mm: pack compound_dtor and compound_order into one word in struct page
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
54#include <asm/page.h>
55#include <asm/pgtable.h>
56#include <asm/processor.h>
1da177e4 57
79442ed1
TC
58#ifndef __pa_symbol
59#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
60#endif
61
593befa6
DD
62/*
63 * To prevent common memory management code establishing
64 * a zero page mapping on a read fault.
65 * This macro should be defined within <asm/pgtable.h>.
66 * s390 does this to prevent multiplexing of hardware bits
67 * related to the physical page in case of virtualization.
68 */
69#ifndef mm_forbids_zeropage
70#define mm_forbids_zeropage(X) (0)
71#endif
72
c9b1d098 73extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 74extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 75
49f0ce5f
JM
76extern int sysctl_overcommit_memory;
77extern int sysctl_overcommit_ratio;
78extern unsigned long sysctl_overcommit_kbytes;
79
80extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
83 size_t *, loff_t *);
84
1da177e4
LT
85#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
86
27ac792c
AR
87/* to align the pointer to the (next) page boundary */
88#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
89
0fa73b86
AM
90/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
91#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
92
1da177e4
LT
93/*
94 * Linux kernel virtual memory manager primitives.
95 * The idea being to have a "virtual" mm in the same way
96 * we have a virtual fs - giving a cleaner interface to the
97 * mm details, and allowing different kinds of memory mappings
98 * (from shared memory to executable loading to arbitrary
99 * mmap() functions).
100 */
101
c43692e8
CL
102extern struct kmem_cache *vm_area_cachep;
103
1da177e4 104#ifndef CONFIG_MMU
8feae131
DH
105extern struct rb_root nommu_region_tree;
106extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
107
108extern unsigned int kobjsize(const void *objp);
109#endif
110
111/*
605d9288 112 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 113 */
cc2383ec
KK
114#define VM_NONE 0x00000000
115
1da177e4
LT
116#define VM_READ 0x00000001 /* currently active flags */
117#define VM_WRITE 0x00000002
118#define VM_EXEC 0x00000004
119#define VM_SHARED 0x00000008
120
7e2cff42 121/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
122#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
123#define VM_MAYWRITE 0x00000020
124#define VM_MAYEXEC 0x00000040
125#define VM_MAYSHARE 0x00000080
126
127#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 128#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 129#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 130#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 131#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 132
1da177e4
LT
133#define VM_LOCKED 0x00002000
134#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
135
136 /* Used by sys_madvise() */
137#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
138#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
139
140#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
141#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 142#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 143#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 144#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 145#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 146#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 147#define VM_ARCH_2 0x02000000
0103bd16 148#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 149
d9104d1c
CG
150#ifdef CONFIG_MEM_SOFT_DIRTY
151# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
152#else
153# define VM_SOFTDIRTY 0
154#endif
155
b379d790 156#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
157#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
158#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 159#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 160
cc2383ec
KK
161#if defined(CONFIG_X86)
162# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
163#elif defined(CONFIG_PPC)
164# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
165#elif defined(CONFIG_PARISC)
166# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
167#elif defined(CONFIG_METAG)
168# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
169#elif defined(CONFIG_IA64)
170# define VM_GROWSUP VM_ARCH_1
171#elif !defined(CONFIG_MMU)
172# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
173#endif
174
4aae7e43
QR
175#if defined(CONFIG_X86)
176/* MPX specific bounds table or bounds directory */
177# define VM_MPX VM_ARCH_2
178#endif
179
cc2383ec
KK
180#ifndef VM_GROWSUP
181# define VM_GROWSUP VM_NONE
182#endif
183
a8bef8ff
MG
184/* Bits set in the VMA until the stack is in its final location */
185#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
186
1da177e4
LT
187#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
188#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
189#endif
190
191#ifdef CONFIG_STACK_GROWSUP
192#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193#else
194#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
195#endif
196
b291f000 197/*
78f11a25
AA
198 * Special vmas that are non-mergable, non-mlock()able.
199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 200 */
9050d7eb 201#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 202
a0715cc2
AT
203/* This mask defines which mm->def_flags a process can inherit its parent */
204#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
205
de60f5f1
EM
206/* This mask is used to clear all the VMA flags used by mlock */
207#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
208
1da177e4
LT
209/*
210 * mapping from the currently active vm_flags protection bits (the
211 * low four bits) to a page protection mask..
212 */
213extern pgprot_t protection_map[16];
214
d0217ac0 215#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
216#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
217#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
218#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
219#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
220#define FAULT_FLAG_TRIED 0x20 /* Second try */
221#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 222
54cb8821 223/*
d0217ac0 224 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
225 * ->fault function. The vma's ->fault is responsible for returning a bitmask
226 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 227 *
9b4bdd2f 228 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 229 */
d0217ac0
NP
230struct vm_fault {
231 unsigned int flags; /* FAULT_FLAG_xxx flags */
232 pgoff_t pgoff; /* Logical page offset based on vma */
233 void __user *virtual_address; /* Faulting virtual address */
234
2e4cdab0 235 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 236 struct page *page; /* ->fault handlers should return a
83c54070 237 * page here, unless VM_FAULT_NOPAGE
d0217ac0 238 * is set (which is also implied by
83c54070 239 * VM_FAULT_ERROR).
d0217ac0 240 */
8c6e50b0
KS
241 /* for ->map_pages() only */
242 pgoff_t max_pgoff; /* map pages for offset from pgoff till
243 * max_pgoff inclusive */
244 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 245};
1da177e4
LT
246
247/*
248 * These are the virtual MM functions - opening of an area, closing and
249 * unmapping it (needed to keep files on disk up-to-date etc), pointer
250 * to the functions called when a no-page or a wp-page exception occurs.
251 */
252struct vm_operations_struct {
253 void (*open)(struct vm_area_struct * area);
254 void (*close)(struct vm_area_struct * area);
5477e70a 255 int (*mremap)(struct vm_area_struct * area);
d0217ac0 256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
258 pmd_t *, unsigned int flags);
8c6e50b0 259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
260
261 /* notification that a previously read-only page is about to become
262 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 264
dd906184
BH
265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
267
28b2ee20
RR
268 /* called by access_process_vm when get_user_pages() fails, typically
269 * for use by special VMAs that can switch between memory and hardware
270 */
271 int (*access)(struct vm_area_struct *vma, unsigned long addr,
272 void *buf, int len, int write);
78d683e8
AL
273
274 /* Called by the /proc/PID/maps code to ask the vma whether it
275 * has a special name. Returning non-NULL will also cause this
276 * vma to be dumped unconditionally. */
277 const char *(*name)(struct vm_area_struct *vma);
278
1da177e4 279#ifdef CONFIG_NUMA
a6020ed7
LS
280 /*
281 * set_policy() op must add a reference to any non-NULL @new mempolicy
282 * to hold the policy upon return. Caller should pass NULL @new to
283 * remove a policy and fall back to surrounding context--i.e. do not
284 * install a MPOL_DEFAULT policy, nor the task or system default
285 * mempolicy.
286 */
1da177e4 287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
288
289 /*
290 * get_policy() op must add reference [mpol_get()] to any policy at
291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
292 * in mm/mempolicy.c will do this automatically.
293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
296 * must return NULL--i.e., do not "fallback" to task or system default
297 * policy.
298 */
1da177e4
LT
299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
300 unsigned long addr);
301#endif
667a0a06
DV
302 /*
303 * Called by vm_normal_page() for special PTEs to find the
304 * page for @addr. This is useful if the default behavior
305 * (using pte_page()) would not find the correct page.
306 */
307 struct page *(*find_special_page)(struct vm_area_struct *vma,
308 unsigned long addr);
1da177e4
LT
309};
310
311struct mmu_gather;
312struct inode;
313
349aef0b
AM
314#define page_private(page) ((page)->private)
315#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 316
1da177e4
LT
317/*
318 * FIXME: take this include out, include page-flags.h in
319 * files which need it (119 of them)
320 */
321#include <linux/page-flags.h>
71e3aac0 322#include <linux/huge_mm.h>
1da177e4
LT
323
324/*
325 * Methods to modify the page usage count.
326 *
327 * What counts for a page usage:
328 * - cache mapping (page->mapping)
329 * - private data (page->private)
330 * - page mapped in a task's page tables, each mapping
331 * is counted separately
332 *
333 * Also, many kernel routines increase the page count before a critical
334 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
335 */
336
337/*
da6052f7 338 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 339 */
7c8ee9a8
NP
340static inline int put_page_testzero(struct page *page)
341{
309381fe 342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 343 return atomic_dec_and_test(&page->_count);
7c8ee9a8 344}
1da177e4
LT
345
346/*
7c8ee9a8
NP
347 * Try to grab a ref unless the page has a refcount of zero, return false if
348 * that is the case.
