Automatic date update in version.in
[deliverable/binutils-gdb.git] / gold / tilegx.cc
CommitLineData
5c0b3823
WL
1// tilegx.cc -- tilegx target support for gold.
2
b90efa5b 3// Copyright (C) 2012-2015 Free Software Foundation, Inc.
5c0b3823
WL
4// Written by Jiong Wang (jiwang@tilera.com)
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 3 of the License, or
11// (at your option) any later version.
12
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17
18// You should have received a copy of the GNU General Public License
19// along with this program; if not, write to the Free Software
20// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21// MA 02110-1301, USA.
22
23#include "gold.h"
24
25#include <cstring>
26
27#include "elfcpp.h"
28#include "dwarf.h"
29#include "parameters.h"
30#include "reloc.h"
31#include "tilegx.h"
32#include "object.h"
33#include "symtab.h"
34#include "layout.h"
35#include "output.h"
36#include "copy-relocs.h"
37#include "target.h"
38#include "target-reloc.h"
39#include "target-select.h"
40#include "tls.h"
41#include "gc.h"
42#include "icf.h"
43
44// the first got entry reserved
45const int32_t TILEGX_GOT_RESERVE_COUNT = 1;
46
47// the first two .got.plt entry reserved
48const int32_t TILEGX_GOTPLT_RESERVE_COUNT = 2;
49
50// 1. for both 64/32 bit mode, the instruction bundle is always 64bit.
51// 2. thus .plt section should always be aligned to 64 bit.
52const int32_t TILEGX_INST_BUNDLE_SIZE = 64;
53
54namespace
55{
56
57using namespace gold;
58
59// A class to handle the PLT data.
60// This is an abstract base class that handles most of the linker details
61// but does not know the actual contents of PLT entries. The derived
62// classes below fill in those details.
63
64template<int size, bool big_endian>
65class Output_data_plt_tilegx : public Output_section_data
66{
67 public:
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true,size, big_endian>
69 Reloc_section;
70
71 Output_data_plt_tilegx(Layout* layout, uint64_t addralign,
72 Output_data_got<size, big_endian>* got,
73 Output_data_space* got_plt,
74 Output_data_space* got_irelative)
75 : Output_section_data(addralign), layout_(layout),
76 irelative_rel_(NULL), got_(got), got_plt_(got_plt),
77 got_irelative_(got_irelative), count_(0),
78 irelative_count_(0), free_list_()
79 { this->init(layout); }
80
81 Output_data_plt_tilegx(Layout* layout, uint64_t plt_entry_size,
82 Output_data_got<size, big_endian>* got,
83 Output_data_space* got_plt,
84 Output_data_space* got_irelative,
85 unsigned int plt_count)
86 : Output_section_data((plt_count + 1) * plt_entry_size,
87 TILEGX_INST_BUNDLE_SIZE, false),
88 layout_(layout), irelative_rel_(NULL), got_(got),
89 got_plt_(got_plt), got_irelative_(got_irelative), count_(plt_count),
90 irelative_count_(0), free_list_()
91 {
92 this->init(layout);
93
94 // Initialize the free list and reserve the first entry.
95 this->free_list_.init((plt_count + 1) * plt_entry_size, false);
96 this->free_list_.remove(0, plt_entry_size);
97 }
98
99 // Initialize the PLT section.
100 void
101 init(Layout* layout);
102
103 // Add an entry to the PLT.
104 void
105 add_entry(Symbol_table*, Layout*, Symbol* gsym);
106
107 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
108 unsigned int
109 add_local_ifunc_entry(Symbol_table*, Layout*,
110 Sized_relobj_file<size, big_endian>*, unsigned int);
111
112 // Add the relocation for a PLT entry.
113 void
114 add_relocation(Symbol_table*, Layout*, Symbol*, unsigned int);
115
116 // Return the .rela.plt section data.
117 Reloc_section*
118 rela_plt()
119 { return this->rel_; }
120
121 // Return where the IRELATIVE relocations should go in the PLT
122 // relocations.
123 Reloc_section*
124 rela_irelative(Symbol_table*, Layout*);
125
126 // Return whether we created a section for IRELATIVE relocations.
127 bool
128 has_irelative_section() const
129 { return this->irelative_rel_ != NULL; }
130
131 // Return the number of PLT entries.
132 unsigned int
133 entry_count() const
134 { return this->count_ + this->irelative_count_; }
135
136 // Return the offset of the first non-reserved PLT entry.
137 unsigned int
138 first_plt_entry_offset()
139 { return this->get_plt_entry_size(); }
140
141 // Return the size of a PLT entry.
142 unsigned int
143 get_plt_entry_size() const
144 { return plt_entry_size; }
145
146 // Reserve a slot in the PLT for an existing symbol in an incremental update.
147 void
148 reserve_slot(unsigned int plt_index)
149 {
150 this->free_list_.remove((plt_index + 1) * this->get_plt_entry_size(),
151 (plt_index + 2) * this->get_plt_entry_size());
152 }
153
154 // Return the PLT address to use for a global symbol.
155 uint64_t
156 address_for_global(const Symbol*);
157
158 // Return the PLT address to use for a local symbol.
159 uint64_t
160 address_for_local(const Relobj*, unsigned int symndx);
161
162 protected:
163 // Fill in the first PLT entry.
164 void
165 fill_first_plt_entry(unsigned char*);
166
167 // Fill in a normal PLT entry. Returns the offset into the entry that
168 // should be the initial GOT slot value.
169 void
170 fill_plt_entry(unsigned char*,
171 typename elfcpp::Elf_types<size>::Elf_Addr,
172 unsigned int,
173 typename elfcpp::Elf_types<size>::Elf_Addr,
174 unsigned int, unsigned int);
175
176 void
177 do_adjust_output_section(Output_section* os);
178
179 // Write to a map file.
180 void
181 do_print_to_mapfile(Mapfile* mapfile) const
182 { mapfile->print_output_data(this, _("** PLT")); }
183
184 private:
185 // Set the final size.
186 void
187 set_final_data_size();
188
189 // Write out the PLT data.
190 void
191 do_write(Output_file*);
192
193 // A pointer to the Layout class, so that we can find the .dynamic
194 // section when we write out the GOT PLT section.
195 Layout* layout_;
196 // The reloc section.
197 Reloc_section* rel_;
198 // The IRELATIVE relocs, if necessary. These must follow the
199 // regular PLT relocations.
200 Reloc_section* irelative_rel_;
201 // The .got section.
202 Output_data_got<size, big_endian>* got_;
203 // The .got.plt section.
204 Output_data_space* got_plt_;
205 // The part of the .got.plt section used for IRELATIVE relocs.
206 Output_data_space* got_irelative_;
207 // The number of PLT entries.
208 unsigned int count_;
209 // Number of PLT entries with R_TILEGX_IRELATIVE relocs. These
210 // follow the regular PLT entries.
211 unsigned int irelative_count_;
212 // List of available regions within the section, for incremental
213 // update links.
214 Free_list free_list_;
215 // The size of an entry in the PLT.
216 static const int plt_entry_size = 40;
217 // The first entry in the PLT.
218 static const unsigned char first_plt_entry[plt_entry_size];
219 // Other entries in the PLT for an executable.
220 static const unsigned char plt_entry[plt_entry_size];
221};
222
223// The tilegx target class.
224// See the ABI at
225// http://www.tilera.com/scm
226// TLS info comes from
227// http://people.redhat.com/drepper/tls.pdf
228
229template<int size, bool big_endian>
230class Target_tilegx : public Sized_target<size, big_endian>
231{
232 public:
233 // TileGX use RELA
234 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
235 Reloc_section;
236
237 Target_tilegx(const Target::Target_info* info = &tilegx_info)
238 : Sized_target<size, big_endian>(info),
239 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
240 global_offset_table_(NULL), tilegx_dynamic_(NULL), rela_dyn_(NULL),
241 rela_irelative_(NULL), copy_relocs_(elfcpp::R_TILEGX_COPY),
43819297 242 got_mod_index_offset_(-1U),
5c0b3823
WL
243 tls_get_addr_sym_defined_(false)
244 { }
245
246 // Scan the relocations to look for symbol adjustments.
247 void
248 gc_process_relocs(Symbol_table* symtab,
249 Layout* layout,
250 Sized_relobj_file<size, big_endian>* object,
251 unsigned int data_shndx,
252 unsigned int sh_type,
253 const unsigned char* prelocs,
254 size_t reloc_count,
255 Output_section* output_section,
256 bool needs_special_offset_handling,
257 size_t local_symbol_count,
258 const unsigned char* plocal_symbols);
259
260 // Scan the relocations to look for symbol adjustments.
261 void
262 scan_relocs(Symbol_table* symtab,
263 Layout* layout,
264 Sized_relobj_file<size, big_endian>* object,
265 unsigned int data_shndx,
266 unsigned int sh_type,
267 const unsigned char* prelocs,
268 size_t reloc_count,
269 Output_section* output_section,
270 bool needs_special_offset_handling,
271 size_t local_symbol_count,
272 const unsigned char* plocal_symbols);
273
274 // Finalize the sections.
275 void
276 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
277
278 // Return the value to use for a dynamic which requires special
279 // treatment.
280 uint64_t
281 do_dynsym_value(const Symbol*) const;
282
283 // Relocate a section.
284 void
285 relocate_section(const Relocate_info<size, big_endian>*,
286 unsigned int sh_type,
287 const unsigned char* prelocs,
288 size_t reloc_count,
289 Output_section* output_section,
290 bool needs_special_offset_handling,
291 unsigned char* view,
292 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
293 section_size_type view_size,
294 const Reloc_symbol_changes*);
295
296 // Scan the relocs during a relocatable link.
297 void
298 scan_relocatable_relocs(Symbol_table* symtab,
299 Layout* layout,
300 Sized_relobj_file<size, big_endian>* object,
301 unsigned int data_shndx,
302 unsigned int sh_type,
303 const unsigned char* prelocs,
304 size_t reloc_count,
305 Output_section* output_section,
306 bool needs_special_offset_handling,
307 size_t local_symbol_count,
308 const unsigned char* plocal_symbols,
309 Relocatable_relocs*);
310
311 // Relocate a section during a relocatable link.
312 void
313 relocate_relocs(
314 const Relocate_info<size, big_endian>*,
315 unsigned int sh_type,
316 const unsigned char* prelocs,
317 size_t reloc_count,
318 Output_section* output_section,
62fe925a 319 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5c0b3823
WL
320 const Relocatable_relocs*,
321 unsigned char* view,
322 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
323 section_size_type view_size,
324 unsigned char* reloc_view,
325 section_size_type reloc_view_size);
326
327 // Return whether SYM is defined by the ABI.
328 bool
329 do_is_defined_by_abi(const Symbol* sym) const
330 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
331
332 // define tilegx specific symbols
333 virtual void
334 do_define_standard_symbols(Symbol_table*, Layout*);
335
336 // Return the PLT section.
337 uint64_t
338 do_plt_address_for_global(const Symbol* gsym) const
339 { return this->plt_section()->address_for_global(gsym); }
340
341 uint64_t
342 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
343 { return this->plt_section()->address_for_local(relobj, symndx); }
344
345 // This function should be defined in targets that can use relocation
346 // types to determine (implemented in local_reloc_may_be_function_pointer
347 // and global_reloc_may_be_function_pointer)
348 // if a function's pointer is taken. ICF uses this in safe mode to only
349 // fold those functions whose pointer is defintely not taken. For tilegx
350 // pie binaries, safe ICF cannot be done by looking at relocation types.
351 bool
352 do_can_check_for_function_pointers() const
353 { return true; }
354
355 // Return the base for a DW_EH_PE_datarel encoding.
356 uint64_t
357 do_ehframe_datarel_base() const;
358
359 // Return whether there is a GOT section.
360 bool
361 has_got_section() const
362 { return this->got_ != NULL; }
363
364 // Return the size of the GOT section.
365 section_size_type
366 got_size() const
367 {
368 gold_assert(this->got_ != NULL);
369 return this->got_->data_size();
370 }
371
372 // Return the number of entries in the GOT.
373 unsigned int
374 got_entry_count() const
375 {
376 if (this->got_ == NULL)
377 return 0;
378 return this->got_size() / (size / 8);
379 }
380
381 // Return the number of entries in the PLT.
382 unsigned int
383 plt_entry_count() const;
384
385 // Return the offset of the first non-reserved PLT entry.
386 unsigned int
387 first_plt_entry_offset() const;
388
389 // Return the size of each PLT entry.
390 unsigned int
391 plt_entry_size() const;
392
393 // Create the GOT section for an incremental update.
394 Output_data_got_base*
395 init_got_plt_for_update(Symbol_table* symtab,
396 Layout* layout,
397 unsigned int got_count,
398 unsigned int plt_count);
399
400 // Reserve a GOT entry for a local symbol, and regenerate any
401 // necessary dynamic relocations.
402 void
403 reserve_local_got_entry(unsigned int got_index,
404 Sized_relobj<size, big_endian>* obj,
405 unsigned int r_sym,
406 unsigned int got_type);
407
408 // Reserve a GOT entry for a global symbol, and regenerate any
409 // necessary dynamic relocations.
410 void
411 reserve_global_got_entry(unsigned int got_index, Symbol* gsym,
412 unsigned int got_type);
413
414 // Register an existing PLT entry for a global symbol.
415 void
416 register_global_plt_entry(Symbol_table*, Layout*, unsigned int plt_index,
417 Symbol* gsym);
418
419 // Force a COPY relocation for a given symbol.
420 void
421 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t);
422
423 // Apply an incremental relocation.
424 void
425 apply_relocation(const Relocate_info<size, big_endian>* relinfo,
426 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
427 unsigned int r_type,
428 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
429 const Symbol* gsym,
430 unsigned char* view,
431 typename elfcpp::Elf_types<size>::Elf_Addr address,
432 section_size_type view_size);
433
434 private:
435 // The class which scans relocations.
436 class Scan
437 {
438 public:
439 Scan()
440 : issued_non_pic_error_(false)
441 { }
442
443 static inline int
444 get_reference_flags(unsigned int r_type);
445
446 inline void
447 local(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
448 Sized_relobj_file<size, big_endian>* object,
449 unsigned int data_shndx,
450 Output_section* output_section,
451 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
452 const elfcpp::Sym<size, big_endian>& lsym,
453 bool is_discarded);
454
455 inline void
456 global(Symbol_table* symtab, Layout* layout, Target_tilegx* target,
457 Sized_relobj_file<size, big_endian>* object,
458 unsigned int data_shndx,
459 Output_section* output_section,
460 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
461 Symbol* gsym);
462
463 inline bool
464 local_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
465 Target_tilegx* target,
466 Sized_relobj_file<size, big_endian>* object,
467 unsigned int data_shndx,
468 Output_section* output_section,
469 const elfcpp::Rela<size, big_endian>& reloc,
470 unsigned int r_type,
471 const elfcpp::Sym<size, big_endian>& lsym);
472
473 inline bool
474 global_reloc_may_be_function_pointer(Symbol_table* symtab, Layout* layout,
475 Target_tilegx* target,
476 Sized_relobj_file<size, big_endian>* object,
477 unsigned int data_shndx,
478 Output_section* output_section,
479 const elfcpp::Rela<size, big_endian>& reloc,
480 unsigned int r_type,
481 Symbol* gsym);
482
483 private:
484 static void
485 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
486 unsigned int r_type);
487
488 static void
489 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
490 unsigned int r_type, Symbol*);
491
492 void
493 check_non_pic(Relobj*, unsigned int r_type);
494
495 inline bool
496 possible_function_pointer_reloc(unsigned int r_type);
497
498 bool
499 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
500 unsigned int r_type);
501
502 // Whether we have issued an error about a non-PIC compilation.
503 bool issued_non_pic_error_;
504 };
505
506 // The class which implements relocation.
507 class Relocate
508 {
509 public:
510 Relocate()
511 { }
512
513 ~Relocate()
514 {
515 }
516
517 // Do a relocation. Return false if the caller should not issue
518 // any warnings about this relocation.
519 inline bool
520 relocate(const Relocate_info<size, big_endian>*, Target_tilegx*,
521 Output_section*,
522 size_t relnum, const elfcpp::Rela<size, big_endian>&,
523 unsigned int r_type, const Sized_symbol<size>*,
524 const Symbol_value<size>*,
525 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
526 section_size_type);
527 };
528
529 // A class which returns the size required for a relocation type,
530 // used while scanning relocs during a relocatable link.
531 class Relocatable_size_for_reloc
532 {
533 public:
534 unsigned int
535 get_size_for_reloc(unsigned int, Relobj*);
536 };
537
538 // Adjust TLS relocation type based on the options and whether this
539 // is a local symbol.
540 static tls::Tls_optimization
541 optimize_tls_reloc(bool is_final, int r_type);
542
543 // Get the GOT section, creating it if necessary.
544 Output_data_got<size, big_endian>*
545 got_section(Symbol_table*, Layout*);
546
547 // Get the GOT PLT section.
548 Output_data_space*
549 got_plt_section() const
550 {
551 gold_assert(this->got_plt_ != NULL);
552 return this->got_plt_;
553 }
554
555 // Create the PLT section.
556 void
557 make_plt_section(Symbol_table* symtab, Layout* layout);
558
559 // Create a PLT entry for a global symbol.
560 void
561 make_plt_entry(Symbol_table*, Layout*, Symbol*);
562
563 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
564 void
565 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
566 Sized_relobj_file<size, big_endian>* relobj,
567 unsigned int local_sym_index);
568
569 // Create a GOT entry for the TLS module index.
570 unsigned int
571 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
572 Sized_relobj_file<size, big_endian>* object);
573
574 // Get the PLT section.
575 Output_data_plt_tilegx<size, big_endian>*
576 plt_section() const
577 {
578 gold_assert(this->plt_ != NULL);
579 return this->plt_;
580 }
581
582 // Get the dynamic reloc section, creating it if necessary.
583 Reloc_section*
584 rela_dyn_section(Layout*);
585
586 // Get the section to use for IRELATIVE relocations.
587 Reloc_section*
588 rela_irelative_section(Layout*);
589
590 // Add a potential copy relocation.
591 void
592 copy_reloc(Symbol_table* symtab, Layout* layout,
593 Sized_relobj_file<size, big_endian>* object,
594 unsigned int shndx, Output_section* output_section,
595 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
596 {
859d7987 597 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
5c0b3823
WL
598 this->copy_relocs_.copy_reloc(symtab, layout,
599 symtab->get_sized_symbol<size>(sym),
600 object, shndx, output_section,
859d7987
CC
601 r_type, reloc.get_r_offset(),
602 reloc.get_r_addend(),
603 this->rela_dyn_section(layout));
5c0b3823
WL
604 }
605
606 // Information about this specific target which we pass to the
607 // general Target structure.
608 static const Target::Target_info tilegx_info;
609
610 // The types of GOT entries needed for this platform.
611 // These values are exposed to the ABI in an incremental link.
612 // Do not renumber existing values without changing the version
613 // number of the .gnu_incremental_inputs section.
614 enum Got_type
615 {
616 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
617 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
618 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
619 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
620 };
621
622 // This type is used as the argument to the target specific
623 // relocation routines. The only target specific reloc is
624 // R_X86_64_TLSDESC against a local symbol.
625 struct Tlsdesc_info
626 {
627 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
628 unsigned int a_r_sym)
629 : object(a_object), r_sym(a_r_sym)
630 { }
631
632 // The object in which the local symbol is defined.
633 Sized_relobj_file<size, big_endian>* object;
634 // The local symbol index in the object.
635 unsigned int r_sym;
636 };
637
638 // The GOT section.
639 Output_data_got<size, big_endian>* got_;
640 // The PLT section.
641 Output_data_plt_tilegx<size, big_endian>* plt_;
642 // The GOT PLT section.
643 Output_data_space* got_plt_;
644 // The GOT section for IRELATIVE relocations.
645 Output_data_space* got_irelative_;
646 // The _GLOBAL_OFFSET_TABLE_ symbol.
647 Symbol* global_offset_table_;
648 // The _TILEGX_DYNAMIC_ symbol.
649 Symbol* tilegx_dynamic_;
650 // The dynamic reloc section.
651 Reloc_section* rela_dyn_;
652 // The section to use for IRELATIVE relocs.
653 Reloc_section* rela_irelative_;
654 // Relocs saved to avoid a COPY reloc.
655 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
5c0b3823
WL
656 // Offset of the GOT entry for the TLS module index.
657 unsigned int got_mod_index_offset_;
658 // True if the _tls_get_addr symbol has been defined.
