daily update
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols,
88 Symbol** global_symbols);
89
90 // Finalize the sections.
91 void
92 do_finalize_sections(Layout*);
93
4fb6c25d
ILT
94 // Return the value to use for a dynamic which requires special
95 // treatment.
96 uint64_t
97 do_dynsym_value(const Symbol*) const;
98
2e30d253
ILT
99 // Relocate a section.
100 void
101 relocate_section(const Relocate_info<64, false>*,
102 unsigned int sh_type,
103 const unsigned char* prelocs,
104 size_t reloc_count,
105 unsigned char* view,
106 elfcpp::Elf_types<64>::Elf_Addr view_address,
107 off_t view_size);
108
109 // Return a string used to fill a code section with nops.
110 std::string
111 do_code_fill(off_t length);
112
113 private:
114 // The class which scans relocations.
115 struct Scan
116 {
117 inline void
118 local(const General_options& options, Symbol_table* symtab,
119 Layout* layout, Target_x86_64* target,
120 Sized_relobj<64, false>* object,
121 unsigned int data_shndx,
122 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123 const elfcpp::Sym<64, false>& lsym);
124
125 inline void
126 global(const General_options& options, Symbol_table* symtab,
127 Layout* layout, Target_x86_64* target,
128 Sized_relobj<64, false>* object,
129 unsigned int data_shndx,
130 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131 Symbol* gsym);
e041f13d
ILT
132
133 static void
134 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
135
136 static void
137 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
138 Symbol*);
2e30d253
ILT
139 };
140
141 // The class which implements relocation.
142 class Relocate
143 {
144 public:
145 Relocate()
146 : skip_call_tls_get_addr_(false)
147 { }
148
149 ~Relocate()
150 {
151 if (this->skip_call_tls_get_addr_)
152 {
153 // FIXME: This needs to specify the location somehow.
a0c4fb0a 154 gold_error(_("missing expected TLS relocation"));
2e30d253
ILT
155 }
156 }
157
158 // Do a relocation. Return false if the caller should not issue
159 // any warnings about this relocation.
160 inline bool
161 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162 const elfcpp::Rela<64, false>&,
163 unsigned int r_type, const Sized_symbol<64>*,
164 const Symbol_value<64>*,
165 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
166 off_t);
167
168 private:
169 // Do a TLS relocation.
170 inline void
171 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172 const elfcpp::Rela<64, false>&,
173 unsigned int r_type, const Sized_symbol<64>*,
174 const Symbol_value<64>*,
175 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
176
56622147
ILT
177 // Do a TLS General-Dynamic to Local-Exec transition.
178 inline void
179 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
180 Output_segment* tls_segment,
181 const elfcpp::Rela<64, false>&, unsigned int r_type,
182 elfcpp::Elf_types<64>::Elf_Addr value,
183 unsigned char* view,
184 off_t view_size);
185
56622147 186 // Do a TLS Local-Dynamic to Local-Exec transition.
2e30d253 187 inline void
56622147 188 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
189 Output_segment* tls_segment,
190 const elfcpp::Rela<64, false>&, unsigned int r_type,
191 elfcpp::Elf_types<64>::Elf_Addr value,
192 unsigned char* view,
193 off_t view_size);
194
56622147
ILT
195 // Do a TLS Initial-Exec to Local-Exec transition.
196 static inline void
197 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
72ec2876
ILT
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
201 unsigned char* view,
202 off_t view_size);
2e30d253
ILT
203
204 // This is set if we should skip the next reloc, which should be a
205 // PLT32 reloc against ___tls_get_addr.
206 bool skip_call_tls_get_addr_;
207 };
208
209 // Adjust TLS relocation type based on the options and whether this
210 // is a local symbol.
e041f13d 211 static tls::Tls_optimization
2e30d253
ILT
212 optimize_tls_reloc(bool is_final, int r_type);
213
214 // Get the GOT section, creating it if necessary.
215 Output_data_got<64, false>*
216 got_section(Symbol_table*, Layout*);
217
218 // Create a PLT entry for a global symbol.
219 void
220 make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222 // Get the PLT section.
223 Output_data_plt_x86_64*
224 plt_section() const
225 {
226 gold_assert(this->plt_ != NULL);
227 return this->plt_;
228 }
229
230 // Get the dynamic reloc section, creating it if necessary.
231 Reloc_section*
0ffd9845 232 rela_dyn_section(Layout*);
2e30d253
ILT
233
234 // Copy a relocation against a global symbol.
235 void
236 copy_reloc(const General_options*, Symbol_table*, Layout*,
237 Sized_relobj<64, false>*, unsigned int,
238 Symbol*, const elfcpp::Rela<64, false>&);
239
240 // Information about this specific target which we pass to the
241 // general Target structure.
242 static const Target::Target_info x86_64_info;
243
244 // The GOT section.
245 Output_data_got<64, false>* got_;
246 // The PLT section.
247 Output_data_plt_x86_64* plt_;
248 // The GOT PLT section.
249 Output_data_space* got_plt_;
250 // The dynamic reloc section.
0ffd9845 251 Reloc_section* rela_dyn_;
2e30d253
ILT
252 // Relocs saved to avoid a COPY reloc.
253 Copy_relocs<64, false>* copy_relocs_;
254 // Space for variables copied with a COPY reloc.
255 Output_data_space* dynbss_;
256};
257
258const Target::Target_info Target_x86_64::x86_64_info =
259{
260 64, // size
261 false, // is_big_endian
262 elfcpp::EM_X86_64, // machine_code
263 false, // has_make_symbol
264 false, // has_resolve
265 true, // has_code_fill
35cdfc9a 266 true, // is_default_stack_executable
2e30d253 267 "/lib/ld64.so.1", // program interpreter
0c5e9c22 268 0x400000, // default_text_segment_address
2e30d253
ILT
269 0x1000, // abi_pagesize
270 0x1000 // common_pagesize
271};
272
273// Get the GOT section, creating it if necessary.
