mm, fs: Add vm_ops->name as an alternative to arch_vma_name
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
1da177e4
LT
21
22struct mempolicy;
23struct anon_vma;
bf181b9f 24struct anon_vma_chain;
4e950f6f 25struct file_ra_state;
e8edc6e0 26struct user_struct;
4e950f6f 27struct writeback_control;
1da177e4 28
fccc9987 29#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 30extern unsigned long max_mapnr;
fccc9987
JL
31
32static inline void set_max_mapnr(unsigned long limit)
33{
34 max_mapnr = limit;
35}
36#else
37static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
38#endif
39
4481374c 40extern unsigned long totalram_pages;
1da177e4 41extern void * high_memory;
1da177e4
LT
42extern int page_cluster;
43
44#ifdef CONFIG_SYSCTL
45extern int sysctl_legacy_va_layout;
46#else
47#define sysctl_legacy_va_layout 0
48#endif
49
50#include <asm/page.h>
51#include <asm/pgtable.h>
52#include <asm/processor.h>
1da177e4 53
79442ed1
TC
54#ifndef __pa_symbol
55#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
56#endif
57
c9b1d098 58extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 59extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 60
49f0ce5f
JM
61extern int sysctl_overcommit_memory;
62extern int sysctl_overcommit_ratio;
63extern unsigned long sysctl_overcommit_kbytes;
64
65extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
66 size_t *, loff_t *);
67extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
68 size_t *, loff_t *);
69
1da177e4
LT
70#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
71
27ac792c
AR
72/* to align the pointer to the (next) page boundary */
73#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
74
0fa73b86
AM
75/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
76#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
77
1da177e4
LT
78/*
79 * Linux kernel virtual memory manager primitives.
80 * The idea being to have a "virtual" mm in the same way
81 * we have a virtual fs - giving a cleaner interface to the
82 * mm details, and allowing different kinds of memory mappings
83 * (from shared memory to executable loading to arbitrary
84 * mmap() functions).
85 */
86
c43692e8
CL
87extern struct kmem_cache *vm_area_cachep;
88
1da177e4 89#ifndef CONFIG_MMU
8feae131
DH
90extern struct rb_root nommu_region_tree;
91extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
92
93extern unsigned int kobjsize(const void *objp);
94#endif
95
96/*
605d9288 97 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 98 */
cc2383ec
KK
99#define VM_NONE 0x00000000
100
1da177e4
LT
101#define VM_READ 0x00000001 /* currently active flags */
102#define VM_WRITE 0x00000002
103#define VM_EXEC 0x00000004
104#define VM_SHARED 0x00000008
105
7e2cff42 106/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
107#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
108#define VM_MAYWRITE 0x00000020
109#define VM_MAYEXEC 0x00000040
110#define VM_MAYSHARE 0x00000080
111
112#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 113#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
114#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
115
1da177e4
LT
116#define VM_LOCKED 0x00002000
117#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
118
119 /* Used by sys_madvise() */
120#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
121#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
122
123#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
124#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 125#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 126#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
127#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
128#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 129#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 130#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 131
d9104d1c
CG
132#ifdef CONFIG_MEM_SOFT_DIRTY
133# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
134#else
135# define VM_SOFTDIRTY 0
136#endif
137
b379d790 138#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
139#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
140#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 141#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 142
cc2383ec
KK
143#if defined(CONFIG_X86)
144# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
145#elif defined(CONFIG_PPC)
146# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
147#elif defined(CONFIG_PARISC)
148# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
149#elif defined(CONFIG_METAG)
150# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
151#elif defined(CONFIG_IA64)
152# define VM_GROWSUP VM_ARCH_1
153#elif !defined(CONFIG_MMU)
154# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
155#endif
156
157#ifndef VM_GROWSUP
158# define VM_GROWSUP VM_NONE
159#endif
160
a8bef8ff
MG
161/* Bits set in the VMA until the stack is in its final location */
162#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
163
1da177e4
LT
164#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
165#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
166#endif
167
168#ifdef CONFIG_STACK_GROWSUP
169#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
170#else
171#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
172#endif
173
b291f000 174/*
78f11a25
AA
175 * Special vmas that are non-mergable, non-mlock()able.
176 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 177 */
9050d7eb 178#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 179
a0715cc2
AT
180/* This mask defines which mm->def_flags a process can inherit its parent */
181#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
182
1da177e4
LT
183/*
184 * mapping from the currently active vm_flags protection bits (the
185 * low four bits) to a page protection mask..
186 */
187extern pgprot_t protection_map[16];
188
d0217ac0
NP
189#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
190#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 191#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 192#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 193#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 194#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 195#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 196#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 197
54cb8821 198/*
d0217ac0 199 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
200 * ->fault function. The vma's ->fault is responsible for returning a bitmask
201 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 202 *
d0217ac0 203 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 204 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 205 */
d0217ac0
NP
206struct vm_fault {
207 unsigned int flags; /* FAULT_FLAG_xxx flags */
208 pgoff_t pgoff; /* Logical page offset based on vma */
209 void __user *virtual_address; /* Faulting virtual address */
210
211 struct page *page; /* ->fault handlers should return a
83c54070 212 * page here, unless VM_FAULT_NOPAGE
d0217ac0 213 * is set (which is also implied by
83c54070 214 * VM_FAULT_ERROR).
d0217ac0 215 */
8c6e50b0
KS
216 /* for ->map_pages() only */
217 pgoff_t max_pgoff; /* map pages for offset from pgoff till
218 * max_pgoff inclusive */
219 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 220};
1da177e4
LT
221
222/*
223 * These are the virtual MM functions - opening of an area, closing and
224 * unmapping it (needed to keep files on disk up-to-date etc), pointer
225 * to the functions called when a no-page or a wp-page exception occurs.
226 */
227struct vm_operations_struct {
228 void (*open)(struct vm_area_struct * area);
229 void (*close)(struct vm_area_struct * area);
d0217ac0 230 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
8c6e50b0 231 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
232
233 /* notification that a previously read-only page is about to become
234 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 235 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
236
237 /* called by access_process_vm when get_user_pages() fails, typically
238 * for use by special VMAs that can switch between memory and hardware
239 */
240 int (*access)(struct vm_area_struct *vma, unsigned long addr,
241 void *buf, int len, int write);
78d683e8
AL
242
243 /* Called by the /proc/PID/maps code to ask the vma whether it
244 * has a special name. Returning non-NULL will also cause this
245 * vma to be dumped unconditionally. */
246 const char *(*name)(struct vm_area_struct *vma);
247
1da177e4 248#ifdef CONFIG_NUMA
a6020ed7
LS
249 /*
250 * set_policy() op must add a reference to any non-NULL @new mempolicy
251 * to hold the policy upon return. Caller should pass NULL @new to
252 * remove a policy and fall back to surrounding context--i.e. do not
253 * install a MPOL_DEFAULT policy, nor the task or system default
254 * mempolicy.
255 */
1da177e4 256 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
257
258 /*
259 * get_policy() op must add reference [mpol_get()] to any policy at
260 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
261 * in mm/mempolicy.c will do this automatically.
262 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
263 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
264 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
265 * must return NULL--i.e., do not "fallback" to task or system default
266 * policy.
