*** empty log message ***
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
730cdc88
ILT
86 Output_section* output_section,
87 bool needs_special_offset_handling,
2e30d253 88 size_t local_symbol_count,
730cdc88 89 const unsigned char* plocal_symbols);
2e30d253
ILT
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
4fb6c25d
ILT
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
2e30d253
ILT
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
730cdc88
ILT
106 Output_section* output_section,
107 bool needs_special_offset_handling,
2e30d253
ILT
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 off_t view_size);
111
112 // Return a string used to fill a code section with nops.
113 std::string
114 do_code_fill(off_t length);
115
9a2d6984
ILT
116 // Return whether SYM is defined by the ABI.
117 bool
118 do_is_defined_by_abi(Symbol* sym) const
119 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
96f2030e
ILT
121 // Return the size of the GOT section.
122 off_t
123 got_size()
124 {
125 gold_assert(this->got_ != NULL);
126 return this->got_->data_size();
127 }
128
2e30d253
ILT
129 private:
130 // The class which scans relocations.
131 struct Scan
132 {
133 inline void
134 local(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
07f397ab 138 Output_section* output_section,
2e30d253
ILT
139 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140 const elfcpp::Sym<64, false>& lsym);
141
142 inline void
143 global(const General_options& options, Symbol_table* symtab,
144 Layout* layout, Target_x86_64* target,
145 Sized_relobj<64, false>* object,
146 unsigned int data_shndx,
07f397ab 147 Output_section* output_section,
2e30d253
ILT
148 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149 Symbol* gsym);
e041f13d
ILT
150
151 static void
152 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154 static void
155 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156 Symbol*);
2e30d253
ILT
157 };
158
159 // The class which implements relocation.
160 class Relocate
161 {
162 public:
163 Relocate()
164 : skip_call_tls_get_addr_(false)
165 { }
166
167 ~Relocate()
168 {
169 if (this->skip_call_tls_get_addr_)
170 {
171 // FIXME: This needs to specify the location somehow.
a0c4fb0a 172 gold_error(_("missing expected TLS relocation"));
2e30d253
ILT
173 }
174 }
175
176 // Do a relocation. Return false if the caller should not issue
177 // any warnings about this relocation.
178 inline bool
179 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180 const elfcpp::Rela<64, false>&,
181 unsigned int r_type, const Sized_symbol<64>*,
182 const Symbol_value<64>*,
183 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184 off_t);
185
186 private:
187 // Do a TLS relocation.
188 inline void
189 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
190 const elfcpp::Rela<64, false>&,
191 unsigned int r_type, const Sized_symbol<64>*,
192 const Symbol_value<64>*,
193 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
56622147
ILT
195 // Do a TLS General-Dynamic to Local-Exec transition.
196 inline void
197 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
201 unsigned char* view,
202 off_t view_size);
203
56622147 204 // Do a TLS Local-Dynamic to Local-Exec transition.
2e30d253 205 inline void
56622147 206 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
207 Output_segment* tls_segment,
208 const elfcpp::Rela<64, false>&, unsigned int r_type,
209 elfcpp::Elf_types<64>::Elf_Addr value,
210 unsigned char* view,
211 off_t view_size);
212
56622147
ILT
213 // Do a TLS Initial-Exec to Local-Exec transition.
214 static inline void
215 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
72ec2876
ILT
216 Output_segment* tls_segment,
217 const elfcpp::Rela<64, false>&, unsigned int r_type,
218 elfcpp::Elf_types<64>::Elf_Addr value,
219 unsigned char* view,
220 off_t view_size);
2e30d253
ILT
221
222 // This is set if we should skip the next reloc, which should be a
223 // PLT32 reloc against ___tls_get_addr.
224 bool skip_call_tls_get_addr_;
225 };
226
227 // Adjust TLS relocation type based on the options and whether this
228 // is a local symbol.
e041f13d 229 static tls::Tls_optimization
2e30d253
ILT
230 optimize_tls_reloc(bool is_final, int r_type);
231
232 // Get the GOT section, creating it if necessary.
233 Output_data_got<64, false>*
234 got_section(Symbol_table*, Layout*);
235
96f2030e
ILT
236 // Get the GOT PLT section.
237 Output_data_space*
238 got_plt_section() const
239 {
240 gold_assert(this->got_plt_ != NULL);
241 return this->got_plt_;
242 }
243
2e30d253
ILT
244 // Create a PLT entry for a global symbol.
245 void
246 make_plt_entry(Symbol_table*, Layout*, Symbol*);
247
248 // Get the PLT section.
249 Output_data_plt_x86_64*
250 plt_section() const
251 {
252 gold_assert(this->plt_ != NULL);
253 return this->plt_;
254 }
255
256 // Get the dynamic reloc section, creating it if necessary.
257 Reloc_section*
0ffd9845 258 rela_dyn_section(Layout*);
2e30d253 259
d61c6bd4
ILT
260 // Return true if the symbol may need a COPY relocation.
261 // References from an executable object to non-function symbols
262 // defined in a dynamic object may need a COPY relocation.
263 bool
264 may_need_copy_reloc(Symbol* gsym)
265 {
266 return (!parameters->output_is_shared()
267 && gsym->is_from_dynobj()
268 && gsym->type() != elfcpp::STT_FUNC);
269 }
270
2e30d253
ILT
271 // Copy a relocation against a global symbol.
272 void
273 copy_reloc(const General_options*, Symbol_table*, Layout*,
274 Sized_relobj<64, false>*, unsigned int,
275 Symbol*, const elfcpp::Rela<64, false>&);
276
277 // Information about this specific target which we pass to the
278 // general Target structure.
279 static const Target::Target_info x86_64_info;
280
281 // The GOT section.
282 Output_data_got<64, false>* got_;
283 // The PLT section.
284 Output_data_plt_x86_64* plt_;
285 // The GOT PLT section.
286 Output_data_space* got_plt_;
287 // The dynamic reloc section.
0ffd9845 288 Reloc_section* rela_dyn_;
2e30d253
ILT
289 // Relocs saved to avoid a COPY reloc.
290 Copy_relocs<64, false>* copy_relocs_;
291 // Space for variables copied with a COPY reloc.
292 Output_data_space* dynbss_;
293};
294
295const Target::Target_info Target_x86_64::x86_64_info =
296{
297 64, // size
298 false, // is_big_endian
299 elfcpp::EM_X86_64, // machine_code
300 false, // has_make_symbol
301 false, // has_resolve
302 true, // has_code_fill
35cdfc9a 303 true, // is_default_stack_executable
2e30d253 304 "/lib/ld64.so.1", // program interpreter
0c5e9c22 305 0x400000, // default_text_segment_address
2e30d253
ILT
306 0x1000, // abi_pagesize
307 0x1000 // common_pagesize
308};
309
310// Get the GOT section, creating it if necessary.