8e0861fa
AK
349 * This can be called when MMU is off so it must not access
350 * any of the virtual mappings.
1da177e4 351 */
7c8ee9a8
NP
352static inline int get_page_unless_zero(struct page *page)
353{
8dc04efb 354 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 355}
1da177e4 356
53df8fdc 357extern int page_is_ram(unsigned long pfn);
124fe20d
DW
358
359enum {
360 REGION_INTERSECTS,
361 REGION_DISJOINT,
362 REGION_MIXED,
363};
364
365int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 366
48667e7a 367/* Support for virtually mapped pages */
b3bdda02
CL
368struct page *vmalloc_to_page(const void *addr);
369unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 370
0738c4bb
PM
371/*
372 * Determine if an address is within the vmalloc range
373 *
374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
375 * is no special casing required.
376 */
9e2779fa
CL
377static inline int is_vmalloc_addr(const void *x)
378{
0738c4bb 379#ifdef CONFIG_MMU
9e2779fa
CL
380 unsigned long addr = (unsigned long)x;
381
382 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
383#else
384 return 0;
8ca3ed87 385#endif
0738c4bb 386}
81ac3ad9
KH
387#ifdef CONFIG_MMU
388extern int is_vmalloc_or_module_addr(const void *x);
389#else
934831d0 390static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
391{
392 return 0;
393}
394#endif
9e2779fa 395
39f1f78d
AV
396extern void kvfree(const void *addr);
397
e9da73d6
AA
398static inline void compound_lock(struct page *page)
399{
400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 401 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
402 bit_spin_lock(PG_compound_lock, &page->flags);
403#endif
404}
405
406static inline void compound_unlock(struct page *page)
407{
408#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 409 VM_BUG_ON_PAGE(PageSlab(page), page);
e9da73d6
AA
410 bit_spin_unlock(PG_compound_lock, &page->flags);
411#endif
412}
413
414static inline unsigned long compound_lock_irqsave(struct page *page)
415{
416 unsigned long uninitialized_var(flags);
417#ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 local_irq_save(flags);
419 compound_lock(page);
420#endif
421 return flags;
422}
423
424static inline void compound_unlock_irqrestore(struct page *page,
425 unsigned long flags)
426{
427#ifdef CONFIG_TRANSPARENT_HUGEPAGE
428 compound_unlock(page);
429 local_irq_restore(flags);
430#endif
431}
432
d2ee40ea
JZ
433static inline struct page *compound_head_by_tail(struct page *tail)
434{
435 struct page *head = tail->first_page;
436
437 /*
438 * page->first_page may be a dangling pointer to an old
439 * compound page, so recheck that it is still a tail
440 * page before returning.
441 */
442 smp_rmb();
443 if (likely(PageTail(tail)))
444 return head;
445 return tail;
446}
447
ccaafd7f
JK
448/*
449 * Since either compound page could be dismantled asynchronously in THP
450 * or we access asynchronously arbitrary positioned struct page, there
451 * would be tail flag race. To handle this race, we should call
452 * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
453 */
d85f3385
CL
454static inline struct page *compound_head(struct page *page)
455{
d2ee40ea
JZ
456 if (unlikely(PageTail(page)))
457 return compound_head_by_tail(page);
d85f3385
CL
458 return page;
459}
460
ccaafd7f
JK
461/*
462 * If we access compound page synchronously such as access to
463 * allocated page, there is no need to handle tail flag race, so we can
464 * check tail flag directly without any synchronization primitive.
465 */
466static inline struct page *compound_head_fast(struct page *page)
467{
468 if (unlikely(PageTail(page)))
469 return page->first_page;
470 return page;
471}
472
70b50f94
AA
473/*
474 * The atomic page->_mapcount, starts from -1: so that transitions
475 * both from it and to it can be tracked, using atomic_inc_and_test
476 * and atomic_add_negative(-1).
477 */
22b751c3 478static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
479{
480 atomic_set(&(page)->_mapcount, -1);
481}
482
483static inline int page_mapcount(struct page *page)
484{
1d148e21
WY
485 VM_BUG_ON_PAGE(PageSlab(page), page);
486 return atomic_read(&page->_mapcount) + 1;
70b50f94
AA
487}
488
4c21e2f2 489static inline int page_count(struct page *page)
1da177e4 490{
d85f3385 491 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
492}
493
44518d2b
AA
494static inline bool __compound_tail_refcounted(struct page *page)
495{
c761471b 496 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
44518d2b
AA
497}
498
499/*
500 * This takes a head page as parameter and tells if the
501 * tail page reference counting can be skipped.
502 *
503 * For this to be safe, PageSlab and PageHeadHuge must remain true on
504 * any given page where they return true here, until all tail pins
505 * have been released.
506 */
507static inline bool compound_tail_refcounted(struct page *page)
508{
309381fe 509 VM_BUG_ON_PAGE(!PageHead(page), page);
44518d2b
AA
510 return __compound_tail_refcounted(page);
511}
512
b35a35b5
AA
513static inline void get_huge_page_tail(struct page *page)
514{
515 /*
5eaf1a9e 516 * __split_huge_page_refcount() cannot run from under us.
b35a35b5 517 */
309381fe
SL
518 VM_BUG_ON_PAGE(!PageTail(page), page);
519 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
520 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
5eaf1a9e 521 if (compound_tail_refcounted(page->first_page))
44518d2b 522 atomic_inc(&page->_mapcount);
b35a35b5
AA
523}
524
70b50f94
AA
525extern bool __get_page_tail(struct page *page);
526
1da177e4
LT
527static inline void get_page(struct page *page)
528{
70b50f94
AA
529 if (unlikely(PageTail(page)))
530 if (likely(__get_page_tail(page)))
531 return;
91807063
AA
532 /*
533 * Getting a normal page or the head of a compound page
70b50f94 534 * requires to already have an elevated page->_count.
91807063 535 */
309381fe 536 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
537 atomic_inc(&page->_count);
538}
539
b49af68f
CL
540static inline struct page *virt_to_head_page(const void *x)
541{
542 struct page *page = virt_to_page(x);
ccaafd7f
JK
543
544 /*
545 * We don't need to worry about synchronization of tail flag
546 * when we call virt_to_head_page() since it is only called for
547 * already allocated page and this page won't be freed until
548 * this virt_to_head_page() is finished. So use _fast variant.
549 */
550 return compound_head_fast(page);
b49af68f
CL
551}
552
7835e98b
NP
553/*
554 * Setup the page count before being freed into the page allocator for
555 * the first time (boot or memory hotplug)
556 */
557static inline void init_page_count(struct page *page)
558{
559 atomic_set(&page->_count, 1);
560}
561
1da177e4 562void put_page(struct page *page);
1d7ea732 563void put_pages_list(struct list_head *pages);
1da177e4 564
8dfcc9ba 565void split_page(struct page *page, unsigned int order);
748446bb 566int split_free_page(struct page *page);
8dfcc9ba 567
33f2ef89
AW
568/*
569 * Compound pages have a destructor function. Provide a
570 * prototype for that function and accessor functions.
f1e61557 571 * These are _only_ valid on the head of a compound page.
33f2ef89 572 */
f1e61557
KS
573typedef void compound_page_dtor(struct page *);
574
575/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
576enum compound_dtor_id {
577 NULL_COMPOUND_DTOR,
578 COMPOUND_PAGE_DTOR,
579#ifdef CONFIG_HUGETLB_PAGE
580 HUGETLB_PAGE_DTOR,
581#endif
582 NR_COMPOUND_DTORS,
583};
584extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
585
586static inline void set_compound_page_dtor(struct page *page,
f1e61557 587 enum compound_dtor_id compound_dtor)
33f2ef89 588{
f1e61557
KS
589 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
590 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
591}
592
593static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
594{
f1e61557
KS
595 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
596 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
597}
598
d85f3385
CL
599static inline int compound_order(struct page *page)
600{
6d777953 601 if (!PageHead(page))
d85f3385 602 return 0;
e4b294c2 603 return page[1].compound_order;
d85f3385
CL
604}
605
f1e61557 606static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 607{
e4b294c2 608 page[1].compound_order = order;
d85f3385
CL
609}
610
3dece370 611#ifdef CONFIG_MMU
14fd403f
AA
612/*
613 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
614 * servicing faults for write access. In the normal case, do always want
615 * pte_mkwrite. But get_user_pages can cause write faults for mappings
616 * that do not have writing enabled, when used by access_process_vm.
