*** empty log message ***
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols,
88 Symbol** global_symbols);
89
90 // Finalize the sections.
91 void
92 do_finalize_sections(Layout*);
93
4fb6c25d
ILT
94 // Return the value to use for a dynamic which requires special
95 // treatment.
96 uint64_t
97 do_dynsym_value(const Symbol*) const;
98
2e30d253
ILT
99 // Relocate a section.
100 void
101 relocate_section(const Relocate_info<64, false>*,
102 unsigned int sh_type,
103 const unsigned char* prelocs,
104 size_t reloc_count,
105 unsigned char* view,
106 elfcpp::Elf_types<64>::Elf_Addr view_address,
107 off_t view_size);
108
109 // Return a string used to fill a code section with nops.
110 std::string
111 do_code_fill(off_t length);
112
113 private:
114 // The class which scans relocations.
115 struct Scan
116 {
117 inline void
118 local(const General_options& options, Symbol_table* symtab,
119 Layout* layout, Target_x86_64* target,
120 Sized_relobj<64, false>* object,
121 unsigned int data_shndx,
122 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123 const elfcpp::Sym<64, false>& lsym);
124
125 inline void
126 global(const General_options& options, Symbol_table* symtab,
127 Layout* layout, Target_x86_64* target,
128 Sized_relobj<64, false>* object,
129 unsigned int data_shndx,
130 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131 Symbol* gsym);
e041f13d
ILT
132
133 static void
134 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
135
136 static void
137 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
138 Symbol*);
2e30d253
ILT
139 };
140
141 // The class which implements relocation.
142 class Relocate
143 {
144 public:
145 Relocate()
146 : skip_call_tls_get_addr_(false)
147 { }
148
149 ~Relocate()
150 {
151 if (this->skip_call_tls_get_addr_)
152 {
153 // FIXME: This needs to specify the location somehow.
a0c4fb0a 154 gold_error(_("missing expected TLS relocation"));
2e30d253
ILT
155 }
156 }
157
158 // Do a relocation. Return false if the caller should not issue
159 // any warnings about this relocation.
160 inline bool
161 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162 const elfcpp::Rela<64, false>&,
163 unsigned int r_type, const Sized_symbol<64>*,
164 const Symbol_value<64>*,
165 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
166 off_t);
167
168 private:
169 // Do a TLS relocation.
170 inline void
171 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172 const elfcpp::Rela<64, false>&,
173 unsigned int r_type, const Sized_symbol<64>*,
174 const Symbol_value<64>*,
175 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
176
56622147
ILT
177 // Do a TLS General-Dynamic to Local-Exec transition.
178 inline void
179 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
180 Output_segment* tls_segment,
181 const elfcpp::Rela<64, false>&, unsigned int r_type,
182 elfcpp::Elf_types<64>::Elf_Addr value,
183 unsigned char* view,
184 off_t view_size);
185
56622147 186 // Do a TLS Local-Dynamic to Local-Exec transition.
2e30d253 187 inline void
56622147 188 tls_ld_to_le(const Relocate_info<64, false>*, size_t relnum,
2e30d253
ILT
189 Output_segment* tls_segment,
190 const elfcpp::Rela<64, false>&, unsigned int r_type,
191 elfcpp::Elf_types<64>::Elf_Addr value,
192 unsigned char* view,
193 off_t view_size);
194
56622147
ILT
195 // Do a TLS Initial-Exec to Local-Exec transition.
196 static inline void
197 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
72ec2876
ILT
198 Output_segment* tls_segment,
199 const elfcpp::Rela<64, false>&, unsigned int r_type,
200 elfcpp::Elf_types<64>::Elf_Addr value,
201 unsigned char* view,
202 off_t view_size);
2e30d253
ILT
203
204 // This is set if we should skip the next reloc, which should be a
205 // PLT32 reloc against ___tls_get_addr.
206 bool skip_call_tls_get_addr_;
207 };
208
209 // Adjust TLS relocation type based on the options and whether this
210 // is a local symbol.
e041f13d 211 static tls::Tls_optimization
2e30d253
ILT
212 optimize_tls_reloc(bool is_final, int r_type);
213
214 // Get the GOT section, creating it if necessary.
215 Output_data_got<64, false>*
216 got_section(Symbol_table*, Layout*);
217
218 // Create a PLT entry for a global symbol.
219 void
220 make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222 // Get the PLT section.
223 Output_data_plt_x86_64*
224 plt_section() const
225 {
226 gold_assert(this->plt_ != NULL);
227 return this->plt_;
228 }
229
230 // Get the dynamic reloc section, creating it if necessary.
231 Reloc_section*
0ffd9845 232 rela_dyn_section(Layout*);
2e30d253
ILT
233
234 // Copy a relocation against a global symbol.
235 void
236 copy_reloc(const General_options*, Symbol_table*, Layout*,
237 Sized_relobj<64, false>*, unsigned int,
238 Symbol*, const elfcpp::Rela<64, false>&);
239
240 // Information about this specific target which we pass to the
241 // general Target structure.
242 static const Target::Target_info x86_64_info;
243
244 // The GOT section.
245 Output_data_got<64, false>* got_;
246 // The PLT section.
247 Output_data_plt_x86_64* plt_;
248 // The GOT PLT section.
249 Output_data_space* got_plt_;
250 // The dynamic reloc section.
0ffd9845 251 Reloc_section* rela_dyn_;
2e30d253
ILT
252 // Relocs saved to avoid a COPY reloc.
253 Copy_relocs<64, false>* copy_relocs_;
254 // Space for variables copied with a COPY reloc.
255 Output_data_space* dynbss_;
256};
257
258const Target::Target_info Target_x86_64::x86_64_info =
259{
260 64, // size
261 false, // is_big_endian
262 elfcpp::EM_X86_64, // machine_code
263 false, // has_make_symbol
264 false, // has_resolve
265 true, // has_code_fill
35cdfc9a 266 true, // is_default_stack_executable
2e30d253 267 "/lib/ld64.so.1", // program interpreter
0c5e9c22 268 0x400000, // default_text_segment_address
2e30d253
ILT
269 0x1000, // abi_pagesize
270 0x1000 // common_pagesize
271};
272
273// Get the GOT section, creating it if necessary.
274
275Output_data_got<64, false>*
276Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
277{
278 if (this->got_ == NULL)
279 {
280 gold_assert(symtab != NULL && layout != NULL);
281
282 this->got_ = new Output_data_got<64, false>();
283
284 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286 this->got_);
287
288 // The old GNU linker creates a .got.plt section. We just
289 // create another set of data in the .got section. Note that we
290 // always create a PLT if we create a GOT, although the PLT
291 // might be empty.
