daily update
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
730cdc88
ILT
86 Output_section* output_section,
87 bool needs_special_offset_handling,
2e30d253 88 size_t local_symbol_count,
730cdc88 89 const unsigned char* plocal_symbols);
2e30d253
ILT
90
91 // Finalize the sections.
92 void
93 do_finalize_sections(Layout*);
94
4fb6c25d
ILT
95 // Return the value to use for a dynamic which requires special
96 // treatment.
97 uint64_t
98 do_dynsym_value(const Symbol*) const;
99
2e30d253
ILT
100 // Relocate a section.
101 void
102 relocate_section(const Relocate_info<64, false>*,
103 unsigned int sh_type,
104 const unsigned char* prelocs,
105 size_t reloc_count,
730cdc88
ILT
106 Output_section* output_section,
107 bool needs_special_offset_handling,
2e30d253
ILT
108 unsigned char* view,
109 elfcpp::Elf_types<64>::Elf_Addr view_address,
110 off_t view_size);
111
112 // Return a string used to fill a code section with nops.
113 std::string
114 do_code_fill(off_t length);
115
9a2d6984
ILT
116 // Return whether SYM is defined by the ABI.
117 bool
118 do_is_defined_by_abi(Symbol* sym) const
119 { return strcmp(sym->name(), "__tls_get_addr") == 0; }
120
96f2030e
ILT
121 // Return the size of the GOT section.
122 off_t
123 got_size()
124 {
125 gold_assert(this->got_ != NULL);
126 return this->got_->data_size();
127 }
128
2e30d253
ILT
129 private:
130 // The class which scans relocations.
131 struct Scan
132 {
133 inline void
134 local(const General_options& options, Symbol_table* symtab,
135 Layout* layout, Target_x86_64* target,
136 Sized_relobj<64, false>* object,
137 unsigned int data_shndx,
07f397ab 138 Output_section* output_section,
2e30d253
ILT
139 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
140 const elfcpp::Sym<64, false>& lsym);
141
142 inline void
143 global(const General_options& options, Symbol_table* symtab,
144 Layout* layout, Target_x86_64* target,
145 Sized_relobj<64, false>* object,
146 unsigned int data_shndx,
07f397ab 147 Output_section* output_section,
2e30d253
ILT
148 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
149 Symbol* gsym);
e041f13d
ILT
150
151 static void
152 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
153
154 static void
155 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
156 Symbol*);
2e30d253
ILT
157 };
158
159 // The class which implements relocation.
160 class Relocate
161 {
162 public:
163 Relocate()
164 : skip_call_tls_get_addr_(false)
165 { }
166
167 ~Relocate()
168 {
169 if (this->skip_call_tls_get_addr_)
170 {
171 // FIXME: This needs to specify the location somehow.
a0c4fb0a 172 gold_error(_("missing expected TLS relocation"));
2e30d253
ILT
173 }
174 }
175
176 // Do a relocation. Return false if the caller should not issue
177 // any warnings about this relocation.
178 inline bool
179 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
180 const elfcpp::Rela<64, false>&,
181 unsigned int r_type, const Sized_symbol<64>*,
182 const Symbol_value<64>*,
183 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
184 off_t);
185
186 private:
187 // Do a TLS relocation.
188 inline void
7bf1f802
ILT
189 relocate_tls(const Relocate_info<64, false>*, Target_x86_64*,
190 size_t relnum, const elfcpp::Rela<64, false>&,
2e30d253
ILT
191 unsigned int r_type, const Sized_symbol<64>*,
192 const Symbol_value<64>*,
193 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
194
7bf1f802
ILT
195 // Do a TLS General-Dynamic to Local-Exec transition.
196 inline void
197 tls_gd_to_ie(const Relocate_info<64, false>*, size_t relnum,
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
201 unsigned char* view,
202 off_t view_size);
203
56622147
ILT
204 // Do a TLS General-Dynamic to Local-Exec transition.
205 inline void
206 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
207 Output_segment* tls_segment,
208 const elfcpp::Rela<64, false>&, unsigned int r_type,
209 elfcpp::Elf_types<64>::Elf_Addr value,
210 unsigned char* view,
211 off_t view_size);
212
56622147 213 // Do a TLS Local-Dynamic to Local-Exec transition.
2e30d253 214 inline void
56622147 215 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
216 Output_segment* tls_segment,
217 const elfcpp::Rela<64, false>&, unsigned int r_type,
218 elfcpp::Elf_types<64>::Elf_Addr value,
219 unsigned char* view,
220 off_t view_size);
221
56622147
ILT
222 // Do a TLS Initial-Exec to Local-Exec transition.
223 static inline void
224 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
72ec2876
ILT
225 Output_segment* tls_segment,
226 const elfcpp::Rela<64, false>&, unsigned int r_type,
227 elfcpp::Elf_types<64>::Elf_Addr value,
228 unsigned char* view,
229 off_t view_size);
2e30d253
ILT
230
231 // This is set if we should skip the next reloc, which should be a
232 // PLT32 reloc against ___tls_get_addr.
233 bool skip_call_tls_get_addr_;
234 };
235
236 // Adjust TLS relocation type based on the options and whether this
237 // is a local symbol.
e041f13d 238 static tls::Tls_optimization
2e30d253
ILT
239 optimize_tls_reloc(bool is_final, int r_type);
240
241 // Get the GOT section, creating it if necessary.
242 Output_data_got<64, false>*
243 got_section(Symbol_table*, Layout*);
244
96f2030e
ILT
245 // Get the GOT PLT section.
246 Output_data_space*
247 got_plt_section() const
248 {
249 gold_assert(this->got_plt_ != NULL);
250 return this->got_plt_;
251 }
252
2e30d253
ILT
253 // Create a PLT entry for a global symbol.
254 void
255 make_plt_entry(Symbol_table*, Layout*, Symbol*);
256
257 // Get the PLT section.
258 Output_data_plt_x86_64*
259 plt_section() const
260 {
261 gold_assert(this->plt_ != NULL);
262 return this->plt_;
263 }
264
265 // Get the dynamic reloc section, creating it if necessary.
266 Reloc_section*
0ffd9845 267 rela_dyn_section(Layout*);
2e30d253 268
d61c6bd4
ILT
269 // Return true if the symbol may need a COPY relocation.
270 // References from an executable object to non-function symbols
271 // defined in a dynamic object may need a COPY relocation.
272 bool
273 may_need_copy_reloc(Symbol* gsym)
274 {
275 return (!parameters->output_is_shared()
276 && gsym->is_from_dynobj()
277 && gsym->type() != elfcpp::STT_FUNC);
278 }
279
2e30d253
ILT
280 // Copy a relocation against a global symbol.
281 void
282 copy_reloc(const General_options*, Symbol_table*, Layout*,
283 Sized_relobj<64, false>*, unsigned int,
4f4c5f80 284 Output_section*, Symbol*, const elfcpp::Rela<64, false>&);
2e30d253
ILT
285
286 // Information about this specific target which we pass to the
287 // general Target structure.
288 static const Target::Target_info x86_64_info;
289
290 // The GOT section.
291 Output_data_got<64, false>* got_;
292 // The PLT section.
293 Output_data_plt_x86_64* plt_;
294 // The GOT PLT section.
295 Output_data_space* got_plt_;
296 // The dynamic reloc section.
0ffd9845 297 Reloc_section* rela_dyn_;
2e30d253
ILT
298 // Relocs saved to avoid a COPY reloc.
299 Copy_relocs<64, false>* copy_relocs_;
300 // Space for variables copied with a COPY reloc.
301 Output_data_space* dynbss_;
302};
303
304const Target::Target_info Target_x86_64::x86_64_info =
305{
306 64, // size
307 false, // is_big_endian
308 elfcpp::EM_X86_64, // machine_code
309 false, // has_make_symbol
310 false, // has_resolve
311 true, // has_code_fill
35cdfc9a 312 true, // is_default_stack_executable
2e30d253 313 "/lib/ld64.so.1", // program interpreter
0c5e9c22 314 0x400000, // default_text_segment_address
2e30d253
ILT
315 0x1000, // abi_pagesize
316 0x1000 // common_pagesize
317};
318
319// Get the GOT section, creating it if necessary.
