Remove extraneous newline.
[deliverable/binutils-gdb.git] / gold / x86_64.cc
CommitLineData
2e30d253
ILT
1// x86_64.cc -- x86_64 target support for gold.
2
3// Copyright 2006, 2007, Free Software Foundation, Inc.
4// Written by Ian Lance Taylor <iant@google.com>.
5
6// This file is part of gold.
7
8// This program is free software; you can redistribute it and/or
9// modify it under the terms of the GNU Library General Public License
10// as published by the Free Software Foundation; either version 2, or
11// (at your option) any later version.
12
13// In addition to the permissions in the GNU Library General Public
14// License, the Free Software Foundation gives you unlimited
15// permission to link the compiled version of this file into
16// combinations with other programs, and to distribute those
17// combinations without any restriction coming from the use of this
18// file. (The Library Public License restrictions do apply in other
19// respects; for example, they cover modification of the file, and
20/// distribution when not linked into a combined executable.)
21
22// This program is distributed in the hope that it will be useful, but
23// WITHOUT ANY WARRANTY; without even the implied warranty of
24// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
25// Library General Public License for more details.
26
27// You should have received a copy of the GNU Library General Public
28// License along with this program; if not, write to the Free Software
29// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
30// 02110-1301, USA.
31
32#include "gold.h"
33
34#include <cstring>
35
36#include "elfcpp.h"
37#include "parameters.h"
38#include "reloc.h"
39#include "x86_64.h"
40#include "object.h"
41#include "symtab.h"
42#include "layout.h"
43#include "output.h"
44#include "target.h"
45#include "target-reloc.h"
46#include "target-select.h"
e041f13d 47#include "tls.h"
2e30d253
ILT
48
49namespace
50{
51
52using namespace gold;
53
54class Output_data_plt_x86_64;
55
56// The x86_64 target class.
d61c17ea
ILT
57// See the ABI at
58// http://www.x86-64.org/documentation/abi.pdf
59// TLS info comes from
60// http://people.redhat.com/drepper/tls.pdf
0ffd9845 61// http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
2e30d253
ILT
62
63class Target_x86_64 : public Sized_target<64, false>
64{
65 public:
e822f2b1
ILT
66 // In the x86_64 ABI (p 68), it says "The AMD64 ABI architectures
67 // uses only Elf64_Rela relocation entries with explicit addends."
2e30d253
ILT
68 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
69
70 Target_x86_64()
71 : Sized_target<64, false>(&x86_64_info),
0ffd9845 72 got_(NULL), plt_(NULL), got_plt_(NULL), rela_dyn_(NULL),
2e30d253
ILT
73 copy_relocs_(NULL), dynbss_(NULL)
74 { }
75
76 // Scan the relocations to look for symbol adjustments.
77 void
78 scan_relocs(const General_options& options,
79 Symbol_table* symtab,
80 Layout* layout,
81 Sized_relobj<64, false>* object,
82 unsigned int data_shndx,
83 unsigned int sh_type,
84 const unsigned char* prelocs,
85 size_t reloc_count,
86 size_t local_symbol_count,
87 const unsigned char* plocal_symbols,
88 Symbol** global_symbols);
89
90 // Finalize the sections.
91 void
92 do_finalize_sections(Layout*);
93
4fb6c25d
ILT
94 // Return the value to use for a dynamic which requires special
95 // treatment.
96 uint64_t
97 do_dynsym_value(const Symbol*) const;
98
2e30d253
ILT
99 // Relocate a section.
100 void
101 relocate_section(const Relocate_info<64, false>*,
102 unsigned int sh_type,
103 const unsigned char* prelocs,
104 size_t reloc_count,
105 unsigned char* view,
106 elfcpp::Elf_types<64>::Elf_Addr view_address,
107 off_t view_size);
108
109 // Return a string used to fill a code section with nops.
110 std::string
111 do_code_fill(off_t length);
112
113 private:
114 // The class which scans relocations.
115 struct Scan
116 {
117 inline void
118 local(const General_options& options, Symbol_table* symtab,
119 Layout* layout, Target_x86_64* target,
120 Sized_relobj<64, false>* object,
121 unsigned int data_shndx,
122 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
123 const elfcpp::Sym<64, false>& lsym);
124
125 inline void
126 global(const General_options& options, Symbol_table* symtab,
127 Layout* layout, Target_x86_64* target,
128 Sized_relobj<64, false>* object,
129 unsigned int data_shndx,
130 const elfcpp::Rela<64, false>& reloc, unsigned int r_type,
131 Symbol* gsym);
e041f13d
ILT
132
133 static void
134 unsupported_reloc_local(Sized_relobj<64, false>*, unsigned int r_type);
135
136 static void
137 unsupported_reloc_global(Sized_relobj<64, false>*, unsigned int r_type,
138 Symbol*);
2e30d253
ILT
139 };
140
141 // The class which implements relocation.
142 class Relocate
143 {
144 public:
145 Relocate()
146 : skip_call_tls_get_addr_(false)
147 { }
148
149 ~Relocate()
150 {
151 if (this->skip_call_tls_get_addr_)
152 {
153 // FIXME: This needs to specify the location somehow.
75f2446e 154 gold_error(_("missing expected TLS relocation\n"));
2e30d253
ILT
155 }
156 }
157
158 // Do a relocation. Return false if the caller should not issue
159 // any warnings about this relocation.
160 inline bool
161 relocate(const Relocate_info<64, false>*, Target_x86_64*, size_t relnum,
162 const elfcpp::Rela<64, false>&,
163 unsigned int r_type, const Sized_symbol<64>*,
164 const Symbol_value<64>*,
165 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr,
166 off_t);
167
168 private:
169 // Do a TLS relocation.
170 inline void
171 relocate_tls(const Relocate_info<64, false>*, size_t relnum,
172 const elfcpp::Rela<64, false>&,
173 unsigned int r_type, const Sized_symbol<64>*,
174 const Symbol_value<64>*,
175 unsigned char*, elfcpp::Elf_types<64>::Elf_Addr, off_t);
176
177 // Do a TLS Initial-Exec to Local-Exec transition.
178 static inline void
179 tls_ie_to_le(const Relocate_info<64, false>*, size_t relnum,
180 Output_segment* tls_segment,
181 const elfcpp::Rela<64, false>&, unsigned int r_type,
182 elfcpp::Elf_types<64>::Elf_Addr value,
183 unsigned char* view,
184 off_t view_size);
185
e041f13d 186 // Do a TLS General-Dynamic to Local-Exec transition.
2e30d253
ILT
187 inline void
188 tls_gd_to_le(const Relocate_info<64, false>*, size_t relnum,
189 Output_segment* tls_segment,
190 const elfcpp::Rela<64, false>&, unsigned int r_type,
191 elfcpp::Elf_types<64>::Elf_Addr value,
192 unsigned char* view,
193 off_t view_size);
194
195 // Check the range for a TLS relocation.
196 static inline void
197 check_range(const Relocate_info<64, false>*, size_t relnum,
198 const elfcpp::Rela<64, false>&, off_t, off_t);
199
200 // Check the validity of a TLS relocation. This is like assert.
201 static inline void
202 check_tls(const Relocate_info<64, false>*, size_t relnum,
203 const elfcpp::Rela<64, false>&, bool);
204
205 // This is set if we should skip the next reloc, which should be a
206 // PLT32 reloc against ___tls_get_addr.
207 bool skip_call_tls_get_addr_;
208 };
209
210 // Adjust TLS relocation type based on the options and whether this
211 // is a local symbol.
e041f13d 212 static tls::Tls_optimization
2e30d253
ILT
213 optimize_tls_reloc(bool is_final, int r_type);
214
215 // Get the GOT section, creating it if necessary.
216 Output_data_got<64, false>*
217 got_section(Symbol_table*, Layout*);
218
219 // Create a PLT entry for a global symbol.
220 void
221 make_plt_entry(Symbol_table*, Layout*, Symbol*);
222
223 // Get the PLT section.