274
275Output_data_got<64, false>*
276Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
277{
278 if (this->got_ == NULL)
279 {
280 gold_assert(symtab != NULL && layout != NULL);
281
282 this->got_ = new Output_data_got<64, false>();
283
284 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286 this->got_);
287
288 // The old GNU linker creates a .got.plt section. We just
289 // create another set of data in the .got section. Note that we
290 // always create a PLT if we create a GOT, although the PLT
291 // might be empty.
292 // TODO(csilvers): do we really need an alignment of 8?
293 this->got_plt_ = new Output_data_space(8);
294 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
295 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
296 this->got_plt_);
297
298 // The first three entries are reserved.
299 this->got_plt_->set_space_size(3 * 8);
300
301 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
302 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
303 this->got_plt_,
304 0, 0, elfcpp::STT_OBJECT,
305 elfcpp::STB_LOCAL,
306 elfcpp::STV_HIDDEN, 0,
307 false, false);
308 }
309
310 return this->got_;
311}
312
313// Get the dynamic reloc section, creating it if necessary.
314
315Target_x86_64::Reloc_section*
0ffd9845 316Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 317{
0ffd9845 318 if (this->rela_dyn_ == NULL)
2e30d253
ILT
319 {
320 gold_assert(layout != NULL);
0ffd9845 321 this->rela_dyn_ = new Reloc_section();
2e30d253 322 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 323 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 324 }
0ffd9845 325 return this->rela_dyn_;
2e30d253
ILT
326}
327
328// A class to handle the PLT data.
329
330class Output_data_plt_x86_64 : public Output_section_data
331{
332 public:
333 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
334
335 Output_data_plt_x86_64(Layout*, Output_data_space*);
336
337 // Add an entry to the PLT.
338 void
339 add_entry(Symbol* gsym);
340
341 // Return the .rel.plt section data.
342 const Reloc_section*
343 rel_plt() const
344 { return this->rel_; }
345
346 protected:
347 void
348 do_adjust_output_section(Output_section* os);
349
350 private:
351 // The size of an entry in the PLT.
352 static const int plt_entry_size = 16;
353
354 // The first entry in the PLT.
355 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
356 // procedure linkage table for both programs and shared objects."
357 static unsigned char first_plt_entry[plt_entry_size];
358
359 // Other entries in the PLT for an executable.
360 static unsigned char plt_entry[plt_entry_size];
361
362 // Set the final size.
363 void
364 do_set_address(uint64_t, off_t)
365 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
366
367 // Write out the PLT data.
368 void
369 do_write(Output_file*);
370
371 // The reloc section.
372 Reloc_section* rel_;
373 // The .got.plt section.
374 Output_data_space* got_plt_;
375 // The number of PLT entries.
376 unsigned int count_;
377};
378
379// Create the PLT section. The ordinary .got section is an argument,
380// since we need to refer to the start. We also create our own .got
381// section just for PLT entries.
382
383Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
384 Output_data_space* got_plt)
385 // TODO(csilvers): do we really need an alignment of 8?
386 : Output_section_data(8), got_plt_(got_plt), count_(0)
387{
388 this->rel_ = new Reloc_section();
389 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
390 elfcpp::SHF_ALLOC, this->rel_);
391}
392
393void
394Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
395{
396 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
397 // linker, and so do we.
398 os->set_entsize(4);
399}
400
401// Add an entry to the PLT.
402
403void
404Output_data_plt_x86_64::add_entry(Symbol* gsym)
405{
406 gold_assert(!gsym->has_plt_offset());
407
408 // Note that when setting the PLT offset we skip the initial
409 // reserved PLT entry.
410 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
411
412 ++this->count_;
413
414 off_t got_offset = this->got_plt_->data_size();
415
416 // Every PLT entry needs a GOT entry which points back to the PLT
417 // entry (this will be changed by the dynamic linker, normally
418 // lazily when the function is called).
419 this->got_plt_->set_space_size(got_offset + 8);
420
421 // Every PLT entry needs a reloc.
422 gsym->set_needs_dynsym_entry();
423 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
424 got_offset, 0);
425
426 // Note that we don't need to save the symbol. The contents of the
427 // PLT are independent of which symbols are used. The symbols only
428 // appear in the relocations.
429}
430
431// The first entry in the PLT for an executable.
432
433unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
434{
435 // From AMD64 ABI Draft 0.98, page 76
436 0xff, 0x35, // pushq contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0x90, 0x90, 0x90, 0x90 // noop (x4)
441};
442
443// Subsequent entries in the PLT for an executable.
444
445unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
446{
447 // From AMD64 ABI Draft 0.98, page 76
448 0xff, 0x25, // jmpq indirect
449 0, 0, 0, 0, // replaced with address of symbol in .got
450 0x68, // pushq immediate
451 0, 0, 0, 0, // replaced with offset into relocation table
452 0xe9, // jmpq relative
453 0, 0, 0, 0 // replaced with offset to start of .plt
454};
455
456// Write out the PLT. This uses the hand-coded instructions above,
457// and adjusts them as needed. This is specified by the AMD64 ABI.
458
459void
460Output_data_plt_x86_64::do_write(Output_file* of)
461{
462 const off_t offset = this->offset();
463 const off_t oview_size = this->data_size();
464 unsigned char* const oview = of->get_output_view(offset, oview_size);
465
466 const off_t got_file_offset = this->got_plt_->offset();
467 const off_t got_size = this->got_plt_->data_size();
468 unsigned char* const got_view = of->get_output_view(got_file_offset,
469 got_size);
470
471 unsigned char* pov = oview;
472
473 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
474 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
475
476 memcpy(pov, first_plt_entry, plt_entry_size);
477 if (!parameters->output_is_shared())
478 {
479 // We do a jmp relative to the PC at the end of this instruction.
480 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
481 - (plt_address + 6));
482 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
483 - (plt_address + 12));
484 }
485 pov += plt_entry_size;
486
487 unsigned char* got_pov = got_view;
488
489 memset(got_pov, 0, 24);
490 got_pov += 24;
491
492 unsigned int plt_offset = plt_entry_size;
493 unsigned int got_offset = 24;
494 const unsigned int count = this->count_;
495 for (unsigned int plt_index = 0;
496 plt_index < count;
497 ++plt_index,
498 pov += plt_entry_size,
499 got_pov += 8,
500 plt_offset += plt_entry_size,
501 got_offset += 8)
502 {
503 // Set and adjust the PLT entry itself.
