mm: introduce VM_MIXEDMAP
[deliverable/linux.git] / include / asm-s390 / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * include/asm-s390/pgtable.h
3 *
4 * S390 version
5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (weigand@de.ibm.com)
8 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 *
10 * Derived from "include/asm-i386/pgtable.h"
11 */
12
13#ifndef _ASM_S390_PGTABLE_H
14#define _ASM_S390_PGTABLE_H
15
1da177e4
LT
16/*
17 * The Linux memory management assumes a three-level page table setup. For
18 * s390 31 bit we "fold" the mid level into the top-level page table, so
19 * that we physically have the same two-level page table as the s390 mmu
20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21 * the hardware provides (region first and region second tables are not
22 * used).
23 *
24 * The "pgd_xxx()" functions are trivial for a folded two-level
25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
26 * into the pgd entry)
27 *
28 * This file contains the functions and defines necessary to modify and use
29 * the S390 page table tree.
30 */
31#ifndef __ASSEMBLY__
2dcea57a 32#include <linux/mm_types.h>
5b7baf05 33#include <asm/bitops.h>
1da177e4
LT
34#include <asm/bug.h>
35#include <asm/processor.h>
1da177e4 36
1da177e4
LT
37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38extern void paging_init(void);
2b67fc46 39extern void vmem_map_init(void);
1da177e4
LT
40
41/*
42 * The S390 doesn't have any external MMU info: the kernel page
43 * tables contain all the necessary information.
44 */
45#define update_mmu_cache(vma, address, pte) do { } while (0)
46
47/*
48 * ZERO_PAGE is a global shared page that is always zero: used
49 * for zero-mapped memory areas etc..
50 */
51extern char empty_zero_page[PAGE_SIZE];
52#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
53#endif /* !__ASSEMBLY__ */
54
55/*
56 * PMD_SHIFT determines the size of the area a second-level page
57 * table can map
58 * PGDIR_SHIFT determines what a third-level page table entry can map
59 */
60#ifndef __s390x__
146e4b3c
MS
61# define PMD_SHIFT 20
62# define PUD_SHIFT 20
63# define PGDIR_SHIFT 20
1da177e4 64#else /* __s390x__ */
146e4b3c 65# define PMD_SHIFT 20
190a1d72 66# define PUD_SHIFT 31
5a216a20 67# define PGDIR_SHIFT 42
1da177e4
LT
68#endif /* __s390x__ */
69
70#define PMD_SIZE (1UL << PMD_SHIFT)
71#define PMD_MASK (~(PMD_SIZE-1))
190a1d72
MS
72#define PUD_SIZE (1UL << PUD_SHIFT)
73#define PUD_MASK (~(PUD_SIZE-1))
5a216a20
MS
74#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75#define PGDIR_MASK (~(PGDIR_SIZE-1))
1da177e4
LT
76
77/*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
146e4b3c 83#define PTRS_PER_PTE 256
1da177e4 84#ifndef __s390x__
146e4b3c 85#define PTRS_PER_PMD 1
5a216a20 86#define PTRS_PER_PUD 1
1da177e4 87#else /* __s390x__ */
146e4b3c 88#define PTRS_PER_PMD 2048
5a216a20 89#define PTRS_PER_PUD 2048
1da177e4 90#endif /* __s390x__ */
146e4b3c 91#define PTRS_PER_PGD 2048
1da177e4 92
d455a369
HD
93#define FIRST_USER_ADDRESS 0
94
1da177e4
LT
95#define pte_ERROR(e) \
96 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
97#define pmd_ERROR(e) \
98 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
190a1d72
MS
99#define pud_ERROR(e) \
100 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
1da177e4
LT
101#define pgd_ERROR(e) \
102 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
103
104#ifndef __ASSEMBLY__
105/*
5fd9c6e2
CB
106 * The vmalloc area will always be on the topmost area of the kernel
107 * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
108 * which should be enough for any sane case.
109 * By putting vmalloc at the top, we maximise the gap between physical
110 * memory and vmalloc to catch misplaced memory accesses. As a side
111 * effect, this also makes sure that 64 bit module code cannot be used
112 * as system call address.
8b62bc96 113 */
1da177e4 114#ifndef __s390x__
5fd9c6e2
CB
115#define VMALLOC_START 0x78000000UL
116#define VMALLOC_END 0x7e000000UL
0189103c 117#define VMEM_MAP_END 0x80000000UL
1da177e4 118#else /* __s390x__ */
5fd9c6e2
CB
119#define VMALLOC_START 0x3e000000000UL
120#define VMALLOC_END 0x3e040000000UL
0189103c 121#define VMEM_MAP_END 0x40000000000UL
1da177e4
LT
122#endif /* __s390x__ */
123
0189103c
HC
124/*
125 * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
126 * mapping. This needs to be calculated at compile time since the size of the
127 * VMEM_MAP is static but the size of struct page can change.