224 Output_data_plt_x86_64*
225 plt_section() const
226 {
227 gold_assert(this->plt_ != NULL);
228 return this->plt_;
229 }
230
231 // Get the dynamic reloc section, creating it if necessary.
232 Reloc_section*
0ffd9845 233 rela_dyn_section(Layout*);
2e30d253
ILT
234
235 // Copy a relocation against a global symbol.
236 void
237 copy_reloc(const General_options*, Symbol_table*, Layout*,
238 Sized_relobj<64, false>*, unsigned int,
239 Symbol*, const elfcpp::Rela<64, false>&);
240
241 // Information about this specific target which we pass to the
242 // general Target structure.
243 static const Target::Target_info x86_64_info;
244
245 // The GOT section.
246 Output_data_got<64, false>* got_;
247 // The PLT section.
248 Output_data_plt_x86_64* plt_;
249 // The GOT PLT section.
250 Output_data_space* got_plt_;
251 // The dynamic reloc section.
0ffd9845 252 Reloc_section* rela_dyn_;
2e30d253
ILT
253 // Relocs saved to avoid a COPY reloc.
254 Copy_relocs<64, false>* copy_relocs_;
255 // Space for variables copied with a COPY reloc.
256 Output_data_space* dynbss_;
257};
258
259const Target::Target_info Target_x86_64::x86_64_info =
260{
261 64, // size
262 false, // is_big_endian
263 elfcpp::EM_X86_64, // machine_code
264 false, // has_make_symbol
265 false, // has_resolve
266 true, // has_code_fill
267 "/lib/ld64.so.1", // program interpreter
268 0x400000, // text_segment_address
269 0x1000, // abi_pagesize
270 0x1000 // common_pagesize
271};
272
273// Get the GOT section, creating it if necessary.
274
275Output_data_got<64, false>*
276Target_x86_64::got_section(Symbol_table* symtab, Layout* layout)
277{
278 if (this->got_ == NULL)
279 {
280 gold_assert(symtab != NULL && layout != NULL);
281
282 this->got_ = new Output_data_got<64, false>();
283
284 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
285 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
286 this->got_);
287
288 // The old GNU linker creates a .got.plt section. We just
289 // create another set of data in the .got section. Note that we
290 // always create a PLT if we create a GOT, although the PLT
291 // might be empty.
292 // TODO(csilvers): do we really need an alignment of 8?
293 this->got_plt_ = new Output_data_space(8);
294 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
295 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
296 this->got_plt_);
297
298 // The first three entries are reserved.
299 this->got_plt_->set_space_size(3 * 8);
300
301 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
302 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
303 this->got_plt_,
304 0, 0, elfcpp::STT_OBJECT,
305 elfcpp::STB_LOCAL,
306 elfcpp::STV_HIDDEN, 0,
307 false, false);
308 }
309
310 return this->got_;
311}
312
313// Get the dynamic reloc section, creating it if necessary.
314
315Target_x86_64::Reloc_section*
0ffd9845 316Target_x86_64::rela_dyn_section(Layout* layout)
2e30d253 317{
0ffd9845 318 if (this->rela_dyn_ == NULL)
2e30d253
ILT
319 {
320 gold_assert(layout != NULL);
0ffd9845 321 this->rela_dyn_ = new Reloc_section();
2e30d253 322 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
0ffd9845 323 elfcpp::SHF_ALLOC, this->rela_dyn_);
2e30d253 324 }
0ffd9845 325 return this->rela_dyn_;
2e30d253
ILT
326}
327
328// A class to handle the PLT data.
329
330class Output_data_plt_x86_64 : public Output_section_data
331{
332 public:
333 typedef Output_data_reloc<elfcpp::SHT_RELA, true, 64, false> Reloc_section;
334
335 Output_data_plt_x86_64(Layout*, Output_data_space*);
336
337 // Add an entry to the PLT.
338 void
339 add_entry(Symbol* gsym);
340
341 // Return the .rel.plt section data.
342 const Reloc_section*
343 rel_plt() const
344 { return this->rel_; }
345
346 protected:
347 void
348 do_adjust_output_section(Output_section* os);
349
350 private:
351 // The size of an entry in the PLT.
352 static const int plt_entry_size = 16;
353
354 // The first entry in the PLT.
355 // From the AMD64 ABI: "Unlike Intel386 ABI, this ABI uses the same
356 // procedure linkage table for both programs and shared objects."
357 static unsigned char first_plt_entry[plt_entry_size];
358
359 // Other entries in the PLT for an executable.
360 static unsigned char plt_entry[plt_entry_size];
361
362 // Set the final size.
363 void
364 do_set_address(uint64_t, off_t)
365 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
366
367 // Write out the PLT data.
368 void
369 do_write(Output_file*);
370
371 // The reloc section.
372 Reloc_section* rel_;
373 // The .got.plt section.
374 Output_data_space* got_plt_;
375 // The number of PLT entries.
376 unsigned int count_;
377};
378
379// Create the PLT section. The ordinary .got section is an argument,
380// since we need to refer to the start. We also create our own .got
381// section just for PLT entries.
382
383Output_data_plt_x86_64::Output_data_plt_x86_64(Layout* layout,
384 Output_data_space* got_plt)
385 // TODO(csilvers): do we really need an alignment of 8?
386 : Output_section_data(8), got_plt_(got_plt), count_(0)
387{
388 this->rel_ = new Reloc_section();
389 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
390 elfcpp::SHF_ALLOC, this->rel_);
391}
392
393void
394Output_data_plt_x86_64::do_adjust_output_section(Output_section* os)
395{
396 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
397 // linker, and so do we.
398 os->set_entsize(4);
399}
400
401// Add an entry to the PLT.
402
403void
404Output_data_plt_x86_64::add_entry(Symbol* gsym)
405{
406 gold_assert(!gsym->has_plt_offset());
407
408 // Note that when setting the PLT offset we skip the initial
409 // reserved PLT entry.
410 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
411
412 ++this->count_;
413
414 off_t got_offset = this->got_plt_->data_size();
415
416 // Every PLT entry needs a GOT entry which points back to the PLT
417 // entry (this will be changed by the dynamic linker, normally
418 // lazily when the function is called).
419 this->got_plt_->set_space_size(got_offset + 8);
420
421 // Every PLT entry needs a reloc.
422 gsym->set_needs_dynsym_entry();
423 this->rel_->add_global(gsym, elfcpp::R_X86_64_JUMP_SLOT, this->got_plt_,
424 got_offset, 0);
425
426 // Note that we don't need to save the symbol. The contents of the
427 // PLT are independent of which symbols are used. The symbols only
428 // appear in the relocations.
429}
430
431// The first entry in the PLT for an executable.
432
433unsigned char Output_data_plt_x86_64::first_plt_entry[plt_entry_size] =
434{
435 // From AMD64 ABI Draft 0.98, page 76
436 0xff, 0x35, // pushq contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0x90, 0x90, 0x90, 0x90 // noop (x4)
441};
442
443// Subsequent entries in the PLT for an executable.
444
445unsigned char Output_data_plt_x86_64::plt_entry[plt_entry_size] =
446{
447 // From AMD64 ABI Draft 0.98, page 76
448 0xff, 0x25, // jmpq indirect
449 0, 0, 0, 0, // replaced with address of symbol in .got
450 0x68, // pushq immediate
451 0, 0, 0, 0, // replaced with offset into relocation table
452 0xe9, // jmpq relative
453 0, 0, 0, 0 // replaced with offset to start of .plt
454};
455
456// Write out the PLT. This uses the hand-coded instructions above,
457// and adjusts them as needed. This is specified by the AMD64 ABI.