617 */
618static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
619{
620 if (likely(vma->vm_flags & VM_WRITE))
621 pte = pte_mkwrite(pte);
622 return pte;
623}
8c6e50b0
KS
624
625void do_set_pte(struct vm_area_struct *vma, unsigned long address,
626 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 627#endif
14fd403f 628
1da177e4
LT
629/*
630 * Multiple processes may "see" the same page. E.g. for untouched
631 * mappings of /dev/null, all processes see the same page full of
632 * zeroes, and text pages of executables and shared libraries have
633 * only one copy in memory, at most, normally.
634 *
635 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
636 * page_count() == 0 means the page is free. page->lru is then used for
637 * freelist management in the buddy allocator.
da6052f7 638 * page_count() > 0 means the page has been allocated.
1da177e4 639 *
da6052f7
NP
640 * Pages are allocated by the slab allocator in order to provide memory
641 * to kmalloc and kmem_cache_alloc. In this case, the management of the
642 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
643 * unless a particular usage is carefully commented. (the responsibility of
644 * freeing the kmalloc memory is the caller's, of course).
1da177e4 645 *
da6052f7
NP
646 * A page may be used by anyone else who does a __get_free_page().
647 * In this case, page_count still tracks the references, and should only
648 * be used through the normal accessor functions. The top bits of page->flags
649 * and page->virtual store page management information, but all other fields
650 * are unused and could be used privately, carefully. The management of this
651 * page is the responsibility of the one who allocated it, and those who have
652 * subsequently been given references to it.
653 *
654 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
655 * managed by the Linux memory manager: I/O, buffers, swapping etc.
656 * The following discussion applies only to them.
657 *
da6052f7
NP
658 * A pagecache page contains an opaque `private' member, which belongs to the
659 * page's address_space. Usually, this is the address of a circular list of
660 * the page's disk buffers. PG_private must be set to tell the VM to call
661 * into the filesystem to release these pages.
1da177e4 662 *
da6052f7
NP
663 * A page may belong to an inode's memory mapping. In this case, page->mapping
664 * is the pointer to the inode, and page->index is the file offset of the page,
665 * in units of PAGE_CACHE_SIZE.
1da177e4 666 *
da6052f7
NP
667 * If pagecache pages are not associated with an inode, they are said to be
668 * anonymous pages. These may become associated with the swapcache, and in that
669 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 670 *
da6052f7
NP
671 * In either case (swapcache or inode backed), the pagecache itself holds one
672 * reference to the page. Setting PG_private should also increment the
673 * refcount. The each user mapping also has a reference to the page.
1da177e4 674 *
da6052f7
NP
675 * The pagecache pages are stored in a per-mapping radix tree, which is
676 * rooted at mapping->page_tree, and indexed by offset.
677 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
678 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 679 *
da6052f7 680 * All pagecache pages may be subject to I/O:
1da177e4
LT
681 * - inode pages may need to be read from disk,
682 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
683 * to be written back to the inode on disk,
684 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
685 * modified may need to be swapped out to swap space and (later) to be read
686 * back into memory.
1da177e4
LT
687 */
688
689/*
690 * The zone field is never updated after free_area_init_core()
691 * sets it, so none of the operations on it need to be atomic.
1da177e4 692 */
348f8b6c 693
90572890 694/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 695#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
696#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
697#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 698#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 699
348f8b6c 700/*
25985edc 701 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
702 * sections we define the shift as 0; that plus a 0 mask ensures
703 * the compiler will optimise away reference to them.
704 */
d41dee36
AW
705#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
706#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
707#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 708#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 709
bce54bbf
WD
710/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
711#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 712#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
713#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
714 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 715#else
89689ae7 716#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
717#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
718 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
719#endif
720
bd8029b6 721#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 722
9223b419
CL
723#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
724#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
725#endif
726
d41dee36
AW
727#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
728#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
729#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 730#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 731#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 732
33dd4e0e 733static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 734{
348f8b6c 735 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 736}
1da177e4 737
9127ab4f
CS
738#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
739#define SECTION_IN_PAGE_FLAGS
740#endif
741
89689ae7 742/*
7a8010cd
VB
743 * The identification function is mainly used by the buddy allocator for
744 * determining if two pages could be buddies. We are not really identifying
745 * the zone since we could be using the section number id if we do not have
746 * node id available in page flags.
747 * We only guarantee that it will return the same value for two combinable
748 * pages in a zone.
89689ae7 749 */
cb2b95e1
AW
750static inline int page_zone_id(struct page *page)
751{
89689ae7 752 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
753}
754
25ba77c1 755static inline int zone_to_nid(struct zone *zone)
89fa3024 756{
d5f541ed
CL
757#ifdef CONFIG_NUMA
758 return zone->node;
759#else
760 return 0;
761#endif
89fa3024
CL
762}
763
89689ae7 764#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 765extern int page_to_nid(const struct page *page);
89689ae7 766#else
33dd4e0e 767static inline int page_to_nid(const struct page *page)
d41dee36 768{
89689ae7 769 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 770}
89689ae7
CL
771#endif
772
57e0a030 773#ifdef CONFIG_NUMA_BALANCING
90572890 774static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 775{
90572890 776 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
777}
778
90572890 779static inline int cpupid_to_pid(int cpupid)
57e0a030 780{
90572890 781 return cpupid & LAST__PID_MASK;
57e0a030 782}
b795854b 783
90572890 784static inline int cpupid_to_cpu(int cpupid)
b795854b 785{
90572890 786 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
787}
788
90572890 789static inline int cpupid_to_nid(int cpupid)
b795854b 790{
90572890 791 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
792}
793
90572890 794static inline bool cpupid_pid_unset(int cpupid)
57e0a030 795{
90572890 796 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
797}
798
90572890 799static inline bool cpupid_cpu_unset(int cpupid)
b795854b 800{
90572890 801 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
802}
803
8c8a743c
PZ
804static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
805{
806 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
807}
808
809#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
810#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
811static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 812{
1ae71d03 813 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 814}
90572890
PZ
815
816static inline int page_cpupid_last(struct page *page)
817{
818 return page->_last_cpupid;
819}
820static inline void page_cpupid_reset_last(struct page *page)
b795854b 821{
1ae71d03 822 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
823}
824#else
90572890 825static inline int page_cpupid_last(struct page *page)
75980e97 826{
90572890 827 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
828}
829
90572890 830extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 831
90572890 832static inline void page_cpupid_reset_last(struct page *page)
75980e97 833{
90572890 834 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 835
90572890
PZ
836 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
837 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 838}
90572890
PZ
839#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
840#else /* !CONFIG_NUMA_BALANCING */
841static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 842{
90572890 843 return page_to_nid(page); /* XXX */
57e0a030
MG
844}
845
90572890 846static inline int page_cpupid_last(struct page *page)
57e0a030 847{
90572890 848 return page_to_nid(page); /* XXX */
57e0a030
MG
849}
850
90572890 851static inline int cpupid_to_nid(int cpupid)
b795854b
MG
852{
853 return -1;
854}
855
90572890 856static inline int cpupid_to_pid(int cpupid)
b795854b
MG
857{
858 return -1;
859}
860
90572890 861static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
862{
863 return -1;
864}
865
90572890
PZ
866static inline int cpu_pid_to_cpupid(int nid, int pid)
867{
868 return -1;
869}
870
871static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
872{
873 return 1;
874}
875
90572890 876static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
877{
878}
8c8a743c
PZ
879
880static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
881{
882 return false;
883}
90572890 884#endif /* CONFIG_NUMA_BALANCING */
57e0a030 885
33dd4e0e 886static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
887{
888 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
889}
890
9127ab4f 891#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
892static inline void set_page_section(struct page *page, unsigned long section)
893{
894 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
895 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
896}
897
aa462abe 898static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
899{
900 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
901}
308c05e3 902#endif
d41dee36 903
2f1b6248 904static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
905{
906 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
907 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
908}
2f1b6248 909
348f8b6c
DH
910static inline void set_page_node(struct page *page, unsigned long node)
911{
912 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
913 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 914}
89689ae7 915
2f1b6248 916static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 917 unsigned long node, unsigned long pfn)
1da177e4 918{
348f8b6c
DH
919 set_page_zone(page, zone);
920 set_page_node(page, node);
9127ab4f 921#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 922 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 923#endif
1da177e4
LT
924}
925
0610c25d
GT
926#ifdef CONFIG_MEMCG
927static inline struct mem_cgroup *page_memcg(struct page *page)
928{
929 return page->mem_cgroup;
930}
931
932static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
933{
934 page->mem_cgroup = memcg;
935}
936#else
937static inline struct mem_cgroup *page_memcg(struct page *page)
938{
939 return NULL;
940}
941
942static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
943{
944}
945#endif
946
f6ac2354
CL
947/*
948 * Some inline functions in vmstat.h depend on page_zone()
949 */
950#include <linux/vmstat.h>
951
33dd4e0e 952static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 953{
aa462abe 954 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
955}
956
957#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
958#define HASHED_PAGE_VIRTUAL
959#endif
960
961#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
962static inline void *page_address(const struct page *page)
963{
964 return page->virtual;
965}
966static inline void set_page_address(struct page *page, void *address)
967{
968 page->virtual = address;
969}
1da177e4
LT
970#define page_address_init() do { } while(0)
971#endif
972
973#if defined(HASHED_PAGE_VIRTUAL)
f9918794 974void *page_address(const struct page *page);
1da177e4
LT
975void set_page_address(struct page *page, void *virtual);
976void page_address_init(void);
977#endif
978
979#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
980#define page_address(page) lowmem_page_address(page)
981#define set_page_address(page, address) do { } while(0)
982#define page_address_init() do { } while(0)
983#endif
984
e39155ea
KS
985extern void *page_rmapping(struct page *page);
986extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 987extern struct address_space *page_mapping(struct page *page);
1da177e4 988
f981c595
MG
989extern struct address_space *__page_file_mapping(struct page *);
990
991static inline
992struct address_space *page_file_mapping(struct page *page)
993{
994 if (unlikely(PageSwapCache(page)))
995 return __page_file_mapping(page);
996
997 return page->mapping;
998}
999
1da177e4
LT
1000/*
1001 * Return the pagecache index of the passed page. Regular pagecache pages
1002 * use ->index whereas swapcache pages use ->private
1003 */
1004static inline pgoff_t page_index(struct page *page)
1005{
1006 if (unlikely(PageSwapCache(page)))
4c21e2f2 1007 return page_private(page);
1da177e4
LT
1008 return page->index;
1009}
1010
f981c595
MG
1011extern pgoff_t __page_file_index(struct page *page);
1012
1013/*
1014 * Return the file index of the page. Regular pagecache pages use ->index
1015 * whereas swapcache pages use swp_offset(->private)
1016 */
1017static inline pgoff_t page_file_index(struct page *page)
1018{
1019 if (unlikely(PageSwapCache(page)))
1020 return __page_file_index(page);
1021
1022 return page->index;
1023}
1024
1da177e4
LT
1025/*
1026 * Return true if this page is mapped into pagetables.