504 memcpy(pov, plt_entry, plt_entry_size);
505 if (parameters->output_is_shared())
506 // FIXME(csilvers): what's the right thing to write here?
507 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
508 else
509 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
510 (got_address + got_offset
511 - (plt_address + plt_offset
512 + 6)));
513
514 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
515 elfcpp::Swap<32, false>::writeval(pov + 12,
516 - (plt_offset + plt_entry_size));
517
518 // Set the entry in the GOT.
519 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
520 }
521
522 gold_assert(pov - oview == oview_size);
523 gold_assert(got_pov - got_view == got_size);
524
525 of->write_output_view(offset, oview_size, oview);
526 of->write_output_view(got_file_offset, got_size, got_view);
527}
528
529// Create a PLT entry for a global symbol.
530
531void
532Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
533 Symbol* gsym)
534{
535 if (gsym->has_plt_offset())
536 return;
537
538 if (this->plt_ == NULL)
539 {
540 // Create the GOT sections first.
541 this->got_section(symtab, layout);
542
543 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
544 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
545 (elfcpp::SHF_ALLOC
546 | elfcpp::SHF_EXECINSTR),
547 this->plt_);
548 }
549
550 this->plt_->add_entry(gsym);
551}
552
553// Handle a relocation against a non-function symbol defined in a
554// dynamic object. The traditional way to handle this is to generate
555// a COPY relocation to copy the variable at runtime from the shared
556// object into the executable's data segment. However, this is
557// undesirable in general, as if the size of the object changes in the
558// dynamic object, the executable will no longer work correctly. If
559// this relocation is in a writable section, then we can create a
560// dynamic reloc and the dynamic linker will resolve it to the correct
561// address at runtime. However, we do not want do that if the
562// relocation is in a read-only section, as it would prevent the
563// readonly segment from being shared. And if we have to eventually
564// generate a COPY reloc, then any dynamic relocations will be
565// useless. So this means that if this is a writable section, we need
566// to save the relocation until we see whether we have to create a
567// COPY relocation for this symbol for any other relocation.
568
569void
570Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
571 Symbol_table* symtab,
572 Layout* layout,
573 Sized_relobj<64, false>* object,
574 unsigned int data_shndx, Symbol* gsym,
72ec2876 575 const elfcpp::Rela<64, false>& rela)
2e30d253
ILT
576{
577 Sized_symbol<64>* ssym;
578 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
579 SELECT_SIZE(64));
580
581 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
582 data_shndx, ssym))
583 {
584 // So far we do not need a COPY reloc. Save this relocation.
585 // If it turns out that we never need a COPY reloc for this
586 // symbol, then we will emit the relocation.
587 if (this->copy_relocs_ == NULL)
588 this->copy_relocs_ = new Copy_relocs<64, false>();
72ec2876 589 this->copy_relocs_->save(ssym, object, data_shndx, rela);
2e30d253
ILT
590 }
591 else
592 {
593 // Allocate space for this symbol in the .bss section.
594
595 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
596
597 // There is no defined way to determine the required alignment
598 // of the symbol. We pick the alignment based on the size. We
599 // set an arbitrary maximum of 256.
600 unsigned int align;
601 for (align = 1; align < 512; align <<= 1)
602 if ((symsize & align) != 0)
603 break;
604
605 if (this->dynbss_ == NULL)
606 {
607 this->dynbss_ = new Output_data_space(align);
608 layout->add_output_section_data(".bss",
609 elfcpp::SHT_NOBITS,
610 (elfcpp::SHF_ALLOC
611 | elfcpp::SHF_WRITE),
612 this->dynbss_);
613 }
614
615 Output_data_space* dynbss = this->dynbss_;
616
617 if (align > dynbss->addralign())
618 dynbss->set_space_alignment(align);
619
620 off_t dynbss_size = dynbss->data_size();
621 dynbss_size = align_address(dynbss_size, align);
622 off_t offset = dynbss_size;
623 dynbss->set_space_size(dynbss_size + symsize);
624
46fe1623 625 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
2e30d253
ILT
626
627 // Add the COPY reloc.
0ffd9845
ILT
628 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
629 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
630 }
631}
632
633
634// Optimize the TLS relocation type based on what we know about the
635// symbol. IS_FINAL is true if the final address of this symbol is
636// known at link time.
637
e041f13d 638tls::Tls_optimization
2e30d253
ILT
639Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
640{
2e30d253
ILT
641 // If we are generating a shared library, then we can't do anything
642 // in the linker.
643 if (parameters->output_is_shared())
e041f13d 644 return tls::TLSOPT_NONE;
2e30d253
ILT
645
646 switch (r_type)
647 {
648 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
649 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
650 case elfcpp::R_X86_64_TLSDESC_CALL:
651 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
652 // access. Since we know that we are generating an executable,
653 // we can convert this to Initial-Exec. If we also know that
654 // this is a local symbol, we can further switch to Local-Exec.
655 if (is_final)
e041f13d
ILT
656 return tls::TLSOPT_TO_LE;
657 return tls::TLSOPT_TO_IE;
2e30d253 658
d61c17ea 659 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
660 // This is Local-Dynamic, which refers to a local symbol in the
661 // dynamic TLS block. Since we know that we generating an
662 // executable, we can switch to Local-Exec.
e041f13d 663 return tls::TLSOPT_TO_LE;
2e30d253 664
0ffd9845 665 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
666 case elfcpp::R_X86_64_DTPOFF64:
667 // Another Local-Dynamic reloc.
e041f13d 668 return tls::TLSOPT_TO_LE;
0ffd9845 669
d61c17ea 670 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
671 // These are Initial-Exec relocs which get the thread offset
672 // from the GOT. If we know that we are linking against the
673 // local symbol, we can switch to Local-Exec, which links the
674 // thread offset into the instruction.
