp::Sym<size, big_endian> sym(p);
a783673b 536 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 537
a783673b 538 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
539 if (st_name >= sym_name_size)
540 {
75f2446e
ILT
541 relobj->error(_("bad global symbol name offset %u at %zu"),
542 st_name, i);
543 continue;
14bfc3f5
ILT
544 }
545
dbe717ef
ILT
546 const char* name = sym_names + st_name;
547
a783673b
ILT
548 // A symbol defined in a section which we are not including must
549 // be treated as an undefined symbol.
550 unsigned char symbuf[sym_size];
551 elfcpp::Sym<size, big_endian> sym2(symbuf);
552 unsigned int st_shndx = psym->get_st_shndx();
553 if (st_shndx != elfcpp::SHN_UNDEF
554 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 555 && !relobj->is_section_included(st_shndx))
a783673b
ILT
556 {
557 memcpy(symbuf, p, sym_size);
558 elfcpp::Sym_write<size, big_endian> sw(symbuf);
559 sw.put_st_shndx(elfcpp::SHN_UNDEF);
560 psym = &sym2;
561 }
562
14bfc3f5
ILT
563 // In an object file, an '@' in the name separates the symbol
564 // name from the version name. If there are two '@' characters,
565 // this is the default version.
566 const char* ver = strchr(name, '@');
567
aeddab66 568 Sized_symbol<size>* res;
14bfc3f5
ILT
569 if (ver == NULL)
570 {
f0641a0b 571 Stringpool::Key name_key;
cfd73a4e 572 name = this->namepool_.add(name, true, &name_key);
dbe717ef 573 res = this->add_from_object(relobj, name, name_key, NULL, 0,
f0641a0b 574 false, *psym);
14bfc3f5
ILT
575 }
576 else
577 {
f0641a0b 578 Stringpool::Key name_key;
cfd73a4e 579 name = this->namepool_.add_prefix(name, ver - name, &name_key);
f0641a0b 580
14bfc3f5
ILT
581 bool def = false;
582 ++ver;
583 if (*ver == '@')
584 {
585 def = true;
586 ++ver;
587 }
f0641a0b
ILT
588
589 Stringpool::Key ver_key;
cfd73a4e 590 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 591
dbe717ef 592 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
f0641a0b 593 def, *psym);
14bfc3f5
ILT
594 }
595
730cdc88 596 (*sympointers)[i] = res;
14bfc3f5
ILT
597 }
598}
599
dbe717ef
ILT
600// Add all the symbols in a dynamic object to the hash table.
601
602template<int size, bool big_endian>
603void
604Symbol_table::add_from_dynobj(
605 Sized_dynobj<size, big_endian>* dynobj,
606 const unsigned char* syms,
607 size_t count,
608 const char* sym_names,
609 size_t sym_name_size,
610 const unsigned char* versym,
611 size_t versym_size,
612 const std::vector<const char*>* version_map)
613{
9025d29d
ILT
614 gold_assert(size == dynobj->target()->get_size());
615 gold_assert(size == parameters->get_size());
dbe717ef
ILT
616
617 if (versym != NULL && versym_size / 2 < count)
618 {
75f2446e
ILT
619 dynobj->error(_("too few symbol versions"));
620 return;
dbe717ef
ILT
621 }
622
623 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
624
aeddab66
ILT
625 // We keep a list of all STT_OBJECT symbols, so that we can resolve
626 // weak aliases. This is necessary because if the dynamic object
627 // provides the same variable under two names, one of which is a
628 // weak definition, and the regular object refers to the weak
629 // definition, we have to put both the weak definition and the
630 // strong definition into the dynamic symbol table. Given a weak
631 // definition, the only way that we can find the corresponding
632 // strong definition, if any, is to search the symbol table.
633 std::vector<Sized_symbol<size>*> object_symbols;
634
dbe717ef
ILT
635 const unsigned char* p = syms;
636 const unsigned char* vs = versym;
637 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
638 {
639 elfcpp::Sym<size, big_endian> sym(p);
640
641 // Ignore symbols with local binding.
642 if (sym.get_st_bind() == elfcpp::STB_LOCAL)
643 continue;
644
645 unsigned int st_name = sym.get_st_name();
646 if (st_name >= sym_name_size)
647 {
75f2446e
ILT
648 dynobj->error(_("bad symbol name offset %u at %zu"),
649 st_name, i);
650 continue;
dbe717ef
ILT
651 }
652
653 const char* name = sym_names + st_name;
654
aeddab66
ILT
655 Sized_symbol<size>* res;
656
dbe717ef
ILT
657 if (versym == NULL)
658 {
659 Stringpool::Key name_key;
cfd73a4e 660 name = this->namepool_.add(name, true, &name_key);
aeddab66
ILT
661 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
662 false, sym);
dbe717ef 663 }
aeddab66
ILT
664 else
665 {
666 // Read the version information.
dbe717ef 667
aeddab66 668 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 669
aeddab66
ILT
670 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
671 v &= elfcpp::VERSYM_VERSION;
dbe717ef 672
aeddab66
ILT
673 // The Sun documentation says that V can be VER_NDX_LOCAL,
674 // or VER_NDX_GLOBAL, or a version index. The meaning of
675 // VER_NDX_LOCAL is defined as "Symbol has local scope."
676 // The old GNU linker will happily generate VER_NDX_LOCAL
677 // for an undefined symbol. I don't know what the Sun
678 // linker will generate.
dbe717ef 679
aeddab66
ILT
680 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
681 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
682 {
683 // This symbol should not be visible outside the object.
684 continue;
685 }
64707334 686
aeddab66
ILT
687 // At this point we are definitely going to add this symbol.
688 Stringpool::Key name_key;
689 name = this->namepool_.add(name, true, &name_key);
dbe717ef 690
aeddab66
ILT
691 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
692 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
693 {
694 // This symbol does not have a version.
695 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
696 false, sym);
697 }
698 else
699 {
700 if (v >= version_map->size())
701 {
702 dynobj->error(_("versym for symbol %zu out of range: %u"),
703 i, v);
704 continue;
705 }
dbe717ef 706
aeddab66
ILT
707 const char* version = (*version_map)[v];
708 if (version == NULL)
709 {
710 dynobj->error(_("versym for symbol %zu has no name: %u"),
711 i, v);
712 continue;
713 }
dbe717ef 714
aeddab66
ILT
715 Stringpool::Key version_key;
716 version = this->namepool_.add(version, true, &version_key);
717
718 // If this is an absolute symbol, and the version name
719 // and symbol name are the same, then this is the
720 // version definition symbol. These symbols exist to
721 // support using -u to pull in particular versions. We
722 // do not want to record a version for them.