1027 */
1028static inline int page_mapped(struct page *page)
1029{
1030 return atomic_read(&(page)->_mapcount) >= 0;
1031}
1032
2f064f34
MH
1033/*
1034 * Return true only if the page has been allocated with
1035 * ALLOC_NO_WATERMARKS and the low watermark was not
1036 * met implying that the system is under some pressure.
1037 */
1038static inline bool page_is_pfmemalloc(struct page *page)
1039{
1040 /*
1041 * Page index cannot be this large so this must be
1042 * a pfmemalloc page.
1043 */
1044 return page->index == -1UL;
1045}
1046
1047/*
1048 * Only to be called by the page allocator on a freshly allocated
1049 * page.
1050 */
1051static inline void set_page_pfmemalloc(struct page *page)
1052{
1053 page->index = -1UL;
1054}
1055
1056static inline void clear_page_pfmemalloc(struct page *page)
1057{
1058 page->index = 0;
1059}
1060
1da177e4
LT
1061/*
1062 * Different kinds of faults, as returned by handle_mm_fault().
1063 * Used to decide whether a process gets delivered SIGBUS or
1064 * just gets major/minor fault counters bumped up.
1065 */
d0217ac0 1066
83c54070 1067#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1068
83c54070
NP
1069#define VM_FAULT_OOM 0x0001
1070#define VM_FAULT_SIGBUS 0x0002
1071#define VM_FAULT_MAJOR 0x0004
1072#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1073#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1074#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1075#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1076
83c54070
NP
1077#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1078#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1079#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1080#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1081
aa50d3a7
AK
1082#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1083
33692f27
LT
1084#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1085 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1086 VM_FAULT_FALLBACK)
aa50d3a7
AK
1087
1088/* Encode hstate index for a hwpoisoned large page */
1089#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1090#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1091
1c0fe6e3
NP
1092/*
1093 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1094 */
1095extern void pagefault_out_of_memory(void);
1096
1da177e4
LT
1097#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1098
ddd588b5 1099/*
7bf02ea2 1100 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1101 * various contexts.
1102 */
4b59e6c4 1103#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1104
7bf02ea2
DR
1105extern void show_free_areas(unsigned int flags);
1106extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1107
1da177e4 1108int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1109#ifdef CONFIG_SHMEM
1110bool shmem_mapping(struct address_space *mapping);
1111#else
1112static inline bool shmem_mapping(struct address_space *mapping)
1113{
1114 return false;
1115}
1116#endif
1da177e4 1117
e8edc6e0 1118extern int can_do_mlock(void);
1da177e4
LT
1119extern int user_shm_lock(size_t, struct user_struct *);
1120extern void user_shm_unlock(size_t, struct user_struct *);
1121
1122/*
1123 * Parameter block passed down to zap_pte_range in exceptional cases.
1124 */
1125struct zap_details {
1da177e4
LT
1126 struct address_space *check_mapping; /* Check page->mapping if set */
1127 pgoff_t first_index; /* Lowest page->index to unmap */
1128 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1129};
1130
7e675137
NP
1131struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1132 pte_t pte);
1133
c627f9cc
JS
1134int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1135 unsigned long size);
14f5ff5d 1136void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1137 unsigned long size, struct zap_details *);
4f74d2c8
LT
1138void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1139 unsigned long start, unsigned long end);
e6473092
MM
1140
1141/**
1142 * mm_walk - callbacks for walk_page_range
e6473092 1143 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1144 * this handler is required to be able to handle
1145 * pmd_trans_huge() pmds. They may simply choose to
1146 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1147 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1148 * @pte_hole: if set, called for each hole at all levels
5dc37642 1149 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1150 * @test_walk: caller specific callback function to determine whether
1151 * we walk over the current vma or not. A positive returned
1152 * value means "do page table walk over the current vma,"
1153 * and a negative one means "abort current page table walk
1154 * right now." 0 means "skip the current vma."
1155 * @mm: mm_struct representing the target process of page table walk
1156 * @vma: vma currently walked (NULL if walking outside vmas)
1157 * @private: private data for callbacks' usage
e6473092 1158 *
fafaa426 1159 * (see the comment on walk_page_range() for more details)
e6473092
MM
1160 */
1161struct mm_walk {
0f157a5b
AM
1162 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1163 unsigned long next, struct mm_walk *walk);
1164 int (*pte_entry)(pte_t *pte, unsigned long addr,
1165 unsigned long next, struct mm_walk *walk);
1166 int (*pte_hole)(unsigned long addr, unsigned long next,
1167 struct mm_walk *walk);
1168 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1169 unsigned long addr, unsigned long next,
1170 struct mm_walk *walk);
fafaa426
NH
1171 int (*test_walk)(unsigned long addr, unsigned long next,
1172 struct mm_walk *walk);
2165009b 1173 struct mm_struct *mm;
fafaa426 1174 struct vm_area_struct *vma;
2165009b 1175 void *private;
e6473092
MM
1176};
1177
2165009b
DH
1178int walk_page_range(unsigned long addr, unsigned long end,
1179 struct mm_walk *walk);
900fc5f1 1180int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1181void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1182 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1183int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1184 struct vm_area_struct *vma);
1da177e4
LT
1185void unmap_mapping_range(struct address_space *mapping,
1186 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1187int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1188 unsigned long *pfn);
d87fe660 1189int follow_phys(struct vm_area_struct *vma, unsigned long address,
1190 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1191int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1192 void *buf, int len, int write);
1da177e4
LT
1193
1194static inline void unmap_shared_mapping_range(struct address_space *mapping,
1195 loff_t const holebegin, loff_t const holelen)
1196{
1197 unmap_mapping_range(mapping, holebegin, holelen, 0);
1198}
1199
7caef267 1200extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1201extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1202void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1203void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1204int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1205int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1206int invalidate_inode_page(struct page *page);
1207
7ee1dd3f 1208#ifdef CONFIG_MMU
83c54070 1209extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1210 unsigned long address, unsigned int flags);
5c723ba5
PZ
1211extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1212 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1213#else
1214static inline int handle_mm_fault(struct mm_struct *mm,
1215 struct vm_area_struct *vma, unsigned long address,
d06063cc 1216 unsigned int flags)
7ee1dd3f
DH
1217{
1218 /* should never happen if there's no MMU */
1219 BUG();
1220 return VM_FAULT_SIGBUS;
1221}
5c723ba5
PZ
1222static inline int fixup_user_fault(struct task_struct *tsk,
1223 struct mm_struct *mm, unsigned long address,
1224 unsigned int fault_flags)
1225{
1226 /* should never happen if there's no MMU */
1227 BUG();
1228 return -EFAULT;
1229}
7ee1dd3f 1230#endif
f33ea7f4 1231
1da177e4 1232extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1233extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1234 void *buf, int len, int write);
1da177e4 1235
28a35716
ML
1236long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1237 unsigned long start, unsigned long nr_pages,
1238 unsigned int foll_flags, struct page **pages,
1239 struct vm_area_struct **vmas, int *nonblocking);
1240long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1241 unsigned long start, unsigned long nr_pages,
1242 int write, int force, struct page **pages,
1243 struct vm_area_struct **vmas);
f0818f47
AA
1244long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1245 unsigned long start, unsigned long nr_pages,
1246 int write, int force, struct page **pages,
1247 int *locked);
0fd71a56
AA
1248long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1249 unsigned long start, unsigned long nr_pages,
1250 int write, int force, struct page **pages,
1251 unsigned int gup_flags);
f0818f47
AA
1252long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1253 unsigned long start, unsigned long nr_pages,