675 if (is_final)
e041f13d
ILT
676 return tls::TLSOPT_TO_LE;
677 return tls::TLSOPT_NONE;
2e30d253 678
d61c17ea 679 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
680 // When we already have Local-Exec, there is nothing further we
681 // can do.
e041f13d 682 return tls::TLSOPT_NONE;
2e30d253
ILT
683
684 default:
685 gold_unreachable();
686 }
2e30d253
ILT
687}
688
e041f13d
ILT
689// Report an unsupported relocation against a local symbol.
690
691void
692Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
693 unsigned int r_type)
694{
75f2446e
ILT
695 gold_error(_("%s: unsupported reloc %u against local symbol"),
696 object->name().c_str(), r_type);
e041f13d
ILT
697}
698
2e30d253
ILT
699// Scan a relocation for a local symbol.
700
701inline void
702Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
703 Symbol_table* symtab,
704 Layout* layout,
705 Target_x86_64* target,
706 Sized_relobj<64, false>* object,
0ffd9845
ILT
707 unsigned int data_shndx,
708 const elfcpp::Rela<64, false>& reloc,
d61c17ea
ILT
709 unsigned int r_type,
710 const elfcpp::Sym<64, false>&)
2e30d253
ILT
711{
712 switch (r_type)
713 {
714 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
715 case elfcpp::R_386_GNU_VTINHERIT:
716 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
717 break;
718
719 case elfcpp::R_X86_64_64:
720 case elfcpp::R_X86_64_32:
721 case elfcpp::R_X86_64_32S:
722 case elfcpp::R_X86_64_16:
723 case elfcpp::R_X86_64_8:
724 // FIXME: If we are generating a shared object we need to copy
725 // this relocation into the object.
726 gold_assert(!parameters->output_is_shared());
727 break;
728
729 case elfcpp::R_X86_64_PC64:
730 case elfcpp::R_X86_64_PC32:
731 case elfcpp::R_X86_64_PC16:
732 case elfcpp::R_X86_64_PC8:
733 break;
734
f389a824
ILT
735 case elfcpp::R_X86_64_PLT32:
736 // Since we know this is a local symbol, we can handle this as a
737 // PC32 reloc.
738 break;
739
e822f2b1 740 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
741 case elfcpp::R_X86_64_GOTOFF64:
742 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 743 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
744 // We need a GOT section.
745 target->got_section(symtab, layout);
746 break;
747
0ffd9845
ILT
748 case elfcpp::R_X86_64_GOT64:
749 case elfcpp::R_X86_64_GOT32:
750 case elfcpp::R_X86_64_GOTPCREL64:
751 case elfcpp::R_X86_64_GOTPCREL:
752 {
753 // The symbol requires a GOT entry.
754 Output_data_got<64, false>* got = target->got_section(symtab, layout);
755 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
756 if (got->add_local(object, r_sym))
757 {
758 // If we are generating a shared object, we need to add a
759 // dynamic RELATIVE relocation for this symbol.
760 if (parameters->output_is_shared())
761 {
762 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
763 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
764 data_shndx, reloc.get_r_offset(), 0);
765 }
766 }
767 }
768 break;
769
2e30d253
ILT
770 case elfcpp::R_X86_64_COPY:
771 case elfcpp::R_X86_64_GLOB_DAT:
772 case elfcpp::R_X86_64_JUMP_SLOT:
773 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 774 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 775 case elfcpp::R_X86_64_TPOFF64:
2e30d253 776 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 777 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
778 gold_error(_("%s: unexpected reloc %u in object file"),
779 object->name().c_str(), r_type);
2e30d253
ILT
780 break;
781
d61c17ea 782 // These are initial tls relocs, which are expected when linking
56622147
ILT
783 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
784 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 785 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 786 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
787 case elfcpp::R_X86_64_DTPOFF32:
788 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
789 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
790 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
791 {
792 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
793 const tls::Tls_optimization optimized_type
794 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
795 switch (r_type)
796 {
56622147
ILT
797 case elfcpp::R_X86_64_TLSGD: // General-dynamic
798 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
799 case elfcpp::R_X86_64_TLSDESC_CALL:
800 // FIXME: If not relaxing to LE, we need to generate
801 // DTPMOD64 and DTPOFF64 relocs.
802 if (optimized_type != tls::TLSOPT_TO_LE)
803 unsupported_reloc_local(object, r_type);
2e30d253
ILT
804 break;
805
e041f13d 806 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
807 case elfcpp::R_X86_64_DTPOFF32:
808 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
809 // FIXME: If not relaxing to LE, we need to generate a
810 // DTPMOD64 reloc.
811 if (optimized_type != tls::TLSOPT_TO_LE)
812 unsupported_reloc_local(object, r_type);
813 break;
814
56622147
ILT
815 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
816 // FIXME: If not relaxing to LE, we need to generate a
817 // TPOFF64 reloc.
818 if (optimized_type != tls::TLSOPT_TO_LE)
819 unsupported_reloc_local(object, r_type);
820 break;
0ffd9845 821
56622147
ILT
822 case elfcpp::R_X86_64_TPOFF32: // Local-exec
823 // FIXME: If generating a shared object, we need to copy
824 // this relocation into the object.
825 gold_assert(!output_is_shared);
2e30d253 826 break;
e041f13d
ILT
827
828 default:
829 gold_unreachable();
2e30d253
ILT
830 }
831 }
832 break;
2e30d253 833
0ffd9845 834 case elfcpp::R_X86_64_GOTPLT64:
e822f2b1
ILT
835 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
836 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253 837 default:
75f2446e
ILT
838 gold_error(_("%s: unsupported reloc %u against local symbol"),
839 object->name().c_str(), r_type);
2e30d253
ILT
840 break;
841 }
842}
843
844
e041f13d
ILT
845// Report an unsupported relocation against a global symbol.
846
847void
848Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
849 unsigned int r_type,
850 Symbol* gsym)
851{
75f2446e
ILT
852 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
853 object->name().c_str(), r_type, gsym->name());
e041f13d
ILT
854}
855
2e30d253
ILT
856// Scan a relocation for a global symbol.
