* breakpoint.c (print_one_breakpoint_location): Make sure to print
[deliverable/binutils-gdb.git] / gold / symtab.cc
CommitLineData
14bfc3f5
ILT
1// symtab.cc -- the gold symbol table
2
e5756efb 3// Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
6cb15b7f
ILT
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
14bfc3f5
ILT
23#include "gold.h"
24
04bf7072 25#include <cstring>
14bfc3f5 26#include <stdint.h>
04bf7072 27#include <algorithm>
70e654ba 28#include <set>
14bfc3f5
ILT
29#include <string>
30#include <utility>
a2b1aa12 31#include "demangle.h"
14bfc3f5
ILT
32
33#include "object.h"
70e654ba 34#include "dwarf_reader.h"
dbe717ef 35#include "dynobj.h"
75f65a3e 36#include "output.h"
61ba1cf9 37#include "target.h"
645f8123 38#include "workqueue.h"
14bfc3f5
ILT
39#include "symtab.h"
40
41namespace gold
42{
43
44// Class Symbol.
45
ead1e424
ILT
46// Initialize fields in Symbol. This initializes everything except u_
47// and source_.
14bfc3f5 48
14bfc3f5 49void
ead1e424
ILT
50Symbol::init_fields(const char* name, const char* version,
51 elfcpp::STT type, elfcpp::STB binding,
52 elfcpp::STV visibility, unsigned char nonvis)
14bfc3f5
ILT
53{
54 this->name_ = name;
55 this->version_ = version;
c06b7b0b
ILT
56 this->symtab_index_ = 0;
57 this->dynsym_index_ = 0;
0a65a3a7 58 this->got_offsets_.init();
f4151f89 59 this->plt_offset_ = 0;
ead1e424
ILT
60 this->type_ = type;
61 this->binding_ = binding;
62 this->visibility_ = visibility;
63 this->nonvis_ = nonvis;
64 this->is_target_special_ = false;
1564db8d
ILT
65 this->is_def_ = false;
66 this->is_forwarder_ = false;
aeddab66 67 this->has_alias_ = false;
c06b7b0b 68 this->needs_dynsym_entry_ = false;
008db82e 69 this->in_reg_ = false;
ead1e424 70 this->in_dyn_ = false;
f4151f89 71 this->has_plt_offset_ = false;
f6ce93d6 72 this->has_warning_ = false;
46fe1623 73 this->is_copied_from_dynobj_ = false;
55a93433 74 this->is_forced_local_ = false;
ead1e424
ILT
75}
76
a2b1aa12
ILT
77// Return the demangled version of the symbol's name, but only
78// if the --demangle flag was set.
79
80static std::string
81demangle(const char* name)
82{
086a1841 83 if (!parameters->options().do_demangle())
ff541f30
ILT
84 return name;
85
a2b1aa12
ILT
86 // cplus_demangle allocates memory for the result it returns,
87 // and returns NULL if the name is already demangled.
88 char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
89 if (demangled_name == NULL)
90 return name;
91
92 std::string retval(demangled_name);
93 free(demangled_name);
94 return retval;
95}
96
97std::string
98Symbol::demangled_name() const
99{
ff541f30 100 return demangle(this->name());
a2b1aa12
ILT
101}
102
ead1e424
ILT
103// Initialize the fields in the base class Symbol for SYM in OBJECT.
104
105template<int size, bool big_endian>
106void
107Symbol::init_base(const char* name, const char* version, Object* object,
108 const elfcpp::Sym<size, big_endian>& sym)
109{
110 this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
111 sym.get_st_visibility(), sym.get_st_nonvis());
112 this->u_.from_object.object = object;
113 // FIXME: Handle SHN_XINDEX.
16649710 114 this->u_.from_object.shndx = sym.get_st_shndx();
ead1e424 115 this->source_ = FROM_OBJECT;
008db82e 116 this->in_reg_ = !object->is_dynamic();
1564db8d 117 this->in_dyn_ = object->is_dynamic();
14bfc3f5
ILT
118}
119
ead1e424
ILT
120// Initialize the fields in the base class Symbol for a symbol defined
121// in an Output_data.
122
123void
124Symbol::init_base(const char* name, Output_data* od, elfcpp::STT type,
125 elfcpp::STB binding, elfcpp::STV visibility,
126 unsigned char nonvis, bool offset_is_from_end)
127{
128 this->init_fields(name, NULL, type, binding, visibility, nonvis);
129 this->u_.in_output_data.output_data = od;
130 this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
131 this->source_ = IN_OUTPUT_DATA;
008db82e 132 this->in_reg_ = true;
ead1e424
ILT
133}
134
135// Initialize the fields in the base class Symbol for a symbol defined
136// in an Output_segment.
137
138void
139Symbol::init_base(const char* name, Output_segment* os, elfcpp::STT type,
140 elfcpp::STB binding, elfcpp::STV visibility,
141 unsigned char nonvis, Segment_offset_base offset_base)
142{
143 this->init_fields(name, NULL, type, binding, visibility, nonvis);
144 this->u_.in_output_segment.output_segment = os;
145 this->u_.in_output_segment.offset_base = offset_base;
146 this->source_ = IN_OUTPUT_SEGMENT;
008db82e 147 this->in_reg_ = true;
ead1e424
ILT
148}
149
150// Initialize the fields in the base class Symbol for a symbol defined
151// as a constant.
152
153void
154Symbol::init_base(const char* name, elfcpp::STT type,
155 elfcpp::STB binding, elfcpp::STV visibility,
156 unsigned char nonvis)
157{
158 this->init_fields(name, NULL, type, binding, visibility, nonvis);
159 this->source_ = CONSTANT;
008db82e 160 this->in_reg_ = true;
ead1e424
ILT
161}
162
c7912668
ILT
163// Allocate a common symbol in the base.
164
165void
166Symbol::allocate_base_common(Output_data* od)
167{
168 gold_assert(this->is_common());
169 this->source_ = IN_OUTPUT_DATA;
170 this->u_.in_output_data.output_data = od;
171 this->u_.in_output_data.offset_is_from_end = false;
172}
173
ead1e424 174// Initialize the fields in Sized_symbol for SYM in OBJECT.
14bfc3f5
ILT
175
176template<int size>
177template<bool big_endian>
178void
179Sized_symbol<size>::init(const char* name, const char* version, Object* object,
180 const elfcpp::Sym<size, big_endian>& sym)
181{
182 this->init_base(name, version, object, sym);
183 this->value_ = sym.get_st_value();
ead1e424
ILT
184 this->symsize_ = sym.get_st_size();
185}
186
187// Initialize the fields in Sized_symbol for a symbol defined in an
188// Output_data.
189
190template<int size>
191void
192Sized_symbol<size>::init(const char* name, Output_data* od,
193 Value_type value, Size_type symsize,
194 elfcpp::STT type, elfcpp::STB binding,
195 elfcpp::STV visibility, unsigned char nonvis,
196 bool offset_is_from_end)
197{
198 this->init_base(name, od, type, binding, visibility, nonvis,
199 offset_is_from_end);
200 this->value_ = value;
201 this->symsize_ = symsize;
202}
203
204// Initialize the fields in Sized_symbol for a symbol defined in an
205// Output_segment.
206
207template<int size>
208void
209Sized_symbol<size>::init(const char* name, Output_segment* os,
210 Value_type value, Size_type symsize,
211 elfcpp::STT type, elfcpp::STB binding,
212 elfcpp::STV visibility, unsigned char nonvis,
213 Segment_offset_base offset_base)
214{
215 this->init_base(name, os, type, binding, visibility, nonvis, offset_base);
216 this->value_ = value;
217 this->symsize_ = symsize;
218}
219
220// Initialize the fields in Sized_symbol for a symbol defined as a
221// constant.
222
223template<int size>
224void
225Sized_symbol<size>::init(const char* name, Value_type value, Size_type symsize,
226 elfcpp::STT type, elfcpp::STB binding,
227 elfcpp::STV visibility, unsigned char nonvis)
228{
229 this->init_base(name, type, binding, visibility, nonvis);
230 this->value_ = value;
231 this->symsize_ = symsize;
14bfc3f5
ILT
232}
233
c7912668
ILT
234// Allocate a common symbol.
235
236template<int size>
237void
238Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
239{
240 this->allocate_base_common(od);
241 this->value_ = value;
242}
243
436ca963
ILT
244// Return true if this symbol should be added to the dynamic symbol
245// table.
246
247inline bool
248Symbol::should_add_dynsym_entry() const
249{
250 // If the symbol is used by a dynamic relocation, we need to add it.
251 if (this->needs_dynsym_entry())
252 return true;
253
55a93433
ILT
254 // If the symbol was forced local in a version script, do not add it.
255 if (this->is_forced_local())
256 return false;
257
436ca963
ILT
258 // If exporting all symbols or building a shared library,
259 // and the symbol is defined in a regular object and is
260 // externally visible, we need to add it.
8851ecca 261 if ((parameters->options().export_dynamic() || parameters->options().shared())
436ca963
ILT
262 && !this->is_from_dynobj()
263 && this->is_externally_visible())
264 return true;
265
266 return false;
267}
268
b3b74ddc
ILT
269// Return true if the final value of this symbol is known at link
270// time.
271
272bool
273Symbol::final_value_is_known() const
274{
275 // If we are not generating an executable, then no final values are
276 // known, since they will change at runtime.
8851ecca 277 if (parameters->options().shared() || parameters->options().relocatable())
b3b74ddc
ILT
278 return false;
279
280 // If the symbol is not from an object file, then it is defined, and
281 // known.
282 if (this->source_ != FROM_OBJECT)
283 return true;
284
285 // If the symbol is from a dynamic object, then the final value is
286 // not known.
287 if (this->object()->is_dynamic())
288 return false;
289
290 // If the symbol is not undefined (it is defined or common), then
291 // the final value is known.
292 if (!this->is_undefined())
293 return true;
294
295 // If the symbol is undefined, then whether the final value is known
296 // depends on whether we are doing a static link. If we are doing a
297 // dynamic link, then the final value could be filled in at runtime.
298 // This could reasonably be the case for a weak undefined symbol.
299 return parameters->doing_static_link();
300}
301
77e65537 302// Return the output section where this symbol is defined.
a445fddf 303
77e65537
ILT
304Output_section*
305Symbol::output_section() const
a445fddf
ILT
306{
307 switch (this->source_)
308 {
309 case FROM_OBJECT:
77e65537
ILT
310 {
311 unsigned int shndx = this->u_.from_object.shndx;
312 if (shndx != elfcpp::SHN_UNDEF && shndx < elfcpp::SHN_LORESERVE)
313 {
314 gold_assert(!this->u_.from_object.object->is_dynamic());
315 Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
316 section_offset_type dummy;
317 return relobj->output_section(shndx, &dummy);
318 }
319 return NULL;
320 }
321
a445fddf 322 case IN_OUTPUT_DATA:
77e65537
ILT
323 return this->u_.in_output_data.output_data->output_section();
324
a445fddf 325 case IN_OUTPUT_SEGMENT:
a445fddf 326 case CONSTANT:
77e65537
ILT
327 return NULL;
328
329 default:
330 gold_unreachable();
331 }
332}
333
334// Set the symbol's output section. This is used for symbols defined
335// in scripts. This should only be called after the symbol table has
336// been finalized.
337
338void
339Symbol::set_output_section(Output_section* os)
340{
341 switch (this->source_)
342 {
343 case FROM_OBJECT:
344 case IN_OUTPUT_DATA:
345 gold_assert(this->output_section() == os);
346 break;
347 case CONSTANT:
348 this->source_ = IN_OUTPUT_DATA;
349 this->u_.in_output_data.output_data = os;
350 this->u_.in_output_data.offset_is_from_end = false;
351 break;
352 case IN_OUTPUT_SEGMENT:
a445fddf
ILT
353 default:
354 gold_unreachable();
355 }
356}
357
14bfc3f5
ILT
358// Class Symbol_table.
