[PATCH] fix x86_64-mm-spinlock-cleanup
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
1da177e4 16#include <asm/atomic.h>
93ff66bf 17#include <asm/page.h>
1da177e4
LT
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
e984bb43 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4
LT
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
22fc6ecc 43} ____cacheline_internodealigned_in_smp;
1da177e4
LT
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
2244b95a 49enum zone_stat_item {
f3dbd344
CL
50 NR_ANON_PAGES, /* Mapped anonymous pages */
51 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 52 only modified from process context */
347ce434 53 NR_FILE_PAGES,
972d1a7b
CL
54 NR_SLAB_RECLAIMABLE,
55 NR_SLAB_UNRECLAIMABLE,
df849a15 56 NR_PAGETABLE, /* used for pagetables */
b1e7a8fd 57 NR_FILE_DIRTY,
ce866b34 58 NR_WRITEBACK,
fd39fc85 59 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 60 NR_BOUNCE,
ca889e6c
CL
61#ifdef CONFIG_NUMA
62 NUMA_HIT, /* allocated in intended node */
63 NUMA_MISS, /* allocated in non intended node */
64 NUMA_FOREIGN, /* was intended here, hit elsewhere */
65 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
66 NUMA_LOCAL, /* allocation from local node */
67 NUMA_OTHER, /* allocation from other node */
68#endif
2244b95a
CL
69 NR_VM_ZONE_STAT_ITEMS };
70
1da177e4
LT
71struct per_cpu_pages {
72 int count; /* number of pages in the list */
1da177e4
LT
73 int high; /* high watermark, emptying needed */
74 int batch; /* chunk size for buddy add/remove */
75 struct list_head list; /* the list of pages */
76};
77
78struct per_cpu_pageset {
79 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
2244b95a 80#ifdef CONFIG_SMP
df9ecaba 81 s8 stat_threshold;
2244b95a
CL
82 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
83#endif
1da177e4
LT
84} ____cacheline_aligned_in_smp;
85
e7c8d5c9
CL
86#ifdef CONFIG_NUMA
87#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
88#else
89#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
90#endif
91
2f1b6248
CL
92enum zone_type {
93 /*
94 * ZONE_DMA is used when there are devices that are not able
95 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
96 * carve out the portion of memory that is needed for these devices.
97 * The range is arch specific.
98 *
99 * Some examples
100 *
101 * Architecture Limit
102 * ---------------------------
103 * parisc, ia64, sparc <4G
104 * s390 <2G
105 * arm26 <48M
106 * arm Various
107 * alpha Unlimited or 0-16MB.
108 *
109 * i386, x86_64 and multiple other arches
110 * <16M.
111 */
112 ZONE_DMA,
fb0e7942 113#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
114 /*
115 * x86_64 needs two ZONE_DMAs because it supports devices that are
116 * only able to do DMA to the lower 16M but also 32 bit devices that
117 * can only do DMA areas below 4G.
118 */
119 ZONE_DMA32,
fb0e7942 120#endif
2f1b6248
CL
121 /*
122 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
123 * performed on pages in ZONE_NORMAL if the DMA devices support
124 * transfers to all addressable memory.
125 */
126 ZONE_NORMAL,
e53ef38d 127#ifdef CONFIG_HIGHMEM
2f1b6248
CL
128 /*
129 * A memory area that is only addressable by the kernel through
130 * mapping portions into its own address space. This is for example
131 * used by i386 to allow the kernel to address the memory beyond
132 * 900MB. The kernel will set up special mappings (page
133 * table entries on i386) for each page that the kernel needs to
134 * access.