128 */
522d8dc0
MS
129#define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
130#define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
131#define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
5fd9c6e2 132#define VMEM_MAP ((struct page *) VMALLOC_END)
5fd9c6e2 133
1da177e4
LT
134/*
135 * A 31 bit pagetable entry of S390 has following format:
136 * | PFRA | | OS |
137 * 0 0IP0
138 * 00000000001111111111222222222233
139 * 01234567890123456789012345678901
140 *
141 * I Page-Invalid Bit: Page is not available for address-translation
142 * P Page-Protection Bit: Store access not possible for page
143 *
144 * A 31 bit segmenttable entry of S390 has following format:
145 * | P-table origin | |PTL
146 * 0 IC
147 * 00000000001111111111222222222233
148 * 01234567890123456789012345678901
149 *
150 * I Segment-Invalid Bit: Segment is not available for address-translation
151 * C Common-Segment Bit: Segment is not private (PoP 3-30)
152 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
153 *
154 * The 31 bit segmenttable origin of S390 has following format:
155 *
156 * |S-table origin | | STL |
157 * X **GPS
158 * 00000000001111111111222222222233
159 * 01234567890123456789012345678901
160 *
161 * X Space-Switch event:
162 * G Segment-Invalid Bit: *
163 * P Private-Space Bit: Segment is not private (PoP 3-30)
164 * S Storage-Alteration:
165 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
166 *
167 * A 64 bit pagetable entry of S390 has following format:
168 * | PFRA |0IP0| OS |
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Page-Invalid Bit: Page is not available for address-translation
173 * P Page-Protection Bit: Store access not possible for page
174 *
175 * A 64 bit segmenttable entry of S390 has following format:
176 * | P-table origin | TT
177 * 0000000000111111111122222222223333333333444444444455555555556666
178 * 0123456789012345678901234567890123456789012345678901234567890123
179 *
180 * I Segment-Invalid Bit: Segment is not available for address-translation
181 * C Common-Segment Bit: Segment is not private (PoP 3-30)
182 * P Page-Protection Bit: Store access not possible for page
183 * TT Type 00
184 *
185 * A 64 bit region table entry of S390 has following format:
186 * | S-table origin | TF TTTL
187 * 0000000000111111111122222222223333333333444444444455555555556666
188 * 0123456789012345678901234567890123456789012345678901234567890123
189 *
190 * I Segment-Invalid Bit: Segment is not available for address-translation
191 * TT Type 01
192 * TF
190a1d72 193 * TL Table length
1da177e4
LT
194 *
195 * The 64 bit regiontable origin of S390 has following format:
196 * | region table origon | DTTL
197 * 0000000000111111111122222222223333333333444444444455555555556666
198 * 0123456789012345678901234567890123456789012345678901234567890123
199 *
200 * X Space-Switch event:
201 * G Segment-Invalid Bit:
202 * P Private-Space Bit:
203 * S Storage-Alteration:
204 * R Real space
205 * TL Table-Length:
206 *
207 * A storage key has the following format:
208 * | ACC |F|R|C|0|
209 * 0 3 4 5 6 7
210 * ACC: access key
211 * F : fetch protection bit
212 * R : referenced bit
213 * C : changed bit
214 */
215
216/* Hardware bits in the page table entry */
83377484
MS
217#define _PAGE_RO 0x200 /* HW read-only bit */
218#define _PAGE_INVALID 0x400 /* HW invalid bit */
3610cce8
MS
219
220/* Software bits in the page table entry */
83377484
MS
221#define _PAGE_SWT 0x001 /* SW pte type bit t */
222#define _PAGE_SWX 0x002 /* SW pte type bit x */
1da177e4 223
83377484 224/* Six different types of pages. */
9282ed92
GS
225#define _PAGE_TYPE_EMPTY 0x400
226#define _PAGE_TYPE_NONE 0x401
83377484
MS
227#define _PAGE_TYPE_SWAP 0x403
228#define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
9282ed92
GS
229#define _PAGE_TYPE_RO 0x200
230#define _PAGE_TYPE_RW 0x000
c1821c2e
GS
231#define _PAGE_TYPE_EX_RO 0x202
232#define _PAGE_TYPE_EX_RW 0x002
1da177e4 233
83377484
MS
234/*
235 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
236 * pte_none and pte_file to find out the pte type WITHOUT holding the page
237 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
238 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
239 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
240 * This change is done while holding the lock, but the intermediate step
241 * of a previously valid pte with the hw invalid bit set can be observed by
242 * handle_pte_fault. That makes it necessary that all valid pte types with
243 * the hw invalid bit set must be distinguishable from the four pte types
244 * empty, none, swap and file.
