mm, dax, pmem: introduce pfn_t
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
d07e2259
DC
54#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55extern const int mmap_rnd_bits_min;
56extern const int mmap_rnd_bits_max;
57extern int mmap_rnd_bits __read_mostly;
58#endif
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60extern const int mmap_rnd_compat_bits_min;
61extern const int mmap_rnd_compat_bits_max;
62extern int mmap_rnd_compat_bits __read_mostly;
63#endif
64
1da177e4
LT
65#include <asm/page.h>
66#include <asm/pgtable.h>
67#include <asm/processor.h>
1da177e4 68
79442ed1
TC
69#ifndef __pa_symbol
70#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71#endif
72
593befa6
DD
73/*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80#ifndef mm_forbids_zeropage
81#define mm_forbids_zeropage(X) (0)
82#endif
83
c9b1d098 84extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 85extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 86
49f0ce5f
JM
87extern int sysctl_overcommit_memory;
88extern int sysctl_overcommit_ratio;
89extern unsigned long sysctl_overcommit_kbytes;
90
91extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
1da177e4
LT
96#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
27ac792c
AR
98/* to align the pointer to the (next) page boundary */
99#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
0fa73b86
AM
101/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
1da177e4
LT
104/*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
c43692e8
CL
113extern struct kmem_cache *vm_area_cachep;
114
1da177e4 115#ifndef CONFIG_MMU
8feae131
DH
116extern struct rb_root nommu_region_tree;
117extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
118
119extern unsigned int kobjsize(const void *objp);
120#endif
121
122/*
605d9288 123 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 124 */
cc2383ec
KK
125#define VM_NONE 0x00000000
126
1da177e4
LT
127#define VM_READ 0x00000001 /* currently active flags */
128#define VM_WRITE 0x00000002
129#define VM_EXEC 0x00000004
130#define VM_SHARED 0x00000008
131
7e2cff42 132/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
133#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134#define VM_MAYWRITE 0x00000020
135#define VM_MAYEXEC 0x00000040
136#define VM_MAYSHARE 0x00000080
137
138#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 139#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 140#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 141#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 142#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 143
1da177e4
LT
144#define VM_LOCKED 0x00002000
145#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 153#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 154#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 155#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 156#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 157#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 158#define VM_ARCH_2 0x02000000
0103bd16 159#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 160
d9104d1c
CG
161#ifdef CONFIG_MEM_SOFT_DIRTY
162# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163#else
164# define VM_SOFTDIRTY 0
165#endif
166
b379d790 167#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
168#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 170#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 171
cc2383ec
KK
172#if defined(CONFIG_X86)
173# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174#elif defined(CONFIG_PPC)
175# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176#elif defined(CONFIG_PARISC)
177# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
178#elif defined(CONFIG_METAG)
179# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
180#elif defined(CONFIG_IA64)
181# define VM_GROWSUP VM_ARCH_1
182#elif !defined(CONFIG_MMU)
183# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184#endif
185
4aae7e43
QR
186#if defined(CONFIG_X86)
187/* MPX specific bounds table or bounds directory */
188# define VM_MPX VM_ARCH_2
189#endif
190
cc2383ec
KK
191#ifndef VM_GROWSUP
192# define VM_GROWSUP VM_NONE
193#endif
194
a8bef8ff
MG
195/* Bits set in the VMA until the stack is in its final location */
196#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
1da177e4
LT
198#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200#endif
201
202#ifdef CONFIG_STACK_GROWSUP
203#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204#else
205#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206#endif
207
b291f000 208/*
78f11a25
AA
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 211 */
9050d7eb 212#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 213
a0715cc2
AT
214/* This mask defines which mm->def_flags a process can inherit its parent */
215#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
de60f5f1
EM
217/* This mask is used to clear all the VMA flags used by mlock */
218#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
1da177e4
LT
220/*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224extern pgprot_t protection_map[16];
225
d0217ac0 226#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
227#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231#define FAULT_FLAG_TRIED 0x20 /* Second try */
232#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 233
54cb8821 234/*
d0217ac0 235 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 238 *
c20cd45e
MH
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
9b4bdd2f 242 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 243 */
d0217ac0
NP
244struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
2e4cdab0 250 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 251 struct page *page; /* ->fault handlers should return a
83c54070 252 * page here, unless VM_FAULT_NOPAGE
d0217ac0 253 * is set (which is also implied by
83c54070 254 * VM_FAULT_ERROR).
d0217ac0 255 */
8c6e50b0
KS
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 260};
1da177e4
LT
261
262/*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
5477e70a 270 int (*mremap)(struct vm_area_struct * area);
d0217ac0 271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
8c6e50b0 274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 279
dd906184
BH
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
28b2ee20
RR
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
78d683e8
AL
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
1da177e4 294#ifdef CONFIG_NUMA
a6020ed7
LS
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
1da177e4 302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
1da177e4
LT
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316#endif
667a0a06
DV
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
1da177e4
LT
324};
325
326struct mmu_gather;
327struct inode;
328
349aef0b
AM
329#define page_private(page) ((page)->private)
330#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 331
1da177e4
LT
332/*
333 * FIXME: take this include out, include page-flags.h in
334 * files which need it (119 of them)
335 */
336#include <linux/page-flags.h>
71e3aac0 337#include <linux/huge_mm.h>
1da177e4
LT
338
339/*
340 * Methods to modify the page usage count.
341 *
342 * What counts for a page usage:
343 * - cache mapping (page->mapping)
344 * - private data (page->private)
345 * - page mapped in a task's page tables, each mapping
346 * is counted separately
347 *
348 * Also, many kernel routines increase the page count before a critical
349 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
350 */
351
352/*
da6052f7 353 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 354 */
7c8ee9a8
NP
355static inline int put_page_testzero(struct page *page)
356{
309381fe 357 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 358 return atomic_dec_and_test(&page->_count);
7c8ee9a8 359}
1da177e4
LT
360
361/*
7c8ee9a8
NP
362 * Try to grab a ref unless the page has a refcount of zero, return false if
363 * that is the case.
8e0861fa
AK
364 * This can be called when MMU is off so it must not access
365 * any of the virtual mappings.
1da177e4 366 */
7c8ee9a8
NP
367static inline int get_page_unless_zero(struct page *page)
368{
8dc04efb 369 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 370}
1da177e4 371
53df8fdc 372extern int page_is_ram(unsigned long pfn);
124fe20d
DW
373
374enum {
375 REGION_INTERSECTS,
376 REGION_DISJOINT,
377 REGION_MIXED,
378};
379
380int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 381
48667e7a 382/* Support for virtually mapped pages */
b3bdda02
CL
383struct page *vmalloc_to_page(const void *addr);
384unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 385
0738c4bb
PM
386/*
387 * Determine if an address is within the vmalloc range
388 *
389 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
390 * is no special casing required.
391 */
9e2779fa
CL
392static inline int is_vmalloc_addr(const void *x)
393{
0738c4bb 394#ifdef CONFIG_MMU
9e2779fa
CL
395 unsigned long addr = (unsigned long)x;
396
397 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
398#else
399 return 0;
8ca3ed87 400#endif
0738c4bb 401}
81ac3ad9
KH
402#ifdef CONFIG_MMU
403extern int is_vmalloc_or_module_addr(const void *x);
404#else
934831d0 405static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
406{
407 return 0;
408}
409#endif
9e2779fa 410
39f1f78d
AV
411extern void kvfree(const void *addr);
412
53f9263b
KS
413static inline atomic_t *compound_mapcount_ptr(struct page *page)
414{
415 return &page[1].compound_mapcount;
416}
417
418static inline int compound_mapcount(struct page *page)
419{
420 if (!PageCompound(page))
421 return 0;
422 page = compound_head(page);
423 return atomic_read(compound_mapcount_ptr(page)) + 1;
424}
425
70b50f94
AA
426/*
427 * The atomic page->_mapcount, starts from -1: so that transitions
428 * both from it and to it can be tracked, using atomic_inc_and_test
429 * and atomic_add_negative(-1).