267 */
1da177e4
LT
268 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
269 unsigned long addr);
7b2259b3
CL
270 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
271 const nodemask_t *to, unsigned long flags);
1da177e4 272#endif
0b173bc4
KK
273 /* called by sys_remap_file_pages() to populate non-linear mapping */
274 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
275 unsigned long size, pgoff_t pgoff);
1da177e4
LT
276};
277
278struct mmu_gather;
279struct inode;
280
349aef0b
AM
281#define page_private(page) ((page)->private)
282#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 283
b12c4ad1
MK
284/* It's valid only if the page is free path or free_list */
285static inline void set_freepage_migratetype(struct page *page, int migratetype)
286{
95e34412 287 page->index = migratetype;
b12c4ad1
MK
288}
289
290/* It's valid only if the page is free path or free_list */
291static inline int get_freepage_migratetype(struct page *page)
292{
95e34412 293 return page->index;
b12c4ad1
MK
294}
295
1da177e4
LT
296/*
297 * FIXME: take this include out, include page-flags.h in
298 * files which need it (119 of them)
299 */
300#include <linux/page-flags.h>
71e3aac0 301#include <linux/huge_mm.h>
1da177e4
LT
302
303/*
304 * Methods to modify the page usage count.
305 *
306 * What counts for a page usage:
307 * - cache mapping (page->mapping)
308 * - private data (page->private)
309 * - page mapped in a task's page tables, each mapping
310 * is counted separately
311 *
312 * Also, many kernel routines increase the page count before a critical
313 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
314 */
315
316/*
da6052f7 317 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 318 */
7c8ee9a8
NP
319static inline int put_page_testzero(struct page *page)
320{
309381fe 321 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 322 return atomic_dec_and_test(&page->_count);
7c8ee9a8 323}
1da177e4
LT
324
325/*
7c8ee9a8
NP
326 * Try to grab a ref unless the page has a refcount of zero, return false if
327 * that is the case.
8e0861fa
AK
328 * This can be called when MMU is off so it must not access
329 * any of the virtual mappings.
1da177e4 330 */
7c8ee9a8
NP
331static inline int get_page_unless_zero(struct page *page)
332{
8dc04efb 333 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 334}
1da177e4 335
8e0861fa
AK
336/*
337 * Try to drop a ref unless the page has a refcount of one, return false if
338 * that is the case.
339 * This is to make sure that the refcount won't become zero after this drop.
340 * This can be called when MMU is off so it must not access
341 * any of the virtual mappings.
342 */
343static inline int put_page_unless_one(struct page *page)
344{
345 return atomic_add_unless(&page->_count, -1, 1);
346}
347
53df8fdc
WF
348extern int page_is_ram(unsigned long pfn);
349
48667e7a 350/* Support for virtually mapped pages */
b3bdda02
CL
351struct page *vmalloc_to_page(const void *addr);
352unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 353
0738c4bb
PM
354/*
355 * Determine if an address is within the vmalloc range
356 *
357 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
358 * is no special casing required.
359 */
9e2779fa
CL
360static inline int is_vmalloc_addr(const void *x)
361{
0738c4bb 362#ifdef CONFIG_MMU
9e2779fa
CL
363 unsigned long addr = (unsigned long)x;
364
365 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
366#else
367 return 0;
8ca3ed87 368#endif
0738c4bb 369}
81ac3ad9
KH
370#ifdef CONFIG_MMU
371extern int is_vmalloc_or_module_addr(const void *x);
372#else
934831d0 373static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
374{
375 return 0;
376}
377#endif
9e2779fa 378
e9da73d6
AA
379static inline void compound_lock(struct page *page)
380{
381#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 382 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
383 bit_spin_lock(PG_compound_lock, &page->flags);
384#endif
385}
386
387static inline void compound_unlock(struct page *page)
388{
389#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 390 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
391 bit_spin_unlock(PG_compound_lock, &page->flags);
392#endif
393}
394
395static inline unsigned long compound_lock_irqsave(struct page *page)
396{
397 unsigned long uninitialized_var(flags);
398#ifdef CONFIG_TRANSPARENT_HUGEPAGE
399 local_irq_save(flags);
400 compound_lock(page);
401#endif
402 return flags;
403}
404
405static inline void compound_unlock_irqrestore(struct page *page,
406 unsigned long flags)
407{
408#ifdef CONFIG_TRANSPARENT_HUGEPAGE
409 compound_unlock(page);
410 local_irq_restore(flags);
411#endif
412}
413
d85f3385
CL
414static inline struct page *compound_head(struct page *page)
415{
668f9abb
DR
416 if (unlikely(PageTail(page))) {
417 struct page *head = page->first_page;
418
419 /*
420 * page->first_page may be a dangling pointer to an old
421 * compound page, so recheck that it is still a tail
422 * page before returning.
423 */
424 smp_rmb();
425 if (likely(PageTail(page)))
426 return head;
427 }
d85f3385
CL
428 return page;
429}
430
70b50f94
AA
431/*
432 * The atomic page->_mapcount, starts from -1: so that transitions
433 * both from it and to it can be tracked, using atomic_inc_and_test
434 * and atomic_add_negative(-1).
435 */
22b751c3 436static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
437{
438 atomic_set(&(page)->_mapcount, -1);
439}
440
441static inline int page_mapcount(struct page *page)
442{
443 return atomic_read(&(page)->_mapcount) + 1;
444}
445
4c21e2f2 446static inline int page_count(struct page *page)
1da177e4 447{
d85f3385 448 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
449}
450
44518d2b
AA
451#ifdef CONFIG_HUGETLB_PAGE
452extern int PageHeadHuge(struct page *page_head);
453#else /* CONFIG_HUGETLB_PAGE */
454static inline int PageHeadHuge(struct page *page_head)
455{
456 return 0;
457}
458#endif /* CONFIG_HUGETLB_PAGE */
459
460static inline bool __compound_tail_refcounted(struct page *page)
461{
462 return !PageSlab(page) && !PageHeadHuge(page);
463}
464
465/*
466 * This takes a head page as parameter and tells if the
467 * tail page reference counting can be skipped.
468 *
469 * For this to be safe, PageSlab and PageHeadHuge must remain true on
470 * any given page where they return true here, until all tail pins
471 * have been released.
472 */
473static inline bool compound_tail_refcounted(struct page *page)
474{
309381fe 475 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
476 return __compound_tail_refcounted(page);
477}
478
b35a35b5
AA
479static inline void get_huge_page_tail(struct page *page)
480{
481 /*
5eaf1a9e 482 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 483 */
309381fe
SL
484 VM_BUG_ON_PAGE(!PageTail(page), page);
485 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
486 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 487 if (compound_tail_refcounted(page->first_page))
44518d2b 488 atomic_inc(&page->_mapcount);
b35a35b5
AA
489}
490
70b50f94
AA
491extern bool __get_page_tail(struct page *page);
492
1da177e4
LT
493static inline void get_page(struct page *page)
494{
70b50f94
AA
495 if (unlikely(PageTail(page)))
496 if (likely(__get_page_tail(page)))
497 return;
91807063
AA
498 /*
499 * Getting a normal page or the head of a compound page
70b50f94 500 * requires to already have an elevated page->_count.
91807063 501 */
309381fe 502 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
503 atomic_inc(&page->_count);
504}
505
b49af68f
CL
506static inline struct page *virt_to_head_page(const void *x)
507{
508 struct page *page = virt_to_page(x);
509 return compound_head(page);
510}
511
7835e98b
NP
512/*
513 * Setup the page count before being freed into the page allocator for
514 * the first time (boot or memory hotplug)
515 */
516static inline void init_page_count(struct page *page)
517{
518 atomic_set(&page->_count, 1);
519}
520
5f24ce5f
AA
521/*
522 * PageBuddy() indicate that the page is free and in the buddy system
523 * (see mm/page_alloc.c).
ef2b4b95
AA
524 *
525 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
526 * -2 so that an underflow of the page_mapcount() won't be mistaken
527 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
528 * efficiently by most CPU architectures.