245 *
246 * irxt ipte irxt
247 * _PAGE_TYPE_EMPTY 1000 -> 1000
248 * _PAGE_TYPE_NONE 1001 -> 1001
249 * _PAGE_TYPE_SWAP 1011 -> 1011
250 * _PAGE_TYPE_FILE 11?1 -> 11?1
251 * _PAGE_TYPE_RO 0100 -> 1100
252 * _PAGE_TYPE_RW 0000 -> 1000
c1821c2e
GS
253 * _PAGE_TYPE_EX_RO 0110 -> 1110
254 * _PAGE_TYPE_EX_RW 0010 -> 1010
83377484 255 *
c1821c2e 256 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
83377484
MS
257 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
258 * pte_file is true for bits combinations 1101, 1111
c1821c2e 259 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
83377484
MS
260 */
261
5b7baf05
CB
262/* Page status table bits for virtualization */
263#define RCP_PCL_BIT 55
264#define RCP_HR_BIT 54
265#define RCP_HC_BIT 53
266#define RCP_GR_BIT 50
267#define RCP_GC_BIT 49
268
1da177e4
LT
269#ifndef __s390x__
270
3610cce8
MS
271/* Bits in the segment table address-space-control-element */
272#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
273#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
274#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
275#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
276#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
1da177e4 277
3610cce8
MS
278/* Bits in the segment table entry */
279#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
280#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
281#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
282#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
1da177e4 283
3610cce8
MS
284#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
285#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
1da177e4
LT
286
287#else /* __s390x__ */
288
3610cce8
MS
289/* Bits in the segment/region table address-space-control-element */
290#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
291#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
292#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
293#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
294#define _ASCE_REAL_SPACE 0x20 /* real space control */
295#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
296#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
297#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
298#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
299#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
300#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
301
302/* Bits in the region table entry */
303#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
304#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
305#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
306#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
307#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
308#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
309#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
310
311#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
312#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
313#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
314#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
315#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
316#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
317
1da177e4 318/* Bits in the segment table entry */
3610cce8
MS
319#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
320#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
321#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
1da177e4 322
3610cce8
MS
323#define _SEGMENT_ENTRY (0)
324#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
325
326#endif /* __s390x__ */
1da177e4
LT
327
328/*
3610cce8
MS
329 * A user page table pointer has the space-switch-event bit, the
330 * private-space-control bit and the storage-alteration-event-control
331 * bit set. A kernel page table pointer doesn't need them.
1da177e4 332 */
3610cce8
MS
333#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
334 _ASCE_ALT_EVENT)
1da177e4 335
3610cce8 336/* Bits int the storage key */
1da177e4
LT
337#define _PAGE_CHANGED 0x02 /* HW changed bit */
338#define _PAGE_REFERENCED 0x04 /* HW referenced bit */
339
1da177e4 340/*
9282ed92 341 * Page protection definitions.
1da177e4 342 */
9282ed92
GS
343#define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
344#define PAGE_RO __pgprot(_PAGE_TYPE_RO)
345#define PAGE_RW __pgprot(_PAGE_TYPE_RW)
c1821c2e
GS
346#define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
347#define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
9282ed92
GS
348
349#define PAGE_KERNEL PAGE_RW
350#define PAGE_COPY PAGE_RO
1da177e4
LT
351
352/*
c1821c2e
GS
353 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
354 * Write permission always implies read permission. In theory with a
355 * primary/secondary page table execute only can be implemented but
356 * it would cost an additional bit in the pte to distinguish all the
357 * different pte types. To avoid that execute permission currently
358 * implies read permission as well.