857
858inline void
859Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
860 Symbol_table* symtab,
861 Layout* layout,
862 Target_x86_64* target,
863 Sized_relobj<64, false>* object,
864 unsigned int data_shndx,
865 const elfcpp::Rela<64, false>& reloc,
866 unsigned int r_type,
867 Symbol* gsym)
2e30d253
ILT
868{
869 switch (r_type)
870 {
871 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
872 case elfcpp::R_386_GNU_VTINHERIT:
873 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
874 break;
875
876 case elfcpp::R_X86_64_64:
877 case elfcpp::R_X86_64_PC64:
878 case elfcpp::R_X86_64_32:
879 case elfcpp::R_X86_64_32S:
880 case elfcpp::R_X86_64_PC32:
881 case elfcpp::R_X86_64_16:
882 case elfcpp::R_X86_64_PC16:
883 case elfcpp::R_X86_64_8:
884 case elfcpp::R_X86_64_PC8:
885 // FIXME: If we are generating a shared object we may need to
886 // copy this relocation into the object. If this symbol is
887 // defined in a shared object, we may need to copy this
888 // relocation in order to avoid a COPY relocation.
889 gold_assert(!parameters->output_is_shared());
890
891 if (gsym->is_from_dynobj())
892 {
893 // This symbol is defined in a dynamic object. If it is a
894 // function, we make a PLT entry. Otherwise we need to
895 // either generate a COPY reloc or copy this reloc.
896 if (gsym->type() == elfcpp::STT_FUNC)
4fb6c25d
ILT
897 {
898 target->make_plt_entry(symtab, layout, gsym);
899
900 // If this is not a PC relative reference, then we may
901 // be taking the address of the function. In that case
902 // we need to set the entry in the dynamic symbol table
903 // to the address of the PLT entry.
904 if (r_type != elfcpp::R_X86_64_PC64
905 && r_type != elfcpp::R_X86_64_PC32
906 && r_type != elfcpp::R_X86_64_PC16
907 && r_type != elfcpp::R_X86_64_PC8)
908 gsym->set_needs_dynsym_value();
909 }
2e30d253
ILT
910 else
911 target->copy_reloc(&options, symtab, layout, object, data_shndx,
912 gsym, reloc);
913 }
914
915 break;
916
ff006520 917 case elfcpp::R_X86_64_GOT64:
2e30d253 918 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
919 case elfcpp::R_X86_64_GOTPCREL64:
920 case elfcpp::R_X86_64_GOTPCREL:
921 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
922 {
923 // The symbol requires a GOT entry.
924 Output_data_got<64, false>* got = target->got_section(symtab, layout);
925 if (got->add_global(gsym))
926 {
927 // If this symbol is not fully resolved, we need to add a
928 // dynamic relocation for it.
929 if (!gsym->final_value_is_known())
930 {
0ffd9845
ILT
931 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
932 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
933 gsym->got_offset(), 0);
2e30d253
ILT
934 }
935 }
936 }
937 break;
938
939 case elfcpp::R_X86_64_PLT32:
940 // If the symbol is fully resolved, this is just a PC32 reloc.
941 // Otherwise we need a PLT entry.
942 if (gsym->final_value_is_known())
943 break;
944 target->make_plt_entry(symtab, layout, gsym);
945 break;
946
e822f2b1 947 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
948 case elfcpp::R_X86_64_GOTOFF64:
949 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 950 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
951 // We need a GOT section.
952 target->got_section(symtab, layout);
953 break;
954
2e30d253
ILT
955 case elfcpp::R_X86_64_COPY:
956 case elfcpp::R_X86_64_GLOB_DAT:
957 case elfcpp::R_X86_64_JUMP_SLOT:
958 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 959 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 960 case elfcpp::R_X86_64_TPOFF64:
2e30d253 961 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 962 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
963 gold_error(_("%s: unexpected reloc %u in object file"),
964 object->name().c_str(), r_type);
2e30d253 965 break;
2e30d253 966
d61c17ea 967 // These are initial tls relocs, which are expected for global()
56622147
ILT
968 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
969 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 970 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 971 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
972 case elfcpp::R_X86_64_DTPOFF32:
973 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
974 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
975 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
976 {
977 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
978 const tls::Tls_optimization optimized_type
979 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
980 switch (r_type)
981 {
56622147
ILT
982 case elfcpp::R_X86_64_TLSGD: // General-dynamic
983 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
984 case elfcpp::R_X86_64_TLSDESC_CALL:
985 // FIXME: If not relaxing to LE, we need to generate
986 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
987 if (optimized_type != tls::TLSOPT_TO_LE)
988 unsupported_reloc_global(object, r_type, gsym);
2e30d253
ILT
989 break;
990
e041f13d 991 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
992 case elfcpp::R_X86_64_DTPOFF32:
993 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
994 // FIXME: If not relaxing to LE, we need to generate a
995 // DTPMOD64 reloc.
996 if (optimized_type != tls::TLSOPT_TO_LE)
997 unsupported_reloc_global(object, r_type, gsym);
998 break;
999
56622147
ILT
1000 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1001 // FIXME: If not relaxing to LE, we need to generate a
1002 // TPOFF64 reloc.
1003 if (optimized_type != tls::TLSOPT_TO_LE)
1004 unsupported_reloc_global(object, r_type, gsym);
1005 break;
0ffd9845 1006
56622147
ILT
1007 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1008 // FIXME: If generating a shared object, we need to copy
1009 // this relocation into the object.
1010 gold_assert(is_final);
2e30d253 1011 break;
e041f13d
ILT
1012
1013 default:
1014 gold_unreachable();
2e30d253
ILT
1015 }
1016 }
1017 break;
e822f2b1
ILT
1018 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1019 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253 1020 default:
75f2446e
ILT
1021 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1022 object->name().c_str(), r_type, gsym->name());
2e30d253
ILT
1023 break;
1024 }
1025}
1026
1027// Scan relocations for a section.