659 bool tls_get_addr_sym_defined_;
660};
661
662template<>
663const Target::Target_info Target_tilegx<64, false>::tilegx_info =
664{
665 64, // size
666 false, // is_big_endian
667 elfcpp::EM_TILEGX, // machine_code
668 false, // has_make_symbol
669 false, // has_resolve
670 false, // has_code_fill
671 true, // is_default_stack_executable
672 false, // can_icf_inline_merge_sections
673 '\0', // wrap_char
674 "/lib/ld.so.1", // program interpreter
675 0x10000, // default_text_segment_address
676 0x10000, // abi_pagesize (overridable by -z max-page-size)
677 0x10000, // common_pagesize (overridable by -z common-page-size)
678 false, // isolate_execinstr
679 0, // rosegment_gap
680 elfcpp::SHN_UNDEF, // small_common_shndx
681 elfcpp::SHN_UNDEF, // large_common_shndx
682 0, // small_common_section_flags
683 0, // large_common_section_flags
684 NULL, // attributes_section
a67858e0 685 NULL, // attributes_vendor
8d9743bd
MK
686 "_start", // entry_symbol_name
687 32, // hash_entry_size
5c0b3823
WL
688};
689
690template<>
691const Target::Target_info Target_tilegx<32, false>::tilegx_info =
692{
693 32, // size
694 false, // is_big_endian
695 elfcpp::EM_TILEGX, // machine_code
696 false, // has_make_symbol
697 false, // has_resolve
698 false, // has_code_fill
699 true, // is_default_stack_executable
700 false, // can_icf_inline_merge_sections
701 '\0', // wrap_char
702 "/lib32/ld.so.1", // program interpreter
703 0x10000, // default_text_segment_address
704 0x10000, // abi_pagesize (overridable by -z max-page-size)
705 0x10000, // common_pagesize (overridable by -z common-page-size)
706 false, // isolate_execinstr
707 0, // rosegment_gap
708 elfcpp::SHN_UNDEF, // small_common_shndx
709 elfcpp::SHN_UNDEF, // large_common_shndx
710 0, // small_common_section_flags
711 0, // large_common_section_flags
712 NULL, // attributes_section
a67858e0 713 NULL, // attributes_vendor
8d9743bd
MK
714 "_start", // entry_symbol_name
715 32, // hash_entry_size
5c0b3823
WL
716};
717
718template<>
719const Target::Target_info Target_tilegx<64, true>::tilegx_info =
720{
721 64, // size
722 true, // is_big_endian
723 elfcpp::EM_TILEGX, // machine_code
724 false, // has_make_symbol
725 false, // has_resolve
726 false, // has_code_fill
727 true, // is_default_stack_executable
728 false, // can_icf_inline_merge_sections
729 '\0', // wrap_char
730 "/lib/ld.so.1", // program interpreter
731 0x10000, // default_text_segment_address
732 0x10000, // abi_pagesize (overridable by -z max-page-size)
733 0x10000, // common_pagesize (overridable by -z common-page-size)
734 false, // isolate_execinstr
735 0, // rosegment_gap
736 elfcpp::SHN_UNDEF, // small_common_shndx
737 elfcpp::SHN_UNDEF, // large_common_shndx
738 0, // small_common_section_flags
739 0, // large_common_section_flags
740 NULL, // attributes_section
a67858e0 741 NULL, // attributes_vendor
8d9743bd
MK
742 "_start", // entry_symbol_name
743 32, // hash_entry_size
5c0b3823
WL
744};
745
746template<>
747const Target::Target_info Target_tilegx<32, true>::tilegx_info =
748{
749 32, // size
750 true, // is_big_endian
751 elfcpp::EM_TILEGX, // machine_code
752 false, // has_make_symbol
753 false, // has_resolve
754 false, // has_code_fill
755 true, // is_default_stack_executable
756 false, // can_icf_inline_merge_sections
757 '\0', // wrap_char
758 "/lib32/ld.so.1", // program interpreter
759 0x10000, // default_text_segment_address
760 0x10000, // abi_pagesize (overridable by -z max-page-size)
761 0x10000, // common_pagesize (overridable by -z common-page-size)
762 false, // isolate_execinstr
763 0, // rosegment_gap
764 elfcpp::SHN_UNDEF, // small_common_shndx
765 elfcpp::SHN_UNDEF, // large_common_shndx
766 0, // small_common_section_flags
767 0, // large_common_section_flags
768 NULL, // attributes_section
a67858e0 769 NULL, // attributes_vendor
8d9743bd
MK
770 "_start", // entry_symbol_name
771 32, // hash_entry_size
5c0b3823
WL
772};
773
774// tilegx relocation handlers
775template<int size, bool big_endian>
776class Tilegx_relocate_functions
777{
778public:
779 // overflow check will be supported later
780 typedef enum
781 {
782 STATUS_OKAY, // No error during relocation.
783 STATUS_OVERFLOW, // Relocation overflow.
784 STATUS_BAD_RELOC // Relocation cannot be applied.
785 } Status;
786
787 struct Tilegx_howto
788 {
789 // right shift operand by this number of bits.
790 unsigned char srshift;
791
62fe925a 792 // the offset to apply relocation.
5c0b3823
WL
793 unsigned char doffset;
794
795 // set to 1 for pc-relative relocation.
796 unsigned char is_pcrel;
797
798 // size in bits, or 0 if this table entry should be ignored.
799 unsigned char bsize;
800
801 // whether we need to check overflow.
802 unsigned char overflow;
803 };
804
805 static const Tilegx_howto howto[elfcpp::R_TILEGX_NUM];
806
807private:
808
809 // Do a simple rela relocation
810 template<int valsize>
811 static inline void
812 rela(unsigned char* view,
813 const Sized_relobj_file<size, big_endian>* object,
814 const Symbol_value<size>* psymval,
815 typename elfcpp::Swap<size, big_endian>::Valtype addend,
816 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
817 elfcpp::Elf_Xword bitmask)
818 {
819 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
820 Valtype* wv = reinterpret_cast<Valtype*>(view);
821 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
822 Valtype reloc = 0;
823 if (size == 32)
824 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
825 else
826 reloc = psymval->value(object, addend) >> srshift;
827
828 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
829
830 val &= ~dst_mask;
831 reloc &= bitmask;
832
833 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
834 }
835
836 // Do a simple rela relocation
837 template<int valsize>
838 static inline void
839 rela_ua(unsigned char* view,
840 const Sized_relobj_file<size, big_endian>* object,
841 const Symbol_value<size>* psymval,
842 typename elfcpp::Swap<size, big_endian>::Valtype addend,
843 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
844 elfcpp::Elf_Xword bitmask)
845 {
846 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
847 Valtype;
848 unsigned char* wv = view;
849 Valtype val = elfcpp::Swap_unaligned<valsize, big_endian>::readval(wv);
850 Valtype reloc = 0;
851 if (size == 32)
852 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
853 else
854 reloc = psymval->value(object, addend) >> srshift;
855
856 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
857
858 val &= ~dst_mask;
859 reloc &= bitmask;
860
861 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(wv,
862 val | (reloc<<doffset));
863 }
864
865 template<int valsize>
866 static inline void
867 rela(unsigned char* view,
868 const Sized_relobj_file<size, big_endian>* object,
869 const Symbol_value<size>* psymval,
870 typename elfcpp::Swap<size, big_endian>::Valtype addend,
871 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
872 elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
873 elfcpp::Elf_Xword bitmask2)
874 {
875 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
876 Valtype* wv = reinterpret_cast<Valtype*>(view);
877 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
878 Valtype reloc = 0;
879 if (size == 32)
880 reloc = Bits<32>::sign_extend(psymval->value(object, addend)) >> srshift;
881 else
882 reloc = psymval->value(object, addend) >> srshift;
883
884 elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
885 | (bitmask2 << doffset2);
886 val &= ~dst_mask;
887 reloc = ((reloc & bitmask1) << doffset1)
888 | ((reloc & bitmask2) << doffset2);
889
890 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
891
892 }
893
894 // Do a simple PC relative relocation with a Symbol_value with the
895 // addend in the relocation.
896 template<int valsize>
897 static inline void
898 pcrela(unsigned char* view,
899 const Sized_relobj_file<size, big_endian>* object,
900 const Symbol_value<size>* psymval,
901 typename elfcpp::Swap<size, big_endian>::Valtype addend,
902 typename elfcpp::Elf_types<size>::Elf_Addr address,
903 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
904 elfcpp::Elf_Xword bitmask)
905
906 {
907 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
908 Valtype* wv = reinterpret_cast<Valtype*>(view);
909 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
910 Valtype reloc = 0;
62fe925a 911 if (size == 32)
5c0b3823
WL
912 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
913 >> srshift;
914 else
915 reloc = (psymval->value(object, addend) - address) >> srshift;
916
917 elfcpp::Elf_Xword dst_mask = bitmask << doffset;
918 val &= ~dst_mask;
919 reloc &= bitmask;
920
921 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | (reloc<<doffset));
922 }
923
924 template<int valsize>
925 static inline void
926 pcrela_ua(unsigned char* view,
927 const Sized_relobj_file<size, big_endian>* object,
928 const Symbol_value<size>* psymval,
929 typename elfcpp::Swap<size, big_endian>::Valtype addend,
930 typename elfcpp::Elf_types<size>::Elf_Addr address,
931 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset,
932 elfcpp::Elf_Xword bitmask)
933
934 {
935 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
936 Valtype;
937 unsigned char* wv = view;
938 Valtype reloc = 0;
62fe925a 939 if (size == 32)
5c0b3823
WL
940 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
941 >> srshift;
942 else
943 reloc = (psymval->value(object, addend) - address) >> srshift;
944
945 reloc &= bitmask;
946
947 elfcpp::Swap<valsize, big_endian>::writeval(wv, reloc << doffset);
948 }
949
950 template<int valsize>
951 static inline void
952 pcrela(unsigned char* view,
953 const Sized_relobj_file<size, big_endian>* object,
954 const Symbol_value<size>* psymval,
955 typename elfcpp::Swap<size, big_endian>::Valtype addend,
956 typename elfcpp::Elf_types<size>::Elf_Addr address,
957 elfcpp::Elf_Xword srshift, elfcpp::Elf_Xword doffset1,
958 elfcpp::Elf_Xword bitmask1, elfcpp::Elf_Xword doffset2,
959 elfcpp::Elf_Xword bitmask2)
960
961 {
962 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
963 Valtype* wv = reinterpret_cast<Valtype*>(view);
964 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
965 Valtype reloc = 0;
62fe925a 966 if (size == 32)
5c0b3823
WL
967 reloc = Bits<32>::sign_extend(psymval->value(object, addend) - address)
968 >> srshift;
969 else
970 reloc = (psymval->value(object, addend) - address) >> srshift;
971
972 elfcpp::Elf_Xword dst_mask = (bitmask1 << doffset1)
973 | (bitmask2 << doffset2);
974 val &= ~dst_mask;
975 reloc = ((reloc & bitmask1) << doffset1)
976 | ((reloc & bitmask2) << doffset2);
977
978 elfcpp::Swap<valsize, big_endian>::writeval(wv, val | reloc);
979 }
980
981 typedef Tilegx_relocate_functions<size, big_endian> This;
982 typedef Relocate_functions<size, big_endian> Base;
983
984public:
985
986 static inline void
987 abs64(unsigned char* view,
988 const Sized_relobj_file<size, big_endian>* object,
989 const Symbol_value<size>* psymval,
990 typename elfcpp::Elf_types<size>::Elf_Addr addend)
991 {
992 This::template rela_ua<64>(view, object, psymval, addend, 0, 0,
993 0xffffffffffffffffllu);
994 }
995
996 static inline void
997 abs32(unsigned char* view,
998 const Sized_relobj_file<size, big_endian>* object,
999 const Symbol_value<size>* psymval,
1000 typename elfcpp::Elf_types<size>::Elf_Addr addend)
1001 {
1002 This::template rela_ua<32>(view, object, psymval, addend, 0, 0,
1003 0xffffffff);
1004 }
1005
1006 static inline void
1007 abs16(unsigned char* view,
1008 const Sized_relobj_file<size, big_endian>* object,
1009 const Symbol_value<size>* psymval,
1010 typename elfcpp::Elf_types<size>::Elf_Addr addend)
1011 {
1012 This::template rela_ua<16>(view, object, psymval, addend, 0, 0,
1013 0xffff);
1014 }
1015
1016 static inline void
1017 pc_abs64(unsigned char* view,
1018 const Sized_relobj_file<size, big_endian>* object,
1019 const Symbol_value<size>* psymval,
1020 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1021 typename elfcpp::Elf_types<size>::Elf_Addr address)
1022 {
1023 This::template pcrela_ua<64>(view, object, psymval, addend, address, 0, 0,
1024 0xffffffffffffffffllu);
1025 }
1026
1027 static inline void
1028 pc_abs32(unsigned char* view,
1029 const Sized_relobj_file<size, big_endian>* object,
1030 const Symbol_value<size>* psymval,
1031 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1032 typename elfcpp::Elf_types<size>::Elf_Addr address)
1033 {
1034 This::template pcrela_ua<32>(view, object, psymval, addend, address, 0, 0,
1035 0xffffffff);
1036 }
1037
1038 static inline void
1039 pc_abs16(unsigned char* view,
1040 const Sized_relobj_file<size, big_endian>* object,
1041 const Symbol_value<size>* psymval,
1042 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1043 typename elfcpp::Elf_types<size>::Elf_Addr address)
1044 {
1045 This::template pcrela_ua<16>(view, object, psymval, addend, address, 0, 0,
1046 0xffff);
1047 }
1048
1049 static inline void
1050 imm_x_general(unsigned char* view,
1051 const Sized_relobj_file<size, big_endian>* object,
1052 const Symbol_value<size>* psymval,
1053 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1054 Tilegx_howto &r_howto)
62fe925a 1055 {
5c0b3823
WL
1056 This::template rela<64>(view, object, psymval, addend,
1057 (elfcpp::Elf_Xword)(r_howto.srshift),
1058 (elfcpp::Elf_Xword)(r_howto.doffset),
1059 (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1060 }
1061
1062 static inline void
1063 imm_x_pcrel_general(unsigned char* view,
1064 const Sized_relobj_file<size, big_endian>* object,
1065 const Symbol_value<size>* psymval,
1066 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1067 typename elfcpp::Elf_types<size>::Elf_Addr address,
1068 Tilegx_howto &r_howto)
62fe925a 1069 {
5c0b3823
WL
1070 This::template pcrela<64>(view, object, psymval, addend, address,
1071 (elfcpp::Elf_Xword)(r_howto.srshift),
1072 (elfcpp::Elf_Xword)(r_howto.doffset),
1073 (elfcpp::Elf_Xword)((1 << r_howto.bsize) - 1));
1074 }
1075
1076 static inline void
1077 imm_x_two_part_general(unsigned char* view,
1078 const Sized_relobj_file<size, big_endian>* object,
1079 const Symbol_value<size>* psymval,
1080 typename elfcpp::Elf_types<size>::Elf_Addr addend,
1081 typename elfcpp::Elf_types<size>::Elf_Addr address,
1082 unsigned int r_type)
62fe925a 1083 {
5c0b3823
WL
1084
1085 elfcpp::Elf_Xword doffset1 = 0llu;
1086 elfcpp::Elf_Xword doffset2 = 0llu;
1087 elfcpp::Elf_Xword dmask1 = 0llu;
1088 elfcpp::Elf_Xword dmask2 = 0llu;
1089 elfcpp::Elf_Xword rshift = 0llu;
1090 unsigned int pc_rel = 0;
1091
1092 switch (r_type)
1093 {
1094 case elfcpp::R_TILEGX_BROFF_X1:
1095 doffset1 = 31llu;
1096 doffset2 = 37llu;
1097 dmask1 = 0x3fllu;
1098 dmask2 = 0x1ffc0llu;
1099 rshift = 3llu;
1100 pc_rel = 1;
1101 break;
1102 case elfcpp::R_TILEGX_DEST_IMM8_X1:
1103 doffset1 = 31llu;
1104 doffset2 = 43llu;
1105 dmask1 = 0x3fllu;
1106 dmask2 = 0xc0llu;
1107 rshift = 0llu;
1108 break;
1109 }
1110
1111 if (pc_rel)
1112 This::template pcrela<64>(view, object, psymval, addend, address,
1113 rshift, doffset1, dmask1, doffset2, dmask2);
1114 else
1115 This::template rela<64>(view, object, psymval, addend, rshift,
1116 doffset1, dmask1, doffset2, dmask2);
1117
1118 }
1119
1120 static inline void
1121 tls_relax(unsigned char* view, unsigned int r_type,
1122 tls::Tls_optimization opt_t)
62fe925a
RM
1123 {
1124
5c0b3823
WL
1125 const uint64_t TILEGX_X_MOVE_R0_R0 = 0x283bf8005107f000llu;
1126 const uint64_t TILEGX_Y_MOVE_R0_R0 = 0xae05f800540bf000llu;
1127 const uint64_t TILEGX_X_LD = 0x286ae80000000000llu;
1128 const uint64_t TILEGX_X_LD4S = 0x286a980000000000llu;
1129 const uint64_t TILEGX_X1_FULL_MASK = 0x3fffffff80000000llu;
1130 const uint64_t TILEGX_X0_RRR_MASK = 0x000000007ffc0000llu;
1131 const uint64_t TILEGX_X1_RRR_MASK = 0x3ffe000000000000llu;
1132 const uint64_t TILEGX_Y0_RRR_MASK = 0x00000000780c0000llu;
1133 const uint64_t TILEGX_Y1_RRR_MASK = 0x3c06000000000000llu;
1134 const uint64_t TILEGX_X0_RRR_SRCB_MASK = 0x000000007ffff000llu;
1135 const uint64_t TILEGX_X1_RRR_SRCB_MASK = 0x3ffff80000000000llu;
1136 const uint64_t TILEGX_Y0_RRR_SRCB_MASK = 0x00000000780ff000llu;
1137 const uint64_t TILEGX_Y1_RRR_SRCB_MASK = 0x3c07f80000000000llu;
1138 const uint64_t TILEGX_X_ADD_R0_R0_TP = 0x2807a800500f5000llu;
1139 const uint64_t TILEGX_Y_ADD_R0_R0_TP = 0x9a13a8002c275000llu;
1140 const uint64_t TILEGX_X_ADDX_R0_R0_TP = 0x2805a800500b5000llu;
1141 const uint64_t TILEGX_Y_ADDX_R0_R0_TP = 0x9a01a8002c035000llu;
1142
1143 const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_MASK =
1144 (TILEGX_X0_RRR_MASK | (0x3Fllu << 12));
1145
1146 const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_MASK =
1147 (TILEGX_X1_RRR_MASK | (0x3Fllu << 43));
1148
1149 const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_MASK =
1150 (TILEGX_Y0_RRR_MASK | (0x3Fllu << 12));
1151
1152 const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_MASK =
1153 (TILEGX_Y1_RRR_MASK | (0x3Fllu << 43));
1154
1155 const uint64_t R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK =
1156 (TILEGX_X0_RRR_SRCB_MASK | (0x3Fllu << 6));
1157
1158 const uint64_t R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK =
1159 (TILEGX_X1_RRR_SRCB_MASK | (0x3Fllu << 37));
1160
1161 const uint64_t R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK =
1162 (TILEGX_Y0_RRR_SRCB_MASK | (0x3Fllu << 6));
1163
1164 const uint64_t R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK =
1165 (TILEGX_Y1_RRR_SRCB_MASK | (0x3Fllu << 37));
1166
1167 typedef typename elfcpp::Swap<64, big_endian>::Valtype Valtype;
1168 Valtype* wv = reinterpret_cast<Valtype*>(view);
1169 Valtype val = elfcpp::Swap<64, big_endian>::readval(wv);
1170 Valtype reloc = 0;
1171
1172 switch (r_type)
1173 {
1174 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
1175 if (opt_t == tls::TLSOPT_NONE) {
1176 // GD/IE: 1. copy dest operand into the second source operand
1177 // 2. change the opcode to "add"
1178 reloc = (val & 0x3Fllu) << 12; // featch the dest reg
1179 reloc |= ((size == 32
1180 ? TILEGX_X_ADDX_R0_R0_TP
1181 : TILEGX_X_ADD_R0_R0_TP)
1182 & TILEGX_X0_RRR_MASK); // change opcode
1183 val &= ~R_TILEGX_IMM8_X0_TLS_ADD_MASK;
1184 } else if (opt_t == tls::TLSOPT_TO_LE) {
1185 // LE: 1. copy dest operand into the first source operand
1186 // 2. change the opcode to "move"
1187 reloc = (val & 0x3Fllu) << 6;
62fe925a 1188 reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK);
5c0b3823
WL
1189 val &= ~R_TILEGX_IMM8_X0_TLS_ADD_LE_MASK;
1190 } else
1191 gold_unreachable();
1192 break;
1193 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
1194 if (opt_t == tls::TLSOPT_NONE) {
1195 reloc = (val & (0x3Fllu << 31)) << 12;
1196 reloc |= ((size == 32
1197 ? TILEGX_X_ADDX_R0_R0_TP
1198 : TILEGX_X_ADD_R0_R0_TP)
1199 & TILEGX_X1_RRR_MASK);
1200 val &= ~R_TILEGX_IMM8_X1_TLS_ADD_MASK;
1201 } else if (opt_t == tls::TLSOPT_TO_LE) {
1202 reloc = (val & (0x3Fllu << 31)) << 6;
1203 reloc |= (TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK);
1204 val &= ~R_TILEGX_IMM8_X1_TLS_ADD_LE_MASK;
1205 } else
1206 gold_unreachable();
1207 break;
1208 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
1209 if (opt_t == tls::TLSOPT_NONE) {
1210 reloc = (val & 0x3Fllu) << 12;
1211 reloc |= ((size == 32
1212 ? TILEGX_Y_ADDX_R0_R0_TP
1213 : TILEGX_Y_ADD_R0_R0_TP)
1214 & TILEGX_Y0_RRR_MASK);
1215 val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_MASK;
1216 } else if (opt_t == tls::TLSOPT_TO_LE) {
1217 reloc = (val & 0x3Fllu) << 6;
1218 reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK);
1219 val &= ~R_TILEGX_IMM8_Y0_TLS_ADD_LE_MASK;
1220 } else
1221 gold_unreachable();
1222 break;
1223 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
1224 if (opt_t == tls::TLSOPT_NONE) {
1225 reloc = (val & (0x3Fllu << 31)) << 12;
1226 reloc |= ((size == 32
1227 ? TILEGX_Y_ADDX_R0_R0_TP
1228 : TILEGX_Y_ADD_R0_R0_TP)
1229 & TILEGX_Y1_RRR_MASK);
1230 val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_MASK;
1231 } else if (opt_t == tls::TLSOPT_TO_LE) {
1232 reloc = (val & (0x3Fllu << 31)) << 6;
1233 reloc |= (TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK);
1234 val &= ~R_TILEGX_IMM8_Y1_TLS_ADD_LE_MASK;
1235 } else
1236 gold_unreachable();
1237 break;
1238 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
1239 if (opt_t == tls::TLSOPT_NONE) {
62fe925a 1240 // GD see comments for optimize_tls_reloc
5c0b3823
WL
1241 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X0_RRR_SRCB_MASK;
1242 val &= ~TILEGX_X0_RRR_SRCB_MASK;
1243 } else if (opt_t == tls::TLSOPT_TO_IE
1244 || opt_t == tls::TLSOPT_TO_LE) {
1245 // IE/LE
1246 reloc = (size == 32
1247 ? TILEGX_X_ADDX_R0_R0_TP
1248 : TILEGX_X_ADD_R0_R0_TP)
1249 & TILEGX_X0_RRR_SRCB_MASK;
1250 val &= ~TILEGX_X0_RRR_SRCB_MASK;
1251 }
1252 break;
1253 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
1254 if (opt_t == tls::TLSOPT_NONE) {
1255 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1256 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1257 } else if (opt_t == tls::TLSOPT_TO_IE
1258 || opt_t == tls::TLSOPT_TO_LE) {
1259 reloc = (size == 32
1260 ? TILEGX_X_ADDX_R0_R0_TP
1261 : TILEGX_X_ADD_R0_R0_TP)
1262 & TILEGX_X1_RRR_SRCB_MASK;
1263 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1264 }
1265 break;
1266 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
1267 if (opt_t == tls::TLSOPT_NONE) {
1268 reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y0_RRR_SRCB_MASK;
1269 val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1270 } else if (opt_t == tls::TLSOPT_TO_IE
1271 || opt_t == tls::TLSOPT_TO_LE) {
1272 reloc = (size == 32
1273 ? TILEGX_Y_ADDX_R0_R0_TP
1274 : TILEGX_Y_ADD_R0_R0_TP)
1275 & TILEGX_Y0_RRR_SRCB_MASK;
1276 val &= ~TILEGX_Y0_RRR_SRCB_MASK;
1277 }
1278 break;
1279 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
1280 if (opt_t == tls::TLSOPT_NONE) {
1281 reloc = TILEGX_Y_MOVE_R0_R0 & TILEGX_Y1_RRR_SRCB_MASK;
1282 val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1283 } else if (opt_t == tls::TLSOPT_TO_IE
1284 || opt_t == tls::TLSOPT_TO_LE) {
1285 reloc = (size == 32
1286 ? TILEGX_Y_ADDX_R0_R0_TP
1287 : TILEGX_Y_ADD_R0_R0_TP)
1288 & TILEGX_Y1_RRR_SRCB_MASK;
1289 val &= ~TILEGX_Y1_RRR_SRCB_MASK;
1290 }
1291 break;
1292 case elfcpp::R_TILEGX_TLS_IE_LOAD:
1293 if (opt_t == tls::TLSOPT_NONE) {
1294 // IE
1295 reloc = (size == 32
1296 ? TILEGX_X_LD4S
1297 : TILEGX_X_LD)
1298 & TILEGX_X1_RRR_SRCB_MASK;
1299 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1300 } else if (opt_t == tls::TLSOPT_TO_LE) {
1301 // LE
1302 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_RRR_SRCB_MASK;
1303 val &= ~TILEGX_X1_RRR_SRCB_MASK;
1304 } else
1305 gold_unreachable();
1306 break;
1307 case elfcpp::R_TILEGX_TLS_GD_CALL:
1308 if (opt_t == tls::TLSOPT_TO_IE) {
1309 // ld/ld4s r0, r0
1310 reloc = (size == 32
1311 ? TILEGX_X_LD4S
1312 : TILEGX_X_LD) & TILEGX_X1_FULL_MASK;
1313 val &= ~TILEGX_X1_FULL_MASK;
1314 } else if (opt_t == tls::TLSOPT_TO_LE) {
1315 // move r0, r0
1316 reloc = TILEGX_X_MOVE_R0_R0 & TILEGX_X1_FULL_MASK;
1317 val &= ~TILEGX_X1_FULL_MASK;
1318 } else
1319 // should be handled in ::relocate
1320 gold_unreachable();
1321 break;
1322 default:
1323 gold_unreachable();
1324 break;
1325 }
1326 elfcpp::Swap<64, big_endian>::writeval(wv, val | reloc);
1327 }
1328};
1329
1330template<>
1331const Tilegx_relocate_functions<64, false>::Tilegx_howto
1332Tilegx_relocate_functions<64, false>::howto[elfcpp::R_TILEGX_NUM] =
1333{
1334 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1335 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1336 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1337 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1338 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1339 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1340 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1341 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1342 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1343 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1344 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1345 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2
1346 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3
1347 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1348 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1349 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1350 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1351 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1352 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1353 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1354 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1355 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1356 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1357 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1358 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1359 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1360 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1361 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1362 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1363 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1364 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1365 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1366 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1367 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1368 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1369 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1370 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1371 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1372 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1373 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1374 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1375 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1376 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1377 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1378 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1379 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1380 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1381 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1382 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1383 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1384 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1385 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1386 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1387 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1388 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1389 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1390 { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1391 { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1392 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1393 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1394 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1395 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1396 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1397 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1398 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1399 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1400 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1401 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1402 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1403 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1404 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1405 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1406 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1407 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1408 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1409 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1410 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1411 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1412 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1413 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1414 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1415 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1416 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1417 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1418 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1419 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1420 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1421 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1422 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1423 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1424 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1425 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1426 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1427 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1428 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1429 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1430 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1431 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1432 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1433 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1434 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1435 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1436 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1437 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1438 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1439 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1440 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1441 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1442 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1443 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1444 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1445 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1446 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1447 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1448 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1449 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1450 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1451 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1452 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1453 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1454 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1455 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1456 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1457 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1458};