1254 int write, int force, struct page **pages);
d2bf6be8
NP
1255int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1256 struct page **pages);
8025e5dd
JK
1257
1258/* Container for pinned pfns / pages */
1259struct frame_vector {
1260 unsigned int nr_allocated; /* Number of frames we have space for */
1261 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1262 bool got_ref; /* Did we pin pages by getting page ref? */
1263 bool is_pfns; /* Does array contain pages or pfns? */
1264 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1265 * pfns_vector_pages() or pfns_vector_pfns()
1266 * for access */
1267};
1268
1269struct frame_vector *frame_vector_create(unsigned int nr_frames);
1270void frame_vector_destroy(struct frame_vector *vec);
1271int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1272 bool write, bool force, struct frame_vector *vec);
1273void put_vaddr_frames(struct frame_vector *vec);
1274int frame_vector_to_pages(struct frame_vector *vec);
1275void frame_vector_to_pfns(struct frame_vector *vec);
1276
1277static inline unsigned int frame_vector_count(struct frame_vector *vec)
1278{
1279 return vec->nr_frames;
1280}
1281
1282static inline struct page **frame_vector_pages(struct frame_vector *vec)
1283{
1284 if (vec->is_pfns) {
1285 int err = frame_vector_to_pages(vec);
1286
1287 if (err)
1288 return ERR_PTR(err);
1289 }
1290 return (struct page **)(vec->ptrs);
1291}
1292
1293static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1294{
1295 if (!vec->is_pfns)
1296 frame_vector_to_pfns(vec);
1297 return (unsigned long *)(vec->ptrs);
1298}
1299
18022c5d
MG
1300struct kvec;
1301int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1302 struct page **pages);
1303int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1304struct page *get_dump_page(unsigned long addr);
1da177e4 1305
cf9a2ae8 1306extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1307extern void do_invalidatepage(struct page *page, unsigned int offset,
1308 unsigned int length);
cf9a2ae8 1309
1da177e4 1310int __set_page_dirty_nobuffers(struct page *page);
76719325 1311int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1312int redirty_page_for_writepage(struct writeback_control *wbc,
1313 struct page *page);
c4843a75
GT
1314void account_page_dirtied(struct page *page, struct address_space *mapping,
1315 struct mem_cgroup *memcg);
1316void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1317 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1318int set_page_dirty(struct page *page);
1da177e4 1319int set_page_dirty_lock(struct page *page);
11f81bec 1320void cancel_dirty_page(struct page *page);
1da177e4 1321int clear_page_dirty_for_io(struct page *page);
b9ea2515 1322
a9090253 1323int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1324
39aa3cb3 1325/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1326static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1327{
1328 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1329}
1330
b5330628
ON
1331static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1332{
1333 return !vma->vm_ops;
1334}
1335
a09a79f6
MP
1336static inline int stack_guard_page_start(struct vm_area_struct *vma,
1337 unsigned long addr)
1338{
1339 return (vma->vm_flags & VM_GROWSDOWN) &&
1340 (vma->vm_start == addr) &&
1341 !vma_growsdown(vma->vm_prev, addr);
1342}
1343
1344/* Is the vma a continuation of the stack vma below it? */
1345static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1346{
1347 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1348}
1349
1350static inline int stack_guard_page_end(struct vm_area_struct *vma,
1351 unsigned long addr)
1352{
1353 return (vma->vm_flags & VM_GROWSUP) &&
1354 (vma->vm_end == addr) &&
1355 !vma_growsup(vma->vm_next, addr);
1356}
1357
58cb6548
ON
1358extern struct task_struct *task_of_stack(struct task_struct *task,
1359 struct vm_area_struct *vma, bool in_group);
b7643757 1360
b6a2fea3
OW
1361extern unsigned long move_page_tables(struct vm_area_struct *vma,
1362 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1363 unsigned long new_addr, unsigned long len,
1364 bool need_rmap_locks);
7da4d641
PZ
1365extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1366 unsigned long end, pgprot_t newprot,
4b10e7d5 1367 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1368extern int mprotect_fixup(struct vm_area_struct *vma,
1369 struct vm_area_struct **pprev, unsigned long start,
1370 unsigned long end, unsigned long newflags);
1da177e4 1371
465a454f
PZ
1372/*
1373 * doesn't attempt to fault and will return short.
1374 */
1375int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1376 struct page **pages);
d559db08
KH
1377/*
1378 * per-process(per-mm_struct) statistics.
1379 */
d559db08
KH
1380static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1381{
69c97823
KK
1382 long val = atomic_long_read(&mm->rss_stat.count[member]);
1383
1384#ifdef SPLIT_RSS_COUNTING
1385 /*
1386 * counter is updated in asynchronous manner and may go to minus.
1387 * But it's never be expected number for users.
1388 */
1389 if (val < 0)
1390 val = 0;
172703b0 1391#endif
69c97823
KK
1392 return (unsigned long)val;
1393}
d559db08
KH
1394
1395static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1396{
172703b0 1397 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1398}
1399
1400static inline void inc_mm_counter(struct mm_struct *mm, int member)
1401{
172703b0 1402 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1403}
1404
1405static inline void dec_mm_counter(struct mm_struct *mm, int member)
1406{
172703b0 1407 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1408}
1409
d559db08
KH
1410static inline unsigned long get_mm_rss(struct mm_struct *mm)
1411{
1412 return get_mm_counter(mm, MM_FILEPAGES) +
1413 get_mm_counter(mm, MM_ANONPAGES);
1414}
1415
1416static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1417{
1418 return max(mm->hiwater_rss, get_mm_rss(mm));
1419}
1420
1421static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1422{
1423 return max(mm->hiwater_vm, mm->total_vm);
1424}
1425
1426static inline void update_hiwater_rss(struct mm_struct *mm)
1427{
1428 unsigned long _rss = get_mm_rss(mm);
1429
1430 if ((mm)->hiwater_rss < _rss)
1431 (mm)->hiwater_rss = _rss;
1432}
1433
1434static inline void update_hiwater_vm(struct mm_struct *mm)
1435{
1436 if (mm->hiwater_vm < mm->total_vm)
1437 mm->hiwater_vm = mm->total_vm;
1438}
1439
695f0559
PC
1440static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1441{
1442 mm->hiwater_rss = get_mm_rss(mm);
1443}
1444
d559db08
KH
1445static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1446 struct mm_struct *mm)
1447{
1448 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1449
1450 if (*maxrss < hiwater_rss)
1451 *maxrss = hiwater_rss;
1452}
1453
53bddb4e 1454#if defined(SPLIT_RSS_COUNTING)
05af2e10 1455void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1456#else
05af2e10 1457static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1458{
1459}
1460#endif
465a454f 1461
4e950f6f 1462int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1463
25ca1d6c
NK
1464extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1465 spinlock_t **ptl);
1466static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1467 spinlock_t **ptl)
1468{
1469 pte_t *ptep;
1470 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1471 return ptep;
1472}
c9cfcddf 1473
5f22df00
NP
1474#ifdef __PAGETABLE_PUD_FOLDED
1475static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1476 unsigned long address)
1477{
1478 return 0;
1479}
1480#else
1bb3630e 1481int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1482#endif
1483
2d2f5119 1484#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1485static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1486 unsigned long address)
1487{
1488 return 0;
1489}
dc6c9a35 1490
2d2f5119
KS
1491static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1492
dc6c9a35
KS
1493static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1494{
1495 return 0;
1496}
1497
1498static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1499static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1500
5f22df00 1501#else
1bb3630e 1502int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1503
2d2f5119
KS
1504static inline void mm_nr_pmds_init(struct mm_struct *mm)
1505{
1506 atomic_long_set(&mm->nr_pmds, 0);
1507}
1508
dc6c9a35
KS
1509static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1510{
1511 return atomic_long_read(&mm->nr_pmds);
1512}
1513
1514static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1515{
1516 atomic_long_inc(&mm->nr_pmds);
1517}
1518
1519static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1520{
1521 atomic_long_dec(&mm->nr_pmds);
1522}
5f22df00
NP
1523#endif
1524
8ac1f832
AA
1525int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1526 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1527int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1528
1da177e4
LT
1529/*
1530 * The following ifdef needed to get the 4level-fixup.h header to work.