1028
1029void
1030Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1031 Symbol_table* symtab,
1032 Layout* layout,
1033 Sized_relobj<64, false>* object,
1034 unsigned int data_shndx,
1035 unsigned int sh_type,
1036 const unsigned char* prelocs,
1037 size_t reloc_count,
1038 size_t local_symbol_count,
1039 const unsigned char* plocal_symbols,
1040 Symbol** global_symbols)
2e30d253
ILT
1041{
1042 if (sh_type == elfcpp::SHT_REL)
1043 {
75f2446e
ILT
1044 gold_error(_("%s: unsupported REL reloc section"),
1045 object->name().c_str());
1046 return;
2e30d253
ILT
1047 }
1048
1049 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1050 Target_x86_64::Scan>(
1051 options,
1052 symtab,
1053 layout,
1054 this,
1055 object,
1056 data_shndx,
1057 prelocs,
1058 reloc_count,
1059 local_symbol_count,
1060 plocal_symbols,
1061 global_symbols);
1062}
1063
1064// Finalize the sections.
1065
1066void
1067Target_x86_64::do_finalize_sections(Layout* layout)
1068{
1069 // Fill in some more dynamic tags.
1070 Output_data_dynamic* const odyn = layout->dynamic_data();
1071 if (odyn != NULL)
1072 {
1073 if (this->got_plt_ != NULL)
1074 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1075
1076 if (this->plt_ != NULL)
1077 {
1078 const Output_data* od = this->plt_->rel_plt();
1079 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1080 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1081 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1082 }
1083
0ffd9845 1084 if (this->rela_dyn_ != NULL)
2e30d253 1085 {
0ffd9845 1086 const Output_data* od = this->rela_dyn_;
2e30d253 1087 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1088 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1089 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1090 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1091 }
1092
1093 if (!parameters->output_is_shared())
1094 {
1095 // The value of the DT_DEBUG tag is filled in by the dynamic
1096 // linker at run time, and used by the debugger.
1097 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1098 }
1099 }
1100
1101 // Emit any relocs we saved in an attempt to avoid generating COPY
1102 // relocs.
1103 if (this->copy_relocs_ == NULL)
1104 return;
1105 if (this->copy_relocs_->any_to_emit())
1106 {
0ffd9845
ILT
1107 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1108 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1109 }
1110 delete this->copy_relocs_;
1111 this->copy_relocs_ = NULL;
1112}
1113
1114// Perform a relocation.
1115
1116inline bool
1117Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1118 Target_x86_64* target,
1119 size_t relnum,
0ffd9845 1120 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1121 unsigned int r_type,
1122 const Sized_symbol<64>* gsym,
1123 const Symbol_value<64>* psymval,
1124 unsigned char* view,
1125 elfcpp::Elf_types<64>::Elf_Addr address,
1126 off_t view_size)
1127{
1128 if (this->skip_call_tls_get_addr_)
1129 {
1130 if (r_type != elfcpp::R_X86_64_PLT32
1131 || gsym == NULL
0ffd9845 1132 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1133 {
75f2446e
ILT
1134 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1135 _("missing expected TLS relocation"));
1136 }
1137 else
1138 {
1139 this->skip_call_tls_get_addr_ = false;
1140 return false;
2e30d253 1141 }
2e30d253
ILT
1142 }
1143
1144 // Pick the value to use for symbols defined in shared objects.
1145 Symbol_value<64> symval;
1146 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1147 {
1148 symval.set_output_value(target->plt_section()->address()
1149 + gsym->plt_offset());
1150 psymval = &symval;
1151 }
1152
1153 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1154 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1155
1156 // Get the GOT offset if needed.
1157 bool have_got_offset = false;
1158 unsigned int got_offset = 0;
1159 switch (r_type)
1160 {
1161 case elfcpp::R_X86_64_GOT32:
1162 case elfcpp::R_X86_64_GOT64:
1163 case elfcpp::R_X86_64_GOTPLT64:
1164 case elfcpp::R_X86_64_GOTPCREL:
1165 case elfcpp::R_X86_64_GOTPCREL64:
1166 if (gsym != NULL)
1167 {
1168 gold_assert(gsym->has_got_offset());
1169 got_offset = gsym->got_offset();
1170 }
1171 else
1172 {
1173 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1174 got_offset = object->local_got_offset(r_sym);
1175 }
1176 have_got_offset = true;
1177 break;
1178
1179 default:
1180 break;
1181 }
2e30d253
ILT
1182
1183 switch (r_type)
1184 {
1185 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1186 case elfcpp::R_386_GNU_VTINHERIT:
1187 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1188 break;
1189
1190 case elfcpp::R_X86_64_64:
1191 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1192 break;
1193
1194 case elfcpp::R_X86_64_PC64:
1195 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1196 address);
1197 break;
1198
1199 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1200 // FIXME: we need to verify that value + addend fits into 32 bits:
1201 // uint64_t x = value + addend;
1202 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1203 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1204 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1205 break;
1206
1207 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1208 // FIXME: we need to verify that value + addend fits into 32 bits:
1209 // int64_t x = value + addend; // note this quantity is signed!
1210 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1211 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1212 break;
1213
1214 case elfcpp::R_X86_64_PC32:
1215 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1216 address);
1217 break;
1218
1219 case elfcpp::R_X86_64_16:
1220 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1221 break;
1222
1223 case elfcpp::R_X86_64_PC16:
1224 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1225 address);
1226 break;
1227
1228 case elfcpp::R_X86_64_8:
1229 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1230 break;
1231
1232 case elfcpp::R_X86_64_PC8:
1233 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1234 address);
1235 break;
1236
1237 case elfcpp::R_X86_64_PLT32:
f389a824
ILT
1238 gold_assert(gsym == NULL
1239 || gsym->has_plt_offset()
2e30d253
ILT
1240 || gsym->final_value_is_known());
1241 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1242 address);
1243 break;
1244
1245 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1246 gold_assert(have_got_offset);
1247 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1248 break;
1249
e822f2b1
ILT
1250 case elfcpp::R_X86_64_GOTPC32:
1251 {
1252 gold_assert(gsym);
1253 elfcpp::Elf_types<64>::Elf_Addr value;
1254 value = target->got_section(NULL, NULL)->address();
1255 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1256 }
1257 break;
1258
1259 case elfcpp::R_X86_64_GOT64:
1260 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1261 // Since we always add a PLT entry, this is equivalent.