311
312Output_data_got<64, false>*
313Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
314{
315 if (this->got_ == NULL)
316 {
317 gold_assert(symtab != NULL && layout != NULL);
318
319 this->got_ = new Output_data_got<64, false>();
320
321 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
322 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
323 this->got_);
324
325 // The old GNU linker creates a .got.plt section. We just
326 // create another set of data in the .got section. Note that we
327 // always create a PLT if we create a GOT, although the PLT
328 // might be empty.
2e30d253
ILT
329 this->got_plt_ = new Output_data_space(8);
330 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
332 this->got_plt_);
333
334 // The first three entries are reserved.
335 this->got_plt_->set_space_size(3 * 8);
336
337 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
338 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
339 this->got_plt_,
340 0, 0, elfcpp::STT_OBJECT,
341 elfcpp::STB_LOCAL,
342 elfcpp::STV_HIDDEN, 0,
343 false, false);
344 }
345
346 return this->got_;
347}
348
349// Get the dynamic reloc section, creating it if necessary.
350
351Target_x86_64::Reloc_section*
0ffd9845 352Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 353{
0ffd9845 354 if (this->rela_dyn_ == NULL)
2e30d253
ILT
355 {
356 gold_assert(layout != NULL);
0ffd9845 357 this->rela_dyn_ = new Reloc_section();
2e30d253 358 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 359 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 360 }
0ffd9845 361 return this->rela_dyn_;
2e30d253
ILT
362}
363
364// A class to handle the PLT data.
365
366class Output_data_plt_x86_64 : public Output_section_data
367{
368 public:
369 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
370
371 Output_data_plt_x86_64(Layout*, Output_data_space*);
372
373 // Add an entry to the PLT.
374 void
375 add_entry(Symbol* gsym);
376
377 // Return the .rel.plt section data.
378 const Reloc_section*
379 rel_plt() const
380 { return this->rel_; }
381
382 protected:
383 void
384 do_adjust_output_section(Output_section* os);
385
386 private:
387 // The size of an entry in the PLT.
388 static const int plt_entry_size = 16;
389
390 // The first entry in the PLT.
391 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
392 // procedure linkage table for both programs and shared objects."
393 static unsigned char first_plt_entry[plt_entry_size];
394
395 // Other entries in the PLT for an executable.
396 static unsigned char plt_entry[plt_entry_size];
397
398 // Set the final size.
399 void
400 do_set_address(uint64_t, off_t)
401 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
402
403 // Write out the PLT data.
404 void
405 do_write(Output_file*);
406
407 // The reloc section.
408 Reloc_section* rel_;
409 // The .got.plt section.
410 Output_data_space* got_plt_;
411 // The number of PLT entries.
412 unsigned int count_;
413};
414
415// Create the PLT section. The ordinary .got section is an argument,
416// since we need to refer to the start. We also create our own .got
417// section just for PLT entries.
418
419Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
420 Output_data_space* got_plt)
2e30d253
ILT
421 : Output_section_data(8), got_plt_(got_plt), count_(0)
422{
423 this->rel_ = new Reloc_section();
424 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
425 elfcpp::SHF_ALLOC, this->rel_);
426}
427
428void
429Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
430{
431 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
432 // linker, and so do we.
433 os->set_entsize(4);
434}
435
436// Add an entry to the PLT.
437
438void
439Output_data_plt_x86_64::add_entry(Symbol* gsym)
440{
441 gold_assert(!gsym->has_plt_offset());
442
443 // Note that when setting the PLT offset we skip the initial
444 // reserved PLT entry.
445 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
446
447 ++this->count_;
448
449 off_t got_offset = this->got_plt_->data_size();
450
451 // Every PLT entry needs a GOT entry which points back to the PLT
452 // entry (this will be changed by the dynamic linker, normally
453 // lazily when the function is called).
454 this->got_plt_->set_space_size(got_offset + 8);
455
456 // Every PLT entry needs a reloc.
457 gsym->set_needs_dynsym_entry();
458 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
459 got_offset, 0);
460
461 // Note that we don't need to save the symbol. The contents of the
462 // PLT are independent of which symbols are used. The symbols only
463 // appear in the relocations.
464}
465
466// The first entry in the PLT for an executable.
467
468unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
469{
470 // From AMD64 ABI Draft 0.98, page 76
471 0xff, 0x35, // pushq contents of memory address
472 0, 0, 0, 0, // replaced with address of .got + 4
473 0xff, 0x25, // jmp indirect
474 0, 0, 0, 0, // replaced with address of .got + 8
475 0x90, 0x90, 0x90, 0x90 // noop (x4)
476};
477
478// Subsequent entries in the PLT for an executable.
479
480unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
481{
482 // From AMD64 ABI Draft 0.98, page 76
483 0xff, 0x25, // jmpq indirect
484 0, 0, 0, 0, // replaced with address of symbol in .got
485 0x68, // pushq immediate
486 0, 0, 0, 0, // replaced with offset into relocation table
487 0xe9, // jmpq relative
488 0, 0, 0, 0 // replaced with offset to start of .plt
489};
490
491// Write out the PLT. This uses the hand-coded instructions above,
492// and adjusts them as needed. This is specified by the AMD64 ABI.
493
494void
495Output_data_plt_x86_64::do_write(Output_file* of)
496{
497 const off_t offset = this->offset();
498 const off_t oview_size = this->data_size();
499 unsigned char* const oview = of->get_output_view(offset, oview_size);
500
501 const off_t got_file_offset = this->got_plt_->offset();
502 const off_t got_size = this->got_plt_->data_size();
503 unsigned char* const got_view = of->get_output_view(got_file_offset,
504 got_size);
505
506 unsigned char* pov = oview;
507
508 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
509 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
510
511 memcpy(pov, first_plt_entry, plt_entry_size);
512 if (!parameters->output_is_shared())
513 {
514 // We do a jmp relative to the PC at the end of this instruction.
515 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
516 - (plt_address + 6));
517 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
518 - (plt_address + 12));
519 }
520 pov += plt_entry_size;
521
522 unsigned char* got_pov = got_view;
523
524 memset(got_pov, 0, 24);
525 got_pov += 24;
526
527 unsigned int plt_offset = plt_entry_size;
528 unsigned int got_offset = 24;
529 const unsigned int count = this->count_;
530 for (unsigned int plt_index = 0;
531 plt_index < count;
532 ++plt_index,
533 pov += plt_entry_size,
534 got_pov += 8,
535 plt_offset += plt_entry_size,
536 got_offset += 8)
537 {
538 // Set and adjust the PLT entry itself.
539 memcpy(pov, plt_entry, plt_entry_size);
540 if (parameters->output_is_shared())
541 // FIXME(csilvers): what's the right thing to write here?
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
543 else
544 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
545 (got_address + got_offset
546 - (plt_address + plt_offset
547 + 6)));
548
549 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
550 elfcpp::Swap<32, false>::writeval(pov + 12,
551 - (plt_offset + plt_entry_size));
552
553 // Set the entry in the GOT.