1da177e4
LT
359 */
360 /*xwr*/
9282ed92
GS
361#define __P000 PAGE_NONE
362#define __P001 PAGE_RO
363#define __P010 PAGE_RO
364#define __P011 PAGE_RO
c1821c2e
GS
365#define __P100 PAGE_EX_RO
366#define __P101 PAGE_EX_RO
367#define __P110 PAGE_EX_RO
368#define __P111 PAGE_EX_RO
9282ed92
GS
369
370#define __S000 PAGE_NONE
371#define __S001 PAGE_RO
372#define __S010 PAGE_RW
373#define __S011 PAGE_RW
c1821c2e
GS
374#define __S100 PAGE_EX_RO
375#define __S101 PAGE_EX_RO
376#define __S110 PAGE_EX_RW
377#define __S111 PAGE_EX_RW
378
379#ifndef __s390x__
3610cce8 380# define PxD_SHADOW_SHIFT 1
c1821c2e 381#else /* __s390x__ */
3610cce8 382# define PxD_SHADOW_SHIFT 2
c1821c2e
GS
383#endif /* __s390x__ */
384
3610cce8 385static inline void *get_shadow_table(void *table)
c1821c2e 386{
3610cce8
MS
387 unsigned long addr, offset;
388 struct page *page;
389
390 addr = (unsigned long) table;
391 offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
392 page = virt_to_page((void *)(addr ^ offset));
393 return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
c1821c2e 394}
1da177e4
LT
395
396/*
397 * Certain architectures need to do special things when PTEs
398 * within a page table are directly modified. Thus, the following
399 * hook is made available.
400 */
ba8a9229 401static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
146e4b3c 402 pte_t *ptep, pte_t entry)
1da177e4 403{
146e4b3c
MS
404 *ptep = entry;
405 if (mm->context.noexec) {
406 if (!(pte_val(entry) & _PAGE_INVALID) &&
407 (pte_val(entry) & _PAGE_SWX))
408 pte_val(entry) |= _PAGE_RO;
c1821c2e 409 else
146e4b3c
MS
410 pte_val(entry) = _PAGE_TYPE_EMPTY;
411 ptep[PTRS_PER_PTE] = entry;
c1821c2e 412 }
1da177e4 413}
1da177e4
LT
414
415/*
416 * pgd/pmd/pte query functions
417 */
418#ifndef __s390x__
419
4448aaf0
AB
420static inline int pgd_present(pgd_t pgd) { return 1; }
421static inline int pgd_none(pgd_t pgd) { return 0; }
422static inline int pgd_bad(pgd_t pgd) { return 0; }
1da177e4 423
190a1d72
MS
424static inline int pud_present(pud_t pud) { return 1; }
425static inline int pud_none(pud_t pud) { return 0; }
426static inline int pud_bad(pud_t pud) { return 0; }
427
1da177e4
LT
428#else /* __s390x__ */
429
5a216a20
MS
430static inline int pgd_present(pgd_t pgd)
431{
6252d702
MS
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
5a216a20
MS
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435}
436
437static inline int pgd_none(pgd_t pgd)
438{
6252d702
MS
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
5a216a20
MS
441 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
442}
443
444static inline int pgd_bad(pgd_t pgd)
445{
6252d702
MS
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
5a216a20 451 unsigned long mask =
6252d702 452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455}
190a1d72
MS
456
457static inline int pud_present(pud_t pud)
1da177e4 458{
6252d702
MS
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
0d017923 461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
462}
463
190a1d72 464static inline int pud_none(pud_t pud)
1da177e4 465{
6252d702
MS
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
0d017923 468 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
1da177e4
LT
469}
470
190a1d72 471static inline int pud_bad(pud_t pud)
1da177e4 472{
6252d702
MS
473 /*
474 * With dynamic page table levels the pud can be a region table
475 * entry or a segment table entry. Check for the bit that are
476 * invalid for either table entry.
477 */
5a216a20 478 unsigned long mask =
6252d702 479 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
5a216a20
MS
480 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
481 return (pud_val(pud) & mask) != 0;
1da177e4
LT
482}
483
3610cce8
MS
484#endif /* __s390x__ */
485
4448aaf0 486static inline int pmd_present(pmd_t pmd)
1da177e4 487{
0d017923 488 return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
1da177e4
LT
489}
490
4448aaf0 491static inline int pmd_none(pmd_t pmd)
1da177e4 492{
0d017923 493 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
1da177e4
LT
494}
495
4448aaf0 496static inline int pmd_bad(pmd_t pmd)
1da177e4 497{
3610cce8
MS
498 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
499 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
1da177e4
LT
500}
501
4448aaf0 502static inline int pte_none(pte_t pte)
1da177e4 503{
83377484 504 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
1da177e4
LT
505}
506
4448aaf0 507static inline int pte_present(pte_t pte)
1da177e4 508{
83377484
MS