5f24ce5f 529 */
ef2b4b95
AA
530#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
531
5f24ce5f
AA
532static inline int PageBuddy(struct page *page)
533{
ef2b4b95 534 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
535}
536
537static inline void __SetPageBuddy(struct page *page)
538{
309381fe 539 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
ef2b4b95 540 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
541}
542
543static inline void __ClearPageBuddy(struct page *page)
544{
309381fe 545 VM_BUG_ON_PAGE(!PageBuddy(page), page);
5f24ce5f
AA
546 atomic_set(&page->_mapcount, -1);
547}
548
1da177e4 549void put_page(struct page *page);
1d7ea732 550void put_pages_list(struct list_head *pages);
1da177e4 551
8dfcc9ba 552void split_page(struct page *page, unsigned int order);
748446bb 553int split_free_page(struct page *page);
8dfcc9ba 554
33f2ef89
AW
555/*
556 * Compound pages have a destructor function. Provide a
557 * prototype for that function and accessor functions.
558 * These are _only_ valid on the head of a PG_compound page.
559 */
560typedef void compound_page_dtor(struct page *);
561
562static inline void set_compound_page_dtor(struct page *page,
563 compound_page_dtor *dtor)
564{
565 page[1].lru.next = (void *)dtor;
566}
567
568static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
569{
570 return (compound_page_dtor *)page[1].lru.next;
571}
572
d85f3385
CL
573static inline int compound_order(struct page *page)
574{
6d777953 575 if (!PageHead(page))
d85f3385
CL
576 return 0;
577 return (unsigned long)page[1].lru.prev;
578}
579
580static inline void set_compound_order(struct page *page, unsigned long order)
581{
582 page[1].lru.prev = (void *)order;
583}
584
3dece370 585#ifdef CONFIG_MMU
14fd403f
AA
586/*
587 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
588 * servicing faults for write access. In the normal case, do always want
589 * pte_mkwrite. But get_user_pages can cause write faults for mappings
590 * that do not have writing enabled, when used by access_process_vm.
591 */
592static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
593{
594 if (likely(vma->vm_flags & VM_WRITE))
595 pte = pte_mkwrite(pte);
596 return pte;
597}
8c6e50b0
KS
598
599void do_set_pte(struct vm_area_struct *vma, unsigned long address,
600 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 601#endif
14fd403f 602
1da177e4
LT
603/*
604 * Multiple processes may "see" the same page. E.g. for untouched
605 * mappings of /dev/null, all processes see the same page full of
606 * zeroes, and text pages of executables and shared libraries have
607 * only one copy in memory, at most, normally.
608 *
609 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
610 * page_count() == 0 means the page is free. page->lru is then used for
611 * freelist management in the buddy allocator.
da6052f7 612 * page_count() > 0 means the page has been allocated.
1da177e4 613 *
da6052f7
NP
614 * Pages are allocated by the slab allocator in order to provide memory
615 * to kmalloc and kmem_cache_alloc. In this case, the management of the
616 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
617 * unless a particular usage is carefully commented. (the responsibility of
618 * freeing the kmalloc memory is the caller's, of course).
1da177e4 619 *
da6052f7
NP
620 * A page may be used by anyone else who does a __get_free_page().
621 * In this case, page_count still tracks the references, and should only
622 * be used through the normal accessor functions. The top bits of page->flags
623 * and page->virtual store page management information, but all other fields
624 * are unused and could be used privately, carefully. The management of this
625 * page is the responsibility of the one who allocated it, and those who have
626 * subsequently been given references to it.
627 *
628 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
629 * managed by the Linux memory manager: I/O, buffers, swapping etc.
630 * The following discussion applies only to them.
631 *
da6052f7
NP
632 * A pagecache page contains an opaque `private' member, which belongs to the
633 * page's address_space. Usually, this is the address of a circular list of
634 * the page's disk buffers. PG_private must be set to tell the VM to call
635 * into the filesystem to release these pages.
1da177e4 636 *
da6052f7
NP
637 * A page may belong to an inode's memory mapping. In this case, page->mapping
638 * is the pointer to the inode, and page->index is the file offset of the page,
639 * in units of PAGE_CACHE_SIZE.
1da177e4 640 *
da6052f7
NP
641 * If pagecache pages are not associated with an inode, they are said to be
642 * anonymous pages. These may become associated with the swapcache, and in that
643 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 644 *
da6052f7
NP
645 * In either case (swapcache or inode backed), the pagecache itself holds one
646 * reference to the page. Setting PG_private should also increment the
647 * refcount. The each user mapping also has a reference to the page.
1da177e4 648 *
da6052f7
NP
649 * The pagecache pages are stored in a per-mapping radix tree, which is
650 * rooted at mapping->page_tree, and indexed by offset.
651 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
652 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 653 *
da6052f7 654 * All pagecache pages may be subject to I/O:
1da177e4
LT
655 * - inode pages may need to be read from disk,
656 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
657 * to be written back to the inode on disk,
658 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
659 * modified may need to be swapped out to swap space and (later) to be read
660 * back into memory.
1da177e4
LT
661 */
662
663/*
664 * The zone field is never updated after free_area_init_core()
665 * sets it, so none of the operations on it need to be atomic.
1da177e4 666 */
348f8b6c 667
90572890 668/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 669#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
670#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
671#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 672#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 673
348f8b6c 674/*
25985edc 675 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
676 * sections we define the shift as 0; that plus a 0 mask ensures
677 * the compiler will optimise away reference to them.
678 */
d41dee36
AW
679#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
680#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
681#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 682#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 683
bce54bbf
WD
684/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
685#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 686#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
687#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
688 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 689#else
89689ae7 690#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
691#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
692 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
693#endif
694
bd8029b6 695#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 696
9223b419
CL
697#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
699#endif
700
d41dee36
AW
701#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
702#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
703#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 704#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 705#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 706
33dd4e0e 707static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 708{
348f8b6c 709 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 710}
1da177e4 711
9127ab4f
CS
712#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713#define SECTION_IN_PAGE_FLAGS
714#endif
715
89689ae7 716/*
7a8010cd
VB
717 * The identification function is mainly used by the buddy allocator for
718 * determining if two pages could be buddies. We are not really identifying
719 * the zone since we could be using the section number id if we do not have
720 * node id available in page flags.
721 * We only guarantee that it will return the same value for two combinable
722 * pages in a zone.