554 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
555 }
556
557 gold_assert(pov - oview == oview_size);
558 gold_assert(got_pov - got_view == got_size);
559
560 of->write_output_view(offset, oview_size, oview);
561 of->write_output_view(got_file_offset, got_size, got_view);
562}
563
564// Create a PLT entry for a global symbol.
565
566void
567Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
568 Symbol* gsym)
569{
570 if (gsym->has_plt_offset())
571 return;
572
573 if (this->plt_ == NULL)
574 {
575 // Create the GOT sections first.
576 this->got_section(symtab, layout);
577
578 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
579 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
580 (elfcpp::SHF_ALLOC
581 | elfcpp::SHF_EXECINSTR),
582 this->plt_);
583 }
584
585 this->plt_->add_entry(gsym);
586}
587
588// Handle a relocation against a non-function symbol defined in a
589// dynamic object. The traditional way to handle this is to generate
590// a COPY relocation to copy the variable at runtime from the shared
591// object into the executable's data segment. However, this is
592// undesirable in general, as if the size of the object changes in the
593// dynamic object, the executable will no longer work correctly. If
594// this relocation is in a writable section, then we can create a
595// dynamic reloc and the dynamic linker will resolve it to the correct
596// address at runtime. However, we do not want do that if the
597// relocation is in a read-only section, as it would prevent the
598// readonly segment from being shared. And if we have to eventually
599// generate a COPY reloc, then any dynamic relocations will be
600// useless. So this means that if this is a writable section, we need
601// to save the relocation until we see whether we have to create a
602// COPY relocation for this symbol for any other relocation.
603
604void
605Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
606 Symbol_table* symtab,
607 Layout* layout,
608 Sized_relobj<64, false>* object,
609 unsigned int data_shndx, Symbol* gsym,
72ec2876 610 const elfcpp::Rela<64, false>& rela)
2e30d253
ILT
611{
612 Sized_symbol<64>* ssym;
613 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
614 SELECT_SIZE(64));
615
616 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
617 data_shndx, ssym))
618 {
619 // So far we do not need a COPY reloc. Save this relocation.
620 // If it turns out that we never need a COPY reloc for this
621 // symbol, then we will emit the relocation.
622 if (this->copy_relocs_ == NULL)
623 this->copy_relocs_ = new Copy_relocs<64, false>();
72ec2876 624 this->copy_relocs_->save(ssym, object, data_shndx, rela);
2e30d253
ILT
625 }
626 else
627 {
628 // Allocate space for this symbol in the .bss section.
629
630 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
631
632 // There is no defined way to determine the required alignment
633 // of the symbol. We pick the alignment based on the size. We
634 // set an arbitrary maximum of 256.
635 unsigned int align;
636 for (align = 1; align < 512; align <<= 1)
637 if ((symsize & align) != 0)
638 break;
639
640 if (this->dynbss_ == NULL)
641 {
642 this->dynbss_ = new Output_data_space(align);
643 layout->add_output_section_data(".bss",
644 elfcpp::SHT_NOBITS,
645 (elfcpp::SHF_ALLOC
646 | elfcpp::SHF_WRITE),
647 this->dynbss_);
648 }
649
650 Output_data_space* dynbss = this->dynbss_;
651
652 if (align > dynbss->addralign())
653 dynbss->set_space_alignment(align);
654
655 off_t dynbss_size = dynbss->data_size();
656 dynbss_size = align_address(dynbss_size, align);
657 off_t offset = dynbss_size;
658 dynbss->set_space_size(dynbss_size + symsize);
659
46fe1623 660 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
2e30d253
ILT
661
662 // Add the COPY reloc.
0ffd9845
ILT
663 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
664 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
665 }
666}
667
668
669// Optimize the TLS relocation type based on what we know about the
670// symbol. IS_FINAL is true if the final address of this symbol is
671// known at link time.
672
e041f13d 673tls::Tls_optimization
2e30d253
ILT
674Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
675{
2e30d253
ILT
676 // If we are generating a shared library, then we can't do anything
677 // in the linker.
678 if (parameters->output_is_shared())
e041f13d 679 return tls::TLSOPT_NONE;
2e30d253
ILT
680
681 switch (r_type)
682 {
683 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
684 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
685 case elfcpp::R_X86_64_TLSDESC_CALL:
686 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
687 // access. Since we know that we are generating an executable,
688 // we can convert this to Initial-Exec. If we also know that
689 // this is a local symbol, we can further switch to Local-Exec.
690 if (is_final)
e041f13d
ILT
691 return tls::TLSOPT_TO_LE;
692 return tls::TLSOPT_TO_IE;
2e30d253 693
d61c17ea 694 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
695 // This is Local-Dynamic, which refers to a local symbol in the
696 // dynamic TLS block. Since we know that we generating an
697 // executable, we can switch to Local-Exec.
e041f13d 698 return tls::TLSOPT_TO_LE;
2e30d253 699
0ffd9845 700 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
701 case elfcpp::R_X86_64_DTPOFF64:
702 // Another Local-Dynamic reloc.
e041f13d 703 return tls::TLSOPT_TO_LE;
0ffd9845 704
d61c17ea 705 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
706 // These are Initial-Exec relocs which get the thread offset
707 // from the GOT. If we know that we are linking against the
708 // local symbol, we can switch to Local-Exec, which links the
709 // thread offset into the instruction.
710 if (is_final)
e041f13d
ILT
711 return tls::TLSOPT_TO_LE;
712 return tls::TLSOPT_NONE;
2e30d253 713
d61c17ea 714 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
715 // When we already have Local-Exec, there is nothing further we
716 // can do.
e041f13d 717 return tls::TLSOPT_NONE;
2e30d253
ILT
718
719 default:
720 gold_unreachable();
721 }
2e30d253
ILT
722}
723
e041f13d
ILT
724// Report an unsupported relocation against a local symbol.
725
726void
727Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
728 unsigned int r_type)
729{
75f2446e
ILT
730 gold_error(_("%s: unsupported reloc %u against local symbol"),
731 object->name().c_str(), r_type);
e041f13d
ILT
732}
733
2e30d253
ILT
734// Scan a relocation for a local symbol.
735
736inline void
737Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
738 Symbol_table* symtab,
739 Layout* layout,
740 Target_x86_64* target,
741 Sized_relobj<64, false>* object,
0ffd9845 742 unsigned int data_shndx,
07f397ab 743 Output_section*,
0ffd9845 744 const elfcpp::Rela<64, false>& reloc,
d61c17ea
ILT
745 unsigned int r_type,
746 const elfcpp::Sym<64, false>&)
2e30d253
ILT
747{
748 switch (r_type)
749 {
750 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
751 case elfcpp::R_386_GNU_VTINHERIT:
752 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
753 break;
754
755 case elfcpp::R_X86_64_64:
d61c6bd4
ILT
756 // If building a shared library (or a position-independent
757 // executable), we need to create a dynamic relocation for
758 // this location. The relocation applied at link time will
759 // apply the link-time value, so we flag the location with
760 // an R_386_RELATIVE relocation so the dynamic loader can
761 // relocate it easily.