1459
1460template<>
1461const Tilegx_relocate_functions<32, false>::Tilegx_howto
1462Tilegx_relocate_functions<32, false>::howto[elfcpp::R_TILEGX_NUM] =
1463{
1464 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1465 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1466 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1467 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1468 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1469 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1470 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1471 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1472 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1473 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1474 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1475 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2
1476 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3
1477 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1478 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1479 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1480 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1481 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1482 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1483 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1484 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1485 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1486 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1487 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1488 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1489 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1490 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1491 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1492 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1493 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1494 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1495 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1496 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1497 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1498 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1499 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1500 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1501 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1502 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1503 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1504 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1505 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1506 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1507 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1508 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1509 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1510 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1511 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1512 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1513 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1514 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1515 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1516 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1517 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1518 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1519 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1520 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1521 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1522 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1523 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1524 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1525 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1526 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1527 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1528 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1529 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1530 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1531 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1532 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1533 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1534 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1535 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1536 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1537 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1538 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1539 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1540 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1541 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1542 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1543 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1544 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1545 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1546 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1547 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1548 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1549 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1550 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1551 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1552 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1553 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1554 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1555 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1556 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1557 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1558 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1559 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1560 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1561 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1562 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1563 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1564 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1565 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1566 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1567 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1568 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1569 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1570 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1571 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1572 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1573 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1574 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1575 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1576 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1577 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1578 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1579 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1580 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1581 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1582 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1583 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1584 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1585 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1586 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1587 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1588};
1589
1590template<>
1591const Tilegx_relocate_functions<64, true>::Tilegx_howto
1592Tilegx_relocate_functions<64, true>::howto[elfcpp::R_TILEGX_NUM] =
1593{
1594 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1595 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1596 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1597 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1598 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1599 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1600 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1601 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1602 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1603 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1604 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1605 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2
1606 { 48, 0, 0, 0, 0}, // R_TILEGX_HW3
1607 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1608 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1609 { 32, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1610 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1611 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1612 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1613 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1614 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1615 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1616 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1617 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1618 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1619 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1620 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1621 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1622 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1623 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1624 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1625 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1626 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1627 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1628 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1629 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1630 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1631 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1632 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1633 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1634 { 32, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1635 { 32, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1636 { 48, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1637 { 48, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1638 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1639 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1640 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1641 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1642 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1643 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1644 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1645 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1646 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1647 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1648 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1649 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1650 { 48, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1651 { 48, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1652 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1653 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1654 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1655 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1656 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1657 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1658 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1659 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1660 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1661 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1662 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1663 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1664 { 32, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1665 { 32, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1666 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1667 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1668 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1669 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1670 { 32, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1671 { 32, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1672 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1673 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1674 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1675 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1676 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1677 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1678 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1679 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1680 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1681 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1682 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1683 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1684 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1685 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1686 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1687 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1688 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1689 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1690 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1691 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1692 { 32, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1693 { 32, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1694 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1695 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1696 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1697 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1698 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1699 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1700 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1701 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1702 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1703 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1704 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1705 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1706 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1707 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1708 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1709 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1710 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1711 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1712 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1713 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1714 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1715 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1716 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1717 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1718};
1719
1720template<>
1721const Tilegx_relocate_functions<32, true>::Tilegx_howto
1722Tilegx_relocate_functions<32, true>::howto[elfcpp::R_TILEGX_NUM] =
1723{
1724 { 0, 0, 0, 0, 0}, // R_TILEGX_NONE
1725 { 0, 0, 0, 64, 0}, // R_TILEGX_64
1726 { 0, 0, 0, 32, 0}, // R_TILEGX_32
1727 { 0, 0, 0, 16, 0}, // R_TILEGX_16
1728 { 0, 0, 0, 8, 0}, // R_TILEGX_8
1729 { 0, 0, 1, 64, 0}, // R_TILEGX_64_PCREL
1730 { 0, 0, 1, 32, 0}, // R_TILEGX_32_PCREL
1731 { 0, 0, 1, 16, 0}, // R_TILEGX_16_PCREL
1732 { 0, 0, 1, 8, 0}, // R_TILEGX_8_PCREL
1733 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0
1734 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1
1735 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2
1736 { 31, 0, 0, 0, 0}, // R_TILEGX_HW3
1737 { 0, 0, 0, 0, 0}, // R_TILEGX_HW0_LAST
1738 { 16, 0, 0, 0, 0}, // R_TILEGX_HW1_LAST
1739 { 31, 0, 0, 0, 0}, // R_TILEGX_HW2_LAST
1740 { 0, 0, 0, 0, 0}, // R_TILEGX_COPY
1741 { 0, 0, 0, 8, 0}, // R_TILEGX_GLOB_DAT
1742 { 0, 0, 0, 0, 0}, // R_TILEGX_JMP_SLOT
1743 { 0, 0, 0, 0, 0}, // R_TILEGX_RELATIVE
1744 { 3, 1, 1, 0, 0}, // R_TILEGX_BROFF_X1
1745 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1
1746 { 3, 31, 1, 27, 0}, // R_TILEGX_JUMPOFF_X1_PLT
1747 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X0
1748 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y0
1749 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_X1
1750 { 0, 1, 0, 8, 0}, // R_TILEGX_IMM8_Y1
1751 { 0, 1, 0, 8, 0}, // R_TILEGX_DEST_IMM8_X1
1752 { 0, 1, 0, 8, 0}, // R_TILEGX_MT_IMM14_X1
1753 { 0, 1, 0, 8, 0}, // R_TILEGX_MF_IMM14_X1
1754 { 0, 1, 0, 8, 0}, // R_TILEGX_MMSTART_X0
1755 { 0, 1, 0, 8, 0}, // R_TILEGX_MMEND_X0
1756 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X0
1757 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_X1
1758 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y0
1759 { 0, 1, 0, 8, 0}, // R_TILEGX_SHAMT_Y1
1760 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0
1761 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0
1762 { 16, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW1
1763 { 16, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW1
1764 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW2
1765 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW2
1766 { 31, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW3
1767 { 31, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW3
1768 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST
1769 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST
1770 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST
1771 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST
1772 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST
1773 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST
1774 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PCREL
1775 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PCREL
1776 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PCREL
1777 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PCREL
1778 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PCREL
1779 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PCREL
1780 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW3_PCREL
1781 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW3_PCREL
1782 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PCREL
1783 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PCREL
1784 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PCREL
1785 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PCREL
1786 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PCREL
1787 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PCREL
1788 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_GOT
1789 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_GOT
1790 { 0, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW0_PLT_PCREL
1791 { 0, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW0_PLT_PCREL
1792 { 16, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW1_PLT_PCREL
1793 { 16, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW1_PLT_PCREL
1794 { 31, 12, 1, 16, 0}, // R_TILEGX_IMM16_X0_HW2_PLT_PCREL
1795 { 31, 43, 1, 16, 0}, // R_TILEGX_IMM16_X1_HW2_PLT_PCREL
1796 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_GOT
1797 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_GOT
1798 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_GOT
1799 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_GOT
1800 { 31, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_GOT
1801 { 31, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_GOT
1802 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_GD
1803 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_GD
1804 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_LE
1805 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_LE
1806 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE
1807 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE
1808 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE
1809 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE
1810 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD
1811 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD
1812 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD
1813 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD
1814 { 0, 0, 0, 0, 0}, // R_TILEGX_IRELATIVE
1815 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1816 { 0, 12, 0, 16, 0}, // R_TILEGX_IMM16_X0_HW0_TLS_IE
1817 { 0, 43, 0, 16, 0}, // R_TILEGX_IMM16_X1_HW0_TLS_IE
1818 { 0, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL
1819 { 0, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL
1820 { 16, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL
1821 { 16, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL
1822 { 31, 12, 1, 16, 1}, // R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL
1823 { 31, 43, 1, 16, 1}, // R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL
1824 { 0, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE
1825 { 0, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE
1826 { 16, 12, 0, 16, 1}, // R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE
1827 { 16, 43, 0, 16, 1}, // R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE
1828 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1829 { 0, 0, 0, 0, 0}, // R_TILEGX_INVALID
1830 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD64
1831 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF64
1832 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF64
1833 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPMOD32
1834 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_DTPOFF32
1835 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_TPOFF32
1836 { 3, 31, 1, 27, 0}, // R_TILEGX_TLS_GD_CALL
1837 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_GD_ADD
1838 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_GD_ADD
1839 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_GD_ADD
1840 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_GD_ADD
1841 { 0, 0, 0, 0, 0}, // R_TILEGX_TLS_IE_LOAD
1842 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X0_TLS_ADD
1843 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_X1_TLS_ADD
1844 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y0_TLS_ADD
1845 { 0, 0, 0, 0, 0}, // R_TILEGX_IMM8_Y1_TLS_ADD
1846 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTINHERIT
1847 { 0, 0, 0, 0, 0}, // R_TILEGX_GNU_VTENTRY
1848};
1849
1850// Get the GOT section, creating it if necessary.
1851
1852template<int size, bool big_endian>
1853Output_data_got<size, big_endian>*
1854Target_tilegx<size, big_endian>::got_section(Symbol_table* symtab,
1855 Layout* layout)
1856{
1857 if (this->got_ == NULL)
1858 {
1859 gold_assert(symtab != NULL && layout != NULL);
1860
1861 // When using -z now, we can treat .got.plt as a relro section.
1862 // Without -z now, it is modified after program startup by lazy
1863 // PLT relocations.
1864 bool is_got_plt_relro = parameters->options().now();
1865 Output_section_order got_order = (is_got_plt_relro
1866 ? ORDER_RELRO
1867 : ORDER_RELRO_LAST);
1868 Output_section_order got_plt_order = (is_got_plt_relro
1869 ? ORDER_RELRO
1870 : ORDER_NON_RELRO_FIRST);
1871
1872 this->got_ = new Output_data_got<size, big_endian>();
1873
1874 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
1875 (elfcpp::SHF_ALLOC
1876 | elfcpp::SHF_WRITE),
1877 this->got_, got_order, true);
1878
1879 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
1880 this->global_offset_table_ =
1881 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
1882 Symbol_table::PREDEFINED,
1883 this->got_,
1884 0, 0, elfcpp::STT_OBJECT,
1885 elfcpp::STB_LOCAL,
1886 elfcpp::STV_HIDDEN, 0,
1887 false, false);
1888
1889 if (parameters->options().shared()) {
1890 // we need to keep the address of .dynamic section in the
1891 // first got entry for .so
1892 this->tilegx_dynamic_ =
1893 symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
1894 Symbol_table::PREDEFINED,
1895 layout->dynamic_section(),
1896 0, 0, elfcpp::STT_OBJECT,
1897 elfcpp::STB_LOCAL,
1898 elfcpp::STV_HIDDEN, 0,
1899 false, false);
1900
1901 this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
62fe925a 1902 } else
5c0b3823
WL
1903 // for executable, just set the first entry to zero.
1904 this->got_->set_current_data_size(size / 8);
1905
1906 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
1907 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1908 (elfcpp::SHF_ALLOC
1909 | elfcpp::SHF_WRITE),
1910 this->got_plt_, got_plt_order,
1911 is_got_plt_relro);
1912
1913 // The first two entries are reserved.
1914 this->got_plt_->set_current_data_size
1915 (TILEGX_GOTPLT_RESERVE_COUNT * (size / 8));
1916
1917 if (!is_got_plt_relro)
1918 {
1919 // Those bytes can go into the relro segment.
1920 layout->increase_relro(size / 8);
1921 }
1922
1923
1924 // If there are any IRELATIVE relocations, they get GOT entries
1925 // in .got.plt after the jump slot entries.
1926 this->got_irelative_
1927 = new Output_data_space(size / 8, "** GOT IRELATIVE PLT");
1928 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
1929 (elfcpp::SHF_ALLOC
1930 | elfcpp::SHF_WRITE),
1931 this->got_irelative_,
1932 got_plt_order, is_got_plt_relro);
1933 }
1934
1935 return this->got_;
1936}
1937
1938// Get the dynamic reloc section, creating it if necessary.
1939
1940template<int size, bool big_endian>
1941typename Target_tilegx<size, big_endian>::Reloc_section*
1942Target_tilegx<size, big_endian>::rela_dyn_section(Layout* layout)
1943{
1944 if (this->rela_dyn_ == NULL)
1945 {
1946 gold_assert(layout != NULL);
1947 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
1948 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1949 elfcpp::SHF_ALLOC, this->rela_dyn_,
1950 ORDER_DYNAMIC_RELOCS, false);
1951 }
1952 return this->rela_dyn_;
1953}
1954
1955// Get the section to use for IRELATIVE relocs, creating it if
1956// necessary. These go in .rela.dyn, but only after all other dynamic
1957// relocations. They need to follow the other dynamic relocations so
1958// that they can refer to global variables initialized by those
1959// relocs.