458
459void
460Output_data_plt_x86_64::do_write(Output_file* of)
461{
462 const off_t offset = this->offset();
463 const off_t oview_size = this->data_size();
464 unsigned char* const oview = of->get_output_view(offset, oview_size);
465
466 const off_t got_file_offset = this->got_plt_->offset();
467 const off_t got_size = this->got_plt_->data_size();
468 unsigned char* const got_view = of->get_output_view(got_file_offset,
469 got_size);
470
471 unsigned char* pov = oview;
472
473 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
474 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
475
476 memcpy(pov, first_plt_entry, plt_entry_size);
477 if (!parameters->output_is_shared())
478 {
479 // We do a jmp relative to the PC at the end of this instruction.
480 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 8
481 - (plt_address + 6));
482 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 16
483 - (plt_address + 12));
484 }
485 pov += plt_entry_size;
486
487 unsigned char* got_pov = got_view;
488
489 memset(got_pov, 0, 24);
490 got_pov += 24;
491
492 unsigned int plt_offset = plt_entry_size;
493 unsigned int got_offset = 24;
494 const unsigned int count = this->count_;
495 for (unsigned int plt_index = 0;
496 plt_index < count;
497 ++plt_index,
498 pov += plt_entry_size,
499 got_pov += 8,
500 plt_offset += plt_entry_size,
501 got_offset += 8)
502 {
503 // Set and adjust the PLT entry itself.
504 memcpy(pov, plt_entry, plt_entry_size);
505 if (parameters->output_is_shared())
506 // FIXME(csilvers): what's the right thing to write here?
507 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
508 else
509 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
510 (got_address + got_offset
511 - (plt_address + plt_offset
512 + 6)));
513
514 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_index);
515 elfcpp::Swap<32, false>::writeval(pov + 12,
516 - (plt_offset + plt_entry_size));
517
518 // Set the entry in the GOT.
519 elfcpp::Swap<64, false>::writeval(got_pov, plt_address + plt_offset + 6);
520 }
521
522 gold_assert(pov - oview == oview_size);
523 gold_assert(got_pov - got_view == got_size);
524
525 of->write_output_view(offset, oview_size, oview);
526 of->write_output_view(got_file_offset, got_size, got_view);
527}
528
529// Create a PLT entry for a global symbol.
530
531void
532Target_x86_64::make_plt_entry(Symbol_table* symtab, Layout* layout,
533 Symbol* gsym)
534{
535 if (gsym->has_plt_offset())
536 return;
537
538 if (this->plt_ == NULL)
539 {
540 // Create the GOT sections first.
541 this->got_section(symtab, layout);
542
543 this->plt_ = new Output_data_plt_x86_64(layout, this->got_plt_);
544 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
545 (elfcpp::SHF_ALLOC
546 | elfcpp::SHF_EXECINSTR),
547 this->plt_);
548 }
549
550 this->plt_->add_entry(gsym);
551}
552
553// Handle a relocation against a non-function symbol defined in a
554// dynamic object. The traditional way to handle this is to generate
555// a COPY relocation to copy the variable at runtime from the shared
556// object into the executable's data segment. However, this is
557// undesirable in general, as if the size of the object changes in the
558// dynamic object, the executable will no longer work correctly. If
559// this relocation is in a writable section, then we can create a
560// dynamic reloc and the dynamic linker will resolve it to the correct
561// address at runtime. However, we do not want do that if the
562// relocation is in a read-only section, as it would prevent the
563// readonly segment from being shared. And if we have to eventually
564// generate a COPY reloc, then any dynamic relocations will be
565// useless. So this means that if this is a writable section, we need
566// to save the relocation until we see whether we have to create a
567// COPY relocation for this symbol for any other relocation.
568
569void
570Target_x86_64::copy_reloc(const General_options* options,
d61c17ea
ILT
571 Symbol_table* symtab,
572 Layout* layout,
573 Sized_relobj<64, false>* object,
574 unsigned int data_shndx, Symbol* gsym,
575 const elfcpp::Rela<64, false>& rel)
2e30d253
ILT
576{
577 Sized_symbol<64>* ssym;
578 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(64) (gsym
579 SELECT_SIZE(64));
580
581 if (!Copy_relocs<64, false>::need_copy_reloc(options, object,
582 data_shndx, ssym))
583 {
584 // So far we do not need a COPY reloc. Save this relocation.
585 // If it turns out that we never need a COPY reloc for this
586 // symbol, then we will emit the relocation.
587 if (this->copy_relocs_ == NULL)
588 this->copy_relocs_ = new Copy_relocs<64, false>();
589 this->copy_relocs_->save(ssym, object, data_shndx, rel);
590 }
591 else
592 {
593 // Allocate space for this symbol in the .bss section.
594
595 elfcpp::Elf_types<64>::Elf_WXword symsize = ssym->symsize();
596
597 // There is no defined way to determine the required alignment
598 // of the symbol. We pick the alignment based on the size. We
599 // set an arbitrary maximum of 256.
600 unsigned int align;
601 for (align = 1; align < 512; align <<= 1)
602 if ((symsize & align) != 0)
603 break;
604
605 if (this->dynbss_ == NULL)
606 {
607 this->dynbss_ = new Output_data_space(align);
608 layout->add_output_section_data(".bss",
609 elfcpp::SHT_NOBITS,
610 (elfcpp::SHF_ALLOC
611 | elfcpp::SHF_WRITE),
612 this->dynbss_);
613 }
614
615 Output_data_space* dynbss = this->dynbss_;
616
617 if (align > dynbss->addralign())
618 dynbss->set_space_alignment(align);
619
620 off_t dynbss_size = dynbss->data_size();
621 dynbss_size = align_address(dynbss_size, align);
622 off_t offset = dynbss_size;
623 dynbss->set_space_size(dynbss_size + symsize);
624
625 // Define the symbol in the .dynbss section.
626 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
627 dynbss, offset, symsize, ssym->type(),
628 ssym->binding(), ssym->visibility(),
629 ssym->nonvis(), false, false);
630
631 // Add the COPY reloc.
632 ssym->set_needs_dynsym_entry();
0ffd9845
ILT
633 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
634 rela_dyn->add_global(ssym, elfcpp::R_X86_64_COPY, dynbss, offset, 0);
2e30d253
ILT
635 }
636}
637
638
639// Optimize the TLS relocation type based on what we know about the
640// symbol. IS_FINAL is true if the final address of this symbol is
641// known at link time.
642
e041f13d 643tls::Tls_optimization
2e30d253
ILT
644Target_x86_64::optimize_tls_reloc(bool is_final, int r_type)
645{
2e30d253
ILT
646 // If we are generating a shared library, then we can't do anything
647 // in the linker.
648 if (parameters->output_is_shared())
e041f13d 649 return tls::TLSOPT_NONE;
2e30d253
ILT
650
651 switch (r_type)
652 {
653 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
654 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
655 case elfcpp::R_X86_64_TLSDESC_CALL:
656 // These are General-Dynamic which permits fully general TLS
2e30d253
ILT
657 // access. Since we know that we are generating an executable,
658 // we can convert this to Initial-Exec. If we also know that
659 // this is a local symbol, we can further switch to Local-Exec.
660 if (is_final)
e041f13d
ILT
661 return tls::TLSOPT_TO_LE;
662 return tls::TLSOPT_TO_IE;
2e30d253 663
d61c17ea 664 case elfcpp::R_X86_64_TLSLD:
2e30d253
ILT
665 // This is Local-Dynamic, which refers to a local symbol in the
666 // dynamic TLS block. Since we know that we generating an
667 // executable, we can switch to Local-Exec.
e041f13d 668 return tls::TLSOPT_TO_LE;
2e30d253 669
0ffd9845 670 case elfcpp::R_X86_64_DTPOFF32:
0ffd9845
ILT
671 case elfcpp::R_X86_64_DTPOFF64:
672 // Another Local-Dynamic reloc.
e041f13d 673 return tls::TLSOPT_TO_LE;
0ffd9845 674
d61c17ea 675 case elfcpp::R_X86_64_GOTTPOFF:
2e30d253
ILT
676 // These are Initial-Exec relocs which get the thread offset
677 // from the GOT. If we know that we are linking against the
678 // local symbol, we can switch to Local-Exec, which links the
679 // thread offset into the instruction.