135 */
136 ZONE_HIGHMEM,
e53ef38d 137#endif
2f1b6248
CL
138 MAX_NR_ZONES
139};
1da177e4 140
1da177e4
LT
141/*
142 * When a memory allocation must conform to specific limitations (such
143 * as being suitable for DMA) the caller will pass in hints to the
144 * allocator in the gfp_mask, in the zone modifier bits. These bits
145 * are used to select a priority ordered list of memory zones which
19655d34 146 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 147 */
fb0e7942 148
19655d34
CL
149#if !defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_HIGHMEM)
150#define ZONES_SHIFT 1
e53ef38d 151#else
19655d34 152#define ZONES_SHIFT 2
fb0e7942 153#endif
1da177e4 154
1da177e4
LT
155struct zone {
156 /* Fields commonly accessed by the page allocator */
157 unsigned long free_pages;
158 unsigned long pages_min, pages_low, pages_high;
159 /*
160 * We don't know if the memory that we're going to allocate will be freeable
161 * or/and it will be released eventually, so to avoid totally wasting several
162 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
163 * to run OOM on the lower zones despite there's tons of freeable ram
164 * on the higher zones). This array is recalculated at runtime if the
165 * sysctl_lowmem_reserve_ratio sysctl changes.
166 */
167 unsigned long lowmem_reserve[MAX_NR_ZONES];
168
e7c8d5c9 169#ifdef CONFIG_NUMA
9614634f
CL
170 /*
171 * zone reclaim becomes active if more unmapped pages exist.
172 */
8417bba4 173 unsigned long min_unmapped_pages;
0ff38490 174 unsigned long min_slab_pages;
e7c8d5c9
CL
175 struct per_cpu_pageset *pageset[NR_CPUS];
176#else
1da177e4 177 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 178#endif
1da177e4
LT
179 /*
180 * free areas of different sizes
181 */
182 spinlock_t lock;
bdc8cb98
DH
183#ifdef CONFIG_MEMORY_HOTPLUG
184 /* see spanned/present_pages for more description */
185 seqlock_t span_seqlock;
186#endif
1da177e4
LT
187 struct free_area free_area[MAX_ORDER];
188
189
190 ZONE_PADDING(_pad1_)
191
192 /* Fields commonly accessed by the page reclaim scanner */
193 spinlock_t lru_lock;
194 struct list_head active_list;
195 struct list_head inactive_list;
196 unsigned long nr_scan_active;
197 unsigned long nr_scan_inactive;
198 unsigned long nr_active;
199 unsigned long nr_inactive;
200 unsigned long pages_scanned; /* since last reclaim */
201 int all_unreclaimable; /* All pages pinned */
202
1e7e5a90
MH
203 /* A count of how many reclaimers are scanning this zone */
204 atomic_t reclaim_in_progress;
753ee728 205
2244b95a
CL
206 /* Zone statistics */
207 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 208
1da177e4
LT
209 /*
210 * prev_priority holds the scanning priority for this zone. It is
211 * defined as the scanning priority at which we achieved our reclaim
212 * target at the previous try_to_free_pages() or balance_pgdat()
213 * invokation.
214 *
215 * We use prev_priority as a measure of how much stress page reclaim is
216 * under - it drives the swappiness decision: whether to unmap mapped
217 * pages.
218 *
219 * temp_priority is used to remember the scanning priority at which
220 * this zone was successfully refilled to free_pages == pages_high.
221 *
222 * Access to both these fields is quite racy even on uniprocessor. But
223 * it is expected to average out OK.
224 */
225 int temp_priority;
226 int prev_priority;
227
228
229 ZONE_PADDING(_pad2_)
230 /* Rarely used or read-mostly fields */
231
232 /*
233 * wait_table -- the array holding the hash table
02b694de 234 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
235 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
236 *
237 * The purpose of all these is to keep track of the people
238 * waiting for a page to become available and make them
239 * runnable again when possible. The trouble is that this
240 * consumes a lot of space, especially when so few things
241 * wait on pages at a given time. So instead of using
242 * per-page waitqueues, we use a waitqueue hash table.
243 *
244 * The bucket discipline is to sleep on the same queue when
245 * colliding and wake all in that wait queue when removing.
246 * When something wakes, it must check to be sure its page is
247 * truly available, a la thundering herd. The cost of a
248 * collision is great, but given the expected load of the
249 * table, they should be so rare as to be outweighed by the
250 * benefits from the saved space.
251 *
252 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
253 * primary users of these fields, and in mm/page_alloc.c
254 * free_area_init_core() performs the initialization of them.
255 */
256 wait_queue_head_t * wait_table;
02b694de 257 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
258 unsigned long wait_table_bits;
259
260 /*
261 * Discontig memory support fields.