762 if (parameters->output_is_position_independent())
763 {
764 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
765 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
766 data_shndx, reloc.get_r_offset(), 0);
767 }
768 break;
769
2e30d253
ILT
770 case elfcpp::R_X86_64_32:
771 case elfcpp::R_X86_64_32S:
772 case elfcpp::R_X86_64_16:
773 case elfcpp::R_X86_64_8:
96f2030e
ILT
774 // If building a shared library (or a position-independent
775 // executable), we need to create a dynamic relocation for
776 // this location. The relocation applied at link time will
777 // apply the link-time value, so we flag the location with
778 // an R_386_RELATIVE relocation so the dynamic loader can
779 // relocate it easily.
780 if (parameters->output_is_position_independent())
781 {
96f2030e 782 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
d61c6bd4
ILT
783 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
784 rela_dyn->add_local(object, r_sym, r_type, data_shndx,
785 reloc.get_r_offset(),
786 reloc.get_r_addend());
96f2030e 787 }
2e30d253
ILT
788 break;
789
790 case elfcpp::R_X86_64_PC64:
791 case elfcpp::R_X86_64_PC32:
792 case elfcpp::R_X86_64_PC16:
793 case elfcpp::R_X86_64_PC8:
794 break;
795
f389a824
ILT
796 case elfcpp::R_X86_64_PLT32:
797 // Since we know this is a local symbol, we can handle this as a
798 // PC32 reloc.
799 break;
800
fdc2f80f 801 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 802 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
803 case elfcpp::R_X86_64_GOTPC64:
804 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
805 // We need a GOT section.
806 target->got_section(symtab, layout);
ee9e9e86
ILT
807 // For PLTOFF64, we'd normally want a PLT section, but since we
808 // know this is a local symbol, no PLT is needed.
2e30d253
ILT
809 break;
810
0ffd9845
ILT
811 case elfcpp::R_X86_64_GOT64:
812 case elfcpp::R_X86_64_GOT32:
813 case elfcpp::R_X86_64_GOTPCREL64:
814 case elfcpp::R_X86_64_GOTPCREL:
ee9e9e86 815 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
816 {
817 // The symbol requires a GOT entry.
818 Output_data_got<64, false>* got = target->got_section(symtab, layout);
819 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
820 if (got->add_local(object, r_sym))
821 {
822 // If we are generating a shared object, we need to add a
823 // dynamic RELATIVE relocation for this symbol.
96f2030e 824 if (parameters->output_is_position_independent())
0ffd9845 825 {
96f2030e
ILT
826 // FIXME: R_X86_64_RELATIVE assumes a 64-bit relocation.
827 gold_assert(r_type != elfcpp::R_X86_64_GOT32);
828
0ffd9845
ILT
829 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
830 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
831 data_shndx, reloc.get_r_offset(), 0);
832 }
833 }
ee9e9e86
ILT
834 // For GOTPLT64, we'd normally want a PLT section, but since
835 // we know this is a local symbol, no PLT is needed.
0ffd9845
ILT
836 }
837 break;
838
2e30d253
ILT
839 case elfcpp::R_X86_64_COPY:
840 case elfcpp::R_X86_64_GLOB_DAT:
841 case elfcpp::R_X86_64_JUMP_SLOT:
842 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 843 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 844 case elfcpp::R_X86_64_TPOFF64:
2e30d253 845 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 846 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
847 gold_error(_("%s: unexpected reloc %u in object file"),
848 object->name().c_str(), r_type);
2e30d253
ILT
849 break;
850
d61c17ea 851 // These are initial tls relocs, which are expected when linking
56622147
ILT
852 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
853 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 854 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 855 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
856 case elfcpp::R_X86_64_DTPOFF32:
857 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
858 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
859 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
860 {
861 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
862 const tls::Tls_optimization optimized_type
863 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
864 switch (r_type)
865 {
56622147
ILT
866 case elfcpp::R_X86_64_TLSGD: // General-dynamic
867 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
868 case elfcpp::R_X86_64_TLSDESC_CALL:
869 // FIXME: If not relaxing to LE, we need to generate
870 // DTPMOD64 and DTPOFF64 relocs.
871 if (optimized_type != tls::TLSOPT_TO_LE)
872 unsupported_reloc_local(object, r_type);
2e30d253
ILT
873 break;
874
e041f13d 875 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
876 case elfcpp::R_X86_64_DTPOFF32:
877 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
878 // FIXME: If not relaxing to LE, we need to generate a
879 // DTPMOD64 reloc.
880 if (optimized_type != tls::TLSOPT_TO_LE)
881 unsupported_reloc_local(object, r_type);
882 break;
883
56622147
ILT
884 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
885 // FIXME: If not relaxing to LE, we need to generate a
886 // TPOFF64 reloc.
887 if (optimized_type != tls::TLSOPT_TO_LE)
888 unsupported_reloc_local(object, r_type);
889 break;
0ffd9845 890
56622147
ILT
891 case elfcpp::R_X86_64_TPOFF32: // Local-exec
892 // FIXME: If generating a shared object, we need to copy
893 // this relocation into the object.
894 gold_assert(!output_is_shared);
2e30d253 895 break;
e041f13d
ILT
896
897 default:
898 gold_unreachable();
2e30d253
ILT
899 }
900 }
901 break;
2e30d253 902
fdc2f80f
ILT
903 case elfcpp::R_X86_64_SIZE32:
904 case elfcpp::R_X86_64_SIZE64:
2e30d253 905 default:
75f2446e
ILT
906 gold_error(_("%s: unsupported reloc %u against local symbol"),
907 object->name().c_str(), r_type);
2e30d253
ILT
908 break;
909 }
910}
911
912
e041f13d
ILT
913// Report an unsupported relocation against a global symbol.
914
915void
916Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
917 unsigned int r_type,
918 Symbol* gsym)
919{
75f2446e
ILT
920 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
921 object->name().c_str(), r_type, gsym->name());
e041f13d
ILT
922}
923
2e30d253
ILT
924// Scan a relocation for a global symbol.
925
926inline void
927Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
928 Symbol_table* symtab,
929 Layout* layout,
930 Target_x86_64* target,
931 Sized_relobj<64, false>* object,
932 unsigned int data_shndx,
07f397ab 933 Output_section*,
d61c17ea
ILT
934 const elfcpp::Rela<64, false>& reloc,
935 unsigned int r_type,
936 Symbol* gsym)
2e30d253
ILT
937{
938 switch (r_type)
939 {
940 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
941 case elfcpp::R_386_GNU_VTINHERIT:
942 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
943 break;
944
945 case elfcpp::R_X86_64_64:
2e30d253
ILT
946 case elfcpp::R_X86_64_32:
947 case elfcpp::R_X86_64_32S:
2e30d253 948 case elfcpp::R_X86_64_16:
2e30d253 949 case elfcpp::R_X86_64_8:
96f2030e 950 {
d61c6bd4
ILT
951 // Make a PLT entry if necessary.