723 if (sym.get_st_shndx() == elfcpp::SHN_ABS
724 && name_key == version_key)
725 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
726 false, sym);
727 else
728 {
729 const bool def = (!hidden
730 && (sym.get_st_shndx()
731 != elfcpp::SHN_UNDEF));
732 res = this->add_from_object(dynobj, name, name_key, version,
733 version_key, def, sym);
734 }
735 }
dbe717ef
ILT
736 }
737
aeddab66
ILT
738 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
739 && sym.get_st_type() == elfcpp::STT_OBJECT)
740 object_symbols.push_back(res);
741 }
742
743 this->record_weak_aliases(&object_symbols);
744}
745
746// This is used to sort weak aliases. We sort them first by section
747// index, then by offset, then by weak ahead of strong.
748
749template<int size>
750class Weak_alias_sorter
751{
752 public:
753 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
754};
755
756template<int size>
757bool
758Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
759 const Sized_symbol<size>* s2) const
760{
761 if (s1->shndx() != s2->shndx())
762 return s1->shndx() < s2->shndx();
763 if (s1->value() != s2->value())
764 return s1->value() < s2->value();
765 if (s1->binding() != s2->binding())
766 {
767 if (s1->binding() == elfcpp::STB_WEAK)
768 return true;
769 if (s2->binding() == elfcpp::STB_WEAK)
770 return false;
771 }
772 return std::string(s1->name()) < std::string(s2->name());
773}
dbe717ef 774
aeddab66
ILT
775// SYMBOLS is a list of object symbols from a dynamic object. Look
776// for any weak aliases, and record them so that if we add the weak
777// alias to the dynamic symbol table, we also add the corresponding
778// strong symbol.
dbe717ef 779
aeddab66
ILT
780template<int size>
781void
782Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
783{
784 // Sort the vector by section index, then by offset, then by weak
785 // ahead of strong.
786 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
787
788 // Walk through the vector. For each weak definition, record
789 // aliases.
790 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
791 symbols->begin();
792 p != symbols->end();
793 ++p)
794 {
795 if ((*p)->binding() != elfcpp::STB_WEAK)
796 continue;
797
798 // Build a circular list of weak aliases. Each symbol points to
799 // the next one in the circular list.
800
801 Sized_symbol<size>* from_sym = *p;
802 typename std::vector<Sized_symbol<size>*>::const_iterator q;
803 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 804 {
aeddab66
ILT
805 if ((*q)->shndx() != from_sym->shndx()
806 || (*q)->value() != from_sym->value())
807 break;
808
809 this->weak_aliases_[from_sym] = *q;
810 from_sym->set_has_alias();
811 from_sym = *q;
dbe717ef
ILT
812 }
813
aeddab66
ILT
814 if (from_sym != *p)
815 {
816 this->weak_aliases_[from_sym] = *p;
817 from_sym->set_has_alias();
818 }
dbe717ef 819
aeddab66 820 p = q - 1;
dbe717ef
ILT
821 }
822}
823
ead1e424
ILT
824// Create and return a specially defined symbol. If ONLY_IF_REF is
825// true, then only create the symbol if there is a reference to it.
86f2e683 826// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 827// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
828
829template<int size, bool big_endian>
830Sized_symbol<size>*
306d9ef0
ILT
831Symbol_table::define_special_symbol(const Target* target, const char** pname,
832 const char** pversion, bool only_if_ref,
86f2e683 833 Sized_symbol<size>** poldsym
593f47df 834 ACCEPT_SIZE_ENDIAN)
ead1e424 835{
ead1e424
ILT
836 Symbol* oldsym;
837 Sized_symbol<size>* sym;
86f2e683
ILT
838 bool add_to_table = false;
839 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424
ILT
840
841 if (only_if_ref)
842 {
306d9ef0 843 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 844 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 845 return NULL;
306d9ef0
ILT
846
847 *pname = oldsym->name();
848 *pversion = oldsym->version();
ead1e424
ILT
849 }
850 else
851 {
14b31740 852 // Canonicalize NAME and VERSION.
f0641a0b 853 Stringpool::Key name_key;
cfd73a4e 854 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 855
14b31740 856 Stringpool::Key version_key = 0;
306d9ef0 857 if (*pversion != NULL)
cfd73a4e 858 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 859
ead1e424 860 Symbol* const snull = NULL;
ead1e424 861 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
862 this->table_.insert(std::make_pair(std::make_pair(name_key,
863 version_key),
ead1e424
ILT
864 snull));
865
866 if (!ins.second)
867 {
14b31740 868 // We already have a symbol table entry for NAME/VERSION.
ead1e424 869 oldsym = ins.first->second;
a3ad94ed 870 gold_assert(oldsym != NULL);
ead1e424
ILT
871 }
872 else
873 {
874 // We haven't seen this symbol before.
a3ad94ed 875 gold_assert(ins.first->second == NULL);
86f2e683
ILT
876 add_to_table = true;
877 add_loc = ins.first;
ead1e424
ILT
878 oldsym = NULL;
879 }
880 }
881
86f2e683
ILT
882 if (!target->has_make_symbol())
883 sym = new Sized_symbol<size>();
884 else
ead1e424 885 {
86f2e683
ILT
886 gold_assert(target->get_size() == size);
887 gold_assert(target->is_big_endian() ? big_endian : !big_endian);
888 typedef Sized_target<size, big_endian> My_target;
889 const My_target* sized_target =
890 static_cast<const My_target*>(target);
891 sym = sized_target->make_symbol();
892 if (sym == NULL)
893 return NULL;
894 }
ead1e424 895
86f2e683
ILT
896 if (add_to_table)
897 add_loc->second = sym;
898 else
899 gold_assert(oldsym != NULL);
ead1e424 900
86f2e683
ILT
901 *poldsym = this->get_sized_symbol SELECT_SIZE_NAME(size) (oldsym
902 SELECT_SIZE(size));
ead1e424
ILT
903
904 return sym;
905}
906
907// Define a symbol based on an Output_data.