430 */
22b751c3 431static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
432{
433 atomic_set(&(page)->_mapcount, -1);
434}
435
b20ce5e0
KS
436int __page_mapcount(struct page *page);
437
70b50f94
AA
438static inline int page_mapcount(struct page *page)
439{
1d148e21 440 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 441
b20ce5e0
KS
442 if (unlikely(PageCompound(page)))
443 return __page_mapcount(page);
444 return atomic_read(&page->_mapcount) + 1;
445}
446
447#ifdef CONFIG_TRANSPARENT_HUGEPAGE
448int total_mapcount(struct page *page);
449#else
450static inline int total_mapcount(struct page *page)
451{
452 return page_mapcount(page);
70b50f94 453}
b20ce5e0 454#endif
70b50f94 455
4c21e2f2 456static inline int page_count(struct page *page)
1da177e4 457{
d85f3385 458 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
459}
460
461static inline void get_page(struct page *page)
462{
ddc58f27 463 page = compound_head(page);
91807063
AA
464 /*
465 * Getting a normal page or the head of a compound page
70b50f94 466 * requires to already have an elevated page->_count.
91807063 467 */
309381fe 468 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
469 atomic_inc(&page->_count);
470}
471
b49af68f
CL
472static inline struct page *virt_to_head_page(const void *x)
473{
474 struct page *page = virt_to_page(x);
ccaafd7f 475
1d798ca3 476 return compound_head(page);
b49af68f
CL
477}
478
7835e98b
NP
479/*
480 * Setup the page count before being freed into the page allocator for
481 * the first time (boot or memory hotplug)
482 */
483static inline void init_page_count(struct page *page)
484{
485 atomic_set(&page->_count, 1);
486}
487
ddc58f27
KS
488void __put_page(struct page *page);
489
490static inline void put_page(struct page *page)
491{
492 page = compound_head(page);
493 if (put_page_testzero(page))
494 __put_page(page);
495}
496
1d7ea732 497void put_pages_list(struct list_head *pages);
1da177e4 498
8dfcc9ba 499void split_page(struct page *page, unsigned int order);
748446bb 500int split_free_page(struct page *page);
8dfcc9ba 501
33f2ef89
AW
502/*
503 * Compound pages have a destructor function. Provide a
504 * prototype for that function and accessor functions.
f1e61557 505 * These are _only_ valid on the head of a compound page.
33f2ef89 506 */
f1e61557
KS
507typedef void compound_page_dtor(struct page *);
508
509/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
510enum compound_dtor_id {
511 NULL_COMPOUND_DTOR,
512 COMPOUND_PAGE_DTOR,
513#ifdef CONFIG_HUGETLB_PAGE
514 HUGETLB_PAGE_DTOR,
9a982250
KS
515#endif
516#ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
518#endif
519 NR_COMPOUND_DTORS,
520};
521extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
522
523static inline void set_compound_page_dtor(struct page *page,
f1e61557 524 enum compound_dtor_id compound_dtor)
33f2ef89 525{
f1e61557
KS
526 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
527 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
528}
529
530static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
531{
f1e61557
KS
532 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
533 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
534}
535
d00181b9 536static inline unsigned int compound_order(struct page *page)
d85f3385 537{
6d777953 538 if (!PageHead(page))
d85f3385 539 return 0;
e4b294c2 540 return page[1].compound_order;
d85f3385
CL
541}
542
f1e61557 543static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 544{
e4b294c2 545 page[1].compound_order = order;
d85f3385
CL
546}
547
9a982250
KS
548void free_compound_page(struct page *page);
549
3dece370 550#ifdef CONFIG_MMU
14fd403f
AA
551/*
552 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
553 * servicing faults for write access. In the normal case, do always want
554 * pte_mkwrite. But get_user_pages can cause write faults for mappings
555 * that do not have writing enabled, when used by access_process_vm.
556 */
557static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
558{
559 if (likely(vma->vm_flags & VM_WRITE))
560 pte = pte_mkwrite(pte);
561 return pte;
562}
8c6e50b0
KS
563
564void do_set_pte(struct vm_area_struct *vma, unsigned long address,
565 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 566#endif
14fd403f 567
1da177e4
LT
568/*
569 * Multiple processes may "see" the same page. E.g. for untouched
570 * mappings of /dev/null, all processes see the same page full of
571 * zeroes, and text pages of executables and shared libraries have
572 * only one copy in memory, at most, normally.
573 *
574 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
575 * page_count() == 0 means the page is free. page->lru is then used for
576 * freelist management in the buddy allocator.
da6052f7 577 * page_count() > 0 means the page has been allocated.
1da177e4 578 *
da6052f7
NP
579 * Pages are allocated by the slab allocator in order to provide memory
580 * to kmalloc and kmem_cache_alloc. In this case, the management of the
581 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
582 * unless a particular usage is carefully commented. (the responsibility of
583 * freeing the kmalloc memory is the caller's, of course).
1da177e4 584 *
da6052f7
NP
585 * A page may be used by anyone else who does a __get_free_page().
586 * In this case, page_count still tracks the references, and should only
587 * be used through the normal accessor functions. The top bits of page->flags
588 * and page->virtual store page management information, but all other fields
589 * are unused and could be used privately, carefully. The management of this
590 * page is the responsibility of the one who allocated it, and those who have
591 * subsequently been given references to it.
592 *
593 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
594 * managed by the Linux memory manager: I/O, buffers, swapping etc.
595 * The following discussion applies only to them.
596 *
da6052f7
NP
597 * A pagecache page contains an opaque `private' member, which belongs to the
598 * page's address_space. Usually, this is the address of a circular list of
599 * the page's disk buffers. PG_private must be set to tell the VM to call
600 * into the filesystem to release these pages.
1da177e4 601 *
da6052f7
NP
602 * A page may belong to an inode's memory mapping. In this case, page->mapping
603 * is the pointer to the inode, and page->index is the file offset of the page,
604 * in units of PAGE_CACHE_SIZE.
1da177e4 605 *
da6052f7
NP
606 * If pagecache pages are not associated with an inode, they are said to be
607 * anonymous pages. These may become associated with the swapcache, and in that
608 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 609 *
da6052f7
NP
610 * In either case (swapcache or inode backed), the pagecache itself holds one
611 * reference to the page. Setting PG_private should also increment the
612 * refcount. The each user mapping also has a reference to the page.
1da177e4 613 *
da6052f7
NP
614 * The pagecache pages are stored in a per-mapping radix tree, which is
615 * rooted at mapping->page_tree, and indexed by offset.
616 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
617 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 618 *
da6052f7 619 * All pagecache pages may be subject to I/O:
1da177e4
LT
620 * - inode pages may need to be read from disk,
621 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
622 * to be written back to the inode on disk,
623 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
624 * modified may need to be swapped out to swap space and (later) to be read
625 * back into memory.
1da177e4
LT
626 */
627
628/*
629 * The zone field is never updated after free_area_init_core()
630 * sets it, so none of the operations on it need to be atomic.
1da177e4 631 */
348f8b6c 632
90572890 633/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 634#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
635#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
636#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 637#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 638
348f8b6c 639/*
25985edc 640 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
641 * sections we define the shift as 0; that plus a 0 mask ensures
642 * the compiler will optimise away reference to them.
643 */
d41dee36
AW
644#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
645#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
646#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 647#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 648
bce54bbf
WD
649/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
650#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 651#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
652#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
653 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 654#else
89689ae7 655#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
656#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
657 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
658#endif
659
bd8029b6 660#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 661
9223b419
CL
662#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
663#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
664#endif
665
d41dee36
AW
666#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
667#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
668#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 669#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 670#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 671
33dd4e0e 672static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 673{
348f8b6c 674 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 675}
1da177e4 676
9127ab4f
CS
677#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
678#define SECTION_IN_PAGE_FLAGS
679#endif
680
89689ae7 681/*
7a8010cd
VB
682 * The identification function is mainly used by the buddy allocator for
683 * determining if two pages could be buddies. We are not really identifying
684 * the zone since we could be using the section number id if we do not have
685 * node id available in page flags.
686 * We only guarantee that it will return the same value for two combinable
687 * pages in a zone.