952 if (gsym->needs_plt_entry())
953 {
954 target->make_plt_entry(symtab, layout, gsym);
955 // Since this is not a PC-relative relocation, we may be
956 // taking the address of a function. In that case we need to
957 // set the entry in the dynamic symbol table to the address of
958 // the PLT entry.
959 if (gsym->is_from_dynobj())
960 gsym->set_needs_dynsym_value();
961 }
962 // Make a dynamic relocation if necessary.
963 if (gsym->needs_dynamic_reloc(true, false))
964 {
965 if (target->may_need_copy_reloc(gsym))
966 {
967 target->copy_reloc(&options, symtab, layout, object, data_shndx,
968 gsym, reloc);
969 }
970 else if (r_type == elfcpp::R_X86_64_64
971 && gsym->can_use_relative_reloc(false))
972 {
973 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
974 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
975 data_shndx,
976 reloc.get_r_offset(), 0);
977 }
978 else
979 {
96f2030e
ILT
980 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
981 rela_dyn->add_global(gsym, r_type, object, data_shndx,
982 reloc.get_r_offset(),
983 reloc.get_r_addend());
d61c6bd4
ILT
984 }
985 }
986 }
987 break;
988
989 case elfcpp::R_X86_64_PC64:
990 case elfcpp::R_X86_64_PC32:
991 case elfcpp::R_X86_64_PC16:
992 case elfcpp::R_X86_64_PC8:
993 {
994 // Make a PLT entry if necessary.
995 if (gsym->needs_plt_entry())
996 target->make_plt_entry(symtab, layout, gsym);
997 // Make a dynamic relocation if necessary.
998 bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
999 if (gsym->needs_dynamic_reloc(true, is_function_call))
86849f1f 1000 {
d61c6bd4
ILT
1001 if (target->may_need_copy_reloc(gsym))
1002 {
1003 target->copy_reloc(&options, symtab, layout, object, data_shndx,
1004 gsym, reloc);
1005 }
86849f1f 1006 else
d61c6bd4
ILT
1007 {
1008 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1009 rela_dyn->add_global(gsym, r_type, object, data_shndx,
1010 reloc.get_r_offset(),
1011 reloc.get_r_addend());
1012 }
86849f1f 1013 }
d61c6bd4 1014 }
2e30d253
ILT
1015 break;
1016
ff006520 1017 case elfcpp::R_X86_64_GOT64:
2e30d253 1018 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
1019 case elfcpp::R_X86_64_GOTPCREL64:
1020 case elfcpp::R_X86_64_GOTPCREL:
1021 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
1022 {
1023 // The symbol requires a GOT entry.
1024 Output_data_got<64, false>* got = target->got_section(symtab, layout);
1025 if (got->add_global(gsym))
1026 {
1027 // If this symbol is not fully resolved, we need to add a
1028 // dynamic relocation for it.
1029 if (!gsym->final_value_is_known())
1030 {
0ffd9845 1031 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
386c048c
ILT
1032 if (gsym->is_from_dynobj()
1033 || gsym->is_preemptible())
d61c6bd4
ILT
1034 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
1035 gsym->got_offset(), 0);
1036 else
1037 {
1038 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
1039 got, gsym->got_offset(), 0);
1040 // Make sure we write the link-time value to the GOT.
1041 gsym->set_needs_value_in_got();
1042 }
2e30d253
ILT
1043 }
1044 }
ee9e9e86
ILT
1045 // For GOTPLT64, we also need a PLT entry (but only if the
1046 // symbol is not fully resolved).
1047 if (r_type == elfcpp::R_X86_64_GOTPLT64
1048 && !gsym->final_value_is_known())
1049 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1050 }
1051 break;
1052
1053 case elfcpp::R_X86_64_PLT32:
1054 // If the symbol is fully resolved, this is just a PC32 reloc.
1055 // Otherwise we need a PLT entry.
1056 if (gsym->final_value_is_known())
1057 break;
96f2030e
ILT
1058 // If building a shared library, we can also skip the PLT entry
1059 // if the symbol is defined in the output file and is protected
1060 // or hidden.
1061 if (gsym->is_defined()
1062 && !gsym->is_from_dynobj()
1063 && !gsym->is_preemptible())
1064 break;
2e30d253
ILT
1065 target->make_plt_entry(symtab, layout, gsym);
1066 break;
1067
fdc2f80f 1068 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 1069 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
1070 case elfcpp::R_X86_64_GOTPC64:
1071 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
1072 // We need a GOT section.
1073 target->got_section(symtab, layout);
ee9e9e86
ILT
1074 // For PLTOFF64, we also need a PLT entry (but only if the
1075 // symbol is not fully resolved).
1076 if (r_type == elfcpp::R_X86_64_PLTOFF64
1077 && !gsym->final_value_is_known())
1078 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1079 break;
1080
2e30d253
ILT
1081 case elfcpp::R_X86_64_COPY:
1082 case elfcpp::R_X86_64_GLOB_DAT:
1083 case elfcpp::R_X86_64_JUMP_SLOT:
1084 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1085 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 1086 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1087 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 1088 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1089 gold_error(_("%s: unexpected reloc %u in object file"),
1090 object->name().c_str(), r_type);
2e30d253 1091 break;
2e30d253 1092
d61c17ea 1093 // These are initial tls relocs, which are expected for global()
56622147
ILT
1094 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1095 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1096 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1097 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1098 case elfcpp::R_X86_64_DTPOFF32:
1099 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1100 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1101 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
1102 {
1103 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
1104 const tls::Tls_optimization optimized_type
1105 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1106 switch (r_type)
1107 {
56622147
ILT
1108 case elfcpp::R_X86_64_TLSGD: // General-dynamic
1109 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1110 case elfcpp::R_X86_64_TLSDESC_CALL:
1111 // FIXME: If not relaxing to LE, we need to generate
1112 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1113 if (optimized_type != tls::TLSOPT_TO_LE)
1114 unsupported_reloc_global(object, r_type, gsym);
2e30d253
ILT
1115 break;
1116
e041f13d 1117 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1118 case elfcpp::R_X86_64_DTPOFF32:
1119 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
1120 // FIXME: If not relaxing to LE, we need to generate a
1121 // DTPMOD64 reloc.
1122 if (optimized_type != tls::TLSOPT_TO_LE)
1123 unsupported_reloc_global(object, r_type, gsym);
1124 break;
1125
56622147
ILT
1126 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1127 // FIXME: If not relaxing to LE, we need to generate a
1128 // TPOFF64 reloc.