908
14b31740
ILT
909Symbol*
910Symbol_table::define_in_output_data(const Target* target, const char* name,
911 const char* version, Output_data* od,
ead1e424
ILT
912 uint64_t value, uint64_t symsize,
913 elfcpp::STT type, elfcpp::STB binding,
914 elfcpp::STV visibility,
915 unsigned char nonvis,
916 bool offset_is_from_end,
917 bool only_if_ref)
918{
9025d29d 919 if (parameters->get_size() == 32)
86f2e683
ILT
920 {
921#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
922 return this->do_define_in_output_data<32>(target, name, version, od,
923 value, symsize, type, binding,
924 visibility, nonvis,
925 offset_is_from_end,
926 only_if_ref);
927#else
928 gold_unreachable();
929#endif
930 }
9025d29d 931 else if (parameters->get_size() == 64)
86f2e683
ILT
932 {
933#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
934 return this->do_define_in_output_data<64>(target, name, version, od,
935 value, symsize, type, binding,
936 visibility, nonvis,
937 offset_is_from_end,
938 only_if_ref);
939#else
940 gold_unreachable();
941#endif
942 }
ead1e424 943 else
a3ad94ed 944 gold_unreachable();
ead1e424
ILT
945}
946
947// Define a symbol in an Output_data, sized version.
948
949template<int size>
14b31740 950Sized_symbol<size>*
ead1e424 951Symbol_table::do_define_in_output_data(
14b31740 952 const Target* target,
ead1e424 953 const char* name,
14b31740 954 const char* version,
ead1e424
ILT
955 Output_data* od,
956 typename elfcpp::Elf_types<size>::Elf_Addr value,
957 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
958 elfcpp::STT type,
959 elfcpp::STB binding,
960 elfcpp::STV visibility,
961 unsigned char nonvis,
962 bool offset_is_from_end,
963 bool only_if_ref)
964{
965 Sized_symbol<size>* sym;
86f2e683 966 Sized_symbol<size>* oldsym;
ead1e424 967
9025d29d 968 if (parameters->is_big_endian())
193a53d9
ILT
969 {
970#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
971 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
306d9ef0 972 target, &name, &version, only_if_ref, &oldsym
193a53d9
ILT
973 SELECT_SIZE_ENDIAN(size, true));
974#else
975 gold_unreachable();
976#endif
977 }
ead1e424 978 else
193a53d9
ILT
979 {
980#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
981 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
306d9ef0 982 target, &name, &version, only_if_ref, &oldsym
193a53d9
ILT
983 SELECT_SIZE_ENDIAN(size, false));
984#else
985 gold_unreachable();
986#endif
987 }
ead1e424
ILT
988
989 if (sym == NULL)
14b31740 990 return NULL;
ead1e424 991
d4f5281b 992 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
993 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
994 offset_is_from_end);
14b31740 995
86f2e683
ILT
996 if (oldsym != NULL
997 && Symbol_table::should_override_with_special(oldsym))
aeddab66 998 this->override_with_special(oldsym, sym);
86f2e683 999
14b31740 1000 return sym;
ead1e424
ILT
1001}
1002
1003// Define a symbol based on an Output_segment.
1004
14b31740
ILT
1005Symbol*
1006Symbol_table::define_in_output_segment(const Target* target, const char* name,
1007 const char* version, Output_segment* os,
ead1e424
ILT
1008 uint64_t value, uint64_t symsize,
1009 elfcpp::STT type, elfcpp::STB binding,
1010 elfcpp::STV visibility,
1011 unsigned char nonvis,
1012 Symbol::Segment_offset_base offset_base,
1013 bool only_if_ref)
1014{
9025d29d 1015 if (parameters->get_size() == 32)
86f2e683
ILT
1016 {
1017#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1018 return this->do_define_in_output_segment<32>(target, name, version, os,
1019 value, symsize, type,
1020 binding, visibility, nonvis,
1021 offset_base, only_if_ref);
1022#else
1023 gold_unreachable();
1024#endif
1025 }
9025d29d 1026 else if (parameters->get_size() == 64)
86f2e683
ILT
1027 {
1028#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1029 return this->do_define_in_output_segment<64>(target, name, version, os,
1030 value, symsize, type,
1031 binding, visibility, nonvis,
1032 offset_base, only_if_ref);
1033#else
1034 gold_unreachable();
1035#endif
1036 }
ead1e424 1037 else
a3ad94ed 1038 gold_unreachable();
ead1e424
ILT
1039}
1040
1041// Define a symbol in an Output_segment, sized version.
1042
1043template<int size>
14b31740 1044Sized_symbol<size>*
ead1e424 1045Symbol_table::do_define_in_output_segment(
14b31740 1046 const Target* target,
ead1e424 1047 const char* name,
14b31740 1048 const char* version,
ead1e424
ILT
1049 Output_segment* os,
1050 typename elfcpp::Elf_types<size>::Elf_Addr value,
1051 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1052 elfcpp::STT type,
1053 elfcpp::STB binding,
1054 elfcpp::STV visibility,
1055 unsigned char nonvis,
1056 Symbol::Segment_offset_base offset_base,
1057 bool only_if_ref)
1058{
1059 Sized_symbol<size>* sym;
86f2e683 1060 Sized_symbol<size>* oldsym;
ead1e424 1061
9025d29d
ILT
1062 if (parameters->is_big_endian())
1063 {
1064#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1065 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1066 target, &name, &version, only_if_ref, &oldsym
1067 SELECT_SIZE_ENDIAN(size, true));
1068#else
1069 gold_unreachable();
1070#endif
1071 }
ead1e424 1072 else
9025d29d
ILT
1073 {
1074#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1075 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1076 target, &name, &version, only_if_ref, &oldsym
1077 SELECT_SIZE_ENDIAN(size, false));
1078#else
1079 gold_unreachable();
1080#endif
1081 }
ead1e424
ILT
1082
1083 if (sym == NULL)
14b31740 1084 return NULL;
ead1e424 1085
d4f5281b 1086 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1087 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1088 offset_base);
14b31740 1089
86f2e683
ILT
1090 if (oldsym != NULL
1091 && Symbol_table::should_override_with_special(oldsym))
aeddab66 1092 this->override_with_special(oldsym, sym);
86f2e683 1093
14b31740 1094 return sym;
ead1e424
ILT
1095}
1096
1097// Define a special symbol with a constant value. It is a multiple
1098// definition error if this symbol is already defined.
1099
14b31740
ILT
1100Symbol*
1101Symbol_table::define_as_constant(const Target* target, const char* name,
1102 const char* version, uint64_t value,
1103 uint64_t symsize, elfcpp::STT type,
1104 elfcpp::STB binding, elfcpp::STV visibility,
1105 unsigned char nonvis, bool only_if_ref)
ead1e424 1106{
9025d29d 1107 if (parameters->get_size() == 32)
86f2e683
ILT
1108 {
1109#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1110 return this->do_define_as_constant<32>(target, name, version, value,
1111 symsize, type, binding,
1112 visibility, nonvis, only_if_ref);
1113#else
1114 gold_unreachable();
1115#endif
1116 }
9025d29d 1117 else if (parameters->get_size() == 64)
86f2e683
ILT
1118 {
1119#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1120 return this->do_define_as_constant<64>(target, name, version, value,
1121 symsize, type, binding,
1122 visibility, nonvis, only_if_ref);
1123#else
1124 gold_unreachable();
1125#endif
1126 }
ead1e424 1127 else
a3ad94ed 1128 gold_unreachable();
ead1e424
ILT
1129}
1130
1131// Define a symbol as a constant, sized version.