320
321Output_data_got<64, false>*
322Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
323{
324 if (this->got_ == NULL)
325 {
326 gold_assert(symtab != NULL && layout != NULL);
327
328 this->got_ = new Output_data_got<64, false>();
329
330 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
331 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
332 this->got_);
333
334 // The old GNU linker creates a .got.plt section. We just
335 // create another set of data in the .got section. Note that we
336 // always create a PLT if we create a GOT, although the PLT
337 // might be empty.
2e30d253
ILT
338 this->got_plt_ = new Output_data_space(8);
339 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
340 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
341 this->got_plt_);
342
343 // The first three entries are reserved.
27bc2bce 344 this->got_plt_->set_current_data_size(3 * 8);
2e30d253
ILT
345
346 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
347 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
348 this->got_plt_,
349 0, 0, elfcpp::STT_OBJECT,
350 elfcpp::STB_LOCAL,
351 elfcpp::STV_HIDDEN, 0,
352 false, false);
353 }
354
355 return this->got_;
356}
357
358// Get the dynamic reloc section, creating it if necessary.
359
360Target_x86_64::Reloc_section*
0ffd9845 361Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 362{
0ffd9845 363 if (this->rela_dyn_ == NULL)
2e30d253
ILT
364 {
365 gold_assert(layout != NULL);
0ffd9845 366 this->rela_dyn_ = new Reloc_section();
2e30d253 367 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 368 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 369 }
0ffd9845 370 return this->rela_dyn_;
2e30d253
ILT
371}
372
373// A class to handle the PLT data.
374
375class Output_data_plt_x86_64 : public Output_section_data
376{
377 public:
378 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
379
380 Output_data_plt_x86_64(Layout*, Output_data_space*);
381
382 // Add an entry to the PLT.
383 void
384 add_entry(Symbol* gsym);
385
386 // Return the .rel.plt section data.
387 const Reloc_section*
388 rel_plt() const
389 { return this->rel_; }
390
391 protected:
392 void
393 do_adjust_output_section(Output_section* os);
394
395 private:
396 // The size of an entry in the PLT.
397 static const int plt_entry_size = 16;
398
399 // The first entry in the PLT.
400 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
401 // procedure linkage table for both programs and shared objects."
402 static unsigned char first_plt_entry[plt_entry_size];
403
404 // Other entries in the PLT for an executable.
405 static unsigned char plt_entry[plt_entry_size];
406
407 // Set the final size.
408 void
27bc2bce 409 set_final_data_size()
2e30d253
ILT
410 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
411
412 // Write out the PLT data.
413 void
414 do_write(Output_file*);
415
416 // The reloc section.
417 Reloc_section* rel_;
418 // The .got.plt section.
419 Output_data_space* got_plt_;
420 // The number of PLT entries.
421 unsigned int count_;
422};
423
424// Create the PLT section. The ordinary .got section is an argument,
425// since we need to refer to the start. We also create our own .got
426// section just for PLT entries.
427
428Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
429 Output_data_space* got_plt)
2e30d253
ILT
430 : Output_section_data(8), got_plt_(got_plt), count_(0)
431{
432 this->rel_ = new Reloc_section();
433 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
434 elfcpp::SHF_ALLOC, this->rel_);
435}
436
437void
438Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
439{
440 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
441 // linker, and so do we.
442 os->set_entsize(4);
443}
444
445// Add an entry to the PLT.
446
447void
448Output_data_plt_x86_64::add_entry(Symbol* gsym)
449{
450 gold_assert(!gsym->has_plt_offset());
451
452 // Note that when setting the PLT offset we skip the initial
453 // reserved PLT entry.
454 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
455
456 ++this->count_;
457
27bc2bce 458 off_t got_offset = this->got_plt_->current_data_size();
2e30d253
ILT
459
460 // Every PLT entry needs a GOT entry which points back to the PLT
461 // entry (this will be changed by the dynamic linker, normally
462 // lazily when the function is called).
27bc2bce 463 this->got_plt_->set_current_data_size(got_offset + 8);
2e30d253
ILT
464
465 // Every PLT entry needs a reloc.
466 gsym->set_needs_dynsym_entry();
467 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
468 got_offset, 0);
469
470 // Note that we don't need to save the symbol. The contents of the
471 // PLT are independent of which symbols are used. The symbols only
472 // appear in the relocations.
473}
474
475// The first entry in the PLT for an executable.
476
477unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
478{
479 // From AMD64 ABI Draft 0.98, page 76
480 0xff, 0x35, // pushq contents of memory address
2e30d253 481 0, 0, 0, 0, // replaced with address of .got + 8
78d911fd
ILT
482 0xff, 0x25, // jmp indirect
483 0, 0, 0, 0, // replaced with address of .got + 16
2e30d253
ILT
484 0x90, 0x90, 0x90, 0x90 // noop (x4)
485};
486
487// Subsequent entries in the PLT for an executable.
488
489unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
490{
491 // From AMD64 ABI Draft 0.98, page 76
492 0xff, 0x25, // jmpq indirect
493 0, 0, 0, 0, // replaced with address of symbol in .got
494 0x68, // pushq immediate
495 0, 0, 0, 0, // replaced with offset into relocation table
496 0xe9, // jmpq relative
497 0, 0, 0, 0 // replaced with offset to start of .plt
498};
499
500// Write out the PLT. This uses the hand-coded instructions above,
501// and adjusts them as needed. This is specified by the AMD64 ABI.
502
503void
504Output_data_plt_x86_64::do_write(Output_file* of)
505{
506 const off_t offset = this->offset();
507 const off_t oview_size = this->data_size();
508 unsigned char* const oview = of->get_output_view(offset, oview_size);
509
510 const off_t got_file_offset = this->got_plt_->offset();
511 const off_t got_size = this->got_plt_->data_size();
512 unsigned char* const got_view = of->get_output_view(got_file_offset,
513 got_size);
514
515 unsigned char* pov = oview;
516
517 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
518 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
519
520 memcpy(pov, first_plt_entry, plt_entry_size);
78d911fd
ILT
521 // We do a jmp relative to the PC at the end of this instruction.
522 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
523 - (plt_address + 6));
524 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
525 - (plt_address + 12));
2e30d253
ILT
526 pov += plt_entry_size;
527
528 unsigned char* got_pov = got_view;
529
530 memset(got_pov, 0, 24);
531 got_pov += 24;
532
533 unsigned int plt_offset = plt_entry_size;
534 unsigned int got_offset = 24;
535 const unsigned int count = this->count_;
536 for (unsigned int plt_index = 0;
537 plt_index < count;
538 ++plt_index,
539 pov += plt_entry_size,
540 got_pov += 8,
541 plt_offset += plt_entry_size,
542 got_offset += 8)
543 {
544 // Set and adjust the PLT entry itself.
545 memcpy(pov, plt_entry, plt_entry_size);
78d911fd
ILT
546 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
547 (got_address + got_offset
548 - (plt_address + plt_offset
549 + 6)));
2e30d253
ILT
550
551 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
552 elfcpp::Swap<32, false>::writeval(pov + 12,
553 - (plt_offset + plt_entry_size));
554
555 // Set the entry in the GOT.
556 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
557 }
558
559 gold_assert(pov - oview == oview_size);
560 gold_assert(got_pov - got_view == got_size);
561
562 of->write_output_view(offset, oview_size, oview);
563 of->write_output_view(got_file_offset, got_size, got_view);
564}
565
566// Create a PLT entry for a global symbol.
567
568void
569Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
570 Symbol* gsym)
571{
572 if (gsym->has_plt_offset())
573 return;
574
575 if (this->plt_ == NULL)
576 {
577 // Create the GOT sections first.