509 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
510 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
511 (!(pte_val(pte) & _PAGE_INVALID) &&
512 !(pte_val(pte) & _PAGE_SWT));
1da177e4
LT
513}
514
4448aaf0 515static inline int pte_file(pte_t pte)
1da177e4 516{
83377484
MS
517 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
518 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
1da177e4
LT
519}
520
ba8a9229
MS
521#define __HAVE_ARCH_PTE_SAME
522#define pte_same(a,b) (pte_val(a) == pte_val(b))
1da177e4 523
5b7baf05
CB
524static inline void rcp_lock(pte_t *ptep)
525{
526#ifdef CONFIG_PGSTE
527 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
528 preempt_disable();
529 while (test_and_set_bit(RCP_PCL_BIT, pgste))
530 ;
531#endif
532}
533
534static inline void rcp_unlock(pte_t *ptep)
535{
536#ifdef CONFIG_PGSTE
537 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
538 clear_bit(RCP_PCL_BIT, pgste);
539 preempt_enable();
540#endif
541}
542
543/* forward declaration for SetPageUptodate in page-flags.h*/
544static inline void page_clear_dirty(struct page *page);
545#include <linux/page-flags.h>
546
547static inline void ptep_rcp_copy(pte_t *ptep)
548{
549#ifdef CONFIG_PGSTE
550 struct page *page = virt_to_page(pte_val(*ptep));
551 unsigned int skey;
552 unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
553
554 skey = page_get_storage_key(page_to_phys(page));
555 if (skey & _PAGE_CHANGED)
c71799c1 556 set_bit_simple(RCP_GC_BIT, pgste);
5b7baf05 557 if (skey & _PAGE_REFERENCED)
c71799c1
HC
558 set_bit_simple(RCP_GR_BIT, pgste);
559 if (test_and_clear_bit_simple(RCP_HC_BIT, pgste))
5b7baf05 560 SetPageDirty(page);
c71799c1 561 if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
5b7baf05
CB
562 SetPageReferenced(page);
563#endif
564}
565
1da177e4
LT
566/*
567 * query functions pte_write/pte_dirty/pte_young only work if
568 * pte_present() is true. Undefined behaviour if not..
569 */
4448aaf0 570static inline int pte_write(pte_t pte)
1da177e4
LT
571{
572 return (pte_val(pte) & _PAGE_RO) == 0;
573}
574
4448aaf0 575static inline int pte_dirty(pte_t pte)
1da177e4
LT
576{
577 /* A pte is neither clean nor dirty on s/390. The dirty bit
578 * is in the storage key. See page_test_and_clear_dirty for
579 * details.
580 */
581 return 0;
582}
583
4448aaf0 584static inline int pte_young(pte_t pte)
1da177e4
LT
585{
586 /* A pte is neither young nor old on s/390. The young bit
587 * is in the storage key. See page_test_and_clear_young for
588 * details.
589 */
590 return 0;
591}
592
1da177e4
LT
593/*
594 * pgd/pmd/pte modification functions
595 */
596
597#ifndef __s390x__
598
190a1d72
MS
599#define pgd_clear(pgd) do { } while (0)
600#define pud_clear(pud) do { } while (0)
1da177e4 601
1da177e4
LT
602#else /* __s390x__ */
603
5a216a20
MS
604static inline void pgd_clear_kernel(pgd_t * pgd)
605{
6252d702
MS
606 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
607 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
5a216a20
MS
608}
609
610static inline void pgd_clear(pgd_t * pgd)
611{
612 pgd_t *shadow = get_shadow_table(pgd);
613
614 pgd_clear_kernel(pgd);
615 if (shadow)
616 pgd_clear_kernel(shadow);
617}
190a1d72
MS
618
619static inline void pud_clear_kernel(pud_t *pud)
1da177e4 620{
6252d702
MS
621 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
622 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
1da177e4
LT
623}
624
6252d702 625static inline void pud_clear(pud_t *pud)
c1821c2e 626{
190a1d72 627 pud_t *shadow = get_shadow_table(pud);
c1821c2e 628
190a1d72
MS
629 pud_clear_kernel(pud);
630 if (shadow)
631 pud_clear_kernel(shadow);
c1821c2e
GS
632}
633
146e4b3c
MS
634#endif /* __s390x__ */
635
c1821c2e 636static inline void pmd_clear_kernel(pmd_t * pmdp)
1da177e4 637{
3610cce8 638 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
1da177e4
LT
639}
640
146e4b3c 641static inline void pmd_clear(pmd_t *pmd)
c1821c2e 642{
146e4b3c 643 pmd_t *shadow = get_shadow_table(pmd);
c1821c2e 644
146e4b3c
MS
645 pmd_clear_kernel(pmd);
646 if (shadow)
647 pmd_clear_kernel(shadow);
c1821c2e
GS
648}
649
4448aaf0 650static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
1da177e4 651{
5b7baf05
CB
652 if (mm->context.pgstes)
653 ptep_rcp_copy(ptep);
9282ed92 654 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
146e4b3c
MS
655 if (mm->context.noexec)
656 pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
1da177e4
LT
657}
658
659/*
660 * The following pte modification functions only work if
661 * pte_present() is true. Undefined behaviour if not..