359
09124467
ILT
360Symbol_table::Symbol_table(unsigned int count,
361 const Version_script_info& version_script)
6d013333 362 : saw_undefined_(0), offset_(0), table_(count), namepool_(),
155a0dd7 363 forwarders_(), commons_(), tls_commons_(), forced_locals_(), warnings_(),
55a93433 364 version_script_(version_script)
14bfc3f5 365{
6d013333 366 namepool_.reserve(count);
14bfc3f5
ILT
367}
368
369Symbol_table::~Symbol_table()
370{
371}
372
ad8f37d1 373// The hash function. The key values are Stringpool keys.
14bfc3f5 374
ad8f37d1 375inline size_t
14bfc3f5
ILT
376Symbol_table::Symbol_table_hash::operator()(const Symbol_table_key& key) const
377{
f0641a0b 378 return key.first ^ key.second;
14bfc3f5
ILT
379}
380
ad8f37d1
ILT
381// The symbol table key equality function. This is called with
382// Stringpool keys.
14bfc3f5 383
ad8f37d1 384inline bool
14bfc3f5
ILT
385Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
386 const Symbol_table_key& k2) const
387{
388 return k1.first == k2.first && k1.second == k2.second;
389}
390
dd8670e5 391// Make TO a symbol which forwards to FROM.
14bfc3f5
ILT
392
393void
394Symbol_table::make_forwarder(Symbol* from, Symbol* to)
395{
a3ad94ed
ILT
396 gold_assert(from != to);
397 gold_assert(!from->is_forwarder() && !to->is_forwarder());
14bfc3f5
ILT
398 this->forwarders_[from] = to;
399 from->set_forwarder();
400}
401
61ba1cf9
ILT
402// Resolve the forwards from FROM, returning the real symbol.
403
14bfc3f5 404Symbol*
c06b7b0b 405Symbol_table::resolve_forwards(const Symbol* from) const
14bfc3f5 406{
a3ad94ed 407 gold_assert(from->is_forwarder());
c06b7b0b 408 Unordered_map<const Symbol*, Symbol*>::const_iterator p =
14bfc3f5 409 this->forwarders_.find(from);
a3ad94ed 410 gold_assert(p != this->forwarders_.end());
14bfc3f5
ILT
411 return p->second;
412}
413
61ba1cf9
ILT
414// Look up a symbol by name.
415
416Symbol*
417Symbol_table::lookup(const char* name, const char* version) const
418{
f0641a0b
ILT
419 Stringpool::Key name_key;
420 name = this->namepool_.find(name, &name_key);
61ba1cf9
ILT
421 if (name == NULL)
422 return NULL;
f0641a0b
ILT
423
424 Stringpool::Key version_key = 0;
61ba1cf9
ILT
425 if (version != NULL)
426 {
f0641a0b 427 version = this->namepool_.find(version, &version_key);
61ba1cf9
ILT
428 if (version == NULL)
429 return NULL;
430 }
431
f0641a0b 432 Symbol_table_key key(name_key, version_key);
61ba1cf9
ILT
433 Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
434 if (p == this->table_.end())
435 return NULL;
436 return p->second;
437}
438
14bfc3f5
ILT
439// Resolve a Symbol with another Symbol. This is only used in the
440// unusual case where there are references to both an unversioned
441// symbol and a symbol with a version, and we then discover that that
1564db8d
ILT
442// version is the default version. Because this is unusual, we do
443// this the slow way, by converting back to an ELF symbol.
14bfc3f5 444
1564db8d 445template<int size, bool big_endian>
14bfc3f5 446void
14b31740 447Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from,
7d1a9ebb 448 const char* version)
14bfc3f5 449{
1564db8d
ILT
450 unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
451 elfcpp::Sym_write<size, big_endian> esym(buf);
452 // We don't bother to set the st_name field.
453 esym.put_st_value(from->value());
454 esym.put_st_size(from->symsize());
455 esym.put_st_info(from->binding(), from->type());
ead1e424 456 esym.put_st_other(from->visibility(), from->nonvis());
16649710 457 esym.put_st_shndx(from->shndx());
70e654ba 458 this->resolve(to, esym.sym(), esym.sym(), from->object(), version);
1ebd95fd
ILT
459 if (from->in_reg())
460 to->set_in_reg();
461 if (from->in_dyn())
462 to->set_in_dyn();
14bfc3f5
ILT
463}
464
55a93433
ILT
465// Record that a symbol is forced to be local by a version script.
466
467void
468Symbol_table::force_local(Symbol* sym)
469{
470 if (!sym->is_defined() && !sym->is_common())
471 return;
472 if (sym->is_forced_local())
473 {
474 // We already got this one.
475 return;
476 }
477 sym->set_is_forced_local();
478 this->forced_locals_.push_back(sym);
479}
480
0864d551
ILT
481// Adjust NAME for wrapping, and update *NAME_KEY if necessary. This
482// is only called for undefined symbols, when at least one --wrap
483// option was used.
484
485const char*
486Symbol_table::wrap_symbol(Object* object, const char* name,
487 Stringpool::Key* name_key)
488{
489 // For some targets, we need to ignore a specific character when
490 // wrapping, and add it back later.
491 char prefix = '\0';
492 if (name[0] == object->target()->wrap_char())
493 {
494 prefix = name[0];
495 ++name;
496 }
497
498 if (parameters->options().is_wrap_symbol(name))
499 {
500 // Turn NAME into __wrap_NAME.
501 std::string s;
502 if (prefix != '\0')
503 s += prefix;
504 s += "__wrap_";
505 s += name;
506
507 // This will give us both the old and new name in NAMEPOOL_, but
508 // that is OK. Only the versions we need will wind up in the
509 // real string table in the output file.
510 return this->namepool_.add(s.c_str(), true, name_key);
511 }
512
513 const char* const real_prefix = "__real_";
514 const size_t real_prefix_length = strlen(real_prefix);
515 if (strncmp(name, real_prefix, real_prefix_length) == 0
516 && parameters->options().is_wrap_symbol(name + real_prefix_length))
517 {
518 // Turn __real_NAME into NAME.
519 std::string s;
520 if (prefix != '\0')
521 s += prefix;
522 s += name + real_prefix_length;
523 return this->namepool_.add(s.c_str(), true, name_key);
524 }
525
526 return name;
527}
528
14bfc3f5
ILT
529// Add one symbol from OBJECT to the symbol table. NAME is symbol
530// name and VERSION is the version; both are canonicalized. DEF is
531// whether this is the default version.
532
533// If DEF is true, then this is the definition of a default version of
534// a symbol. That means that any lookup of NAME/NULL and any lookup
535// of NAME/VERSION should always return the same symbol. This is
536// obvious for references, but in particular we want to do this for
537// definitions: overriding NAME/NULL should also override
538// NAME/VERSION. If we don't do that, it would be very hard to
539// override functions in a shared library which uses versioning.
540
541// We implement this by simply making both entries in the hash table
542// point to the same Symbol structure. That is easy enough if this is
543// the first time we see NAME/NULL or NAME/VERSION, but it is possible
544// that we have seen both already, in which case they will both have
545// independent entries in the symbol table. We can't simply change
546// the symbol table entry, because we have pointers to the entries
547// attached to the object files. So we mark the entry attached to the
548// object file as a forwarder, and record it in the forwarders_ map.
549// Note that entries in the hash table will never be marked as
550// forwarders.
70e654ba
ILT
551//
552// SYM and ORIG_SYM are almost always the same. ORIG_SYM is the
553// symbol exactly as it existed in the input file. SYM is usually
554// that as well, but can be modified, for instance if we determine
555// it's in a to-be-discarded section.
14bfc3f5
ILT
556
557template<int size, bool big_endian>
aeddab66 558Sized_symbol<size>*
f6ce93d6 559Symbol_table::add_from_object(Object* object,
14bfc3f5 560 const char *name,
f0641a0b
ILT
561 Stringpool::Key name_key,
562 const char *version,
563 Stringpool::Key version_key,
564 bool def,
70e654ba
ILT
565 const elfcpp::Sym<size, big_endian>& sym,
566 const elfcpp::Sym<size, big_endian>& orig_sym)
14bfc3f5 567{
0864d551
ILT
568 // For an undefined symbol, we may need to adjust the name using
569 // --wrap.
570 if (orig_sym.get_st_shndx() == elfcpp::SHN_UNDEF
571 && parameters->options().any_wrap_symbols())
572 {
573 const char* wrap_name = this->wrap_symbol(object, name, &name_key);
574 if (wrap_name != name)
575 {
576 // If we see a reference to malloc with version GLIBC_2.0,
577 // and we turn it into a reference to __wrap_malloc, then we
578 // discard the version number. Otherwise the user would be
579 // required to specify the correct version for
580 // __wrap_malloc.
581 version = NULL;
582 version_key = 0;
583 name = wrap_name;
584 }
585 }
586
14bfc3f5
ILT
587 Symbol* const snull = NULL;
588 std::pair<typename Symbol_table_type::iterator, bool> ins =
f0641a0b
ILT
589 this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
590 snull));
14bfc3f5
ILT
591
592 std::pair<typename Symbol_table_type::iterator, bool> insdef =
593 std::make_pair(this->table_.end(), false);
594 if (def)
595 {
f0641a0b
ILT
596 const Stringpool::Key vnull_key = 0;
597 insdef = this->table_.insert(std::make_pair(std::make_pair(name_key,
598 vnull_key),
14bfc3f5
ILT
599 snull));
600 }
601
602 // ins.first: an iterator, which is a pointer to a pair.
603 // ins.first->first: the key (a pair of name and version).
604 // ins.first->second: the value (Symbol*).
605 // ins.second: true if new entry was inserted, false if not.
606
1564db8d 607 Sized_symbol<size>* ret;
ead1e424
ILT
608 bool was_undefined;
609 bool was_common;
14bfc3f5
ILT
610 if (!ins.second)
611 {
612 // We already have an entry for NAME/VERSION.
7d1a9ebb 613 ret = this->get_sized_symbol<size>(ins.first->second);
a3ad94ed 614 gold_assert(ret != NULL);
ead1e424
ILT
615
616 was_undefined = ret->is_undefined();
617 was_common = ret->is_common();
618
70e654ba 619 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
620
621 if (def)
622 {
623 if (insdef.second)
624 {
625 // This is the first time we have seen NAME/NULL. Make
626 // NAME/NULL point to NAME/VERSION.
627 insdef.first->second = ret;
628 }
99f8faca
ILT
629 else if (insdef.first->second != ret
630 && insdef.first->second->is_undefined())
14bfc3f5
ILT
631 {
632 // This is the unfortunate case where we already have
99f8faca
ILT
633 // entries for both NAME/VERSION and NAME/NULL. Note
634 // that we don't want to combine them if the existing
635 // symbol is going to override the new one. FIXME: We
636 // currently just test is_undefined, but this may not do
637 // the right thing if the existing symbol is from a
638 // shared library and the new one is from a regular
639 // object.
640
274e99f9 641 const Sized_symbol<size>* sym2;
7d1a9ebb
ILT
642 sym2 = this->get_sized_symbol<size>(insdef.first->second);
643 Symbol_table::resolve<size, big_endian>(ret, sym2, version);
14bfc3f5
ILT
644 this->make_forwarder(insdef.first->second, ret);
645 insdef.first->second = ret;
646 }
479f6503
ILT
647 else
648 def = false;
14bfc3f5
ILT
649 }
650 }
651 else
652 {
653 // This is the first time we have seen NAME/VERSION.
a3ad94ed 654 gold_assert(ins.first->second == NULL);
ead1e424 655
14bfc3f5
ILT
656 if (def && !insdef.second)
657 {
14b31740
ILT
658 // We already have an entry for NAME/NULL. If we override
659 // it, then change it to NAME/VERSION.