89689ae7 688 */
cb2b95e1
AW
689static inline int page_zone_id(struct page *page)
690{
89689ae7 691 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
692}
693
25ba77c1 694static inline int zone_to_nid(struct zone *zone)
89fa3024 695{
d5f541ed
CL
696#ifdef CONFIG_NUMA
697 return zone->node;
698#else
699 return 0;
700#endif
89fa3024
CL
701}
702
89689ae7 703#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 704extern int page_to_nid(const struct page *page);
89689ae7 705#else
33dd4e0e 706static inline int page_to_nid(const struct page *page)
d41dee36 707{
89689ae7 708 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 709}
89689ae7
CL
710#endif
711
57e0a030 712#ifdef CONFIG_NUMA_BALANCING
90572890 713static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 714{
90572890 715 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
716}
717
90572890 718static inline int cpupid_to_pid(int cpupid)
57e0a030 719{
90572890 720 return cpupid & LAST__PID_MASK;
57e0a030 721}
b795854b 722
90572890 723static inline int cpupid_to_cpu(int cpupid)
b795854b 724{
90572890 725 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
726}
727
90572890 728static inline int cpupid_to_nid(int cpupid)
b795854b 729{
90572890 730 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
731}
732
90572890 733static inline bool cpupid_pid_unset(int cpupid)
57e0a030 734{
90572890 735 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
736}
737
90572890 738static inline bool cpupid_cpu_unset(int cpupid)
b795854b 739{
90572890 740 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
741}
742
8c8a743c
PZ
743static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
744{
745 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
746}
747
748#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
749#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
750static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 751{
1ae71d03 752 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 753}
90572890
PZ
754
755static inline int page_cpupid_last(struct page *page)
756{
757 return page->_last_cpupid;
758}
759static inline void page_cpupid_reset_last(struct page *page)
b795854b 760{
1ae71d03 761 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
762}
763#else
90572890 764static inline int page_cpupid_last(struct page *page)
75980e97 765{
90572890 766 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
767}
768
90572890 769extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 770
90572890 771static inline void page_cpupid_reset_last(struct page *page)
75980e97 772{
90572890 773 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 774
90572890
PZ
775 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
776 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 777}
90572890
PZ
778#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
779#else /* !CONFIG_NUMA_BALANCING */
780static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 781{
90572890 782 return page_to_nid(page); /* XXX */
57e0a030
MG
783}
784
90572890 785static inline int page_cpupid_last(struct page *page)
57e0a030 786{
90572890 787 return page_to_nid(page); /* XXX */
57e0a030
MG
788}
789
90572890 790static inline int cpupid_to_nid(int cpupid)
b795854b
MG
791{
792 return -1;
793}
794
90572890 795static inline int cpupid_to_pid(int cpupid)
b795854b
MG
796{
797 return -1;
798}
799
90572890 800static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
801{
802 return -1;
803}
804
90572890
PZ
805static inline int cpu_pid_to_cpupid(int nid, int pid)
806{
807 return -1;
808}
809
810static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
811{
812 return 1;
813}
814
90572890 815static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
816{
817}
8c8a743c
PZ
818
819static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
820{
821 return false;
822}
90572890 823#endif /* CONFIG_NUMA_BALANCING */
57e0a030 824
33dd4e0e 825static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
826{
827 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
828}
829
9127ab4f 830#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
831static inline void set_page_section(struct page *page, unsigned long section)
832{
833 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
834 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
835}
836
aa462abe 837static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
838{
839 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
840}
308c05e3 841#endif
d41dee36 842
2f1b6248 843static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
844{
845 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
846 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
847}
2f1b6248 848
348f8b6c
DH
849static inline void set_page_node(struct page *page, unsigned long node)
850{
851 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
852 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 853}
89689ae7 854
2f1b6248 855static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 856 unsigned long node, unsigned long pfn)
1da177e4 857{
348f8b6c
DH
858 set_page_zone(page, zone);
859 set_page_node(page, node);
9127ab4f 860#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 861 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 862#endif
1da177e4
LT
863}
864
0610c25d
GT
865#ifdef CONFIG_MEMCG
866static inline struct mem_cgroup *page_memcg(struct page *page)
867{
868 return page->mem_cgroup;
869}
870
871static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
872{
873 page->mem_cgroup = memcg;
874}
875#else
876static inline struct mem_cgroup *page_memcg(struct page *page)
877{
878 return NULL;
879}
880
881static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
882{
883}
884#endif
885
f6ac2354
CL
886/*
887 * Some inline functions in vmstat.h depend on page_zone()
888 */
889#include <linux/vmstat.h>
890
33dd4e0e 891static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 892{
aa462abe 893 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
894}
895
896#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
897#define HASHED_PAGE_VIRTUAL
898#endif
899
900#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
901static inline void *page_address(const struct page *page)
902{
903 return page->virtual;
904}
905static inline void set_page_address(struct page *page, void *address)
906{
907 page->virtual = address;
908}
1da177e4
LT
909#define page_address_init() do { } while(0)
910#endif
911
912#if defined(HASHED_PAGE_VIRTUAL)
f9918794 913void *page_address(const struct page *page);
1da177e4
LT
914void set_page_address(struct page *page, void *virtual);
915void page_address_init(void);
916#endif
917
918#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
919#define page_address(page) lowmem_page_address(page)
920#define set_page_address(page, address) do { } while(0)
921#define page_address_init() do { } while(0)
922#endif
923
e39155ea
KS
924extern void *page_rmapping(struct page *page);
925extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 926extern struct address_space *page_mapping(struct page *page);
1da177e4 927
f981c595
MG
928extern struct address_space *__page_file_mapping(struct page *);
929
930static inline
931struct address_space *page_file_mapping(struct page *page)
932{
933 if (unlikely(PageSwapCache(page)))
934 return __page_file_mapping(page);
935
936 return page->mapping;
937}
938
1da177e4
LT
939/*
940 * Return the pagecache index of the passed page. Regular pagecache pages
941 * use ->index whereas swapcache pages use ->private
942 */
943static inline pgoff_t page_index(struct page *page)
944{
945 if (unlikely(PageSwapCache(page)))
4c21e2f2 946 return page_private(page);
1da177e4
LT
947 return page->index;
948}
949
f981c595
MG
950extern pgoff_t __page_file_index(struct page *page);
951
952/*
953 * Return the file index of the page. Regular pagecache pages use ->index
954 * whereas swapcache pages use swp_offset(->private)
955 */
956static inline pgoff_t page_file_index(struct page *page)
957{
958 if (unlikely(PageSwapCache(page)))
959 return __page_file_index(page);
960
961 return page->index;
962}
963
1da177e4
LT
964/*
965 * Return true if this page is mapped into pagetables.
e1534ae9 966 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 967 */
e1534ae9 968static inline bool page_mapped(struct page *page)
1da177e4 969{
e1534ae9
KS
970 int i;
971 if (likely(!PageCompound(page)))
972 return atomic_read(&page->_mapcount) >= 0;
973 page = compound_head(page);
974 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
975 return true;
976 for (i = 0; i < hpage_nr_pages(page); i++) {
977 if (atomic_read(&page[i]._mapcount) >= 0)
978 return true;
979 }
980 return false;
1da177e4
LT
981}
982
2f064f34
MH
983/*
984 * Return true only if the page has been allocated with
985 * ALLOC_NO_WATERMARKS and the low watermark was not
986 * met implying that the system is under some pressure.
987 */
988static inline bool page_is_pfmemalloc(struct page *page)
989{
990 /*
991 * Page index cannot be this large so this must be
992 * a pfmemalloc page.
993 */
994 return page->index == -1UL;
995}
996
997/*
998 * Only to be called by the page allocator on a freshly allocated
999 * page.
1000 */
1001static inline void set_page_pfmemalloc(struct page *page)
1002{
1003 page->index = -1UL;
1004}
1005
1006static inline void clear_page_pfmemalloc(struct page *page)
1007{
1008 page->index = 0;
1009}
1010
1da177e4
LT
1011/*
1012 * Different kinds of faults, as returned by handle_mm_fault().