1960
1961template<int size, bool big_endian>
1962typename Target_tilegx<size, big_endian>::Reloc_section*
1963Target_tilegx<size, big_endian>::rela_irelative_section(Layout* layout)
1964{
1965 if (this->rela_irelative_ == NULL)
1966 {
1967 // Make sure we have already created the dynamic reloc section.
1968 this->rela_dyn_section(layout);
1969 this->rela_irelative_ = new Reloc_section(false);
1970 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
1971 elfcpp::SHF_ALLOC, this->rela_irelative_,
1972 ORDER_DYNAMIC_RELOCS, false);
1973 gold_assert(this->rela_dyn_->output_section()
1974 == this->rela_irelative_->output_section());
1975 }
1976 return this->rela_irelative_;
1977}
1978
1979// Initialize the PLT section.
1980
1981template<int size, bool big_endian>
1982void
1983Output_data_plt_tilegx<size, big_endian>::init(Layout* layout)
1984{
1985 this->rel_ = new Reloc_section(false);
1986 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
1987 elfcpp::SHF_ALLOC, this->rel_,
1988 ORDER_DYNAMIC_PLT_RELOCS, false);
1989}
1990
1991template<int size, bool big_endian>
1992void
1993Output_data_plt_tilegx<size, big_endian>::do_adjust_output_section(
1994 Output_section* os)
1995{
1996 os->set_entsize(this->get_plt_entry_size());
1997}
1998
1999// Add an entry to the PLT.
2000
2001template<int size, bool big_endian>
2002void
2003Output_data_plt_tilegx<size, big_endian>::add_entry(Symbol_table* symtab,
2004 Layout* layout, Symbol* gsym)
2005{
2006 gold_assert(!gsym->has_plt_offset());
2007
2008 unsigned int plt_index;
2009 off_t plt_offset;
2010 section_offset_type got_offset;
2011
2012 unsigned int* pcount;
2013 unsigned int reserved;
2014 Output_data_space* got;
2015 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2016 && gsym->can_use_relative_reloc(false))
2017 {
2018 pcount = &this->irelative_count_;
2019 reserved = 0;
2020 got = this->got_irelative_;
2021 }
2022 else
2023 {
2024 pcount = &this->count_;
2025 reserved = TILEGX_GOTPLT_RESERVE_COUNT;
2026 got = this->got_plt_;
2027 }
2028
2029 if (!this->is_data_size_valid())
2030 {
2031 plt_index = *pcount;
2032
2033 // TILEGX .plt section layout
62fe925a 2034 //
5c0b3823
WL
2035 // ----
2036 // plt_header
2037 // ----
2038 // plt stub
2039 // ----
2040 // ...
2041 // ----
62fe925a 2042 //
5c0b3823 2043 // TILEGX .got.plt section layout
62fe925a 2044 //
5c0b3823
WL
2045 // ----
2046 // reserv1
2047 // ----
2048 // reserv2
2049 // ----
2050 // entries for normal function
2051 // ----
2052 // ...
62fe925a 2053 // ----
5c0b3823
WL
2054 // entries for ifunc
2055 // ----
2056 // ...
2057 // ----
2058 if (got == this->got_irelative_)
2059 plt_offset = plt_index * this->get_plt_entry_size();
2060 else
2061 plt_offset = (plt_index + 1) * this->get_plt_entry_size();
2062
2063 ++*pcount;
2064
2065 got_offset = (plt_index + reserved) * (size / 8);
2066 gold_assert(got_offset == got->current_data_size());
2067
2068 // Every PLT entry needs a GOT entry which points back to the PLT
2069 // entry (this will be changed by the dynamic linker, normally
2070 // lazily when the function is called).
2071 got->set_current_data_size(got_offset + size / 8);
2072 }
2073 else
2074 {
2075 // FIXME: This is probably not correct for IRELATIVE relocs.
2076
2077 // For incremental updates, find an available slot.
2078 plt_offset = this->free_list_.allocate(this->get_plt_entry_size(),
2079 this->get_plt_entry_size(), 0);
2080 if (plt_offset == -1)
2081 gold_fallback(_("out of patch space (PLT);"
2082 " relink with --incremental-full"));
2083
2084 // The GOT and PLT entries have a 1-1 correspondance, so the GOT offset
2085 // can be calculated from the PLT index, adjusting for the three
2086 // reserved entries at the beginning of the GOT.
2087 plt_index = plt_offset / this->get_plt_entry_size() - 1;
2088 got_offset = (plt_index + reserved) * (size / 8);
2089 }
2090
2091 gsym->set_plt_offset(plt_offset);
2092
2093 // Every PLT entry needs a reloc.
2094 this->add_relocation(symtab, layout, gsym, got_offset);
2095
2096 // Note that we don't need to save the symbol. The contents of the
2097 // PLT are independent of which symbols are used. The symbols only
2098 // appear in the relocations.
2099}
2100
2101// Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
2102// the PLT offset.
2103
2104template<int size, bool big_endian>
2105unsigned int
2106Output_data_plt_tilegx<size, big_endian>::add_local_ifunc_entry(
2107 Symbol_table* symtab,
2108 Layout* layout,
2109 Sized_relobj_file<size, big_endian>* relobj,
2110 unsigned int local_sym_index)
2111{
2112 unsigned int plt_offset =
2113 this->irelative_count_ * this->get_plt_entry_size();
2114 ++this->irelative_count_;
2115
2116 section_offset_type got_offset = this->got_irelative_->current_data_size();
2117
2118 // Every PLT entry needs a GOT entry which points back to the PLT
2119 // entry.
2120 this->got_irelative_->set_current_data_size(got_offset + size / 8);
2121
2122 // Every PLT entry needs a reloc.
2123 Reloc_section* rela = this->rela_irelative(symtab, layout);
2124 rela->add_symbolless_local_addend(relobj, local_sym_index,
2125 elfcpp::R_TILEGX_IRELATIVE,
2126 this->got_irelative_, got_offset, 0);
2127
2128 return plt_offset;
2129}
2130
2131// Add the relocation for a PLT entry.
2132
2133template<int size, bool big_endian>
2134void
2135Output_data_plt_tilegx<size, big_endian>::add_relocation(Symbol_table* symtab,
2136 Layout* layout,
2137 Symbol* gsym,
2138 unsigned int got_offset)
2139{
2140 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2141 && gsym->can_use_relative_reloc(false))
2142 {
2143 Reloc_section* rela = this->rela_irelative(symtab, layout);
2144 rela->add_symbolless_global_addend(gsym, elfcpp::R_TILEGX_IRELATIVE,
2145 this->got_irelative_, got_offset, 0);
2146 }
2147 else
2148 {
2149 gsym->set_needs_dynsym_entry();
2150 this->rel_->add_global(gsym, elfcpp::R_TILEGX_JMP_SLOT, this->got_plt_,
2151 got_offset, 0);
2152 }
2153}
2154
2155// Return where the IRELATIVE relocations should go in the PLT. These
2156// follow the JUMP_SLOT and the TLSDESC relocations.
2157
2158template<int size, bool big_endian>
2159typename Output_data_plt_tilegx<size, big_endian>::Reloc_section*
2160Output_data_plt_tilegx<size, big_endian>::rela_irelative(Symbol_table* symtab,
2161 Layout* layout)
2162{
2163 if (this->irelative_rel_ == NULL)
2164 {
2165 // case we see any later on.
2166 this->irelative_rel_ = new Reloc_section(false);
2167 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
2168 elfcpp::SHF_ALLOC, this->irelative_rel_,
2169 ORDER_DYNAMIC_PLT_RELOCS, false);
2170 gold_assert(this->irelative_rel_->output_section()
2171 == this->rel_->output_section());
2172
2173 if (parameters->doing_static_link())
2174 {
2175 // A statically linked executable will only have a .rela.plt
2176 // section to hold R_TILEGX_IRELATIVE relocs for
2177 // STT_GNU_IFUNC symbols. The library will use these
2178 // symbols to locate the IRELATIVE relocs at program startup
2179 // time.
2180 symtab->define_in_output_data("__rela_iplt_start", NULL,
2181 Symbol_table::PREDEFINED,
2182 this->irelative_rel_, 0, 0,
2183 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2184 elfcpp::STV_HIDDEN, 0, false, true);
2185 symtab->define_in_output_data("__rela_iplt_end", NULL,
2186 Symbol_table::PREDEFINED,
2187 this->irelative_rel_, 0, 0,
2188 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
2189 elfcpp::STV_HIDDEN, 0, true, true);
2190 }
2191 }
2192 return this->irelative_rel_;
2193}
2194
2195// Return the PLT address to use for a global symbol.
2196
2197template<int size, bool big_endian>
2198uint64_t
2199Output_data_plt_tilegx<size, big_endian>::address_for_global(
2200 const Symbol* gsym)
2201{
2202 uint64_t offset = 0;
2203 if (gsym->type() == elfcpp::STT_GNU_IFUNC
2204 && gsym->can_use_relative_reloc(false))
2205 offset = (this->count_ + 1) * this->get_plt_entry_size();
19fec8c1 2206 return this->address() + offset + gsym->plt_offset();
5c0b3823
WL
2207}
2208
2209// Return the PLT address to use for a local symbol. These are always
2210// IRELATIVE relocs.
2211
2212template<int size, bool big_endian>
2213uint64_t
19fec8c1
AM
2214Output_data_plt_tilegx<size, big_endian>::address_for_local(
2215 const Relobj* object,
2216 unsigned int r_sym)
5c0b3823 2217{
19fec8c1
AM
2218 return (this->address()
2219 + (this->count_ + 1) * this->get_plt_entry_size()
2220 + object->local_plt_offset(r_sym));
5c0b3823
WL
2221}
2222
2223// Set the final size.
2224template<int size, bool big_endian>
2225void
2226Output_data_plt_tilegx<size, big_endian>::set_final_data_size()
2227{
2228 unsigned int count = this->count_ + this->irelative_count_;
2229 this->set_data_size((count + 1) * this->get_plt_entry_size());
2230}
2231
2232// The first entry in the PLT for an executable.
2233template<>
2234const unsigned char
2235Output_data_plt_tilegx<64, false>::first_plt_entry[plt_entry_size] =
2236{
2237 0x00, 0x30, 0x48, 0x51,
2238 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2239 0x00, 0x30, 0xbc, 0x35,
2240 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2241 0xff, 0xaf, 0x30, 0x40,
2242 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2243 // padding
2244 0x00, 0x00, 0x00, 0x00,
2245 0x00, 0x00, 0x00, 0x00,
2246 0x00, 0x00, 0x00, 0x00,
2247 0x00, 0x00, 0x00, 0x00
2248};
2249
2250template<>
2251const unsigned char
2252Output_data_plt_tilegx<32, false>::first_plt_entry[plt_entry_size] =
2253{
2254 0x00, 0x30, 0x48, 0x51,
2255 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2256 0x00, 0x30, 0xbc, 0x35,
2257 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2258 0xff, 0xaf, 0x30, 0x40,
2259 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2260 // padding
2261 0x00, 0x00, 0x00, 0x00,
2262 0x00, 0x00, 0x00, 0x00,
2263 0x00, 0x00, 0x00, 0x00,
2264 0x00, 0x00, 0x00, 0x00
2265};
2266
2267template<>
2268const unsigned char
2269Output_data_plt_tilegx<64, true>::first_plt_entry[plt_entry_size] =
2270{
2271 0x00, 0x30, 0x48, 0x51,
2272 0x6e, 0x43, 0xa0, 0x18, // { ld_add r28, r27, 8 }
2273 0x00, 0x30, 0xbc, 0x35,
2274 0x00, 0x40, 0xde, 0x9e, // { ld r27, r27 }
2275 0xff, 0xaf, 0x30, 0x40,
2276 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2277 // padding
2278 0x00, 0x00, 0x00, 0x00,
2279 0x00, 0x00, 0x00, 0x00,
2280 0x00, 0x00, 0x00, 0x00,
2281 0x00, 0x00, 0x00, 0x00
2282};
2283
2284template<>
2285const unsigned char
2286Output_data_plt_tilegx<32, true>::first_plt_entry[plt_entry_size] =
2287{
2288 0x00, 0x30, 0x48, 0x51,
2289 0x6e, 0x23, 0x58, 0x18, // { ld4s_add r28, r27, 4 }
2290 0x00, 0x30, 0xbc, 0x35,
2291 0x00, 0x40, 0xde, 0x9c, // { ld4s r27, r27 }
2292 0xff, 0xaf, 0x30, 0x40,
2293 0x60, 0x73, 0x6a, 0x28, // { info 10 ; jr r27 }
2294 // padding
2295 0x00, 0x00, 0x00, 0x00,
2296 0x00, 0x00, 0x00, 0x00,
2297 0x00, 0x00, 0x00, 0x00,
2298 0x00, 0x00, 0x00, 0x00
2299};
2300
2301template<int size, bool big_endian>
2302void
2303Output_data_plt_tilegx<size, big_endian>::fill_first_plt_entry(
2304 unsigned char* pov)
2305{
2306 memcpy(pov, first_plt_entry, plt_entry_size);
2307}
2308
2309// Subsequent entries in the PLT for an executable.
2310
2311template<>
2312const unsigned char
2313Output_data_plt_tilegx<64, false>::plt_entry[plt_entry_size] =
2314{
2315 0xdc, 0x0f, 0x00, 0x10,
2316 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2317 0xdb, 0x0f, 0x00, 0x10,
2318 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2319 0x9c, 0xc6, 0x0d, 0xd0,
2320 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2321 0x9b, 0xb6, 0xc5, 0xad,
2322 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2323 0xdd, 0x0f, 0x00, 0x70,
2324 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2325
2326};
2327
2328template<>
2329const unsigned char
2330Output_data_plt_tilegx<32, false>::plt_entry[plt_entry_size] =
2331{
2332 0xdc, 0x0f, 0x00, 0x10,
2333 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2334 0xdb, 0x0f, 0x00, 0x10,
2335 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2336 0x9c, 0xc6, 0x0d, 0xd0,
2337 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2338 0x9b, 0xb6, 0xc5, 0xad,
2339 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2340 0xdd, 0x0f, 0x00, 0x70,
2341 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2342};
2343
2344template<>
2345const unsigned char
2346Output_data_plt_tilegx<64, true>::plt_entry[plt_entry_size] =
2347{
2348 0xdc, 0x0f, 0x00, 0x10,
2349 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2350 0xdb, 0x0f, 0x00, 0x10,
2351 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2352 0x9c, 0xc6, 0x0d, 0xd0,
2353 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2354 0x9b, 0xb6, 0xc5, 0xad,
2355 0xff, 0x57, 0xe0, 0x8e, // { add r27, r26, r27 ; info 10 ; ld r28, r28 }
2356 0xdd, 0x0f, 0x00, 0x70,
2357 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2358
2359};
2360
2361template<>
2362const unsigned char
2363Output_data_plt_tilegx<32, true>::plt_entry[plt_entry_size] =
2364{
2365 0xdc, 0x0f, 0x00, 0x10,
2366 0x0d, 0xf0, 0x6a, 0x28, // { moveli r28, 0 ; lnk r26 }
2367 0xdb, 0x0f, 0x00, 0x10,
2368 0x8e, 0x03, 0x00, 0x38, // { moveli r27, 0 ; shl16insli r28, r28, 0 }
2369 0x9c, 0xc6, 0x0d, 0xd0,
2370 0x6d, 0x03, 0x00, 0x38, // { add r28, r26, r28 ; shl16insli r27, r27, 0 }
2371 0x9b, 0xb6, 0xc5, 0xad,
2372 0xff, 0x57, 0xe0, 0x8c, // { add r27, r26, r27 ; info 10 ; ld4s r28, r28 }
2373 0xdd, 0x0f, 0x00, 0x70,
2374 0x80, 0x73, 0x6a, 0x28, // { shl16insli r29, zero, 0 ; jr r28 }
2375};
2376
2377template<int size, bool big_endian>
2378void
2379Output_data_plt_tilegx<size, big_endian>::fill_plt_entry(
2380 unsigned char* pov,
2381 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_base,
2382 unsigned int got_offset,
2383 typename elfcpp::Elf_types<size>::Elf_Addr plt_base,
2384 unsigned int plt_offset, unsigned int plt_index)
2385{
2386
2387 const uint32_t TILEGX_IMM16_MASK = 0xFFFF;
2388 const uint32_t TILEGX_X0_IMM16_BITOFF = 12;
2389 const uint32_t TILEGX_X1_IMM16_BITOFF = 43;
2390
2391 typedef typename elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::Valtype
2392 Valtype;
2393 memcpy(pov, plt_entry, plt_entry_size);
2394
2395 // first bundle in plt stub - x0
2396 Valtype* wv = reinterpret_cast<Valtype*>(pov);
2397 Valtype val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2398 Valtype reloc =
2399 ((gotplt_base + got_offset) - (plt_base + plt_offset + 8)) >> 16;
2400 elfcpp::Elf_Xword dst_mask =
2401 (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2402 val &= ~dst_mask;
2403 reloc &= TILEGX_IMM16_MASK;
2404 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2405 val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2406
2407 // second bundle in plt stub - x1
2408 wv = reinterpret_cast<Valtype*>(pov + 8);
2409 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2410 reloc = (gotplt_base + got_offset) - (plt_base + plt_offset + 8);
2411 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2412 val &= ~dst_mask;
2413 reloc &= TILEGX_IMM16_MASK;
2414 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2415 val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2416
2417 // second bundle in plt stub - x0
2418 wv = reinterpret_cast<Valtype*>(pov + 8);
2419 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2420 reloc = (gotplt_base - (plt_base + plt_offset + 8)) >> 16;
2421 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2422 val &= ~dst_mask;
2423 reloc &= TILEGX_IMM16_MASK;
2424 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2425 val | (reloc<<TILEGX_X0_IMM16_BITOFF));
2426
2427 // third bundle in plt stub - x1
2428 wv = reinterpret_cast<Valtype*>(pov + 16);
2429 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2430 reloc = gotplt_base - (plt_base + plt_offset + 8);
2431 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X1_IMM16_BITOFF;
2432 val &= ~dst_mask;
2433 reloc &= TILEGX_IMM16_MASK;
2434 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2435 val | (reloc<<TILEGX_X1_IMM16_BITOFF));
2436
2437 // fifth bundle in plt stub - carry plt_index x0
2438 wv = reinterpret_cast<Valtype*>(pov + 32);
2439 val = elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::readval(wv);
2440 dst_mask = (elfcpp::Elf_Xword)(TILEGX_IMM16_MASK) << TILEGX_X0_IMM16_BITOFF;
2441 val &= ~dst_mask;
2442 plt_index &= TILEGX_IMM16_MASK;
2443 elfcpp::Swap<TILEGX_INST_BUNDLE_SIZE, big_endian>::writeval(wv,
2444 val | (plt_index<<TILEGX_X0_IMM16_BITOFF));
2445
2446}
2447
2448// Write out the PLT. This uses the hand-coded instructions above.
2449
2450template<int size, bool big_endian>
2451void
2452Output_data_plt_tilegx<size, big_endian>::do_write(Output_file* of)
2453{
2454 const off_t offset = this->offset();
2455 const section_size_type oview_size =
2456 convert_to_section_size_type(this->data_size());
2457 unsigned char* const oview = of->get_output_view(offset, oview_size);
2458
2459 const off_t got_file_offset = this->got_plt_->offset();
2460 gold_assert(parameters->incremental_update()
2461 || (got_file_offset + this->got_plt_->data_size()
2462 == this->got_irelative_->offset()));
2463 const section_size_type got_size =
2464 convert_to_section_size_type(this->got_plt_->data_size()
2465 + this->got_irelative_->data_size());
2466 unsigned char* const got_view = of->get_output_view(got_file_offset,
2467 got_size);
2468
2469 unsigned char* pov = oview;
2470
2471 // The base address of the .plt section.
2472 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
2473 typename elfcpp::Elf_types<size>::Elf_Addr got_address =
2474 this->got_plt_->address();
2475
2476 this->fill_first_plt_entry(pov);
2477 pov += this->get_plt_entry_size();
2478
2479 unsigned char* got_pov = got_view;
2480
2481 // first entry of .got.plt are set to -1
2482 // second entry of .got.plt are set to 0
2483 memset(got_pov, 0xff, size / 8);
2484 got_pov += size / 8;
2485 memset(got_pov, 0x0, size / 8);
2486 got_pov += size / 8;
2487
2488 unsigned int plt_offset = this->get_plt_entry_size();
2489 const unsigned int count = this->count_ + this->irelative_count_;
2490 unsigned int got_offset = (size / 8) * TILEGX_GOTPLT_RESERVE_COUNT;
2491 for (unsigned int plt_index = 0;
2492 plt_index < count;
2493 ++plt_index,
2494 pov += this->get_plt_entry_size(),
2495 got_pov += size / 8,
2496 plt_offset += this->get_plt_entry_size(),
2497 got_offset += size / 8)
2498 {
2499 // Set and adjust the PLT entry itself.