262 */
263 struct pglist_data *zone_pgdat;
1da177e4
LT
264 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
265 unsigned long zone_start_pfn;
266
bdc8cb98
DH
267 /*
268 * zone_start_pfn, spanned_pages and present_pages are all
269 * protected by span_seqlock. It is a seqlock because it has
270 * to be read outside of zone->lock, and it is done in the main
271 * allocator path. But, it is written quite infrequently.
272 *
273 * The lock is declared along with zone->lock because it is
274 * frequently read in proximity to zone->lock. It's good to
275 * give them a chance of being in the same cacheline.
276 */
1da177e4
LT
277 unsigned long spanned_pages; /* total size, including holes */
278 unsigned long present_pages; /* amount of memory (excluding holes) */
279
280 /*
281 * rarely used fields:
282 */
283 char *name;
22fc6ecc 284} ____cacheline_internodealigned_in_smp;
1da177e4 285
1da177e4
LT
286/*
287 * The "priority" of VM scanning is how much of the queues we will scan in one
288 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
289 * queues ("queue_length >> 12") during an aging round.
290 */
291#define DEF_PRIORITY 12
292
293/*
294 * One allocation request operates on a zonelist. A zonelist
295 * is a list of zones, the first one is the 'goal' of the
296 * allocation, the other zones are fallback zones, in decreasing
297 * priority.
298 *
299 * Right now a zonelist takes up less than a cacheline. We never
300 * modify it apart from boot-up, and only a few indices are used,
301 * so despite the zonelist table being relatively big, the cache
302 * footprint of this construct is very small.
303 */
304struct zonelist {
305 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
306};
307
308
309/*
310 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
311 * (mostly NUMA machines?) to denote a higher-level memory zone than the
312 * zone denotes.
313 *
314 * On NUMA machines, each NUMA node would have a pg_data_t to describe
315 * it's memory layout.
316 *
317 * Memory statistics and page replacement data structures are maintained on a
318 * per-zone basis.
319 */
320struct bootmem_data;
321typedef struct pglist_data {
322 struct zone node_zones[MAX_NR_ZONES];
19655d34 323 struct zonelist node_zonelists[MAX_NR_ZONES];
1da177e4 324 int nr_zones;
d41dee36 325#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 326 struct page *node_mem_map;
d41dee36 327#endif
1da177e4 328 struct bootmem_data *bdata;
208d54e5
DH
329#ifdef CONFIG_MEMORY_HOTPLUG
330 /*
331 * Must be held any time you expect node_start_pfn, node_present_pages
332 * or node_spanned_pages stay constant. Holding this will also
333 * guarantee that any pfn_valid() stays that way.
334 *
335 * Nests above zone->lock and zone->size_seqlock.
336 */
337 spinlock_t node_size_lock;
338#endif
1da177e4
LT
339 unsigned long node_start_pfn;
340 unsigned long node_present_pages; /* total number of physical pages */
341 unsigned long node_spanned_pages; /* total size of physical page
342 range, including holes */
343 int node_id;
1da177e4
LT
344 wait_queue_head_t kswapd_wait;
345 struct task_struct *kswapd;
346 int kswapd_max_order;
347} pg_data_t;
348
349#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
350#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 351#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 352#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
353#else
354#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
355#endif
408fde81 356#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 357
208d54e5
DH
358#include <linux/memory_hotplug.h>
359
1da177e4
LT
360void __get_zone_counts(unsigned long *active, unsigned long *inactive,
361 unsigned long *free, struct pglist_data *pgdat);
362void get_zone_counts(unsigned long *active, unsigned long *inactive,
363 unsigned long *free);
364void build_all_zonelists(void);
365void wakeup_kswapd(struct zone *zone, int order);
366int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 367 int classzone_idx, int alloc_flags);
1da177e4 368
718127cc
YG
369extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
370 unsigned long size);
371
1da177e4
LT
372#ifdef CONFIG_HAVE_MEMORY_PRESENT
373void memory_present(int nid, unsigned long start, unsigned long end);
374#else
375static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