578 this->got_section(symtab, layout);
579
580 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
581 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
582 (elfcpp::SHF_ALLOC
583 | elfcpp::SHF_EXECINSTR),
584 this->plt_);
585 }
586
587 this->plt_->add_entry(gsym);
588}
589
590// Handle a relocation against a non-function symbol defined in a
591// dynamic object. The traditional way to handle this is to generate
592// a COPY relocation to copy the variable at runtime from the shared
593// object into the executable's data segment. However, this is
594// undesirable in general, as if the size of the object changes in the
595// dynamic object, the executable will no longer work correctly. If
596// this relocation is in a writable section, then we can create a
597// dynamic reloc and the dynamic linker will resolve it to the correct
598// address at runtime. However, we do not want do that if the
599// relocation is in a read-only section, as it would prevent the
600// readonly segment from being shared. And if we have to eventually
601// generate a COPY reloc, then any dynamic relocations will be
602// useless. So this means that if this is a writable section, we need
603// to save the relocation until we see whether we have to create a
604// COPY relocation for this symbol for any other relocation.
605
606void
607Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
608 Symbol_table* symtab,
609 Layout* layout,
610 Sized_relobj<64, false>* object,
4f4c5f80
ILT
611 unsigned int data_shndx,
612 Output_section* output_section,
613 Symbol* gsym,
72ec2876 614 const elfcpp::Rela<64, false>& rela)
2e30d253
ILT
615{
616 Sized_symbol<64>* ssym;
617 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
618 SELECT_SIZE(64));
619
620 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
621 data_shndx, ssym))
622 {
623 // So far we do not need a COPY reloc. Save this relocation.
624 // If it turns out that we never need a COPY reloc for this
625 // symbol, then we will emit the relocation.
626 if (this->copy_relocs_ == NULL)
627 this->copy_relocs_ = new Copy_relocs<64, false>();
4f4c5f80 628 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rela);
2e30d253
ILT
629 }
630 else
631 {
632 // Allocate space for this symbol in the .bss section.
633
634 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
635
636 // There is no defined way to determine the required alignment
637 // of the symbol. We pick the alignment based on the size. We
638 // set an arbitrary maximum of 256.
639 unsigned int align;
640 for (align = 1; align < 512; align <<= 1)
641 if ((symsize & align) != 0)
642 break;
643
644 if (this->dynbss_ == NULL)
645 {
646 this->dynbss_ = new Output_data_space(align);
647 layout->add_output_section_data(".bss",
648 elfcpp::SHT_NOBITS,
649 (elfcpp::SHF_ALLOC
650 | elfcpp::SHF_WRITE),
651 this->dynbss_);
652 }
653
654 Output_data_space* dynbss = this->dynbss_;
655
656 if (align > dynbss->addralign())
657 dynbss->set_space_alignment(align);
658
27bc2bce 659 off_t dynbss_size = dynbss->current_data_size();
2e30d253
ILT
660 dynbss_size = align_address(dynbss_size, align);
661 off_t offset = dynbss_size;
27bc2bce 662 dynbss->set_current_data_size(dynbss_size + symsize);
2e30d253 663
46fe1623 664 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
2e30d253
ILT
665
666 // Add the COPY reloc.
0ffd9845
ILT
667 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
668 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
669 }
670}
671
672
673// Optimize the TLS relocation type based on what we know about the
674// symbol. IS_FINAL is true if the final address of this symbol is
675// known at link time.
676
e041f13d 677tls::Tls_optimization
2e30d253
ILT
678Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
679{
2e30d253
ILT
680 // If we are generating a shared library, then we can't do anything
681 // in the linker.
682 if (parameters->output_is_shared())
e041f13d 683 return tls::TLSOPT_NONE;
2e30d253
ILT
684
685 switch (r_type)
686 {
687 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
688 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
689 case elfcpp::R_X86_64_TLSDESC_CALL:
690 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
691 // access. Since we know that we are generating an executable,
692 // we can convert this to Initial-Exec. If we also know that
693 // this is a local symbol, we can further switch to Local-Exec.
694 if (is_final)
e041f13d
ILT
695 return tls::TLSOPT_TO_LE;
696 return tls::TLSOPT_TO_IE;
2e30d253 697
d61c17ea 698 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
699 // This is Local-Dynamic, which refers to a local symbol in the
700 // dynamic TLS block. Since we know that we generating an
701 // executable, we can switch to Local-Exec.
e041f13d 702 return tls::TLSOPT_TO_LE;
2e30d253 703
0ffd9845 704 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
705 case elfcpp::R_X86_64_DTPOFF64:
706 // Another Local-Dynamic reloc.
e041f13d 707 return tls::TLSOPT_TO_LE;
0ffd9845 708
d61c17ea 709 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
710 // These are Initial-Exec relocs which get the thread offset
711 // from the GOT. If we know that we are linking against the
712 // local symbol, we can switch to Local-Exec, which links the
713 // thread offset into the instruction.
714 if (is_final)
e041f13d
ILT
715 return tls::TLSOPT_TO_LE;
716 return tls::TLSOPT_NONE;
2e30d253 717
d61c17ea 718 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
719 // When we already have Local-Exec, there is nothing further we
720 // can do.
e041f13d 721 return tls::TLSOPT_NONE;
2e30d253
ILT
722
723 default:
724 gold_unreachable();
725 }
2e30d253
ILT
726}
727
e041f13d
ILT
728// Report an unsupported relocation against a local symbol.
729
730void
731Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
732 unsigned int r_type)
733{
75f2446e
ILT
734 gold_error(_("%s: unsupported reloc %u against local symbol"),
735 object->name().c_str(), r_type);
e041f13d
ILT
736}
737
2e30d253
ILT
738// Scan a relocation for a local symbol.
739
740inline void
741Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
742 Symbol_table* symtab,
743 Layout* layout,
744 Target_x86_64* target,
745 Sized_relobj<64, false>* object,
0ffd9845 746 unsigned int data_shndx,
4f4c5f80 747 Output_section* output_section,
0ffd9845 748 const elfcpp::Rela<64, false>& reloc,
d61c17ea 749 unsigned int r_type,
7bf1f802 750 const elfcpp::Sym<64, false>& lsym)
2e30d253
ILT
751{
752 switch (r_type)
753 {
754 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
755 case elfcpp::R_386_GNU_VTINHERIT:
756 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
757 break;
758
759 case elfcpp::R_X86_64_64:
d61c6bd4
ILT
760 // If building a shared library (or a position-independent
761 // executable), we need to create a dynamic relocation for
762 // this location. The relocation applied at link time will
763 // apply the link-time value, so we flag the location with
764 // an R_386_RELATIVE relocation so the dynamic loader can
765 // relocate it easily.
766 if (parameters->output_is_position_independent())
767 {
e8c846c3 768 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
d61c6bd4 769 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
e8c846c3
ILT
770 rela_dyn->add_local_relative(object, r_sym,
771 elfcpp::R_X86_64_RELATIVE,
772 output_section, data_shndx,
773 reloc.get_r_offset(),
774 reloc.get_r_addend());
d61c6bd4
ILT
775 }
776 break;
777
2e30d253
ILT
778 case elfcpp::R_X86_64_32:
779 case elfcpp::R_X86_64_32S:
780 case elfcpp::R_X86_64_16:
781 case elfcpp::R_X86_64_8:
96f2030e
ILT
782 // If building a shared library (or a position-independent
783 // executable), we need to create a dynamic relocation for
784 // this location. The relocation applied at link time will
785 // apply the link-time value, so we flag the location with
786 // an R_386_RELATIVE relocation so the dynamic loader can
787 // relocate it easily.
788 if (parameters->output_is_position_independent())
789 {
96f2030e 790 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
d61c6bd4 791 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
4f4c5f80
ILT
792 rela_dyn->add_local(object, r_sym, r_type, output_section,
793 data_shndx, reloc.get_r_offset(),
d61c6bd4 794 reloc.get_r_addend());
96f2030e 795 }
2e30d253
ILT
796 break;
797
798 case elfcpp::R_X86_64_PC64:
799 case elfcpp::R_X86_64_PC32:
800 case elfcpp::R_X86_64_PC16:
801 case elfcpp::R_X86_64_PC8:
802 break;
803
f389a824
ILT
804 case elfcpp::R_X86_64_PLT32:
805 // Since we know this is a local symbol, we can handle this as a
806 // PC32 reloc.
807 break;
808
fdc2f80f 809 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 810 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
811 case elfcpp::R_X86_64_GOTPC64:
812 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
813 // We need a GOT section.
814 target->got_section(symtab, layout);
ee9e9e86
ILT
815 // For PLTOFF64, we'd normally want a PLT section, but since we
816 // know this is a local symbol, no PLT is needed.