1013 * Used to decide whether a process gets delivered SIGBUS or
1014 * just gets major/minor fault counters bumped up.
1015 */
d0217ac0 1016
83c54070 1017#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1018
83c54070
NP
1019#define VM_FAULT_OOM 0x0001
1020#define VM_FAULT_SIGBUS 0x0002
1021#define VM_FAULT_MAJOR 0x0004
1022#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1023#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1024#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1025#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1026
83c54070
NP
1027#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1028#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1029#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1030#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1031
aa50d3a7
AK
1032#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1033
33692f27
LT
1034#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1035 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1036 VM_FAULT_FALLBACK)
aa50d3a7
AK
1037
1038/* Encode hstate index for a hwpoisoned large page */
1039#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1040#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1041
1c0fe6e3
NP
1042/*
1043 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1044 */
1045extern void pagefault_out_of_memory(void);
1046
1da177e4
LT
1047#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1048
ddd588b5 1049/*
7bf02ea2 1050 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1051 * various contexts.
1052 */
4b59e6c4 1053#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1054
7bf02ea2
DR
1055extern void show_free_areas(unsigned int flags);
1056extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1057
1da177e4 1058int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1059#ifdef CONFIG_SHMEM
1060bool shmem_mapping(struct address_space *mapping);
1061#else
1062static inline bool shmem_mapping(struct address_space *mapping)
1063{
1064 return false;
1065}
1066#endif
1da177e4 1067
e8edc6e0 1068extern int can_do_mlock(void);
1da177e4
LT
1069extern int user_shm_lock(size_t, struct user_struct *);
1070extern void user_shm_unlock(size_t, struct user_struct *);
1071
1072/*
1073 * Parameter block passed down to zap_pte_range in exceptional cases.
1074 */
1075struct zap_details {
1da177e4
LT
1076 struct address_space *check_mapping; /* Check page->mapping if set */
1077 pgoff_t first_index; /* Lowest page->index to unmap */
1078 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1079};
1080
7e675137
NP
1081struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1082 pte_t pte);
1083
c627f9cc
JS
1084int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1085 unsigned long size);
14f5ff5d 1086void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1087 unsigned long size, struct zap_details *);
4f74d2c8
LT
1088void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1089 unsigned long start, unsigned long end);
e6473092
MM
1090
1091/**
1092 * mm_walk - callbacks for walk_page_range
e6473092 1093 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1094 * this handler is required to be able to handle
1095 * pmd_trans_huge() pmds. They may simply choose to
1096 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1097 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1098 * @pte_hole: if set, called for each hole at all levels
5dc37642 1099 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1100 * @test_walk: caller specific callback function to determine whether
1101 * we walk over the current vma or not. A positive returned
1102 * value means "do page table walk over the current vma,"
1103 * and a negative one means "abort current page table walk
1104 * right now." 0 means "skip the current vma."
1105 * @mm: mm_struct representing the target process of page table walk
1106 * @vma: vma currently walked (NULL if walking outside vmas)
1107 * @private: private data for callbacks' usage
e6473092 1108 *
fafaa426 1109 * (see the comment on walk_page_range() for more details)
e6473092
MM
1110 */
1111struct mm_walk {
0f157a5b
AM
1112 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1113 unsigned long next, struct mm_walk *walk);
1114 int (*pte_entry)(pte_t *pte, unsigned long addr,
1115 unsigned long next, struct mm_walk *walk);
1116 int (*pte_hole)(unsigned long addr, unsigned long next,
1117 struct mm_walk *walk);
1118 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1119 unsigned long addr, unsigned long next,
1120 struct mm_walk *walk);
fafaa426
NH
1121 int (*test_walk)(unsigned long addr, unsigned long next,
1122 struct mm_walk *walk);
2165009b 1123 struct mm_struct *mm;
fafaa426 1124 struct vm_area_struct *vma;
2165009b 1125 void *private;
e6473092
MM
1126};
1127
2165009b
DH
1128int walk_page_range(unsigned long addr, unsigned long end,
1129 struct mm_walk *walk);
900fc5f1 1130int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1131void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1132 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1133int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1134 struct vm_area_struct *vma);
1da177e4
LT
1135void unmap_mapping_range(struct address_space *mapping,
1136 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1137int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1138 unsigned long *pfn);
d87fe660 1139int follow_phys(struct vm_area_struct *vma, unsigned long address,
1140 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1141int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1142 void *buf, int len, int write);
1da177e4
LT
1143
1144static inline void unmap_shared_mapping_range(struct address_space *mapping,
1145 loff_t const holebegin, loff_t const holelen)
1146{
1147 unmap_mapping_range(mapping, holebegin, holelen, 0);
1148}
1149
7caef267 1150extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1151extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1152void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1153void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1154int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1155int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1156int invalidate_inode_page(struct page *page);
1157
7ee1dd3f 1158#ifdef CONFIG_MMU
83c54070 1159extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1160 unsigned long address, unsigned int flags);
5c723ba5
PZ
1161extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1162 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1163#else
1164static inline int handle_mm_fault(struct mm_struct *mm,
1165 struct vm_area_struct *vma, unsigned long address,
d06063cc 1166 unsigned int flags)
7ee1dd3f
DH
1167{
1168 /* should never happen if there's no MMU */
1169 BUG();
1170 return VM_FAULT_SIGBUS;
1171}
5c723ba5
PZ
1172static inline int fixup_user_fault(struct task_struct *tsk,
1173 struct mm_struct *mm, unsigned long address,
1174 unsigned int fault_flags)
1175{
1176 /* should never happen if there's no MMU */
1177 BUG();
1178 return -EFAULT;
1179}
7ee1dd3f 1180#endif
f33ea7f4 1181
1da177e4 1182extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1183extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1184 void *buf, int len, int write);
1da177e4 1185
28a35716
ML
1186long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1187 unsigned long start, unsigned long nr_pages,
1188 unsigned int foll_flags, struct page **pages,
1189 struct vm_area_struct **vmas, int *nonblocking);
1190long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1191 unsigned long start, unsigned long nr_pages,
1192 int write, int force, struct page **pages,
1193 struct vm_area_struct **vmas);
f0818f47
AA
1194long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long start, unsigned long nr_pages,
1196 int write, int force, struct page **pages,
1197 int *locked);
0fd71a56
AA
1198long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1199 unsigned long start, unsigned long nr_pages,
1200 int write, int force, struct page **pages,
1201 unsigned int gup_flags);
f0818f47
AA
1202long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1203 unsigned long start, unsigned long nr_pages,
1204 int write, int force, struct page **pages);
d2bf6be8
NP
1205int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1206 struct page **pages);
8025e5dd
JK
1207
1208/* Container for pinned pfns / pages */
1209struct frame_vector {
1210 unsigned int nr_allocated; /* Number of frames we have space for */
1211 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1212 bool got_ref; /* Did we pin pages by getting page ref? */
1213 bool is_pfns; /* Does array contain pages or pfns? */
1214 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1215 * pfns_vector_pages() or pfns_vector_pfns()
1216 * for access */
1217};
1218
1219struct frame_vector *frame_vector_create(unsigned int nr_frames);
1220void frame_vector_destroy(struct frame_vector *vec);
1221int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1222 bool write, bool force, struct frame_vector *vec);
1223void put_vaddr_frames(struct frame_vector *vec);
1224int frame_vector_to_pages(struct frame_vector *vec);
1225void frame_vector_to_pfns(struct frame_vector *vec);
1226
1227static inline unsigned int frame_vector_count(struct frame_vector *vec)
1228{
1229 return vec->nr_frames;
1230}
1231
1232static inline struct page **frame_vector_pages(struct frame_vector *vec)
1233{
1234 if (vec->is_pfns) {
1235 int err = frame_vector_to_pages(vec);
1236
1237 if (err)
1238 return ERR_PTR(err);
1239 }
1240 return (struct page **)(vec->ptrs);
1241}
1242
1243static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1244{
1245 if (!vec->is_pfns)
1246 frame_vector_to_pfns(vec);
1247 return (unsigned long *)(vec->ptrs);