680 if (is_final)
e041f13d
ILT
681 return tls::TLSOPT_TO_LE;
682 return tls::TLSOPT_NONE;
2e30d253 683
d61c17ea 684 case elfcpp::R_X86_64_TPOFF32:
2e30d253
ILT
685 // When we already have Local-Exec, there is nothing further we
686 // can do.
e041f13d 687 return tls::TLSOPT_NONE;
2e30d253
ILT
688
689 default:
690 gold_unreachable();
691 }
2e30d253
ILT
692}
693
e041f13d
ILT
694// Report an unsupported relocation against a local symbol.
695
696void
697Target_x86_64::Scan::unsupported_reloc_local(Sized_relobj<64, false>* object,
698 unsigned int r_type)
699{
75f2446e
ILT
700 gold_error(_("%s: unsupported reloc %u against local symbol"),
701 object->name().c_str(), r_type);
e041f13d
ILT
702}
703
2e30d253
ILT
704// Scan a relocation for a local symbol.
705
706inline void
707Target_x86_64::Scan::local(const General_options&,
d61c17ea
ILT
708 Symbol_table* symtab,
709 Layout* layout,
710 Target_x86_64* target,
711 Sized_relobj<64, false>* object,
0ffd9845
ILT
712 unsigned int data_shndx,
713 const elfcpp::Rela<64, false>& reloc,
d61c17ea
ILT
714 unsigned int r_type,
715 const elfcpp::Sym<64, false>&)
2e30d253
ILT
716{
717 switch (r_type)
718 {
719 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
720 case elfcpp::R_386_GNU_VTINHERIT:
721 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
722 break;
723
724 case elfcpp::R_X86_64_64:
725 case elfcpp::R_X86_64_32:
726 case elfcpp::R_X86_64_32S:
727 case elfcpp::R_X86_64_16:
728 case elfcpp::R_X86_64_8:
729 // FIXME: If we are generating a shared object we need to copy
730 // this relocation into the object.
731 gold_assert(!parameters->output_is_shared());
732 break;
733
734 case elfcpp::R_X86_64_PC64:
735 case elfcpp::R_X86_64_PC32:
736 case elfcpp::R_X86_64_PC16:
737 case elfcpp::R_X86_64_PC8:
738 break;
739
e822f2b1 740 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
741 case elfcpp::R_X86_64_GOTOFF64:
742 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 743 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
744 // We need a GOT section.
745 target->got_section(symtab, layout);
746 break;
747
0ffd9845
ILT
748 case elfcpp::R_X86_64_GOT64:
749 case elfcpp::R_X86_64_GOT32:
750 case elfcpp::R_X86_64_GOTPCREL64:
751 case elfcpp::R_X86_64_GOTPCREL:
752 {
753 // The symbol requires a GOT entry.
754 Output_data_got<64, false>* got = target->got_section(symtab, layout);
755 unsigned int r_sym = elfcpp::elf_r_sym<64>(reloc.get_r_info());
756 if (got->add_local(object, r_sym))
757 {
758 // If we are generating a shared object, we need to add a
759 // dynamic RELATIVE relocation for this symbol.
760 if (parameters->output_is_shared())
761 {
762 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
763 rela_dyn->add_local(object, 0, elfcpp::R_X86_64_RELATIVE,
764 data_shndx, reloc.get_r_offset(), 0);
765 }
766 }
767 }
768 break;
769
2e30d253
ILT
770 case elfcpp::R_X86_64_COPY:
771 case elfcpp::R_X86_64_GLOB_DAT:
772 case elfcpp::R_X86_64_JUMP_SLOT:
773 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 774 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 775 case elfcpp::R_X86_64_TPOFF64:
2e30d253 776 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 777 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
778 gold_error(_("%s: unexpected reloc %u in object file"),
779 object->name().c_str(), r_type);
2e30d253
ILT
780 break;
781
d61c17ea 782 // These are initial tls relocs, which are expected when linking
e041f13d
ILT
783 case elfcpp::R_X86_64_TLSGD:
784 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
785 case elfcpp::R_X86_64_TLSDESC_CALL:
786 case elfcpp::R_X86_64_TLSLD:
787 case elfcpp::R_X86_64_GOTTPOFF:
788 case elfcpp::R_X86_64_TPOFF32:
0ffd9845
ILT
789 case elfcpp::R_X86_64_DTPOFF32:
790 case elfcpp::R_X86_64_DTPOFF64:
2e30d253
ILT
791 {
792 bool output_is_shared = parameters->output_is_shared();
e041f13d
ILT
793 const tls::Tls_optimization optimized_type
794 = Target_x86_64::optimize_tls_reloc(!output_is_shared, r_type);
2e30d253
ILT
795 switch (r_type)
796 {
d61c17ea 797 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
798 // FIXME: If generating a shared object, we need to copy
799 // this relocation into the object.
800 gold_assert(!output_is_shared);
801 break;
802
e041f13d
ILT
803 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
804 // FIXME: If not relaxing to LE, we need to generate a
805 // TPOFF64 reloc.
806 if (optimized_type != tls::TLSOPT_TO_LE)
807 unsupported_reloc_local(object, r_type);
808 break;
809
810 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
811 case elfcpp::R_X86_64_DTPOFF32:
812 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
813 // FIXME: If not relaxing to LE, we need to generate a
814 // DTPMOD64 reloc.
815 if (optimized_type != tls::TLSOPT_TO_LE)
816 unsupported_reloc_local(object, r_type);
817 break;
818
0ffd9845 819
e041f13d 820 case elfcpp::R_X86_64_TLSGD: // General-dynamic
d61c17ea
ILT
821 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
822 case elfcpp::R_X86_64_TLSDESC_CALL:
e041f13d
ILT
823 // FIXME: If not relaxing to LE, we need to generate
824 // DTPMOD64 and DTPOFF64 relocs.
825 if (optimized_type != tls::TLSOPT_TO_LE)
826 unsupported_reloc_local(object, r_type);
2e30d253 827 break;
e041f13d
ILT
828
829 default:
830 gold_unreachable();
2e30d253
ILT
831 }
832 }
833 break;
2e30d253 834
0ffd9845 835 case elfcpp::R_X86_64_GOTPLT64:
2e30d253 836 case elfcpp::R_X86_64_PLT32:
e822f2b1
ILT
837 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
838 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253 839 default:
75f2446e
ILT
840 gold_error(_("%s: unsupported reloc %u against local symbol"),
841 object->name().c_str(), r_type);
2e30d253
ILT
842 break;
843 }
844}
845
846
e041f13d
ILT
847// Report an unsupported relocation against a global symbol.
848
849void
850Target_x86_64::Scan::unsupported_reloc_global(Sized_relobj<64, false>* object,
851 unsigned int r_type,
852 Symbol* gsym)
853{
75f2446e
ILT
854 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
855 object->name().c_str(), r_type, gsym->name());
e041f13d
ILT
856}
857
2e30d253
ILT
858// Scan a relocation for a global symbol.
859
860inline void
861Target_x86_64::Scan::global(const General_options& options,
d61c17ea
ILT
862 Symbol_table* symtab,
863 Layout* layout,
864 Target_x86_64* target,
865 Sized_relobj<64, false>* object,
866 unsigned int data_shndx,
867 const elfcpp::Rela<64, false>& reloc,
868 unsigned int r_type,
869 Symbol* gsym)
2e30d253
ILT
870{
871 switch (r_type)
872 {
873 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
874 case elfcpp::R_386_GNU_VTINHERIT:
875 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
876 break;
877
878 case elfcpp::R_X86_64_64:
879 case elfcpp::R_X86_64_PC64:
880 case elfcpp::R_X86_64_32:
881 case elfcpp::R_X86_64_32S:
882 case elfcpp::R_X86_64_PC32:
883 case elfcpp::R_X86_64_16:
884 case elfcpp::R_X86_64_PC16:
885 case elfcpp::R_X86_64_8:
886 case elfcpp::R_X86_64_PC8:
887 // FIXME: If we are generating a shared object we may need to
888 // copy this relocation into the object. If this symbol is
889 // defined in a shared object, we may need to copy this
890 // relocation in order to avoid a COPY relocation.