2e30d253
ILT
292 this->got_plt_ = new Output_data_space(8);
293 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
294 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
295 this->got_plt_);
296
297 // The first three entries are reserved.
298 this->got_plt_->set_space_size(3 * 8);
299
300 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
301 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
302 this->got_plt_,
303 0, 0, elfcpp::STT_OBJECT,
304 elfcpp::STB_LOCAL,
305 elfcpp::STV_HIDDEN, 0,
306 false, false);
307 }
308
309 return this->got_;
310}
311
312// Get the dynamic reloc section, creating it if necessary.
313
314Target_x86_64::Reloc_section*
0ffd9845 315Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 316{
0ffd9845 317 if (this->rela_dyn_ == NULL)
2e30d253
ILT
318 {
319 gold_assert(layout != NULL);
0ffd9845 320 this->rela_dyn_ = new Reloc_section();
2e30d253 321 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 322 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 323 }
0ffd9845 324 return this->rela_dyn_;
2e30d253
ILT
325}
326
327// A class to handle the PLT data.
328
329class Output_data_plt_x86_64 : public Output_section_data
330{
331 public:
332 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
333
334 Output_data_plt_x86_64(Layout*, Output_data_space*);
335
336 // Add an entry to the PLT.
337 void
338 add_entry(Symbol* gsym);
339
340 // Return the .rel.plt section data.
341 const Reloc_section*
342 rel_plt() const
343 { return this->rel_; }
344
345 protected:
346 void
347 do_adjust_output_section(Output_section* os);
348
349 private:
350 // The size of an entry in the PLT.
351 static const int plt_entry_size = 16;
352
353 // The first entry in the PLT.
354 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
355 // procedure linkage table for both programs and shared objects."
356 static unsigned char first_plt_entry[plt_entry_size];
357
358 // Other entries in the PLT for an executable.
359 static unsigned char plt_entry[plt_entry_size];
360
361 // Set the final size.
362 void
363 do_set_address(uint64_t, off_t)
364 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
365
366 // Write out the PLT data.
367 void
368 do_write(Output_file*);
369
370 // The reloc section.
371 Reloc_section* rel_;
372 // The .got.plt section.
373 Output_data_space* got_plt_;
374 // The number of PLT entries.
375 unsigned int count_;
376};
377
378// Create the PLT section. The ordinary .got section is an argument,
379// since we need to refer to the start. We also create our own .got
380// section just for PLT entries.
381
382Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
383 Output_data_space* got_plt)
2e30d253
ILT
384 : Output_section_data(8), got_plt_(got_plt), count_(0)
385{
386 this->rel_ = new Reloc_section();
387 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
388 elfcpp::SHF_ALLOC, this->rel_);
389}
390
391void
392Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
393{
394 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
395 // linker, and so do we.
396 os->set_entsize(4);
397}
398
399// Add an entry to the PLT.
400
401void
402Output_data_plt_x86_64::add_entry(Symbol* gsym)
403{
404 gold_assert(!gsym->has_plt_offset());
405
406 // Note that when setting the PLT offset we skip the initial
407 // reserved PLT entry.
408 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
409
410 ++this->count_;
411
412 off_t got_offset = this->got_plt_->data_size();
413
414 // Every PLT entry needs a GOT entry which points back to the PLT
415 // entry (this will be changed by the dynamic linker, normally
416 // lazily when the function is called).
417 this->got_plt_->set_space_size(got_offset + 8);
418
419 // Every PLT entry needs a reloc.
420 gsym->set_needs_dynsym_entry();
421 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
422 got_offset, 0);
423
424 // Note that we don't need to save the symbol. The contents of the
425 // PLT are independent of which symbols are used. The symbols only
426 // appear in the relocations.
427}
428
429// The first entry in the PLT for an executable.
430
431unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
432{
433 // From AMD64 ABI Draft 0.98, page 76
434 0xff, 0x35, // pushq contents of memory address
435 0, 0, 0, 0, // replaced with address of .got + 4
436 0xff, 0x25, // jmp indirect
437 0, 0, 0, 0, // replaced with address of .got + 8
438 0x90, 0x90, 0x90, 0x90 // noop (x4)
439};
440
441// Subsequent entries in the PLT for an executable.
442
443unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
444{
445 // From AMD64 ABI Draft 0.98, page 76
446 0xff, 0x25, // jmpq indirect
447 0, 0, 0, 0, // replaced with address of symbol in .got
448 0x68, // pushq immediate
449 0, 0, 0, 0, // replaced with offset into relocation table
450 0xe9, // jmpq relative
451 0, 0, 0, 0 // replaced with offset to start of .plt
452};
453
454// Write out the PLT. This uses the hand-coded instructions above,
455// and adjusts them as needed. This is specified by the AMD64 ABI.
456
457void
458Output_data_plt_x86_64::do_write(Output_file* of)
459{
460 const off_t offset = this->offset();
461 const off_t oview_size = this->data_size();
462 unsigned char* const oview = of->get_output_view(offset, oview_size);
463
464 const off_t got_file_offset = this->got_plt_->offset();
465 const off_t got_size = this->got_plt_->data_size();
466 unsigned char* const got_view = of->get_output_view(got_file_offset,
467 got_size);
468
469 unsigned char* pov = oview;
470
471 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
472 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
473
474 memcpy(pov, first_plt_entry, plt_entry_size);
475 if (!parameters->output_is_shared())
476 {
477 // We do a jmp relative to the PC at the end of this instruction.
478 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
479 - (plt_address + 6));
480 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
481 - (plt_address + 12));
482 }
483 pov += plt_entry_size;
484
485 unsigned char* got_pov = got_view;
486
487 memset(got_pov, 0, 24);
488 got_pov += 24;
489
490 unsigned int plt_offset = plt_entry_size;
491 unsigned int got_offset = 24;
492 const unsigned int count = this->count_;
493 for (unsigned int plt_index = 0;
494 plt_index < count;
495 ++plt_index,
496 pov += plt_entry_size,
497 got_pov += 8,
498 plt_offset += plt_entry_size,
499 got_offset += 8)
500 {
501 // Set and adjust the PLT entry itself.
502 memcpy(pov, plt_entry, plt_entry_size);
503 if (parameters->output_is_shared())
504 // FIXME(csilvers): what's the right thing to write here?
505 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
506 else
507 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
508 (got_address + got_offset
509 - (plt_address + plt_offset
510 + 6)));
511
512 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
513 elfcpp::Swap<32, false>::writeval(pov + 12,
514 - (plt_offset + plt_entry_size));
515
516 // Set the entry in the GOT.