662 */
4448aaf0 663static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4
LT
664{
665 pte_val(pte) &= PAGE_MASK;
666 pte_val(pte) |= pgprot_val(newprot);
667 return pte;
668}
669
4448aaf0 670static inline pte_t pte_wrprotect(pte_t pte)
1da177e4 671{
9282ed92 672 /* Do not clobber _PAGE_TYPE_NONE pages! */
1da177e4
LT
673 if (!(pte_val(pte) & _PAGE_INVALID))
674 pte_val(pte) |= _PAGE_RO;
675 return pte;
676}
677
4448aaf0 678static inline pte_t pte_mkwrite(pte_t pte)
1da177e4
LT
679{
680 pte_val(pte) &= ~_PAGE_RO;
681 return pte;
682}
683
4448aaf0 684static inline pte_t pte_mkclean(pte_t pte)
1da177e4
LT
685{
686 /* The only user of pte_mkclean is the fork() code.
687 We must *not* clear the *physical* page dirty bit
688 just because fork() wants to clear the dirty bit in
689 *one* of the page's mappings. So we just do nothing. */
690 return pte;
691}
692
4448aaf0 693static inline pte_t pte_mkdirty(pte_t pte)
1da177e4
LT
694{
695 /* We do not explicitly set the dirty bit because the
696 * sske instruction is slow. It is faster to let the
697 * next instruction set the dirty bit.
698 */
699 return pte;
700}
701
4448aaf0 702static inline pte_t pte_mkold(pte_t pte)
1da177e4
LT
703{
704 /* S/390 doesn't keep its dirty/referenced bit in the pte.
705 * There is no point in clearing the real referenced bit.
706 */
707 return pte;
708}
709
4448aaf0 710static inline pte_t pte_mkyoung(pte_t pte)
1da177e4
LT
711{
712 /* S/390 doesn't keep its dirty/referenced bit in the pte.
713 * There is no point in setting the real referenced bit.
714 */
715 return pte;
716}
717
ba8a9229
MS
718#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
719static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
720 unsigned long addr, pte_t *ptep)
1da177e4 721{
5b7baf05
CB
722#ifdef CONFIG_PGSTE
723 unsigned long physpage;
724 int young;
725 unsigned long *pgste;
726
727 if (!vma->vm_mm->context.pgstes)
728 return 0;
729 physpage = pte_val(*ptep) & PAGE_MASK;
730 pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
731
732 young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
733 rcp_lock(ptep);
734 if (young)
c71799c1
HC
735 set_bit_simple(RCP_GR_BIT, pgste);
736 young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
5b7baf05
CB
737 rcp_unlock(ptep);
738 return young;
739#endif
1da177e4
LT
740 return 0;
741}
742
ba8a9229
MS
743#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
744static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
745 unsigned long address, pte_t *ptep)
1da177e4 746{
5b7baf05
CB
747 /* No need to flush TLB
748 * On s390 reference bits are in storage key and never in TLB
749 * With virtualization we handle the reference bit, without we
750 * we can simply return */
751#ifdef CONFIG_PGSTE
752 return ptep_test_and_clear_young(vma, address, ptep);
753#endif
ba8a9229 754 return 0;
1da177e4
LT
755}
756
9282ed92 757static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1da177e4 758{
9282ed92 759 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1da177e4 760#ifndef __s390x__
146e4b3c 761 /* pto must point to the start of the segment table */
1da177e4 762 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
9282ed92
GS
763#else
764 /* ipte in zarch mode can do the math */
765 pte_t *pto = ptep;
766#endif
94c12cc7
MS
767 asm volatile(
768 " ipte %2,%3"
769 : "=m" (*ptep) : "m" (*ptep),
770 "a" (pto), "a" (address));
1da177e4 771 }
9282ed92
GS
772}
773
146e4b3c
MS
774static inline void ptep_invalidate(struct mm_struct *mm,
775 unsigned long address, pte_t *ptep)
9282ed92 776{
5b7baf05
CB
777 if (mm->context.pgstes) {
778 rcp_lock(ptep);
779 __ptep_ipte(address, ptep);
780 ptep_rcp_copy(ptep);
781 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
782 rcp_unlock(ptep);
783 return;
784 }
9282ed92 785 __ptep_ipte(address, ptep);
5b7baf05
CB
786 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
787 if (mm->context.noexec) {
146e4b3c 788 __ptep_ipte(address, ptep + PTRS_PER_PTE);
5b7baf05
CB
789 pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
790 }
f0e47c22
MS
791}
792
ba8a9229
MS
793/*
794 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
795 * both clear the TLB for the unmapped pte. The reason is that
796 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
797 * to modify an active pte. The sequence is
798 * 1) ptep_get_and_clear
799 * 2) set_pte_at
800 * 3) flush_tlb_range
801 * On s390 the tlb needs to get flushed with the modification of the pte
802 * if the pte is active. The only way how this can be implemented is to
803 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
804 * is a nop.