891 gold_assert(!parameters->output_is_shared());
892
893 if (gsym->is_from_dynobj())
894 {
895 // This symbol is defined in a dynamic object. If it is a
896 // function, we make a PLT entry. Otherwise we need to
897 // either generate a COPY reloc or copy this reloc.
898 if (gsym->type() == elfcpp::STT_FUNC)
4fb6c25d
ILT
899 {
900 target->make_plt_entry(symtab, layout, gsym);
901
902 // If this is not a PC relative reference, then we may
903 // be taking the address of the function. In that case
904 // we need to set the entry in the dynamic symbol table
905 // to the address of the PLT entry.
906 if (r_type != elfcpp::R_X86_64_PC64
907 && r_type != elfcpp::R_X86_64_PC32
908 && r_type != elfcpp::R_X86_64_PC16
909 && r_type != elfcpp::R_X86_64_PC8)
910 gsym->set_needs_dynsym_value();
911 }
2e30d253
ILT
912 else
913 target->copy_reloc(&options, symtab, layout, object, data_shndx,
914 gsym, reloc);
915 }
916
917 break;
918
ff006520 919 case elfcpp::R_X86_64_GOT64:
2e30d253 920 case elfcpp::R_X86_64_GOT32:
ff006520
ILT
921 case elfcpp::R_X86_64_GOTPCREL64:
922 case elfcpp::R_X86_64_GOTPCREL:
923 case elfcpp::R_X86_64_GOTPLT64:
2e30d253
ILT
924 {
925 // The symbol requires a GOT entry.
926 Output_data_got<64, false>* got = target->got_section(symtab, layout);
927 if (got->add_global(gsym))
928 {
929 // If this symbol is not fully resolved, we need to add a
930 // dynamic relocation for it.
931 if (!gsym->final_value_is_known())
932 {
0ffd9845
ILT
933 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
934 rela_dyn->add_global(gsym, elfcpp::R_X86_64_GLOB_DAT, got,
935 gsym->got_offset(), 0);
2e30d253
ILT
936 }
937 }
938 }
939 break;
940
941 case elfcpp::R_X86_64_PLT32:
942 // If the symbol is fully resolved, this is just a PC32 reloc.
943 // Otherwise we need a PLT entry.
944 if (gsym->final_value_is_known())
945 break;
946 target->make_plt_entry(symtab, layout, gsym);
947 break;
948
e822f2b1 949 case elfcpp::R_X86_64_GOTPC32: // TODO(csilvers): correct?
e822f2b1
ILT
950 case elfcpp::R_X86_64_GOTOFF64:
951 case elfcpp::R_X86_64_GOTPC64: // TODO(csilvers): correct?
e822f2b1 952 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): correct?
2e30d253
ILT
953 // We need a GOT section.
954 target->got_section(symtab, layout);
955 break;
956
2e30d253
ILT
957 case elfcpp::R_X86_64_COPY:
958 case elfcpp::R_X86_64_GLOB_DAT:
959 case elfcpp::R_X86_64_JUMP_SLOT:
960 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 961 // These are outstanding tls relocs, which are unexpected when linking
e822f2b1 962 case elfcpp::R_X86_64_TPOFF64:
2e30d253 963 case elfcpp::R_X86_64_DTPMOD64:
e822f2b1 964 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
965 gold_error(_("%s: unexpected reloc %u in object file"),
966 object->name().c_str(), r_type);
2e30d253 967 break;
2e30d253 968
d61c17ea 969 // These are initial tls relocs, which are expected for global()
e041f13d
ILT
970 case elfcpp::R_X86_64_TLSGD:
971 case elfcpp::R_X86_64_TLSLD:
972 case elfcpp::R_X86_64_GOTTPOFF:
973 case elfcpp::R_X86_64_TPOFF32:
974 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
975 case elfcpp::R_X86_64_TLSDESC_CALL:
0ffd9845
ILT
976 case elfcpp::R_X86_64_DTPOFF32:
977 case elfcpp::R_X86_64_DTPOFF64:
2e30d253
ILT
978 {
979 const bool is_final = gsym->final_value_is_known();
e041f13d
ILT
980 const tls::Tls_optimization optimized_type
981 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
982 switch (r_type)
983 {
d61c17ea 984 case elfcpp::R_X86_64_TPOFF32: // Local-exec
2e30d253
ILT
985 // FIXME: If generating a shared object, we need to copy
986 // this relocation into the object.
e041f13d 987 gold_assert(is_final);
2e30d253
ILT
988 break;
989
e041f13d
ILT
990 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec
991 // FIXME: If not relaxing to LE, we need to generate a
992 // TPOFF64 reloc.
993 if (optimized_type != tls::TLSOPT_TO_LE)
994 unsupported_reloc_global(object, r_type, gsym);
995 break;
996
997 case elfcpp::R_X86_64_TLSLD: // Local-dynamic
0ffd9845
ILT
998 case elfcpp::R_X86_64_DTPOFF32:
999 case elfcpp::R_X86_64_DTPOFF64:
e041f13d
ILT
1000 // FIXME: If not relaxing to LE, we need to generate a
1001 // DTPMOD64 reloc.
1002 if (optimized_type != tls::TLSOPT_TO_LE)
1003 unsupported_reloc_global(object, r_type, gsym);
1004 break;
1005
0ffd9845 1006
e041f13d 1007 case elfcpp::R_X86_64_TLSGD: // General-dynamic
d61c17ea
ILT
1008 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1009 case elfcpp::R_X86_64_TLSDESC_CALL:
e041f13d
ILT
1010 // FIXME: If not relaxing to LE, we need to generate
1011 // DTPMOD64 and DTPOFF64, or TLSDESC, relocs.
1012 if (optimized_type != tls::TLSOPT_TO_LE)
1013 unsupported_reloc_global(object, r_type, gsym);
2e30d253 1014 break;
e041f13d
ILT
1015
1016 default:
1017 gold_unreachable();
2e30d253
ILT
1018 }
1019 }
1020 break;
e822f2b1
ILT
1021 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1022 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
2e30d253 1023 default:
75f2446e
ILT
1024 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1025 object->name().c_str(), r_type, gsym->name());
2e30d253
ILT
1026 break;
1027 }
1028}
1029
1030// Scan relocations for a section.
1031
1032void
1033Target_x86_64::scan_relocs(const General_options& options,
d61c17ea
ILT
1034 Symbol_table* symtab,
1035 Layout* layout,
1036 Sized_relobj<64, false>* object,
1037 unsigned int data_shndx,
1038 unsigned int sh_type,
1039 const unsigned char* prelocs,
1040 size_t reloc_count,
1041 size_t local_symbol_count,
1042 const unsigned char* plocal_symbols,
1043 Symbol** global_symbols)
2e30d253
ILT
1044{
1045 if (sh_type == elfcpp::SHT_REL)
1046 {
75f2446e
ILT
1047 gold_error(_("%s: unsupported REL reloc section"),
1048 object->name().c_str());
1049 return;
2e30d253
ILT
1050 }
1051
1052 gold::scan_relocs<64, false, Target_x86_64, elfcpp::SHT_RELA,
1053 Target_x86_64::Scan>(
1054 options,
1055 symtab,
1056 layout,
1057 this,
1058 object,
1059 data_shndx,
1060 prelocs,
1061 reloc_count,
1062 local_symbol_count,
1063 plocal_symbols,
1064 global_symbols);
1065}
1066
1067// Finalize the sections.
1068
1069void
1070Target_x86_64::do_finalize_sections(Layout* layout)
1071{
1072 // Fill in some more dynamic tags.