517 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
518 }
519
520 gold_assert(pov - oview == oview_size);
521 gold_assert(got_pov - got_view == got_size);
522
523 of->write_output_view(offset, oview_size, oview);
524 of->write_output_view(got_file_offset, got_size, got_view);
525}
526
527// Create a PLT entry for a global symbol.
528
529void
530Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
531 Symbol* gsym)
532{
533 if (gsym->has_plt_offset())
534 return;
535
536 if (this->plt_ == NULL)
537 {
538 // Create the GOT sections first.
539 this->got_section(symtab, layout);
540
541 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
542 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
543 (elfcpp::SHF_ALLOC
544 | elfcpp::SHF_EXECINSTR),
545 this->plt_);
546 }
547
548 this->plt_->add_entry(gsym);
549}
550
551// Handle a relocation against a non-function symbol defined in a
552// dynamic object. The traditional way to handle this is to generate
553// a COPY relocation to copy the variable at runtime from the shared
554// object into the executable's data segment. However, this is
555// undesirable in general, as if the size of the object changes in the
556// dynamic object, the executable will no longer work correctly. If
557// this relocation is in a writable section, then we can create a
558// dynamic reloc and the dynamic linker will resolve it to the correct
559// address at runtime. However, we do not want do that if the
560// relocation is in a read-only section, as it would prevent the
561// readonly segment from being shared. And if we have to eventually
562// generate a COPY reloc, then any dynamic relocations will be
563// useless. So this means that if this is a writable section, we need
564// to save the relocation until we see whether we have to create a
565// COPY relocation for this symbol for any other relocation.
566
567void
568Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
569 Symbol_table* symtab,
570 Layout* layout,
571 Sized_relobj<64, false>* object,
572 unsigned int data_shndx, Symbol* gsym,
72ec2876 573 const elfcpp::Rela<64, false>& rela)
2e30d253
ILT
574{
575 Sized_symbol<64>* ssym;
576 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
577 SELECT_SIZE(64));
578
579 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
580 data_shndx, ssym))
581 {
582 // So far we do not need a COPY reloc. Save this relocation.
583 // If it turns out that we never need a COPY reloc for this
584 // symbol, then we will emit the relocation.
585 if (this->copy_relocs_ == NULL)
586 this->copy_relocs_ = new Copy_relocs<64, false>();
72ec2876 587 this->copy_relocs_->save(ssym, object, data_shndx, rela);
2e30d253
ILT
588 }
589 else
590 {
591 // Allocate space for this symbol in the .bss section.
592
593 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
594
595 // There is no defined way to determine the required alignment
596 // of the symbol. We pick the alignment based on the size. We
597 // set an arbitrary maximum of 256.
598 unsigned int align;
599 for (align = 1; align < 512; align <<= 1)
600 if ((symsize & align) != 0)
601 break;
602
603 if (this->dynbss_ == NULL)
604 {
605 this->dynbss_ = new Output_data_space(align);
606 layout->add_output_section_data(".bss",
607 elfcpp::SHT_NOBITS,
608 (elfcpp::SHF_ALLOC
609 | elfcpp::SHF_WRITE),
610 this->dynbss_);
611 }
612
613 Output_data_space* dynbss = this->dynbss_;
614
615 if (align > dynbss->addralign())
616 dynbss->set_space_alignment(align);
617
618 off_t dynbss_size = dynbss->data_size();
619 dynbss_size = align_address(dynbss_size, align);
620 off_t offset = dynbss_size;
621 dynbss->set_space_size(dynbss_size + symsize);
622
46fe1623 623 symtab->define_with_copy_reloc(this, ssym, dynbss, offset);
2e30d253
ILT
624
625 // Add the COPY reloc.
0ffd9845
ILT
626 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
627 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
628 }
629}
630
631
632// Optimize the TLS relocation type based on what we know about the
633// symbol. IS_FINAL is true if the final address of this symbol is
634// known at link time.
635
e041f13d 636tls::Tls_optimization
2e30d253
ILT
637Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
638{
2e30d253
ILT
639 // If we are generating a shared library, then we can't do anything
640 // in the linker.
641 if (parameters->output_is_shared())
e041f13d 642 return tls::TLSOPT_NONE;
2e30d253
ILT
643
644 switch (r_type)
645 {
646 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
647 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
648 case elfcpp::R_X86_64_TLSDESC_CALL:
649 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
650 // access. Since we know that we are generating an executable,
651 // we can convert this to Initial-Exec. If we also know that
652 // this is a local symbol, we can further switch to Local-Exec.
653 if (is_final)
e041f13d
ILT
654 return tls::TLSOPT_TO_LE;
655 return tls::TLSOPT_TO_IE;
2e30d253 656
d61c17ea 657 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
658 // This is Local-Dynamic, which refers to a local symbol in the
659 // dynamic TLS block. Since we know that we generating an
660 // executable, we can switch to Local-Exec.
e041f13d 661 return tls::TLSOPT_TO_LE;
2e30d253 662
0ffd9845 663 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
664 case elfcpp::R_X86_64_DTPOFF64:
665 // Another Local-Dynamic reloc.
e041f13d 666 return tls::TLSOPT_TO_LE;
0ffd9845 667
d61c17ea 668 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
669 // These are Initial-Exec relocs which get the thread offset
670 // from the GOT. If we know that we are linking against the
671 // local symbol, we can switch to Local-Exec, which links the
672 // thread offset into the instruction.
673 if (is_final)
e041f13d
ILT
674 return tls::TLSOPT_TO_LE;
675 return tls::TLSOPT_NONE;
2e30d253 676
d61c17ea 677 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
678 // When we already have Local-Exec, there is nothing further we
679 // can do.
e041f13d 680 return tls::TLSOPT_NONE;
2e30d253
ILT
681
682 default:
683 gold_unreachable();
684 }
2e30d253
ILT
685}
686
e041f13d
ILT
687// Report an unsupported relocation against a local symbol.
688
689void
690Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
691 unsigned int r_type)
692{
75f2446e
ILT
693 gold_error(_("%s: unsupported reloc %u against local symbol"),
694 object->name().c_str(), r_type);
e041f13d
ILT
695}
696
2e30d253
ILT
697// Scan a relocation for a local symbol.