1262 case elfcpp::R_X86_64_GOTPLT64: // TODO(csilvers): correct?
0ffd9845
ILT
1263 gold_assert(have_got_offset);
1264 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1265 break;
1266
1267 case elfcpp::R_X86_64_GOTPC64:
1268 {
1269 gold_assert(gsym);
1270 elfcpp::Elf_types<64>::Elf_Addr value;
1271 value = target->got_section(NULL, NULL)->address();
1272 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1273 }
1274 break;
1275
2e30d253
ILT
1276 case elfcpp::R_X86_64_GOTOFF64:
1277 {
1278 elfcpp::Elf_types<64>::Elf_Addr value;
1279 value = (psymval->value(object, 0)
1280 - target->got_section(NULL, NULL)->address());
1281 Relocate_functions<64, false>::rela64(view, value, addend);
1282 }
1283 break;
1284
1285 case elfcpp::R_X86_64_GOTPCREL:
1286 {
0ffd9845
ILT
1287 gold_assert(have_got_offset);
1288 elfcpp::Elf_types<64>::Elf_Addr value;
1289 value = target->got_section(NULL, NULL)->address() + got_offset;
1290 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1291 }
1292 break;
1293
e822f2b1
ILT
1294 case elfcpp::R_X86_64_GOTPCREL64:
1295 {
0ffd9845
ILT
1296 gold_assert(have_got_offset);
1297 elfcpp::Elf_types<64>::Elf_Addr value;
1298 value = target->got_section(NULL, NULL)->address() + got_offset;
1299 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1300 }
1301 break;
1302
2e30d253
ILT
1303 case elfcpp::R_X86_64_COPY:
1304 case elfcpp::R_X86_64_GLOB_DAT:
1305 case elfcpp::R_X86_64_JUMP_SLOT:
1306 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1307 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1308 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1309 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1310 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1311 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1312 _("unexpected reloc %u in object file"),
1313 r_type);
2e30d253
ILT
1314 break;
1315
d61c17ea 1316 // These are initial tls relocs, which are expected when linking
56622147
ILT
1317 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1318 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1319 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1320 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1321 case elfcpp::R_X86_64_DTPOFF32:
1322 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1323 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1324 case elfcpp::R_X86_64_TPOFF32: // Local-exec
0ffd9845 1325 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
2e30d253
ILT
1326 address, view_size);
1327 break;
2e30d253 1328
e822f2b1
ILT
1329 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1330 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
1331 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): implement me!
2e30d253 1332 default:
75f2446e
ILT
1333 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1334 _("unsupported reloc %u"),
1335 r_type);
2e30d253
ILT
1336 break;
1337 }
1338
1339 return true;
1340}
1341
1342// Perform a TLS relocation.
1343
1344inline void
d61c17ea
ILT
1345Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1346 size_t relnum,
72ec2876 1347 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1348 unsigned int r_type,
1349 const Sized_symbol<64>* gsym,
1350 const Symbol_value<64>* psymval,
1351 unsigned char* view,
2e30d253 1352 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1353 off_t view_size)
2e30d253 1354{
2e30d253
ILT
1355 Output_segment* tls_segment = relinfo->layout->tls_segment();
1356 if (tls_segment == NULL)
1357 {
72ec2876 1358 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e
ILT
1359 _("TLS reloc but no TLS segment"));
1360 return;
2e30d253
ILT
1361 }
1362
1363 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1364
1365 const bool is_final = (gsym == NULL
1366 ? !parameters->output_is_shared()
1367 : gsym->final_value_is_known());
e041f13d
ILT
1368 const tls::Tls_optimization optimized_type
1369 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1370 switch (r_type)
1371 {
56622147
ILT
1372 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1373 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d
ILT
1374 case elfcpp::R_X86_64_TLSDESC_CALL:
1375 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1376 {
1377 this->tls_gd_to_le(relinfo, relnum, tls_segment,
72ec2876 1378 rela, r_type, value, view,
2e30d253
ILT
1379 view_size);
1380 break;
1381 }
72ec2876 1382 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1383 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1384 break;
1385
56622147 1386 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
e041f13d
ILT
1387 if (optimized_type == tls::TLSOPT_TO_LE)
1388 {
72ec2876
ILT
1389 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1390 value, view, view_size);
1391 break;
e041f13d 1392 }
72ec2876 1393 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1394 _("unsupported reloc %u"), r_type);
2e30d253 1395 break;
0ffd9845
ILT
1396
1397 case elfcpp::R_X86_64_DTPOFF32:
e041f13d 1398 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1399 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1400 else
1401 value = value - tls_segment->vaddr();
1402 Relocate_functions<64, false>::rel32(view, value);
1403 break;
1404
1405 case elfcpp::R_X86_64_DTPOFF64:
e041f13d 1406 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1407 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1408 else
1409 value = value - tls_segment->vaddr();
1410 Relocate_functions<64, false>::rel64(view, value);
1411 break;
2e30d253 1412
56622147
ILT
1413 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1414 if (optimized_type == tls::TLSOPT_TO_LE)
1415 {
1416 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1417 rela, r_type, value, view,
1418 view_size);
1419 break;
1420 }
1421 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1422 _("unsupported reloc type %u"),
1423 r_type);
1424 break;
0ffd9845 1425
56622147
ILT
1426 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1427 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1428 Relocate_functions<64, false>::rel32(view, value);
1429 break;
2e30d253 1430 }
2e30d253
ILT
1431}
1432
e041f13d 1433// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1434// Local-Exec.
1435
1436inline void
d61c17ea
ILT
1437Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1438 size_t relnum,
1439 Output_segment* tls_segment,
72ec2876 1440 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1441 unsigned int,
1442 elfcpp::Elf_types<64>::Elf_Addr value,
1443 unsigned char* view,
1444 off_t view_size)
2e30d253 1445{
0ffd9845
ILT
1446 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1447 // .word 0x6666; rex64; call __tls_get_addr
1448 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1449
72ec2876
ILT
1450 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1451 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2e30d253 1452
72ec2876
ILT
1453 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1454 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1455 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1456 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2e30d253 1457
0ffd9845 1458 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1459
0ffd9845
ILT
1460 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1461 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1462
1463 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1464 // We can skip it.