2500 this->fill_plt_entry(pov, got_address, got_offset,
2501 plt_address, plt_offset, plt_index);
2502
2503 // Initialize entry in .got.plt to plt start address
2504 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
2505 }
2506
2507 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
2508 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
2509
2510 of->write_output_view(offset, oview_size, oview);
2511 of->write_output_view(got_file_offset, got_size, got_view);
2512}
2513
2514// Create the PLT section.
2515
2516template<int size, bool big_endian>
2517void
2518Target_tilegx<size, big_endian>::make_plt_section(Symbol_table* symtab,
2519 Layout* layout)
2520{
2521 if (this->plt_ == NULL)
2522 {
2523 // Create the GOT sections first.
2524 this->got_section(symtab, layout);
2525
2526 // Ensure that .rela.dyn always appears before .rela.plt,
2527 // becuase on TILE-Gx, .rela.dyn needs to include .rela.plt
2528 // in it's range.
2529 this->rela_dyn_section(layout);
2530
2531 this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2532 TILEGX_INST_BUNDLE_SIZE, this->got_, this->got_plt_,
2533 this->got_irelative_);
2534
2535 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2536 (elfcpp::SHF_ALLOC
2537 | elfcpp::SHF_EXECINSTR),
2538 this->plt_, ORDER_NON_RELRO_FIRST,
2539 false);
2540
2541 // Make the sh_info field of .rela.plt point to .plt.
2542 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2543 rela_plt_os->set_info_section(this->plt_->output_section());
2544 }
2545}
2546
2547// Create a PLT entry for a global symbol.
2548
2549template<int size, bool big_endian>
2550void
2551Target_tilegx<size, big_endian>::make_plt_entry(Symbol_table* symtab,
2552 Layout* layout, Symbol* gsym)
2553{
2554 if (gsym->has_plt_offset())
2555 return;
2556
2557 if (this->plt_ == NULL)
2558 this->make_plt_section(symtab, layout);
2559
2560 this->plt_->add_entry(symtab, layout, gsym);
2561}
2562
2563// Make a PLT entry for a local STT_GNU_IFUNC symbol.
2564
2565template<int size, bool big_endian>
2566void
2567Target_tilegx<size, big_endian>::make_local_ifunc_plt_entry(
2568 Symbol_table* symtab, Layout* layout,
2569 Sized_relobj_file<size, big_endian>* relobj,
2570 unsigned int local_sym_index)
2571{
2572 if (relobj->local_has_plt_offset(local_sym_index))
2573 return;
2574 if (this->plt_ == NULL)
2575 this->make_plt_section(symtab, layout);
2576 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
2577 relobj,
2578 local_sym_index);
2579 relobj->set_local_plt_offset(local_sym_index, plt_offset);
2580}
2581
2582// Return the number of entries in the PLT.
2583
2584template<int size, bool big_endian>
2585unsigned int
2586Target_tilegx<size, big_endian>::plt_entry_count() const
2587{
2588 if (this->plt_ == NULL)
2589 return 0;
2590 return this->plt_->entry_count();
2591}
2592
2593// Return the offset of the first non-reserved PLT entry.
2594
2595template<int size, bool big_endian>
2596unsigned int
2597Target_tilegx<size, big_endian>::first_plt_entry_offset() const
2598{
2599 return this->plt_->first_plt_entry_offset();
2600}
2601
2602// Return the size of each PLT entry.
2603
2604template<int size, bool big_endian>
2605unsigned int
2606Target_tilegx<size, big_endian>::plt_entry_size() const
2607{
2608 return this->plt_->get_plt_entry_size();
2609}
2610
2611// Create the GOT and PLT sections for an incremental update.
2612
2613template<int size, bool big_endian>
2614Output_data_got_base*
2615Target_tilegx<size, big_endian>::init_got_plt_for_update(Symbol_table* symtab,
2616 Layout* layout,
2617 unsigned int got_count,
2618 unsigned int plt_count)
2619{
2620 gold_assert(this->got_ == NULL);
2621
2622 this->got_ =
2623 new Output_data_got<size, big_endian>((got_count
2624 + TILEGX_GOT_RESERVE_COUNT)
2625 * (size / 8));
2626 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
2627 (elfcpp::SHF_ALLOC
2628 | elfcpp::SHF_WRITE),
2629 this->got_, ORDER_RELRO_LAST,
2630 true);
2631
2632 // Define _GLOBAL_OFFSET_TABLE_ at the start of the GOT.
2633 this->global_offset_table_ =
2634 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
2635 Symbol_table::PREDEFINED,
2636 this->got_,
2637 0, 0, elfcpp::STT_OBJECT,
2638 elfcpp::STB_LOCAL,
2639 elfcpp::STV_HIDDEN, 0,
2640 false, false);
2641
2642 if (parameters->options().shared()) {
2643 this->tilegx_dynamic_ =
2644 symtab->define_in_output_data("_TILEGX_DYNAMIC_", NULL,
2645 Symbol_table::PREDEFINED,
2646 layout->dynamic_section(),
2647 0, 0, elfcpp::STT_OBJECT,
2648 elfcpp::STB_LOCAL,
2649 elfcpp::STV_HIDDEN, 0,
2650 false, false);
2651
2652 this->got_->add_global(this->tilegx_dynamic_, GOT_TYPE_STANDARD);
2653 } else
2654 this->got_->set_current_data_size(size / 8);
2655
2656 // Add the two reserved entries.
2657 this->got_plt_
2658 = new Output_data_space((plt_count + TILEGX_GOTPLT_RESERVE_COUNT)
2659 * (size / 8), size / 8, "** GOT PLT");
2660 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2661 (elfcpp::SHF_ALLOC
2662 | elfcpp::SHF_WRITE),
2663 this->got_plt_, ORDER_NON_RELRO_FIRST,
2664 false);
2665
2666 // If there are any IRELATIVE relocations, they get GOT entries in
2667 // .got.plt after the jump slot.
2668 this->got_irelative_
2669 = new Output_data_space(0, size / 8, "** GOT IRELATIVE PLT");
2670 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
2671 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
2672 this->got_irelative_,
2673 ORDER_NON_RELRO_FIRST, false);
2674
2675 // Create the PLT section.
2676 this->plt_ = new Output_data_plt_tilegx<size, big_endian>(layout,
2677 this->plt_entry_size(), this->got_, this->got_plt_, this->got_irelative_,
2678 plt_count);
2679
2680 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
2681 elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR,
2682 this->plt_, ORDER_PLT, false);
2683
2684 // Make the sh_info field of .rela.plt point to .plt.
2685 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
2686 rela_plt_os->set_info_section(this->plt_->output_section());
2687
2688 // Create the rela_dyn section.
2689 this->rela_dyn_section(layout);
2690
2691 return this->got_;
2692}
2693
2694// Reserve a GOT entry for a local symbol, and regenerate any
2695// necessary dynamic relocations.
2696
2697template<int size, bool big_endian>
2698void
2699Target_tilegx<size, big_endian>::reserve_local_got_entry(
2700 unsigned int got_index,
2701 Sized_relobj<size, big_endian>* obj,
2702 unsigned int r_sym,
2703 unsigned int got_type)
2704{
2705 unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2706 * (size / 8);
2707 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2708
2709 this->got_->reserve_local(got_index, obj, r_sym, got_type);
2710 switch (got_type)
2711 {
2712 case GOT_TYPE_STANDARD:
2713 if (parameters->options().output_is_position_independent())
2714 rela_dyn->add_local_relative(obj, r_sym, elfcpp::R_TILEGX_RELATIVE,
2715 this->got_, got_offset, 0, false);
2716 break;
2717 case GOT_TYPE_TLS_OFFSET:
2718 rela_dyn->add_local(obj, r_sym,
2719 size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2720 : elfcpp::R_TILEGX_TLS_DTPOFF64,
2721 this->got_, got_offset, 0);
2722 break;
2723 case GOT_TYPE_TLS_PAIR:
2724 this->got_->reserve_slot(got_index + 1);
2725 rela_dyn->add_local(obj, r_sym,
2726 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2727 : elfcpp::R_TILEGX_TLS_DTPMOD64,
2728 this->got_, got_offset, 0);
2729 break;
2730 case GOT_TYPE_TLS_DESC:
2731 gold_fatal(_("TLS_DESC not yet supported for incremental linking"));
2732 break;
2733 default:
2734 gold_unreachable();
2735 }
2736}
2737
2738// Reserve a GOT entry for a global symbol, and regenerate any
2739// necessary dynamic relocations.
2740
2741template<int size, bool big_endian>
2742void
2743Target_tilegx<size, big_endian>::reserve_global_got_entry(
2744 unsigned int got_index, Symbol* gsym, unsigned int got_type)
2745{
2746 unsigned int got_offset = (got_index + TILEGX_GOT_RESERVE_COUNT)
2747 * (size / 8);
2748 Reloc_section* rela_dyn = this->rela_dyn_section(NULL);
2749
2750 this->got_->reserve_global(got_index, gsym, got_type);
2751 switch (got_type)
2752 {
2753 case GOT_TYPE_STANDARD:
2754 if (!gsym->final_value_is_known())
2755 {
2756 if (gsym->is_from_dynobj()
2757 || gsym->is_undefined()
2758 || gsym->is_preemptible()
2759 || gsym->type() == elfcpp::STT_GNU_IFUNC)
2760 rela_dyn->add_global(gsym, elfcpp::R_TILEGX_GLOB_DAT,
2761 this->got_, got_offset, 0);
2762 else
2763 rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
2764 this->got_, got_offset, 0, false);
2765 }
2766 break;
2767 case GOT_TYPE_TLS_OFFSET:
2768 rela_dyn->add_global_relative(gsym,
2769 size == 32 ? elfcpp::R_TILEGX_TLS_TPOFF32
2770 : elfcpp::R_TILEGX_TLS_TPOFF64,
2771 this->got_, got_offset, 0, false);
2772 break;
2773 case GOT_TYPE_TLS_PAIR:
2774 this->got_->reserve_slot(got_index + 1);
2775 rela_dyn->add_global_relative(gsym,
2776 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2777 : elfcpp::R_TILEGX_TLS_DTPMOD64,
2778 this->got_, got_offset, 0, false);
2779 rela_dyn->add_global_relative(gsym,
2780 size == 32 ? elfcpp::R_TILEGX_TLS_DTPOFF32
2781 : elfcpp::R_TILEGX_TLS_DTPOFF64,
2782 this->got_, got_offset + size / 8,
2783 0, false);
2784 break;
2785 case GOT_TYPE_TLS_DESC:
2786 gold_fatal(_("TLS_DESC not yet supported for TILEGX"));
2787 break;
2788 default:
2789 gold_unreachable();
2790 }
2791}
2792
2793// Register an existing PLT entry for a global symbol.
2794
2795template<int size, bool big_endian>
2796void
2797Target_tilegx<size, big_endian>::register_global_plt_entry(
2798 Symbol_table* symtab, Layout* layout, unsigned int plt_index, Symbol* gsym)
2799{
2800 gold_assert(this->plt_ != NULL);
2801 gold_assert(!gsym->has_plt_offset());
2802
2803 this->plt_->reserve_slot(plt_index);
2804
2805 gsym->set_plt_offset((plt_index + 1) * this->plt_entry_size());
2806
2807 unsigned int got_offset = (plt_index + 2) * (size / 8);
2808 this->plt_->add_relocation(symtab, layout, gsym, got_offset);
2809}
2810
2811// Force a COPY relocation for a given symbol.
2812
2813template<int size, bool big_endian>
2814void
2815Target_tilegx<size, big_endian>::emit_copy_reloc(
2816 Symbol_table* symtab, Symbol* sym, Output_section* os, off_t offset)
2817{
2818 this->copy_relocs_.emit_copy_reloc(symtab,
2819 symtab->get_sized_symbol<size>(sym),
2820 os,
2821 offset,
2822 this->rela_dyn_section(NULL));
2823}
2824
2825// Create a GOT entry for the TLS module index.
2826
2827template<int size, bool big_endian>
2828unsigned int
2829Target_tilegx<size, big_endian>::got_mod_index_entry(Symbol_table* symtab,
2830 Layout* layout,
2831 Sized_relobj_file<size, big_endian>* object)
2832{
2833 if (this->got_mod_index_offset_ == -1U)
2834 {
2835 gold_assert(symtab != NULL && layout != NULL && object != NULL);
2836 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
2837 Output_data_got<size, big_endian>* got
2838 = this->got_section(symtab, layout);
2839 unsigned int got_offset = got->add_constant(0);
2840 rela_dyn->add_local(object, 0,
2841 size == 32 ? elfcpp::R_TILEGX_TLS_DTPMOD32
2842 : elfcpp::R_TILEGX_TLS_DTPMOD64, got,
2843 got_offset, 0);
2844 got->add_constant(0);
2845 this->got_mod_index_offset_ = got_offset;
2846 }
2847 return this->got_mod_index_offset_;
2848}
2849
2850// Optimize the TLS relocation type based on what we know about the
2851// symbol. IS_FINAL is true if the final address of this symbol is
2852// known at link time.
2853//
2854// the transformation rules is described below:
2855//
2856// compiler GD reference
2857// |
2858// V
2859// moveli tmp, hw1_last_tls_gd(x) X0/X1
2860// shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
2861// addi r0, got, tls_add(x) Y0/Y1/X0/X1
2862// jal tls_gd_call(x) X1
2863// addi adr, r0, tls_gd_add(x) Y0/Y1/X0/X1
2864//
2865// linker tranformation of GD insn sequence
2866// |
2867// V
2868// ==> GD:
2869// moveli tmp, hw1_last_tls_gd(x) X0/X1
2870// shl16insli r0, tmp, hw0_tls_gd(x) X0/X1
2871// add r0, got, r0 Y0/Y1/X0/X1
2872// jal plt(__tls_get_addr) X1
2873// move adr, r0 Y0/Y1/X0/X1
2874// ==> IE:
2875// moveli tmp, hw1_last_tls_ie(x) X0/X1
2876// shl16insli r0, tmp, hw0_tls_ie(x) X0/X1
2877// add r0, got, r0 Y0/Y1/X0/X1
2878// ld r0, r0 X1
2879// add adr, r0, tp Y0/Y1/X0/X1
2880// ==> LE:
2881// moveli tmp, hw1_last_tls_le(x) X0/X1
2882// shl16insli r0, tmp, hw0_tls_le(x) X0/X1
2883// move r0, r0 Y0/Y1/X0/X1
2884// move r0, r0 Y0/Y1/X0/X1
2885// add adr, r0, tp Y0/Y1/X0/X1
62fe925a
RM
2886//
2887//
5c0b3823
WL
2888// compiler IE reference
2889// |
2890// V
2891// moveli tmp, hw1_last_tls_ie(x) X0/X1
2892// shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
2893// addi tmp, got, tls_add(x) Y0/Y1/X0/X1
2894// ld_tls tmp, tmp, tls_ie_load(x) X1
2895// add adr, tmp, tp Y0/Y1/X0/X1
2896//
2897// linker transformation for IE insn sequence
2898// |
2899// V
2900// ==> IE:
2901// moveli tmp, hw1_last_tls_ie(x) X0/X1
2902// shl16insli tmp, tmp, hw0_tls_ie(x) X0/X1
2903// add tmp, got, tmp Y0/Y1/X0/X1
2904// ld tmp, tmp X1
2905// add adr, tmp, tp Y0/Y1/X0/X1
2906// ==> LE:
2907// moveli tmp, hw1_last_tls_le(x) X0/X1
2908// shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
2909// move tmp, tmp Y0/Y1/X0/X1
2910// move tmp, tmp Y0/Y1/X0/X1
2911//
2912//
2913// compiler LE reference
2914// |
2915// V
2916// moveli tmp, hw1_last_tls_le(x) X0/X1
2917// shl16insli tmp, tmp, hw0_tls_le(x) X0/X1
2918// add adr, tmp, tp Y0/Y1/X0/X1
2919
2920template<int size, bool big_endian>
2921tls::Tls_optimization
2922Target_tilegx<size, big_endian>::optimize_tls_reloc(bool is_final, int r_type)
2923{
2924 // If we are generating a shared library, then we can't do anything
2925 // in the linker.
2926 if (parameters->options().shared())
2927 return tls::TLSOPT_NONE;
2928
2929 switch (r_type)
2930 {
2931 // unique GD relocations
2932 case elfcpp::R_TILEGX_TLS_GD_CALL:
2933 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
2934 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
2935 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
2936 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
2937 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
2938 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
2939 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
2940 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
2941 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
2942 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
2943 // These are General-Dynamic which permits fully general TLS
2944 // access. Since we know that we are generating an executable,
2945 // we can convert this to Initial-Exec. If we also know that
2946 // this is a local symbol, we can further switch to Local-Exec.
2947 if (is_final)
2948 return tls::TLSOPT_TO_LE;
2949 return tls::TLSOPT_TO_IE;
2950
2951 // unique IE relocations
2952 case elfcpp::R_TILEGX_TLS_IE_LOAD:
2953 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
2954 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
2955 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
2956 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
2957 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
2958 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
2959 // These are Initial-Exec relocs which get the thread offset
2960 // from the GOT. If we know that we are linking against the
2961 // local symbol, we can switch to Local-Exec, which links the
2962 // thread offset into the instruction.
2963 if (is_final)
2964 return tls::TLSOPT_TO_LE;
2965 return tls::TLSOPT_NONE;
2966
2967 // could be created for both GD and IE
2968 // but they are expanded into the same
2969 // instruction in GD and IE.
2970 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
2971 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
2972 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
2973 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
2974 if (is_final)
2975 return tls::TLSOPT_TO_LE;
2976 return tls::TLSOPT_NONE;
2977
2978 // unique LE relocations
2979 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
2980 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
2981 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
2982 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
2983 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
2984 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
2985 // When we already have Local-Exec, there is nothing further we
2986 // can do.
2987 return tls::TLSOPT_NONE;
2988
2989 default:
2990 gold_unreachable();
2991 }
2992}
2993
2994// Get the Reference_flags for a particular relocation.
2995
2996template<int size, bool big_endian>
2997int
2998Target_tilegx<size, big_endian>::Scan::get_reference_flags(unsigned int r_type)
2999{
3000 switch (r_type)
3001 {
3002 case elfcpp::R_TILEGX_NONE:
3003 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3004 case elfcpp::R_TILEGX_GNU_VTENTRY:
3005 // No symbol reference.
3006 return 0;
3007
3008 case elfcpp::R_TILEGX_64:
3009 case elfcpp::R_TILEGX_32:
3010 case elfcpp::R_TILEGX_16:
3011 case elfcpp::R_TILEGX_8:
3012 return Symbol::ABSOLUTE_REF;
3013
3014 case elfcpp::R_TILEGX_BROFF_X1:
3015 case elfcpp::R_TILEGX_64_PCREL:
3016 case elfcpp::R_TILEGX_32_PCREL:
3017 case elfcpp::R_TILEGX_16_PCREL:
3018 case elfcpp::R_TILEGX_8_PCREL:
3019 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3020 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3021 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3022 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3023 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3024 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3025 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3026 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3027 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3028 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3029 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3030 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3031 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3032 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3033 return Symbol::RELATIVE_REF;
3034
3035 case elfcpp::R_TILEGX_JUMPOFF_X1:
3036 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3037 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3038 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3039 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3040 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3041 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3042 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3043 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3044 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3045 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3046 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3047 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3048 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3049 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
3050
3051 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3052 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3053 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3054 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3055 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3056 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3057 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3058 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3059 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3060 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3061 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3062 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3063 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3064 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3065 return Symbol::ABSOLUTE_REF;
3066
3067 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3068 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3069 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3070 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3071 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3072 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3073 // Absolute in GOT.
3074 return Symbol::ABSOLUTE_REF;
3075
3076 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3077 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3078 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3079 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3080 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3081 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3082 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3083 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3084 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3085 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3086 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3087 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3088 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3089 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3090 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3091 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3092 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3093 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3094 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3095 case elfcpp::R_TILEGX_TLS_DTPMOD32:
3096 case elfcpp::R_TILEGX_TLS_DTPOFF32:
3097 case elfcpp::R_TILEGX_TLS_TPOFF32:
3098 case elfcpp::R_TILEGX_TLS_GD_CALL:
3099 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3100 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3101 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3102 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3103 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3104 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3105 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3106 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3107 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3108 return Symbol::TLS_REF;
3109
3110 case elfcpp::R_TILEGX_COPY:
3111 case elfcpp::R_TILEGX_GLOB_DAT:
3112 case elfcpp::R_TILEGX_JMP_SLOT:
3113 case elfcpp::R_TILEGX_RELATIVE:
3114 case elfcpp::R_TILEGX_TLS_TPOFF64:
3115 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3116 default:
3117 // Not expected. We will give an error later.