1073 Output_data_dynamic* const odyn = layout->dynamic_data();
1074 if (odyn != NULL)
1075 {
1076 if (this->got_plt_ != NULL)
1077 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1078
1079 if (this->plt_ != NULL)
1080 {
1081 const Output_data* od = this->plt_->rel_plt();
1082 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1083 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1084 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_RELA);
1085 }
1086
0ffd9845 1087 if (this->rela_dyn_ != NULL)
2e30d253 1088 {
0ffd9845 1089 const Output_data* od = this->rela_dyn_;
2e30d253 1090 odyn->add_section_address(elfcpp::DT_RELA, od);
e84992bb 1091 odyn->add_section_size(elfcpp::DT_RELASZ, od);
2e30d253 1092 odyn->add_constant(elfcpp::DT_RELAENT,
e84992bb 1093 elfcpp::Elf_sizes<64>::rela_size);
2e30d253
ILT
1094 }
1095
1096 if (!parameters->output_is_shared())
1097 {
1098 // The value of the DT_DEBUG tag is filled in by the dynamic
1099 // linker at run time, and used by the debugger.
1100 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1101 }
1102 }
1103
1104 // Emit any relocs we saved in an attempt to avoid generating COPY
1105 // relocs.
1106 if (this->copy_relocs_ == NULL)
1107 return;
1108 if (this->copy_relocs_->any_to_emit())
1109 {
0ffd9845
ILT
1110 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
1111 this->copy_relocs_->emit(rela_dyn);
2e30d253
ILT
1112 }
1113 delete this->copy_relocs_;
1114 this->copy_relocs_ = NULL;
1115}
1116
1117// Perform a relocation.
1118
1119inline bool
1120Target_x86_64::Relocate::relocate(const Relocate_info<64, false>* relinfo,
1121 Target_x86_64* target,
1122 size_t relnum,
0ffd9845 1123 const elfcpp::Rela<64, false>& rela,
2e30d253
ILT
1124 unsigned int r_type,
1125 const Sized_symbol<64>* gsym,
1126 const Symbol_value<64>* psymval,
1127 unsigned char* view,
1128 elfcpp::Elf_types<64>::Elf_Addr address,
1129 off_t view_size)
1130{
1131 if (this->skip_call_tls_get_addr_)
1132 {
1133 if (r_type != elfcpp::R_X86_64_PLT32
1134 || gsym == NULL
0ffd9845 1135 || strcmp(gsym->name(), "__tls_get_addr") != 0)
2e30d253 1136 {
75f2446e
ILT
1137 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1138 _("missing expected TLS relocation"));
1139 }
1140 else
1141 {
1142 this->skip_call_tls_get_addr_ = false;
1143 return false;
2e30d253 1144 }
2e30d253
ILT
1145 }
1146
1147 // Pick the value to use for symbols defined in shared objects.
1148 Symbol_value<64> symval;
1149 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1150 {
1151 symval.set_output_value(target->plt_section()->address()
1152 + gsym->plt_offset());
1153 psymval = &symval;
1154 }
1155
1156 const Sized_relobj<64, false>* object = relinfo->object;
0ffd9845
ILT
1157 const elfcpp::Elf_Xword addend = rela.get_r_addend();
1158
1159 // Get the GOT offset if needed.
1160 bool have_got_offset = false;
1161 unsigned int got_offset = 0;
1162 switch (r_type)
1163 {
1164 case elfcpp::R_X86_64_GOT32:
1165 case elfcpp::R_X86_64_GOT64:
1166 case elfcpp::R_X86_64_GOTPLT64:
1167 case elfcpp::R_X86_64_GOTPCREL:
1168 case elfcpp::R_X86_64_GOTPCREL64:
1169 if (gsym != NULL)
1170 {
1171 gold_assert(gsym->has_got_offset());
1172 got_offset = gsym->got_offset();
1173 }
1174 else
1175 {
1176 unsigned int r_sym = elfcpp::elf_r_sym<64>(rela.get_r_info());
1177 got_offset = object->local_got_offset(r_sym);
1178 }
1179 have_got_offset = true;
1180 break;
1181
1182 default:
1183 break;
1184 }
1185
2e30d253
ILT
1186
1187 switch (r_type)
1188 {
1189 case elfcpp::R_X86_64_NONE:
e822f2b1
ILT
1190 case elfcpp::R_386_GNU_VTINHERIT:
1191 case elfcpp::R_386_GNU_VTENTRY:
2e30d253
ILT
1192 break;
1193
1194 case elfcpp::R_X86_64_64:
1195 Relocate_functions<64, false>::rela64(view, object, psymval, addend);
1196 break;
1197
1198 case elfcpp::R_X86_64_PC64:
1199 Relocate_functions<64, false>::pcrela64(view, object, psymval, addend,
1200 address);
1201 break;
1202
1203 case elfcpp::R_X86_64_32:
7bb3655e
ILT
1204 // FIXME: we need to verify that value + addend fits into 32 bits:
1205 // uint64_t x = value + addend;
1206 // x == static_cast<uint64_t>(static_cast<uint32_t>(x))
1207 // Likewise for other <=32-bit relocations (but see R_X86_64_32S).
2e30d253
ILT
1208 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1209 break;
1210
1211 case elfcpp::R_X86_64_32S:
7bb3655e
ILT
1212 // FIXME: we need to verify that value + addend fits into 32 bits:
1213 // int64_t x = value + addend; // note this quantity is signed!
1214 // x == static_cast<int64_t>(static_cast<int32_t>(x))
2e30d253
ILT
1215 Relocate_functions<64, false>::rela32(view, object, psymval, addend);
1216 break;
1217
1218 case elfcpp::R_X86_64_PC32:
1219 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1220 address);
1221 break;
1222
1223 case elfcpp::R_X86_64_16:
1224 Relocate_functions<64, false>::rela16(view, object, psymval, addend);
1225 break;
1226
1227 case elfcpp::R_X86_64_PC16:
1228 Relocate_functions<64, false>::pcrela16(view, object, psymval, addend,
1229 address);
1230 break;
1231
1232 case elfcpp::R_X86_64_8:
1233 Relocate_functions<64, false>::rela8(view, object, psymval, addend);
1234 break;
1235
1236 case elfcpp::R_X86_64_PC8:
1237 Relocate_functions<64, false>::pcrela8(view, object, psymval, addend,
1238 address);
1239 break;
1240
1241 case elfcpp::R_X86_64_PLT32:
1242 gold_assert(gsym->has_plt_offset()
1243 || gsym->final_value_is_known());
1244 Relocate_functions<64, false>::pcrela32(view, object, psymval, addend,
1245 address);
1246 break;
1247
1248 case elfcpp::R_X86_64_GOT32:
0ffd9845
ILT
1249 gold_assert(have_got_offset);
1250 Relocate_functions<64, false>::rela32(view, got_offset, addend);
2e30d253
ILT
1251 break;
1252
e822f2b1
ILT
1253 case elfcpp::R_X86_64_GOTPC32:
1254 {
1255 gold_assert(gsym);
1256 elfcpp::Elf_types<64>::Elf_Addr value;
1257 value = target->got_section(NULL, NULL)->address();
1258 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
1259 }
1260 break;
1261
1262 case elfcpp::R_X86_64_GOT64:
1263 // The ABI doc says "Like GOT64, but indicates a PLT entry is needed."
1264 // Since we always add a PLT entry, this is equivalent.
1265 case elfcpp::R_X86_64_GOTPLT64: // TODO(csilvers): correct?