1132
1133template<int size>
14b31740 1134Sized_symbol<size>*
ead1e424 1135Symbol_table::do_define_as_constant(
14b31740 1136 const Target* target,
ead1e424 1137 const char* name,
14b31740 1138 const char* version,
ead1e424
ILT
1139 typename elfcpp::Elf_types<size>::Elf_Addr value,
1140 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1141 elfcpp::STT type,
1142 elfcpp::STB binding,
1143 elfcpp::STV visibility,
1144 unsigned char nonvis,
1145 bool only_if_ref)
1146{
1147 Sized_symbol<size>* sym;
86f2e683 1148 Sized_symbol<size>* oldsym;
ead1e424 1149
9025d29d
ILT
1150 if (parameters->is_big_endian())
1151 {
1152#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1153 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, true) (
1154 target, &name, &version, only_if_ref, &oldsym
1155 SELECT_SIZE_ENDIAN(size, true));
1156#else
1157 gold_unreachable();
1158#endif
1159 }
ead1e424 1160 else
9025d29d
ILT
1161 {
1162#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1163 sym = this->define_special_symbol SELECT_SIZE_ENDIAN_NAME(size, false) (
1164 target, &name, &version, only_if_ref, &oldsym
1165 SELECT_SIZE_ENDIAN(size, false));
1166#else
1167 gold_unreachable();
1168#endif
1169 }
ead1e424
ILT
1170
1171 if (sym == NULL)
14b31740 1172 return NULL;
ead1e424 1173
d4f5281b 1174 gold_assert(version == NULL || oldsym != NULL);
ead1e424 1175 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1176
86f2e683
ILT
1177 if (oldsym != NULL
1178 && Symbol_table::should_override_with_special(oldsym))
aeddab66 1179 this->override_with_special(oldsym, sym);
86f2e683 1180
14b31740 1181 return sym;
ead1e424
ILT
1182}
1183
1184// Define a set of symbols in output sections.
1185
1186void
14b31740
ILT
1187Symbol_table::define_symbols(const Layout* layout, const Target* target,
1188 int count, const Define_symbol_in_section* p)
ead1e424
ILT
1189{
1190 for (int i = 0; i < count; ++i, ++p)
1191 {
1192 Output_section* os = layout->find_output_section(p->output_section);
1193 if (os != NULL)
14b31740
ILT
1194 this->define_in_output_data(target, p->name, NULL, os, p->value,
1195 p->size, p->type, p->binding,
1196 p->visibility, p->nonvis,
1197 p->offset_is_from_end, p->only_if_ref);
ead1e424 1198 else
14b31740 1199 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
ead1e424
ILT
1200 p->binding, p->visibility, p->nonvis,
1201 p->only_if_ref);
1202 }
1203}
1204
1205// Define a set of symbols in output segments.
1206
1207void
14b31740
ILT
1208Symbol_table::define_symbols(const Layout* layout, const Target* target,
1209 int count, const Define_symbol_in_segment* p)
ead1e424
ILT
1210{
1211 for (int i = 0; i < count; ++i, ++p)
1212 {
1213 Output_segment* os = layout->find_output_segment(p->segment_type,
1214 p->segment_flags_set,
1215 p->segment_flags_clear);
1216 if (os != NULL)
14b31740
ILT
1217 this->define_in_output_segment(target, p->name, NULL, os, p->value,
1218 p->size, p->type, p->binding,
1219 p->visibility, p->nonvis,
1220 p->offset_base, p->only_if_ref);
ead1e424 1221 else
14b31740 1222 this->define_as_constant(target, p->name, NULL, 0, p->size, p->type,
ead1e424
ILT
1223 p->binding, p->visibility, p->nonvis,
1224 p->only_if_ref);
1225 }
1226}
1227
46fe1623
ILT
1228// Define CSYM using a COPY reloc. POSD is the Output_data where the
1229// symbol should be defined--typically a .dyn.bss section. VALUE is
1230// the offset within POSD.
1231
1232template<int size>
1233void
1234Symbol_table::define_with_copy_reloc(const Target* target,
1235 Sized_symbol<size>* csym,
1236 Output_data* posd, uint64_t value)
1237{
1238 gold_assert(csym->is_from_dynobj());
1239 gold_assert(!csym->is_copied_from_dynobj());
1240 Object* object = csym->object();
1241 gold_assert(object->is_dynamic());
1242 Dynobj* dynobj = static_cast<Dynobj*>(object);
1243
1244 // Our copied variable has to override any variable in a shared
1245 // library.
1246 elfcpp::STB binding = csym->binding();
1247 if (binding == elfcpp::STB_WEAK)
1248 binding = elfcpp::STB_GLOBAL;
1249
1250 this->define_in_output_data(target, csym->name(), csym->version(),
1251 posd, value, csym->symsize(),
1252 csym->type(), binding,
1253 csym->visibility(), csym->nonvis(),
1254 false, false);
1255
1256 csym->set_is_copied_from_dynobj();
1257 csym->set_needs_dynsym_entry();
1258
1259 this->copied_symbol_dynobjs_[csym] = dynobj;
1260
1261 // We have now defined all aliases, but we have not entered them all
1262 // in the copied_symbol_dynobjs_ map.
1263 if (csym->has_alias())
1264 {
1265 Symbol* sym = csym;
1266 while (true)
1267 {
1268 sym = this->weak_aliases_[sym];
1269 if (sym == csym)
1270 break;
1271 gold_assert(sym->output_data() == posd);
1272
1273 sym->set_is_copied_from_dynobj();
1274 this->copied_symbol_dynobjs_[sym] = dynobj;
1275 }
1276 }
1277}
1278
1279// SYM is defined using a COPY reloc. Return the dynamic object where
1280// the original definition was found.