1129 if (optimized_type != tls::TLSOPT_TO_LE)
1130 unsupported_reloc_global(object, r_type, gsym);
1131 break;
0ffd9845 1132
56622147
ILT
1133 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1134 // FIXME: If generating a shared object, we need to copy
1135 // this relocation into the object.
1136 gold_assert(is_final);
2e30d253 1137 break;
e041f13d
ILT
1138
1139 default:
1140 gold_unreachable();
2e30d253
ILT
1141 }
1142 }
1143 break;
fdc2f80f
ILT
1144
1145 case elfcpp::R_X86_64_SIZE32:
1146 case elfcpp::R_X86_64_SIZE64:
2e30d253 1147 default:
75f2446e
ILT
1148 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1149 object->name().c_str(), r_type, gsym->name());
2e30d253
ILT
1150 break;
1151 }
1152}
1153
1154// Scan relocations for a section.
1155
1156void
1157Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1158 Symbol_table* symtab,
1159 Layout* layout,
1160 Sized_relobj<64, false>* object,
1161 unsigned int data_shndx,
1162 unsigned int sh_type,
1163 const unsigned char* prelocs,
1164 size_t reloc_count,
730cdc88
ILT
1165 Output_section* output_section,
1166 bool needs_special_offset_handling,
d61c17ea 1167 size_t local_symbol_count,
730cdc88 1168 const unsigned char* plocal_symbols)
2e30d253
ILT
1169{
1170 if (sh_type == elfcpp::SHT_REL)
1171 {
75f2446e
ILT
1172 gold_error(_("%s: unsupported REL reloc section"),
1173 object->name().c_str());
1174 return;
2e30d253
ILT
1175 }
1176
1177 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1178 Target_x86_64::Scan>(
1179 options,
1180 symtab,
1181 layout,
1182 this,
1183 object,
1184 data_shndx,
1185 prelocs,
1186 reloc_count,
730cdc88
ILT
1187 output_section,
1188 needs_special_offset_handling,
2e30d253 1189 local_symbol_count,
730cdc88 1190 plocal_symbols);
2e30d253
ILT
1191}
1192
1193// Finalize the sections.
1194
1195void
1196Target_x86_64::do_finalize_sections(Layout* layout)
1197{
1198 // Fill in some more dynamic tags.
1199 Output_data_dynamic* const odyn = layout->dynamic_data();
1200 if (odyn != NULL)
1201 {
1202 if (this->got_plt_ != NULL)
1203 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1204
1205 if (this->plt_ != NULL)
1206 {
1207 const Output_data* od = this->plt_->rel_plt();
1208 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1209 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1210 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1211 }
1212
0ffd9845 1213 if (this->rela_dyn_ != NULL)
2e30d253 1214 {
0ffd9845 1215 const Output_data* od = this->rela_dyn_;
2e30d253 1216 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1217 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1218 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1219 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1220 }
1221
1222 if (!parameters->output_is_shared())
1223 {
1224 // The value of the DT_DEBUG tag is filled in by the dynamic
1225 // linker at run time, and used by the debugger.
1226 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1227 }
1228 }
1229
1230 // Emit any relocs we saved in an attempt to avoid generating COPY
1231 // relocs.
1232 if (this->copy_relocs_ == NULL)
1233 return;
1234 if (this->copy_relocs_->any_to_emit())
1235 {
0ffd9845
ILT
1236 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1237 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1238 }
1239 delete this->copy_relocs_;
1240 this->copy_relocs_ = NULL;
1241}
1242
1243// Perform a relocation.
1244
1245inline bool
1246Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1247 Target_x86_64* target,
1248 size_t relnum,
0ffd9845 1249 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1250 unsigned int r_type,
1251 const Sized_symbol<64>* gsym,
1252 const Symbol_value<64>* psymval,
1253 unsigned char* view,
1254 elfcpp::Elf_types<64>::Elf_Addr address,
1255 off_t view_size)
1256{
1257 if (this->skip_call_tls_get_addr_)
1258 {
1259 if (r_type != elfcpp::R_X86_64_PLT32
1260 || gsym == NULL
0ffd9845 1261 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1262 {
75f2446e
ILT
1263 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1264 _("missing expected TLS relocation"));
1265 }
1266 else
1267 {
1268 this->skip_call_tls_get_addr_ = false;
1269 return false;
2e30d253 1270 }
2e30d253
ILT
1271 }
1272
1273 // Pick the value to use for symbols defined in shared objects.
1274 Symbol_value<64> symval;
96f2030e
ILT
1275 if (gsym != NULL
1276 && (gsym->is_from_dynobj()
1277 || (parameters->output_is_shared()
1278 && gsym->is_preemptible()))
1279 && gsym->has_plt_offset())
2e30d253
ILT
1280 {
1281 symval.set_output_value(target->plt_section()->address()
1282 + gsym->plt_offset());
1283 psymval = &symval;
1284 }
1285
1286 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1287 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1288
1289 // Get the GOT offset if needed.
96f2030e
ILT
1290 // The GOT pointer points to the end of the GOT section.
1291 // We need to subtract the size of the GOT section to get
1292 // the actual offset to use in the relocation.
0ffd9845
ILT
1293 bool have_got_offset = false;
1294 unsigned int got_offset = 0;
1295 switch (r_type)
1296 {
1297 case elfcpp::R_X86_64_GOT32:
1298 case elfcpp::R_X86_64_GOT64:
1299 case elfcpp::R_X86_64_GOTPLT64:
1300 case elfcpp::R_X86_64_GOTPCREL:
1301 case elfcpp::R_X86_64_GOTPCREL64:
1302 if (gsym != NULL)
1303 {
1304 gold_assert(gsym->has_got_offset());
96f2030e 1305 got_offset = gsym->got_offset() - target->got_size();
0ffd9845
ILT
1306 }
1307 else
1308 {
1309 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
96f2030e 1310 got_offset = object->local_got_offset(r_sym) - target->got_size();
0ffd9845
ILT
1311 }
1312 have_got_offset = true;
1313 break;
1314
1315 default:
1316 break;
1317 }
2e30d253
ILT
1318
1319 switch (r_type)
1320 {
1321 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1322 case elfcpp::R_386_GNU_VTINHERIT:
1323 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1324 break;
1325
1326 case elfcpp::R_X86_64_64:
1327 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1328 break;
1329
1330 case elfcpp::R_X86_64_PC64:
1331 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1332 address);
1333 break;
1334
1335 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1336 // FIXME: we need to verify that value + addend fits into 32 bits:
1337 // uint64_t x = value + addend;
1338 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1339 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1340 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1341 break;
1342
1343 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1344 // FIXME: we need to verify that value + addend fits into 32 bits:
1345 // int64_t x = value + addend; // note this quantity is signed!