3118 return 0;
3119 }
3120}
3121
3122// Report an unsupported relocation against a local symbol.
3123
3124template<int size, bool big_endian>
3125void
3126Target_tilegx<size, big_endian>::Scan::unsupported_reloc_local(
3127 Sized_relobj_file<size, big_endian>* object,
3128 unsigned int r_type)
3129{
3130 gold_error(_("%s: unsupported reloc %u against local symbol"),
3131 object->name().c_str(), r_type);
3132}
3133
3134// We are about to emit a dynamic relocation of type R_TYPE. If the
62fe925a 3135// dynamic linker does not support it, issue an error.
5c0b3823
WL
3136template<int size, bool big_endian>
3137void
3138Target_tilegx<size, big_endian>::Scan::check_non_pic(Relobj* object,
3139 unsigned int r_type)
3140{
3141 switch (r_type)
3142 {
3143 // These are the relocation types supported by glibc for tilegx
3144 // which should always work.
3145 case elfcpp::R_TILEGX_RELATIVE:
3146 case elfcpp::R_TILEGX_GLOB_DAT:
3147 case elfcpp::R_TILEGX_JMP_SLOT:
3148 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3149 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3150 case elfcpp::R_TILEGX_TLS_TPOFF64:
3151 case elfcpp::R_TILEGX_8:
3152 case elfcpp::R_TILEGX_16:
3153 case elfcpp::R_TILEGX_32:
3154 case elfcpp::R_TILEGX_64:
3155 case elfcpp::R_TILEGX_COPY:
3156 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3157 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3158 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3159 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3160 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3161 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3162 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3163 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3164 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3165 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3166 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3167 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3168 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3169 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3170 case elfcpp::R_TILEGX_BROFF_X1:
3171 case elfcpp::R_TILEGX_JUMPOFF_X1:
3172 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3173 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3174 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3175 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3176 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3177 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3178 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3179 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3180 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3181 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3182 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3183 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3184 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3185 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3186 return;
3187
3188 default:
3189 // This prevents us from issuing more than one error per reloc
3190 // section. But we can still wind up issuing more than one
3191 // error per object file.
3192 if (this->issued_non_pic_error_)
3193 return;
3194 gold_assert(parameters->options().output_is_position_independent());
3195 object->error(_("requires unsupported dynamic reloc %u; "
3196 "recompile with -fPIC"),
3197 r_type);
3198 this->issued_non_pic_error_ = true;
3199 return;
3200
3201 case elfcpp::R_TILEGX_NONE:
3202 gold_unreachable();
3203 }
3204}
3205
3206// Return whether we need to make a PLT entry for a relocation of the
3207// given type against a STT_GNU_IFUNC symbol.
3208
3209template<int size, bool big_endian>
3210bool
3211Target_tilegx<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
3212 Sized_relobj_file<size, big_endian>* object, unsigned int r_type)
3213{
3214 int flags = Scan::get_reference_flags(r_type);
3215 if (flags & Symbol::TLS_REF)
3216 gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"),
3217 object->name().c_str(), r_type);
3218 return flags != 0;
3219}
3220
3221// Scan a relocation for a local symbol.
3222
3223template<int size, bool big_endian>
3224inline void
3225Target_tilegx<size, big_endian>::Scan::local(Symbol_table* symtab,
3226 Layout* layout,
3227 Target_tilegx<size, big_endian>* target,
3228 Sized_relobj_file<size, big_endian>* object,
3229 unsigned int data_shndx,
3230 Output_section* output_section,
3231 const elfcpp::Rela<size, big_endian>& reloc,
3232 unsigned int r_type,
3233 const elfcpp::Sym<size, big_endian>& lsym,
3234 bool is_discarded)
3235{
3236 if (is_discarded)
3237 return;
3238
3239 // A local STT_GNU_IFUNC symbol may require a PLT entry.
3240 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
3241 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
3242 {
3243 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3244 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
3245 }
3246
3247 switch (r_type)
3248 {
3249 case elfcpp::R_TILEGX_NONE:
3250 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3251 case elfcpp::R_TILEGX_GNU_VTENTRY:
3252 break;
3253
3254 // If building a shared library (or a position-independent
3255 // executable), because the runtime address needs plus
3256 // the module base address, so generate a R_TILEGX_RELATIVE.
3257 case elfcpp::R_TILEGX_32:
3258 case elfcpp::R_TILEGX_64:
3259 if (parameters->options().output_is_position_independent())
3260 {
3261 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3262 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3263 rela_dyn->add_local_relative(object, r_sym,
3264 elfcpp::R_TILEGX_RELATIVE,
3265 output_section, data_shndx,
3266 reloc.get_r_offset(),
3267 reloc.get_r_addend(), is_ifunc);
3268 }
3269 break;
3270
3271 // If building a shared library (or a position-independent
3272 // executable), we need to create a dynamic relocation for this
3273 // location.
3274 case elfcpp::R_TILEGX_8:
3275 case elfcpp::R_TILEGX_16:
3276 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3277 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3278 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3279 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3280 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3281 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3282 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3283 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3284 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3285 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3286 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3287 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3288 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3289 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3290 if (parameters->options().output_is_position_independent())
3291 {
3292 this->check_non_pic(object, r_type);
3293
3294 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3295 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3296 if (lsym.get_st_type() != elfcpp::STT_SECTION)
3297 rela_dyn->add_local(object, r_sym, r_type, output_section,
3298 data_shndx, reloc.get_r_offset(),
3299 reloc.get_r_addend());
3300 else
3301 {
3302 gold_assert(lsym.get_st_value() == 0);
3303 rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3304 output_section,
3305 data_shndx,
3306 reloc.get_r_offset(),
3307 reloc.get_r_addend());
62fe925a 3308
5c0b3823
WL
3309 }
3310 }
3311 break;
3312
3313 // R_TILEGX_JUMPOFF_X1_PLT against local symbol
3314 // may happen for ifunc case.
3315 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3316 case elfcpp::R_TILEGX_JUMPOFF_X1:
3317 case elfcpp::R_TILEGX_64_PCREL:
3318 case elfcpp::R_TILEGX_32_PCREL:
3319 case elfcpp::R_TILEGX_16_PCREL:
3320 case elfcpp::R_TILEGX_8_PCREL:
3321 case elfcpp::R_TILEGX_BROFF_X1:
3322 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3323 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3324 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3325 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3326 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3327 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3328 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3329 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3330 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3331 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3332 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3333 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3334 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3335 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3336 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3337 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3338 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3339 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3340 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3341 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3342 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3343 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3344 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3345 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3346 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3347 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3348 break;
3349
3350 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3351 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3352 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3353 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3354 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3355 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3356 {
3357 // The symbol requires a GOT entry.
3358 Output_data_got<size, big_endian>* got
3359 = target->got_section(symtab, layout);
3360 unsigned int r_sym = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3361
3362 // For a STT_GNU_IFUNC symbol we want the PLT offset. That
3363 // lets function pointers compare correctly with shared
3364 // libraries. Otherwise we would need an IRELATIVE reloc.
3365 bool is_new;
3366 if (is_ifunc)
3367 is_new = got->add_local_plt(object, r_sym, GOT_TYPE_STANDARD);
3368 else
3369 is_new = got->add_local(object, r_sym, GOT_TYPE_STANDARD);
3370 if (is_new)
3371 {
3372 // tilegx dynamic linker will not update local got entry,
3373 // so, if we are generating a shared object, we need to add a
3374 // dynamic relocation for this symbol's GOT entry to inform
3375 // dynamic linker plus the load base explictly.
3376 if (parameters->options().output_is_position_independent())
3377 {
3378 unsigned int got_offset
3379 = object->local_got_offset(r_sym, GOT_TYPE_STANDARD);
3380
3381 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3382 rela_dyn->add_local_relative(object, r_sym,
3383 r_type,
3384 got, got_offset, 0, is_ifunc);
3385 }
3386 }
3387 }
3388 break;
3389
3390 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3391 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3392 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3393 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3394 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3395 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3396 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3397 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3398 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3399 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3400 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3401 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3402 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3403 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3404 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3405 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3406 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3407 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3408 case elfcpp::R_TILEGX_TLS_GD_CALL:
3409 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3410 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3411 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3412 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3413 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3414 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3415 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3416 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3417 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3418 {
3419 bool output_is_shared = parameters->options().shared();
3420 const tls::Tls_optimization opt_t =
3421 Target_tilegx<size, big_endian>::optimize_tls_reloc(
3422 !output_is_shared, r_type);
3423
3424 switch (r_type)
3425 {
3426 case elfcpp::R_TILEGX_TLS_GD_CALL:
3427 // FIXME: predefine __tls_get_addr
3428 //
3429 // R_TILEGX_TLS_GD_CALL implicitly reference __tls_get_addr,
3430 // while all other target, x86/arm/mips/powerpc/sparc
3431 // generate tls relocation against __tls_get_addr explictly,
3432 // so for TILEGX, we need the following hack.
3433 if (opt_t == tls::TLSOPT_NONE) {
3434 if (!target->tls_get_addr_sym_defined_) {
3435 Symbol* sym = NULL;
3436 options::parse_set(NULL, "__tls_get_addr",
3437 (gold::options::String_set*)
3438 &parameters->options().undefined());
3439 symtab->add_undefined_symbols_from_command_line(layout);
3440 target->tls_get_addr_sym_defined_ = true;
3441 sym = symtab->lookup("__tls_get_addr");
3442 sym->set_in_reg();
3443 }
3444 target->make_plt_entry(symtab, layout,
3445 symtab->lookup("__tls_get_addr"));
3446 }
3447 break;
3448
3449 // only make effect when applying relocation
3450 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3451 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3452 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3453 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3454 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3455 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3456 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3457 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3458 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3459 break;
3460
3461 // GD: requires two GOT entry for module index and offset
62fe925a 3462 // IE: requires one GOT entry for tp-relative offset
5c0b3823
WL
3463 // LE: shouldn't happen for global symbol
3464 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3465 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3466 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3467 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3468 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3469 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3470 {
3471 if (opt_t == tls::TLSOPT_NONE) {
3472 Output_data_got<size, big_endian> *got
3473 = target->got_section(symtab, layout);
3474 unsigned int r_sym
3475 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3476 unsigned int shndx = lsym.get_st_shndx();
3477 bool is_ordinary;
3478 shndx = object->adjust_sym_shndx(r_sym, shndx,
3479 &is_ordinary);
3480 if (!is_ordinary)
3481 object->error(_("local symbol %u has bad shndx %u"),
3482 r_sym, shndx);
3483 else
3484 got->add_local_pair_with_rel(object, r_sym, shndx,
62fe925a 3485 GOT_TYPE_TLS_PAIR,
5c0b3823
WL
3486 target->rela_dyn_section(layout),
3487 size == 32
3488 ? elfcpp::R_TILEGX_TLS_DTPMOD32
3489 : elfcpp::R_TILEGX_TLS_DTPMOD64);
3490 } else if (opt_t == tls::TLSOPT_TO_IE) {
3491 Output_data_got<size, big_endian>* got
3492 = target->got_section(symtab, layout);
3493 Reloc_section* rela_dyn
3494 = target->rela_dyn_section(layout);
3495 unsigned int r_sym
3496 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3497 unsigned int off = got->add_constant(0);
3498 object->set_local_got_offset(r_sym,
3499 GOT_TYPE_TLS_OFFSET,off);
3500 rela_dyn->add_symbolless_local_addend(object, r_sym,
3501 size == 32
3502 ? elfcpp::R_TILEGX_TLS_TPOFF32
3503 : elfcpp::R_TILEGX_TLS_TPOFF64,
3504 got, off, 0);
62fe925a 3505 } else if (opt_t != tls::TLSOPT_TO_LE)
5c0b3823
WL
3506 // only TO_LE is allowed for local symbol
3507 unsupported_reloc_local(object, r_type);
3508 }
3509 break;
3510
3511 // IE
3512 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3513 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3514 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3515 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3516 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3517 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3518 {
3519 layout->set_has_static_tls();
3520 if (opt_t == tls::TLSOPT_NONE) {
3521 Output_data_got<size, big_endian>* got
3522 = target->got_section(symtab, layout);
3523 Reloc_section* rela_dyn
3524 = target->rela_dyn_section(layout);
3525 unsigned int r_sym
3526 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3527 unsigned int off = got->add_constant(0);
3528 object->set_local_got_offset(r_sym,
3529 GOT_TYPE_TLS_OFFSET, off);
3530 rela_dyn->add_symbolless_local_addend(object, r_sym,
3531 size == 32
3532 ? elfcpp::R_TILEGX_TLS_TPOFF32
3533 : elfcpp::R_TILEGX_TLS_TPOFF64,
3534 got, off, 0);
3535 } else if (opt_t != tls::TLSOPT_TO_LE)
3536 unsupported_reloc_local(object, r_type);
3537 }
3538 break;
3539
3540 // LE
3541 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3542 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3543 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3544 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3545 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3546 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3547 layout->set_has_static_tls();
3548 if (parameters->options().shared()) {
3549 // defer to dynamic linker
3550 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
3551 unsigned int r_sym
3552 = elfcpp::elf_r_sym<size>(reloc.get_r_info());
3553 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3554 rela_dyn->add_symbolless_local_addend(object, r_sym, r_type,
3555 output_section, data_shndx,
3556 reloc.get_r_offset(), 0);
3557 }
3558 break;
3559
3560 default:
3561 gold_unreachable();
3562 }
3563 }
3564 break;
3565
3566 case elfcpp::R_TILEGX_COPY:
3567 case elfcpp::R_TILEGX_GLOB_DAT:
3568 case elfcpp::R_TILEGX_JMP_SLOT:
3569 case elfcpp::R_TILEGX_RELATIVE:
3570 // These are outstanding tls relocs, which are unexpected when linking
3571 case elfcpp::R_TILEGX_TLS_TPOFF32:
3572 case elfcpp::R_TILEGX_TLS_TPOFF64:
3573 case elfcpp::R_TILEGX_TLS_DTPMOD32:
3574 case elfcpp::R_TILEGX_TLS_DTPMOD64:
3575 case elfcpp::R_TILEGX_TLS_DTPOFF32:
3576 case elfcpp::R_TILEGX_TLS_DTPOFF64:
3577 gold_error(_("%s: unexpected reloc %u in object file"),
3578 object->name().c_str(), r_type);
3579 break;
3580
3581 default:
3582 gold_error(_("%s: unsupported reloc %u against local symbol"),
3583 object->name().c_str(), r_type);
3584 break;
3585 }
3586}
3587
3588
3589// Report an unsupported relocation against a global symbol.
3590
3591template<int size, bool big_endian>
3592void
3593Target_tilegx<size, big_endian>::Scan::unsupported_reloc_global(
3594 Sized_relobj_file<size, big_endian>* object,
3595 unsigned int r_type,
3596 Symbol* gsym)
3597{
3598 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
3599 object->name().c_str(), r_type, gsym->demangled_name().c_str());
3600}
3601
3602// Returns true if this relocation type could be that of a function pointer.
3603template<int size, bool big_endian>
3604inline bool
3605Target_tilegx<size, big_endian>::Scan::possible_function_pointer_reloc(
3606 unsigned int r_type)
3607{
3608 switch (r_type)
3609 {
3610 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3611 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3612 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3613 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3614 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3615 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3616 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3617 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3618 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3619 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3620 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3621 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3622 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3623 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3624 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3625 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3626 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3627 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3628 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3629 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3630 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3631 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3632 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3633 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3634 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3635 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3636 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3637 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3638 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3639 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3640 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3641 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3642 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3643 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3644 {
3645 return true;
3646 }
3647 }
3648 return false;
3649}
3650
3651// For safe ICF, scan a relocation for a local symbol to check if it
3652// corresponds to a function pointer being taken. In that case mark
3653// the function whose pointer was taken as not foldable.
3654
3655template<int size, bool big_endian>
3656inline bool
3657Target_tilegx<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
3658 Symbol_table* ,
3659 Layout* ,
3660 Target_tilegx<size, big_endian>* ,
3661 Sized_relobj_file<size, big_endian>* ,
3662 unsigned int ,
3663 Output_section* ,
3664 const elfcpp::Rela<size, big_endian>& ,
3665 unsigned int r_type,
3666 const elfcpp::Sym<size, big_endian>&)
3667{
3668 return possible_function_pointer_reloc(r_type);
3669}
3670
3671// For safe ICF, scan a relocation for a global symbol to check if it
3672// corresponds to a function pointer being taken. In that case mark
3673// the function whose pointer was taken as not foldable.
3674
3675template<int size, bool big_endian>
3676inline bool
3677Target_tilegx<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
3678 Symbol_table*,
3679 Layout* ,
3680 Target_tilegx<size, big_endian>* ,
3681 Sized_relobj_file<size, big_endian>* ,
3682 unsigned int ,
3683 Output_section* ,
3684 const elfcpp::Rela<size, big_endian>& ,
3685 unsigned int r_type,
3686 Symbol* gsym)
3687{
3688 // GOT is not a function.
3689 if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3690 return false;
3691
3692 // When building a shared library, do not fold symbols whose visibility
3693 // is hidden, internal or protected.
3694 return ((parameters->options().shared()
3695 && (gsym->visibility() == elfcpp::STV_INTERNAL
3696 || gsym->visibility() == elfcpp::STV_PROTECTED
3697 || gsym->visibility() == elfcpp::STV_HIDDEN))
3698 || possible_function_pointer_reloc(r_type));
3699}
3700
3701// Scan a relocation for a global symbol.
3702
3703template<int size, bool big_endian>
3704inline void
3705Target_tilegx<size, big_endian>::Scan::global(Symbol_table* symtab,
3706 Layout* layout,
3707 Target_tilegx<size, big_endian>* target,
3708 Sized_relobj_file<size, big_endian>* object,
3709 unsigned int data_shndx,
3710 Output_section* output_section,
3711 const elfcpp::Rela<size, big_endian>& reloc,
3712 unsigned int r_type,
3713 Symbol* gsym)
3714{
3715 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
3716 // section. We check here to avoid creating a dynamic reloc against
3717 // _GLOBAL_OFFSET_TABLE_.
3718 if (!target->has_got_section()
3719 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
3720 target->got_section(symtab, layout);
3721
3722 // A STT_GNU_IFUNC symbol may require a PLT entry.
3723 if (gsym->type() == elfcpp::STT_GNU_IFUNC
3724 && this->reloc_needs_plt_for_ifunc(object, r_type))
3725 target->make_plt_entry(symtab, layout, gsym);
3726
3727 switch (r_type)
3728 {
3729 case elfcpp::R_TILEGX_NONE:
3730 case elfcpp::R_TILEGX_GNU_VTINHERIT:
3731 case elfcpp::R_TILEGX_GNU_VTENTRY:
3732 break;
3733
3734 case elfcpp::R_TILEGX_DEST_IMM8_X1:
3735 case elfcpp::R_TILEGX_IMM16_X0_HW0:
3736 case elfcpp::R_TILEGX_IMM16_X1_HW0:
3737 case elfcpp::R_TILEGX_IMM16_X0_HW1:
3738 case elfcpp::R_TILEGX_IMM16_X1_HW1:
3739 case elfcpp::R_TILEGX_IMM16_X0_HW2:
3740 case elfcpp::R_TILEGX_IMM16_X1_HW2:
3741 case elfcpp::R_TILEGX_IMM16_X0_HW3:
3742 case elfcpp::R_TILEGX_IMM16_X1_HW3:
3743 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
3744 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
3745 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
3746 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
3747 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
3748 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
3749 case elfcpp::R_TILEGX_64:
3750 case elfcpp::R_TILEGX_32:
3751 case elfcpp::R_TILEGX_16:
3752 case elfcpp::R_TILEGX_8:
3753 {
3754 // Make a PLT entry if necessary.
3755 if (gsym->needs_plt_entry())
3756 {
3757 target->make_plt_entry(symtab, layout, gsym);
3758 // Since this is not a PC-relative relocation, we may be
3759 // taking the address of a function. In that case we need to
3760 // set the entry in the dynamic symbol table to the address of
3761 // the PLT entry.
3762 if (gsym->is_from_dynobj() && !parameters->options().shared())
3763 gsym->set_needs_dynsym_value();
3764 }
3765 // Make a dynamic relocation if necessary.