7d1a9ebb 660 ret = this->get_sized_symbol<size>(insdef.first->second);
18e6b24e
ILT
661
662 was_undefined = ret->is_undefined();
663 was_common = ret->is_common();
664
70e654ba 665 this->resolve(ret, sym, orig_sym, object, version);
14bfc3f5
ILT
666 ins.first->second = ret;
667 }
668 else
669 {
18e6b24e
ILT
670 was_undefined = false;
671 was_common = false;
672
f6ce93d6 673 Sized_target<size, big_endian>* target =
7d1a9ebb 674 object->sized_target<size, big_endian>();
1564db8d
ILT
675 if (!target->has_make_symbol())
676 ret = new Sized_symbol<size>();
677 else
14bfc3f5 678 {
1564db8d
ILT
679 ret = target->make_symbol();
680 if (ret == NULL)
14bfc3f5
ILT
681 {
682 // This means that we don't want a symbol table
683 // entry after all.
684 if (!def)
685 this->table_.erase(ins.first);
686 else
687 {
688 this->table_.erase(insdef.first);
689 // Inserting insdef invalidated ins.
f0641a0b
ILT
690 this->table_.erase(std::make_pair(name_key,
691 version_key));
14bfc3f5
ILT
692 }
693 return NULL;
694 }
695 }
14bfc3f5 696
1564db8d
ILT
697 ret->init(name, version, object, sym);
698
14bfc3f5
ILT
699 ins.first->second = ret;
700 if (def)
701 {
702 // This is the first time we have seen NAME/NULL. Point
703 // it at the new entry for NAME/VERSION.
a3ad94ed 704 gold_assert(insdef.second);
14bfc3f5
ILT
705 insdef.first->second = ret;
706 }
707 }
708 }
709
ead1e424
ILT
710 // Record every time we see a new undefined symbol, to speed up
711 // archive groups.
712 if (!was_undefined && ret->is_undefined())
713 ++this->saw_undefined_;
714
715 // Keep track of common symbols, to speed up common symbol
716 // allocation.
717 if (!was_common && ret->is_common())
155a0dd7
ILT
718 {
719 if (ret->type() != elfcpp::STT_TLS)
720 this->commons_.push_back(ret);
721 else
722 this->tls_commons_.push_back(ret);
723 }
ead1e424 724
be3e6201
ILT
725 if (def)
726 ret->set_is_default();
14bfc3f5
ILT
727 return ret;
728}
729
f6ce93d6 730// Add all the symbols in a relocatable object to the hash table.
14bfc3f5
ILT
731
732template<int size, bool big_endian>
733void
dbe717ef
ILT
734Symbol_table::add_from_relobj(
735 Sized_relobj<size, big_endian>* relobj,
f6ce93d6 736 const unsigned char* syms,
14bfc3f5
ILT
737 size_t count,
738 const char* sym_names,
739 size_t sym_name_size,
730cdc88 740 typename Sized_relobj<size, big_endian>::Symbols* sympointers)
14bfc3f5 741{
9025d29d 742 gold_assert(size == relobj->target()->get_size());
8851ecca 743 gold_assert(size == parameters->target().get_size());
14bfc3f5 744
a783673b
ILT
745 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
746
88dd47ac
ILT
747 const bool just_symbols = relobj->just_symbols();
748
f6ce93d6 749 const unsigned char* p = syms;
a783673b 750 for (size_t i = 0; i < count; ++i, p += sym_size)
14bfc3f5
ILT
751 {
752 elfcpp::Sym<size, big_endian> sym(p);
a783673b 753 elfcpp::Sym<size, big_endian>* psym = &sym;
14bfc3f5 754
a783673b 755 unsigned int st_name = psym->get_st_name();
14bfc3f5
ILT
756 if (st_name >= sym_name_size)
757 {
75f2446e
ILT
758 relobj->error(_("bad global symbol name offset %u at %zu"),
759 st_name, i);
760 continue;
14bfc3f5
ILT
761 }
762
dbe717ef
ILT
763 const char* name = sym_names + st_name;
764
a783673b
ILT
765 // A symbol defined in a section which we are not including must
766 // be treated as an undefined symbol.
767 unsigned char symbuf[sym_size];
768 elfcpp::Sym<size, big_endian> sym2(symbuf);
769 unsigned int st_shndx = psym->get_st_shndx();
770 if (st_shndx != elfcpp::SHN_UNDEF
771 && st_shndx < elfcpp::SHN_LORESERVE
dbe717ef 772 && !relobj->is_section_included(st_shndx))
a783673b
ILT
773 {
774 memcpy(symbuf, p, sym_size);
775 elfcpp::Sym_write<size, big_endian> sw(symbuf);
776 sw.put_st_shndx(elfcpp::SHN_UNDEF);
777 psym = &sym2;
778 }
779
14bfc3f5
ILT
780 // In an object file, an '@' in the name separates the symbol
781 // name from the version name. If there are two '@' characters,
782 // this is the default version.
783 const char* ver = strchr(name, '@');
09124467 784 int namelen = 0;
55a93433 785 // DEF: is the version default? LOCAL: is the symbol forced local?
09124467 786 bool def = false;
55a93433 787 bool local = false;
09124467
ILT
788
789 if (ver != NULL)
790 {
791 // The symbol name is of the form foo@VERSION or foo@@VERSION
792 namelen = ver - name;
793 ++ver;
794 if (*ver == '@')
795 {
796 def = true;
797 ++ver;
798 }
799 }
5871526f
ILT
800 // We don't want to assign a version to an undefined symbol,
801 // even if it is listed in the version script. FIXME: What
802 // about a common symbol?
803 else if (!version_script_.empty()
804 && psym->get_st_shndx() != elfcpp::SHN_UNDEF)
09124467
ILT
805 {
806 // The symbol name did not have a version, but
807 // the version script may assign a version anyway.
808 namelen = strlen(name);
809 def = true;
55a93433 810 // Check the global: entries from the version script.
09124467
ILT
811 const std::string& version =
812 version_script_.get_symbol_version(name);
813 if (!version.empty())
814 ver = version.c_str();
55a93433
ILT
815 // Check the local: entries from the version script
816 if (version_script_.symbol_is_local(name))
817 local = true;
09124467 818 }
14bfc3f5 819
88dd47ac
ILT
820 if (just_symbols)
821 {
822 if (psym != &sym2)
823 memcpy(symbuf, p, sym_size);
824 elfcpp::Sym_write<size, big_endian> sw(symbuf);
825 sw.put_st_shndx(elfcpp::SHN_ABS);
826 if (st_shndx != elfcpp::SHN_UNDEF
827 && st_shndx < elfcpp::SHN_LORESERVE)
828 {
829 // Symbol values in object files are section relative.
830 // This is normally what we want, but since here we are
831 // converting the symbol to absolute we need to add the
832 // section address. The section address in an object
833 // file is normally zero, but people can use a linker
834 // script to change it.
835 sw.put_st_value(sym2.get_st_value()
836 + relobj->section_address(st_shndx));
837 }
838 psym = &sym2;
839 }
840
aeddab66 841 Sized_symbol<size>* res;
14bfc3f5
ILT
842 if (ver == NULL)
843 {
f0641a0b 844 Stringpool::Key name_key;
cfd73a4e 845 name = this->namepool_.add(name, true, &name_key);
dbe717ef 846 res = this->add_from_object(relobj, name, name_key, NULL, 0,
70e654ba 847 false, *psym, sym);
55a93433
ILT
848 if (local)
849 this->force_local(res);
14bfc3f5
ILT
850 }
851 else
852 {
f0641a0b 853 Stringpool::Key name_key;
09124467 854 name = this->namepool_.add_with_length(name, namelen, true,
c0873094 855 &name_key);
f0641a0b 856 Stringpool::Key ver_key;
cfd73a4e 857 ver = this->namepool_.add(ver, true, &ver_key);
f0641a0b 858
dbe717ef 859 res = this->add_from_object(relobj, name, name_key, ver, ver_key,
70e654ba 860 def, *psym, sym);
14bfc3f5
ILT
861 }
862
730cdc88 863 (*sympointers)[i] = res;
14bfc3f5
ILT
864 }
865}
866
dbe717ef
ILT
867// Add all the symbols in a dynamic object to the hash table.
868
869template<int size, bool big_endian>
870void
871Symbol_table::add_from_dynobj(
872 Sized_dynobj<size, big_endian>* dynobj,
873 const unsigned char* syms,
874 size_t count,
875 const char* sym_names,
876 size_t sym_name_size,
877 const unsigned char* versym,
878 size_t versym_size,
879 const std::vector<const char*>* version_map)
880{
9025d29d 881 gold_assert(size == dynobj->target()->get_size());
8851ecca 882 gold_assert(size == parameters->target().get_size());
dbe717ef 883
88dd47ac
ILT
884 if (dynobj->just_symbols())
885 {
886 gold_error(_("--just-symbols does not make sense with a shared object"));
887 return;
888 }
889
dbe717ef
ILT
890 if (versym != NULL && versym_size / 2 < count)
891 {
75f2446e
ILT
892 dynobj->error(_("too few symbol versions"));
893 return;
dbe717ef
ILT
894 }
895
896 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
897
aeddab66
ILT
898 // We keep a list of all STT_OBJECT symbols, so that we can resolve
899 // weak aliases. This is necessary because if the dynamic object
900 // provides the same variable under two names, one of which is a
901 // weak definition, and the regular object refers to the weak
902 // definition, we have to put both the weak definition and the
903 // strong definition into the dynamic symbol table. Given a weak
904 // definition, the only way that we can find the corresponding
905 // strong definition, if any, is to search the symbol table.
906 std::vector<Sized_symbol<size>*> object_symbols;
907
dbe717ef
ILT
908 const unsigned char* p = syms;
909 const unsigned char* vs = versym;
910 for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
911 {
912 elfcpp::Sym<size, big_endian> sym(p);
913
65778909
ILT
914 // Ignore symbols with local binding or that have
915 // internal or hidden visibility.
916 if (sym.get_st_bind() == elfcpp::STB_LOCAL
917 || sym.get_st_visibility() == elfcpp::STV_INTERNAL
918 || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
dbe717ef
ILT
919 continue;
920
921 unsigned int st_name = sym.get_st_name();
922 if (st_name >= sym_name_size)
923 {
75f2446e
ILT
924 dynobj->error(_("bad symbol name offset %u at %zu"),
925 st_name, i);
926 continue;
dbe717ef
ILT
927 }
928
929 const char* name = sym_names + st_name;
930
aeddab66
ILT
931 Sized_symbol<size>* res;
932
dbe717ef
ILT
933 if (versym == NULL)
934 {
935 Stringpool::Key name_key;
cfd73a4e 936 name = this->namepool_.add(name, true, &name_key);
aeddab66 937 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 938 false, sym, sym);
dbe717ef 939 }
aeddab66
ILT
940 else
941 {
942 // Read the version information.
dbe717ef 943
aeddab66 944 unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
dbe717ef 945
aeddab66
ILT
946 bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
947 v &= elfcpp::VERSYM_VERSION;
dbe717ef 948
aeddab66
ILT
949 // The Sun documentation says that V can be VER_NDX_LOCAL,
950 // or VER_NDX_GLOBAL, or a version index. The meaning of
951 // VER_NDX_LOCAL is defined as "Symbol has local scope."
952 // The old GNU linker will happily generate VER_NDX_LOCAL
953 // for an undefined symbol. I don't know what the Sun
954 // linker will generate.
dbe717ef 955
aeddab66
ILT
956 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
957 && sym.get_st_shndx() != elfcpp::SHN_UNDEF)
958 {
959 // This symbol should not be visible outside the object.
960 continue;
961 }
64707334 962
aeddab66
ILT
963 // At this point we are definitely going to add this symbol.
964 Stringpool::Key name_key;
965 name = this->namepool_.add(name, true, &name_key);
dbe717ef 966
aeddab66
ILT
967 if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
968 || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
969 {
970 // This symbol does not have a version.