698
699inline void
700Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
701 Symbol_table* symtab,
702 Layout* layout,
703 Target_x86_64* target,
704 Sized_relobj<64, false>* object,
0ffd9845
ILT
705 unsigned int data_shndx,
706 const elfcpp::Rela<64, false>& reloc,
d61c17ea
ILT
707 unsigned int r_type,
708 const elfcpp::Sym<64, false>&)
2e30d253
ILT
709{
710 switch (r_type)
711 {
712 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
713 case elfcpp::R_386_GNU_VTINHERIT:
714 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
715 break;
716
717 case elfcpp::R_X86_64_64:
718 case elfcpp::R_X86_64_32:
719 case elfcpp::R_X86_64_32S:
720 case elfcpp::R_X86_64_16:
721 case elfcpp::R_X86_64_8:
722 // FIXME: If we are generating a shared object we need to copy
723 // this relocation into the object.
724 gold_assert(!parameters->output_is_shared());
725 break;
726
727 case elfcpp::R_X86_64_PC64:
728 case elfcpp::R_X86_64_PC32:
729 case elfcpp::R_X86_64_PC16:
730 case elfcpp::R_X86_64_PC8:
731 break;
732
f389a824
ILT
733 case elfcpp::R_X86_64_PLT32:
734 // Since we know this is a local symbol, we can handle this as a
735 // PC32 reloc.
736 break;
737
fdc2f80f 738 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 739 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
740 case elfcpp::R_X86_64_GOTPC64:
741 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
742 // We need a GOT section.
743 target->got_section(symtab, layout);
ee9e9e86
ILT
744 // For PLTOFF64, we'd normally want a PLT section, but since we
745 // know this is a local symbol, no PLT is needed.
2e30d253
ILT
746 break;
747
0ffd9845
ILT
748 case elfcpp::R_X86_64_GOT64:
749 case elfcpp::R_X86_64_GOT32:
750 case elfcpp::R_X86_64_GOTPCREL64:
751 case elfcpp::R_X86_64_GOTPCREL:
ee9e9e86 752 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
753 {
754 // The symbol requires a GOT entry.
755 Output_data_got<64, false>* got = target->got_section(symtab, layout);
756 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
757 if (got->add_local(object, r_sym))
758 {
759 // If we are generating a shared object, we need to add a
760 // dynamic RELATIVE relocation for this symbol.
761 if (parameters->output_is_shared())
762 {
763 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
764 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
765 data_shndx, reloc.get_r_offset(), 0);
766 }
767 }
ee9e9e86
ILT
768 // For GOTPLT64, we'd normally want a PLT section, but since
769 // we know this is a local symbol, no PLT is needed.
0ffd9845
ILT
770 }
771 break;
772
2e30d253
ILT
773 case elfcpp::R_X86_64_COPY:
774 case elfcpp::R_X86_64_GLOB_DAT:
775 case elfcpp::R_X86_64_JUMP_SLOT:
776 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 777 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 778 case elfcpp::R_X86_64_TPOFF64:
2e30d253 779 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 780 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
781 gold_error(_("%s: unexpected reloc %u in object file"),
782 object->name().c_str(), r_type);
2e30d253
ILT
783 break;
784
d61c17ea 785 // These are initial tls relocs, which are expected when linking
56622147
ILT
786 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
787 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 788 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 789 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
790 case elfcpp::R_X86_64_DTPOFF32:
791 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
792 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
793 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
794 {
795 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
796 const tls::Tls_optimization optimized_type
797 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
798 switch (r_type)
799 {
56622147
ILT
800 case elfcpp::R_X86_64_TLSGD: // General-dynamic
801 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
802 case elfcpp::R_X86_64_TLSDESC_CALL:
803 // FIXME: If not relaxing to LE, we need to generate
804 // DTPMOD64 and DTPOFF64 relocs.
805 if (optimized_type != tls::TLSOPT_TO_LE)
806 unsupported_reloc_local(object, r_type);
2e30d253
ILT
807 break;
808
e041f13d 809 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
810 case elfcpp::R_X86_64_DTPOFF32:
811 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
812 // FIXME: If not relaxing to LE, we need to generate a
813 // DTPMOD64 reloc.
814 if (optimized_type != tls::TLSOPT_TO_LE)
815 unsupported_reloc_local(object, r_type);
816 break;
817
56622147
ILT
818 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
819 // FIXME: If not relaxing to LE, we need to generate a
820 // TPOFF64 reloc.
821 if (optimized_type != tls::TLSOPT_TO_LE)
822 unsupported_reloc_local(object, r_type);
823 break;
0ffd9845 824
56622147
ILT
825 case elfcpp::R_X86_64_TPOFF32: // Local-exec
826 // FIXME: If generating a shared object, we need to copy
827 // this relocation into the object.
828 gold_assert(!output_is_shared);
2e30d253 829 break;
e041f13d
ILT
830
831 default:
832 gold_unreachable();
2e30d253
ILT
833 }
834 }
835 break;
2e30d253 836
fdc2f80f
ILT
837 case elfcpp::R_X86_64_SIZE32:
838 case elfcpp::R_X86_64_SIZE64:
2e30d253 839 default:
75f2446e
ILT
840 gold_error(_("%s: unsupported reloc %u against local symbol"),
841 object->name().c_str(), r_type);
2e30d253
ILT
842 break;
843 }
844}
845
846
e041f13d
ILT
847// Report an unsupported relocation against a global symbol.
848
849void
850Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
851 unsigned int r_type,
852 Symbol* gsym)
853{
75f2446e
ILT
854 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
855 object->name().c_str(), r_type, gsym->name());
e041f13d
ILT
856}
857
2e30d253
ILT
858// Scan a relocation for a global symbol.
859
860inline void
861Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
862 Symbol_table* symtab,
863 Layout* layout,
864 Target_x86_64* target,
865 Sized_relobj<64, false>* object,
866 unsigned int data_shndx,
867 const elfcpp::Rela<64, false>& reloc,
868 unsigned int r_type,
869 Symbol* gsym)
2e30d253
ILT
870{
871 switch (r_type)
872 {
873 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
874 case elfcpp::R_386_GNU_VTINHERIT:
875 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
876 break;
877
878 case elfcpp::R_X86_64_64:
879 case elfcpp::R_X86_64_PC64:
880 case elfcpp::R_X86_64_32:
881 case elfcpp::R_X86_64_32S:
882 case elfcpp::R_X86_64_PC32:
883 case elfcpp::R_X86_64_16:
884 case elfcpp::R_X86_64_PC16:
885 case elfcpp::R_X86_64_8:
886 case elfcpp::R_X86_64_PC8:
887 // FIXME: If we are generating a shared object we may need to
888 // copy this relocation into the object. If this symbol is
889 // defined in a shared object, we may need to copy this
890 // relocation in order to avoid a COPY relocation.