376#endif
377
378#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
379unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
380#endif
381
382/*
383 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
384 */
385#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
386
f3fe6512
CK
387static inline int populated_zone(struct zone *zone)
388{
389 return (!!zone->present_pages);
390}
391
2f1b6248 392static inline int is_highmem_idx(enum zone_type idx)
1da177e4 393{
e53ef38d 394#ifdef CONFIG_HIGHMEM
1da177e4 395 return (idx == ZONE_HIGHMEM);
e53ef38d
CL
396#else
397 return 0;
398#endif
1da177e4
LT
399}
400
2f1b6248 401static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
402{
403 return (idx == ZONE_NORMAL);
404}
9328b8fa 405
1da177e4
LT
406/**
407 * is_highmem - helper function to quickly check if a struct zone is a
408 * highmem zone or not. This is an attempt to keep references
409 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
410 * @zone - pointer to struct zone variable
411 */
412static inline int is_highmem(struct zone *zone)
413{
e53ef38d 414#ifdef CONFIG_HIGHMEM
1da177e4 415 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
e53ef38d
CL
416#else
417 return 0;
418#endif
1da177e4
LT
419}
420
421static inline int is_normal(struct zone *zone)
422{
423 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
424}
425
9328b8fa
NP
426static inline int is_dma32(struct zone *zone)
427{
fb0e7942 428#ifdef CONFIG_ZONE_DMA32
9328b8fa 429 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
430#else
431 return 0;
432#endif
9328b8fa
NP
433}
434
435static inline int is_dma(struct zone *zone)
436{
437 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
438}
439
1da177e4
LT
440/* These two functions are used to setup the per zone pages min values */
441struct ctl_table;
442struct file;
443int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
444 void __user *, size_t *, loff_t *);
445extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
446int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
447 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
448int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
449 void __user *, size_t *, loff_t *);
9614634f
CL
450int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
451 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
452int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
453 struct file *, void __user *, size_t *, loff_t *);
1da177e4
LT
454
455#include <linux/topology.h>
456/* Returns the number of the current Node. */
69d81fcd 457#ifndef numa_node_id
39c715b7 458#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 459#endif
1da177e4 460
93b7504e 461#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
462
463extern struct pglist_data contig_page_data;
464#define NODE_DATA(nid) (&contig_page_data)
465#define NODE_MEM_MAP(nid) mem_map
466#define MAX_NODES_SHIFT 1
1da177e4 467
93b7504e 468#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
469
470#include <asm/mmzone.h>
471
93b7504e 472#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 473
95144c78
KH
474extern struct pglist_data *first_online_pgdat(void);
475extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
476extern struct zone *next_zone(struct zone *zone);
8357f869
KH
477
478/**
479 * for_each_pgdat - helper macro to iterate over all nodes
480 * @pgdat - pointer to a pg_data_t variable
481 */
482#define for_each_online_pgdat(pgdat) \
483 for (pgdat = first_online_pgdat(); \
484 pgdat; \
485 pgdat = next_online_pgdat(pgdat))
8357f869
KH
486/**
487 * for_each_zone - helper macro to iterate over all memory zones
488 * @zone - pointer to struct zone variable
489 *
490 * The user only needs to declare the zone variable, for_each_zone
491 * fills it in.
492 */
493#define for_each_zone(zone) \
494 for (zone = (first_online_pgdat())->node_zones; \
495 zone; \
496 zone = next_zone(zone))
497
d41dee36
AW
498#ifdef CONFIG_SPARSEMEM
499#include <asm/sparsemem.h>
500#endif
501
07808b74 502#if BITS_PER_LONG == 32
1da177e4 503/*
a2f1b424
AK
504 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
505 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 506 */
a2f1b424 507#define FLAGS_RESERVED 9
348f8b6c 508
1da177e4
LT
509#elif BITS_PER_LONG == 64
510/*
511 * with 64 bit flags field, there's plenty of room.