89689ae7 723 */
cb2b95e1
AW
724static inline int page_zone_id(struct page *page)
725{
89689ae7 726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
727}
728
25ba77c1 729static inline int zone_to_nid(struct zone *zone)
89fa3024 730{
d5f541ed
CL
731#ifdef CONFIG_NUMA
732 return zone->node;
733#else
734 return 0;
735#endif
89fa3024
CL
736}
737
89689ae7 738#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 739extern int page_to_nid(const struct page *page);
89689ae7 740#else
33dd4e0e 741static inline int page_to_nid(const struct page *page)
d41dee36 742{
89689ae7 743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 744}
89689ae7
CL
745#endif
746
57e0a030 747#ifdef CONFIG_NUMA_BALANCING
90572890 748static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 749{
90572890 750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
751}
752
90572890 753static inline int cpupid_to_pid(int cpupid)
57e0a030 754{
90572890 755 return cpupid & LAST__PID_MASK;
57e0a030 756}
b795854b 757
90572890 758static inline int cpupid_to_cpu(int cpupid)
b795854b 759{
90572890 760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
761}
762
90572890 763static inline int cpupid_to_nid(int cpupid)
b795854b 764{
90572890 765 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
766}
767
90572890 768static inline bool cpupid_pid_unset(int cpupid)
57e0a030 769{
90572890 770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
771}
772
90572890 773static inline bool cpupid_cpu_unset(int cpupid)
b795854b 774{
90572890 775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
776}
777
8c8a743c
PZ
778static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779{
780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781}
782
783#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
784#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 786{
1ae71d03 787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 788}
90572890
PZ
789
790static inline int page_cpupid_last(struct page *page)
791{
792 return page->_last_cpupid;
793}
794static inline void page_cpupid_reset_last(struct page *page)
b795854b 795{
1ae71d03 796 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
797}
798#else
90572890 799static inline int page_cpupid_last(struct page *page)
75980e97 800{
90572890 801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
802}
803
90572890 804extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 805
90572890 806static inline void page_cpupid_reset_last(struct page *page)
75980e97 807{
90572890 808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 809
90572890
PZ
810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 812}
90572890
PZ
813#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814#else /* !CONFIG_NUMA_BALANCING */
815static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 816{
90572890 817 return page_to_nid(page); /* XXX */
57e0a030
MG
818}
819
90572890 820static inline int page_cpupid_last(struct page *page)
57e0a030 821{
90572890 822 return page_to_nid(page); /* XXX */
57e0a030
MG
823}
824
90572890 825static inline int cpupid_to_nid(int cpupid)
b795854b
MG
826{
827 return -1;
828}
829
90572890 830static inline int cpupid_to_pid(int cpupid)
b795854b
MG
831{
832 return -1;
833}
834
90572890 835static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
836{
837 return -1;
838}
839
90572890
PZ
840static inline int cpu_pid_to_cpupid(int nid, int pid)
841{
842 return -1;
843}
844
845static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
846{
847 return 1;
848}
849
90572890 850static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
851{
852}
8c8a743c
PZ
853
854static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855{
856 return false;
857}
90572890 858#endif /* CONFIG_NUMA_BALANCING */
57e0a030 859
33dd4e0e 860static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
861{
862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863}
864
9127ab4f 865#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
866static inline void set_page_section(struct page *page, unsigned long section)
867{
868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870}
871
aa462abe 872static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
873{
874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875}
308c05e3 876#endif
d41dee36 877
2f1b6248 878static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
879{
880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882}
2f1b6248 883
348f8b6c
DH
884static inline void set_page_node(struct page *page, unsigned long node)
885{
886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 888}
89689ae7 889
2f1b6248 890static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 891 unsigned long node, unsigned long pfn)
1da177e4 892{
348f8b6c
DH
893 set_page_zone(page, zone);
894 set_page_node(page, node);
9127ab4f 895#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 896 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 897#endif
1da177e4
LT
898}
899
f6ac2354
CL
900/*
901 * Some inline functions in vmstat.h depend on page_zone()
902 */
903#include <linux/vmstat.h>
904
33dd4e0e 905static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 906{
aa462abe 907 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
908}
909
910#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
911#define HASHED_PAGE_VIRTUAL
912#endif
913
914#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
915static inline void *page_address(const struct page *page)
916{
917 return page->virtual;
918}
919static inline void set_page_address(struct page *page, void *address)
920{
921 page->virtual = address;
922}
1da177e4
LT
923#define page_address_init() do { } while(0)
924#endif
925
926#if defined(HASHED_PAGE_VIRTUAL)
f9918794 927void *page_address(const struct page *page);
1da177e4
LT
928void set_page_address(struct page *page, void *virtual);
929void page_address_init(void);
930#endif
931
932#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
933#define page_address(page) lowmem_page_address(page)
934#define set_page_address(page, address) do { } while(0)
935#define page_address_init() do { } while(0)
936#endif
937
938/*
939 * On an anonymous page mapped into a user virtual memory area,
940 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
941 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
942 *
943 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
944 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
945 * and then page->mapping points, not to an anon_vma, but to a private
946 * structure which KSM associates with that merged page. See ksm.h.
947 *
948 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
949 *
950 * Please note that, confusingly, "page_mapping" refers to the inode
951 * address_space which maps the page from disk; whereas "page_mapped"
952 * refers to user virtual address space into which the page is mapped.
953 */
954#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
955#define PAGE_MAPPING_KSM 2
956#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 957
9800339b 958extern struct address_space *page_mapping(struct page *page);
1da177e4 959
3ca7b3c5
HD
960/* Neutral page->mapping pointer to address_space or anon_vma or other */
961static inline void *page_rmapping(struct page *page)
962{
963 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
964}
965
f981c595
MG
966extern struct address_space *__page_file_mapping(struct page *);
967
968static inline
969struct address_space *page_file_mapping(struct page *page)
970{
971 if (unlikely(PageSwapCache(page)))
972 return __page_file_mapping(page);
973
974 return page->mapping;
975}
976
1da177e4
LT
977static inline int PageAnon(struct page *page)
978{
979 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
980}
981
982/*
983 * Return the pagecache index of the passed page. Regular pagecache pages
984 * use ->index whereas swapcache pages use ->private
985 */
986static inline pgoff_t page_index(struct page *page)
987{
988 if (unlikely(PageSwapCache(page)))
4c21e2f2 989 return page_private(page);
1da177e4
LT
990 return page->index;
991}
992
f981c595
MG
993extern pgoff_t __page_file_index(struct page *page);
994
995/*
996 * Return the file index of the page. Regular pagecache pages use ->index
997 * whereas swapcache pages use swp_offset(->private)
998 */
999static inline pgoff_t page_file_index(struct page *page)
1000{
1001 if (unlikely(PageSwapCache(page)))
1002 return __page_file_index(page);
1003
1004 return page->index;
1005}
1006
1da177e4
LT
1007/*
1008 * Return true if this page is mapped into pagetables.
1009 */
1010static inline int page_mapped(struct page *page)
1011{
1012 return atomic_read(&(page)->_mapcount) >= 0;
1013}
1014
1da177e4
LT
1015/*
1016 * Different kinds of faults, as returned by handle_mm_fault().
1017 * Used to decide whether a process gets delivered SIGBUS or
1018 * just gets major/minor fault counters bumped up.
1019 */
d0217ac0 1020
83c54070 1021#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1022
83c54070
NP
1023#define VM_FAULT_OOM 0x0001
1024#define VM_FAULT_SIGBUS 0x0002
1025#define VM_FAULT_MAJOR 0x0004
1026#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1027#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1028#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 1029
83c54070
NP
1030#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1031#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1032#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1033#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1034
aa50d3a7
AK
1035#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1036
1037#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 1038 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
1039
1040/* Encode hstate index for a hwpoisoned large page */
1041#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1042#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1043
1c0fe6e3
NP
1044/*
1045 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1046 */
1047extern void pagefault_out_of_memory(void);
1048
1da177e4
LT
1049#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1050
ddd588b5 1051/*
7bf02ea2 1052 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1053 * various contexts.
1054 */
4b59e6c4 1055#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1056
7bf02ea2
DR
1057extern void show_free_areas(unsigned int flags);
1058extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1059
1da177e4 1060int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1061#ifdef CONFIG_SHMEM
1062bool shmem_mapping(struct address_space *mapping);
1063#else
1064static inline bool shmem_mapping(struct address_space *mapping)
1065{
1066 return false;
1067}
1068#endif
1da177e4 1069
e8edc6e0 1070extern int can_do_mlock(void);
1da177e4
LT
1071extern int user_shm_lock(size_t, struct user_struct *);
1072extern void user_shm_unlock(size_t, struct user_struct *);
1073
1074/*
1075 * Parameter block passed down to zap_pte_range in exceptional cases.