1346 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1347 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1348 break;
1349
1350 case elfcpp::R_X86_64_PC32:
1351 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1352 address);
1353 break;
1354
1355 case elfcpp::R_X86_64_16:
1356 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1357 break;
1358
1359 case elfcpp::R_X86_64_PC16:
1360 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1361 address);
1362 break;
1363
1364 case elfcpp::R_X86_64_8:
1365 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1366 break;
1367
1368 case elfcpp::R_X86_64_PC8:
1369 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1370 address);
1371 break;
1372
1373 case elfcpp::R_X86_64_PLT32:
f389a824
ILT
1374 gold_assert(gsym == NULL
1375 || gsym->has_plt_offset()
2e30d253 1376 || gsym->final_value_is_known());
ee9e9e86
ILT
1377 // Note: while this code looks the same as for R_X86_64_PC32, it
1378 // behaves differently because psymval was set to point to
1379 // the PLT entry, rather than the symbol, in Scan::global().
2e30d253
ILT
1380 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1381 address);
1382 break;
1383
ee9e9e86
ILT
1384 case elfcpp::R_X86_64_PLTOFF64:
1385 {
1386 gold_assert(gsym);
1387 gold_assert(gsym->has_plt_offset()
1388 || gsym->final_value_is_known());
1389 elfcpp::Elf_types<64>::Elf_Addr got_address;
1390 got_address = target->got_section(NULL, NULL)->address();
c1866bd5
ILT
1391 Relocate_functions<64, false>::rela64(view, object, psymval,
1392 addend - got_address);
ee9e9e86
ILT
1393 }
1394
2e30d253 1395 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1396 gold_assert(have_got_offset);
1397 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1398 break;
1399
e822f2b1
ILT
1400 case elfcpp::R_X86_64_GOTPC32:
1401 {
1402 gold_assert(gsym);
1403 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1404 value = target->got_plt_section()->address();
e822f2b1
ILT
1405 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1406 }
1407 break;
1408
1409 case elfcpp::R_X86_64_GOT64:
1410 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1411 // Since we always add a PLT entry, this is equivalent.
fdc2f80f 1412 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
1413 gold_assert(have_got_offset);
1414 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1415 break;
1416
1417 case elfcpp::R_X86_64_GOTPC64:
1418 {
1419 gold_assert(gsym);
1420 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1421 value = target->got_plt_section()->address();
e822f2b1
ILT
1422 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1423 }
1424 break;
1425
2e30d253
ILT
1426 case elfcpp::R_X86_64_GOTOFF64:
1427 {
1428 elfcpp::Elf_types<64>::Elf_Addr value;
1429 value = (psymval->value(object, 0)
96f2030e 1430 - target->got_plt_section()->address());
2e30d253
ILT
1431 Relocate_functions<64, false>::rela64(view, value, addend);
1432 }
1433 break;
1434
1435 case elfcpp::R_X86_64_GOTPCREL:
1436 {
0ffd9845
ILT
1437 gold_assert(have_got_offset);
1438 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1439 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1440 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1441 }
1442 break;
1443
e822f2b1
ILT
1444 case elfcpp::R_X86_64_GOTPCREL64:
1445 {
0ffd9845
ILT
1446 gold_assert(have_got_offset);
1447 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1448 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1449 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1450 }
1451 break;
1452
2e30d253
ILT
1453 case elfcpp::R_X86_64_COPY:
1454 case elfcpp::R_X86_64_GLOB_DAT:
1455 case elfcpp::R_X86_64_JUMP_SLOT:
1456 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1457 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1458 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1459 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1460 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1461 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1462 _("unexpected reloc %u in object file"),
1463 r_type);
2e30d253
ILT
1464 break;
1465
d61c17ea 1466 // These are initial tls relocs, which are expected when linking
56622147
ILT
1467 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1468 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1469 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1470 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1471 case elfcpp::R_X86_64_DTPOFF32:
1472 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1473 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1474 case elfcpp::R_X86_64_TPOFF32: // Local-exec
0ffd9845 1475 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
2e30d253
ILT
1476 address, view_size);
1477 break;
2e30d253 1478
fdc2f80f
ILT
1479 case elfcpp::R_X86_64_SIZE32:
1480 case elfcpp::R_X86_64_SIZE64:
2e30d253 1481 default:
75f2446e
ILT
1482 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1483 _("unsupported reloc %u"),
1484 r_type);
2e30d253
ILT
1485 break;
1486 }
1487
1488 return true;
1489}
1490
1491// Perform a TLS relocation.
1492
1493inline void
d61c17ea
ILT
1494Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1495 size_t relnum,
72ec2876 1496 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1497 unsigned int r_type,
1498 const Sized_symbol<64>* gsym,
1499 const Symbol_value<64>* psymval,
1500 unsigned char* view,
2e30d253 1501 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1502 off_t view_size)
2e30d253 1503{
2e30d253
ILT
1504 Output_segment* tls_segment = relinfo->layout->tls_segment();
1505 if (tls_segment == NULL)
1506 {
72ec2876 1507 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e
ILT
1508 _("TLS reloc but no TLS segment"));
1509 return;
2e30d253
ILT
1510 }
1511
1512 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1513
1514 const bool is_final = (gsym == NULL
96f2030e 1515 ? !parameters->output_is_position_independent()
2e30d253 1516 : gsym->final_value_is_known());
e041f13d
ILT
1517 const tls::Tls_optimization optimized_type
1518 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1519 switch (r_type)
1520 {
56622147
ILT
1521 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1522 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d
ILT
1523 case elfcpp::R_X86_64_TLSDESC_CALL:
1524 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1525 {
1526 this->tls_gd_to_le(relinfo, relnum, tls_segment,
72ec2876 1527 rela, r_type, value, view,
2e30d253
ILT
1528 view_size);
1529 break;
1530 }
72ec2876 1531 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1532 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1533 break;
1534
56622147 1535 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
e041f13d
ILT
1536 if (optimized_type == tls::TLSOPT_TO_LE)
1537 {
72ec2876
ILT
1538 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1539 value, view, view_size);
1540 break;
e041f13d 1541 }
72ec2876 1542 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1543 _("unsupported reloc %u"), r_type);
2e30d253 1544 break;
0ffd9845
ILT
1545
1546 case elfcpp::R_X86_64_DTPOFF32:
e041f13d 1547 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1548 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1549 else
1550 value = value - tls_segment->vaddr();
1551 Relocate_functions<64, false>::rel32(view, value);
1552 break;
1553
1554 case elfcpp::R_X86_64_DTPOFF64:
e041f13d 1555 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1556 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1557 else
1558 value = value - tls_segment->vaddr();
1559 Relocate_functions<64, false>::rel64(view, value);
1560 break;
2e30d253 1561
56622147
ILT
1562 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1563 if (optimized_type == tls::TLSOPT_TO_LE)
1564 {
1565 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1566 rela, r_type, value, view,
1567 view_size);
1568 break;
1569 }
1570 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1571 _("unsupported reloc type %u"),
1572 r_type);
1573 break;
0ffd9845 1574
56622147
ILT
1575 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1576 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1577 Relocate_functions<64, false>::rel32(view, value);
1578 break;
2e30d253 1579 }
2e30d253
ILT
1580}
1581
e041f13d 1582// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1583// Local-Exec.