3766 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3767 {
a82bef93
ST
3768 if (!parameters->options().output_is_position_independent()
3769 && gsym->may_need_copy_reloc())
5c0b3823
WL
3770 {
3771 target->copy_reloc(symtab, layout, object,
3772 data_shndx, output_section, gsym, reloc);
3773 }
3774 else if (((size == 64 && r_type == elfcpp::R_TILEGX_64)
3775 || (size == 32 && r_type == elfcpp::R_TILEGX_32))
3776 && gsym->type() == elfcpp::STT_GNU_IFUNC
3777 && gsym->can_use_relative_reloc(false)
3778 && !gsym->is_from_dynobj()
3779 && !gsym->is_undefined()
3780 && !gsym->is_preemptible())
3781 {
3782 // Use an IRELATIVE reloc for a locally defined
3783 // STT_GNU_IFUNC symbol. This makes a function
3784 // address in a PIE executable match the address in a
3785 // shared library that it links against.
3786 Reloc_section* rela_dyn =
3787 target->rela_irelative_section(layout);
3788 unsigned int r_type = elfcpp::R_TILEGX_IRELATIVE;
3789 rela_dyn->add_symbolless_global_addend(gsym, r_type,
3790 output_section, object,
3791 data_shndx,
3792 reloc.get_r_offset(),
3793 reloc.get_r_addend());
3794 } else if ((r_type == elfcpp::R_TILEGX_64
3795 || r_type == elfcpp::R_TILEGX_32)
3796 && gsym->can_use_relative_reloc(false))
3797 {
3798 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3799 rela_dyn->add_global_relative(gsym, elfcpp::R_TILEGX_RELATIVE,
3800 output_section, object,
3801 data_shndx,
3802 reloc.get_r_offset(),
3803 reloc.get_r_addend(), false);
3804 }
3805 else
3806 {
3807 this->check_non_pic(object, r_type);
3808 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3809 rela_dyn->add_global(gsym, r_type, output_section, object,
3810 data_shndx, reloc.get_r_offset(),
3811 reloc.get_r_addend());
3812 }
3813 }
3814 }
3815 break;
3816
3817 case elfcpp::R_TILEGX_BROFF_X1:
3818 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
3819 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
3820 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
3821 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
3822 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
3823 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
3824 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
3825 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
3826 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
3827 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
3828 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
3829 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
3830 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
3831 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
3832 case elfcpp::R_TILEGX_64_PCREL:
3833 case elfcpp::R_TILEGX_32_PCREL:
3834 case elfcpp::R_TILEGX_16_PCREL:
3835 case elfcpp::R_TILEGX_8_PCREL:
3836 {
3837 // Make a PLT entry if necessary.
3838 if (gsym->needs_plt_entry())
3839 target->make_plt_entry(symtab, layout, gsym);
3840 // Make a dynamic relocation if necessary.
3841 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
3842 {
a82bef93
ST
3843 if (parameters->options().output_is_executable()
3844 && gsym->may_need_copy_reloc())
5c0b3823
WL
3845 {
3846 target->copy_reloc(symtab, layout, object,
3847 data_shndx, output_section, gsym, reloc);
3848 }
3849 else
3850 {
3851 this->check_non_pic(object, r_type);
3852 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3853 rela_dyn->add_global(gsym, r_type, output_section, object,
3854 data_shndx, reloc.get_r_offset(),
3855 reloc.get_r_addend());
3856 }
3857 }
3858 }
3859 break;
3860
3861 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
3862 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
3863 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
3864 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
3865 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
3866 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
3867 {
3868 // The symbol requires a GOT entry.
3869 Output_data_got<size, big_endian>* got
3870 = target->got_section(symtab, layout);
3871 if (gsym->final_value_is_known())
3872 {
3873 // For a STT_GNU_IFUNC symbol we want the PLT address.
3874 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3875 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3876 else
3877 got->add_global(gsym, GOT_TYPE_STANDARD);
3878 }
3879 else
3880 {
3881 // If this symbol is not fully resolved, we need to add a
3882 // dynamic relocation for it.
3883 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
3884
3885 // Use a GLOB_DAT rather than a RELATIVE reloc if:
3886 //
3887 // 1) The symbol may be defined in some other module.
3888 //
3889 // 2) We are building a shared library and this is a
3890 // protected symbol; using GLOB_DAT means that the dynamic
3891 // linker can use the address of the PLT in the main
3892 // executable when appropriate so that function address
3893 // comparisons work.
3894 //
3895 // 3) This is a STT_GNU_IFUNC symbol in position dependent
3896 // code, again so that function address comparisons work.
3897 if (gsym->is_from_dynobj()
3898 || gsym->is_undefined()
3899 || gsym->is_preemptible()
3900 || (gsym->visibility() == elfcpp::STV_PROTECTED
3901 && parameters->options().shared())
3902 || (gsym->type() == elfcpp::STT_GNU_IFUNC
3903 && parameters->options().output_is_position_independent()))
3904 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, rela_dyn,
3905 elfcpp::R_TILEGX_GLOB_DAT);
3906 else
3907 {
3908 // For a STT_GNU_IFUNC symbol we want to write the PLT
3909 // offset into the GOT, so that function pointer
3910 // comparisons work correctly.
3911 bool is_new;
3912 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
3913 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
3914 else
3915 {
3916 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
3917 // Tell the dynamic linker to use the PLT address
3918 // when resolving relocations.
3919 if (gsym->is_from_dynobj()
3920 && !parameters->options().shared())
3921 gsym->set_needs_dynsym_value();
3922 }
3923 if (is_new)
3924 {
3925 unsigned int got_off = gsym->got_offset(GOT_TYPE_STANDARD);
3926 rela_dyn->add_global_relative(gsym,
3927 r_type,
3928 got, got_off, 0, false);
3929 }
3930 }
3931 }
3932 }
3933 break;
3934
3935 // a minor difference here for R_TILEGX_JUMPOFF_X1
3936 // between bfd linker and gold linker for gold, when
3937 // R_TILEGX_JUMPOFF_X1 against global symbol, we
3938 // turn it into JUMPOFF_X1_PLT, otherwise the distance
3939 // to the symbol function may overflow at runtime.
3940 case elfcpp::R_TILEGX_JUMPOFF_X1:
3941
3942 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
3943 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
3944 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
3945 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
3946 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
3947 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
3948 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
3949 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
3950 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
3951 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
3952 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
3953 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
3954 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
3955 // If the symbol is fully resolved, this is just a PC32 reloc.
3956 // Otherwise we need a PLT entry.
3957 if (gsym->final_value_is_known())
3958 break;
3959 // If building a shared library, we can also skip the PLT entry
3960 // if the symbol is defined in the output file and is protected
3961 // or hidden.
3962 if (gsym->is_defined()
3963 && !gsym->is_from_dynobj()
3964 && !gsym->is_preemptible())
3965 break;
3966 target->make_plt_entry(symtab, layout, gsym);
3967 break;
3968
3969
3970 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
3971 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
3972 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
3973 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
3974 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
3975 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
3976 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
3977 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
3978 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
3979 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
3980 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
3981 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
3982 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
3983 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
3984 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
3985 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
3986 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
3987 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
3988 case elfcpp::R_TILEGX_TLS_GD_CALL:
3989 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
3990 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
3991 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
3992 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
3993 case elfcpp::R_TILEGX_TLS_IE_LOAD:
3994 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
3995 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
3996 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
3997 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
3998 {
3999 const bool is_final = gsym->final_value_is_known();
4000 const tls::Tls_optimization opt_t =
4001 Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
4002 r_type);
4003
4004 switch (r_type)
4005 {
4006 // only expand to plt against __tls_get_addr in GD model
4007 case elfcpp::R_TILEGX_TLS_GD_CALL:
4008 if (opt_t == tls::TLSOPT_NONE) {
4009 // FIXME: it's better '__tls_get_addr' referenced explictly
4010 if (!target->tls_get_addr_sym_defined_) {
4011 Symbol* sym = NULL;
4012 options::parse_set(NULL, "__tls_get_addr",
4013 (gold::options::String_set*)
4014 &parameters->options().undefined());
4015 symtab->add_undefined_symbols_from_command_line(layout);
4016 target->tls_get_addr_sym_defined_ = true;
4017 sym = symtab->lookup("__tls_get_addr");
4018 sym->set_in_reg();
4019 }
4020 target->make_plt_entry(symtab, layout,
4021 symtab->lookup("__tls_get_addr"));
4022 }
4023 break;
62fe925a 4024
5c0b3823
WL
4025 // only make effect when applying relocation
4026 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4027 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4028 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4029 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4030 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4031 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4032 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4033 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4034 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4035 break;
62fe925a 4036
5c0b3823 4037 // GD: requires two GOT entry for module index and offset
62fe925a 4038 // IE: requires one GOT entry for tp-relative offset
5c0b3823
WL
4039 // LE: shouldn't happen for global symbol
4040 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4041 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4042 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4043 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4044 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4045 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4046 {
4047 if (opt_t == tls::TLSOPT_NONE) {
4048 Output_data_got<size, big_endian>* got
4049 = target->got_section(symtab, layout);
4050 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
4051 target->rela_dyn_section(layout),
4052 size == 32
4053 ? elfcpp::R_TILEGX_TLS_DTPMOD32
4054 : elfcpp::R_TILEGX_TLS_DTPMOD64,
4055 size == 32
4056 ? elfcpp::R_TILEGX_TLS_DTPOFF32
4057 : elfcpp::R_TILEGX_TLS_DTPOFF64);
4058 } else if (opt_t == tls::TLSOPT_TO_IE) {
4059 // Create a GOT entry for the tp-relative offset.
4060 Output_data_got<size, big_endian>* got
4061 = target->got_section(symtab, layout);
4062 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4063 target->rela_dyn_section(layout),
4064 size == 32
4065 ? elfcpp::R_TILEGX_TLS_TPOFF32
4066 : elfcpp::R_TILEGX_TLS_TPOFF64);
4067 } else if (opt_t != tls::TLSOPT_TO_LE)
4068 // exteranl symbol should not be optimized to TO_LE
4069 unsupported_reloc_global(object, r_type, gsym);
4070 }
4071 break;
62fe925a 4072
5c0b3823
WL
4073 // IE
4074 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4075 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4076 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4077 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4078 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4079 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4080 {
4081 layout->set_has_static_tls();
4082 if (opt_t == tls::TLSOPT_NONE) {
4083 // Create a GOT entry for the tp-relative offset.
4084 Output_data_got<size, big_endian>* got
4085 = target->got_section(symtab, layout);
4086 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
4087 target->rela_dyn_section(layout),
4088 size == 32
4089 ? elfcpp::R_TILEGX_TLS_TPOFF32
4090 : elfcpp::R_TILEGX_TLS_TPOFF64);
4091 } else if (opt_t != tls::TLSOPT_TO_LE)
4092 unsupported_reloc_global(object, r_type, gsym);
4093 }
4094 break;
62fe925a 4095
5c0b3823
WL
4096 // LE
4097 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4098 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4099 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4100 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4101 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4102 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4103 layout->set_has_static_tls();
4104 if (parameters->options().shared()) {
4105 // defer to dynamic linker
4106 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4107 rela_dyn->add_symbolless_global_addend(gsym, r_type,
4108 output_section, object,
4109 data_shndx,
4110 reloc.get_r_offset(), 0);
4111 }
4112 break;
4113
4114 default:
4115 gold_unreachable();
4116 }
4117 }
4118 break;
4119
4120 // below are outstanding relocs
4121 // should not existed in static linking stage
4122 case elfcpp::R_TILEGX_COPY:
4123 case elfcpp::R_TILEGX_GLOB_DAT:
4124 case elfcpp::R_TILEGX_JMP_SLOT:
4125 case elfcpp::R_TILEGX_RELATIVE:
4126 case elfcpp::R_TILEGX_TLS_TPOFF32:
4127 case elfcpp::R_TILEGX_TLS_TPOFF64:
4128 case elfcpp::R_TILEGX_TLS_DTPMOD32:
4129 case elfcpp::R_TILEGX_TLS_DTPMOD64:
4130 case elfcpp::R_TILEGX_TLS_DTPOFF32:
4131 case elfcpp::R_TILEGX_TLS_DTPOFF64:
4132 gold_error(_("%s: unexpected reloc %u in object file"),
4133 object->name().c_str(), r_type);
4134 break;
4135
4136 default:
4137 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
4138 object->name().c_str(), r_type,
4139 gsym->demangled_name().c_str());
4140 break;
4141 }
4142}
4143
4144template<int size, bool big_endian>
4145void
4146Target_tilegx<size, big_endian>::gc_process_relocs(Symbol_table* symtab,
4147 Layout* layout,
4148 Sized_relobj_file<size, big_endian>* object,
4149 unsigned int data_shndx,
4150 unsigned int sh_type,
4151 const unsigned char* prelocs,
4152 size_t reloc_count,
4153 Output_section* output_section,
4154 bool needs_special_offset_handling,
4155 size_t local_symbol_count,
4156 const unsigned char* plocal_symbols)
4157{
4158 typedef Target_tilegx<size, big_endian> Tilegx;
4159 typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4160
4161 if (sh_type == elfcpp::SHT_REL)
4162 {
4163 return;
4164 }
4165
4166 gold::gc_process_relocs<size, big_endian,
4167 Tilegx, elfcpp::SHT_RELA, Scan,
4168 typename Target_tilegx<size, big_endian>::Relocatable_size_for_reloc>(
4169 symtab,
4170 layout,
4171 this,
4172 object,
4173 data_shndx,
4174 prelocs,
4175 reloc_count,
4176 output_section,
4177 needs_special_offset_handling,
4178 local_symbol_count,
4179 plocal_symbols);
4180}
4181// Scan relocations for a section.
4182
4183template<int size, bool big_endian>
4184void
4185Target_tilegx<size, big_endian>::scan_relocs(Symbol_table* symtab,
4186 Layout* layout,
4187 Sized_relobj_file<size, big_endian>* object,
4188 unsigned int data_shndx,
4189 unsigned int sh_type,
4190 const unsigned char* prelocs,
4191 size_t reloc_count,
4192 Output_section* output_section,
4193 bool needs_special_offset_handling,
4194 size_t local_symbol_count,
4195 const unsigned char* plocal_symbols)
4196{
4197 typedef Target_tilegx<size, big_endian> Tilegx;
4198 typedef typename Target_tilegx<size, big_endian>::Scan Scan;
4199
4200 if (sh_type == elfcpp::SHT_REL)
4201 {
4202 gold_error(_("%s: unsupported REL reloc section"),
4203 object->name().c_str());
4204 return;
4205 }
4206
4207 gold::scan_relocs<size, big_endian, Tilegx, elfcpp::SHT_RELA, Scan>(
4208 symtab,
4209 layout,
4210 this,
4211 object,
4212 data_shndx,
4213 prelocs,
4214 reloc_count,
4215 output_section,
4216 needs_special_offset_handling,
4217 local_symbol_count,
4218 plocal_symbols);
4219}
4220
4221template<int size, bool big_endian>
4222void
4223Target_tilegx<size, big_endian>::do_define_standard_symbols(
4224 Symbol_table* symtab,
4225 Layout* layout)
4226{
4227 Output_section* feedback_section = layout->find_output_section(".feedback");
4228
4229 if (feedback_section != NULL)
4230 {
4231 symtab->define_in_output_data("__feedback_section_end",
4232 NULL,
4233 Symbol_table::PREDEFINED,
4234 feedback_section,
4235 0,
4236 0,
4237 elfcpp::STT_NOTYPE,
4238 elfcpp::STB_GLOBAL,
4239 elfcpp::STV_HIDDEN,
4240 0,
4241 true, // offset_is_from_end
4242 false);
4243 }
4244}
4245
4246// Finalize the sections.
4247
4248template<int size, bool big_endian>
4249void
4250Target_tilegx<size, big_endian>::do_finalize_sections(
4251 Layout* layout,
4252 const Input_objects*,
4253 Symbol_table* symtab)
4254{
4255 const Reloc_section* rel_plt = (this->plt_ == NULL
4256 ? NULL
4257 : this->plt_->rela_plt());
4258 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
4259 this->rela_dyn_, true, true);
4260
4261 // Emit any relocs we saved in an attempt to avoid generating COPY
4262 // relocs.
4263 if (this->copy_relocs_.any_saved_relocs())
4264 this->copy_relocs_.emit(this->rela_dyn_section(layout));
4265
4266 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
4267 // the .got section.
4268 Symbol* sym = this->global_offset_table_;
4269 if (sym != NULL)
4270 {
4271 uint64_t data_size = this->got_->current_data_size();
4272 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
e867b647
WL
4273
4274 // If the .got section is more than 0x8000 bytes, we add
4275 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
4276 // bit relocations have a greater chance of working.
4277 if (data_size >= 0x8000)
4278 symtab->get_sized_symbol<size>(sym)->set_value(
4279 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
5c0b3823
WL
4280 }
4281
4282 if (parameters->doing_static_link()
4283 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
4284 {
4285 // If linking statically, make sure that the __rela_iplt symbols
4286 // were defined if necessary, even if we didn't create a PLT.
4287 static const Define_symbol_in_segment syms[] =
4288 {
4289 {
4290 "__rela_iplt_start", // name
4291 elfcpp::PT_LOAD, // segment_type
4292 elfcpp::PF_W, // segment_flags_set
4293 elfcpp::PF(0), // segment_flags_clear
4294 0, // value
4295 0, // size
4296 elfcpp::STT_NOTYPE, // type
4297 elfcpp::STB_GLOBAL, // binding
4298 elfcpp::STV_HIDDEN, // visibility
4299 0, // nonvis
4300 Symbol::SEGMENT_START, // offset_from_base
4301 true // only_if_ref
4302 },
4303 {
4304 "__rela_iplt_end", // name
4305 elfcpp::PT_LOAD, // segment_type
4306 elfcpp::PF_W, // segment_flags_set
4307 elfcpp::PF(0), // segment_flags_clear
4308 0, // value
4309 0, // size
4310 elfcpp::STT_NOTYPE, // type
4311 elfcpp::STB_GLOBAL, // binding
4312 elfcpp::STV_HIDDEN, // visibility
4313 0, // nonvis
4314 Symbol::SEGMENT_START, // offset_from_base
4315 true // only_if_ref
4316 }
4317 };
4318
4319 symtab->define_symbols(layout, 2, syms,
4320 layout->script_options()->saw_sections_clause());
4321 }
4322}
4323
4324// Perform a relocation.
4325
4326template<int size, bool big_endian>
4327inline bool
4328Target_tilegx<size, big_endian>::Relocate::relocate(
4329 const Relocate_info<size, big_endian>* relinfo,
4330 Target_tilegx<size, big_endian>* target,
4331 Output_section*,
4332 size_t relnum,
4333 const elfcpp::Rela<size, big_endian>& rela,
4334 unsigned int r_type,
4335 const Sized_symbol<size>* gsym,
4336 const Symbol_value<size>* psymval,
4337 unsigned char* view,
4338 typename elfcpp::Elf_types<size>::Elf_Addr address,
4339 section_size_type)
4340{
0e804863
ILT
4341 if (view == NULL)
4342 return true;
4343
5c0b3823
WL
4344 typedef Tilegx_relocate_functions<size, big_endian> TilegxReloc;
4345 typename TilegxReloc::Tilegx_howto r_howto;
4346
4347 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
4348
4349 // Pick the value to use for symbols defined in the PLT.
4350 Symbol_value<size> symval;
4351 if (gsym != NULL
4352 && gsym->use_plt_offset(Scan::get_reference_flags(r_type)))
4353 {
19fec8c1 4354 symval.set_output_value(target->plt_address_for_global(gsym));
5c0b3823
WL
4355 psymval = &symval;
4356 }
4357 else if (gsym == NULL && psymval->is_ifunc_symbol())
4358 {
4359 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4360 if (object->local_has_plt_offset(r_sym))
4361 {
19fec8c1 4362 symval.set_output_value(target->plt_address_for_local(object, r_sym));
5c0b3823
WL
4363 psymval = &symval;
4364 }
4365 }
4366
4367 elfcpp::Elf_Xword addend = rela.get_r_addend();
4368
4369 // Get the GOT offset if needed.
4370 // For tilegx, the GOT pointer points to the start of the GOT section.
