x86: PAT: change pgprot_noncached to uc_minus instead of strong uc - v3
[deliverable/linux.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
1da177e4
LT
7#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
8/*
9 * Largely same as above, but only sets the access flags (dirty,
10 * accessed, and writable). Furthermore, we know it always gets set
11 * to a "more permissive" setting, which allows most architectures
8dab5241
BH
12 * to optimize this. We return whether the PTE actually changed, which
13 * in turn instructs the caller to do things like update__mmu_cache.
14 * This used to be done in the caller, but sparc needs minor faults to
15 * force that call on sun4c so we changed this macro slightly
1da177e4
LT
16 */
17#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
8dab5241
BH
18({ \
19 int __changed = !pte_same(*(__ptep), __entry); \
20 if (__changed) { \
21 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
22 flush_tlb_page(__vma, __address); \
23 } \
24 __changed; \
25})
1da177e4
LT
26#endif
27
28#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
29#define ptep_test_and_clear_young(__vma, __address, __ptep) \
30({ \
31 pte_t __pte = *(__ptep); \
32 int r = 1; \
33 if (!pte_young(__pte)) \
34 r = 0; \
35 else \
36 set_pte_at((__vma)->vm_mm, (__address), \
37 (__ptep), pte_mkold(__pte)); \
38 r; \
39})
40#endif
41
42#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
43#define ptep_clear_flush_young(__vma, __address, __ptep) \
44({ \
45 int __young; \
46 __young = ptep_test_and_clear_young(__vma, __address, __ptep); \
47 if (__young) \
48 flush_tlb_page(__vma, __address); \
49 __young; \
50})
51#endif
52
1da177e4
LT
53#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
54#define ptep_get_and_clear(__mm, __address, __ptep) \
55({ \
56 pte_t __pte = *(__ptep); \
57 pte_clear((__mm), (__address), (__ptep)); \
58 __pte; \
59})
60#endif
61
a600388d
ZA
62#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
63#define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
64({ \
65 pte_t __pte; \
66 __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
67 __pte; \
68})
69#endif
70
9888a1ca
ZA
71/*
72 * Some architectures may be able to avoid expensive synchronization
73 * primitives when modifications are made to PTE's which are already
74 * not present, or in the process of an address space destruction.
75 */
76#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
77#define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
a600388d
ZA
78do { \
79 pte_clear((__mm), (__address), (__ptep)); \
80} while (0)
81#endif
82
1da177e4
LT
83#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
84#define ptep_clear_flush(__vma, __address, __ptep) \
85({ \
86 pte_t __pte; \
87 __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
88 flush_tlb_page(__vma, __address); \
89 __pte; \
90})
91#endif
92
93#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 94struct mm_struct;
1da177e4
LT
95static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
96{
97 pte_t old_pte = *ptep;
98 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
99}
100#endif
101
102#ifndef __HAVE_ARCH_PTE_SAME
103#define pte_same(A,B) (pte_val(A) == pte_val(B))
104#endif
105
6c210482
MS
106#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
107#define page_test_dirty(page) (0)
108#endif
109
110#ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
111#define page_clear_dirty(page) do { } while (0)
112#endif
113
114#ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
b4955ce3
AK
115#define pte_maybe_dirty(pte) pte_dirty(pte)
116#else
117#define pte_maybe_dirty(pte) (1)
1da177e4
LT
118#endif
119
120#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
121#define page_test_and_clear_young(page) (0)
122#endif
123
124#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
125#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
126#endif
127
0b0968a3 128#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 129#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
130#endif
131
1da177e4 132/*
8f6c99c1
HD
133 * When walking page tables, get the address of the next boundary,
134 * or the end address of the range if that comes earlier. Although no
135 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
136 */
137
1da177e4
LT
138#define pgd_addr_end(addr, end) \
139({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
140 (__boundary - 1 < (end) - 1)? __boundary: (end); \
141})
1da177e4
LT
142
143#ifndef pud_addr_end
144#define pud_addr_end(addr, end) \
145({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
146 (__boundary - 1 < (end) - 1)? __boundary: (end); \
147})
148#endif
149
150#ifndef pmd_addr_end
151#define pmd_addr_end(addr, end) \
152({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
153 (__boundary - 1 < (end) - 1)? __boundary: (end); \
154})
155#endif
156
1da177e4
LT
157/*
158 * When walking page tables, we usually want to skip any p?d_none entries;
159 * and any p?d_bad entries - reporting the error before resetting to none.
