mm: oom analysis: add buffer cache information to show_free_areas()
[deliverable/linux.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
467c996c
MG
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
b69408e8 81 NR_LRU_BASE,
4f98a2fe
RR
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
894bc310 86 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
88 NR_ANON_PAGES, /* Mapped anonymous pages */
89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 90 only modified from process context */
347ce434 91 NR_FILE_PAGES,
b1e7a8fd 92 NR_FILE_DIRTY,
ce866b34 93 NR_WRITEBACK,
51ed4491
CL
94 NR_SLAB_RECLAIMABLE,
95 NR_SLAB_UNRECLAIMABLE,
96 NR_PAGETABLE, /* used for pagetables */
fd39fc85 97 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 98 NR_BOUNCE,
e129b5c2 99 NR_VMSCAN_WRITE,
4f98a2fe 100 /* Second 128 byte cacheline */
fc3ba692 101 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
102#ifdef CONFIG_NUMA
103 NUMA_HIT, /* allocated in intended node */
104 NUMA_MISS, /* allocated in non intended node */
105 NUMA_FOREIGN, /* was intended here, hit elsewhere */
106 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
107 NUMA_LOCAL, /* allocation from local node */
108 NUMA_OTHER, /* allocation from other node */
109#endif
2244b95a
CL
110 NR_VM_ZONE_STAT_ITEMS };
111
4f98a2fe
RR
112/*
113 * We do arithmetic on the LRU lists in various places in the code,
114 * so it is important to keep the active lists LRU_ACTIVE higher in
115 * the array than the corresponding inactive lists, and to keep
116 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
117 *
118 * This has to be kept in sync with the statistics in zone_stat_item
119 * above and the descriptions in vmstat_text in mm/vmstat.c
120 */
121#define LRU_BASE 0
122#define LRU_ACTIVE 1
123#define LRU_FILE 2
124
b69408e8 125enum lru_list {
4f98a2fe
RR
126 LRU_INACTIVE_ANON = LRU_BASE,
127 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
128 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
129 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 130 LRU_UNEVICTABLE,
894bc310
LS
131 NR_LRU_LISTS
132};
b69408e8
CL
133
134#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
135
894bc310
LS
136#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
137
4f98a2fe
RR
138static inline int is_file_lru(enum lru_list l)
139{
140 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
141}
142
b69408e8
CL
143static inline int is_active_lru(enum lru_list l)
144{
4f98a2fe 145 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
146}
147
894bc310
LS
148static inline int is_unevictable_lru(enum lru_list l)
149{
894bc310 150 return (l == LRU_UNEVICTABLE);
894bc310
LS
151}
152
41858966
MG
153enum zone_watermarks {
154 WMARK_MIN,
155 WMARK_LOW,
156 WMARK_HIGH,
157 NR_WMARK
158};
159
160#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
161#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
162#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
163
1da177e4
LT
164struct per_cpu_pages {
165 int count; /* number of pages in the list */
1da177e4
LT
166 int high; /* high watermark, emptying needed */
167 int batch; /* chunk size for buddy add/remove */
168 struct list_head list; /* the list of pages */
169};
170
171struct per_cpu_pageset {
3dfa5721 172 struct per_cpu_pages pcp;
4037d452
CL
173#ifdef CONFIG_NUMA
174 s8 expire;
175#endif
2244b95a 176#ifdef CONFIG_SMP
df9ecaba 177 s8 stat_threshold;
2244b95a
CL
178 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
179#endif
1da177e4
LT
180} ____cacheline_aligned_in_smp;
181
e7c8d5c9
CL
182#ifdef CONFIG_NUMA
183#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
184#else
185#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
186#endif
187
97965478
CL
188#endif /* !__GENERATING_BOUNDS.H */
189
2f1b6248 190enum zone_type {
4b51d669 191#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
192 /*
193 * ZONE_DMA is used when there are devices that are not able
194 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
195 * carve out the portion of memory that is needed for these devices.