1248}
1249
18022c5d
MG
1250struct kvec;
1251int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1252 struct page **pages);
1253int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1254struct page *get_dump_page(unsigned long addr);
1da177e4 1255
cf9a2ae8 1256extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1257extern void do_invalidatepage(struct page *page, unsigned int offset,
1258 unsigned int length);
cf9a2ae8 1259
1da177e4 1260int __set_page_dirty_nobuffers(struct page *page);
76719325 1261int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1262int redirty_page_for_writepage(struct writeback_control *wbc,
1263 struct page *page);
c4843a75
GT
1264void account_page_dirtied(struct page *page, struct address_space *mapping,
1265 struct mem_cgroup *memcg);
1266void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1267 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1268int set_page_dirty(struct page *page);
1da177e4 1269int set_page_dirty_lock(struct page *page);
11f81bec 1270void cancel_dirty_page(struct page *page);
1da177e4 1271int clear_page_dirty_for_io(struct page *page);
b9ea2515 1272
a9090253 1273int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1274
39aa3cb3 1275/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1276static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1277{
1278 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1279}
1280
b5330628
ON
1281static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1282{
1283 return !vma->vm_ops;
1284}
1285
a09a79f6
MP
1286static inline int stack_guard_page_start(struct vm_area_struct *vma,
1287 unsigned long addr)
1288{
1289 return (vma->vm_flags & VM_GROWSDOWN) &&
1290 (vma->vm_start == addr) &&
1291 !vma_growsdown(vma->vm_prev, addr);
1292}
1293
1294/* Is the vma a continuation of the stack vma below it? */
1295static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1296{
1297 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1298}
1299
1300static inline int stack_guard_page_end(struct vm_area_struct *vma,
1301 unsigned long addr)
1302{
1303 return (vma->vm_flags & VM_GROWSUP) &&
1304 (vma->vm_end == addr) &&
1305 !vma_growsup(vma->vm_next, addr);
1306}
1307
58cb6548
ON
1308extern struct task_struct *task_of_stack(struct task_struct *task,
1309 struct vm_area_struct *vma, bool in_group);
b7643757 1310
b6a2fea3
OW
1311extern unsigned long move_page_tables(struct vm_area_struct *vma,
1312 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1313 unsigned long new_addr, unsigned long len,
1314 bool need_rmap_locks);
7da4d641
PZ
1315extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1316 unsigned long end, pgprot_t newprot,
4b10e7d5 1317 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1318extern int mprotect_fixup(struct vm_area_struct *vma,
1319 struct vm_area_struct **pprev, unsigned long start,
1320 unsigned long end, unsigned long newflags);
1da177e4 1321
465a454f
PZ
1322/*
1323 * doesn't attempt to fault and will return short.
1324 */
1325int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1326 struct page **pages);
d559db08
KH
1327/*
1328 * per-process(per-mm_struct) statistics.
1329 */
d559db08
KH
1330static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1331{
69c97823
KK
1332 long val = atomic_long_read(&mm->rss_stat.count[member]);
1333
1334#ifdef SPLIT_RSS_COUNTING
1335 /*
1336 * counter is updated in asynchronous manner and may go to minus.
1337 * But it's never be expected number for users.
1338 */
1339 if (val < 0)
1340 val = 0;
172703b0 1341#endif
69c97823
KK
1342 return (unsigned long)val;
1343}
d559db08
KH
1344
1345static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1346{
172703b0 1347 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1348}
1349
1350static inline void inc_mm_counter(struct mm_struct *mm, int member)
1351{
172703b0 1352 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1353}
1354
1355static inline void dec_mm_counter(struct mm_struct *mm, int member)
1356{
172703b0 1357 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1358}
1359
eca56ff9
JM
1360/* Optimized variant when page is already known not to be PageAnon */
1361static inline int mm_counter_file(struct page *page)
1362{
1363 if (PageSwapBacked(page))
1364 return MM_SHMEMPAGES;
1365 return MM_FILEPAGES;
1366}
1367
1368static inline int mm_counter(struct page *page)
1369{
1370 if (PageAnon(page))
1371 return MM_ANONPAGES;
1372 return mm_counter_file(page);
1373}
1374
d559db08
KH
1375static inline unsigned long get_mm_rss(struct mm_struct *mm)
1376{
1377 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1378 get_mm_counter(mm, MM_ANONPAGES) +
1379 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1380}
1381
1382static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1383{
1384 return max(mm->hiwater_rss, get_mm_rss(mm));
1385}
1386
1387static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1388{
1389 return max(mm->hiwater_vm, mm->total_vm);
1390}
1391
1392static inline void update_hiwater_rss(struct mm_struct *mm)
1393{
1394 unsigned long _rss = get_mm_rss(mm);
1395
1396 if ((mm)->hiwater_rss < _rss)
1397 (mm)->hiwater_rss = _rss;
1398}
1399
1400static inline void update_hiwater_vm(struct mm_struct *mm)
1401{
1402 if (mm->hiwater_vm < mm->total_vm)
1403 mm->hiwater_vm = mm->total_vm;
1404}
1405
695f0559
PC
1406static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1407{
1408 mm->hiwater_rss = get_mm_rss(mm);
1409}
1410
d559db08
KH
1411static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1412 struct mm_struct *mm)
1413{
1414 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1415
1416 if (*maxrss < hiwater_rss)
1417 *maxrss = hiwater_rss;
1418}
1419
53bddb4e 1420#if defined(SPLIT_RSS_COUNTING)
05af2e10 1421void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1422#else
05af2e10 1423static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1424{
1425}
1426#endif
465a454f 1427
4e950f6f 1428int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1429
25ca1d6c
NK
1430extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1431 spinlock_t **ptl);
1432static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1433 spinlock_t **ptl)
1434{
1435 pte_t *ptep;
1436 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1437 return ptep;
1438}
c9cfcddf 1439
5f22df00
NP
1440#ifdef __PAGETABLE_PUD_FOLDED
1441static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1442 unsigned long address)
1443{
1444 return 0;
1445}
1446#else
1bb3630e 1447int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1448#endif
1449
2d2f5119 1450#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1451static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1452 unsigned long address)
1453{
1454 return 0;
1455}
dc6c9a35 1456
2d2f5119
KS
1457static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1458
dc6c9a35
KS
1459static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1460{
1461 return 0;
1462}
1463
1464static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1465static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1466
5f22df00 1467#else
1bb3630e 1468int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1469
2d2f5119
KS
1470static inline void mm_nr_pmds_init(struct mm_struct *mm)
1471{
1472 atomic_long_set(&mm->nr_pmds, 0);
1473}
1474
dc6c9a35
KS
1475static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1476{
1477 return atomic_long_read(&mm->nr_pmds);
1478}
1479
1480static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1481{
1482 atomic_long_inc(&mm->nr_pmds);
1483}
1484
1485static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1486{
1487 atomic_long_dec(&mm->nr_pmds);
1488}
5f22df00
NP
1489#endif
1490
8ac1f832
AA
1491int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1492 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1493int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1494
1da177e4
LT
1495/*
1496 * The following ifdef needed to get the 4level-fixup.h header to work.
1497 * Remove it when 4level-fixup.h has been removed.
1498 */
1bb3630e 1499#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1500static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1501{
1bb3630e
HD
1502 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1503 NULL: pud_offset(pgd, address);
1da177e4
LT
1504}
1505
1506static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1507{
1bb3630e
HD
1508 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1509 NULL: pmd_offset(pud, address);
1da177e4 1510}
1bb3630e
HD
1511#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1512
57c1ffce 1513#if USE_SPLIT_PTE_PTLOCKS
597d795a 1514#if ALLOC_SPLIT_PTLOCKS
b35f1819 1515void __init ptlock_cache_init(void);
539edb58
PZ
1516extern bool ptlock_alloc(struct page *page);
1517extern void ptlock_free(struct page *page);
1518
1519static inline spinlock_t *ptlock_ptr(struct page *page)
1520{
1521 return page->ptl;
1522}
597d795a 1523#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1524static inline void ptlock_cache_init(void)
1525{
1526}
1527
49076ec2
KS
1528static inline bool ptlock_alloc(struct page *page)
1529{
49076ec2
KS
1530 return true;
1531}
539edb58 1532
49076ec2
KS
1533static inline void ptlock_free(struct page *page)
1534{
49076ec2
KS
1535}
1536
1537static inline spinlock_t *ptlock_ptr(struct page *page)
1538{
539edb58 1539 return &page->ptl;
49076ec2 1540}
597d795a 1541#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1542
1543static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1544{
1545 return ptlock_ptr(pmd_page(*pmd));
1546}
1547
1548static inline bool ptlock_init(struct page *page)
1549{
1550 /*
1551 * prep_new_page() initialize page->private (and therefore page->ptl)
1552 * with 0. Make sure nobody took it in use in between.