891 gold_assert(!parameters->output_is_shared());
892
893 if (gsym->is_from_dynobj())
894 {
895 // This symbol is defined in a dynamic object. If it is a
896 // function, we make a PLT entry. Otherwise we need to
897 // either generate a COPY reloc or copy this reloc.
898 if (gsym->type() == elfcpp::STT_FUNC)
4fb6c25d
ILT
899 {
900 target->make_plt_entry(symtab, layout, gsym);
901
902 // If this is not a PC relative reference, then we may
903 // be taking the address of the function. In that case
904 // we need to set the entry in the dynamic symbol table
905 // to the address of the PLT entry.
906 if (r_type != elfcpp::R_X86_64_PC64
907 && r_type != elfcpp::R_X86_64_PC32
908 && r_type != elfcpp::R_X86_64_PC16
909 && r_type != elfcpp::R_X86_64_PC8)
910 gsym->set_needs_dynsym_value();
911 }
2e30d253
ILT
912 else
913 target->copy_reloc(&options, symtab, layout, object, data_shndx,
914 gsym, reloc);
915 }
916
917 break;
918
ff006520 919 case elfcpp::R_X86_64_GOT64:
2e30d253 920 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
921 case elfcpp::R_X86_64_GOTPCREL64:
922 case elfcpp::R_X86_64_GOTPCREL:
923 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
924 {
925 // The symbol requires a GOT entry.
926 Output_data_got<64, false>* got = target->got_section(symtab, layout);
927 if (got->add_global(gsym))
928 {
929 // If this symbol is not fully resolved, we need to add a
930 // dynamic relocation for it.
931 if (!gsym->final_value_is_known())
932 {
0ffd9845
ILT
933 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
934 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
935 gsym->got_offset(), 0);
2e30d253
ILT
936 }
937 }
ee9e9e86
ILT
938 // For GOTPLT64, we also need a PLT entry (but only if the
939 // symbol is not fully resolved).
940 if (r_type == elfcpp::R_X86_64_GOTPLT64
941 && !gsym->final_value_is_known())
942 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
943 }
944 break;
945
946 case elfcpp::R_X86_64_PLT32:
947 // If the symbol is fully resolved, this is just a PC32 reloc.
948 // Otherwise we need a PLT entry.
949 if (gsym->final_value_is_known())
950 break;
951 target->make_plt_entry(symtab, layout, gsym);
952 break;
953
fdc2f80f 954 case elfcpp::R_X86_64_GOTPC32:
e822f2b1 955 case elfcpp::R_X86_64_GOTOFF64:
fdc2f80f
ILT
956 case elfcpp::R_X86_64_GOTPC64:
957 case elfcpp::R_X86_64_PLTOFF64:
2e30d253
ILT
958 // We need a GOT section.
959 target->got_section(symtab, layout);
ee9e9e86
ILT
960 // For PLTOFF64, we also need a PLT entry (but only if the
961 // symbol is not fully resolved).
962 if (r_type == elfcpp::R_X86_64_PLTOFF64
963 && !gsym->final_value_is_known())
964 target->make_plt_entry(symtab, layout, gsym);
2e30d253
ILT
965 break;
966
2e30d253
ILT
967 case elfcpp::R_X86_64_COPY:
968 case elfcpp::R_X86_64_GLOB_DAT:
969 case elfcpp::R_X86_64_JUMP_SLOT:
970 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 971 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 972 case elfcpp::R_X86_64_TPOFF64:
2e30d253 973 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 974 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
975 gold_error(_("%s: unexpected reloc %u in object file"),
976 object->name().c_str(), r_type);
2e30d253 977 break;
2e30d253 978
d61c17ea 979 // These are initial tls relocs, which are expected for global()
56622147
ILT
980 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
981 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 982 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 983 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
984 case elfcpp::R_X86_64_DTPOFF32:
985 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
986 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
987 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
988 {
989 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
990 const tls::Tls_optimization optimized_type
991 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
992 switch (r_type)
993 {
56622147
ILT
994 case elfcpp::R_X86_64_TLSGD: // General-dynamic
995 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
996 case elfcpp::R_X86_64_TLSDESC_CALL:
997 // FIXME: If not relaxing to LE, we need to generate
998 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
999 if (optimized_type != tls::TLSOPT_TO_LE)
1000 unsupported_reloc_global(object, r_type, gsym);
2e30d253
ILT
1001 break;
1002
e041f13d 1003 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1004 case elfcpp::R_X86_64_DTPOFF32:
1005 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
1006 // FIXME: If not relaxing to LE, we need to generate a
1007 // DTPMOD64 reloc.
1008 if (optimized_type != tls::TLSOPT_TO_LE)
1009 unsupported_reloc_global(object, r_type, gsym);
1010 break;
1011
56622147
ILT
1012 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1013 // FIXME: If not relaxing to LE, we need to generate a
1014 // TPOFF64 reloc.
1015 if (optimized_type != tls::TLSOPT_TO_LE)
1016 unsupported_reloc_global(object, r_type, gsym);
1017 break;
0ffd9845 1018
56622147
ILT
1019 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1020 // FIXME: If generating a shared object, we need to copy
1021 // this relocation into the object.
1022 gold_assert(is_final);
2e30d253 1023 break;
e041f13d
ILT
1024
1025 default:
1026 gold_unreachable();
2e30d253
ILT
1027 }
1028 }
1029 break;
fdc2f80f
ILT
1030
1031 case elfcpp::R_X86_64_SIZE32:
1032 case elfcpp::R_X86_64_SIZE64:
2e30d253 1033 default:
75f2446e
ILT
1034 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1035 object->name().c_str(), r_type, gsym->name());
2e30d253
ILT
1036 break;
1037 }
1038}
1039
1040// Scan relocations for a section.
1041
1042void
1043Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1044 Symbol_table* symtab,
1045 Layout* layout,
1046 Sized_relobj<64, false>* object,
1047 unsigned int data_shndx,
1048 unsigned int sh_type,
1049 const unsigned char* prelocs,
1050 size_t reloc_count,
1051 size_t local_symbol_count,
1052 const unsigned char* plocal_symbols,
1053 Symbol** global_symbols)
2e30d253
ILT
1054{
1055 if (sh_type == elfcpp::SHT_REL)
1056 {
75f2446e
ILT
1057 gold_error(_("%s: unsupported REL reloc section"),
1058 object->name().c_str());
1059 return;
2e30d253
ILT
1060 }
1061
1062 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1063 Target_x86_64::Scan>(
1064 options,
1065 symtab,
1066 layout,
1067 this,
1068 object,
1069 data_shndx,
1070 prelocs,
1071 reloc_count,
1072 local_symbol_count,
1073 plocal_symbols,
1074 global_symbols);
1075}
1076
1077// Finalize the sections.