971 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 972 false, sym, sym);
aeddab66
ILT
973 }
974 else
975 {
976 if (v >= version_map->size())
977 {
978 dynobj->error(_("versym for symbol %zu out of range: %u"),
979 i, v);
980 continue;
981 }
dbe717ef 982
aeddab66
ILT
983 const char* version = (*version_map)[v];
984 if (version == NULL)
985 {
986 dynobj->error(_("versym for symbol %zu has no name: %u"),
987 i, v);
988 continue;
989 }
dbe717ef 990
aeddab66
ILT
991 Stringpool::Key version_key;
992 version = this->namepool_.add(version, true, &version_key);
993
994 // If this is an absolute symbol, and the version name
995 // and symbol name are the same, then this is the
996 // version definition symbol. These symbols exist to
997 // support using -u to pull in particular versions. We
998 // do not want to record a version for them.
999 if (sym.get_st_shndx() == elfcpp::SHN_ABS
1000 && name_key == version_key)
1001 res = this->add_from_object(dynobj, name, name_key, NULL, 0,
70e654ba 1002 false, sym, sym);
aeddab66
ILT
1003 else
1004 {
1005 const bool def = (!hidden
1006 && (sym.get_st_shndx()
1007 != elfcpp::SHN_UNDEF));
1008 res = this->add_from_object(dynobj, name, name_key, version,
70e654ba 1009 version_key, def, sym, sym);
aeddab66
ILT
1010 }
1011 }
dbe717ef
ILT
1012 }
1013
99a37bfd 1014 // Note that it is possible that RES was overridden by an
a4bb589a 1015 // earlier object, in which case it can't be aliased here.
aeddab66 1016 if (sym.get_st_shndx() != elfcpp::SHN_UNDEF
99a37bfd
ILT
1017 && sym.get_st_type() == elfcpp::STT_OBJECT
1018 && res->source() == Symbol::FROM_OBJECT
1019 && res->object() == dynobj)
aeddab66
ILT
1020 object_symbols.push_back(res);
1021 }
1022
1023 this->record_weak_aliases(&object_symbols);
1024}
1025
1026// This is used to sort weak aliases. We sort them first by section
1027// index, then by offset, then by weak ahead of strong.
1028
1029template<int size>
1030class Weak_alias_sorter
1031{
1032 public:
1033 bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
1034};
1035
1036template<int size>
1037bool
1038Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
1039 const Sized_symbol<size>* s2) const
1040{
1041 if (s1->shndx() != s2->shndx())
1042 return s1->shndx() < s2->shndx();
1043 if (s1->value() != s2->value())
1044 return s1->value() < s2->value();
1045 if (s1->binding() != s2->binding())
1046 {
1047 if (s1->binding() == elfcpp::STB_WEAK)
1048 return true;
1049 if (s2->binding() == elfcpp::STB_WEAK)
1050 return false;
1051 }
1052 return std::string(s1->name()) < std::string(s2->name());
1053}
dbe717ef 1054
aeddab66
ILT
1055// SYMBOLS is a list of object symbols from a dynamic object. Look
1056// for any weak aliases, and record them so that if we add the weak
1057// alias to the dynamic symbol table, we also add the corresponding
1058// strong symbol.
dbe717ef 1059
aeddab66
ILT
1060template<int size>
1061void
1062Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
1063{
1064 // Sort the vector by section index, then by offset, then by weak
1065 // ahead of strong.
1066 std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
1067
1068 // Walk through the vector. For each weak definition, record
1069 // aliases.
1070 for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
1071 symbols->begin();
1072 p != symbols->end();
1073 ++p)
1074 {
1075 if ((*p)->binding() != elfcpp::STB_WEAK)
1076 continue;
1077
1078 // Build a circular list of weak aliases. Each symbol points to
1079 // the next one in the circular list.
1080
1081 Sized_symbol<size>* from_sym = *p;
1082 typename std::vector<Sized_symbol<size>*>::const_iterator q;
1083 for (q = p + 1; q != symbols->end(); ++q)
dbe717ef 1084 {
aeddab66
ILT
1085 if ((*q)->shndx() != from_sym->shndx()
1086 || (*q)->value() != from_sym->value())
1087 break;
1088
1089 this->weak_aliases_[from_sym] = *q;
1090 from_sym->set_has_alias();
1091 from_sym = *q;
dbe717ef
ILT
1092 }
1093
aeddab66
ILT
1094 if (from_sym != *p)
1095 {
1096 this->weak_aliases_[from_sym] = *p;
1097 from_sym->set_has_alias();
1098 }
dbe717ef 1099
aeddab66 1100 p = q - 1;
dbe717ef
ILT
1101 }
1102}
1103
ead1e424
ILT
1104// Create and return a specially defined symbol. If ONLY_IF_REF is
1105// true, then only create the symbol if there is a reference to it.
86f2e683 1106// If this does not return NULL, it sets *POLDSYM to the existing
306d9ef0 1107// symbol if there is one. This canonicalizes *PNAME and *PVERSION.
ead1e424
ILT
1108
1109template<int size, bool big_endian>
1110Sized_symbol<size>*
9b07f471
ILT
1111Symbol_table::define_special_symbol(const char** pname, const char** pversion,
1112 bool only_if_ref,
7d1a9ebb 1113 Sized_symbol<size>** poldsym)
ead1e424 1114{
ead1e424
ILT
1115 Symbol* oldsym;
1116 Sized_symbol<size>* sym;
86f2e683
ILT
1117 bool add_to_table = false;
1118 typename Symbol_table_type::iterator add_loc = this->table_.end();
ead1e424 1119
55a93433
ILT
1120 // If the caller didn't give us a version, see if we get one from
1121 // the version script.
1122 if (*pversion == NULL)
1123 {
1124 const std::string& v(this->version_script_.get_symbol_version(*pname));
1125 if (!v.empty())
1126 *pversion = v.c_str();
1127 }
1128
ead1e424
ILT
1129 if (only_if_ref)
1130 {
306d9ef0 1131 oldsym = this->lookup(*pname, *pversion);
f6ce93d6 1132 if (oldsym == NULL || !oldsym->is_undefined())
ead1e424 1133 return NULL;
306d9ef0
ILT
1134
1135 *pname = oldsym->name();
1136 *pversion = oldsym->version();
ead1e424
ILT
1137 }
1138 else
1139 {
14b31740 1140 // Canonicalize NAME and VERSION.
f0641a0b 1141 Stringpool::Key name_key;
cfd73a4e 1142 *pname = this->namepool_.add(*pname, true, &name_key);
ead1e424 1143
14b31740 1144 Stringpool::Key version_key = 0;
306d9ef0 1145 if (*pversion != NULL)
cfd73a4e 1146 *pversion = this->namepool_.add(*pversion, true, &version_key);
14b31740 1147
ead1e424 1148 Symbol* const snull = NULL;
ead1e424 1149 std::pair<typename Symbol_table_type::iterator, bool> ins =
14b31740
ILT
1150 this->table_.insert(std::make_pair(std::make_pair(name_key,
1151 version_key),
ead1e424
ILT
1152 snull));
1153
1154 if (!ins.second)
1155 {
14b31740 1156 // We already have a symbol table entry for NAME/VERSION.
ead1e424 1157 oldsym = ins.first->second;
a3ad94ed 1158 gold_assert(oldsym != NULL);
ead1e424
ILT
1159 }
1160 else
1161 {
1162 // We haven't seen this symbol before.
a3ad94ed 1163 gold_assert(ins.first->second == NULL);
86f2e683
ILT
1164 add_to_table = true;
1165 add_loc = ins.first;
ead1e424
ILT
1166 oldsym = NULL;
1167 }
1168 }
1169
8851ecca
ILT
1170 const Target& target = parameters->target();
1171 if (!target.has_make_symbol())
86f2e683
ILT
1172 sym = new Sized_symbol<size>();
1173 else
ead1e424 1174 {
8851ecca
ILT
1175 gold_assert(target.get_size() == size);
1176 gold_assert(target.is_big_endian() ? big_endian : !big_endian);
86f2e683
ILT
1177 typedef Sized_target<size, big_endian> My_target;
1178 const My_target* sized_target =
8851ecca 1179 static_cast<const My_target*>(&target);
86f2e683
ILT
1180 sym = sized_target->make_symbol();
1181 if (sym == NULL)
1182 return NULL;
1183 }
ead1e424 1184
86f2e683
ILT
1185 if (add_to_table)
1186 add_loc->second = sym;
1187 else
1188 gold_assert(oldsym != NULL);
ead1e424 1189
7d1a9ebb 1190 *poldsym = this->get_sized_symbol<size>(oldsym);
ead1e424
ILT
1191
1192 return sym;
1193}
1194
1195// Define a symbol based on an Output_data.
1196
14b31740 1197Symbol*
9b07f471
ILT
1198Symbol_table::define_in_output_data(const char* name,
1199 const char* version,
1200 Output_data* od,
1201 uint64_t value,
1202 uint64_t symsize,
1203 elfcpp::STT type,
1204 elfcpp::STB binding,
ead1e424
ILT
1205 elfcpp::STV visibility,
1206 unsigned char nonvis,
1207 bool offset_is_from_end,
1208 bool only_if_ref)
1209{
8851ecca 1210 if (parameters->target().get_size() == 32)
86f2e683
ILT
1211 {
1212#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1213 return this->do_define_in_output_data<32>(name, version, od,
86f2e683
ILT
1214 value, symsize, type, binding,
1215 visibility, nonvis,
1216 offset_is_from_end,
1217 only_if_ref);
1218#else
1219 gold_unreachable();
1220#endif
1221 }
8851ecca 1222 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1223 {
1224#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1225 return this->do_define_in_output_data<64>(name, version, od,
86f2e683
ILT
1226 value, symsize, type, binding,
1227 visibility, nonvis,
1228 offset_is_from_end,
1229 only_if_ref);
1230#else
1231 gold_unreachable();
1232#endif
1233 }
ead1e424 1234 else
a3ad94ed 1235 gold_unreachable();
ead1e424
ILT
1236}
1237
1238// Define a symbol in an Output_data, sized version.
1239
1240template<int size>
14b31740 1241Sized_symbol<size>*
ead1e424 1242Symbol_table::do_define_in_output_data(
ead1e424 1243 const char* name,
14b31740 1244 const char* version,
ead1e424
ILT
1245 Output_data* od,
1246 typename elfcpp::Elf_types<size>::Elf_Addr value,
1247 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1248 elfcpp::STT type,
1249 elfcpp::STB binding,
1250 elfcpp::STV visibility,
1251 unsigned char nonvis,
1252 bool offset_is_from_end,
1253 bool only_if_ref)
1254{
1255 Sized_symbol<size>* sym;
86f2e683 1256 Sized_symbol<size>* oldsym;
ead1e424 1257
8851ecca 1258 if (parameters->target().is_big_endian())
193a53d9
ILT
1259 {
1260#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1261 sym = this->define_special_symbol<size, true>(&name, &version,
1262 only_if_ref, &oldsym);
193a53d9
ILT
1263#else
1264 gold_unreachable();
1265#endif
1266 }
ead1e424 1267 else
193a53d9
ILT
1268 {
1269#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1270 sym = this->define_special_symbol<size, false>(&name, &version,
1271 only_if_ref, &oldsym);
193a53d9
ILT
1272#else
1273 gold_unreachable();
1274#endif
1275 }
ead1e424
ILT
1276
1277 if (sym == NULL)
14b31740 1278 return NULL;
ead1e424 1279
d4f5281b 1280 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1281 sym->init(name, od, value, symsize, type, binding, visibility, nonvis,
1282 offset_is_from_end);
14b31740 1283
e5756efb 1284 if (oldsym == NULL)
55a93433
ILT
1285 {
1286 if (binding == elfcpp::STB_LOCAL
1287 || this->version_script_.symbol_is_local(name))
1288 this->force_local(sym);
1289 return sym;
1290 }
86f2e683 1291
e5756efb
ILT
1292 if (Symbol_table::should_override_with_special(oldsym))
1293 this->override_with_special(oldsym, sym);
1294 delete sym;
1295 return oldsym;
ead1e424
ILT
1296}
1297
1298// Define a symbol based on an Output_segment.