1553 *
1554 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1555 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1556 */
309381fe 1557 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1558 if (!ptlock_alloc(page))
1559 return false;
1560 spin_lock_init(ptlock_ptr(page));
1561 return true;
1562}
1563
1564/* Reset page->mapping so free_pages_check won't complain. */
1565static inline void pte_lock_deinit(struct page *page)
1566{
1567 page->mapping = NULL;
1568 ptlock_free(page);
1569}
1570
57c1ffce 1571#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1572/*
1573 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1574 */
49076ec2
KS
1575static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1576{
1577 return &mm->page_table_lock;
1578}
b35f1819 1579static inline void ptlock_cache_init(void) {}
49076ec2
KS
1580static inline bool ptlock_init(struct page *page) { return true; }
1581static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1582#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1583
b35f1819
KS
1584static inline void pgtable_init(void)
1585{
1586 ptlock_cache_init();
1587 pgtable_cache_init();
1588}
1589
390f44e2 1590static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1591{
706874e9
VD
1592 if (!ptlock_init(page))
1593 return false;
2f569afd 1594 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1595 return true;
2f569afd
MS
1596}
1597
1598static inline void pgtable_page_dtor(struct page *page)
1599{
1600 pte_lock_deinit(page);
1601 dec_zone_page_state(page, NR_PAGETABLE);
1602}
1603
c74df32c
HD
1604#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1605({ \
4c21e2f2 1606 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1607 pte_t *__pte = pte_offset_map(pmd, address); \
1608 *(ptlp) = __ptl; \
1609 spin_lock(__ptl); \
1610 __pte; \
1611})
1612
1613#define pte_unmap_unlock(pte, ptl) do { \
1614 spin_unlock(ptl); \
1615 pte_unmap(pte); \
1616} while (0)
1617
8ac1f832
AA
1618#define pte_alloc_map(mm, vma, pmd, address) \
1619 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1620 pmd, address))? \
1621 NULL: pte_offset_map(pmd, address))
1bb3630e 1622
c74df32c 1623#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1624 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1625 pmd, address))? \
c74df32c
HD
1626 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1627
1bb3630e 1628#define pte_alloc_kernel(pmd, address) \
8ac1f832 1629 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1630 NULL: pte_offset_kernel(pmd, address))
1da177e4 1631
e009bb30
KS
1632#if USE_SPLIT_PMD_PTLOCKS
1633
634391ac
MS
1634static struct page *pmd_to_page(pmd_t *pmd)
1635{
1636 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1637 return virt_to_page((void *)((unsigned long) pmd & mask));
1638}
1639
e009bb30
KS
1640static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1641{
634391ac 1642 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1643}
1644
1645static inline bool pgtable_pmd_page_ctor(struct page *page)
1646{
e009bb30
KS
1647#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1648 page->pmd_huge_pte = NULL;
1649#endif
49076ec2 1650 return ptlock_init(page);
e009bb30
KS
1651}
1652
1653static inline void pgtable_pmd_page_dtor(struct page *page)
1654{
1655#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1656 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1657#endif
49076ec2 1658 ptlock_free(page);
e009bb30
KS
1659}
1660
634391ac 1661#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1662
1663#else
1664
9a86cb7b
KS
1665static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1666{
1667 return &mm->page_table_lock;
1668}
1669
e009bb30
KS
1670static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1671static inline void pgtable_pmd_page_dtor(struct page *page) {}
1672
c389a250 1673#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1674
e009bb30
KS
1675#endif
1676
9a86cb7b
KS
1677static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1678{
1679 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1680 spin_lock(ptl);
1681 return ptl;
1682}
1683
1da177e4 1684extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1685extern void free_area_init_node(int nid, unsigned long * zones_size,
1686 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1687extern void free_initmem(void);
1688
69afade7
JL
1689/*
1690 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1691 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1692 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1693 * Return pages freed into the buddy system.
1694 */
11199692 1695extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1696 int poison, char *s);
c3d5f5f0 1697
cfa11e08
JL
1698#ifdef CONFIG_HIGHMEM
1699/*
1700 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1701 * and totalram_pages.
1702 */
1703extern void free_highmem_page(struct page *page);
1704#endif
69afade7 1705
c3d5f5f0 1706extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1707extern void mem_init_print_info(const char *str);
69afade7 1708
92923ca3
NZ
1709extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1710
69afade7
JL
1711/* Free the reserved page into the buddy system, so it gets managed. */
1712static inline void __free_reserved_page(struct page *page)
1713{
1714 ClearPageReserved(page);
1715 init_page_count(page);
1716 __free_page(page);
1717}
1718
1719static inline void free_reserved_page(struct page *page)
1720{
1721 __free_reserved_page(page);
1722 adjust_managed_page_count(page, 1);
1723}
1724
1725static inline void mark_page_reserved(struct page *page)
1726{
1727 SetPageReserved(page);
1728 adjust_managed_page_count(page, -1);
1729}
1730
1731/*
1732 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1733 * The freed pages will be poisoned with pattern "poison" if it's within
1734 * range [0, UCHAR_MAX].
1735 * Return pages freed into the buddy system.
69afade7
JL
1736 */
1737static inline unsigned long free_initmem_default(int poison)
1738{
1739 extern char __init_begin[], __init_end[];
1740
11199692 1741 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1742 poison, "unused kernel");
1743}
1744
7ee3d4e8
JL
1745static inline unsigned long get_num_physpages(void)
1746{
1747 int nid;
1748 unsigned long phys_pages = 0;
1749
1750 for_each_online_node(nid)
1751 phys_pages += node_present_pages(nid);
1752
1753 return phys_pages;
1754}
1755
0ee332c1 1756#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1757/*
0ee332c1 1758 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1759 * zones, allocate the backing mem_map and account for memory holes in a more
1760 * architecture independent manner. This is a substitute for creating the
1761 * zone_sizes[] and zholes_size[] arrays and passing them to
1762 * free_area_init_node()
1763 *
1764 * An architecture is expected to register range of page frames backed by
0ee332c1 1765 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1766 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1767 * usage, an architecture is expected to do something like
1768 *
1769 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1770 * max_highmem_pfn};
1771 * for_each_valid_physical_page_range()
0ee332c1 1772 * memblock_add_node(base, size, nid)
c713216d
MG
1773 * free_area_init_nodes(max_zone_pfns);
1774 *
0ee332c1
TH
1775 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1776 * registered physical page range. Similarly
1777 * sparse_memory_present_with_active_regions() calls memory_present() for
1778 * each range when SPARSEMEM is enabled.