512 */
348f8b6c 513#define FLAGS_RESERVED 32
1da177e4 514
348f8b6c 515#else
1da177e4 516
348f8b6c 517#error BITS_PER_LONG not defined
1da177e4 518
1da177e4
LT
519#endif
520
b159d43f
AW
521#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
522#define early_pfn_to_nid(nid) (0UL)
523#endif
524
2bdaf115
AW
525#ifdef CONFIG_FLATMEM
526#define pfn_to_nid(pfn) (0)
527#endif
528
d41dee36
AW
529#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
530#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
531
532#ifdef CONFIG_SPARSEMEM
533
534/*
535 * SECTION_SHIFT #bits space required to store a section #
536 *
537 * PA_SECTION_SHIFT physical address to/from section number
538 * PFN_SECTION_SHIFT pfn to/from section number
539 */
540#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
541
542#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
543#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
544
545#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
546
547#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
548#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
549
550#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
551#error Allocator MAX_ORDER exceeds SECTION_SIZE
552#endif
553
554struct page;
555struct mem_section {
29751f69
AW
556 /*
557 * This is, logically, a pointer to an array of struct
558 * pages. However, it is stored with some other magic.
559 * (see sparse.c::sparse_init_one_section())
560 *
30c253e6
AW
561 * Additionally during early boot we encode node id of
562 * the location of the section here to guide allocation.
563 * (see sparse.c::memory_present())
564 *
29751f69
AW
565 * Making it a UL at least makes someone do a cast
566 * before using it wrong.
567 */
568 unsigned long section_mem_map;
d41dee36
AW
569};
570
3e347261
BP
571#ifdef CONFIG_SPARSEMEM_EXTREME
572#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
573#else
574#define SECTIONS_PER_ROOT 1
575#endif
802f192e 576
3e347261
BP
577#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
578#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
579#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 580
3e347261
BP
581#ifdef CONFIG_SPARSEMEM_EXTREME
582extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 583#else
3e347261
BP
584extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
585#endif
d41dee36 586
29751f69
AW
587static inline struct mem_section *__nr_to_section(unsigned long nr)
588{
3e347261
BP
589 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
590 return NULL;
591 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 592}
4ca644d9 593extern int __section_nr(struct mem_section* ms);
29751f69
AW
594
595/*
596 * We use the lower bits of the mem_map pointer to store
597 * a little bit of information. There should be at least
598 * 3 bits here due to 32-bit alignment.
599 */
600#define SECTION_MARKED_PRESENT (1UL<<0)
601#define SECTION_HAS_MEM_MAP (1UL<<1)
602#define SECTION_MAP_LAST_BIT (1UL<<2)
603#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 604#define SECTION_NID_SHIFT 2
29751f69
AW
605
606static inline struct page *__section_mem_map_addr(struct mem_section *section)
607{
608 unsigned long map = section->section_mem_map;
609 map &= SECTION_MAP_MASK;
610 return (struct page *)map;
611}
612
613static inline int valid_section(struct mem_section *section)
614{
802f192e 615 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
616}
617
618static inline int section_has_mem_map(struct mem_section *section)
619{
802f192e 620 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
621}
622
623static inline int valid_section_nr(unsigned long nr)
624{
625 return valid_section(__nr_to_section(nr));
626}
627
d41dee36
AW
628static inline struct mem_section *__pfn_to_section(unsigned long pfn)
629{
29751f69 630 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
631}
632
d41dee36
AW
633static inline int pfn_valid(unsigned long pfn)
634{
635 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
636 return 0;
29751f69 637 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
638}
639
640/*
641 * These are _only_ used during initialisation, therefore they
642 * can use __initdata ... They could have names to indicate
643 * this restriction.
644 */
645#ifdef CONFIG_NUMA
161599ff
AW
646#define pfn_to_nid(pfn) \
647({ \
648 unsigned long __pfn_to_nid_pfn = (pfn); \
649 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
650})
2bdaf115
AW
651#else
652#define pfn_to_nid(pfn) (0)
d41dee36
AW
653#endif
654
d41dee36
AW
655#define early_pfn_valid(pfn) pfn_valid(pfn)
656void sparse_init(void);
657#else
658#define sparse_init() do {} while (0)
28ae55c9 659#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
660#endif /* CONFIG_SPARSEMEM */
661
662#ifndef early_pfn_valid
663#define early_pfn_valid(pfn) (1)
664#endif
665
666void memory_present(int nid, unsigned long start, unsigned long end);
667unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
668
1da177e4
LT
669#endif /* !__ASSEMBLY__ */
670#endif /* __KERNEL__ */
671#endif /* _LINUX_MMZONE_H */
This page took 0.26308 seconds and 5 git commands to generate.