1078
1079void
1080Target_x86_64::do_finalize_sections(Layout* layout)
1081{
1082 // Fill in some more dynamic tags.
1083 Output_data_dynamic* const odyn = layout->dynamic_data();
1084 if (odyn != NULL)
1085 {
1086 if (this->got_plt_ != NULL)
1087 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1088
1089 if (this->plt_ != NULL)
1090 {
1091 const Output_data* od = this->plt_->rel_plt();
1092 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1093 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1094 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1095 }
1096
0ffd9845 1097 if (this->rela_dyn_ != NULL)
2e30d253 1098 {
0ffd9845 1099 const Output_data* od = this->rela_dyn_;
2e30d253 1100 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1101 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1102 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1103 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1104 }
1105
1106 if (!parameters->output_is_shared())
1107 {
1108 // The value of the DT_DEBUG tag is filled in by the dynamic
1109 // linker at run time, and used by the debugger.
1110 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1111 }
1112 }
1113
1114 // Emit any relocs we saved in an attempt to avoid generating COPY
1115 // relocs.
1116 if (this->copy_relocs_ == NULL)
1117 return;
1118 if (this->copy_relocs_->any_to_emit())
1119 {
0ffd9845
ILT
1120 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1121 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1122 }
1123 delete this->copy_relocs_;
1124 this->copy_relocs_ = NULL;
1125}
1126
1127// Perform a relocation.
1128
1129inline bool
1130Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1131 Target_x86_64* target,
1132 size_t relnum,
0ffd9845 1133 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1134 unsigned int r_type,
1135 const Sized_symbol<64>* gsym,
1136 const Symbol_value<64>* psymval,
1137 unsigned char* view,
1138 elfcpp::Elf_types<64>::Elf_Addr address,
1139 off_t view_size)
1140{
1141 if (this->skip_call_tls_get_addr_)
1142 {
1143 if (r_type != elfcpp::R_X86_64_PLT32
1144 || gsym == NULL
0ffd9845 1145 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1146 {
75f2446e
ILT
1147 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1148 _("missing expected TLS relocation"));
1149 }
1150 else
1151 {
1152 this->skip_call_tls_get_addr_ = false;
1153 return false;
2e30d253 1154 }
2e30d253
ILT
1155 }
1156
1157 // Pick the value to use for symbols defined in shared objects.
1158 Symbol_value<64> symval;
1159 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1160 {
1161 symval.set_output_value(target->plt_section()->address()
1162 + gsym->plt_offset());
1163 psymval = &symval;
1164 }
1165
1166 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1167 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1168
1169 // Get the GOT offset if needed.
1170 bool have_got_offset = false;
1171 unsigned int got_offset = 0;
1172 switch (r_type)
1173 {
1174 case elfcpp::R_X86_64_GOT32:
1175 case elfcpp::R_X86_64_GOT64:
1176 case elfcpp::R_X86_64_GOTPLT64:
1177 case elfcpp::R_X86_64_GOTPCREL:
1178 case elfcpp::R_X86_64_GOTPCREL64:
1179 if (gsym != NULL)
1180 {
1181 gold_assert(gsym->has_got_offset());
1182 got_offset = gsym->got_offset();
1183 }
1184 else
1185 {
1186 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1187 got_offset = object->local_got_offset(r_sym);
1188 }
1189 have_got_offset = true;
1190 break;
1191
1192 default:
1193 break;
1194 }
2e30d253
ILT
1195
1196 switch (r_type)
1197 {
1198 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1199 case elfcpp::R_386_GNU_VTINHERIT:
1200 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1201 break;
1202
1203 case elfcpp::R_X86_64_64:
1204 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1205 break;
1206
1207 case elfcpp::R_X86_64_PC64:
1208 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1209 address);
1210 break;
1211
1212 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1213 // FIXME: we need to verify that value + addend fits into 32 bits:
1214 // uint64_t x = value + addend;
1215 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1216 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1217 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1218 break;
1219
1220 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1221 // FIXME: we need to verify that value + addend fits into 32 bits:
1222 // int64_t x = value + addend; // note this quantity is signed!
1223 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1224 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1225 break;
1226
1227 case elfcpp::R_X86_64_PC32:
1228 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1229 address);
1230 break;
1231
1232 case elfcpp::R_X86_64_16:
1233 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1234 break;
1235
1236 case elfcpp::R_X86_64_PC16:
1237 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1238 address);
1239 break;
1240
1241 case elfcpp::R_X86_64_8:
1242 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1243 break;
1244
1245 case elfcpp::R_X86_64_PC8:
1246 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1247 address);
1248 break;
1249
1250 case elfcpp::R_X86_64_PLT32:
f389a824
ILT
1251 gold_assert(gsym == NULL
1252 || gsym->has_plt_offset()
2e30d253 1253 || gsym->final_value_is_known());
ee9e9e86
ILT
1254 // Note: while this code looks the same as for R_X86_64_PC32, it
1255 // behaves differently because psymval was set to point to
1256 // the PLT entry, rather than the symbol, in Scan::global().
2e30d253
ILT
1257 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1258 address);
1259 break;
1260
ee9e9e86
ILT
1261 case elfcpp::R_X86_64_PLTOFF64:
1262 {
1263 gold_assert(gsym);
1264 gold_assert(gsym->has_plt_offset()
1265 || gsym->final_value_is_known());
1266 elfcpp::Elf_types<64>::Elf_Addr got_address;
1267 got_address = target->got_section(NULL, NULL)->address();
c1866bd5
ILT
1268 Relocate_functions<64, false>::rela64(view, object, psymval,
1269 addend - got_address);
ee9e9e86
ILT
1270 }
1271
2e30d253 1272 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1273 gold_assert(have_got_offset);
1274 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1275 break;
1276
e822f2b1
ILT
1277 case elfcpp::R_X86_64_GOTPC32:
1278 {
1279 gold_assert(gsym);
1280 elfcpp::Elf_types<64>::Elf_Addr value;
1281 value = target->got_section(NULL, NULL)->address();
1282 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1283 }
1284 break;
1285
1286 case elfcpp::R_X86_64_GOT64:
1287 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1288 // Since we always add a PLT entry, this is equivalent.