4371 bool have_got_offset = false;
e867b647
WL
4372 int got_offset = 0;
4373 int got_base = target->got_ != NULL
4374 ? target->got_->current_data_size() >= 0x8000 ? 0x8000 : 0
4375 : 0;
5c0b3823
WL
4376 unsigned int got_type = GOT_TYPE_STANDARD;
4377 bool always_apply_relocation = false;
4378 switch (r_type)
4379 {
4380 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4381 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4382 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4383 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4384 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4385 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4386 if (gsym != NULL)
4387 {
4388 gold_assert(gsym->has_got_offset(got_type));
e867b647 4389 got_offset = gsym->got_offset(got_type) - got_base;
5c0b3823
WL
4390 }
4391 else
4392 {
4393 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
4394 gold_assert(object->local_has_got_offset(r_sym, got_type));
e867b647
WL
4395 got_offset =
4396 object->local_got_offset(r_sym, got_type) - got_base;
5c0b3823
WL
4397 }
4398 have_got_offset = true;
4399 break;
4400
4401 default:
4402 break;
4403 }
4404
4405 r_howto = TilegxReloc::howto[r_type];
4406 switch (r_type)
4407 {
4408 case elfcpp::R_TILEGX_NONE:
4409 case elfcpp::R_TILEGX_GNU_VTINHERIT:
4410 case elfcpp::R_TILEGX_GNU_VTENTRY:
4411 break;
4412
4413 case elfcpp::R_TILEGX_IMM16_X0_HW0_GOT:
4414 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_GOT:
4415 case elfcpp::R_TILEGX_IMM16_X1_HW0_GOT:
4416 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_GOT:
4417 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_GOT:
4418 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_GOT:
4419 gold_assert(have_got_offset);
4420 symval.set_output_value(got_offset);
4421 psymval = &symval;
4422 always_apply_relocation = true;
4423 addend = 0;
4424
4425 // when under PIC mode, these relocations are deferred to rtld
4426 case elfcpp::R_TILEGX_IMM16_X0_HW0:
4427 case elfcpp::R_TILEGX_IMM16_X1_HW0:
4428 case elfcpp::R_TILEGX_IMM16_X0_HW1:
4429 case elfcpp::R_TILEGX_IMM16_X1_HW1:
4430 case elfcpp::R_TILEGX_IMM16_X0_HW2:
4431 case elfcpp::R_TILEGX_IMM16_X1_HW2:
4432 case elfcpp::R_TILEGX_IMM16_X0_HW3:
4433 case elfcpp::R_TILEGX_IMM16_X1_HW3:
4434 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST:
4435 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST:
4436 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST:
4437 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST:
4438 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST:
4439 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST:
4440 if (always_apply_relocation
4441 || !parameters->options().output_is_position_independent())
4442 TilegxReloc::imm_x_general(view, object, psymval, addend, r_howto);
4443 break;
4444
4445 case elfcpp::R_TILEGX_JUMPOFF_X1:
4446 case elfcpp::R_TILEGX_JUMPOFF_X1_PLT:
4447 gold_assert(gsym == NULL
4448 || gsym->has_plt_offset()
4449 || gsym->final_value_is_known()
4450 || (gsym->is_defined()
4451 && !gsym->is_from_dynobj()
4452 && !gsym->is_preemptible()));
4453 TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4454 address, r_howto);
4455 break;
4456
4457
4458 case elfcpp::R_TILEGX_IMM16_X0_HW0_PLT_PCREL:
4459 case elfcpp::R_TILEGX_IMM16_X0_HW0_PCREL:
4460 case elfcpp::R_TILEGX_IMM16_X1_HW0_PLT_PCREL:
4461 case elfcpp::R_TILEGX_IMM16_X1_HW0_PCREL:
4462 case elfcpp::R_TILEGX_IMM16_X0_HW1_PLT_PCREL:
4463 case elfcpp::R_TILEGX_IMM16_X0_HW1_PCREL:
4464 case elfcpp::R_TILEGX_IMM16_X1_HW1_PLT_PCREL:
4465 case elfcpp::R_TILEGX_IMM16_X1_HW1_PCREL:
4466 case elfcpp::R_TILEGX_IMM16_X0_HW2_PLT_PCREL:
4467 case elfcpp::R_TILEGX_IMM16_X0_HW2_PCREL:
4468 case elfcpp::R_TILEGX_IMM16_X1_HW2_PLT_PCREL:
4469 case elfcpp::R_TILEGX_IMM16_X1_HW2_PCREL:
4470 case elfcpp::R_TILEGX_IMM16_X0_HW3_PCREL:
4471 case elfcpp::R_TILEGX_IMM16_X1_HW3_PCREL:
4472 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PLT_PCREL:
4473 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_PCREL:
4474 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PLT_PCREL:
4475 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_PCREL:
4476 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PLT_PCREL:
4477 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_PCREL:
4478 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PLT_PCREL:
4479 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_PCREL:
4480 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PLT_PCREL:
4481 case elfcpp::R_TILEGX_IMM16_X0_HW2_LAST_PCREL:
4482 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PLT_PCREL:
4483 case elfcpp::R_TILEGX_IMM16_X1_HW2_LAST_PCREL:
4484 TilegxReloc::imm_x_pcrel_general(view, object, psymval, addend,
4485 address, r_howto);
4486 break;
4487
4488 case elfcpp::R_TILEGX_BROFF_X1:
4489 case elfcpp::R_TILEGX_DEST_IMM8_X1:
4490 TilegxReloc::imm_x_two_part_general(view, object, psymval,
4491 addend, address, r_type);
4492 break;
4493
4494
4495 // below are general relocation types, which can be
4496 // handled by target-independent handlers
4497 case elfcpp::R_TILEGX_64:
4498 TilegxReloc::abs64(view, object, psymval, addend);
4499 break;
4500
4501 case elfcpp::R_TILEGX_64_PCREL:
4502 TilegxReloc::pc_abs64(view, object, psymval, addend, address);
4503 break;
4504
4505 case elfcpp::R_TILEGX_32:
4506 TilegxReloc::abs32(view, object, psymval, addend);
4507 break;
4508
4509 case elfcpp::R_TILEGX_32_PCREL:
4510 TilegxReloc::pc_abs32(view, object, psymval, addend, address);
4511 break;
4512
4513 case elfcpp::R_TILEGX_16:
4514 TilegxReloc::abs16(view, object, psymval, addend);
4515 break;
4516
4517 case elfcpp::R_TILEGX_16_PCREL:
4518 TilegxReloc::pc_abs16(view, object, psymval, addend, address);
4519 break;
4520
4521 case elfcpp::R_TILEGX_8:
4522 Relocate_functions<size, big_endian>::rela8(view, object,
4523 psymval, addend);
4524 break;
4525
4526 case elfcpp::R_TILEGX_8_PCREL:
4527 Relocate_functions<size, big_endian>::pcrela8(view, object,
4528 psymval, addend, address);
4529 break;
4530
4531 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4532 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4533 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4534 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4535 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4536 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4537 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4538 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4539 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4540 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4541 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4542 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4543 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4544 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4545 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4546 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4547 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4548 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4549 case elfcpp::R_TILEGX_TLS_GD_CALL:
4550 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4551 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4552 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4553 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4554 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4555 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4556 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4557 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4558 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4559 {
4560 const bool is_final = (gsym == NULL
4561 ? !parameters->options().shared()
4562 : gsym->final_value_is_known());
4563 tls::Tls_optimization opt_t =
4564 Target_tilegx<size, big_endian>::optimize_tls_reloc(is_final,
4565 r_type);
4566
4567 switch (r_type)
4568 {
4569
4570 case elfcpp::R_TILEGX_TLS_GD_CALL:
4571 {
4572 if (opt_t == tls::TLSOPT_NONE) {
4573 Symbol *tls_sym = relinfo->symtab->lookup("__tls_get_addr");
4574 symval.set_output_value(
19fec8c1 4575 target->plt_address_for_global(tls_sym));
5c0b3823
WL
4576 psymval = &symval;
4577 TilegxReloc::imm_x_pcrel_general(view, object, psymval,
4578 addend, address, r_howto);
4579 }
4580 else if (opt_t == tls::TLSOPT_TO_IE
4581 || opt_t == tls::TLSOPT_TO_LE)
4582 TilegxReloc::tls_relax(view, r_type, opt_t);
4583 }
4584 break;
4585
4586 // XX_TLS_GD is the same as normal X_GOT relocation
4587 // except allocating a got entry pair,
4588 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_GD:
4589 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_GD:
4590 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_GD:
4591 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_GD:
4592 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_GD:
4593 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_GD:
4594 if (opt_t == tls::TLSOPT_NONE) {
4595 got_type = GOT_TYPE_TLS_PAIR;
4596 have_got_offset = true;
4597 } else if (opt_t == tls::TLSOPT_TO_IE) {
4598 got_type = GOT_TYPE_TLS_OFFSET;
4599 have_got_offset = true;
4600 }
4601 goto do_update_value;
4602 // XX_TLS_IE is the same as normal X_GOT relocation
4603 // except allocating one additional runtime relocation
4604 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_IE:
4605 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_IE:
4606 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_IE:
4607 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_IE:
4608 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_IE:
4609 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_IE:
4610 if (opt_t == tls::TLSOPT_NONE) {
4611 got_type = GOT_TYPE_TLS_OFFSET;
4612 have_got_offset = true;
4613 }
4614 do_update_value:
4615 if (have_got_offset) {
4616 if (gsym != NULL) {
4617 gold_assert(gsym->has_got_offset(got_type));
e867b647 4618 got_offset = gsym->got_offset(got_type) - got_base;
5c0b3823
WL
4619 } else {
4620 unsigned int r_sym
4621 = elfcpp::elf_r_sym<size>(rela.get_r_info());
4622 gold_assert(object->local_has_got_offset(r_sym, got_type));
e867b647
WL
4623 got_offset =
4624 object->local_got_offset(r_sym, got_type) - got_base;
5c0b3823
WL
4625 }
4626 }
4627
4628 if (opt_t == tls::TLSOPT_NONE
4629 || opt_t == tls::TLSOPT_TO_IE) {
4630 // for both GD/IE, these relocations
4631 // actually calculate got offset, so
4632 // there behavior are the same
4633 gold_assert(have_got_offset);
4634 symval.set_output_value(got_offset);
4635 psymval = &symval;
4636 addend = 0;
4637 TilegxReloc::imm_x_general(view, object, psymval,
4638 addend, r_howto);
4639 break;
4640 } // else if (opt_t == tls::TLSOPT_TO_LE)
4641 // both GD/IE are turned into LE, which
4642 // is absolute relocation.
62fe925a 4643 //
5c0b3823 4644 // | go through
62fe925a 4645 // |
5c0b3823
WL
4646 // V
4647 // LE
62fe925a 4648 //
5c0b3823
WL
4649 // tp
4650 // |
4651 // V
62fe925a 4652 // t_var1 | t_var2 | t_var3 | ...
5c0b3823
WL
4653 // --------------------------------------------------
4654 //
4655 // so offset to tp should be negative, we get offset
4656 // from the following formular for LE
4657 //
4658 // t_var1_off = t_var1_sym_value - tls_section_start
4659 //
4660 case elfcpp::R_TILEGX_IMM16_X0_HW0_TLS_LE:
4661 case elfcpp::R_TILEGX_IMM16_X1_HW0_TLS_LE:
4662 case elfcpp::R_TILEGX_IMM16_X0_HW0_LAST_TLS_LE:
4663 case elfcpp::R_TILEGX_IMM16_X1_HW0_LAST_TLS_LE:
4664 case elfcpp::R_TILEGX_IMM16_X0_HW1_LAST_TLS_LE:
4665 case elfcpp::R_TILEGX_IMM16_X1_HW1_LAST_TLS_LE:
4666 {
4667 Output_segment *tls_segment = relinfo->layout->tls_segment();
4668 if (tls_segment == NULL) {
4669 gold_assert(parameters->errors()->error_count() > 0
4670 || issue_undefined_symbol_error(gsym));
4671 return false;
4672 }
62fe925a 4673
5c0b3823
WL
4674 typename elfcpp::Elf_types<size>::Elf_Addr value
4675 = psymval->value(relinfo->object, 0);
4676 symval.set_output_value(value);
4677 psymval = &symval;
4678 TilegxReloc::imm_x_general(view, object, psymval,
4679 addend, r_howto);
4680 }
4681 break;
4682
4683 // tls relaxation
4684 case elfcpp::R_TILEGX_TLS_IE_LOAD:
4685 case elfcpp::R_TILEGX_IMM8_X0_TLS_ADD:
4686 case elfcpp::R_TILEGX_IMM8_X1_TLS_ADD:
4687 case elfcpp::R_TILEGX_IMM8_Y0_TLS_ADD:
4688 case elfcpp::R_TILEGX_IMM8_Y1_TLS_ADD:
4689 case elfcpp::R_TILEGX_IMM8_X0_TLS_GD_ADD:
4690 case elfcpp::R_TILEGX_IMM8_X1_TLS_GD_ADD:
4691 case elfcpp::R_TILEGX_IMM8_Y0_TLS_GD_ADD:
4692 case elfcpp::R_TILEGX_IMM8_Y1_TLS_GD_ADD:
4693 TilegxReloc::tls_relax(view, r_type, opt_t);
4694 break;
4695
4696 default:
4697 gold_unreachable();
4698 }
4699 }
4700 break;
4701
4702 // below are outstanding relocs
4703 // should not existed in static linking stage
4704 case elfcpp::R_TILEGX_COPY:
4705 case elfcpp::R_TILEGX_GLOB_DAT:
4706 case elfcpp::R_TILEGX_JMP_SLOT:
4707 case elfcpp::R_TILEGX_RELATIVE:
4708 case elfcpp::R_TILEGX_TLS_TPOFF32:
4709 case elfcpp::R_TILEGX_TLS_TPOFF64:
4710 case elfcpp::R_TILEGX_TLS_DTPMOD32:
4711 case elfcpp::R_TILEGX_TLS_DTPMOD64:
4712 case elfcpp::R_TILEGX_TLS_DTPOFF32:
4713 case elfcpp::R_TILEGX_TLS_DTPOFF64:
4714 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4715 _("unexpected reloc %u in object file"),
4716 r_type);
4717 break;
4718
4719 default:
4720 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
4721 _("unsupported reloc %u"),
4722 r_type);
4723 break;
4724 }
4725
4726 return true;
4727}
4728
4729// Relocate section data.
4730
4731template<int size, bool big_endian>
4732void
4733Target_tilegx<size, big_endian>::relocate_section(
4734 const Relocate_info<size, big_endian>* relinfo,
4735 unsigned int sh_type,
4736 const unsigned char* prelocs,
4737 size_t reloc_count,
4738 Output_section* output_section,
4739 bool needs_special_offset_handling,
4740 unsigned char* view,
4741 typename elfcpp::Elf_types<size>::Elf_Addr address,
4742 section_size_type view_size,
4743 const Reloc_symbol_changes* reloc_symbol_changes)
4744{
4745 typedef Target_tilegx<size, big_endian> Tilegx;
4746 typedef typename Target_tilegx<size, big_endian>::Relocate Tilegx_relocate;
4747
4748 gold_assert(sh_type == elfcpp::SHT_RELA);
4749
168a4726
AM
4750 gold::relocate_section<size, big_endian, Tilegx, elfcpp::SHT_RELA,
4751 Tilegx_relocate, gold::Default_comdat_behavior>(
5c0b3823
WL
4752 relinfo,
4753 this,
4754 prelocs,
4755 reloc_count,
4756 output_section,
4757 needs_special_offset_handling,
4758 view,
4759 address,
4760 view_size,
4761 reloc_symbol_changes);
4762}
4763
4764// Apply an incremental relocation. Incremental relocations always refer
4765// to global symbols.
4766
4767template<int size, bool big_endian>
4768void
4769Target_tilegx<size, big_endian>::apply_relocation(
4770 const Relocate_info<size, big_endian>* relinfo,
4771 typename elfcpp::Elf_types<size>::Elf_Addr r_offset,
4772 unsigned int r_type,
4773 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend,
4774 const Symbol* gsym,
4775 unsigned char* view,
4776 typename elfcpp::Elf_types<size>::Elf_Addr address,
4777 section_size_type view_size)
4778{
4779 gold::apply_relocation<size, big_endian, Target_tilegx<size, big_endian>,
4780 typename Target_tilegx<size, big_endian>::Relocate>(
4781 relinfo,
4782 this,
4783 r_offset,
4784 r_type,
4785 r_addend,
4786 gsym,
4787 view,
4788 address,
4789 view_size);
4790}
4791
4792// Return the size of a relocation while scanning during a relocatable
4793// link.
4794
4795template<int size, bool big_endian>
4796unsigned int
4797Target_tilegx<size,big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
4798 unsigned int, Relobj*)
4799{
4800 // We are always SHT_RELA, so we should never get here.
4801 gold_unreachable();
4802 return 0;
4803}
4804
4805// Scan the relocs during a relocatable link.
4806
4807template<int size, bool big_endian>
4808void
4809Target_tilegx<size, big_endian>::scan_relocatable_relocs(
4810 Symbol_table* symtab,
4811 Layout* layout,
4812 Sized_relobj_file<size, big_endian>* object,
4813 unsigned int data_shndx,
4814 unsigned int sh_type,
4815 const unsigned char* prelocs,
4816 size_t reloc_count,
4817 Output_section* output_section,
4818 bool needs_special_offset_handling,
4819 size_t local_symbol_count,
4820 const unsigned char* plocal_symbols,
4821 Relocatable_relocs* rr)
4822{
4823 gold_assert(sh_type == elfcpp::SHT_RELA);
4824
4825 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
4826 Relocatable_size_for_reloc> Scan_relocatable_relocs;
4827
4828 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
4829 Scan_relocatable_relocs>(
4830 symtab,
4831 layout,
4832 object,
4833 data_shndx,
4834 prelocs,
4835 reloc_count,
4836 output_section,
4837 needs_special_offset_handling,
4838 local_symbol_count,
4839 plocal_symbols,
4840 rr);
4841}
4842
4843// Relocate a section during a relocatable link.
4844
4845template<int size, bool big_endian>
4846void
4847Target_tilegx<size, big_endian>::relocate_relocs(
4848 const Relocate_info<size, big_endian>* relinfo,
4849 unsigned int sh_type,
4850 const unsigned char* prelocs,
4851 size_t reloc_count,
4852 Output_section* output_section,
62fe925a 4853 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
5c0b3823
WL
4854 const Relocatable_relocs* rr,
4855 unsigned char* view,
4856 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
4857 section_size_type view_size,
4858 unsigned char* reloc_view,
4859 section_size_type reloc_view_size)
4860{
4861 gold_assert(sh_type == elfcpp::SHT_RELA);
4862
4863 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
4864 relinfo,
4865 prelocs,
4866 reloc_count,
4867 output_section,
4868 offset_in_output_section,
4869 rr,
4870 view,
4871 view_address,
4872 view_size,
4873 reloc_view,
4874 reloc_view_size);
4875}
4876
4877// Return the value to use for a dynamic which requires special
4878// treatment. This is how we support equality comparisons of function
4879// pointers across shared library boundaries, as described in the
4880// processor specific ABI supplement.
4881
4882template<int size, bool big_endian>
4883uint64_t
4884Target_tilegx<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
4885{
4886 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
19fec8c1 4887 return this->plt_address_for_global(gsym);
5c0b3823
WL
4888}
4889
4890// Return the value to use for the base of a DW_EH_PE_datarel offset
4891// in an FDE. Solaris and SVR4 use DW_EH_PE_datarel because their
4892// assembler can not write out the difference between two labels in
4893// different sections, so instead of using a pc-relative value they
4894// use an offset from the GOT.
4895
4896template<int size, bool big_endian>
4897uint64_t
4898Target_tilegx<size, big_endian>::do_ehframe_datarel_base() const
4899{
4900 gold_assert(this->global_offset_table_ != NULL);
4901 Symbol* sym = this->global_offset_table_;
4902 Sized_symbol<size>* ssym = static_cast<Sized_symbol<size>*>(sym);
4903 return ssym->value();
4904}
4905
62fe925a 4906// The selector for tilegx object files.
5c0b3823
WL
4907
4908template<int size, bool big_endian>
4909class Target_selector_tilegx : public Target_selector
4910{
4911public:
4912 Target_selector_tilegx()
4913 : Target_selector(elfcpp::EM_TILEGX, size, big_endian,
4914 (size == 64
4915 ? (big_endian ? "elf64-tilegx-be" : "elf64-tilegx-le")
4916 : (big_endian ? "elf32-tilegx-be"
4917 : "elf32-tilegx-le")),
4918 (size == 64
4919 ? (big_endian ? "elf64tilegx_be" : "elf64tilegx")
4920 : (big_endian ? "elf32tilegx_be" : "elf32tilegx")))
4921 { }
4922
4923 Target*
4924 do_instantiate_target()
4925 { return new Target_tilegx<size, big_endian>(); }
4926
4927};
4928
4929Target_selector_tilegx<64, false> target_selector_tilegx64_le;
4930Target_selector_tilegx<32, false> target_selector_tilegx32_le;
4931Target_selector_tilegx<64, true> target_selector_tilegx64_be;
4932Target_selector_tilegx<32, true> target_selector_tilegx32_be;
4933} // End anonymous namespace.
This page took 0.364892 seconds and 4 git commands to generate.