1299
14b31740 1300Symbol*
9b07f471 1301Symbol_table::define_in_output_segment(const char* name,
14b31740 1302 const char* version, Output_segment* os,
9b07f471
ILT
1303 uint64_t value,
1304 uint64_t symsize,
1305 elfcpp::STT type,
1306 elfcpp::STB binding,
ead1e424
ILT
1307 elfcpp::STV visibility,
1308 unsigned char nonvis,
1309 Symbol::Segment_offset_base offset_base,
1310 bool only_if_ref)
1311{
8851ecca 1312 if (parameters->target().get_size() == 32)
86f2e683
ILT
1313 {
1314#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1315 return this->do_define_in_output_segment<32>(name, version, os,
86f2e683
ILT
1316 value, symsize, type,
1317 binding, visibility, nonvis,
1318 offset_base, only_if_ref);
1319#else
1320 gold_unreachable();
1321#endif
1322 }
8851ecca 1323 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1324 {
1325#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1326 return this->do_define_in_output_segment<64>(name, version, os,
86f2e683
ILT
1327 value, symsize, type,
1328 binding, visibility, nonvis,
1329 offset_base, only_if_ref);
1330#else
1331 gold_unreachable();
1332#endif
1333 }
ead1e424 1334 else
a3ad94ed 1335 gold_unreachable();
ead1e424
ILT
1336}
1337
1338// Define a symbol in an Output_segment, sized version.
1339
1340template<int size>
14b31740 1341Sized_symbol<size>*
ead1e424 1342Symbol_table::do_define_in_output_segment(
ead1e424 1343 const char* name,
14b31740 1344 const char* version,
ead1e424
ILT
1345 Output_segment* os,
1346 typename elfcpp::Elf_types<size>::Elf_Addr value,
1347 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1348 elfcpp::STT type,
1349 elfcpp::STB binding,
1350 elfcpp::STV visibility,
1351 unsigned char nonvis,
1352 Symbol::Segment_offset_base offset_base,
1353 bool only_if_ref)
1354{
1355 Sized_symbol<size>* sym;
86f2e683 1356 Sized_symbol<size>* oldsym;
ead1e424 1357
8851ecca 1358 if (parameters->target().is_big_endian())
9025d29d
ILT
1359 {
1360#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1361 sym = this->define_special_symbol<size, true>(&name, &version,
1362 only_if_ref, &oldsym);
9025d29d
ILT
1363#else
1364 gold_unreachable();
1365#endif
1366 }
ead1e424 1367 else
9025d29d
ILT
1368 {
1369#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1370 sym = this->define_special_symbol<size, false>(&name, &version,
1371 only_if_ref, &oldsym);
9025d29d
ILT
1372#else
1373 gold_unreachable();
1374#endif
1375 }
ead1e424
ILT
1376
1377 if (sym == NULL)
14b31740 1378 return NULL;
ead1e424 1379
d4f5281b 1380 gold_assert(version == NULL || oldsym != NULL);
ead1e424
ILT
1381 sym->init(name, os, value, symsize, type, binding, visibility, nonvis,
1382 offset_base);
14b31740 1383
e5756efb 1384 if (oldsym == NULL)
55a93433
ILT
1385 {
1386 if (binding == elfcpp::STB_LOCAL
1387 || this->version_script_.symbol_is_local(name))
1388 this->force_local(sym);
1389 return sym;
1390 }
86f2e683 1391
e5756efb
ILT
1392 if (Symbol_table::should_override_with_special(oldsym))
1393 this->override_with_special(oldsym, sym);
1394 delete sym;
1395 return oldsym;
ead1e424
ILT
1396}
1397
1398// Define a special symbol with a constant value. It is a multiple
1399// definition error if this symbol is already defined.
1400
14b31740 1401Symbol*
9b07f471
ILT
1402Symbol_table::define_as_constant(const char* name,
1403 const char* version,
1404 uint64_t value,
1405 uint64_t symsize,
1406 elfcpp::STT type,
1407 elfcpp::STB binding,
1408 elfcpp::STV visibility,
1409 unsigned char nonvis,
caa9d5d9
ILT
1410 bool only_if_ref,
1411 bool force_override)
ead1e424 1412{
8851ecca 1413 if (parameters->target().get_size() == 32)
86f2e683
ILT
1414 {
1415#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
9b07f471 1416 return this->do_define_as_constant<32>(name, version, value,
86f2e683 1417 symsize, type, binding,
caa9d5d9
ILT
1418 visibility, nonvis, only_if_ref,
1419 force_override);
86f2e683
ILT
1420#else
1421 gold_unreachable();
1422#endif
1423 }
8851ecca 1424 else if (parameters->target().get_size() == 64)
86f2e683
ILT
1425 {
1426#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
9b07f471 1427 return this->do_define_as_constant<64>(name, version, value,
86f2e683 1428 symsize, type, binding,
caa9d5d9
ILT
1429 visibility, nonvis, only_if_ref,
1430 force_override);
86f2e683
ILT
1431#else
1432 gold_unreachable();
1433#endif
1434 }
ead1e424 1435 else
a3ad94ed 1436 gold_unreachable();
ead1e424
ILT
1437}
1438
1439// Define a symbol as a constant, sized version.
1440
1441template<int size>
14b31740 1442Sized_symbol<size>*
ead1e424 1443Symbol_table::do_define_as_constant(
ead1e424 1444 const char* name,
14b31740 1445 const char* version,
ead1e424
ILT
1446 typename elfcpp::Elf_types<size>::Elf_Addr value,
1447 typename elfcpp::Elf_types<size>::Elf_WXword symsize,
1448 elfcpp::STT type,
1449 elfcpp::STB binding,
1450 elfcpp::STV visibility,
1451 unsigned char nonvis,
caa9d5d9
ILT
1452 bool only_if_ref,
1453 bool force_override)
ead1e424
ILT
1454{
1455 Sized_symbol<size>* sym;
86f2e683 1456 Sized_symbol<size>* oldsym;
ead1e424 1457
8851ecca 1458 if (parameters->target().is_big_endian())
9025d29d
ILT
1459 {
1460#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
7d1a9ebb
ILT
1461 sym = this->define_special_symbol<size, true>(&name, &version,
1462 only_if_ref, &oldsym);
9025d29d
ILT
1463#else
1464 gold_unreachable();
1465#endif
1466 }
ead1e424 1467 else
9025d29d
ILT
1468 {
1469#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
7d1a9ebb
ILT
1470 sym = this->define_special_symbol<size, false>(&name, &version,
1471 only_if_ref, &oldsym);
9025d29d
ILT
1472#else
1473 gold_unreachable();
1474#endif
1475 }
ead1e424
ILT
1476
1477 if (sym == NULL)
14b31740 1478 return NULL;
ead1e424 1479
09124467 1480 gold_assert(version == NULL || version == name || oldsym != NULL);
ead1e424 1481 sym->init(name, value, symsize, type, binding, visibility, nonvis);
14b31740 1482
e5756efb 1483 if (oldsym == NULL)
55a93433 1484 {
686c8caf
ILT
1485 // Version symbols are absolute symbols with name == version.
1486 // We don't want to force them to be local.
1487 if ((version == NULL
1488 || name != version
1489 || value != 0)
1490 && (binding == elfcpp::STB_LOCAL
1491 || this->version_script_.symbol_is_local(name)))
55a93433
ILT
1492 this->force_local(sym);
1493 return sym;
1494 }
86f2e683 1495
caa9d5d9 1496 if (force_override || Symbol_table::should_override_with_special(oldsym))
e5756efb
ILT
1497 this->override_with_special(oldsym, sym);
1498 delete sym;
1499 return oldsym;
ead1e424
ILT
1500}
1501
1502// Define a set of symbols in output sections.
1503
1504void
9b07f471 1505Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1506 const Define_symbol_in_section* p,
1507 bool only_if_ref)
ead1e424
ILT
1508{
1509 for (int i = 0; i < count; ++i, ++p)
1510 {
1511 Output_section* os = layout->find_output_section(p->output_section);
1512 if (os != NULL)
9b07f471 1513 this->define_in_output_data(p->name, NULL, os, p->value,
14b31740
ILT
1514 p->size, p->type, p->binding,
1515 p->visibility, p->nonvis,
a445fddf
ILT
1516 p->offset_is_from_end,
1517 only_if_ref || p->only_if_ref);
ead1e424 1518 else
9b07f471 1519 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1520 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1521 only_if_ref || p->only_if_ref,
1522 false);
ead1e424
ILT
1523 }
1524}
1525
1526// Define a set of symbols in output segments.
1527
1528void
9b07f471 1529Symbol_table::define_symbols(const Layout* layout, int count,
a445fddf
ILT
1530 const Define_symbol_in_segment* p,
1531 bool only_if_ref)
ead1e424
ILT
1532{
1533 for (int i = 0; i < count; ++i, ++p)
1534 {
1535 Output_segment* os = layout->find_output_segment(p->segment_type,
1536 p->segment_flags_set,
1537 p->segment_flags_clear);
1538 if (os != NULL)
9b07f471 1539 this->define_in_output_segment(p->name, NULL, os, p->value,
14b31740
ILT
1540 p->size, p->type, p->binding,
1541 p->visibility, p->nonvis,
a445fddf
ILT
1542 p->offset_base,
1543 only_if_ref || p->only_if_ref);
ead1e424 1544 else
9b07f471 1545 this->define_as_constant(p->name, NULL, 0, p->size, p->type,
ead1e424 1546 p->binding, p->visibility, p->nonvis,
caa9d5d9
ILT
1547 only_if_ref || p->only_if_ref,
1548 false);
ead1e424
ILT
1549 }
1550}
1551
46fe1623
ILT
1552// Define CSYM using a COPY reloc. POSD is the Output_data where the
1553// symbol should be defined--typically a .dyn.bss section. VALUE is
1554// the offset within POSD.
1555
1556template<int size>
1557void
fe8718a4 1558Symbol_table::define_with_copy_reloc(
fe8718a4
ILT
1559 Sized_symbol<size>* csym,
1560 Output_data* posd,
1561 typename elfcpp::Elf_types<size>::Elf_Addr value)
46fe1623
ILT
1562{
1563 gold_assert(csym->is_from_dynobj());
1564 gold_assert(!csym->is_copied_from_dynobj());
1565 Object* object = csym->object();
1566 gold_assert(object->is_dynamic());
1567 Dynobj* dynobj = static_cast<Dynobj*>(object);
1568
1569 // Our copied variable has to override any variable in a shared
1570 // library.
1571 elfcpp::STB binding = csym->binding();
1572 if (binding == elfcpp::STB_WEAK)
1573 binding = elfcpp::STB_GLOBAL;
1574
9b07f471 1575 this->define_in_output_data(csym->name(), csym->version(),
46fe1623
ILT
1576 posd, value, csym->symsize(),
1577 csym->type(), binding,
1578 csym->visibility(), csym->nonvis(),
1579 false, false);
1580
1581 csym->set_is_copied_from_dynobj();
1582 csym->set_needs_dynsym_entry();
1583
1584 this->copied_symbol_dynobjs_[csym] = dynobj;
1585
1586 // We have now defined all aliases, but we have not entered them all
1587 // in the copied_symbol_dynobjs_ map.
1588 if (csym->has_alias())
1589 {
1590 Symbol* sym = csym;
1591 while (true)
1592 {
1593 sym = this->weak_aliases_[sym];
1594 if (sym == csym)
1595 break;
1596 gold_assert(sym->output_data() == posd);
1597
1598 sym->set_is_copied_from_dynobj();
1599 this->copied_symbol_dynobjs_[sym] = dynobj;
1600 }
1601 }
1602}
1603
1604// SYM is defined using a COPY reloc. Return the dynamic object where
1605// the original definition was found.