1584
1585inline void
d61c17ea
ILT
1586Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1587 size_t relnum,
1588 Output_segment* tls_segment,
72ec2876 1589 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1590 unsigned int,
1591 elfcpp::Elf_types<64>::Elf_Addr value,
1592 unsigned char* view,
1593 off_t view_size)
2e30d253 1594{
0ffd9845
ILT
1595 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1596 // .word 0x6666; rex64; call __tls_get_addr
1597 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1598
72ec2876
ILT
1599 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1600 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2e30d253 1601
72ec2876
ILT
1602 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1603 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1604 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1605 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2e30d253 1606
0ffd9845 1607 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1608
0ffd9845
ILT
1609 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1610 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1611
1612 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1613 // We can skip it.
1614 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1615}
1616
2e30d253 1617inline void
72ec2876
ILT
1618Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1619 size_t relnum,
1620 Output_segment*,
1621 const elfcpp::Rela<64, false>& rela,
1622 unsigned int,
1623 elfcpp::Elf_types<64>::Elf_Addr,
1624 unsigned char* view,
1625 off_t view_size)
2e30d253 1626{
72ec2876
ILT
1627 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1628 // ... leq foo@dtpoff(%rax),%reg
1629 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2e30d253 1630
72ec2876
ILT
1631 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1632 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2e30d253 1633
72ec2876
ILT
1634 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1635 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1636
1637 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1638
1639 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1640
1641 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1642 // We can skip it.
1643 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1644}
1645
56622147
ILT
1646// Do a relocation in which we convert a TLS Initial-Exec to a
1647// Local-Exec.
1648
1649inline void
1650Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1651 size_t relnum,
1652 Output_segment* tls_segment,
1653 const elfcpp::Rela<64, false>& rela,
1654 unsigned int,
1655 elfcpp::Elf_types<64>::Elf_Addr value,
1656 unsigned char* view,
1657 off_t view_size)
1658{
1659 // We need to examine the opcodes to figure out which instruction we
1660 // are looking at.
1661
1662 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1663 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1664
1665 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1666 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1667
1668 unsigned char op1 = view[-3];
1669 unsigned char op2 = view[-2];
1670 unsigned char op3 = view[-1];
1671 unsigned char reg = op3 >> 3;
1672
1673 if (op2 == 0x8b)
1674 {
1675 // movq
1676 if (op1 == 0x4c)
1677 view[-3] = 0x49;
1678 view[-2] = 0xc7;
1679 view[-1] = 0xc0 | reg;
1680 }
1681 else if (reg == 4)
1682 {
1683 // Special handling for %rsp.
1684 if (op1 == 0x4c)
1685 view[-3] = 0x49;
1686 view[-2] = 0x81;
1687 view[-1] = 0xc0 | reg;
1688 }
1689 else
1690 {
1691 // addq
1692 if (op1 == 0x4c)
1693 view[-3] = 0x4d;
1694 view[-2] = 0x8d;
1695 view[-1] = 0x80 | reg | (reg << 3);
1696 }
1697
1698 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1699 Relocate_functions<64, false>::rela32(view, value, 0);
1700}
1701
2e30d253
ILT
1702// Relocate section data.
1703
1704void
1705Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1706 unsigned int sh_type,
1707 const unsigned char* prelocs,
1708 size_t reloc_count,
730cdc88
ILT
1709 Output_section* output_section,
1710 bool needs_special_offset_handling,
d61c17ea
ILT
1711 unsigned char* view,
1712 elfcpp::Elf_types<64>::Elf_Addr address,
1713 off_t view_size)
2e30d253
ILT
1714{
1715 gold_assert(sh_type == elfcpp::SHT_RELA);
1716
1717 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1718 Target_x86_64::Relocate>(
1719 relinfo,
1720 this,
1721 prelocs,
1722 reloc_count,
730cdc88
ILT
1723 output_section,
1724 needs_special_offset_handling,
2e30d253
ILT
1725 view,
1726 address,
1727 view_size);
1728}
1729
4fb6c25d
ILT
1730// Return the value to use for a dynamic which requires special
1731// treatment. This is how we support equality comparisons of function
1732// pointers across shared library boundaries, as described in the
1733// processor specific ABI supplement.
1734
1735uint64_t
1736Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1737{
1738 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1739 return this->plt_section()->address() + gsym->plt_offset();
1740}
1741
2e30d253
ILT
1742// Return a string used to fill a code section with nops to take up
1743// the specified length.
1744
1745std::string
1746Target_x86_64::do_code_fill(off_t length)
1747{
1748 if (length >= 16)
1749 {
1750 // Build a jmpq instruction to skip over the bytes.
1751 unsigned char jmp[5];
1752 jmp[0] = 0xe9;
1753 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1754 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1755 + std::string(length - 5, '\0'));
1756 }
1757
1758 // Nop sequences of various lengths.
1759 const char nop1[1] = { 0x90 }; // nop
1760 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1761 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1762 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1763 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1764 0x00 }; // leal 0(%esi,1),%esi
1765 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1766 0x00, 0x00 };
1767 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1768 0x00, 0x00, 0x00 };
1769 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1770 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1771 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1772 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1773 0x00 };
1774 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1775 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1776 0x00, 0x00 };
1777 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1778 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1779 0x00, 0x00, 0x00 };
1780 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1781 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1782 0x00, 0x00, 0x00, 0x00 };
1783 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1784 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1785 0x27, 0x00, 0x00, 0x00,
1786 0x00 };
1787 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1788 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1789 0xbc, 0x27, 0x00, 0x00,
1790 0x00, 0x00 };
1791 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1792 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1793 0x90, 0x90, 0x90, 0x90,
1794 0x90, 0x90, 0x90 };
1795
1796 const char* nops[16] = {
1797 NULL,
1798 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1799 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1800 };
1801
1802 return std::string(nops[length], length);
1803}
1804
1805// The selector for x86_64 object files.
1806
1807class Target_selector_x86_64 : public Target_selector
1808{
1809public:
1810 Target_selector_x86_64()
1811 : Target_selector(elfcpp::EM_X86_64, 64, false)
1812 { }
1813
1814 Target*
1815 recognize(int machine, int osabi, int abiversion);
1816
1817 private:
1818 Target_x86_64* target_;
1819};
1820
1821// Recognize an x86_64 object file when we already know that the machine
1822// number is EM_X86_64.
1823
1824Target*
1825Target_selector_x86_64::recognize(int, int, int)
1826{
1827 if (this->target_ == NULL)
1828 this->target_ = new Target_x86_64();
1829 return this->target_;
1830}
1831
1832Target_selector_x86_64 target_selector_x86_64;
1833
1834} // End anonymous namespace.
This page took 0.109278 seconds and 4 git commands to generate.