fdc2f80f 1289 case elfcpp::R_X86_64_GOTPLT64:
0ffd9845
ILT
1290 gold_assert(have_got_offset);
1291 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1292 break;
1293
1294 case elfcpp::R_X86_64_GOTPC64:
1295 {
1296 gold_assert(gsym);
1297 elfcpp::Elf_types<64>::Elf_Addr value;
1298 value = target->got_section(NULL, NULL)->address();
1299 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1300 }
1301 break;
1302
2e30d253
ILT
1303 case elfcpp::R_X86_64_GOTOFF64:
1304 {
1305 elfcpp::Elf_types<64>::Elf_Addr value;
1306 value = (psymval->value(object, 0)
1307 - target->got_section(NULL, NULL)->address());
1308 Relocate_functions<64, false>::rela64(view, value, addend);
1309 }
1310 break;
1311
1312 case elfcpp::R_X86_64_GOTPCREL:
1313 {
0ffd9845
ILT
1314 gold_assert(have_got_offset);
1315 elfcpp::Elf_types<64>::Elf_Addr value;
1316 value = target->got_section(NULL, NULL)->address() + got_offset;
1317 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1318 }
1319 break;
1320
e822f2b1
ILT
1321 case elfcpp::R_X86_64_GOTPCREL64:
1322 {
0ffd9845
ILT
1323 gold_assert(have_got_offset);
1324 elfcpp::Elf_types<64>::Elf_Addr value;
1325 value = target->got_section(NULL, NULL)->address() + got_offset;
1326 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1327 }
1328 break;
1329
2e30d253
ILT
1330 case elfcpp::R_X86_64_COPY:
1331 case elfcpp::R_X86_64_GLOB_DAT:
1332 case elfcpp::R_X86_64_JUMP_SLOT:
1333 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1334 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1335 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1336 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1337 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1338 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1339 _("unexpected reloc %u in object file"),
1340 r_type);
2e30d253
ILT
1341 break;
1342
d61c17ea 1343 // These are initial tls relocs, which are expected when linking
56622147
ILT
1344 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1345 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d 1346 case elfcpp::R_X86_64_TLSDESC_CALL:
56622147 1347 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
1348 case elfcpp::R_X86_64_DTPOFF32:
1349 case elfcpp::R_X86_64_DTPOFF64:
56622147
ILT
1350 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1351 case elfcpp::R_X86_64_TPOFF32: // Local-exec
0ffd9845 1352 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
2e30d253
ILT
1353 address, view_size);
1354 break;
2e30d253 1355
fdc2f80f
ILT
1356 case elfcpp::R_X86_64_SIZE32:
1357 case elfcpp::R_X86_64_SIZE64:
2e30d253 1358 default:
75f2446e
ILT
1359 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1360 _("unsupported reloc %u"),
1361 r_type);
2e30d253
ILT
1362 break;
1363 }
1364
1365 return true;
1366}
1367
1368// Perform a TLS relocation.
1369
1370inline void
d61c17ea
ILT
1371Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1372 size_t relnum,
72ec2876 1373 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1374 unsigned int r_type,
1375 const Sized_symbol<64>* gsym,
1376 const Symbol_value<64>* psymval,
1377 unsigned char* view,
2e30d253 1378 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1379 off_t view_size)
2e30d253 1380{
2e30d253
ILT
1381 Output_segment* tls_segment = relinfo->layout->tls_segment();
1382 if (tls_segment == NULL)
1383 {
72ec2876 1384 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e
ILT
1385 _("TLS reloc but no TLS segment"));
1386 return;
2e30d253
ILT
1387 }
1388
1389 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1390
1391 const bool is_final = (gsym == NULL
1392 ? !parameters->output_is_shared()
1393 : gsym->final_value_is_known());
e041f13d
ILT
1394 const tls::Tls_optimization optimized_type
1395 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1396 switch (r_type)
1397 {
56622147
ILT
1398 case elfcpp::R_X86_64_TLSGD: // Global-dynamic
1399 case elfcpp::R_X86_64_GOTPC32_TLSDESC: // Global-dynamic (from ~oliva url)
e041f13d
ILT
1400 case elfcpp::R_X86_64_TLSDESC_CALL:
1401 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1402 {
1403 this->tls_gd_to_le(relinfo, relnum, tls_segment,
72ec2876 1404 rela, r_type, value, view,
2e30d253
ILT
1405 view_size);
1406 break;
1407 }
72ec2876 1408 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1409 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1410 break;
1411
56622147 1412 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
e041f13d
ILT
1413 if (optimized_type == tls::TLSOPT_TO_LE)
1414 {
72ec2876
ILT
1415 this->tls_ld_to_le(relinfo, relnum, tls_segment, rela, r_type,
1416 value, view, view_size);
1417 break;
e041f13d 1418 }
72ec2876 1419 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
75f2446e 1420 _("unsupported reloc %u"), r_type);
2e30d253 1421 break;
0ffd9845
ILT
1422
1423 case elfcpp::R_X86_64_DTPOFF32:
e041f13d 1424 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1425 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1426 else
1427 value = value - tls_segment->vaddr();
1428 Relocate_functions<64, false>::rel32(view, value);
1429 break;
1430
1431 case elfcpp::R_X86_64_DTPOFF64:
e041f13d 1432 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1433 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1434 else
1435 value = value - tls_segment->vaddr();
1436 Relocate_functions<64, false>::rel64(view, value);
1437 break;
2e30d253 1438
56622147
ILT
1439 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
1440 if (optimized_type == tls::TLSOPT_TO_LE)
1441 {
1442 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1443 rela, r_type, value, view,
1444 view_size);
1445 break;
1446 }
1447 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1448 _("unsupported reloc type %u"),
1449 r_type);
1450 break;
0ffd9845 1451
56622147
ILT
1452 case elfcpp::R_X86_64_TPOFF32: // Local-exec
1453 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1454 Relocate_functions<64, false>::rel32(view, value);
1455 break;
2e30d253 1456 }
2e30d253
ILT
1457}
1458
e041f13d 1459// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1460// Local-Exec.
1461
1462inline void
d61c17ea
ILT
1463Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1464 size_t relnum,
1465 Output_segment* tls_segment,
72ec2876 1466 const elfcpp::Rela<64, false>& rela,
d61c17ea
ILT
1467 unsigned int,
1468 elfcpp::Elf_types<64>::Elf_Addr value,
1469 unsigned char* view,
1470 off_t view_size)
2e30d253 1471{
0ffd9845
ILT
1472 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1473 // .word 0x6666; rex64; call __tls_get_addr
1474 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1475
72ec2876
ILT
1476 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -4);
1477 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 12);
2e30d253 1478
72ec2876
ILT
1479 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1480 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4) == 0));
1481 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1482 (memcmp(view + 4, "\x66\x66\x48\xe8", 4) == 0));
2e30d253 1483
0ffd9845 1484 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1485
0ffd9845
ILT
1486 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1487 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1488
1489 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1490 // We can skip it.