1281
1282Dynobj*
1283Symbol_table::get_copy_source(const Symbol* sym) const
1284{
1285 gold_assert(sym->is_copied_from_dynobj());
1286 Copied_symbol_dynobjs::const_iterator p =
1287 this->copied_symbol_dynobjs_.find(sym);
1288 gold_assert(p != this->copied_symbol_dynobjs_.end());
1289 return p->second;
1290}
1291
a3ad94ed
ILT
1292// Set the dynamic symbol indexes. INDEX is the index of the first
1293// global dynamic symbol. Pointers to the symbols are stored into the
1294// vector SYMS. The names are added to DYNPOOL. This returns an
1295// updated dynamic symbol index.
1296
1297unsigned int
35cdfc9a 1298Symbol_table::set_dynsym_indexes(const Target* target,
14b31740 1299 unsigned int index,
a3ad94ed 1300 std::vector<Symbol*>* syms,
14b31740
ILT
1301 Stringpool* dynpool,
1302 Versions* versions)
a3ad94ed
ILT
1303{
1304 for (Symbol_table_type::iterator p = this->table_.begin();
1305 p != this->table_.end();
1306 ++p)
1307 {
1308 Symbol* sym = p->second;
16649710
ILT
1309
1310 // Note that SYM may already have a dynamic symbol index, since
1311 // some symbols appear more than once in the symbol table, with
1312 // and without a version.
1313
436ca963 1314 if (!sym->should_add_dynsym_entry())
16649710
ILT
1315 sym->set_dynsym_index(-1U);
1316 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1317 {
1318 sym->set_dynsym_index(index);
1319 ++index;
1320 syms->push_back(sym);
cfd73a4e 1321 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1322
1323 // Record any version information.
1324 if (sym->version() != NULL)
35cdfc9a 1325 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1326 }
1327 }
1328
14b31740
ILT
1329 // Finish up the versions. In some cases this may add new dynamic
1330 // symbols.
1331 index = versions->finalize(target, this, index, syms);
1332
a3ad94ed
ILT
1333 return index;
1334}
1335
c06b7b0b
ILT
1336// Set the final values for all the symbols. The index of the first
1337// global symbol in the output file is INDEX. Record the file offset
75f65a3e 1338// OFF. Add their names to POOL. Return the new file offset.
54dc6425 1339
75f65a3e 1340off_t
16649710
ILT
1341Symbol_table::finalize(unsigned int index, off_t off, off_t dynoff,
1342 size_t dyn_global_index, size_t dyncount,
1343 Stringpool* pool)
54dc6425 1344{
f6ce93d6
ILT
1345 off_t ret;
1346
a3ad94ed 1347 gold_assert(index != 0);
c06b7b0b
ILT
1348 this->first_global_index_ = index;
1349
16649710
ILT
1350 this->dynamic_offset_ = dynoff;
1351 this->first_dynamic_global_index_ = dyn_global_index;
1352 this->dynamic_count_ = dyncount;
1353
9025d29d
ILT
1354 if (parameters->get_size() == 32)
1355 {
1356#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
1357 ret = this->sized_finalize<32>(index, off, pool);
1358#else
1359 gold_unreachable();
1360#endif
1361 }
1362 else if (parameters->get_size() == 64)
1363 {
1364#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
1365 ret = this->sized_finalize<64>(index, off, pool);
1366#else
1367 gold_unreachable();
1368#endif
1369 }
61ba1cf9 1370 else
a3ad94ed 1371 gold_unreachable();
f6ce93d6
ILT
1372
1373 // Now that we have the final symbol table, we can reliably note
1374 // which symbols should get warnings.
1375 this->warnings_.note_warnings(this);
1376
1377 return ret;
75f65a3e
ILT
1378}
1379
ead1e424
ILT
1380// Set the final value for all the symbols. This is called after
1381// Layout::finalize, so all the output sections have their final
1382// address.
75f65a3e
ILT
1383
1384template<int size>
1385off_t
c06b7b0b 1386Symbol_table::sized_finalize(unsigned index, off_t off, Stringpool* pool)
75f65a3e 1387{
ead1e424 1388 off = align_address(off, size >> 3);
75f65a3e
ILT
1389 this->offset_ = off;
1390
c06b7b0b
ILT
1391 size_t orig_index = index;
1392
75f65a3e 1393 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
c06b7b0b
ILT
1394 for (Symbol_table_type::iterator p = this->table_.begin();
1395 p != this->table_.end();
1396 ++p)
54dc6425 1397 {
75f65a3e 1398 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
54dc6425 1399
75f65a3e 1400 // FIXME: Here we need to decide which symbols should go into
a3ad94ed
ILT
1401 // the output file, based on --strip.
1402
1403 // The default version of a symbol may appear twice in the
1404 // symbol table. We only need to finalize it once.
1405 if (sym->has_symtab_index())
1406 continue;
75f65a3e 1407
008db82e
ILT
1408 if (!sym->in_reg())
1409 {
1410 gold_assert(!sym->has_symtab_index());
1411 sym->set_symtab_index(-1U);
1412 gold_assert(sym->dynsym_index() == -1U);
1413 continue;
1414 }
1415
ead1e424 1416 typename Sized_symbol<size>::Value_type value;
75f65a3e 1417
ead1e424 1418 switch (sym->source())
75f65a3e 1419 {
ead1e424
ILT
1420 case Symbol::FROM_OBJECT:
1421 {
16649710 1422 unsigned int shndx = sym->shndx();
ead1e424
ILT
1423
1424 // FIXME: We need some target specific support here.