2e30d253
ILT
817 break;
818
0ffd9845
ILT
819 case elfcpp::R_X86_64_GOT64:
820 case elfcpp::R_X86_64_GOT32:
821 case elfcpp::R_X86_64_GOTPCREL64:
822 case elfcpp::R_X86_64_GOTPCREL:
ee9e9e86 823 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
824 {
825 // The symbol requires a GOT entry.
826 Output_data_got<64, false>* got = target->got_section(symtab, layout);
827 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
828 if (got->add_local(object, r_sym))
829 {
830 // If we are generating a shared object, we need to add a
7bf1f802 831 // dynamic relocation for this symbol's GOT entry.
96f2030e 832 if (parameters->output_is_position_independent())
0ffd9845
ILT
833 {
834 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
7bf1f802
ILT
835 // R_X86_64_RELATIVE assumes a 64-bit relocation.
836 if (r_type != elfcpp::R_X86_64_GOT32)
e8c846c3
ILT
837 rela_dyn->add_local_relative(object, r_sym,
838 elfcpp::R_X86_64_RELATIVE, got,
839 object->local_got_offset(r_sym),
840 0);
7bf1f802
ILT
841 else
842 rela_dyn->add_local(object, r_sym, r_type,
843 got, object->local_got_offset(r_sym), 0);
0ffd9845
ILT
844 }
845 }
ee9e9e86
ILT
846 // For GOTPLT64, we'd normally want a PLT section, but since
847 // we know this is a local symbol, no PLT is needed.
0ffd9845
ILT
848 }
849 break;
850
2e30d253
ILT
851 case elfcpp::R_X86_64_COPY:
852 case elfcpp::R_X86_64_GLOB_DAT:
853 case elfcpp::R_X86_64_JUMP_SLOT:
854 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 855 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 856 case elfcpp::R_X86_64_TPOFF64:
2e30d253 857 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 858 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
859 gold_error(_("%s: unexpected reloc %u in object file"),
860 object->name().c_str(), r_type);
2e30d253
ILT
861 break;
862
d61c17ea 863 // These are initial tls relocs, which are expected when linking
56622147
ILT
864 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
865 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 866 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 867 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
868 case elfcpp::R_X86_64_DTPOFF32:
869 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
870 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
871 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
872 {
873 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
874 const tls::Tls_optimization optimized_type
875 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
876 switch (r_type)
877 {
56622147 878 case elfcpp::R_X86_64_TLSGD: // General-dynamic
7bf1f802
ILT
879 if (optimized_type == tls::TLSOPT_NONE)
880 {
881 // Create a pair of GOT entries for the module index and
882 // dtv-relative offset.
883 Output_data_got<64, false>* got
884 = target->got_section(symtab, layout);
885 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
886 got->add_local_tls_with_rela(object, r_sym,
887 lsym.get_st_shndx(), true,
888 target->rela_dyn_section(layout),
889 elfcpp::R_X86_64_DTPMOD64);
890 }
891 else if (optimized_type != tls::TLSOPT_TO_LE)
892 unsupported_reloc_local(object, r_type);
893 break;
894
56622147
ILT
895 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
896 case elfcpp::R_X86_64_TLSDESC_CALL:
897 // FIXME: If not relaxing to LE, we need to generate
7bf1f802 898 // a GOT entry with a R_x86_64_TLSDESC reloc.
56622147
ILT
899 if (optimized_type != tls::TLSOPT_TO_LE)
900 unsupported_reloc_local(object, r_type);
2e30d253
ILT
901 break;
902
e041f13d 903 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
7bf1f802
ILT
904 if (optimized_type == tls::TLSOPT_NONE)
905 {
906 // Create a GOT entry for the module index.
907 Output_data_got<64, false>* got
908 = target->got_section(symtab, layout);
909 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
910 got->add_local_tls_with_rela(object, r_sym,
911 lsym.get_st_shndx(), false,
912 target->rela_dyn_section(layout),
913 elfcpp::R_X86_64_DTPMOD64);
914 }
915 else if (optimized_type != tls::TLSOPT_TO_LE)
916 unsupported_reloc_local(object, r_type);
917 break;
918
0ffd9845
ILT
919 case elfcpp::R_X86_64_DTPOFF32:
920 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
921 break;
922
56622147 923 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
7bf1f802
ILT
924 if (optimized_type == tls::TLSOPT_NONE)
925 {
926 // Create a GOT entry for the tp-relative offset.
927 Output_data_got<64, false>* got
928 = target->got_section(symtab, layout);
929 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
930 got->add_local_with_rela(object, r_sym,
931 target->rela_dyn_section(layout),
932 elfcpp::R_X86_64_TPOFF64);
933 }
934 else if (optimized_type != tls::TLSOPT_TO_LE)
56622147
ILT
935 unsupported_reloc_local(object, r_type);
936 break;
0ffd9845 937
56622147 938 case elfcpp::R_X86_64_TPOFF32: // Local-exec
7bf1f802
ILT
939 if (output_is_shared)
940 unsupported_reloc_local(object, r_type);
2e30d253 941 break;
e041f13d
ILT
942
943 default:
944 gold_unreachable();
2e30d253
ILT
945 }
946 }
947 break;
2e30d253 948
fdc2f80f
ILT
949 case elfcpp::R_X86_64_SIZE32:
950 case elfcpp::R_X86_64_SIZE64:
2e30d253 951 default:
75f2446e
ILT
952 gold_error(_("%s: unsupported reloc %u against local symbol"),
953 object->name().c_str(), r_type);
2e30d253
ILT
954 break;
955 }
956}
957
958
e041f13d
ILT
959// Report an unsupported relocation against a global symbol.
960
961void
962Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
963 unsigned int r_type,
964 Symbol* gsym)
965{
75f2446e 966 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
a2b1aa12 967 object->name().c_str(), r_type, gsym->demangled_name().c_str());
e041f13d
ILT
968}
969
2e30d253
ILT
970// Scan a relocation for a global symbol.
971
972inline void
973Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
974 Symbol_table* symtab,
975 Layout* layout,
976 Target_x86_64* target,
977 Sized_relobj<64, false>* object,
978 unsigned int data_shndx,
4f4c5f80 979 Output_section* output_section,
d61c17ea
ILT
980 const elfcpp::Rela<64, false>& reloc,
981 unsigned int r_type,
982 Symbol* gsym)
2e30d253
ILT
983{
984 switch (r_type)
985 {
986 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
987 case elfcpp::R_386_GNU_VTINHERIT:
988 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
989 break;
990
991 case elfcpp::R_X86_64_64:
2e30d253
ILT
992 case elfcpp::R_X86_64_32:
993 case elfcpp::R_X86_64_32S:
2e30d253 994 case elfcpp::R_X86_64_16:
2e30d253 995 case elfcpp::R_X86_64_8:
96f2030e 996 {
d61c6bd4
ILT
997 // Make a PLT entry if necessary.
998 if (gsym->needs_plt_entry())
999 {
1000 target->make_plt_entry(symtab, layout, gsym);
1001 // Since this is not a PC-relative relocation, we may be
1002 // taking the address of a function. In that case we need to
1003 // set the entry in the dynamic symbol table to the address of
1004 // the PLT entry.
1005 if (gsym->is_from_dynobj())
1006 gsym->set_needs_dynsym_value();
1007 }
1008 // Make a dynamic relocation if necessary.
1009 if (gsym->needs_dynamic_reloc(true, false))
1010 {
1011 if (target->may_need_copy_reloc(gsym))
1012 {
7bf1f802
ILT
1013 target->copy_reloc(&options, symtab, layout, object,
1014 data_shndx, output_section, gsym, reloc);
d61c6bd4
ILT
1015 }
1016 else if (r_type == elfcpp::R_X86_64_64
1017 && gsym->can_use_relative_reloc(false))
1018 {
1019 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
e8c846c3
ILT
1020 rela_dyn->add_global_relative(gsym, elfcpp::R_X86_64_RELATIVE,
1021 output_section, object,
1022 data_shndx, reloc.get_r_offset(),
1023 reloc.get_r_addend());
d61c6bd4
ILT
1024 }
1025 else
1026 {
96f2030e 1027 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4f4c5f80
ILT
1028 rela_dyn->add_global(gsym, r_type, output_section, object,
1029 data_shndx, reloc.get_r_offset(),
96f2030e 1030 reloc.get_r_addend());
d61c6bd4
ILT
1031 }
1032 }
1033 }
1034 break;
1035
1036 case elfcpp::R_X86_64_PC64:
1037 case elfcpp::R_X86_64_PC32:
1038 case elfcpp::R_X86_64_PC16:
1039 case elfcpp::R_X86_64_PC8:
1040 {
1041 // Make a PLT entry if necessary.