1076 */
1077struct zap_details {
1078 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1079 struct address_space *check_mapping; /* Check page->mapping if set */
1080 pgoff_t first_index; /* Lowest page->index to unmap */
1081 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1082};
1083
7e675137
NP
1084struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1085 pte_t pte);
1086
c627f9cc
JS
1087int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1088 unsigned long size);
14f5ff5d 1089void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1090 unsigned long size, struct zap_details *);
4f74d2c8
LT
1091void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1092 unsigned long start, unsigned long end);
e6473092
MM
1093
1094/**
1095 * mm_walk - callbacks for walk_page_range
1096 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1097 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1098 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1099 * this handler is required to be able to handle
1100 * pmd_trans_huge() pmds. They may simply choose to
1101 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1102 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1103 * @pte_hole: if set, called for each hole at all levels
5dc37642 1104 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1105 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1106 * is used.
e6473092
MM
1107 *
1108 * (see walk_page_range for more details)
1109 */
1110struct mm_walk {
0f157a5b
AM
1111 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1112 unsigned long next, struct mm_walk *walk);
1113 int (*pud_entry)(pud_t *pud, unsigned long addr,
1114 unsigned long next, struct mm_walk *walk);
1115 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1116 unsigned long next, struct mm_walk *walk);
1117 int (*pte_entry)(pte_t *pte, unsigned long addr,
1118 unsigned long next, struct mm_walk *walk);
1119 int (*pte_hole)(unsigned long addr, unsigned long next,
1120 struct mm_walk *walk);
1121 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1122 unsigned long addr, unsigned long next,
1123 struct mm_walk *walk);
2165009b
DH
1124 struct mm_struct *mm;
1125 void *private;
e6473092
MM
1126};
1127
2165009b
DH
1128int walk_page_range(unsigned long addr, unsigned long end,
1129 struct mm_walk *walk);
42b77728 1130void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1131 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1132int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1133 struct vm_area_struct *vma);
1da177e4
LT
1134void unmap_mapping_range(struct address_space *mapping,
1135 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1136int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1137 unsigned long *pfn);
d87fe660 1138int follow_phys(struct vm_area_struct *vma, unsigned long address,
1139 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1140int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1141 void *buf, int len, int write);
1da177e4
LT
1142
1143static inline void unmap_shared_mapping_range(struct address_space *mapping,
1144 loff_t const holebegin, loff_t const holelen)
1145{
1146 unmap_mapping_range(mapping, holebegin, holelen, 0);
1147}
1148
7caef267 1149extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1150extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1151void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1152int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1153int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1154int invalidate_inode_page(struct page *page);
1155
7ee1dd3f 1156#ifdef CONFIG_MMU
83c54070 1157extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1158 unsigned long address, unsigned int flags);
5c723ba5
PZ
1159extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1160 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1161#else
1162static inline int handle_mm_fault(struct mm_struct *mm,
1163 struct vm_area_struct *vma, unsigned long address,
d06063cc 1164 unsigned int flags)
7ee1dd3f
DH
1165{
1166 /* should never happen if there's no MMU */
1167 BUG();
1168 return VM_FAULT_SIGBUS;
1169}
5c723ba5
PZ
1170static inline int fixup_user_fault(struct task_struct *tsk,
1171 struct mm_struct *mm, unsigned long address,
1172 unsigned int fault_flags)
1173{
1174 /* should never happen if there's no MMU */
1175 BUG();
1176 return -EFAULT;
1177}
7ee1dd3f 1178#endif
f33ea7f4 1179
1da177e4 1180extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1181extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1182 void *buf, int len, int write);
1da177e4 1183
28a35716
ML
1184long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 unsigned int foll_flags, struct page **pages,
1187 struct vm_area_struct **vmas, int *nonblocking);
1188long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long start, unsigned long nr_pages,
1190 int write, int force, struct page **pages,
1191 struct vm_area_struct **vmas);
d2bf6be8
NP
1192int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1193 struct page **pages);
18022c5d
MG
1194struct kvec;
1195int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1196 struct page **pages);
1197int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1198struct page *get_dump_page(unsigned long addr);
1da177e4 1199
cf9a2ae8 1200extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1201extern void do_invalidatepage(struct page *page, unsigned int offset,
1202 unsigned int length);
cf9a2ae8 1203
1da177e4 1204int __set_page_dirty_nobuffers(struct page *page);
76719325 1205int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1206int redirty_page_for_writepage(struct writeback_control *wbc,
1207 struct page *page);
e3a7cca1 1208void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1209void account_page_writeback(struct page *page);
b3c97528 1210int set_page_dirty(struct page *page);
1da177e4
LT
1211int set_page_dirty_lock(struct page *page);
1212int clear_page_dirty_for_io(struct page *page);
a9090253 1213int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1214
39aa3cb3 1215/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1216static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1217{
1218 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1219}
1220
a09a79f6
MP
1221static inline int stack_guard_page_start(struct vm_area_struct *vma,
1222 unsigned long addr)
1223{
1224 return (vma->vm_flags & VM_GROWSDOWN) &&
1225 (vma->vm_start == addr) &&
1226 !vma_growsdown(vma->vm_prev, addr);
1227}
1228
1229/* Is the vma a continuation of the stack vma below it? */
1230static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1231{
1232 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1233}
1234
1235static inline int stack_guard_page_end(struct vm_area_struct *vma,
1236 unsigned long addr)
1237{
1238 return (vma->vm_flags & VM_GROWSUP) &&
1239 (vma->vm_end == addr) &&
1240 !vma_growsup(vma->vm_next, addr);
1241}
1242
b7643757
SP
1243extern pid_t
1244vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1245
b6a2fea3
OW
1246extern unsigned long move_page_tables(struct vm_area_struct *vma,
1247 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1248 unsigned long new_addr, unsigned long len,
1249 bool need_rmap_locks);
7da4d641
PZ
1250extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1251 unsigned long end, pgprot_t newprot,
4b10e7d5 1252 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1253extern int mprotect_fixup(struct vm_area_struct *vma,
1254 struct vm_area_struct **pprev, unsigned long start,
1255 unsigned long end, unsigned long newflags);
1da177e4 1256
465a454f
PZ
1257/*
1258 * doesn't attempt to fault and will return short.
1259 */
1260int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1261 struct page **pages);
d559db08
KH
1262/*
1263 * per-process(per-mm_struct) statistics.
1264 */
d559db08
KH
1265static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1266{
69c97823
KK
1267 long val = atomic_long_read(&mm->rss_stat.count[member]);
1268
1269#ifdef SPLIT_RSS_COUNTING
1270 /*
1271 * counter is updated in asynchronous manner and may go to minus.
1272 * But it's never be expected number for users.
1273 */
1274 if (val < 0)
1275 val = 0;
172703b0 1276#endif
69c97823
KK
1277 return (unsigned long)val;
1278}
d559db08
KH
1279
1280static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1281{
172703b0 1282 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1283}
1284
1285static inline void inc_mm_counter(struct mm_struct *mm, int member)
1286{
172703b0 1287 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1288}
1289
1290static inline void dec_mm_counter(struct mm_struct *mm, int member)
1291{
172703b0 1292 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1293}
1294
d559db08
KH
1295static inline unsigned long get_mm_rss(struct mm_struct *mm)
1296{
1297 return get_mm_counter(mm, MM_FILEPAGES) +
1298 get_mm_counter(mm, MM_ANONPAGES);
1299}
1300
1301static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1302{
1303 return max(mm->hiwater_rss, get_mm_rss(mm));
1304}
1305
1306static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1307{
1308 return max(mm->hiwater_vm, mm->total_vm);
1309}
1310
1311static inline void update_hiwater_rss(struct mm_struct *mm)
1312{
1313 unsigned long _rss = get_mm_rss(mm);
1314
1315 if ((mm)->hiwater_rss < _rss)
1316 (mm)->hiwater_rss = _rss;
1317}
1318
1319static inline void update_hiwater_vm(struct mm_struct *mm)
1320{
1321 if (mm->hiwater_vm < mm->total_vm)
1322 mm->hiwater_vm = mm->total_vm;
1323}
1324
1325static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1326 struct mm_struct *mm)
1327{
1328 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1329
1330 if (*maxrss < hiwater_rss)
1331 *maxrss = hiwater_rss;
1332}
1333
53bddb4e 1334#if defined(SPLIT_RSS_COUNTING)
05af2e10 1335void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1336#else
05af2e10 1337static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1338{
1339}
1340#endif
465a454f 1341
4e950f6f 1342int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1343
25ca1d6c
NK
1344extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1345 spinlock_t **ptl);
1346static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1347 spinlock_t **ptl)
1348{
1349 pte_t *ptep;
1350 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1351 return ptep;
1352}
c9cfcddf 1353
5f22df00
NP
1354#ifdef __PAGETABLE_PUD_FOLDED
1355static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1356 unsigned long address)
1357{
1358 return 0;
1359}
1360#else
1bb3630e 1361int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1362#endif
1363
1364#ifdef __PAGETABLE_PMD_FOLDED
1365static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1366 unsigned long address)
1367{
1368 return 0;
1369}
1370#else
1bb3630e 1371int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1372#endif
1373
8ac1f832
AA
1374int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1375 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1376int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1377
1da177e4
LT
1378/*
1379 * The following ifdef needed to get the 4level-fixup.h header to work.