16649710
ILT
1425 if (shndx >= elfcpp::SHN_LORESERVE
1426 && shndx != elfcpp::SHN_ABS)
ead1e424 1427 {
75f2446e
ILT
1428 gold_error(_("%s: unsupported symbol section 0x%x"),
1429 sym->name(), shndx);
1430 shndx = elfcpp::SHN_UNDEF;
ead1e424
ILT
1431 }
1432
f6ce93d6
ILT
1433 Object* symobj = sym->object();
1434 if (symobj->is_dynamic())
1435 {
1436 value = 0;
16649710 1437 shndx = elfcpp::SHN_UNDEF;
f6ce93d6 1438 }
16649710 1439 else if (shndx == elfcpp::SHN_UNDEF)
ead1e424 1440 value = 0;
16649710 1441 else if (shndx == elfcpp::SHN_ABS)
ead1e424
ILT
1442 value = sym->value();
1443 else
1444 {
f6ce93d6 1445 Relobj* relobj = static_cast<Relobj*>(symobj);
ead1e424 1446 off_t secoff;
16649710 1447 Output_section* os = relobj->output_section(shndx, &secoff);
ead1e424
ILT
1448
1449 if (os == NULL)
1450 {
c06b7b0b 1451 sym->set_symtab_index(-1U);
16649710 1452 gold_assert(sym->dynsym_index() == -1U);
ead1e424
ILT
1453 continue;
1454 }
1455
1456 value = sym->value() + os->address() + secoff;
1457 }
1458 }
1459 break;
1460
1461 case Symbol::IN_OUTPUT_DATA:
1462 {
1463 Output_data* od = sym->output_data();
1464 value = sym->value() + od->address();
1465 if (sym->offset_is_from_end())
1466 value += od->data_size();
1467 }
1468 break;
1469
1470 case Symbol::IN_OUTPUT_SEGMENT:
1471 {
1472 Output_segment* os = sym->output_segment();
1473 value = sym->value() + os->vaddr();
1474 switch (sym->offset_base())
1475 {
1476 case Symbol::SEGMENT_START:
1477 break;
1478 case Symbol::SEGMENT_END:
1479 value += os->memsz();
1480 break;
1481 case Symbol::SEGMENT_BSS:
1482 value += os->filesz();
1483 break;
1484 default:
a3ad94ed 1485 gold_unreachable();
ead1e424
ILT
1486 }
1487 }
1488 break;
1489
1490 case Symbol::CONSTANT:
1491 value = sym->value();
1492 break;
1493
1494 default:
a3ad94ed 1495 gold_unreachable();
54dc6425 1496 }
ead1e424
ILT
1497
1498 sym->set_value(value);
9e2dcb77
ILT
1499
1500 if (parameters->strip_all())
1501 sym->set_symtab_index(-1U);
1502 else
1503 {
1504 sym->set_symtab_index(index);
cfd73a4e 1505 pool->add(sym->name(), false, NULL);
9e2dcb77
ILT
1506 ++index;
1507 off += sym_size;
1508 }
54dc6425 1509 }
75f65a3e 1510
c06b7b0b 1511 this->output_count_ = index - orig_index;
61ba1cf9 1512
75f65a3e 1513 return off;
54dc6425
ILT
1514}
1515
61ba1cf9
ILT
1516// Write out the global symbols.
1517
1518void
1519Symbol_table::write_globals(const Target* target, const Stringpool* sympool,
16649710 1520 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1521{
9025d29d 1522 if (parameters->get_size() == 32)
61ba1cf9 1523 {
9025d29d
ILT
1524 if (parameters->is_big_endian())
1525 {
1526#ifdef HAVE_TARGET_32_BIG
1527 this->sized_write_globals<32, true>(target, sympool, dynpool, of);
1528#else
1529 gold_unreachable();
1530#endif
1531 }
61ba1cf9 1532 else
9025d29d
ILT
1533 {
1534#ifdef HAVE_TARGET_32_LITTLE
1535 this->sized_write_globals<32, false>(target, sympool, dynpool, of);
1536#else
1537 gold_unreachable();
1538#endif
1539 }
61ba1cf9 1540 }
9025d29d 1541 else if (parameters->get_size() == 64)
61ba1cf9 1542 {
9025d29d
ILT
1543 if (parameters->is_big_endian())
1544 {
1545#ifdef HAVE_TARGET_64_BIG
1546 this->sized_write_globals<64, true>(target, sympool, dynpool, of);
1547#else
1548 gold_unreachable();
1549#endif
1550 }
61ba1cf9 1551 else
9025d29d
ILT
1552 {
1553#ifdef HAVE_TARGET_64_LITTLE
1554 this->sized_write_globals<64, false>(target, sympool, dynpool, of);
1555#else
1556 gold_unreachable();
1557#endif
1558 }
61ba1cf9
ILT
1559 }
1560 else
a3ad94ed 1561 gold_unreachable();
61ba1cf9
ILT
1562}
1563
1564// Write out the global symbols.
1565
1566template<int size, bool big_endian>
1567void
ab5c9e90 1568Symbol_table::sized_write_globals(const Target* target,
61ba1cf9 1569 const Stringpool* sympool,
16649710 1570 const Stringpool* dynpool,
61ba1cf9
ILT
1571 Output_file* of) const
1572{
1573 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
c06b7b0b
ILT
1574 unsigned int index = this->first_global_index_;
1575 const off_t oview_size = this->output_count_ * sym_size;
16649710
ILT
1576 unsigned char* const psyms = of->get_output_view(this->offset_, oview_size);
1577
1578 unsigned int dynamic_count = this->dynamic_count_;
1579 off_t dynamic_size = dynamic_count * sym_size;
1580 unsigned int first_dynamic_global_index = this->first_dynamic_global_index_;
1581 unsigned char* dynamic_view;
1582 if (this->dynamic_offset_ == 0)
1583 dynamic_view = NULL;
1584 else
1585 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1586
61ba1cf9
ILT
1587 unsigned char* ps = psyms;
1588 for (Symbol_table_type::const_iterator p = this->table_.begin();
1589 p != this->table_.end();
1590 ++p)
1591 {
1592 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1593
a3ad94ed 1594 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1595 unsigned int dynsym_index;
1596 if (dynamic_view == NULL)
1597 dynsym_index = -1U;
1598 else
1599 dynsym_index = sym->dynsym_index();
1600
1601 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1602 {
1603 // This symbol is not included in the output file.
1604 continue;
1605 }
16649710
ILT
1606
1607 if (sym_index == index)
1608 ++index;
1609 else if (sym_index != -1U)
a3ad94ed
ILT
1610 {
1611 // We have already seen this symbol, because it has a
1612 // default version.
1613 gold_assert(sym_index < index);
16649710
ILT
1614 if (dynsym_index == -1U)
1615 continue;
1616 sym_index = -1U;
a3ad94ed 1617 }
c06b7b0b 1618
ead1e424 1619 unsigned int shndx;
ab5c9e90 1620 typename elfcpp::Elf_types<32>::Elf_Addr value = sym->value();
ead1e424
ILT
1621 switch (sym->source())
1622 {
1623 case Symbol::FROM_OBJECT:
1624 {
16649710 1625 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1626
1627 // FIXME: We need some target specific support here.