1042 if (gsym->needs_plt_entry())
1043 target->make_plt_entry(symtab, layout, gsym);
1044 // Make a dynamic relocation if necessary.
1045 bool is_function_call = (gsym->type() == elfcpp::STT_FUNC);
78d911fd 1046 if (gsym->needs_dynamic_reloc(false, is_function_call))
86849f1f 1047 {
d61c6bd4
ILT
1048 if (target->may_need_copy_reloc(gsym))
1049 {
7bf1f802
ILT
1050 target->copy_reloc(&options, symtab, layout, object,
1051 data_shndx, output_section, gsym, reloc);
d61c6bd4 1052 }
86849f1f 1053 else
d61c6bd4
ILT
1054 {
1055 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
4f4c5f80
ILT
1056 rela_dyn->add_global(gsym, r_type, output_section, object,
1057 data_shndx, reloc.get_r_offset(),
d61c6bd4
ILT
1058 reloc.get_r_addend());
1059 }
86849f1f 1060 }
d61c6bd4 1061 }
2e30d253
ILT
1062 break;
1063
ff006520 1064 case elfcpp::R_X86_64_GOT64:
2e30d253 1065 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
1066 case elfcpp::R_X86_64_GOTPCREL64:
1067 case elfcpp::R_X86_64_GOTPCREL:
1068 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
1069 {
1070 // The symbol requires a GOT entry.
1071 Output_data_got<64, false>* got = target->got_section(symtab, layout);
7bf1f802
ILT
1072 if (gsym->final_value_is_known())
1073 got->add_global(gsym);
1074 else
1075 {
2e30d253
ILT
1076 // If this symbol is not fully resolved, we need to add a
1077 // dynamic relocation for it.
7bf1f802
ILT
1078 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
1079 if (gsym->is_from_dynobj() || gsym->is_preemptible())
1080 got->add_global_with_rela(gsym, rela_dyn,
1081 elfcpp::R_X86_64_GLOB_DAT);
1082 else
2e30d253 1083 {
7bf1f802 1084 if (got->add_global(gsym))
e8c846c3
ILT
1085 rela_dyn->add_global_relative(gsym,
1086 elfcpp::R_X86_64_RELATIVE,
1087 got, gsym->got_offset(), 0);
2e30d253
ILT
1088 }
1089 }
ee9e9e86
ILT
1090 // For GOTPLT64, we also need a PLT entry (but only if the
1091 // symbol is not fully resolved).
1092 if (r_type == elfcpp::R_X86_64_GOTPLT64
1093 && !gsym->final_value_is_known())
1094 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1095 }
1096 break;
1097
1098 case elfcpp::R_X86_64_PLT32:
1099 // If the symbol is fully resolved, this is just a PC32 reloc.
1100 // Otherwise we need a PLT entry.
1101 if (gsym->final_value_is_known())
1102 break;
96f2030e
ILT
1103 // If building a shared library, we can also skip the PLT entry
1104 // if the symbol is defined in the output file and is protected
1105 // or hidden.
1106 if (gsym->is_defined()
1107 && !gsym->is_from_dynobj()
1108 && !gsym->is_preemptible())
1109 break;
2e30d253
ILT
1110 target->make_plt_entry(symtab, layout, gsym);
1111 break;
1112
fdc2f80f 1113 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 1114 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
1115 case elfcpp::R_X86_64_GOTPC64:
1116 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
1117 // We need a GOT section.
1118 target->got_section(symtab, layout);
ee9e9e86
ILT
1119 // For PLTOFF64, we also need a PLT entry (but only if the
1120 // symbol is not fully resolved).
1121 if (r_type == elfcpp::R_X86_64_PLTOFF64
1122 && !gsym->final_value_is_known())
1123 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
1124 break;
1125
2e30d253
ILT
1126 case elfcpp::R_X86_64_COPY:
1127 case elfcpp::R_X86_64_GLOB_DAT:
1128 case elfcpp::R_X86_64_JUMP_SLOT:
1129 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1130 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 1131 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1132 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 1133 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1134 gold_error(_("%s: unexpected reloc %u in object file"),
1135 object->name().c_str(), r_type);
2e30d253 1136 break;
2e30d253 1137
d61c17ea 1138 // These are initial tls relocs, which are expected for global()
56622147
ILT
1139 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1140 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1141 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1142 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1143 case elfcpp::R_X86_64_DTPOFF32:
1144 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1145 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1146 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
1147 {
1148 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
1149 const tls::Tls_optimization optimized_type
1150 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1151 switch (r_type)
1152 {
56622147 1153 case elfcpp::R_X86_64_TLSGD: // General-dynamic
7bf1f802
ILT
1154 if (optimized_type == tls::TLSOPT_NONE)
1155 {
1156 // Create a pair of GOT entries for the module index and
1157 // dtv-relative offset.
1158 Output_data_got<64, false>* got
1159 = target->got_section(symtab, layout);
1160 got->add_global_tls_with_rela(gsym,
1161 target->rela_dyn_section(layout),
1162 elfcpp::R_X86_64_DTPMOD64,
1163 elfcpp::R_X86_64_DTPOFF64);
1164 }
1165 else if (optimized_type == tls::TLSOPT_TO_IE)
1166 {
1167 // Create a GOT entry for the tp-relative offset.
1168 Output_data_got<64, false>* got
1169 = target->got_section(symtab, layout);
1170 got->add_global_with_rela(gsym,
1171 target->rela_dyn_section(layout),
1172 elfcpp::R_X86_64_TPOFF64);
1173 }
1174 else if (optimized_type != tls::TLSOPT_TO_LE)
1175 unsupported_reloc_global(object, r_type, gsym);
1176 break;
1177
56622147
ILT
1178 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1179 case elfcpp::R_X86_64_TLSDESC_CALL:
1180 // FIXME: If not relaxing to LE, we need to generate
1181 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1182 if (optimized_type != tls::TLSOPT_TO_LE)
1183 unsupported_reloc_global(object, r_type, gsym);
2e30d253
ILT
1184 break;
1185
e041f13d 1186 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
7bf1f802
ILT
1187 if (optimized_type == tls::TLSOPT_NONE)
1188 {
1189 // Create a GOT entry for the module index.
1190 Output_data_got<64, false>* got
1191 = target->got_section(symtab, layout);
1192 got->add_global_tls_with_rela(gsym,
1193 target->rela_dyn_section(layout),
1194 elfcpp::R_X86_64_DTPMOD64);
1195 }
1196 else if (optimized_type != tls::TLSOPT_TO_LE)
1197 unsupported_reloc_global(object, r_type, gsym);
1198 break;
1199
0ffd9845
ILT
1200 case elfcpp::R_X86_64_DTPOFF32:
1201 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
1202 break;
1203
56622147 1204 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
7bf1f802
ILT
1205 if (optimized_type == tls::TLSOPT_NONE)
1206 {
1207 // Create a GOT entry for the tp-relative offset.
1208 Output_data_got<64, false>* got
1209 = target->got_section(symtab, layout);
1210 got->add_global_with_rela(gsym,
1211 target->rela_dyn_section(layout),
1212 elfcpp::R_X86_64_TPOFF64);
1213 }
1214 else if (optimized_type != tls::TLSOPT_TO_LE)
56622147
ILT
1215 unsupported_reloc_global(object, r_type, gsym);
1216 break;
0ffd9845 1217
56622147 1218 case elfcpp::R_X86_64_TPOFF32: // Local-exec
7bf1f802
ILT
1219 if (parameters->output_is_shared())
1220 unsupported_reloc_local(object, r_type);
2e30d253 1221 break;
e041f13d
ILT
1222
1223 default:
1224 gold_unreachable();
2e30d253
ILT
1225 }
1226 }
1227 break;
fdc2f80f
ILT
1228
1229 case elfcpp::R_X86_64_SIZE32:
1230 case elfcpp::R_X86_64_SIZE64:
2e30d253 1231 default:
75f2446e 1232 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
a2b1aa12
ILT
1233 object->name().c_str(), r_type,
1234 gsym->demangled_name().c_str());
2e30d253
ILT
1235 break;
1236 }
1237}
1238
1239// Scan relocations for a section.