1380 * Remove it when 4level-fixup.h has been removed.
1381 */
1bb3630e 1382#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1383static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1384{
1bb3630e
HD
1385 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1386 NULL: pud_offset(pgd, address);
1da177e4
LT
1387}
1388
1389static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1390{
1bb3630e
HD
1391 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1392 NULL: pmd_offset(pud, address);
1da177e4 1393}
1bb3630e
HD
1394#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1395
57c1ffce 1396#if USE_SPLIT_PTE_PTLOCKS
597d795a 1397#if ALLOC_SPLIT_PTLOCKS
b35f1819 1398void __init ptlock_cache_init(void);
539edb58
PZ
1399extern bool ptlock_alloc(struct page *page);
1400extern void ptlock_free(struct page *page);
1401
1402static inline spinlock_t *ptlock_ptr(struct page *page)
1403{
1404 return page->ptl;
1405}
597d795a 1406#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1407static inline void ptlock_cache_init(void)
1408{
1409}
1410
49076ec2
KS
1411static inline bool ptlock_alloc(struct page *page)
1412{
49076ec2
KS
1413 return true;
1414}
539edb58 1415
49076ec2
KS
1416static inline void ptlock_free(struct page *page)
1417{
49076ec2
KS
1418}
1419
1420static inline spinlock_t *ptlock_ptr(struct page *page)
1421{
539edb58 1422 return &page->ptl;
49076ec2 1423}
597d795a 1424#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1425
1426static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1427{
1428 return ptlock_ptr(pmd_page(*pmd));
1429}
1430
1431static inline bool ptlock_init(struct page *page)
1432{
1433 /*
1434 * prep_new_page() initialize page->private (and therefore page->ptl)
1435 * with 0. Make sure nobody took it in use in between.
1436 *
1437 * It can happen if arch try to use slab for page table allocation:
1438 * slab code uses page->slab_cache and page->first_page (for tail
1439 * pages), which share storage with page->ptl.
1440 */
309381fe 1441 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1442 if (!ptlock_alloc(page))
1443 return false;
1444 spin_lock_init(ptlock_ptr(page));
1445 return true;
1446}
1447
1448/* Reset page->mapping so free_pages_check won't complain. */
1449static inline void pte_lock_deinit(struct page *page)
1450{
1451 page->mapping = NULL;
1452 ptlock_free(page);
1453}
1454
57c1ffce 1455#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1456/*
1457 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1458 */
49076ec2
KS
1459static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1460{
1461 return &mm->page_table_lock;
1462}
b35f1819 1463static inline void ptlock_cache_init(void) {}
49076ec2
KS
1464static inline bool ptlock_init(struct page *page) { return true; }
1465static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1466#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1467
b35f1819
KS
1468static inline void pgtable_init(void)
1469{
1470 ptlock_cache_init();
1471 pgtable_cache_init();
1472}
1473
390f44e2 1474static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1475{
2f569afd 1476 inc_zone_page_state(page, NR_PAGETABLE);
49076ec2 1477 return ptlock_init(page);
2f569afd
MS
1478}
1479
1480static inline void pgtable_page_dtor(struct page *page)
1481{
1482 pte_lock_deinit(page);
1483 dec_zone_page_state(page, NR_PAGETABLE);
1484}
1485
c74df32c
HD
1486#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1487({ \
4c21e2f2 1488 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1489 pte_t *__pte = pte_offset_map(pmd, address); \
1490 *(ptlp) = __ptl; \
1491 spin_lock(__ptl); \
1492 __pte; \
1493})
1494
1495#define pte_unmap_unlock(pte, ptl) do { \
1496 spin_unlock(ptl); \
1497 pte_unmap(pte); \
1498} while (0)
1499
8ac1f832
AA
1500#define pte_alloc_map(mm, vma, pmd, address) \
1501 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1502 pmd, address))? \
1503 NULL: pte_offset_map(pmd, address))
1bb3630e 1504
c74df32c 1505#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1506 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1507 pmd, address))? \
c74df32c
HD
1508 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1509
1bb3630e 1510#define pte_alloc_kernel(pmd, address) \
8ac1f832 1511 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1512 NULL: pte_offset_kernel(pmd, address))
1da177e4 1513
e009bb30
KS
1514#if USE_SPLIT_PMD_PTLOCKS
1515
634391ac
MS
1516static struct page *pmd_to_page(pmd_t *pmd)
1517{
1518 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1519 return virt_to_page((void *)((unsigned long) pmd & mask));
1520}
1521
e009bb30
KS
1522static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1523{
634391ac 1524 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1525}
1526
1527static inline bool pgtable_pmd_page_ctor(struct page *page)
1528{
e009bb30
KS
1529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1530 page->pmd_huge_pte = NULL;
1531#endif
49076ec2 1532 return ptlock_init(page);
e009bb30
KS
1533}
1534
1535static inline void pgtable_pmd_page_dtor(struct page *page)
1536{
1537#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1538 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1539#endif
49076ec2 1540 ptlock_free(page);
e009bb30
KS
1541}
1542
634391ac 1543#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1544
1545#else
1546
9a86cb7b
KS
1547static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1548{
1549 return &mm->page_table_lock;
1550}
1551
e009bb30
KS
1552static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1553static inline void pgtable_pmd_page_dtor(struct page *page) {}
1554
c389a250 1555#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1556
e009bb30
KS
1557#endif
1558
9a86cb7b
KS
1559static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1560{
1561 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1562 spin_lock(ptl);
1563 return ptl;
1564}
1565
1da177e4 1566extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1567extern void free_area_init_node(int nid, unsigned long * zones_size,
1568 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1569extern void free_initmem(void);
1570
69afade7
JL
1571/*
1572 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1573 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1574 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1575 * Return pages freed into the buddy system.
1576 */
11199692 1577extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1578 int poison, char *s);
c3d5f5f0 1579
cfa11e08
JL
1580#ifdef CONFIG_HIGHMEM
1581/*
1582 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1583 * and totalram_pages.
1584 */
1585extern void free_highmem_page(struct page *page);
1586#endif
69afade7 1587
c3d5f5f0 1588extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1589extern void mem_init_print_info(const char *str);
69afade7
JL
1590
1591/* Free the reserved page into the buddy system, so it gets managed. */
1592static inline void __free_reserved_page(struct page *page)
1593{
1594 ClearPageReserved(page);
1595 init_page_count(page);
1596 __free_page(page);
1597}
1598
1599static inline void free_reserved_page(struct page *page)
1600{
1601 __free_reserved_page(page);
1602 adjust_managed_page_count(page, 1);
1603}
1604
1605static inline void mark_page_reserved(struct page *page)
1606{
1607 SetPageReserved(page);
1608 adjust_managed_page_count(page, -1);
1609}
1610
1611/*
1612 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1613 * The freed pages will be poisoned with pattern "poison" if it's within
1614 * range [0, UCHAR_MAX].