1491 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1492}
1493
2e30d253 1494inline void
72ec2876
ILT
1495Target_x86_64::Relocate::tls_ld_to_le(const Relocate_info<64, false>* relinfo,
1496 size_t relnum,
1497 Output_segment*,
1498 const elfcpp::Rela<64, false>& rela,
1499 unsigned int,
1500 elfcpp::Elf_types<64>::Elf_Addr,
1501 unsigned char* view,
1502 off_t view_size)
2e30d253 1503{
72ec2876
ILT
1504 // leaq foo@tlsld(%rip),%rdi; call __tls_get_addr@plt;
1505 // ... leq foo@dtpoff(%rax),%reg
1506 // ==> .word 0x6666; .byte 0x66; movq %fs:0,%rax ... leaq x@tpoff(%rax),%rdx
2e30d253 1507
72ec2876
ILT
1508 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1509 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 9);
2e30d253 1510
72ec2876
ILT
1511 tls::check_tls(relinfo, relnum, rela.get_r_offset(),
1512 view[-3] == 0x48 && view[-2] == 0x8d && view[-1] == 0x3d);
1513
1514 tls::check_tls(relinfo, relnum, rela.get_r_offset(), view[4] == 0xe8);
1515
1516 memcpy(view - 3, "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0\0", 12);
1517
1518 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1519 // We can skip it.
1520 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1521}
1522
56622147
ILT
1523// Do a relocation in which we convert a TLS Initial-Exec to a
1524// Local-Exec.
1525
1526inline void
1527Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1528 size_t relnum,
1529 Output_segment* tls_segment,
1530 const elfcpp::Rela<64, false>& rela,
1531 unsigned int,
1532 elfcpp::Elf_types<64>::Elf_Addr value,
1533 unsigned char* view,
1534 off_t view_size)
1535{
1536 // We need to examine the opcodes to figure out which instruction we
1537 // are looking at.
1538
1539 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1540 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1541
1542 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, -3);
1543 tls::check_range(relinfo, relnum, rela.get_r_offset(), view_size, 4);
1544
1545 unsigned char op1 = view[-3];
1546 unsigned char op2 = view[-2];
1547 unsigned char op3 = view[-1];
1548 unsigned char reg = op3 >> 3;
1549
1550 if (op2 == 0x8b)
1551 {
1552 // movq
1553 if (op1 == 0x4c)
1554 view[-3] = 0x49;
1555 view[-2] = 0xc7;
1556 view[-1] = 0xc0 | reg;
1557 }
1558 else if (reg == 4)
1559 {
1560 // Special handling for %rsp.
1561 if (op1 == 0x4c)
1562 view[-3] = 0x49;
1563 view[-2] = 0x81;
1564 view[-1] = 0xc0 | reg;
1565 }
1566 else
1567 {
1568 // addq
1569 if (op1 == 0x4c)
1570 view[-3] = 0x4d;
1571 view[-2] = 0x8d;
1572 view[-1] = 0x80 | reg | (reg << 3);
1573 }
1574
1575 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1576 Relocate_functions<64, false>::rela32(view, value, 0);
1577}
1578
2e30d253
ILT
1579// Relocate section data.
1580
1581void
1582Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1583 unsigned int sh_type,
1584 const unsigned char* prelocs,
1585 size_t reloc_count,
1586 unsigned char* view,
1587 elfcpp::Elf_types<64>::Elf_Addr address,
1588 off_t view_size)
2e30d253
ILT
1589{
1590 gold_assert(sh_type == elfcpp::SHT_RELA);
1591
1592 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1593 Target_x86_64::Relocate>(
1594 relinfo,
1595 this,
1596 prelocs,
1597 reloc_count,
1598 view,
1599 address,
1600 view_size);
1601}
1602
4fb6c25d
ILT
1603// Return the value to use for a dynamic which requires special
1604// treatment. This is how we support equality comparisons of function
1605// pointers across shared library boundaries, as described in the
1606// processor specific ABI supplement.
1607
1608uint64_t
1609Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1610{
1611 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1612 return this->plt_section()->address() + gsym->plt_offset();
1613}
1614
2e30d253
ILT
1615// Return a string used to fill a code section with nops to take up
1616// the specified length.
1617
1618std::string
1619Target_x86_64::do_code_fill(off_t length)
1620{
1621 if (length >= 16)
1622 {
1623 // Build a jmpq instruction to skip over the bytes.
1624 unsigned char jmp[5];
1625 jmp[0] = 0xe9;
1626 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1627 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1628 + std::string(length - 5, '\0'));
1629 }
1630
1631 // Nop sequences of various lengths.
1632 const char nop1[1] = { 0x90 }; // nop
1633 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1634 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1635 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1636 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1637 0x00 }; // leal 0(%esi,1),%esi
1638 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1639 0x00, 0x00 };
1640 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1641 0x00, 0x00, 0x00 };
1642 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1643 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1644 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1645 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1646 0x00 };
1647 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1648 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1649 0x00, 0x00 };
1650 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1651 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1652 0x00, 0x00, 0x00 };
1653 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1654 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1655 0x00, 0x00, 0x00, 0x00 };
1656 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1657 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1658 0x27, 0x00, 0x00, 0x00,
1659 0x00 };
1660 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1661 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1662 0xbc, 0x27, 0x00, 0x00,
1663 0x00, 0x00 };
1664 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1665 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1666 0x90, 0x90, 0x90, 0x90,
1667 0x90, 0x90, 0x90 };
1668
1669 const char* nops[16] = {
1670 NULL,
1671 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1672 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1673 };
1674
1675 return std::string(nops[length], length);
1676}
1677
1678// The selector for x86_64 object files.
1679
1680class Target_selector_x86_64 : public Target_selector
1681{
1682public:
1683 Target_selector_x86_64()
1684 : Target_selector(elfcpp::EM_X86_64, 64, false)
1685 { }
1686
1687 Target*
1688 recognize(int machine, int osabi, int abiversion);
1689
1690 private:
1691 Target_x86_64* target_;
1692};
1693
1694// Recognize an x86_64 object file when we already know that the machine
1695// number is EM_X86_64.
1696
1697Target*
1698Target_selector_x86_64::recognize(int, int, int)
1699{
1700 if (this->target_ == NULL)
1701 this->target_ = new Target_x86_64();
1702 return this->target_;
1703}
1704
1705Target_selector_x86_64 target_selector_x86_64;
1706
1707} // End anonymous namespace.
This page took 0.100964 seconds and 4 git commands to generate.