1606
1607Dynobj*
1608Symbol_table::get_copy_source(const Symbol* sym) const
1609{
1610 gold_assert(sym->is_copied_from_dynobj());
1611 Copied_symbol_dynobjs::const_iterator p =
1612 this->copied_symbol_dynobjs_.find(sym);
1613 gold_assert(p != this->copied_symbol_dynobjs_.end());
1614 return p->second;
1615}
1616
a3ad94ed
ILT
1617// Set the dynamic symbol indexes. INDEX is the index of the first
1618// global dynamic symbol. Pointers to the symbols are stored into the
1619// vector SYMS. The names are added to DYNPOOL. This returns an
1620// updated dynamic symbol index.
1621
1622unsigned int
9b07f471 1623Symbol_table::set_dynsym_indexes(unsigned int index,
a3ad94ed 1624 std::vector<Symbol*>* syms,
14b31740
ILT
1625 Stringpool* dynpool,
1626 Versions* versions)
a3ad94ed
ILT
1627{
1628 for (Symbol_table_type::iterator p = this->table_.begin();
1629 p != this->table_.end();
1630 ++p)
1631 {
1632 Symbol* sym = p->second;
16649710
ILT
1633
1634 // Note that SYM may already have a dynamic symbol index, since
1635 // some symbols appear more than once in the symbol table, with
1636 // and without a version.
1637
436ca963 1638 if (!sym->should_add_dynsym_entry())
16649710
ILT
1639 sym->set_dynsym_index(-1U);
1640 else if (!sym->has_dynsym_index())
a3ad94ed
ILT
1641 {
1642 sym->set_dynsym_index(index);
1643 ++index;
1644 syms->push_back(sym);
cfd73a4e 1645 dynpool->add(sym->name(), false, NULL);
14b31740
ILT
1646
1647 // Record any version information.
09124467
ILT
1648 if (sym->version() != NULL)
1649 versions->record_version(this, dynpool, sym);
a3ad94ed
ILT
1650 }
1651 }
1652
14b31740
ILT
1653 // Finish up the versions. In some cases this may add new dynamic
1654 // symbols.
9b07f471 1655 index = versions->finalize(this, index, syms);
14b31740 1656
a3ad94ed
ILT
1657 return index;
1658}
1659
c06b7b0b 1660// Set the final values for all the symbols. The index of the first
55a93433
ILT
1661// global symbol in the output file is *PLOCAL_SYMCOUNT. Record the
1662// file offset OFF. Add their names to POOL. Return the new file
1663// offset. Update *PLOCAL_SYMCOUNT if necessary.
54dc6425 1664
75f65a3e 1665off_t
55a93433
ILT
1666Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
1667 size_t dyncount, Stringpool* pool,
1668 unsigned int *plocal_symcount)
54dc6425 1669{
f6ce93d6
ILT
1670 off_t ret;
1671
55a93433
ILT
1672 gold_assert(*plocal_symcount != 0);
1673 this->first_global_index_ = *plocal_symcount;
c06b7b0b 1674
16649710
ILT
1675 this->dynamic_offset_ = dynoff;
1676 this->first_dynamic_global_index_ = dyn_global_index;
1677 this->dynamic_count_ = dyncount;
1678
8851ecca 1679 if (parameters->target().get_size() == 32)
9025d29d
ILT
1680 {
1681#if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
55a93433 1682 ret = this->sized_finalize<32>(off, pool, plocal_symcount);
9025d29d
ILT
1683#else
1684 gold_unreachable();
1685#endif
1686 }
8851ecca 1687 else if (parameters->target().get_size() == 64)
9025d29d
ILT
1688 {
1689#if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
55a93433 1690 ret = this->sized_finalize<64>(off, pool, plocal_symcount);
9025d29d
ILT
1691#else
1692 gold_unreachable();
1693#endif
1694 }
61ba1cf9 1695 else
a3ad94ed 1696 gold_unreachable();
f6ce93d6
ILT
1697
1698 // Now that we have the final symbol table, we can reliably note
1699 // which symbols should get warnings.
cb295612 1700 this->warnings_.note_warnings(this);
f6ce93d6
ILT
1701
1702 return ret;
75f65a3e
ILT
1703}
1704
55a93433
ILT
1705// SYM is going into the symbol table at *PINDEX. Add the name to
1706// POOL, update *PINDEX and *POFF.
1707
1708template<int size>
1709void
1710Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
1711 unsigned int* pindex, off_t* poff)
1712{
1713 sym->set_symtab_index(*pindex);
1714 pool->add(sym->name(), false, NULL);
1715 ++*pindex;
1716 *poff += elfcpp::Elf_sizes<size>::sym_size;
1717}
1718
ead1e424
ILT
1719// Set the final value for all the symbols. This is called after
1720// Layout::finalize, so all the output sections have their final
1721// address.
75f65a3e
ILT
1722
1723template<int size>
1724off_t
55a93433
ILT
1725Symbol_table::sized_finalize(off_t off, Stringpool* pool,
1726 unsigned int* plocal_symcount)
75f65a3e 1727{
ead1e424 1728 off = align_address(off, size >> 3);
75f65a3e
ILT
1729 this->offset_ = off;
1730
55a93433
ILT
1731 unsigned int index = *plocal_symcount;
1732 const unsigned int orig_index = index;
c06b7b0b 1733
55a93433
ILT
1734 // First do all the symbols which have been forced to be local, as
1735 // they must appear before all global symbols.
1736 for (Forced_locals::iterator p = this->forced_locals_.begin();
1737 p != this->forced_locals_.end();
1738 ++p)
1739 {
1740 Symbol* sym = *p;
1741 gold_assert(sym->is_forced_local());
1742 if (this->sized_finalize_symbol<size>(sym))
1743 {
1744 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1745 ++*plocal_symcount;
1746 }
1747 }
1748
1749 // Now do all the remaining symbols.
c06b7b0b
ILT
1750 for (Symbol_table_type::iterator p = this->table_.begin();
1751 p != this->table_.end();
1752 ++p)
54dc6425 1753 {
55a93433
ILT
1754 Symbol* sym = p->second;
1755 if (this->sized_finalize_symbol<size>(sym))
1756 this->add_to_final_symtab<size>(sym, pool, &index, &off);
1757 }
54dc6425 1758
55a93433 1759 this->output_count_ = index - orig_index;
a3ad94ed 1760
55a93433
ILT
1761 return off;
1762}
75f65a3e 1763
55a93433
ILT
1764// Finalize the symbol SYM. This returns true if the symbol should be
1765// added to the symbol table, false otherwise.
008db82e 1766
55a93433
ILT
1767template<int size>
1768bool
1769Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
1770{
1771 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
75f65a3e 1772
55a93433
ILT
1773 // The default version of a symbol may appear twice in the symbol
1774 // table. We only need to finalize it once.
1775 if (sym->has_symtab_index())
1776 return false;
ead1e424 1777
55a93433
ILT
1778 if (!sym->in_reg())
1779 {
1780 gold_assert(!sym->has_symtab_index());
1781 sym->set_symtab_index(-1U);
1782 gold_assert(sym->dynsym_index() == -1U);
1783 return false;
1784 }
ead1e424 1785
55a93433 1786 typename Sized_symbol<size>::Value_type value;
ead1e424 1787
55a93433
ILT
1788 switch (sym->source())
1789 {
1790 case Symbol::FROM_OBJECT:
1791 {
1792 unsigned int shndx = sym->shndx();
ead1e424 1793
55a93433
ILT
1794 // FIXME: We need some target specific support here.
1795 if (shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1796 && shndx != elfcpp::SHN_ABS
1797 && shndx != elfcpp::SHN_COMMON)
55a93433
ILT
1798 {
1799 gold_error(_("%s: unsupported symbol section 0x%x"),
1800 sym->demangled_name().c_str(), shndx);
1801 shndx = elfcpp::SHN_UNDEF;
ead1e424 1802 }
ead1e424 1803
55a93433
ILT
1804 Object* symobj = sym->object();
1805 if (symobj->is_dynamic())
ead1e424 1806 {
55a93433
ILT
1807 value = 0;
1808 shndx = elfcpp::SHN_UNDEF;
ead1e424 1809 }
55a93433
ILT
1810 else if (shndx == elfcpp::SHN_UNDEF)
1811 value = 0;
0dfbdef4 1812 else if (shndx == elfcpp::SHN_ABS || shndx == elfcpp::SHN_COMMON)
55a93433
ILT
1813 value = sym->value();
1814 else
ead1e424 1815 {
55a93433
ILT
1816 Relobj* relobj = static_cast<Relobj*>(symobj);
1817 section_offset_type secoff;
1818 Output_section* os = relobj->output_section(shndx, &secoff);
1819
1820 if (os == NULL)
ead1e424 1821 {
55a93433
ILT
1822 sym->set_symtab_index(-1U);
1823 gold_assert(sym->dynsym_index() == -1U);
1824 return false;
ead1e424 1825 }
55a93433
ILT
1826
1827 if (sym->type() == elfcpp::STT_TLS)
1828 value = sym->value() + os->tls_offset() + secoff;
1829 else
1830 value = sym->value() + os->address() + secoff;
ead1e424 1831 }
55a93433
ILT
1832 }
1833 break;
1834
1835 case Symbol::IN_OUTPUT_DATA:
1836 {
1837 Output_data* od = sym->output_data();
155a0dd7
ILT
1838 value = sym->value();
1839 if (sym->type() != elfcpp::STT_TLS)
1840 value += od->address();
1841 else
1842 {
1843 Output_section* os = od->output_section();
1844 gold_assert(os != NULL);
1845 value += os->tls_offset() + (od->address() - os->address());
1846 }
55a93433
ILT
1847 if (sym->offset_is_from_end())
1848 value += od->data_size();
1849 }
1850 break;
1851
1852 case Symbol::IN_OUTPUT_SEGMENT:
1853 {
1854 Output_segment* os = sym->output_segment();
edfbb029
CC
1855 value = sym->value();
1856 if (sym->type() != elfcpp::STT_TLS)
1857 value += os->vaddr();
55a93433
ILT
1858 switch (sym->offset_base())
1859 {
1860 case Symbol::SEGMENT_START:
1861 break;
1862 case Symbol::SEGMENT_END:
1863 value += os->memsz();
1864 break;
1865 case Symbol::SEGMENT_BSS:
1866 value += os->filesz();
1867 break;
1868 default:
1869 gold_unreachable();
1870 }
1871 }
1872 break;
ead1e424 1873
55a93433
ILT
1874 case Symbol::CONSTANT:
1875 value = sym->value();
1876 break;
ead1e424 1877
55a93433
ILT
1878 default:
1879 gold_unreachable();
1880 }
ead1e424 1881
55a93433 1882 sym->set_value(value);
9e2dcb77 1883
8851ecca 1884 if (parameters->options().strip_all())
55a93433
ILT
1885 {
1886 sym->set_symtab_index(-1U);
1887 return false;
54dc6425 1888 }
75f65a3e 1889
55a93433 1890 return true;
54dc6425
ILT
1891}
1892
61ba1cf9
ILT
1893// Write out the global symbols.
1894
1895void
9a2d6984
ILT
1896Symbol_table::write_globals(const Input_objects* input_objects,
1897 const Stringpool* sympool,
16649710 1898 const Stringpool* dynpool, Output_file* of) const
61ba1cf9 1899{
8851ecca 1900 switch (parameters->size_and_endianness())
61ba1cf9 1901 {
9025d29d 1902#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
1903 case Parameters::TARGET_32_LITTLE:
1904 this->sized_write_globals<32, false>(input_objects, sympool,
1905 dynpool, of);
1906 break;
9025d29d 1907#endif
8851ecca
ILT
1908#ifdef HAVE_TARGET_32_BIG
1909 case Parameters::TARGET_32_BIG:
1910 this->sized_write_globals<32, true>(input_objects, sympool,
1911 dynpool, of);
1912 break;
9025d29d 1913#endif
9025d29d 1914#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
1915 case Parameters::TARGET_64_LITTLE:
1916 this->sized_write_globals<64, false>(input_objects, sympool,
1917 dynpool, of);
1918 break;
9025d29d 1919#endif
8851ecca
ILT
1920#ifdef HAVE_TARGET_64_BIG
1921 case Parameters::TARGET_64_BIG:
1922 this->sized_write_globals<64, true>(input_objects, sympool,
1923 dynpool, of);
1924 break;
1925#endif
1926 default:
1927 gold_unreachable();
61ba1cf9 1928 }
61ba1cf9
ILT
1929}
1930
1931// Write out the global symbols.