1531 * Remove it when 4level-fixup.h has been removed.
1532 */
1bb3630e 1533#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1534static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1535{
1bb3630e
HD
1536 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1537 NULL: pud_offset(pgd, address);
1da177e4
LT
1538}
1539
1540static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1541{
1bb3630e
HD
1542 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1543 NULL: pmd_offset(pud, address);
1da177e4 1544}
1bb3630e
HD
1545#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1546
57c1ffce 1547#if USE_SPLIT_PTE_PTLOCKS
597d795a 1548#if ALLOC_SPLIT_PTLOCKS
b35f1819 1549void __init ptlock_cache_init(void);
539edb58
PZ
1550extern bool ptlock_alloc(struct page *page);
1551extern void ptlock_free(struct page *page);
1552
1553static inline spinlock_t *ptlock_ptr(struct page *page)
1554{
1555 return page->ptl;
1556}
597d795a 1557#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1558static inline void ptlock_cache_init(void)
1559{
1560}
1561
49076ec2
KS
1562static inline bool ptlock_alloc(struct page *page)
1563{
49076ec2
KS
1564 return true;
1565}
539edb58 1566
49076ec2
KS
1567static inline void ptlock_free(struct page *page)
1568{
49076ec2
KS
1569}
1570
1571static inline spinlock_t *ptlock_ptr(struct page *page)
1572{
539edb58 1573 return &page->ptl;
49076ec2 1574}
597d795a 1575#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1576
1577static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1578{
1579 return ptlock_ptr(pmd_page(*pmd));
1580}
1581
1582static inline bool ptlock_init(struct page *page)
1583{
1584 /*
1585 * prep_new_page() initialize page->private (and therefore page->ptl)
1586 * with 0. Make sure nobody took it in use in between.
1587 *
1588 * It can happen if arch try to use slab for page table allocation:
1589 * slab code uses page->slab_cache and page->first_page (for tail
1590 * pages), which share storage with page->ptl.
1591 */
309381fe 1592 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1593 if (!ptlock_alloc(page))
1594 return false;
1595 spin_lock_init(ptlock_ptr(page));
1596 return true;
1597}
1598
1599/* Reset page->mapping so free_pages_check won't complain. */
1600static inline void pte_lock_deinit(struct page *page)
1601{
1602 page->mapping = NULL;
1603 ptlock_free(page);
1604}
1605
57c1ffce 1606#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1607/*
1608 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1609 */
49076ec2
KS
1610static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1611{
1612 return &mm->page_table_lock;
1613}
b35f1819 1614static inline void ptlock_cache_init(void) {}
49076ec2
KS
1615static inline bool ptlock_init(struct page *page) { return true; }
1616static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1617#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1618
b35f1819
KS
1619static inline void pgtable_init(void)
1620{
1621 ptlock_cache_init();
1622 pgtable_cache_init();
1623}
1624
390f44e2 1625static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1626{
706874e9
VD
1627 if (!ptlock_init(page))
1628 return false;
2f569afd 1629 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1630 return true;
2f569afd
MS
1631}
1632
1633static inline void pgtable_page_dtor(struct page *page)
1634{
1635 pte_lock_deinit(page);
1636 dec_zone_page_state(page, NR_PAGETABLE);
1637}
1638
c74df32c
HD
1639#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1640({ \
4c21e2f2 1641 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1642 pte_t *__pte = pte_offset_map(pmd, address); \
1643 *(ptlp) = __ptl; \
1644 spin_lock(__ptl); \
1645 __pte; \
1646})
1647
1648#define pte_unmap_unlock(pte, ptl) do { \
1649 spin_unlock(ptl); \
1650 pte_unmap(pte); \
1651} while (0)
1652
8ac1f832
AA
1653#define pte_alloc_map(mm, vma, pmd, address) \
1654 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1655 pmd, address))? \
1656 NULL: pte_offset_map(pmd, address))
1bb3630e 1657
c74df32c 1658#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1659 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1660 pmd, address))? \
c74df32c
HD
1661 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1662
1bb3630e 1663#define pte_alloc_kernel(pmd, address) \
8ac1f832 1664 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1665 NULL: pte_offset_kernel(pmd, address))
1da177e4 1666
e009bb30
KS
1667#if USE_SPLIT_PMD_PTLOCKS
1668
634391ac
MS
1669static struct page *pmd_to_page(pmd_t *pmd)
1670{
1671 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1672 return virt_to_page((void *)((unsigned long) pmd & mask));
1673}
1674
e009bb30
KS
1675static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1676{
634391ac 1677 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1678}
1679
1680static inline bool pgtable_pmd_page_ctor(struct page *page)
1681{
e009bb30
KS
1682#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1683 page->pmd_huge_pte = NULL;
1684#endif
49076ec2 1685 return ptlock_init(page);
e009bb30
KS
1686}
1687
1688static inline void pgtable_pmd_page_dtor(struct page *page)
1689{
1690#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1691 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1692#endif
49076ec2 1693 ptlock_free(page);
e009bb30
KS
1694}
1695
634391ac 1696#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1697
1698#else
1699
9a86cb7b
KS
1700static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1701{
1702 return &mm->page_table_lock;
1703}
1704
e009bb30
KS
1705static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1706static inline void pgtable_pmd_page_dtor(struct page *page) {}
1707
c389a250 1708#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1709
e009bb30
KS
1710#endif
1711
9a86cb7b
KS
1712static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1713{
1714 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1715 spin_lock(ptl);
1716 return ptl;
1717}
1718
1da177e4 1719extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1720extern void free_area_init_node(int nid, unsigned long * zones_size,
1721 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1722extern void free_initmem(void);
1723
69afade7
JL
1724/*
1725 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1726 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1727 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1728 * Return pages freed into the buddy system.
1729 */
11199692 1730extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1731 int poison, char *s);
c3d5f5f0 1732
cfa11e08
JL
1733#ifdef CONFIG_HIGHMEM
1734/*
1735 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1736 * and totalram_pages.
1737 */
1738extern void free_highmem_page(struct page *page);
1739#endif
69afade7 1740
c3d5f5f0 1741extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1742extern void mem_init_print_info(const char *str);
69afade7 1743
92923ca3
NZ
1744extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1745
69afade7
JL
1746/* Free the reserved page into the buddy system, so it gets managed. */
1747static inline void __free_reserved_page(struct page *page)
1748{
1749 ClearPageReserved(page);
1750 init_page_count(page);
1751 __free_page(page);
1752}
1753
1754static inline void free_reserved_page(struct page *page)
1755{
1756 __free_reserved_page(page);
1757 adjust_managed_page_count(page, 1);
1758}
1759
1760static inline void mark_page_reserved(struct page *page)
1761{
1762 SetPageReserved(page);
1763 adjust_managed_page_count(page, -1);
1764}
1765
1766/*
1767 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1768 * The freed pages will be poisoned with pattern "poison" if it's within
1769 * range [0, UCHAR_MAX].
1770 * Return pages freed into the buddy system.
69afade7
JL
1771 */
1772static inline unsigned long free_initmem_default(int poison)
1773{
1774 extern char __init_begin[], __init_end[];
1775
11199692 1776 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1777 poison, "unused kernel");
1778}
1779
7ee3d4e8
JL
1780static inline unsigned long get_num_physpages(void)
1781{
1782 int nid;
1783 unsigned long phys_pages = 0;
1784
1785 for_each_online_node(nid)
1786 phys_pages += node_present_pages(nid);
1787
1788 return phys_pages;
1789}
1790
0ee332c1 1791#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1792/*
0ee332c1 1793 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1794 * zones, allocate the backing mem_map and account for memory holes in a more
1795 * architecture independent manner. This is a substitute for creating the
1796 * zone_sizes[] and zholes_size[] arrays and passing them to
1797 * free_area_init_node()
1798 *
1799 * An architecture is expected to register range of page frames backed by
0ee332c1 1800 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1801 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1802 * usage, an architecture is expected to do something like
1803 *
1804 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1805 * max_highmem_pfn};
1806 * for_each_valid_physical_page_range()
0ee332c1 1807 * memblock_add_node(base, size, nid)
c713216d
MG
1808 * free_area_init_nodes(max_zone_pfns);
1809 *
0ee332c1
TH
1810 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1811 * registered physical page range. Similarly
1812 * sparse_memory_present_with_active_regions() calls memory_present() for
1813 * each range when SPARSEMEM is enabled.