1615 * Return pages freed into the buddy system.
69afade7
JL
1616 */
1617static inline unsigned long free_initmem_default(int poison)
1618{
1619 extern char __init_begin[], __init_end[];
1620
11199692 1621 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1622 poison, "unused kernel");
1623}
1624
7ee3d4e8
JL
1625static inline unsigned long get_num_physpages(void)
1626{
1627 int nid;
1628 unsigned long phys_pages = 0;
1629
1630 for_each_online_node(nid)
1631 phys_pages += node_present_pages(nid);
1632
1633 return phys_pages;
1634}
1635
0ee332c1 1636#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1637/*
0ee332c1 1638 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1639 * zones, allocate the backing mem_map and account for memory holes in a more
1640 * architecture independent manner. This is a substitute for creating the
1641 * zone_sizes[] and zholes_size[] arrays and passing them to
1642 * free_area_init_node()
1643 *
1644 * An architecture is expected to register range of page frames backed by
0ee332c1 1645 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1646 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1647 * usage, an architecture is expected to do something like
1648 *
1649 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1650 * max_highmem_pfn};
1651 * for_each_valid_physical_page_range()
0ee332c1 1652 * memblock_add_node(base, size, nid)
c713216d
MG
1653 * free_area_init_nodes(max_zone_pfns);
1654 *
0ee332c1
TH
1655 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1656 * registered physical page range. Similarly
1657 * sparse_memory_present_with_active_regions() calls memory_present() for
1658 * each range when SPARSEMEM is enabled.
c713216d
MG
1659 *
1660 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1661 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1662 */
1663extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1664unsigned long node_map_pfn_alignment(void);
32996250
YL
1665unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1666 unsigned long end_pfn);
c713216d
MG
1667extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1668 unsigned long end_pfn);
1669extern void get_pfn_range_for_nid(unsigned int nid,
1670 unsigned long *start_pfn, unsigned long *end_pfn);
1671extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1672extern void free_bootmem_with_active_regions(int nid,
1673 unsigned long max_low_pfn);
1674extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1675
0ee332c1 1676#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1677
0ee332c1 1678#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1679 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1680static inline int __early_pfn_to_nid(unsigned long pfn)
1681{
1682 return 0;
1683}
1684#else
1685/* please see mm/page_alloc.c */
1686extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1687/* there is a per-arch backend function. */
1688extern int __meminit __early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
1689#endif
1690
0e0b864e 1691extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1692extern void memmap_init_zone(unsigned long, int, unsigned long,
1693 unsigned long, enum memmap_context);
bc75d33f 1694extern void setup_per_zone_wmarks(void);
1b79acc9 1695extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1696extern void mem_init(void);
8feae131 1697extern void __init mmap_init(void);
b2b755b5 1698extern void show_mem(unsigned int flags);
1da177e4
LT
1699extern void si_meminfo(struct sysinfo * val);
1700extern void si_meminfo_node(struct sysinfo *val, int nid);
1701
3ee9a4f0
JP
1702extern __printf(3, 4)
1703void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1704
e7c8d5c9 1705extern void setup_per_cpu_pageset(void);
e7c8d5c9 1706
112067f0 1707extern void zone_pcp_update(struct zone *zone);
340175b7 1708extern void zone_pcp_reset(struct zone *zone);
112067f0 1709
75f7ad8e
PS
1710/* page_alloc.c */
1711extern int min_free_kbytes;
1712
8feae131 1713/* nommu.c */
33e5d769 1714extern atomic_long_t mmap_pages_allocated;
7e660872 1715extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1716
6b2dbba8 1717/* interval_tree.c */
6b2dbba8
ML
1718void vma_interval_tree_insert(struct vm_area_struct *node,
1719 struct rb_root *root);
9826a516
ML
1720void vma_interval_tree_insert_after(struct vm_area_struct *node,
1721 struct vm_area_struct *prev,
1722 struct rb_root *root);
6b2dbba8
ML
1723void vma_interval_tree_remove(struct vm_area_struct *node,
1724 struct rb_root *root);
1725struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1726 unsigned long start, unsigned long last);
1727struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1728 unsigned long start, unsigned long last);
1729
1730#define vma_interval_tree_foreach(vma, root, start, last) \
1731 for (vma = vma_interval_tree_iter_first(root, start, last); \
1732 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1733
1734static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1735 struct list_head *list)
1736{
6b2dbba8 1737 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1738}
1739
bf181b9f
ML
1740void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1741 struct rb_root *root);
1742void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1743 struct rb_root *root);
1744struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1745 struct rb_root *root, unsigned long start, unsigned long last);
1746struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1747 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1748#ifdef CONFIG_DEBUG_VM_RB
1749void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1750#endif
bf181b9f
ML
1751
1752#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1753 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1754 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1755
1da177e4 1756/* mmap.c */
34b4e4aa 1757extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1758extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1759 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1760extern struct vm_area_struct *vma_merge(struct mm_struct *,
1761 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1762 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1763 struct mempolicy *);
1764extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1765extern int split_vma(struct mm_struct *,
1766 struct vm_area_struct *, unsigned long addr, int new_below);
1767extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1768extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1769 struct rb_node **, struct rb_node *);
a8fb5618 1770extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1771extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1772 unsigned long addr, unsigned long len, pgoff_t pgoff,
1773 bool *need_rmap_locks);
1da177e4 1774extern void exit_mmap(struct mm_struct *);
925d1c40 1775
7906d00c
AA
1776extern int mm_take_all_locks(struct mm_struct *mm);
1777extern void mm_drop_all_locks(struct mm_struct *mm);
1778
38646013
JS
1779extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1780extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1781
119f657c 1782extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1783extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1784 unsigned long addr, unsigned long len,
1785 unsigned long flags, struct page **pages);
fa5dc22f
RM
1786extern int install_special_mapping(struct mm_struct *mm,
1787 unsigned long addr, unsigned long len,
1788 unsigned long flags, struct page **pages);
1da177e4
LT
1789
1790extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1791
0165ab44 1792extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1793 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1794extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1795 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1796 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1797extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1798
bebeb3d6
ML
1799#ifdef CONFIG_MMU
1800extern int __mm_populate(unsigned long addr, unsigned long len,
1801 int ignore_errors);
1802static inline void mm_populate(unsigned long addr, unsigned long len)
1803{
1804 /* Ignore errors */
1805 (void) __mm_populate(addr, len, 1);
1806}
1807#else
1808static inline void mm_populate(unsigned long addr, unsigned long len) {}
1809#endif
1810
e4eb1ff6
LT
1811/* These take the mm semaphore themselves */
1812extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1813extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1814extern unsigned long vm_mmap(struct file *, unsigned long,
1815 unsigned long, unsigned long,
1816 unsigned long, unsigned long);
1da177e4 1817
db4fbfb9
ML
1818struct vm_unmapped_area_info {
1819#define VM_UNMAPPED_AREA_TOPDOWN 1
1820 unsigned long flags;
1821 unsigned long length;
1822 unsigned long low_limit;
1823 unsigned long high_limit;
1824 unsigned long align_mask;
1825 unsigned long align_offset;
1826};
1827
1828extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1829extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1830
1831/*
1832 * Search for an unmapped address range.
1833 *
1834 * We are looking for a range that:
1835 * - does not intersect with any VMA;
1836 * - is contained within the [low_limit, high_limit) interval;
1837 * - is at least the desired size.