1240
1241void
1242Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1243 Symbol_table* symtab,
1244 Layout* layout,
1245 Sized_relobj<64, false>* object,
1246 unsigned int data_shndx,
1247 unsigned int sh_type,
1248 const unsigned char* prelocs,
1249 size_t reloc_count,
730cdc88
ILT
1250 Output_section* output_section,
1251 bool needs_special_offset_handling,
d61c17ea 1252 size_t local_symbol_count,
730cdc88 1253 const unsigned char* plocal_symbols)
2e30d253
ILT
1254{
1255 if (sh_type == elfcpp::SHT_REL)
1256 {
75f2446e
ILT
1257 gold_error(_("%s: unsupported REL reloc section"),
1258 object->name().c_str());
1259 return;
2e30d253
ILT
1260 }
1261
1262 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1263 Target_x86_64::Scan>(
1264 options,
1265 symtab,
1266 layout,
1267 this,
1268 object,
1269 data_shndx,
1270 prelocs,
1271 reloc_count,
730cdc88
ILT
1272 output_section,
1273 needs_special_offset_handling,
2e30d253 1274 local_symbol_count,
730cdc88 1275 plocal_symbols);
2e30d253
ILT
1276}
1277
1278// Finalize the sections.
1279
1280void
1281Target_x86_64::do_finalize_sections(Layout* layout)
1282{
1283 // Fill in some more dynamic tags.
1284 Output_data_dynamic* const odyn = layout->dynamic_data();
1285 if (odyn != NULL)
1286 {
1287 if (this->got_plt_ != NULL)
1288 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1289
1290 if (this->plt_ != NULL)
1291 {
1292 const Output_data* od = this->plt_->rel_plt();
1293 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1294 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1295 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1296 }
1297
0ffd9845 1298 if (this->rela_dyn_ != NULL)
2e30d253 1299 {
0ffd9845 1300 const Output_data* od = this->rela_dyn_;
2e30d253 1301 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1302 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1303 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1304 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1305 }
1306
1307 if (!parameters->output_is_shared())
1308 {
1309 // The value of the DT_DEBUG tag is filled in by the dynamic
1310 // linker at run time, and used by the debugger.
1311 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1312 }
1313 }
1314
1315 // Emit any relocs we saved in an attempt to avoid generating COPY
1316 // relocs.
1317 if (this->copy_relocs_ == NULL)
1318 return;
1319 if (this->copy_relocs_->any_to_emit())
1320 {
0ffd9845
ILT
1321 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1322 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1323 }
1324 delete this->copy_relocs_;
1325 this->copy_relocs_ = NULL;
1326}
1327
1328// Perform a relocation.
1329
1330inline bool
1331Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1332 Target_x86_64* target,
1333 size_t relnum,
0ffd9845 1334 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1335 unsigned int r_type,
1336 const Sized_symbol<64>* gsym,
1337 const Symbol_value<64>* psymval,
1338 unsigned char* view,
1339 elfcpp::Elf_types<64>::Elf_Addr address,
1340 off_t view_size)
1341{
1342 if (this->skip_call_tls_get_addr_)
1343 {
1344 if (r_type != elfcpp::R_X86_64_PLT32
1345 || gsym == NULL
0ffd9845 1346 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1347 {
75f2446e
ILT
1348 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1349 _("missing expected TLS relocation"));
1350 }
1351 else
1352 {
1353 this->skip_call_tls_get_addr_ = false;
1354 return false;
2e30d253 1355 }
2e30d253
ILT
1356 }
1357
1358 // Pick the value to use for symbols defined in shared objects.
1359 Symbol_value<64> symval;
96f2030e
ILT
1360 if (gsym != NULL
1361 && (gsym->is_from_dynobj()
1362 || (parameters->output_is_shared()
1363 && gsym->is_preemptible()))
1364 && gsym->has_plt_offset())
2e30d253
ILT
1365 {
1366 symval.set_output_value(target->plt_section()->address()
1367 + gsym->plt_offset());
1368 psymval = &symval;
1369 }
1370
1371 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1372 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1373
1374 // Get the GOT offset if needed.
96f2030e
ILT
1375 // The GOT pointer points to the end of the GOT section.
1376 // We need to subtract the size of the GOT section to get
1377 // the actual offset to use in the relocation.
0ffd9845
ILT
1378 bool have_got_offset = false;
1379 unsigned int got_offset = 0;
1380 switch (r_type)
1381 {
1382 case elfcpp::R_X86_64_GOT32:
1383 case elfcpp::R_X86_64_GOT64:
1384 case elfcpp::R_X86_64_GOTPLT64:
1385 case elfcpp::R_X86_64_GOTPCREL:
1386 case elfcpp::R_X86_64_GOTPCREL64:
1387 if (gsym != NULL)
1388 {
1389 gold_assert(gsym->has_got_offset());
96f2030e 1390 got_offset = gsym->got_offset() - target->got_size();
0ffd9845
ILT
1391 }
1392 else
1393 {
1394 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
7bf1f802 1395 gold_assert(object->local_has_got_offset(r_sym));
96f2030e 1396 got_offset = object->local_got_offset(r_sym) - target->got_size();
0ffd9845
ILT
1397 }
1398 have_got_offset = true;
1399 break;
1400
1401 default:
1402 break;
1403 }
2e30d253
ILT
1404
1405 switch (r_type)
1406 {
1407 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1408 case elfcpp::R_386_GNU_VTINHERIT:
1409 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1410 break;
1411
1412 case elfcpp::R_X86_64_64:
1413 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1414 break;
1415
1416 case elfcpp::R_X86_64_PC64:
1417 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1418 address);
1419 break;
1420
1421 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1422 // FIXME: we need to verify that value + addend fits into 32 bits:
1423 // uint64_t x = value + addend;
1424 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1425 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1426 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1427 break;
1428
1429 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1430 // FIXME: we need to verify that value + addend fits into 32 bits:
1431 // int64_t x = value + addend; // note this quantity is signed!
1432 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1433 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1434 break;
1435
1436 case elfcpp::R_X86_64_PC32:
1437 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1438 address);
1439 break;
1440
1441 case elfcpp::R_X86_64_16:
1442 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1443 break;
1444
1445 case elfcpp::R_X86_64_PC16:
1446 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1447 address);
1448 break;
1449
1450 case elfcpp::R_X86_64_8:
1451 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1452 break;
1453
1454 case elfcpp::R_X86_64_PC8:
1455 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1456 address);
1457 break;
1458
1459 case elfcpp::R_X86_64_PLT32:
f389a824
ILT
1460 gold_assert(gsym == NULL
1461 || gsym->has_plt_offset()
2e30d253 1462 || gsym->final_value_is_known());
ee9e9e86
ILT
1463 // Note: while this code looks the same as for R_X86_64_PC32, it
1464 // behaves differently because psymval was set to point to
1465 // the PLT entry, rather than the symbol, in Scan::global().