c713216d
MG
1779 *
1780 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1781 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1782 */
1783extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1784unsigned long node_map_pfn_alignment(void);
32996250
YL
1785unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1786 unsigned long end_pfn);
c713216d
MG
1787extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1788 unsigned long end_pfn);
1789extern void get_pfn_range_for_nid(unsigned int nid,
1790 unsigned long *start_pfn, unsigned long *end_pfn);
1791extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1792extern void free_bootmem_with_active_regions(int nid,
1793 unsigned long max_low_pfn);
1794extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1795
0ee332c1 1796#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1797
0ee332c1 1798#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1799 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1800static inline int __early_pfn_to_nid(unsigned long pfn,
1801 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1802{
1803 return 0;
1804}
1805#else
1806/* please see mm/page_alloc.c */
1807extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1808/* there is a per-arch backend function. */
8a942fde
MG
1809extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1810 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1811#endif
1812
0e0b864e 1813extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1814extern void memmap_init_zone(unsigned long, int, unsigned long,
1815 unsigned long, enum memmap_context);
bc75d33f 1816extern void setup_per_zone_wmarks(void);
1b79acc9 1817extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1818extern void mem_init(void);
8feae131 1819extern void __init mmap_init(void);
b2b755b5 1820extern void show_mem(unsigned int flags);
1da177e4
LT
1821extern void si_meminfo(struct sysinfo * val);
1822extern void si_meminfo_node(struct sysinfo *val, int nid);
1823
3ee9a4f0 1824extern __printf(3, 4)
d00181b9
KS
1825void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1826 const char *fmt, ...);
a238ab5b 1827
e7c8d5c9 1828extern void setup_per_cpu_pageset(void);
e7c8d5c9 1829
112067f0 1830extern void zone_pcp_update(struct zone *zone);
340175b7 1831extern void zone_pcp_reset(struct zone *zone);
112067f0 1832
75f7ad8e
PS
1833/* page_alloc.c */
1834extern int min_free_kbytes;
1835
8feae131 1836/* nommu.c */
33e5d769 1837extern atomic_long_t mmap_pages_allocated;
7e660872 1838extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1839
6b2dbba8 1840/* interval_tree.c */
6b2dbba8
ML
1841void vma_interval_tree_insert(struct vm_area_struct *node,
1842 struct rb_root *root);
9826a516
ML
1843void vma_interval_tree_insert_after(struct vm_area_struct *node,
1844 struct vm_area_struct *prev,
1845 struct rb_root *root);
6b2dbba8
ML
1846void vma_interval_tree_remove(struct vm_area_struct *node,
1847 struct rb_root *root);
1848struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1849 unsigned long start, unsigned long last);
1850struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1851 unsigned long start, unsigned long last);
1852
1853#define vma_interval_tree_foreach(vma, root, start, last) \
1854 for (vma = vma_interval_tree_iter_first(root, start, last); \
1855 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1856
bf181b9f
ML
1857void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1858 struct rb_root *root);
1859void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1860 struct rb_root *root);
1861struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1862 struct rb_root *root, unsigned long start, unsigned long last);
1863struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1864 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1865#ifdef CONFIG_DEBUG_VM_RB
1866void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1867#endif
bf181b9f
ML
1868
1869#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1870 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1871 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1872
1da177e4 1873/* mmap.c */
34b4e4aa 1874extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1875extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1876 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1877extern struct vm_area_struct *vma_merge(struct mm_struct *,
1878 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1879 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1880 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1881extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1882extern int split_vma(struct mm_struct *,
1883 struct vm_area_struct *, unsigned long addr, int new_below);
1884extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1885extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1886 struct rb_node **, struct rb_node *);
a8fb5618 1887extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1888extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1889 unsigned long addr, unsigned long len, pgoff_t pgoff,
1890 bool *need_rmap_locks);
1da177e4 1891extern void exit_mmap(struct mm_struct *);
925d1c40 1892
9c599024
CG
1893static inline int check_data_rlimit(unsigned long rlim,
1894 unsigned long new,
1895 unsigned long start,
1896 unsigned long end_data,
1897 unsigned long start_data)
1898{
1899 if (rlim < RLIM_INFINITY) {
1900 if (((new - start) + (end_data - start_data)) > rlim)
1901 return -ENOSPC;
1902 }
1903
1904 return 0;
1905}
1906
7906d00c
AA
1907extern int mm_take_all_locks(struct mm_struct *mm);
1908extern void mm_drop_all_locks(struct mm_struct *mm);
1909
38646013
JS
1910extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1911extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1912
84638335
KK
1913extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1914extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1915
3935ed6a
SS
1916extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1917 unsigned long addr, unsigned long len,
a62c34bd
AL
1918 unsigned long flags,
1919 const struct vm_special_mapping *spec);
1920/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1921extern int install_special_mapping(struct mm_struct *mm,
1922 unsigned long addr, unsigned long len,
1923 unsigned long flags, struct page **pages);
1da177e4
LT
1924
1925extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1926
0165ab44 1927extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1928 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1929extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1930 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1931 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1932extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1933
1fcfd8db
ON
1934static inline unsigned long
1935do_mmap_pgoff(struct file *file, unsigned long addr,
1936 unsigned long len, unsigned long prot, unsigned long flags,
1937 unsigned long pgoff, unsigned long *populate)
1938{
1939 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1940}
1941
bebeb3d6
ML
1942#ifdef CONFIG_MMU
1943extern int __mm_populate(unsigned long addr, unsigned long len,
1944 int ignore_errors);
1945static inline void mm_populate(unsigned long addr, unsigned long len)
1946{
1947 /* Ignore errors */
1948 (void) __mm_populate(addr, len, 1);
1949}
1950#else
1951static inline void mm_populate(unsigned long addr, unsigned long len) {}
1952#endif
1953
e4eb1ff6
LT
1954/* These take the mm semaphore themselves */
1955extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1956extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1957extern unsigned long vm_mmap(struct file *, unsigned long,
1958 unsigned long, unsigned long,
1959 unsigned long, unsigned long);
1da177e4 1960
db4fbfb9
ML
1961struct vm_unmapped_area_info {
1962#define VM_UNMAPPED_AREA_TOPDOWN 1
1963 unsigned long flags;
1964 unsigned long length;
1965 unsigned long low_limit;
1966 unsigned long high_limit;
1967 unsigned long align_mask;
1968 unsigned long align_offset;
1969};
1970
1971extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1972extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1973
1974/*
1975 * Search for an unmapped address range.
1976 *
1977 * We are looking for a range that:
1978 * - does not intersect with any VMA;
1979 * - is contained within the [low_limit, high_limit) interval;
1980 * - is at least the desired size.