c713216d
MG
1814 *
1815 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1816 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1817 */
1818extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1819unsigned long node_map_pfn_alignment(void);
32996250
YL
1820unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1821 unsigned long end_pfn);
c713216d
MG
1822extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1823 unsigned long end_pfn);
1824extern void get_pfn_range_for_nid(unsigned int nid,
1825 unsigned long *start_pfn, unsigned long *end_pfn);
1826extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1827extern void free_bootmem_with_active_regions(int nid,
1828 unsigned long max_low_pfn);
1829extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1830
0ee332c1 1831#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1832
0ee332c1 1833#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1834 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1835static inline int __early_pfn_to_nid(unsigned long pfn,
1836 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1837{
1838 return 0;
1839}
1840#else
1841/* please see mm/page_alloc.c */
1842extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1843/* there is a per-arch backend function. */
8a942fde
MG
1844extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1845 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1846#endif
1847
0e0b864e 1848extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1849extern void memmap_init_zone(unsigned long, int, unsigned long,
1850 unsigned long, enum memmap_context);
bc75d33f 1851extern void setup_per_zone_wmarks(void);
1b79acc9 1852extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1853extern void mem_init(void);
8feae131 1854extern void __init mmap_init(void);
b2b755b5 1855extern void show_mem(unsigned int flags);
1da177e4
LT
1856extern void si_meminfo(struct sysinfo * val);
1857extern void si_meminfo_node(struct sysinfo *val, int nid);
1858
3ee9a4f0
JP
1859extern __printf(3, 4)
1860void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1861
e7c8d5c9 1862extern void setup_per_cpu_pageset(void);
e7c8d5c9 1863
112067f0 1864extern void zone_pcp_update(struct zone *zone);
340175b7 1865extern void zone_pcp_reset(struct zone *zone);
112067f0 1866
75f7ad8e
PS
1867/* page_alloc.c */
1868extern int min_free_kbytes;
1869
8feae131 1870/* nommu.c */
33e5d769 1871extern atomic_long_t mmap_pages_allocated;
7e660872 1872extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1873
6b2dbba8 1874/* interval_tree.c */
6b2dbba8
ML
1875void vma_interval_tree_insert(struct vm_area_struct *node,
1876 struct rb_root *root);
9826a516
ML
1877void vma_interval_tree_insert_after(struct vm_area_struct *node,
1878 struct vm_area_struct *prev,
1879 struct rb_root *root);
6b2dbba8
ML
1880void vma_interval_tree_remove(struct vm_area_struct *node,
1881 struct rb_root *root);
1882struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1883 unsigned long start, unsigned long last);
1884struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1885 unsigned long start, unsigned long last);
1886
1887#define vma_interval_tree_foreach(vma, root, start, last) \
1888 for (vma = vma_interval_tree_iter_first(root, start, last); \
1889 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1890
bf181b9f
ML
1891void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1892 struct rb_root *root);
1893void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1894 struct rb_root *root);
1895struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1896 struct rb_root *root, unsigned long start, unsigned long last);
1897struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1898 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1899#ifdef CONFIG_DEBUG_VM_RB
1900void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1901#endif
bf181b9f
ML
1902
1903#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1904 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1905 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1906
1da177e4 1907/* mmap.c */
34b4e4aa 1908extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1909extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1910 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1911extern struct vm_area_struct *vma_merge(struct mm_struct *,
1912 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1913 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1914 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1915extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1916extern int split_vma(struct mm_struct *,
1917 struct vm_area_struct *, unsigned long addr, int new_below);
1918extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1919extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1920 struct rb_node **, struct rb_node *);
a8fb5618 1921extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1922extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1923 unsigned long addr, unsigned long len, pgoff_t pgoff,
1924 bool *need_rmap_locks);
1da177e4 1925extern void exit_mmap(struct mm_struct *);
925d1c40 1926
9c599024
CG
1927static inline int check_data_rlimit(unsigned long rlim,
1928 unsigned long new,
1929 unsigned long start,
1930 unsigned long end_data,
1931 unsigned long start_data)
1932{
1933 if (rlim < RLIM_INFINITY) {
1934 if (((new - start) + (end_data - start_data)) > rlim)
1935 return -ENOSPC;
1936 }
1937
1938 return 0;
1939}
1940
7906d00c
AA
1941extern int mm_take_all_locks(struct mm_struct *mm);
1942extern void mm_drop_all_locks(struct mm_struct *mm);
1943
38646013
JS
1944extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1945extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1946
119f657c 1947extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
3935ed6a
SS
1948extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1949 unsigned long addr, unsigned long len,
a62c34bd
AL
1950 unsigned long flags,
1951 const struct vm_special_mapping *spec);
1952/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1953extern int install_special_mapping(struct mm_struct *mm,
1954 unsigned long addr, unsigned long len,
1955 unsigned long flags, struct page **pages);
1da177e4
LT
1956
1957extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1958
0165ab44 1959extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1960 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1961extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1962 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1963 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1964extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1965
1fcfd8db
ON
1966static inline unsigned long
1967do_mmap_pgoff(struct file *file, unsigned long addr,
1968 unsigned long len, unsigned long prot, unsigned long flags,
1969 unsigned long pgoff, unsigned long *populate)
1970{
1971 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1972}
1973
bebeb3d6
ML
1974#ifdef CONFIG_MMU
1975extern int __mm_populate(unsigned long addr, unsigned long len,
1976 int ignore_errors);
1977static inline void mm_populate(unsigned long addr, unsigned long len)
1978{
1979 /* Ignore errors */
1980 (void) __mm_populate(addr, len, 1);
1981}
1982#else
1983static inline void mm_populate(unsigned long addr, unsigned long len) {}
1984#endif
1985
e4eb1ff6
LT
1986/* These take the mm semaphore themselves */
1987extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1988extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1989extern unsigned long vm_mmap(struct file *, unsigned long,
1990 unsigned long, unsigned long,
1991 unsigned long, unsigned long);
1da177e4 1992
db4fbfb9
ML
1993struct vm_unmapped_area_info {
1994#define VM_UNMAPPED_AREA_TOPDOWN 1
1995 unsigned long flags;
1996 unsigned long length;
1997 unsigned long low_limit;
1998 unsigned long high_limit;
1999 unsigned long align_mask;
2000 unsigned long align_offset;
2001};
2002
2003extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2004extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2005
2006/*
2007 * Search for an unmapped address range.
2008 *
2009 * We are looking for a range that:
2010 * - does not intersect with any VMA;
2011 * - is contained within the [low_limit, high_limit) interval;
2012 * - is at least the desired size.