2e30d253
ILT
1466 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1467 address);
1468 break;
1469
ee9e9e86
ILT
1470 case elfcpp::R_X86_64_PLTOFF64:
1471 {
1472 gold_assert(gsym);
1473 gold_assert(gsym->has_plt_offset()
1474 || gsym->final_value_is_known());
1475 elfcpp::Elf_types<64>::Elf_Addr got_address;
1476 got_address = target->got_section(NULL, NULL)->address();
c1866bd5
ILT
1477 Relocate_functions<64, false>::rela64(view, object, psymval,
1478 addend - got_address);
ee9e9e86
ILT
1479 }
1480
2e30d253 1481 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1482 gold_assert(have_got_offset);
1483 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1484 break;
1485
e822f2b1
ILT
1486 case elfcpp::R_X86_64_GOTPC32:
1487 {
1488 gold_assert(gsym);
1489 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1490 value = target->got_plt_section()->address();
e822f2b1
ILT
1491 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1492 }
1493 break;
1494
1495 case elfcpp::R_X86_64_GOT64:
1496 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1497 // Since we always add a PLT entry, this is equivalent.
fdc2f80f 1498 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
1499 gold_assert(have_got_offset);
1500 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1501 break;
1502
1503 case elfcpp::R_X86_64_GOTPC64:
1504 {
1505 gold_assert(gsym);
1506 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1507 value = target->got_plt_section()->address();
e822f2b1
ILT
1508 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1509 }
1510 break;
1511
2e30d253
ILT
1512 case elfcpp::R_X86_64_GOTOFF64:
1513 {
1514 elfcpp::Elf_types<64>::Elf_Addr value;
1515 value = (psymval->value(object, 0)
96f2030e 1516 - target->got_plt_section()->address());
2e30d253
ILT
1517 Relocate_functions<64, false>::rela64(view, value, addend);
1518 }
1519 break;
1520
1521 case elfcpp::R_X86_64_GOTPCREL:
1522 {
0ffd9845
ILT
1523 gold_assert(have_got_offset);
1524 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1525 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1526 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1527 }
1528 break;
1529
e822f2b1
ILT
1530 case elfcpp::R_X86_64_GOTPCREL64:
1531 {
0ffd9845
ILT
1532 gold_assert(have_got_offset);
1533 elfcpp::Elf_types<64>::Elf_Addr value;
96f2030e 1534 value = target->got_plt_section()->address() + got_offset;
0ffd9845 1535 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1536 }
1537 break;
1538
2e30d253
ILT
1539 case elfcpp::R_X86_64_COPY:
1540 case elfcpp::R_X86_64_GLOB_DAT:
1541 case elfcpp::R_X86_64_JUMP_SLOT:
1542 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1543 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1544 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1545 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1546 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1547 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1548 _("unexpected reloc %u in object file"),
1549 r_type);
2e30d253
ILT
1550 break;
1551
d61c17ea 1552 // These are initial tls relocs, which are expected when linking
56622147
ILT
1553 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1554 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1555 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1556 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1557 case elfcpp::R_X86_64_DTPOFF32:
1558 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1559 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1560 case elfcpp::R_X86_64_TPOFF32: // Local-exec
7bf1f802
ILT
1561 this->relocate_tls(relinfo, target, relnum, rela, r_type, gsym, psymval,
1562 view, address, view_size);
2e30d253 1563 break;
2e30d253 1564
fdc2f80f
ILT
1565 case elfcpp::R_X86_64_SIZE32:
1566 case elfcpp::R_X86_64_SIZE64:
2e30d253 1567 default:
75f2446e
ILT
1568 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1569 _("unsupported reloc %u"),
1570 r_type);
2e30d253
ILT
1571 break;
1572 }
1573
1574 return true;
1575}
1576
1577// Perform a TLS relocation.
1578
1579inline void
d61c17ea 1580Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
7bf1f802 1581 Target_x86_64* target,
d61c17ea 1582 size_t relnum,
72ec2876 1583 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1584 unsigned int r_type,
1585 const Sized_symbol<64>* gsym,
1586 const Symbol_value<64>* psymval,
1587 unsigned char* view,
2e30d253 1588 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1589 off_t view_size)
2e30d253 1590{
2e30d253 1591 Output_segment* tls_segment = relinfo->layout->tls_segment();
7bf1f802
ILT
1592
1593 const Sized_relobj<64, false>* object = relinfo->object;
2e30d253
ILT
1594
1595 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1596
1597 const bool is_final = (gsym == NULL
96f2030e 1598 ? !parameters->output_is_position_independent()
2e30d253 1599 : gsym->final_value_is_known());
e041f13d
ILT
1600 const tls::Tls_optimization optimized_type
1601 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1602 switch (r_type)
1603 {
56622147
ILT
1604 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1605 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d
ILT
1606 case elfcpp::R_X86_64_TLSDESC_CALL:
1607 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253 1608 {
7bf1f802 1609 gold_assert(tls_segment != NULL);
2e30d253 1610 this->tls_gd_to_le(relinfo, relnum, tls_segment,
72ec2876 1611 rela, r_type, value, view,
2e30d253
ILT
1612 view_size);
1613 break;
1614 }
7bf1f802
ILT
1615 else
1616 {
1617 unsigned int got_offset;
1618 if (gsym != NULL)
1619 {
1620 gold_assert(gsym->has_tls_got_offset(true));
1621 got_offset = gsym->tls_got_offset(true) - target->got_size();
1622 }
1623 else
1624 {
1625 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1626 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1627 got_offset = (object->local_tls_got_offset(r_sym, true)
1628 - target->got_size());
1629 }
1630 if (optimized_type == tls::TLSOPT_TO_IE)
1631 {
1632 gold_assert(tls_segment != NULL);
1633 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rela, r_type,
1634 got_offset, view, view_size);
1635 break;
1636 }
1637 else if (optimized_type == tls::TLSOPT_NONE)
1638 {
1639 // Relocate the field with the offset of the pair of GOT
1640 // entries.
1641 Relocate_functions<64, false>::rel64(view, got_offset);
1642 break;
1643 }
1644 }
72ec2876 1645 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1646 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1647 break;
1648
56622147 1649 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
e041f13d
ILT
1650 if (optimized_type == tls::TLSOPT_TO_LE)
1651 {
7bf1f802 1652 gold_assert(tls_segment != NULL);
72ec2876
ILT
1653 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1654 value, view, view_size);
1655 break;
e041f13d 1656 }
7bf1f802
ILT
1657 else if (optimized_type == tls::TLSOPT_NONE)
1658 {
1659 // Relocate the field with the offset of the GOT entry for
1660 // the module index.
1661 unsigned int got_offset;
1662 if (gsym != NULL)
1663 {
1664 gold_assert(gsym->has_tls_got_offset(false));
1665 got_offset = gsym->tls_got_offset(false) - target->got_size();
1666 }
1667 else
1668 {
1669 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1670 gold_assert(object->local_has_tls_got_offset(r_sym, false));
1671 got_offset = (object->local_tls_got_offset(r_sym, false)
1672 - target->got_size());
1673 }
1674 Relocate_functions<64, false>::rel64(view, got_offset);
1675 break;
1676 }
72ec2876 1677 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1678 _("unsupported reloc %u"), r_type);
2e30d253 1679 break;
0ffd9845
ILT
1680
1681 case elfcpp::R_X86_64_DTPOFF32:
7bf1f802 1682 gold_assert(tls_segment != NULL);
e041f13d 1683 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1684 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1685 else
1686 value = value - tls_segment->vaddr();
1687 Relocate_functions<64, false>::rel32(view, value);
1688 break;
1689
1690 case elfcpp::R_X86_64_DTPOFF64:
7bf1f802 1691 gold_assert(tls_segment != NULL);
e041f13d 1692 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1693 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1694 else
1695 value = value - tls_segment->vaddr();
1696 Relocate_functions<64, false>::rel64(view, value);
1697 break;
2e30d253 1698
56622147
ILT
1699 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1700 if (optimized_type == tls::TLSOPT_TO_LE)
1701 {
7bf1f802 1702 gold_assert(tls_segment != NULL);
56622147
ILT
1703 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1704 rela, r_type, value, view,
1705 view_size);
1706 break;
1707 }
7bf1f802
ILT
1708 else if (optimized_type == tls::TLSOPT_NONE)
1709 {
1710 // Relocate the field with the offset of the GOT entry for
1711 // the tp-relative offset of the symbol.