805 */
806#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
807#define ptep_get_and_clear(__mm, __address, __ptep) \
808({ \
809 pte_t __pte = *(__ptep); \
810 if (atomic_read(&(__mm)->mm_users) > 1 || \
811 (__mm) != current->active_mm) \
146e4b3c 812 ptep_invalidate(__mm, __address, __ptep); \
ba8a9229
MS
813 else \
814 pte_clear((__mm), (__address), (__ptep)); \
815 __pte; \
816})
817
818#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
f0e47c22
MS
819static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
820 unsigned long address, pte_t *ptep)
821{
822 pte_t pte = *ptep;
146e4b3c 823 ptep_invalidate(vma->vm_mm, address, ptep);
1da177e4
LT
824 return pte;
825}
826
ba8a9229
MS
827/*
828 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
829 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
830 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
831 * cannot be accessed while the batched unmap is running. In this case
832 * full==1 and a simple pte_clear is enough. See tlb.h.
833 */
834#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
835static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
836 unsigned long addr,
837 pte_t *ptep, int full)
1da177e4 838{
ba8a9229
MS
839 pte_t pte = *ptep;
840
841 if (full)
842 pte_clear(mm, addr, ptep);
843 else
146e4b3c 844 ptep_invalidate(mm, addr, ptep);
ba8a9229 845 return pte;
1da177e4
LT
846}
847
ba8a9229
MS
848#define __HAVE_ARCH_PTEP_SET_WRPROTECT
849#define ptep_set_wrprotect(__mm, __addr, __ptep) \
850({ \
851 pte_t __pte = *(__ptep); \
852 if (pte_write(__pte)) { \
853 if (atomic_read(&(__mm)->mm_users) > 1 || \
854 (__mm) != current->active_mm) \
146e4b3c 855 ptep_invalidate(__mm, __addr, __ptep); \
ba8a9229
MS
856 set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
857 } \
858})
859
860#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
f0e47c22
MS
861#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
862({ \
863 int __changed = !pte_same(*(__ptep), __entry); \
864 if (__changed) { \
146e4b3c 865 ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
f0e47c22
MS
866 set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
867 } \
868 __changed; \
8dab5241 869})
1da177e4
LT
870
871/*
872 * Test and clear dirty bit in storage key.
873 * We can't clear the changed bit atomically. This is a potential
874 * race against modification of the referenced bit. This function
875 * should therefore only be called if it is not mapped in any
876 * address space.
877 */
ba8a9229 878#define __HAVE_ARCH_PAGE_TEST_DIRTY
6c210482 879static inline int page_test_dirty(struct page *page)
2dcea57a 880{
6c210482
MS
881 return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
882}
2dcea57a 883
ba8a9229 884#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
6c210482
MS
885static inline void page_clear_dirty(struct page *page)
886{
887 page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
2dcea57a 888}
1da177e4
LT
889
890/*
891 * Test and clear referenced bit in storage key.
892 */
ba8a9229 893#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2dcea57a
HC
894static inline int page_test_and_clear_young(struct page *page)
895{
0b2b6e1d 896 unsigned long physpage = page_to_phys(page);
2dcea57a
HC
897 int ccode;
898
0b2b6e1d
HC
899 asm volatile(
900 " rrbe 0,%1\n"
901 " ipm %0\n"
902 " srl %0,28\n"
2dcea57a
HC
903 : "=d" (ccode) : "a" (physpage) : "cc" );
904 return ccode & 2;
905}
1da177e4
LT
906
907/*
908 * Conversion functions: convert a page and protection to a page entry,
909 * and a page entry and page directory to the page they refer to.