1932
1933template<int size, bool big_endian>
1934void
9a2d6984 1935Symbol_table::sized_write_globals(const Input_objects* input_objects,
61ba1cf9 1936 const Stringpool* sympool,
16649710 1937 const Stringpool* dynpool,
61ba1cf9
ILT
1938 Output_file* of) const
1939{
8851ecca 1940 const Target& target = parameters->target();
9a2d6984 1941
61ba1cf9 1942 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
55a93433
ILT
1943
1944 const unsigned int output_count = this->output_count_;
1945 const section_size_type oview_size = output_count * sym_size;
1946 const unsigned int first_global_index = this->first_global_index_;
5fe2a0f5
ILT
1947 unsigned char* psyms;
1948 if (this->offset_ == 0 || output_count == 0)
1949 psyms = NULL;
1950 else
1951 psyms = of->get_output_view(this->offset_, oview_size);
16649710 1952
55a93433
ILT
1953 const unsigned int dynamic_count = this->dynamic_count_;
1954 const section_size_type dynamic_size = dynamic_count * sym_size;
1955 const unsigned int first_dynamic_global_index =
1956 this->first_dynamic_global_index_;
16649710 1957 unsigned char* dynamic_view;
5fe2a0f5 1958 if (this->dynamic_offset_ == 0 || dynamic_count == 0)
16649710
ILT
1959 dynamic_view = NULL;
1960 else
1961 dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
c06b7b0b 1962
61ba1cf9
ILT
1963 for (Symbol_table_type::const_iterator p = this->table_.begin();
1964 p != this->table_.end();
1965 ++p)
1966 {
1967 Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
1968
9a2d6984
ILT
1969 // Possibly warn about unresolved symbols in shared libraries.
1970 this->warn_about_undefined_dynobj_symbol(input_objects, sym);
e2827e5f 1971
a3ad94ed 1972 unsigned int sym_index = sym->symtab_index();
16649710
ILT
1973 unsigned int dynsym_index;
1974 if (dynamic_view == NULL)
1975 dynsym_index = -1U;
1976 else
1977 dynsym_index = sym->dynsym_index();
1978
1979 if (sym_index == -1U && dynsym_index == -1U)
a3ad94ed
ILT
1980 {
1981 // This symbol is not included in the output file.
1982 continue;
1983 }
16649710 1984
ead1e424 1985 unsigned int shndx;
88dd47ac
ILT
1986 typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
1987 typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
ead1e424
ILT
1988 switch (sym->source())
1989 {
1990 case Symbol::FROM_OBJECT:
1991 {
16649710 1992 unsigned int in_shndx = sym->shndx();
ead1e424
ILT
1993
1994 // FIXME: We need some target specific support here.
16649710 1995 if (in_shndx >= elfcpp::SHN_LORESERVE
0dfbdef4
ILT
1996 && in_shndx != elfcpp::SHN_ABS
1997 && in_shndx != elfcpp::SHN_COMMON)
ead1e424 1998 {
75f2446e 1999 gold_error(_("%s: unsupported symbol section 0x%x"),
a2b1aa12 2000 sym->demangled_name().c_str(), in_shndx);
75f2446e 2001 shndx = in_shndx;
f6ce93d6 2002 }
ead1e424
ILT
2003 else
2004 {
75f2446e
ILT
2005 Object* symobj = sym->object();
2006 if (symobj->is_dynamic())
2007 {
2008 if (sym->needs_dynsym_value())
8851ecca 2009 dynsym_value = target.dynsym_value(sym);
75f2446e
ILT
2010 shndx = elfcpp::SHN_UNDEF;
2011 }
2012 else if (in_shndx == elfcpp::SHN_UNDEF
0dfbdef4
ILT
2013 || in_shndx == elfcpp::SHN_ABS
2014 || in_shndx == elfcpp::SHN_COMMON)
75f2446e
ILT
2015 shndx = in_shndx;
2016 else
2017 {
2018 Relobj* relobj = static_cast<Relobj*>(symobj);
8383303e 2019 section_offset_type secoff;
75f2446e
ILT
2020 Output_section* os = relobj->output_section(in_shndx,
2021 &secoff);
2022 gold_assert(os != NULL);
2023 shndx = os->out_shndx();
88dd47ac
ILT
2024
2025 // In object files symbol values are section
2026 // relative.
8851ecca 2027 if (parameters->options().relocatable())
88dd47ac 2028 sym_value -= os->address();
75f2446e 2029 }
ead1e424
ILT
2030 }
2031 }
2032 break;
2033
2034 case Symbol::IN_OUTPUT_DATA:
2035 shndx = sym->output_data()->out_shndx();
2036 break;
2037
2038 case Symbol::IN_OUTPUT_SEGMENT:
2039 shndx = elfcpp::SHN_ABS;
2040 break;
2041
2042 case Symbol::CONSTANT:
2043 shndx = elfcpp::SHN_ABS;
2044 break;
2045
2046 default:
a3ad94ed 2047 gold_unreachable();
ead1e424 2048 }
61ba1cf9 2049
16649710
ILT
2050 if (sym_index != -1U)
2051 {
55a93433
ILT
2052 sym_index -= first_global_index;
2053 gold_assert(sym_index < output_count);
2054 unsigned char* ps = psyms + (sym_index * sym_size);
7d1a9ebb
ILT
2055 this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
2056 sympool, ps);
16649710 2057 }
61ba1cf9 2058
16649710
ILT
2059 if (dynsym_index != -1U)
2060 {
2061 dynsym_index -= first_dynamic_global_index;
2062 gold_assert(dynsym_index < dynamic_count);
2063 unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
7d1a9ebb
ILT
2064 this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
2065 dynpool, pd);
16649710 2066 }
61ba1cf9
ILT
2067 }
2068
c06b7b0b 2069 of->write_output_view(this->offset_, oview_size, psyms);
16649710
ILT
2070 if (dynamic_view != NULL)
2071 of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
2072}
2073
2074// Write out the symbol SYM, in section SHNDX, to P. POOL is the
2075// strtab holding the name.
2076
2077template<int size, bool big_endian>
2078void
ab5c9e90
ILT
2079Symbol_table::sized_write_symbol(
2080 Sized_symbol<size>* sym,
2081 typename elfcpp::Elf_types<size>::Elf_Addr value,
2082 unsigned int shndx,
2083 const Stringpool* pool,
7d1a9ebb 2084 unsigned char* p) const
16649710
ILT
2085{
2086 elfcpp::Sym_write<size, big_endian> osym(p);
2087 osym.put_st_name(pool->get_offset(sym->name()));
ab5c9e90 2088 osym.put_st_value(value);
16649710 2089 osym.put_st_size(sym->symsize());
55a93433
ILT
2090 // A version script may have overridden the default binding.
2091 if (sym->is_forced_local())
2092 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, sym->type()));
2093 else
2094 osym.put_st_info(elfcpp::elf_st_info(sym->binding(), sym->type()));
16649710
ILT
2095 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
2096 osym.put_st_shndx(shndx);
61ba1cf9
ILT
2097}
2098
9a2d6984
ILT
2099// Check for unresolved symbols in shared libraries. This is
2100// controlled by the --allow-shlib-undefined option.
2101
2102// We only warn about libraries for which we have seen all the
2103// DT_NEEDED entries. We don't try to track down DT_NEEDED entries
2104// which were not seen in this link. If we didn't see a DT_NEEDED
2105// entry, we aren't going to be able to reliably report whether the
2106// symbol is undefined.
2107
2108// We also don't warn about libraries found in the system library
2109// directory (the directory were we find libc.so); we assume that
2110// those libraries are OK. This heuristic avoids problems in
2111// GNU/Linux, in which -ldl can have undefined references satisfied by
2112// ld-linux.so.
2113
2114inline void
2115Symbol_table::warn_about_undefined_dynobj_symbol(
2116 const Input_objects* input_objects,
2117 Symbol* sym) const
2118{
2119 if (sym->source() == Symbol::FROM_OBJECT
2120 && sym->object()->is_dynamic()
2121 && sym->shndx() == elfcpp::SHN_UNDEF
2122 && sym->binding() != elfcpp::STB_WEAK
8851ecca
ILT
2123 && !parameters->options().allow_shlib_undefined()
2124 && !parameters->target().is_defined_by_abi(sym)
9a2d6984
ILT
2125 && !input_objects->found_in_system_library_directory(sym->object()))
2126 {
2127 // A very ugly cast.
2128 Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
2129 if (!dynobj->has_unknown_needed_entries())
2130 gold_error(_("%s: undefined reference to '%s'"),
a2b1aa12
ILT
2131 sym->object()->name().c_str(),
2132 sym->demangled_name().c_str());
9a2d6984
ILT
2133 }
2134}
2135
a3ad94ed
ILT
2136// Write out a section symbol. Return the update offset.
2137
2138void
9025d29d 2139Symbol_table::write_section_symbol(const Output_section *os,
a3ad94ed
ILT
2140 Output_file* of,
2141 off_t offset) const
2142{
8851ecca 2143 switch (parameters->size_and_endianness())
a3ad94ed 2144 {
9025d29d 2145#ifdef HAVE_TARGET_32_LITTLE
8851ecca
ILT
2146 case Parameters::TARGET_32_LITTLE:
2147 this->sized_write_section_symbol<32, false>(os, of, offset);
2148 break;
9025d29d 2149#endif
8851ecca
ILT
2150#ifdef HAVE_TARGET_32_BIG
2151 case Parameters::TARGET_32_BIG:
2152 this->sized_write_section_symbol<32, true>(os, of, offset);
2153 break;
9025d29d 2154#endif
9025d29d 2155#ifdef HAVE_TARGET_64_LITTLE
8851ecca
ILT
2156 case Parameters::TARGET_64_LITTLE:
2157 this->sized_write_section_symbol<64, false>(os, of, offset);
2158 break;
9025d29d 2159#endif
8851ecca
ILT
2160#ifdef HAVE_TARGET_64_BIG
2161 case Parameters::TARGET_64_BIG:
2162 this->sized_write_section_symbol<64, true>(os, of, offset);
2163 break;
2164#endif
2165 default:
2166 gold_unreachable();
a3ad94ed 2167 }
a3ad94ed
ILT
2168}
2169
2170// Write out a section symbol, specialized for size and endianness.
2171
2172template<int size, bool big_endian>
2173void
2174Symbol_table::sized_write_section_symbol(const Output_section* os,
2175 Output_file* of,
2176 off_t offset) const
2177{
2178 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
2179
2180 unsigned char* pov = of->get_output_view(offset, sym_size);
2181
2182 elfcpp::Sym_write<size, big_endian> osym(pov);
2183 osym.put_st_name(0);
2184 osym.put_st_value(os->address());
2185 osym.put_st_size(0);
2186 osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
2187 elfcpp::STT_SECTION));
2188 osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
2189 osym.put_st_shndx(os->out_shndx());
2190
2191 of->write_output_view(offset, sym_size, pov);
2192}
2193
abaa3995
ILT
2194// Print statistical information to stderr. This is used for --stats.