160 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
161 */
162void pgd_clear_bad(pgd_t *);
163void pud_clear_bad(pud_t *);
164void pmd_clear_bad(pmd_t *);
165
166static inline int pgd_none_or_clear_bad(pgd_t *pgd)
167{
168 if (pgd_none(*pgd))
169 return 1;
170 if (unlikely(pgd_bad(*pgd))) {
171 pgd_clear_bad(pgd);
172 return 1;
173 }
174 return 0;
175}
176
177static inline int pud_none_or_clear_bad(pud_t *pud)
178{
179 if (pud_none(*pud))
180 return 1;
181 if (unlikely(pud_bad(*pud))) {
182 pud_clear_bad(pud);
183 return 1;
184 }
185 return 0;
186}
187
188static inline int pmd_none_or_clear_bad(pmd_t *pmd)
189{
190 if (pmd_none(*pmd))
191 return 1;
192 if (unlikely(pmd_bad(*pmd))) {
193 pmd_clear_bad(pmd);
194 return 1;
195 }
196 return 0;
197}
9535239f 198
1ea0704e
JF
199static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
200 unsigned long addr,
201 pte_t *ptep)
202{
203 /*
204 * Get the current pte state, but zero it out to make it
205 * non-present, preventing the hardware from asynchronously
206 * updating it.
207 */
208 return ptep_get_and_clear(mm, addr, ptep);
209}
210
211static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
212 unsigned long addr,
213 pte_t *ptep, pte_t pte)
214{
215 /*
216 * The pte is non-present, so there's no hardware state to
217 * preserve.
218 */
219 set_pte_at(mm, addr, ptep, pte);
220}
221
222#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
223/*
224 * Start a pte protection read-modify-write transaction, which
225 * protects against asynchronous hardware modifications to the pte.
226 * The intention is not to prevent the hardware from making pte
227 * updates, but to prevent any updates it may make from being lost.
228 *
229 * This does not protect against other software modifications of the
230 * pte; the appropriate pte lock must be held over the transation.
231 *
232 * Note that this interface is intended to be batchable, meaning that
233 * ptep_modify_prot_commit may not actually update the pte, but merely
234 * queue the update to be done at some later time. The update must be
235 * actually committed before the pte lock is released, however.
236 */
237static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
238 unsigned long addr,
239 pte_t *ptep)
240{
241 return __ptep_modify_prot_start(mm, addr, ptep);
242}
243
244/*
245 * Commit an update to a pte, leaving any hardware-controlled bits in
246 * the PTE unmodified.
247 */
248static inline void ptep_modify_prot_commit(struct mm_struct *mm,
249 unsigned long addr,
250 pte_t *ptep, pte_t pte)
251{
252 __ptep_modify_prot_commit(mm, addr, ptep, pte);
253}
254#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 255#endif /* CONFIG_MMU */
1ea0704e 256
9535239f
GU
257/*
258 * A facility to provide lazy MMU batching. This allows PTE updates and
259 * page invalidations to be delayed until a call to leave lazy MMU mode
260 * is issued. Some architectures may benefit from doing this, and it is
261 * beneficial for both shadow and direct mode hypervisors, which may batch
262 * the PTE updates which happen during this window. Note that using this
263 * interface requires that read hazards be removed from the code. A read
264 * hazard could result in the direct mode hypervisor case, since the actual
265 * write to the page tables may not yet have taken place, so reads though
266 * a raw PTE pointer after it has been modified are not guaranteed to be
267 * up to date. This mode can only be entered and left under the protection of
268 * the page table locks for all page tables which may be modified. In the UP
269 * case, this is required so that preemption is disabled, and in the SMP case,
270 * it must synchronize the delayed page table writes properly on other CPUs.
271 */
272#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
273#define arch_enter_lazy_mmu_mode() do {} while (0)
274#define arch_leave_lazy_mmu_mode() do {} while (0)
275#define arch_flush_lazy_mmu_mode() do {} while (0)
276#endif
277
278/*
279 * A facility to provide batching of the reload of page tables with the
280 * actual context switch code for paravirtualized guests. By convention,
281 * only one of the lazy modes (CPU, MMU) should be active at any given
282 * time, entry should never be nested, and entry and exits should always
283 * be paired. This is for sanity of maintaining and reasoning about the
284 * kernel code.
285 */
286#ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE
287#define arch_enter_lazy_cpu_mode() do {} while (0)
288#define arch_leave_lazy_cpu_mode() do {} while (0)
289#define arch_flush_lazy_cpu_mode() do {} while (0)
290#endif
291
1da177e4
LT
292#endif /* !__ASSEMBLY__ */
293
294#endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.40901 seconds and 5 git commands to generate.