910 */
911static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
912{
913 pte_t __pte;
914 pte_val(__pte) = physpage + pgprot_val(pgprot);
915 return __pte;
916}
917
2dcea57a
HC
918static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
919{
0b2b6e1d 920 unsigned long physpage = page_to_phys(page);
1da177e4 921
2dcea57a
HC
922 return mk_pte_phys(physpage, pgprot);
923}
924
190a1d72
MS
925#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
926#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
927#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
928#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1da177e4 929
190a1d72
MS
930#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
931#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1da177e4 932
190a1d72 933#ifndef __s390x__
1da177e4 934
190a1d72
MS
935#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
936#define pud_deref(pmd) ({ BUG(); 0UL; })
937#define pgd_deref(pmd) ({ BUG(); 0UL; })
46a82b2d 938
190a1d72
MS
939#define pud_offset(pgd, address) ((pud_t *) pgd)
940#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1da177e4 941
190a1d72 942#else /* __s390x__ */
1da177e4 943
190a1d72
MS
944#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
945#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
5a216a20 946#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1da177e4 947
5a216a20
MS
948static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
949{
6252d702
MS
950 pud_t *pud = (pud_t *) pgd;
951 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
952 pud = (pud_t *) pgd_deref(*pgd);
5a216a20
MS
953 return pud + pud_index(address);
954}
1da177e4 955
190a1d72 956static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1da177e4 957{
6252d702
MS
958 pmd_t *pmd = (pmd_t *) pud;
959 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
960 pmd = (pmd_t *) pud_deref(*pud);
190a1d72 961 return pmd + pmd_index(address);
1da177e4
LT
962}
963
190a1d72 964#endif /* __s390x__ */
1da177e4 965
190a1d72
MS
966#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
967#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
968#define pte_page(x) pfn_to_page(pte_pfn(x))
1da177e4 969
190a1d72 970#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1da177e4 971
190a1d72
MS
972/* Find an entry in the lowest level page table.. */
973#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
974#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1da177e4
LT
975#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
976#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
977#define pte_unmap(pte) do { } while (0)
978#define pte_unmap_nested(pte) do { } while (0)
979
980/*
981 * 31 bit swap entry format:
982 * A page-table entry has some bits we have to treat in a special way.
983 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
984 * exception will occur instead of a page translation exception. The
985 * specifiation exception has the bad habit not to store necessary
986 * information in the lowcore.
987 * Bit 21 and bit 22 are the page invalid bit and the page protection
988 * bit. We set both to indicate a swapped page.
989 * Bit 30 and 31 are used to distinguish the different page types. For
990 * a swapped page these bits need to be zero.
991 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
992 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
993 * plus 24 for the offset.
994 * 0| offset |0110|o|type |00|
995 * 0 0000000001111111111 2222 2 22222 33
996 * 0 1234567890123456789 0123 4 56789 01
997 *
998 * 64 bit swap entry format:
999 * A page-table entry has some bits we have to treat in a special way.
1000 * Bits 52 and bit 55 have to be zero, otherwise an specification
1001 * exception will occur instead of a page translation exception. The
1002 * specifiation exception has the bad habit not to store necessary
1003 * information in the lowcore.
1004 * Bit 53 and bit 54 are the page invalid bit and the page protection
1005 * bit. We set both to indicate a swapped page.
1006 * Bit 62 and 63 are used to distinguish the different page types. For
1007 * a swapped page these bits need to be zero.
1008 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1009 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1010 * plus 56 for the offset.
1011 * | offset |0110|o|type |00|
1012 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1013 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1014 */
1015#ifndef __s390x__
1016#define __SWP_OFFSET_MASK (~0UL >> 12)
1017#else
1018#define __SWP_OFFSET_MASK (~0UL >> 11)
1019#endif
4448aaf0 1020static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1da177e4
LT
1021{
1022 pte_t pte;
1023 offset &= __SWP_OFFSET_MASK;
9282ed92 1024 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1da177e4
LT
1025 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1026 return pte;
1027}
1028
1029#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1030#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1031#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1032
1033#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1034#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1035
1036#ifndef __s390x__
1037# define PTE_FILE_MAX_BITS 26
1038#else /* __s390x__ */
1039# define PTE_FILE_MAX_BITS 59
1040#endif /* __s390x__ */
1041
1042#define pte_to_pgoff(__pte) \
1043 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1044
1045#define pgoff_to_pte(__off) \
1046 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
9282ed92 1047 | _PAGE_TYPE_FILE })
1da177e4
LT
1048
1049#endif /* !__ASSEMBLY__ */
1050
1051#define kern_addr_valid(addr) (1)
1052
f4eb07c1
HC
1053extern int add_shared_memory(unsigned long start, unsigned long size);
1054extern int remove_shared_memory(unsigned long start, unsigned long size);
402b0862 1055extern int s390_enable_sie(void);
f4eb07c1 1056
1da177e4
LT
1057/*
1058 * No page table caches to initialise
1059 */
1060#define pgtable_cache_init() do { } while (0)
1061
f4eb07c1
HC
1062#define __HAVE_ARCH_MEMMAP_INIT
1063extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
1064
1da177e4
LT
1065#include <asm-generic/pgtable.h>
1066
1067#endif /* _S390_PAGE_H */
This page took 0.392171 seconds and 5 git commands to generate.