2195
2196void
2197Symbol_table::print_stats() const
2198{
2199#if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
2200 fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
2201 program_name, this->table_.size(), this->table_.bucket_count());
2202#else
2203 fprintf(stderr, _("%s: symbol table entries: %zu\n"),
2204 program_name, this->table_.size());
2205#endif
ad8f37d1 2206 this->namepool_.print_stats("symbol table stringpool");
abaa3995
ILT
2207}
2208
ff541f30
ILT
2209// We check for ODR violations by looking for symbols with the same
2210// name for which the debugging information reports that they were
2211// defined in different source locations. When comparing the source
2212// location, we consider instances with the same base filename and
2213// line number to be the same. This is because different object
2214// files/shared libraries can include the same header file using
2215// different paths, and we don't want to report an ODR violation in
2216// that case.
2217
2218// This struct is used to compare line information, as returned by
7bf1f802 2219// Dwarf_line_info::one_addr2line. It implements a < comparison
ff541f30
ILT
2220// operator used with std::set.
2221
2222struct Odr_violation_compare
2223{
2224 bool
2225 operator()(const std::string& s1, const std::string& s2) const
2226 {
2227 std::string::size_type pos1 = s1.rfind('/');
2228 std::string::size_type pos2 = s2.rfind('/');
2229 if (pos1 == std::string::npos
2230 || pos2 == std::string::npos)
2231 return s1 < s2;
2232 return s1.compare(pos1, std::string::npos,
2233 s2, pos2, std::string::npos) < 0;
2234 }
2235};
2236
70e654ba
ILT
2237// Check candidate_odr_violations_ to find symbols with the same name
2238// but apparently different definitions (different source-file/line-no).
2239
2240void
17a1d0a9
ILT
2241Symbol_table::detect_odr_violations(const Task* task,
2242 const char* output_file_name) const
70e654ba
ILT
2243{
2244 for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
2245 it != candidate_odr_violations_.end();
2246 ++it)
2247 {
2248 const char* symbol_name = it->first;
2249 // We use a sorted set so the output is deterministic.
ff541f30 2250 std::set<std::string, Odr_violation_compare> line_nums;
70e654ba 2251
b01c0a4a
ILT
2252 for (Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
2253 locs = it->second.begin();
2254 locs != it->second.end();
2255 ++locs)
70e654ba
ILT
2256 {
2257 // We need to lock the object in order to read it. This
17a1d0a9
ILT
2258 // means that we have to run in a singleton Task. If we
2259 // want to run this in a general Task for better
2260 // performance, we will need one Task for object, plus
2261 // appropriate locking to ensure that we don't conflict with
2262 // other uses of the object.
2263 Task_lock_obj<Object> tl(task, locs->object);
a55ce7fe
ILT
2264 std::string lineno = Dwarf_line_info::one_addr2line(
2265 locs->object, locs->shndx, locs->offset);
70e654ba
ILT
2266 if (!lineno.empty())
2267 line_nums.insert(lineno);
2268 }
2269
2270 if (line_nums.size() > 1)
2271 {
dd8670e5 2272 gold_warning(_("while linking %s: symbol '%s' defined in multiple "
78f15696 2273 "places (possible ODR violation):"),
a2b1aa12 2274 output_file_name, demangle(symbol_name).c_str());
70e654ba
ILT
2275 for (std::set<std::string>::const_iterator it2 = line_nums.begin();
2276 it2 != line_nums.end();
2277 ++it2)
2278 fprintf(stderr, " %s\n", it2->c_str());
2279 }
2280 }
2281}
2282
f6ce93d6
ILT
2283// Warnings functions.
2284
2285// Add a new warning.
2286
2287void
2288Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
cb295612 2289 const std::string& warning)
f6ce93d6
ILT
2290{
2291 name = symtab->canonicalize_name(name);
cb295612 2292 this->warnings_[name].set(obj, warning);
f6ce93d6
ILT
2293}
2294
2295// Look through the warnings and mark the symbols for which we should
2296// warn. This is called during Layout::finalize when we know the
2297// sources for all the symbols.
2298
2299void
cb295612 2300Warnings::note_warnings(Symbol_table* symtab)
f6ce93d6
ILT
2301{
2302 for (Warning_table::iterator p = this->warnings_.begin();
2303 p != this->warnings_.end();
2304 ++p)
2305 {
2306 Symbol* sym = symtab->lookup(p->first, NULL);
2307 if (sym != NULL
2308 && sym->source() == Symbol::FROM_OBJECT
2309 && sym->object() == p->second.object)
cb295612 2310 sym->set_has_warning();
f6ce93d6
ILT
2311 }
2312}
2313
2314// Issue a warning. This is called when we see a relocation against a
2315// symbol for which has a warning.
2316
75f2446e 2317template<int size, bool big_endian>
f6ce93d6 2318void
75f2446e
ILT
2319Warnings::issue_warning(const Symbol* sym,
2320 const Relocate_info<size, big_endian>* relinfo,
2321 size_t relnum, off_t reloffset) const
f6ce93d6 2322{
a3ad94ed 2323 gold_assert(sym->has_warning());
f6ce93d6 2324 Warning_table::const_iterator p = this->warnings_.find(sym->name());
a3ad94ed 2325 gold_assert(p != this->warnings_.end());
75f2446e
ILT
2326 gold_warning_at_location(relinfo, relnum, reloffset,
2327 "%s", p->second.text.c_str());
f6ce93d6
ILT
2328}
2329
14bfc3f5
ILT
2330// Instantiate the templates we need. We could use the configure
2331// script to restrict this to only the ones needed for implemented
2332// targets.
2333
c7912668
ILT
2334#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2335template
2336void
2337Sized_symbol<32>::allocate_common(Output_data*, Value_type);
2338#endif
2339
2340#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2341template
2342void
2343Sized_symbol<64>::allocate_common(Output_data*, Value_type);
2344#endif
2345
193a53d9 2346#ifdef HAVE_TARGET_32_LITTLE
14bfc3f5
ILT
2347template
2348void
193a53d9
ILT
2349Symbol_table::add_from_relobj<32, false>(
2350 Sized_relobj<32, false>* relobj,
f6ce93d6 2351 const unsigned char* syms,
14bfc3f5
ILT
2352 size_t count,
2353 const char* sym_names,
2354 size_t sym_name_size,
730cdc88 2355 Sized_relobj<32, true>::Symbols* sympointers);
193a53d9 2356#endif
14bfc3f5 2357
193a53d9 2358#ifdef HAVE_TARGET_32_BIG
14bfc3f5
ILT
2359template
2360void
193a53d9
ILT
2361Symbol_table::add_from_relobj<32, true>(
2362 Sized_relobj<32, true>* relobj,
f6ce93d6 2363 const unsigned char* syms,
14bfc3f5
ILT
2364 size_t count,
2365 const char* sym_names,
2366 size_t sym_name_size,
730cdc88 2367 Sized_relobj<32, false>::Symbols* sympointers);
193a53d9 2368#endif
14bfc3f5 2369
193a53d9 2370#ifdef HAVE_TARGET_64_LITTLE
14bfc3f5
ILT
2371template
2372void
193a53d9
ILT
2373Symbol_table::add_from_relobj<64, false>(
2374 Sized_relobj<64, false>* relobj,
f6ce93d6 2375 const unsigned char* syms,
14bfc3f5
ILT
2376 size_t count,
2377 const char* sym_names,
2378 size_t sym_name_size,
730cdc88 2379 Sized_relobj<64, true>::Symbols* sympointers);
193a53d9 2380#endif
14bfc3f5 2381
193a53d9 2382#ifdef HAVE_TARGET_64_BIG
14bfc3f5
ILT
2383template
2384void
193a53d9
ILT
2385Symbol_table::add_from_relobj<64, true>(
2386 Sized_relobj<64, true>* relobj,
f6ce93d6 2387 const unsigned char* syms,
14bfc3f5
ILT
2388 size_t count,
2389 const char* sym_names,
2390 size_t sym_name_size,
730cdc88 2391 Sized_relobj<64, false>::Symbols* sympointers);
193a53d9 2392#endif
14bfc3f5 2393
193a53d9 2394#ifdef HAVE_TARGET_32_LITTLE
dbe717ef
ILT
2395template
2396void
193a53d9
ILT
2397Symbol_table::add_from_dynobj<32, false>(
2398 Sized_dynobj<32, false>* dynobj,
dbe717ef
ILT
2399 const unsigned char* syms,
2400 size_t count,
2401 const char* sym_names,
2402 size_t sym_name_size,
2403 const unsigned char* versym,
2404 size_t versym_size,
2405 const std::vector<const char*>* version_map);
193a53d9 2406#endif
dbe717ef 2407
193a53d9 2408#ifdef HAVE_TARGET_32_BIG
dbe717ef
ILT
2409template
2410void
193a53d9
ILT
2411Symbol_table::add_from_dynobj<32, true>(
2412 Sized_dynobj<32, true>* dynobj,
dbe717ef
ILT
2413 const unsigned char* syms,
2414 size_t count,
2415 const char* sym_names,
2416 size_t sym_name_size,
2417 const unsigned char* versym,
2418 size_t versym_size,
2419 const std::vector<const char*>* version_map);
193a53d9 2420#endif
dbe717ef 2421
193a53d9 2422#ifdef HAVE_TARGET_64_LITTLE
dbe717ef
ILT
2423template
2424void
193a53d9
ILT
2425Symbol_table::add_from_dynobj<64, false>(
2426 Sized_dynobj<64, false>* dynobj,
dbe717ef
ILT
2427 const unsigned char* syms,
2428 size_t count,
2429 const char* sym_names,
2430 size_t sym_name_size,
2431 const unsigned char* versym,
2432 size_t versym_size,
2433 const std::vector<const char*>* version_map);
193a53d9 2434#endif
dbe717ef 2435
193a53d9 2436#ifdef HAVE_TARGET_64_BIG
dbe717ef
ILT
2437template
2438void
193a53d9
ILT
2439Symbol_table::add_from_dynobj<64, true>(
2440 Sized_dynobj<64, true>* dynobj,
dbe717ef
ILT
2441 const unsigned char* syms,
2442 size_t count,
2443 const char* sym_names,
2444 size_t sym_name_size,
2445 const unsigned char* versym,
2446 size_t versym_size,
2447 const std::vector<const char*>* version_map);
193a53d9 2448#endif
dbe717ef 2449
46fe1623
ILT
2450#if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
2451template
2452void
fe8718a4 2453Symbol_table::define_with_copy_reloc<32>(
fe8718a4
ILT
2454 Sized_symbol<32>* sym,
2455 Output_data* posd,
2456 elfcpp::Elf_types<32>::Elf_Addr value);
46fe1623
ILT
2457#endif
2458
2459#if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
2460template
2461void
fe8718a4 2462Symbol_table::define_with_copy_reloc<64>(
fe8718a4
ILT
2463 Sized_symbol<64>* sym,
2464 Output_data* posd,
2465 elfcpp::Elf_types<64>::Elf_Addr value);
46fe1623
ILT
2466#endif
2467
75f2446e
ILT
2468#ifdef HAVE_TARGET_32_LITTLE
2469template
2470void
2471Warnings::issue_warning<32, false>(const Symbol* sym,
2472 const Relocate_info<32, false>* relinfo,
2473 size_t relnum, off_t reloffset) const;
2474#endif
2475
2476#ifdef HAVE_TARGET_32_BIG
2477template
2478void
2479Warnings::issue_warning<32, true>(const Symbol* sym,
2480 const Relocate_info<32, true>* relinfo,
2481 size_t relnum, off_t reloffset) const;
2482#endif
2483
2484#ifdef HAVE_TARGET_64_LITTLE
2485template
2486void
2487Warnings::issue_warning<64, false>(const Symbol* sym,
2488 const Relocate_info<64, false>* relinfo,
2489 size_t relnum, off_t reloffset) const;
2490#endif
2491
2492#ifdef HAVE_TARGET_64_BIG
2493template
2494void
2495Warnings::issue_warning<64, true>(const Symbol* sym,
2496 const Relocate_info<64, true>* relinfo,
2497 size_t relnum, off_t reloffset) const;
2498#endif
2499
14bfc3f5 2500} // End namespace gold.
This page took 0.213822 seconds and 4 git commands to generate.