16649710
ILT
1628 if (in_shndx >= elfcpp::SHN_LORESERVE
1629 && in_shndx != elfcpp::SHN_ABS)
ead1e424 1630 {
75f2446e
ILT
1631 gold_error(_("%s: unsupported symbol section 0x%x"),
1632 sym->name(), in_shndx);
1633 shndx = in_shndx;
f6ce93d6 1634 }
ead1e424
ILT
1635 else
1636 {
75f2446e
ILT
1637 Object* symobj = sym->object();
1638 if (symobj->is_dynamic())
1639 {
1640 if (sym->needs_dynsym_value())
1641 value = target->dynsym_value(sym);
1642 shndx = elfcpp::SHN_UNDEF;
1643 }
1644 else if (in_shndx == elfcpp::SHN_UNDEF
1645 || in_shndx == elfcpp::SHN_ABS)
1646 shndx = in_shndx;
1647 else
1648 {
1649 Relobj* relobj = static_cast<Relobj*>(symobj);
1650 off_t secoff;
1651 Output_section* os = relobj->output_section(in_shndx,
1652 &secoff);
1653 gold_assert(os != NULL);
1654 shndx = os->out_shndx();
1655 }
ead1e424
ILT
1656 }
1657 }
1658 break;
1659
1660 case Symbol::IN_OUTPUT_DATA:
1661 shndx = sym->output_data()->out_shndx();
1662 break;
1663
1664 case Symbol::IN_OUTPUT_SEGMENT:
1665 shndx = elfcpp::SHN_ABS;
1666 break;
1667
1668 case Symbol::CONSTANT:
1669 shndx = elfcpp::SHN_ABS;
1670 break;
1671
1672 default:
a3ad94ed 1673 gold_unreachable();
ead1e424 1674 }
61ba1cf9 1675
16649710
ILT
1676 if (sym_index != -1U)
1677 {
6a469986 1678 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
ab5c9e90 1679 sym, sym->value(), shndx, sympool, ps
6a469986 1680 SELECT_SIZE_ENDIAN(size, big_endian));
16649710
ILT
1681 ps += sym_size;
1682 }
61ba1cf9 1683
16649710
ILT
1684 if (dynsym_index != -1U)
1685 {
1686 dynsym_index -= first_dynamic_global_index;
1687 gold_assert(dynsym_index < dynamic_count);
1688 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
6a469986 1689 this->sized_write_symbol SELECT_SIZE_ENDIAN_NAME(size, big_endian) (
ab5c9e90 1690 sym, value, shndx, dynpool, pd
6a469986 1691 SELECT_SIZE_ENDIAN(size, big_endian));
16649710 1692 }
61ba1cf9
ILT
1693 }
1694
a3ad94ed 1695 gold_assert(ps - psyms == oview_size);
c06b7b0b
ILT
1696
1697 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
1698 if (dynamic_view != NULL)
1699 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
1700}
1701
1702// Write out the symbol SYM, in section SHNDX, to P. POOL is the
1703// strtab holding the name.
1704
1705template<int size, bool big_endian>
1706void
ab5c9e90
ILT
1707Symbol_table::sized_write_symbol(
1708 Sized_symbol<size>* sym,
1709 typename elfcpp::Elf_types<size>::Elf_Addr value,
1710 unsigned int shndx,
1711 const Stringpool* pool,
1712 unsigned char* p
1713 ACCEPT_SIZE_ENDIAN) const
16649710
ILT
1714{
1715 elfcpp::Sym_write<size, big_endian> osym(p);
1716 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 1717 osym.put_st_value(value);
16649710
ILT
1718 osym.put_st_size(sym->symsize());
1719 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
1720 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
1721 osym.put_st_shndx(shndx);
61ba1cf9
ILT
1722}
1723
a3ad94ed
ILT
1724// Write out a section symbol. Return the update offset.
1725
1726void
9025d29d 1727Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
1728 Output_file* of,
1729 off_t offset) const
1730{
9025d29d 1731 if (parameters->get_size() == 32)
a3ad94ed 1732 {
9025d29d
ILT
1733 if (parameters->is_big_endian())
1734 {
1735#ifdef HAVE_TARGET_32_BIG
1736 this->sized_write_section_symbol<32, true>(os, of, offset);
1737#else
1738 gold_unreachable();
1739#endif
1740 }
a3ad94ed 1741 else
9025d29d
ILT
1742 {
1743#ifdef HAVE_TARGET_32_LITTLE
1744 this->sized_write_section_symbol<32, false>(os, of, offset);
1745#else
1746 gold_unreachable();
1747#endif
1748 }
a3ad94ed 1749 }
9025d29d 1750 else if (parameters->get_size() == 64)
a3ad94ed 1751 {
9025d29d
ILT
1752 if (parameters->is_big_endian())
1753 {
1754#ifdef HAVE_TARGET_64_BIG
1755 this->sized_write_section_symbol<64, true>(os, of, offset);
1756#else
1757 gold_unreachable();
1758#endif
1759 }
a3ad94ed 1760 else
9025d29d
ILT
1761 {
1762#ifdef HAVE_TARGET_64_LITTLE
1763 this->sized_write_section_symbol<64, false>(os, of, offset);
1764#else
1765 gold_unreachable();
1766#endif
1767 }
a3ad94ed
ILT
1768 }
1769 else
1770 gold_unreachable();
1771}
1772
1773// Write out a section symbol, specialized for size and endianness.
1774
1775template<int size, bool big_endian>
1776void
1777Symbol_table::sized_write_section_symbol(const Output_section* os,
1778 Output_file* of,
1779 off_t offset) const
1780{
1781 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
1782
1783 unsigned char* pov = of->get_output_view(offset, sym_size);
1784
1785 elfcpp::Sym_write<size, big_endian> osym(pov);
1786 osym.put_st_name(0);
1787 osym.put_st_value(os->address());
1788 osym.put_st_size(0);
1789 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
1790 elfcpp::STT_SECTION));
1791 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
1792 osym.put_st_shndx(os->out_shndx());
1793
1794 of->write_output_view(offset, sym_size, pov);
1795}
1796
f6ce93d6
ILT
1797// Warnings functions.
1798
1799// Add a new warning.
1800
1801void
1802Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
1803 unsigned int shndx)
1804{
1805 name = symtab->canonicalize_name(name);
1806 this->warnings_[name].set(obj, shndx);
1807}
1808
1809// Look through the warnings and mark the symbols for which we should
1810// warn. This is called during Layout::finalize when we know the
1811// sources for all the symbols.
1812
1813void
1814Warnings::note_warnings(Symbol_table* symtab)
1815{
1816 for (Warning_table::iterator p = this->warnings_.begin();
1817 p != this->warnings_.end();
1818 ++p)
1819 {
1820 Symbol* sym = symtab->lookup(p->first, NULL);
1821 if (sym != NULL
1822 && sym->source() == Symbol::FROM_OBJECT
1823 && sym->object() == p->second.object)
1824 {
1825 sym->set_has_warning();
1826
1827 // Read the section contents to get the warning text. It
1828 // would be nicer if we only did this if we have to actually
1829 // issue a warning. Unfortunately, warnings are issued as
1830 // we relocate sections. That means that we can not lock
1831 // the object then, as we might try to issue the same
1832 // warning multiple times simultaneously.