0ffd9845
ILT
1266 gold_assert(have_got_offset);
1267 Relocate_functions<64, false>::rela64(view, got_offset, addend);
e822f2b1
ILT
1268 break;
1269
1270 case elfcpp::R_X86_64_GOTPC64:
1271 {
1272 gold_assert(gsym);
1273 elfcpp::Elf_types<64>::Elf_Addr value;
1274 value = target->got_section(NULL, NULL)->address();
1275 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
1276 }
1277 break;
1278
2e30d253
ILT
1279 case elfcpp::R_X86_64_GOTOFF64:
1280 {
1281 elfcpp::Elf_types<64>::Elf_Addr value;
1282 value = (psymval->value(object, 0)
1283 - target->got_section(NULL, NULL)->address());
1284 Relocate_functions<64, false>::rela64(view, value, addend);
1285 }
1286 break;
1287
1288 case elfcpp::R_X86_64_GOTPCREL:
1289 {
0ffd9845
ILT
1290 gold_assert(have_got_offset);
1291 elfcpp::Elf_types<64>::Elf_Addr value;
1292 value = target->got_section(NULL, NULL)->address() + got_offset;
1293 Relocate_functions<64, false>::pcrela32(view, value, addend, address);
2e30d253
ILT
1294 }
1295 break;
1296
e822f2b1
ILT
1297 case elfcpp::R_X86_64_GOTPCREL64:
1298 {
0ffd9845
ILT
1299 gold_assert(have_got_offset);
1300 elfcpp::Elf_types<64>::Elf_Addr value;
1301 value = target->got_section(NULL, NULL)->address() + got_offset;
1302 Relocate_functions<64, false>::pcrela64(view, value, addend, address);
e822f2b1
ILT
1303 }
1304 break;
1305
2e30d253
ILT
1306 case elfcpp::R_X86_64_COPY:
1307 case elfcpp::R_X86_64_GLOB_DAT:
1308 case elfcpp::R_X86_64_JUMP_SLOT:
1309 case elfcpp::R_X86_64_RELATIVE:
d61c17ea 1310 // These are outstanding tls relocs, which are unexpected when linking
2e30d253 1311 case elfcpp::R_X86_64_TPOFF64:
2e30d253 1312 case elfcpp::R_X86_64_DTPMOD64:
2e30d253 1313 case elfcpp::R_X86_64_TLSDESC:
75f2446e
ILT
1314 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1315 _("unexpected reloc %u in object file"),
1316 r_type);
2e30d253
ILT
1317 break;
1318
d61c17ea 1319 // These are initial tls relocs, which are expected when linking
e041f13d
ILT
1320 case elfcpp::R_X86_64_TLSGD:
1321 case elfcpp::R_X86_64_TLSLD:
1322 case elfcpp::R_X86_64_GOTTPOFF:
1323 case elfcpp::R_X86_64_TPOFF32:
1324 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1325 case elfcpp::R_X86_64_TLSDESC_CALL:
0ffd9845
ILT
1326 case elfcpp::R_X86_64_DTPOFF32:
1327 case elfcpp::R_X86_64_DTPOFF64:
1328 this->relocate_tls(relinfo, relnum, rela, r_type, gsym, psymval, view,
2e30d253
ILT
1329 address, view_size);
1330 break;
2e30d253 1331
e822f2b1
ILT
1332 case elfcpp::R_X86_64_SIZE32: // TODO(csilvers): correct?
1333 case elfcpp::R_X86_64_SIZE64: // TODO(csilvers): correct?
1334 case elfcpp::R_X86_64_PLTOFF64: // TODO(csilvers): implement me!
2e30d253 1335 default:
75f2446e
ILT
1336 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
1337 _("unsupported reloc %u"),
1338 r_type);
2e30d253
ILT
1339 break;
1340 }
1341
1342 return true;
1343}
1344
1345// Perform a TLS relocation.
1346
1347inline void
d61c17ea
ILT
1348Target_x86_64::Relocate::relocate_tls(const Relocate_info<64, false>* relinfo,
1349 size_t relnum,
1350 const elfcpp::Rela<64, false>& rel,
1351 unsigned int r_type,
1352 const Sized_symbol<64>* gsym,
1353 const Symbol_value<64>* psymval,
1354 unsigned char* view,
2e30d253 1355 elfcpp::Elf_types<64>::Elf_Addr,
d61c17ea 1356 off_t view_size)
2e30d253 1357{
2e30d253
ILT
1358 Output_segment* tls_segment = relinfo->layout->tls_segment();
1359 if (tls_segment == NULL)
1360 {
75f2446e
ILT
1361 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1362 _("TLS reloc but no TLS segment"));
1363 return;
2e30d253
ILT
1364 }
1365
1366 elfcpp::Elf_types<64>::Elf_Addr value = psymval->value(relinfo->object, 0);
1367
1368 const bool is_final = (gsym == NULL
1369 ? !parameters->output_is_shared()
1370 : gsym->final_value_is_known());
e041f13d
ILT
1371 const tls::Tls_optimization optimized_type
1372 = Target_x86_64::optimize_tls_reloc(is_final, r_type);
2e30d253
ILT
1373 switch (r_type)
1374 {
d61c17ea 1375 case elfcpp::R_X86_64_TPOFF32: // Local-exec reloc
2e30d253 1376 value = value - (tls_segment->vaddr() + tls_segment->memsz());
d61c17ea 1377 Relocate_functions<64, false>::rel32(view, value);
2e30d253
ILT
1378 break;
1379
d61c17ea 1380 case elfcpp::R_X86_64_GOTTPOFF: // Initial-exec reloc
e041f13d 1381 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1382 {
1383 Target_x86_64::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
d61c17ea
ILT
1384 rel, r_type, value, view,
1385 view_size);
2e30d253
ILT
1386 break;
1387 }
75f2446e
ILT
1388 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1389 _("unsupported reloc type %u"),
1390 r_type);
2e30d253
ILT
1391 break;
1392
d61c17ea 1393 case elfcpp::R_X86_64_TLSGD:
e041f13d
ILT
1394 case elfcpp::R_X86_64_GOTPC32_TLSDESC:
1395 case elfcpp::R_X86_64_TLSDESC_CALL:
1396 if (optimized_type == tls::TLSOPT_TO_LE)
2e30d253
ILT
1397 {
1398 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1399 rel, r_type, value, view,
1400 view_size);
1401 break;
1402 }
75f2446e
ILT
1403 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1404 _("unsupported reloc %u"), r_type);
2e30d253
ILT
1405 break;
1406
d61c17ea 1407 case elfcpp::R_X86_64_TLSLD:
e041f13d
ILT
1408 if (optimized_type == tls::TLSOPT_TO_LE)
1409 {
1410 // FIXME: implement ld_to_le
1411 }
75f2446e
ILT
1412 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1413 _("unsupported reloc %u"), r_type);
2e30d253 1414 break;
0ffd9845
ILT
1415
1416 case elfcpp::R_X86_64_DTPOFF32:
e041f13d 1417 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1418 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1419 else
1420 value = value - tls_segment->vaddr();
1421 Relocate_functions<64, false>::rel32(view, value);
1422 break;
1423
1424 case elfcpp::R_X86_64_DTPOFF64:
e041f13d 1425 if (optimized_type == tls::TLSOPT_TO_LE)
0ffd9845
ILT
1426 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1427 else
1428 value = value - tls_segment->vaddr();
1429 Relocate_functions<64, false>::rel64(view, value);
1430 break;
2e30d253 1431 }
2e30d253
ILT
1432}
1433
1434// Do a relocation in which we convert a TLS Initial-Exec to a
1435// Local-Exec.
1436
1437inline void
d61c17ea
ILT
1438Target_x86_64::Relocate::tls_ie_to_le(const Relocate_info<64, false>* relinfo,
1439 size_t relnum,
1440 Output_segment* tls_segment,
1441 const elfcpp::Rela<64, false>& rel,
1442 unsigned int,
1443 elfcpp::Elf_types<64>::Elf_Addr value,
1444 unsigned char* view,
1445 off_t view_size)
2e30d253 1446{
0ffd9845 1447 // We need to examine the opcodes to figure out which instruction we
2e30d253 1448 // are looking at.