1712 unsigned int got_offset;
1713 if (gsym != NULL)
1714 {
1715 gold_assert(gsym->has_got_offset());
1716 got_offset = gsym->got_offset() - target->got_size();
1717 }
1718 else
1719 {
1720 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1721 gold_assert(object->local_has_got_offset(r_sym));
1722 got_offset = (object->local_got_offset(r_sym)
1723 - target->got_size());
1724 }
1725 Relocate_functions<64, false>::rel64(view, got_offset);
1726 break;
1727 }
56622147
ILT
1728 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1729 _("unsupported reloc type %u"),
1730 r_type);
1731 break;
0ffd9845 1732
56622147
ILT
1733 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1734 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1735 Relocate_functions<64, false>::rel32(view, value);
1736 break;
2e30d253 1737 }
2e30d253
ILT
1738}
1739
7bf1f802
ILT
1740// Do a relocation in which we convert a TLS General-Dynamic to an
1741// Initial-Exec.
1742
1743inline void
1744Target_x86_64::Relocate::tls_gd_to_ie(const Relocate_info<64, false>* relinfo,
1745 size_t relnum,
1746 Output_segment* tls_segment,
1747 const elfcpp::Rela<64, false>& rela,
1748 unsigned int,
1749 elfcpp::Elf_types<64>::Elf_Addr value,
1750 unsigned char* view,
1751 off_t view_size)
1752{
1753 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1754 // .word 0x6666; rex64; call __tls_get_addr
1755 // ==> movq %fs:0,%rax; addq x@gottpoff(%rip),%rax
1756
1757 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1758 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
1759
1760 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1761 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1762 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1763 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
1764
1765 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0\0", 16);
1766
1767 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1768 Relocate_functions<64, false>::rela32(view + 8, value, 0);
1769
1770 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1771 // We can skip it.
1772 this->skip_call_tls_get_addr_ = true;
1773}
1774
e041f13d 1775// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1776// Local-Exec.
1777
1778inline void
d61c17ea
ILT
1779Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1780 size_t relnum,
1781 Output_segment* tls_segment,
72ec2876 1782 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1783 unsigned int,
1784 elfcpp::Elf_types<64>::Elf_Addr value,
1785 unsigned char* view,
1786 off_t view_size)
2e30d253 1787{
0ffd9845
ILT
1788 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1789 // .word 0x6666; rex64; call __tls_get_addr
1790 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1791
72ec2876
ILT
1792 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1793 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2e30d253 1794
72ec2876
ILT
1795 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1796 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1797 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1798 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2e30d253 1799
0ffd9845 1800 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1801
0ffd9845
ILT
1802 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1803 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1804
1805 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1806 // We can skip it.
1807 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1808}
1809
2e30d253 1810inline void
72ec2876
ILT
1811Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1812 size_t relnum,
1813 Output_segment*,
1814 const elfcpp::Rela<64, false>& rela,
1815 unsigned int,
1816 elfcpp::Elf_types<64>::Elf_Addr,
1817 unsigned char* view,
1818 off_t view_size)
2e30d253 1819{
72ec2876
ILT
1820 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1821 // ... leq foo@dtpoff(%rax),%reg
1822 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2e30d253 1823
72ec2876
ILT
1824 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1825 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2e30d253 1826
72ec2876
ILT
1827 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1828 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1829
1830 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1831
1832 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1833
1834 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1835 // We can skip it.
1836 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1837}
1838
56622147
ILT
1839// Do a relocation in which we convert a TLS Initial-Exec to a
1840// Local-Exec.
1841
1842inline void
1843Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1844 size_t relnum,
1845 Output_segment* tls_segment,
1846 const elfcpp::Rela<64, false>& rela,
1847 unsigned int,
1848 elfcpp::Elf_types<64>::Elf_Addr value,
1849 unsigned char* view,
1850 off_t view_size)
1851{
1852 // We need to examine the opcodes to figure out which instruction we
1853 // are looking at.
1854
1855 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1856 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1857
1858 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1859 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1860
1861 unsigned char op1 = view[-3];
1862 unsigned char op2 = view[-2];
1863 unsigned char op3 = view[-1];
1864 unsigned char reg = op3 >> 3;
1865
1866 if (op2 == 0x8b)
1867 {
1868 // movq
1869 if (op1 == 0x4c)
1870 view[-3] = 0x49;
1871 view[-2] = 0xc7;
1872 view[-1] = 0xc0 | reg;
1873 }
1874 else if (reg == 4)
1875 {
1876 // Special handling for %rsp.
1877 if (op1 == 0x4c)
1878 view[-3] = 0x49;
1879 view[-2] = 0x81;
1880 view[-1] = 0xc0 | reg;
1881 }
1882 else
1883 {
1884 // addq
1885 if (op1 == 0x4c)
1886 view[-3] = 0x4d;
1887 view[-2] = 0x8d;
1888 view[-1] = 0x80 | reg | (reg << 3);
1889 }
1890
1891 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1892 Relocate_functions<64, false>::rela32(view, value, 0);
1893}
1894
2e30d253
ILT
1895// Relocate section data.
1896
1897void
1898Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1899 unsigned int sh_type,
1900 const unsigned char* prelocs,
1901 size_t reloc_count,
730cdc88
ILT
1902 Output_section* output_section,
1903 bool needs_special_offset_handling,
d61c17ea
ILT
1904 unsigned char* view,
1905 elfcpp::Elf_types<64>::Elf_Addr address,
1906 off_t view_size)
2e30d253
ILT
1907{
1908 gold_assert(sh_type == elfcpp::SHT_RELA);
1909
1910 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1911 Target_x86_64::Relocate>(
1912 relinfo,
1913 this,
1914 prelocs,
1915 reloc_count,
730cdc88
ILT
1916 output_section,
1917 needs_special_offset_handling,
2e30d253
ILT
1918 view,
1919 address,
1920 view_size);
1921}
1922
4fb6c25d
ILT
1923// Return the value to use for a dynamic which requires special
1924// treatment. This is how we support equality comparisons of function
1925// pointers across shared library boundaries, as described in the
1926// processor specific ABI supplement.
1927
1928uint64_t
1929Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1930{
1931 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1932 return this->plt_section()->address() + gsym->plt_offset();
1933}
1934
2e30d253
ILT
1935// Return a string used to fill a code section with nops to take up
1936// the specified length.
1937
1938std::string
1939Target_x86_64::do_code_fill(off_t length)
1940{
1941 if (length >= 16)
1942 {
1943 // Build a jmpq instruction to skip over the bytes.
1944 unsigned char jmp[5];
1945 jmp[0] = 0xe9;
1946 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1947 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1948 + std::string(length - 5, '\0'));
1949 }
1950
1951 // Nop sequences of various lengths.
1952 const char nop1[1] = { 0x90 }; // nop
1953 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1954 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1955 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1956 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1957 0x00 }; // leal 0(%esi,1),%esi
1958 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1959 0x00, 0x00 };
1960 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1961 0x00, 0x00, 0x00 };
1962 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1963 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1964 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1965 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1966 0x00 };
1967 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1968 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1969 0x00, 0x00 };
1970 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1971 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1972 0x00, 0x00, 0x00 };
1973 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1974 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1975 0x00, 0x00, 0x00, 0x00 };
1976 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1977 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1978 0x27, 0x00, 0x00, 0x00,
1979 0x00 };
1980 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1981 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1982 0xbc, 0x27, 0x00, 0x00,
1983 0x00, 0x00 };
1984 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1985 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1986 0x90, 0x90, 0x90, 0x90,
1987 0x90, 0x90, 0x90 };
1988
1989 const char* nops[16] = {
1990 NULL,
1991 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1992 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1993 };
1994
1995 return std::string(nops[length], length);
1996}
1997
1998// The selector for x86_64 object files.
1999
2000class Target_selector_x86_64 : public Target_selector
2001{
2002public:
2003 Target_selector_x86_64()
2004 : Target_selector(elfcpp::EM_X86_64, 64, false)
2005 { }
2006
2007 Target*
2008 recognize(int machine, int osabi, int abiversion);
2009
2010 private:
2011 Target_x86_64* target_;
2012};
2013
2014// Recognize an x86_64 object file when we already know that the machine
2015// number is EM_X86_64.
2016
2017Target*
2018Target_selector_x86_64::recognize(int, int, int)
2019{
2020 if (this->target_ == NULL)
2021 this->target_ = new Target_x86_64();
2022 return this->target_;
2023}
2024
2025Target_selector_x86_64 target_selector_x86_64;
2026
2027} // End anonymous namespace.
This page took 0.176135 seconds and 4 git commands to generate.