645f8123
ILT
1833 {
1834 Task_locker_obj<Object> tl(*p->second.object);
1835 const unsigned char* c;
1836 off_t len;
9eb9fa57
ILT
1837 c = p->second.object->section_contents(p->second.shndx, &len,
1838 false);
645f8123
ILT
1839 p->second.set_text(reinterpret_cast<const char*>(c), len);
1840 }
f6ce93d6
ILT
1841 }
1842 }
1843}
1844
1845// Issue a warning. This is called when we see a relocation against a
1846// symbol for which has a warning.
1847
75f2446e 1848template<int size, bool big_endian>
f6ce93d6 1849void
75f2446e
ILT
1850Warnings::issue_warning(const Symbol* sym,
1851 const Relocate_info<size, big_endian>* relinfo,
1852 size_t relnum, off_t reloffset) const
f6ce93d6 1853{
a3ad94ed 1854 gold_assert(sym->has_warning());
f6ce93d6 1855 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 1856 gold_assert(p != this->warnings_.end());
75f2446e
ILT
1857 gold_warning_at_location(relinfo, relnum, reloffset,
1858 "%s", p->second.text.c_str());
f6ce93d6
ILT
1859}
1860
14bfc3f5
ILT
1861// Instantiate the templates we need. We could use the configure
1862// script to restrict this to only the ones needed for implemented
1863// targets.
1864
193a53d9 1865#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
1866template
1867void
193a53d9
ILT
1868Symbol_table::add_from_relobj<32, false>(
1869 Sized_relobj<32, false>* relobj,
f6ce93d6 1870 const unsigned char* syms,
14bfc3f5
ILT
1871 size_t count,
1872 const char* sym_names,
1873 size_t sym_name_size,
730cdc88 1874 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 1875#endif
14bfc3f5 1876
193a53d9 1877#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
1878template
1879void
193a53d9
ILT
1880Symbol_table::add_from_relobj<32, true>(
1881 Sized_relobj<32, true>* relobj,
f6ce93d6 1882 const unsigned char* syms,
14bfc3f5
ILT
1883 size_t count,
1884 const char* sym_names,
1885 size_t sym_name_size,
730cdc88 1886 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 1887#endif
14bfc3f5 1888
193a53d9 1889#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
1890template
1891void
193a53d9
ILT
1892Symbol_table::add_from_relobj<64, false>(
1893 Sized_relobj<64, false>* relobj,
f6ce93d6 1894 const unsigned char* syms,
14bfc3f5
ILT
1895 size_t count,
1896 const char* sym_names,
1897 size_t sym_name_size,
730cdc88 1898 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 1899#endif
14bfc3f5 1900
193a53d9 1901#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
1902template
1903void
193a53d9
ILT
1904Symbol_table::add_from_relobj<64, true>(
1905 Sized_relobj<64, true>* relobj,
f6ce93d6 1906 const unsigned char* syms,
14bfc3f5
ILT
1907 size_t count,
1908 const char* sym_names,
1909 size_t sym_name_size,
730cdc88 1910 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 1911#endif
14bfc3f5 1912
193a53d9 1913#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
1914template
1915void
193a53d9
ILT
1916Symbol_table::add_from_dynobj<32, false>(
1917 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
1918 const unsigned char* syms,
1919 size_t count,
1920 const char* sym_names,
1921 size_t sym_name_size,
1922 const unsigned char* versym,
1923 size_t versym_size,
1924 const std::vector<const char*>* version_map);
193a53d9 1925#endif
dbe717ef 1926
193a53d9 1927#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
1928template
1929void
193a53d9
ILT
1930Symbol_table::add_from_dynobj<32, true>(
1931 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
1932 const unsigned char* syms,
1933 size_t count,
1934 const char* sym_names,
1935 size_t sym_name_size,
1936 const unsigned char* versym,
1937 size_t versym_size,
1938 const std::vector<const char*>* version_map);
193a53d9 1939#endif
dbe717ef 1940
193a53d9 1941#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
1942template
1943void
193a53d9
ILT
1944Symbol_table::add_from_dynobj<64, false>(
1945 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
1946 const unsigned char* syms,
1947 size_t count,
1948 const char* sym_names,
1949 size_t sym_name_size,
1950 const unsigned char* versym,
1951 size_t versym_size,
1952 const std::vector<const char*>* version_map);
193a53d9 1953#endif
dbe717ef 1954
193a53d9 1955#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
1956template
1957void
193a53d9
ILT
1958Symbol_table::add_from_dynobj<64, true>(
1959 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
1960 const unsigned char* syms,
1961 size_t count,
1962 const char* sym_names,
1963 size_t sym_name_size,
1964 const unsigned char* versym,
1965 size_t versym_size,
1966 const std::vector<const char*>* version_map);
193a53d9 1967#endif
dbe717ef 1968
46fe1623
ILT
1969#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1970template
1971void
1972Symbol_table::define_with_copy_reloc<32>(const Target* target,
1973 Sized_symbol<32>* sym,
1974 Output_data* posd, uint64_t value);
1975#endif
1976
1977#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1978template
1979void
1980Symbol_table::define_with_copy_reloc<64>(const Target* target,
1981 Sized_symbol<64>* sym,
1982 Output_data* posd, uint64_t value);
1983#endif
1984
75f2446e
ILT
1985#ifdef HAVE_TARGET_32_LITTLE
1986template
1987void
1988Warnings::issue_warning<32, false>(const Symbol* sym,
1989 const Relocate_info<32, false>* relinfo,
1990 size_t relnum, off_t reloffset) const;
1991#endif
1992
1993#ifdef HAVE_TARGET_32_BIG
1994template
1995void
1996Warnings::issue_warning<32, true>(const Symbol* sym,
1997 const Relocate_info<32, true>* relinfo,
1998 size_t relnum, off_t reloffset) const;
1999#endif
2000
2001#ifdef HAVE_TARGET_64_LITTLE
2002template
2003void
2004Warnings::issue_warning<64, false>(const Symbol* sym,
2005 const Relocate_info<64, false>* relinfo,
2006 size_t relnum, off_t reloffset) const;
2007#endif
2008
2009#ifdef HAVE_TARGET_64_BIG
2010template
2011void
2012Warnings::issue_warning<64, true>(const Symbol* sym,
2013 const Relocate_info<64, true>* relinfo,
2014 size_t relnum, off_t reloffset) const;
2015#endif
2016
14bfc3f5 2017} // End namespace gold.
This page took 0.186522 seconds and 4 git commands to generate.