2e30d253 1449
0ffd9845
ILT
1450 // movq foo@gottpoff(%rip),%reg ==> movq $YY,%reg
1451 // addq foo@gottpoff(%rip),%reg ==> addq $YY,%reg
1452
1453 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -3);
d61c17ea
ILT
1454 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 4);
1455
0ffd9845
ILT
1456 unsigned char op1 = view[-3];
1457 unsigned char op2 = view[-2];
1458 unsigned char op3 = view[-1];
1459 unsigned char reg = op3 >> 3;
1460
1461 if (op2 == 0x8b)
1462 {
1463 // movq
1464 if (op1 == 0x4c)
1465 view[-3] = 0x49;
1466 view[-2] = 0xc7;
1467 view[-1] = 0xc0 | reg;
1468 }
1469 else if (reg == 4)
d61c17ea 1470 {
0ffd9845
ILT
1471 // Special handling for %rsp.
1472 if (op1 == 0x4c)
1473 view[-3] = 0x49;
1474 view[-2] = 0x81;
1475 view[-1] = 0xc0 | reg;
2e30d253
ILT
1476 }
1477 else
1478 {
0ffd9845
ILT
1479 // addq
1480 if (op1 == 0x4c)
1481 view[-3] = 0x4d;
1482 view[-2] = 0x8d;
1483 view[-1] = 0x80 | reg | (reg << 3);
2e30d253
ILT
1484 }
1485
d61c17ea 1486 value = value - (tls_segment->vaddr() + tls_segment->memsz());
0ffd9845 1487 Relocate_functions<64, false>::rela32(view, value, 0);
2e30d253
ILT
1488}
1489
e041f13d 1490// Do a relocation in which we convert a TLS General-Dynamic to a
2e30d253
ILT
1491// Local-Exec.
1492
1493inline void
d61c17ea
ILT
1494Target_x86_64::Relocate::tls_gd_to_le(const Relocate_info<64, false>* relinfo,
1495 size_t relnum,
1496 Output_segment* tls_segment,
1497 const elfcpp::Rela<64, false>& rel,
1498 unsigned int,
1499 elfcpp::Elf_types<64>::Elf_Addr value,
1500 unsigned char* view,
1501 off_t view_size)
2e30d253 1502{
0ffd9845
ILT
1503 // .byte 0x66; leaq foo@tlsgd(%rip),%rdi;
1504 // .word 0x6666; rex64; call __tls_get_addr
1505 // ==> movq %fs:0,%rax; leaq x@tpoff(%rax),%rax
2e30d253 1506
0ffd9845
ILT
1507 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, -4);
1508 Target_x86_64::Relocate::check_range(relinfo, relnum, rel, view_size, 12);
2e30d253
ILT
1509
1510 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
0ffd9845
ILT
1511 (memcmp(view - 4, "\x66\x48\x8d\x3d", 4)
1512 == 0));
2e30d253 1513 Target_x86_64::Relocate::check_tls(relinfo, relnum, rel,
0ffd9845
ILT
1514 (memcmp(view + 4, "\x66\x66\x48\xe8", 4)
1515 == 0));
2e30d253 1516
0ffd9845 1517 memcpy(view - 4, "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0\0", 16);
2e30d253 1518
0ffd9845
ILT
1519 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1520 Relocate_functions<64, false>::rela32(view + 8, value, 0);
2e30d253
ILT
1521
1522 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1523 // We can skip it.
1524 this->skip_call_tls_get_addr_ = true;
2e30d253
ILT
1525}
1526
1527// Check the range for a TLS relocation.
1528
1529inline void
1530Target_x86_64::Relocate::check_range(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1531 size_t relnum,
1532 const elfcpp::Rela<64, false>& rel,
1533 off_t view_size, off_t off)
2e30d253
ILT
1534{
1535 off_t offset = rel.get_r_offset() + off;
1536 if (offset < 0 || offset > view_size)
75f2446e
ILT
1537 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1538 _("TLS relocation out of range"));
2e30d253
ILT
1539}
1540
1541// Check the validity of a TLS relocation. This is like assert.
1542
1543inline void
1544Target_x86_64::Relocate::check_tls(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1545 size_t relnum,
1546 const elfcpp::Rela<64, false>& rel,
1547 bool valid)
2e30d253
ILT
1548{
1549 if (!valid)
75f2446e
ILT
1550 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1551 _("TLS relocation against invalid instruction"));
2e30d253
ILT
1552}
1553
1554// Relocate section data.
1555
1556void
1557Target_x86_64::relocate_section(const Relocate_info<64, false>* relinfo,
d61c17ea
ILT
1558 unsigned int sh_type,
1559 const unsigned char* prelocs,
1560 size_t reloc_count,
1561 unsigned char* view,
1562 elfcpp::Elf_types<64>::Elf_Addr address,
1563 off_t view_size)
2e30d253
ILT
1564{
1565 gold_assert(sh_type == elfcpp::SHT_RELA);
1566
1567 gold::relocate_section<64, false, Target_x86_64, elfcpp::SHT_RELA,
1568 Target_x86_64::Relocate>(
1569 relinfo,
1570 this,
1571 prelocs,
1572 reloc_count,
1573 view,
1574 address,
1575 view_size);
1576}
1577
4fb6c25d
ILT
1578// Return the value to use for a dynamic which requires special
1579// treatment. This is how we support equality comparisons of function
1580// pointers across shared library boundaries, as described in the
1581// processor specific ABI supplement.
1582
1583uint64_t
1584Target_x86_64::do_dynsym_value(const Symbol* gsym) const
1585{
1586 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1587 return this->plt_section()->address() + gsym->plt_offset();
1588}
1589
2e30d253
ILT
1590// Return a string used to fill a code section with nops to take up
1591// the specified length.
1592
1593std::string
1594Target_x86_64::do_code_fill(off_t length)
1595{
1596 if (length >= 16)
1597 {
1598 // Build a jmpq instruction to skip over the bytes.
1599 unsigned char jmp[5];
1600 jmp[0] = 0xe9;
1601 elfcpp::Swap_unaligned<64, false>::writeval(jmp + 1, length - 5);
1602 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1603 + std::string(length - 5, '\0'));
1604 }
1605
1606 // Nop sequences of various lengths.
1607 const char nop1[1] = { 0x90 }; // nop
1608 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1609 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1610 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1611 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1612 0x00 }; // leal 0(%esi,1),%esi
1613 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1614 0x00, 0x00 };
1615 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1616 0x00, 0x00, 0x00 };
1617 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1618 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1619 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1620 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1621 0x00 };
1622 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1623 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1624 0x00, 0x00 };
1625 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1626 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1627 0x00, 0x00, 0x00 };
1628 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1629 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1630 0x00, 0x00, 0x00, 0x00 };
1631 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1632 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1633 0x27, 0x00, 0x00, 0x00,
1634 0x00 };
1635 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1636 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1637 0xbc, 0x27, 0x00, 0x00,
1638 0x00, 0x00 };
1639 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1640 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1641 0x90, 0x90, 0x90, 0x90,
1642 0x90, 0x90, 0x90 };
1643
1644 const char* nops[16] = {
1645 NULL,
1646 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1647 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1648 };
1649
1650 return std::string(nops[length], length);
1651}
1652
1653// The selector for x86_64 object files.
1654
1655class Target_selector_x86_64 : public Target_selector
1656{
1657public:
1658 Target_selector_x86_64()
1659 : Target_selector(elfcpp::EM_X86_64, 64, false)
1660 { }
1661
1662 Target*
1663 recognize(int machine, int osabi, int abiversion);
1664
1665 private:
1666 Target_x86_64* target_;
1667};
1668
1669// Recognize an x86_64 object file when we already know that the machine
1670// number is EM_X86_64.
1671
1672Target*
1673Target_selector_x86_64::recognize(int, int, int)
1674{
1675 if (this->target_ == NULL)
1676 this->target_ = new Target_x86_64();
1677 return this->target_;
1678}
1679
1680Target_selector_x86_64 target_selector_x86_64;
1681
1682} // End anonymous namespace.
This page took 0.09706 seconds and 4 git commands to generate.