1981 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1982 */
1983static inline unsigned long
1984vm_unmapped_area(struct vm_unmapped_area_info *info)
1985{
cdd7875e 1986 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1987 return unmapped_area_topdown(info);
cdd7875e
BP
1988 else
1989 return unmapped_area(info);
db4fbfb9
ML
1990}
1991
85821aab 1992/* truncate.c */
1da177e4 1993extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1994extern void truncate_inode_pages_range(struct address_space *,
1995 loff_t lstart, loff_t lend);
91b0abe3 1996extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1997
1998/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1999extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2000extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2001extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2002
2003/* mm/page-writeback.c */
2004int write_one_page(struct page *page, int wait);
1cf6e7d8 2005void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2006
2007/* readahead.c */
2008#define VM_MAX_READAHEAD 128 /* kbytes */
2009#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2010
1da177e4 2011int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2012 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2013
2014void page_cache_sync_readahead(struct address_space *mapping,
2015 struct file_ra_state *ra,
2016 struct file *filp,
2017 pgoff_t offset,
2018 unsigned long size);
2019
2020void page_cache_async_readahead(struct address_space *mapping,
2021 struct file_ra_state *ra,
2022 struct file *filp,
2023 struct page *pg,
2024 pgoff_t offset,
2025 unsigned long size);
2026
d05f3169 2027/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2028extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2029
2030/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2031extern int expand_downwards(struct vm_area_struct *vma,
2032 unsigned long address);
8ca3eb08 2033#if VM_GROWSUP
46dea3d0 2034extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2035#else
fee7e49d 2036 #define expand_upwards(vma, address) (0)
9ab88515 2037#endif
1da177e4
LT
2038
2039/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2040extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2041extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2042 struct vm_area_struct **pprev);
2043
2044/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2045 NULL if none. Assume start_addr < end_addr. */
2046static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2047{
2048 struct vm_area_struct * vma = find_vma(mm,start_addr);
2049
2050 if (vma && end_addr <= vma->vm_start)
2051 vma = NULL;
2052 return vma;
2053}
2054
2055static inline unsigned long vma_pages(struct vm_area_struct *vma)
2056{
2057 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2058}
2059
640708a2
PE
2060/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2061static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2062 unsigned long vm_start, unsigned long vm_end)
2063{
2064 struct vm_area_struct *vma = find_vma(mm, vm_start);
2065
2066 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2067 vma = NULL;
2068
2069 return vma;
2070}
2071
bad849b3 2072#ifdef CONFIG_MMU
804af2cf 2073pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2074void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2075#else
2076static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2077{
2078 return __pgprot(0);
2079}
64e45507
PF
2080static inline void vma_set_page_prot(struct vm_area_struct *vma)
2081{
2082 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2083}
bad849b3
DH
2084#endif
2085
5877231f 2086#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2087unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2088 unsigned long start, unsigned long end);
2089#endif
2090
deceb6cd 2091struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2092int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2093 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2094int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2095int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2096 unsigned long pfn);
423bad60
NP
2097int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2098 unsigned long pfn);
b4cbb197
LT
2099int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2100
deceb6cd 2101
240aadee
ML
2102struct page *follow_page_mask(struct vm_area_struct *vma,
2103 unsigned long address, unsigned int foll_flags,
2104 unsigned int *page_mask);
2105
2106static inline struct page *follow_page(struct vm_area_struct *vma,
2107 unsigned long address, unsigned int foll_flags)
2108{
2109 unsigned int unused_page_mask;
2110 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2111}
2112
deceb6cd
HD
2113#define FOLL_WRITE 0x01 /* check pte is writable */
2114#define FOLL_TOUCH 0x02 /* mark page accessed */
2115#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2116#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2117#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2118#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2119 * and return without waiting upon it */
84d33df2 2120#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2121#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2122#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2123#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2124#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2125#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2126#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2127
2f569afd 2128typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2129 void *data);
2130extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2131 unsigned long size, pte_fn_t fn, void *data);
2132
1da177e4 2133
12d6f21e 2134#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2135extern bool _debug_pagealloc_enabled;
2136extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2137
2138static inline bool debug_pagealloc_enabled(void)
2139{
2140 return _debug_pagealloc_enabled;
2141}
2142
2143static inline void
2144kernel_map_pages(struct page *page, int numpages, int enable)
2145{
2146 if (!debug_pagealloc_enabled())
2147 return;
2148
2149 __kernel_map_pages(page, numpages, enable);
2150}
8a235efa
RW
2151#ifdef CONFIG_HIBERNATION
2152extern bool kernel_page_present(struct page *page);
2153#endif /* CONFIG_HIBERNATION */
12d6f21e 2154#else
1da177e4 2155static inline void
9858db50 2156kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2157#ifdef CONFIG_HIBERNATION
2158static inline bool kernel_page_present(struct page *page) { return true; }
2159#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2160#endif
2161
a6c19dfe 2162#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2163extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2164extern int in_gate_area_no_mm(unsigned long addr);
2165extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2166#else
a6c19dfe
AL
2167static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2168{
2169 return NULL;
2170}
2171static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2172static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2173{
2174 return 0;
2175}
1da177e4
LT
2176#endif /* __HAVE_ARCH_GATE_AREA */
2177
146732ce
JT
2178#ifdef CONFIG_SYSCTL
2179extern int sysctl_drop_caches;
8d65af78 2180int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2181 void __user *, size_t *, loff_t *);
146732ce
JT
2182#endif
2183
cb731d6c
VD
2184void drop_slab(void);
2185void drop_slab_node(int nid);
9d0243bc 2186
7a9166e3
LY
2187#ifndef CONFIG_MMU
2188#define randomize_va_space 0
2189#else
a62eaf15 2190extern int randomize_va_space;
7a9166e3 2191#endif
a62eaf15 2192
045e72ac 2193const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2194void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2195
9bdac914
YL
2196void sparse_mem_maps_populate_node(struct page **map_map,
2197 unsigned long pnum_begin,
2198 unsigned long pnum_end,
2199 unsigned long map_count,
2200 int nodeid);
2201
98f3cfc1 2202struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2203pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2204pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2205pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2206pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2207void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2208void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2209void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2210int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2211 int node);
2212int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2213void vmemmap_populate_print_last(void);
0197518c 2214#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2215void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2216#endif
46723bfa
YI
2217void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2218 unsigned long size);
6a46079c 2219
82ba011b
AK
2220enum mf_flags {
2221 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2222 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2223 MF_MUST_KILL = 1 << 2,
cf870c70 2224 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2225};
cd42f4a3 2226extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2227extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2228extern int unpoison_memory(unsigned long pfn);
ead07f6a 2229extern int get_hwpoison_page(struct page *page);
4e41a30c 2230#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2231extern int sysctl_memory_failure_early_kill;
2232extern int sysctl_memory_failure_recovery;
facb6011 2233extern void shake_page(struct page *p, int access);
293c07e3 2234extern atomic_long_t num_poisoned_pages;
facb6011 2235extern int soft_offline_page(struct page *page, int flags);
6a46079c 2236
cc637b17
XX
2237
2238/*
2239 * Error handlers for various types of pages.
2240 */
cc3e2af4 2241enum mf_result {
cc637b17
XX
2242 MF_IGNORED, /* Error: cannot be handled */
2243 MF_FAILED, /* Error: handling failed */
2244 MF_DELAYED, /* Will be handled later */
2245 MF_RECOVERED, /* Successfully recovered */
2246};
2247
2248enum mf_action_page_type {
2249 MF_MSG_KERNEL,
2250 MF_MSG_KERNEL_HIGH_ORDER,
2251 MF_MSG_SLAB,
2252 MF_MSG_DIFFERENT_COMPOUND,
2253 MF_MSG_POISONED_HUGE,
2254 MF_MSG_HUGE,
2255 MF_MSG_FREE_HUGE,
2256 MF_MSG_UNMAP_FAILED,
2257 MF_MSG_DIRTY_SWAPCACHE,
2258 MF_MSG_CLEAN_SWAPCACHE,
2259 MF_MSG_DIRTY_MLOCKED_LRU,
2260 MF_MSG_CLEAN_MLOCKED_LRU,
2261 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2262 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2263 MF_MSG_DIRTY_LRU,
2264 MF_MSG_CLEAN_LRU,
2265 MF_MSG_TRUNCATED_LRU,
2266 MF_MSG_BUDDY,
2267 MF_MSG_BUDDY_2ND,
2268 MF_MSG_UNKNOWN,
2269};
2270
47ad8475
AA
2271#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2272extern void clear_huge_page(struct page *page,
2273 unsigned long addr,
2274 unsigned int pages_per_huge_page);
2275extern void copy_user_huge_page(struct page *dst, struct page *src,
2276 unsigned long addr, struct vm_area_struct *vma,
2277 unsigned int pages_per_huge_page);
2278#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2279
e30825f1
JK
2280extern struct page_ext_operations debug_guardpage_ops;
2281extern struct page_ext_operations page_poisoning_ops;
2282
c0a32fc5
SG
2283#ifdef CONFIG_DEBUG_PAGEALLOC
2284extern unsigned int _debug_guardpage_minorder;
e30825f1 2285extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2286
2287static inline unsigned int debug_guardpage_minorder(void)
2288{
2289 return _debug_guardpage_minorder;
2290}
2291
e30825f1
JK
2292static inline bool debug_guardpage_enabled(void)
2293{
2294 return _debug_guardpage_enabled;
2295}
2296
c0a32fc5
SG
2297static inline bool page_is_guard(struct page *page)
2298{
e30825f1
JK
2299 struct page_ext *page_ext;
2300
2301 if (!debug_guardpage_enabled())
2302 return false;
2303
2304 page_ext = lookup_page_ext(page);
2305 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2306}
2307#else
2308static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2309static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2310static inline bool page_is_guard(struct page *page) { return false; }
2311#endif /* CONFIG_DEBUG_PAGEALLOC */
2312
f9872caf
CS
2313#if MAX_NUMNODES > 1
2314void __init setup_nr_node_ids(void);
2315#else
2316static inline void setup_nr_node_ids(void) {}
2317#endif
2318
1da177e4
LT
2319#endif /* __KERNEL__ */
2320#endif /* _LINUX_MM_H */
This page took 1.464214 seconds and 5 git commands to generate.