2013 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2014 */
2015static inline unsigned long
2016vm_unmapped_area(struct vm_unmapped_area_info *info)
2017{
cdd7875e 2018 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2019 return unmapped_area_topdown(info);
cdd7875e
BP
2020 else
2021 return unmapped_area(info);
db4fbfb9
ML
2022}
2023
85821aab 2024/* truncate.c */
1da177e4 2025extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2026extern void truncate_inode_pages_range(struct address_space *,
2027 loff_t lstart, loff_t lend);
91b0abe3 2028extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2029
2030/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2031extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2032extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2033extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2034
2035/* mm/page-writeback.c */
2036int write_one_page(struct page *page, int wait);
1cf6e7d8 2037void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2038
2039/* readahead.c */
2040#define VM_MAX_READAHEAD 128 /* kbytes */
2041#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2042
1da177e4 2043int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2044 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2045
2046void page_cache_sync_readahead(struct address_space *mapping,
2047 struct file_ra_state *ra,
2048 struct file *filp,
2049 pgoff_t offset,
2050 unsigned long size);
2051
2052void page_cache_async_readahead(struct address_space *mapping,
2053 struct file_ra_state *ra,
2054 struct file *filp,
2055 struct page *pg,
2056 pgoff_t offset,
2057 unsigned long size);
2058
d05f3169 2059/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2060extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2061
2062/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2063extern int expand_downwards(struct vm_area_struct *vma,
2064 unsigned long address);
8ca3eb08 2065#if VM_GROWSUP
46dea3d0 2066extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2067#else
fee7e49d 2068 #define expand_upwards(vma, address) (0)
9ab88515 2069#endif
1da177e4
LT
2070
2071/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2072extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2073extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2074 struct vm_area_struct **pprev);
2075
2076/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2077 NULL if none. Assume start_addr < end_addr. */
2078static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2079{
2080 struct vm_area_struct * vma = find_vma(mm,start_addr);
2081
2082 if (vma && end_addr <= vma->vm_start)
2083 vma = NULL;
2084 return vma;
2085}
2086
2087static inline unsigned long vma_pages(struct vm_area_struct *vma)
2088{
2089 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2090}
2091
640708a2
PE
2092/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2093static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2094 unsigned long vm_start, unsigned long vm_end)
2095{
2096 struct vm_area_struct *vma = find_vma(mm, vm_start);
2097
2098 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2099 vma = NULL;
2100
2101 return vma;
2102}
2103
bad849b3 2104#ifdef CONFIG_MMU
804af2cf 2105pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2106void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2107#else
2108static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2109{
2110 return __pgprot(0);
2111}
64e45507
PF
2112static inline void vma_set_page_prot(struct vm_area_struct *vma)
2113{
2114 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2115}
bad849b3
DH
2116#endif
2117
5877231f 2118#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2119unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2120 unsigned long start, unsigned long end);
2121#endif
2122
deceb6cd 2123struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2124int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2125 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2126int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2127int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128 unsigned long pfn);
423bad60
NP
2129int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 unsigned long pfn);
b4cbb197
LT
2131int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2132
deceb6cd 2133
240aadee
ML
2134struct page *follow_page_mask(struct vm_area_struct *vma,
2135 unsigned long address, unsigned int foll_flags,
2136 unsigned int *page_mask);
2137
2138static inline struct page *follow_page(struct vm_area_struct *vma,
2139 unsigned long address, unsigned int foll_flags)
2140{
2141 unsigned int unused_page_mask;
2142 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2143}
2144
deceb6cd
HD
2145#define FOLL_WRITE 0x01 /* check pte is writable */
2146#define FOLL_TOUCH 0x02 /* mark page accessed */
2147#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2148#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2149#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2150#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2151 * and return without waiting upon it */
84d33df2 2152#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2153#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2154#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2155#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2156#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2157#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2158#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2159
2f569afd 2160typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2161 void *data);
2162extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2163 unsigned long size, pte_fn_t fn, void *data);
2164
1da177e4 2165#ifdef CONFIG_PROC_FS
ab50b8ed 2166void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 2167#else
ab50b8ed 2168static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
2169 unsigned long flags, struct file *file, long pages)
2170{
44de9d0c 2171 mm->total_vm += pages;
1da177e4
LT
2172}
2173#endif /* CONFIG_PROC_FS */
2174
12d6f21e 2175#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2176extern bool _debug_pagealloc_enabled;
2177extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2178
2179static inline bool debug_pagealloc_enabled(void)
2180{
2181 return _debug_pagealloc_enabled;
2182}
2183
2184static inline void
2185kernel_map_pages(struct page *page, int numpages, int enable)
2186{
2187 if (!debug_pagealloc_enabled())
2188 return;
2189
2190 __kernel_map_pages(page, numpages, enable);
2191}
8a235efa
RW
2192#ifdef CONFIG_HIBERNATION
2193extern bool kernel_page_present(struct page *page);
2194#endif /* CONFIG_HIBERNATION */
12d6f21e 2195#else
1da177e4 2196static inline void
9858db50 2197kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2198#ifdef CONFIG_HIBERNATION
2199static inline bool kernel_page_present(struct page *page) { return true; }
2200#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2201#endif
2202
a6c19dfe 2203#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2204extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2205extern int in_gate_area_no_mm(unsigned long addr);
2206extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2207#else
a6c19dfe
AL
2208static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2209{
2210 return NULL;
2211}
2212static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2213static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2214{
2215 return 0;
2216}
1da177e4
LT
2217#endif /* __HAVE_ARCH_GATE_AREA */
2218
146732ce
JT
2219#ifdef CONFIG_SYSCTL
2220extern int sysctl_drop_caches;
8d65af78 2221int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2222 void __user *, size_t *, loff_t *);
146732ce
JT
2223#endif
2224
cb731d6c
VD
2225void drop_slab(void);
2226void drop_slab_node(int nid);
9d0243bc 2227
7a9166e3
LY
2228#ifndef CONFIG_MMU
2229#define randomize_va_space 0
2230#else
a62eaf15 2231extern int randomize_va_space;
7a9166e3 2232#endif
a62eaf15 2233
045e72ac 2234const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2235void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2236
9bdac914
YL
2237void sparse_mem_maps_populate_node(struct page **map_map,
2238 unsigned long pnum_begin,
2239 unsigned long pnum_end,
2240 unsigned long map_count,
2241 int nodeid);
2242
98f3cfc1 2243struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2244pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2245pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2246pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2247pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2248void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2249void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2250void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2251int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2252 int node);
2253int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2254void vmemmap_populate_print_last(void);
0197518c 2255#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2256void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2257#endif
46723bfa
YI
2258void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2259 unsigned long size);
6a46079c 2260
82ba011b
AK
2261enum mf_flags {
2262 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2263 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2264 MF_MUST_KILL = 1 << 2,
cf870c70 2265 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2266};
cd42f4a3 2267extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2268extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2269extern int unpoison_memory(unsigned long pfn);
ead07f6a 2270extern int get_hwpoison_page(struct page *page);
94bf4ec8 2271extern void put_hwpoison_page(struct page *page);
6a46079c
AK
2272extern int sysctl_memory_failure_early_kill;
2273extern int sysctl_memory_failure_recovery;
facb6011 2274extern void shake_page(struct page *p, int access);
293c07e3 2275extern atomic_long_t num_poisoned_pages;
facb6011 2276extern int soft_offline_page(struct page *page, int flags);
6a46079c 2277
cc637b17
XX
2278
2279/*
2280 * Error handlers for various types of pages.
2281 */
cc3e2af4 2282enum mf_result {
cc637b17
XX
2283 MF_IGNORED, /* Error: cannot be handled */
2284 MF_FAILED, /* Error: handling failed */
2285 MF_DELAYED, /* Will be handled later */
2286 MF_RECOVERED, /* Successfully recovered */
2287};
2288
2289enum mf_action_page_type {
2290 MF_MSG_KERNEL,
2291 MF_MSG_KERNEL_HIGH_ORDER,
2292 MF_MSG_SLAB,
2293 MF_MSG_DIFFERENT_COMPOUND,
2294 MF_MSG_POISONED_HUGE,
2295 MF_MSG_HUGE,
2296 MF_MSG_FREE_HUGE,
2297 MF_MSG_UNMAP_FAILED,
2298 MF_MSG_DIRTY_SWAPCACHE,
2299 MF_MSG_CLEAN_SWAPCACHE,
2300 MF_MSG_DIRTY_MLOCKED_LRU,
2301 MF_MSG_CLEAN_MLOCKED_LRU,
2302 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2303 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2304 MF_MSG_DIRTY_LRU,
2305 MF_MSG_CLEAN_LRU,
2306 MF_MSG_TRUNCATED_LRU,
2307 MF_MSG_BUDDY,
2308 MF_MSG_BUDDY_2ND,
2309 MF_MSG_UNKNOWN,
2310};
2311
47ad8475
AA
2312#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2313extern void clear_huge_page(struct page *page,
2314 unsigned long addr,
2315 unsigned int pages_per_huge_page);
2316extern void copy_user_huge_page(struct page *dst, struct page *src,
2317 unsigned long addr, struct vm_area_struct *vma,
2318 unsigned int pages_per_huge_page);
2319#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2320
e30825f1
JK
2321extern struct page_ext_operations debug_guardpage_ops;
2322extern struct page_ext_operations page_poisoning_ops;
2323
c0a32fc5
SG
2324#ifdef CONFIG_DEBUG_PAGEALLOC
2325extern unsigned int _debug_guardpage_minorder;
e30825f1 2326extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2327
2328static inline unsigned int debug_guardpage_minorder(void)
2329{
2330 return _debug_guardpage_minorder;
2331}
2332
e30825f1
JK
2333static inline bool debug_guardpage_enabled(void)
2334{
2335 return _debug_guardpage_enabled;
2336}
2337
c0a32fc5
SG
2338static inline bool page_is_guard(struct page *page)
2339{
e30825f1
JK
2340 struct page_ext *page_ext;
2341
2342 if (!debug_guardpage_enabled())
2343 return false;
2344
2345 page_ext = lookup_page_ext(page);
2346 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2347}
2348#else
2349static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2350static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2351static inline bool page_is_guard(struct page *page) { return false; }
2352#endif /* CONFIG_DEBUG_PAGEALLOC */
2353
f9872caf
CS
2354#if MAX_NUMNODES > 1
2355void __init setup_nr_node_ids(void);
2356#else
2357static inline void setup_nr_node_ids(void) {}
2358#endif
2359
1da177e4
LT
2360#endif /* __KERNEL__ */
2361#endif /* _LINUX_MM_H */
This page took 1.431886 seconds and 5 git commands to generate.