1465 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1466}
1467
2e30d253 1468inline void
72ec2876
ILT
1469Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1470 size_t relnum,
1471 Output_segment*,
1472 const elfcpp::Rela<64, false>& rela,
1473 unsigned int,
1474 elfcpp::Elf_types<64>::Elf_Addr,
1475 unsigned char* view,
1476 off_t view_size)
2e30d253 1477{
72ec2876
ILT
1478 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1479 // ... leq foo@dtpoff(%rax),%reg
1480 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2e30d253 1481
72ec2876
ILT
1482 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1483 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2e30d253 1484
72ec2876
ILT
1485 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1486 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1487
1488 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1489
1490 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1491
1492 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1493 // We can skip it.
1494 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1495}
1496
56622147
ILT
1497// Do a relocation in which we convert a TLS Initial-Exec to a
1498// Local-Exec.
1499
1500inline void
1501Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1502 size_t relnum,
1503 Output_segment* tls_segment,
1504 const elfcpp::Rela<64, false>& rela,
1505 unsigned int,
1506 elfcpp::Elf_types<64>::Elf_Addr value,
1507 unsigned char* view,
1508 off_t view_size)
1509{
1510 // We need to examine the opcodes to figure out which instruction we
1511 // are looking at.
1512
1513 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1514 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1515
1516 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1517 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1518
1519 unsigned char op1 = view[-3];
1520 unsigned char op2 = view[-2];
1521 unsigned char op3 = view[-1];
1522 unsigned char reg = op3 >> 3;
1523
1524 if (op2 == 0x8b)
1525 {
1526 // movq
1527 if (op1 == 0x4c)
1528 view[-3] = 0x49;
1529 view[-2] = 0xc7;
1530 view[-1] = 0xc0 | reg;
1531 }
1532 else if (reg == 4)
1533 {
1534 // Special handling for %rsp.
1535 if (op1 == 0x4c)
1536 view[-3] = 0x49;
1537 view[-2] = 0x81;
1538 view[-1] = 0xc0 | reg;
1539 }
1540 else
1541 {
1542 // addq
1543 if (op1 == 0x4c)
1544 view[-3] = 0x4d;
1545 view[-2] = 0x8d;
1546 view[-1] = 0x80 | reg | (reg << 3);
1547 }
1548
1549 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1550 Relocate_functions<64, false>::rela32(view, value, 0);
1551}
1552
2e30d253
ILT
1553// Relocate section data.
1554
1555void
1556Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1557 unsigned int sh_type,
1558 const unsigned char* prelocs,
1559 size_t reloc_count,
1560 unsigned char* view,
1561 elfcpp::Elf_types<64>::Elf_Addr address,
1562 off_t view_size)
2e30d253
ILT
1563{
1564 gold_assert(sh_type == elfcpp::SHT_RELA);
1565
1566 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1567 Target_x86_64::Relocate>(
1568 relinfo,
1569 this,
1570 prelocs,
1571 reloc_count,
1572 view,
1573 address,
1574 view_size);
1575}
1576
4fb6c25d
ILT
1577// Return the value to use for a dynamic which requires special
1578// treatment. This is how we support equality comparisons of function
1579// pointers across shared library boundaries, as described in the
1580// processor specific ABI supplement.
1581
1582uint64_t
1583Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1584{
1585 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1586 return this->plt_section()->address() + gsym->plt_offset();
1587}
1588
2e30d253
ILT
1589// Return a string used to fill a code section with nops to take up
1590// the specified length.
1591
1592std::string
1593Target_x86_64::do_code_fill(off_t length)
1594{
1595 if (length >= 16)
1596 {
1597 // Build a jmpq instruction to skip over the bytes.
1598 unsigned char jmp[5];
1599 jmp[0] = 0xe9;
1600 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1601 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1602 + std::string(length - 5, '\0'));
1603 }
1604
1605 // Nop sequences of various lengths.
1606 const char nop1[1] = { 0x90 }; // nop
1607 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1608 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1609 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1610 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1611 0x00 }; // leal 0(%esi,1),%esi
1612 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1613 0x00, 0x00 };
1614 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1615 0x00, 0x00, 0x00 };
1616 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1617 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1618 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1619 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1620 0x00 };
1621 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1622 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1623 0x00, 0x00 };
1624 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1625 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1626 0x00, 0x00, 0x00 };
1627 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1628 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1629 0x00, 0x00, 0x00, 0x00 };
1630 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1631 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1632 0x27, 0x00, 0x00, 0x00,
1633 0x00 };
1634 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1635 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1636 0xbc, 0x27, 0x00, 0x00,
1637 0x00, 0x00 };
1638 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1639 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1640 0x90, 0x90, 0x90, 0x90,
1641 0x90, 0x90, 0x90 };
1642
1643 const char* nops[16] = {
1644 NULL,
1645 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1646 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1647 };
1648
1649 return std::string(nops[length], length);
1650}
1651
1652// The selector for x86_64 object files.
1653
1654class Target_selector_x86_64 : public Target_selector
1655{
1656public:
1657 Target_selector_x86_64()
1658 : Target_selector(elfcpp::EM_X86_64, 64, false)
1659 { }
1660
1661 Target*
1662 recognize(int machine, int osabi, int abiversion);
1663
1664 private:
1665 Target_x86_64* target_;
1666};
1667
1668// Recognize an x86_64 object file when we already know that the machine
1669// number is EM_X86_64.
1670
1671Target*
1672Target_selector_x86_64::recognize(int, int, int)
1673{
1674 if (this->target_ == NULL)
1675 this->target_ = new Target_x86_64();
1676 return this->target_;
1677}
1678
1679Target_selector_x86_64 target_selector_x86_64;
1680
1681} // End anonymous namespace.
This page took 0.104764 seconds and 4 git commands to generate.