1838 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1839 */
1840static inline unsigned long
1841vm_unmapped_area(struct vm_unmapped_area_info *info)
1842{
1843 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1844 return unmapped_area(info);
1845 else
1846 return unmapped_area_topdown(info);
1847}
1848
85821aab 1849/* truncate.c */
1da177e4 1850extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1851extern void truncate_inode_pages_range(struct address_space *,
1852 loff_t lstart, loff_t lend);
91b0abe3 1853extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1854
1855/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1856extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1857extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1858extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1859
1860/* mm/page-writeback.c */
1861int write_one_page(struct page *page, int wait);
1cf6e7d8 1862void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1863
1864/* readahead.c */
1865#define VM_MAX_READAHEAD 128 /* kbytes */
1866#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1867
1da177e4 1868int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1869 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1870
1871void page_cache_sync_readahead(struct address_space *mapping,
1872 struct file_ra_state *ra,
1873 struct file *filp,
1874 pgoff_t offset,
1875 unsigned long size);
1876
1877void page_cache_async_readahead(struct address_space *mapping,
1878 struct file_ra_state *ra,
1879 struct file *filp,
1880 struct page *pg,
1881 pgoff_t offset,
1882 unsigned long size);
1883
1da177e4
LT
1884unsigned long max_sane_readahead(unsigned long nr);
1885
d05f3169 1886/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1887extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1888
1889/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1890extern int expand_downwards(struct vm_area_struct *vma,
1891 unsigned long address);
8ca3eb08 1892#if VM_GROWSUP
46dea3d0 1893extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1894#else
1895 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1896#endif
1da177e4
LT
1897
1898/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1899extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1900extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1901 struct vm_area_struct **pprev);
1902
1903/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1904 NULL if none. Assume start_addr < end_addr. */
1905static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1906{
1907 struct vm_area_struct * vma = find_vma(mm,start_addr);
1908
1909 if (vma && end_addr <= vma->vm_start)
1910 vma = NULL;
1911 return vma;
1912}
1913
1914static inline unsigned long vma_pages(struct vm_area_struct *vma)
1915{
1916 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1917}
1918
640708a2
PE
1919/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1920static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1921 unsigned long vm_start, unsigned long vm_end)
1922{
1923 struct vm_area_struct *vma = find_vma(mm, vm_start);
1924
1925 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1926 vma = NULL;
1927
1928 return vma;
1929}
1930
bad849b3 1931#ifdef CONFIG_MMU
804af2cf 1932pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1933#else
1934static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1935{
1936 return __pgprot(0);
1937}
1938#endif
1939
5877231f 1940#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 1941unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1942 unsigned long start, unsigned long end);
1943#endif
1944
deceb6cd 1945struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1946int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1947 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1948int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1949int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1950 unsigned long pfn);
423bad60
NP
1951int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1952 unsigned long pfn);
b4cbb197
LT
1953int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1954
deceb6cd 1955
240aadee
ML
1956struct page *follow_page_mask(struct vm_area_struct *vma,
1957 unsigned long address, unsigned int foll_flags,
1958 unsigned int *page_mask);
1959
1960static inline struct page *follow_page(struct vm_area_struct *vma,
1961 unsigned long address, unsigned int foll_flags)
1962{
1963 unsigned int unused_page_mask;
1964 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1965}
1966
deceb6cd
HD
1967#define FOLL_WRITE 0x01 /* check pte is writable */
1968#define FOLL_TOUCH 0x02 /* mark page accessed */
1969#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1970#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1971#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1972#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1973 * and return without waiting upon it */
110d74a9 1974#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1975#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1976#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1977#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1978#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1979
2f569afd 1980typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1981 void *data);
1982extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1983 unsigned long size, pte_fn_t fn, void *data);
1984
1da177e4 1985#ifdef CONFIG_PROC_FS
ab50b8ed 1986void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1987#else
ab50b8ed 1988static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1989 unsigned long flags, struct file *file, long pages)
1990{
44de9d0c 1991 mm->total_vm += pages;
1da177e4
LT
1992}
1993#endif /* CONFIG_PROC_FS */
1994
12d6f21e 1995#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1996extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1997#ifdef CONFIG_HIBERNATION
1998extern bool kernel_page_present(struct page *page);
1999#endif /* CONFIG_HIBERNATION */
12d6f21e 2000#else
1da177e4 2001static inline void
9858db50 2002kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2003#ifdef CONFIG_HIBERNATION
2004static inline bool kernel_page_present(struct page *page) { return true; }
2005#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2006#endif
2007
31db58b3 2008extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 2009#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 2010int in_gate_area_no_mm(unsigned long addr);
83b964bb 2011int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2012#else
cae5d390
SW
2013int in_gate_area_no_mm(unsigned long addr);
2014#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
2015#endif /* __HAVE_ARCH_GATE_AREA */
2016
146732ce
JT
2017#ifdef CONFIG_SYSCTL
2018extern int sysctl_drop_caches;
8d65af78 2019int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2020 void __user *, size_t *, loff_t *);
146732ce
JT
2021#endif
2022
a09ed5e0 2023unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
2024 unsigned long nr_pages_scanned,
2025 unsigned long lru_pages);
9d0243bc 2026
7a9166e3
LY
2027#ifndef CONFIG_MMU
2028#define randomize_va_space 0
2029#else
a62eaf15 2030extern int randomize_va_space;
7a9166e3 2031#endif
a62eaf15 2032
045e72ac 2033const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2034void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2035
9bdac914
YL
2036void sparse_mem_maps_populate_node(struct page **map_map,
2037 unsigned long pnum_begin,
2038 unsigned long pnum_end,
2039 unsigned long map_count,
2040 int nodeid);
2041
98f3cfc1 2042struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2043pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2044pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2045pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2046pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2047void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2048void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2049void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2050int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2051 int node);
2052int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2053void vmemmap_populate_print_last(void);
0197518c 2054#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2055void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2056#endif
46723bfa
YI
2057void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2058 unsigned long size);
6a46079c 2059
82ba011b
AK
2060enum mf_flags {
2061 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2062 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2063 MF_MUST_KILL = 1 << 2,
cf870c70 2064 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2065};
cd42f4a3 2066extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2067extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2068extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
2069extern int sysctl_memory_failure_early_kill;
2070extern int sysctl_memory_failure_recovery;
facb6011 2071extern void shake_page(struct page *p, int access);
293c07e3 2072extern atomic_long_t num_poisoned_pages;
facb6011 2073extern int soft_offline_page(struct page *page, int flags);
6a46079c 2074
47ad8475
AA
2075#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2076extern void clear_huge_page(struct page *page,
2077 unsigned long addr,
2078 unsigned int pages_per_huge_page);
2079extern void copy_user_huge_page(struct page *dst, struct page *src,
2080 unsigned long addr, struct vm_area_struct *vma,
2081 unsigned int pages_per_huge_page);
2082#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2083
c0a32fc5
SG
2084#ifdef CONFIG_DEBUG_PAGEALLOC
2085extern unsigned int _debug_guardpage_minorder;
2086
2087static inline unsigned int debug_guardpage_minorder(void)
2088{
2089 return _debug_guardpage_minorder;
2090}
2091
2092static inline bool page_is_guard(struct page *page)
2093{
2094 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2095}
2096#else
2097static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2098static inline bool page_is_guard(struct page *page) { return false; }
2099#endif /* CONFIG_DEBUG_PAGEALLOC */
2100
f9872caf
CS
2101#if MAX_NUMNODES > 1
2102void __init setup_nr_node_ids(void);
2103#else
2104static inline void setup_nr_node_ids(void) {}
2105#endif
2106
1da177e4
LT
2107#endif /* __KERNEL__ */
2108#endif /* _LINUX_MM_H */
This page took 1.382787 seconds and 5 git commands to generate.