196 * The range is arch specific.
197 *
198 * Some examples
199 *
200 * Architecture Limit
201 * ---------------------------
202 * parisc, ia64, sparc <4G
203 * s390 <2G
2f1b6248
CL
204 * arm Various
205 * alpha Unlimited or 0-16MB.
206 *
207 * i386, x86_64 and multiple other arches
208 * <16M.
209 */
210 ZONE_DMA,
4b51d669 211#endif
fb0e7942 212#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
213 /*
214 * x86_64 needs two ZONE_DMAs because it supports devices that are
215 * only able to do DMA to the lower 16M but also 32 bit devices that
216 * can only do DMA areas below 4G.
217 */
218 ZONE_DMA32,
fb0e7942 219#endif
2f1b6248
CL
220 /*
221 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
222 * performed on pages in ZONE_NORMAL if the DMA devices support
223 * transfers to all addressable memory.
224 */
225 ZONE_NORMAL,
e53ef38d 226#ifdef CONFIG_HIGHMEM
2f1b6248
CL
227 /*
228 * A memory area that is only addressable by the kernel through
229 * mapping portions into its own address space. This is for example
230 * used by i386 to allow the kernel to address the memory beyond
231 * 900MB. The kernel will set up special mappings (page
232 * table entries on i386) for each page that the kernel needs to
233 * access.
234 */
235 ZONE_HIGHMEM,
e53ef38d 236#endif
2a1e274a 237 ZONE_MOVABLE,
97965478 238 __MAX_NR_ZONES
2f1b6248 239};
1da177e4 240
97965478
CL
241#ifndef __GENERATING_BOUNDS_H
242
1da177e4
LT
243/*
244 * When a memory allocation must conform to specific limitations (such
245 * as being suitable for DMA) the caller will pass in hints to the
246 * allocator in the gfp_mask, in the zone modifier bits. These bits
247 * are used to select a priority ordered list of memory zones which
19655d34 248 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 249 */
fb0e7942 250
97965478 251#if MAX_NR_ZONES < 2
4b51d669 252#define ZONES_SHIFT 0
97965478 253#elif MAX_NR_ZONES <= 2
19655d34 254#define ZONES_SHIFT 1
97965478 255#elif MAX_NR_ZONES <= 4
19655d34 256#define ZONES_SHIFT 2
4b51d669
CL
257#else
258#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 259#endif
1da177e4 260
6e901571
KM
261struct zone_reclaim_stat {
262 /*
263 * The pageout code in vmscan.c keeps track of how many of the
264 * mem/swap backed and file backed pages are refeferenced.
265 * The higher the rotated/scanned ratio, the more valuable
266 * that cache is.
267 *
268 * The anon LRU stats live in [0], file LRU stats in [1]
269 */
270 unsigned long recent_rotated[2];
271 unsigned long recent_scanned[2];
272};
273
1da177e4
LT
274struct zone {
275 /* Fields commonly accessed by the page allocator */
41858966
MG
276
277 /* zone watermarks, access with *_wmark_pages(zone) macros */
278 unsigned long watermark[NR_WMARK];
279
1da177e4
LT
280 /*
281 * We don't know if the memory that we're going to allocate will be freeable
282 * or/and it will be released eventually, so to avoid totally wasting several
283 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
284 * to run OOM on the lower zones despite there's tons of freeable ram
285 * on the higher zones). This array is recalculated at runtime if the
286 * sysctl_lowmem_reserve_ratio sysctl changes.
287 */
288 unsigned long lowmem_reserve[MAX_NR_ZONES];
289
e7c8d5c9 290#ifdef CONFIG_NUMA
d5f541ed 291 int node;
9614634f
CL
292 /*
293 * zone reclaim becomes active if more unmapped pages exist.
294 */
8417bba4 295 unsigned long min_unmapped_pages;
0ff38490 296 unsigned long min_slab_pages;
e7c8d5c9
CL
297 struct per_cpu_pageset *pageset[NR_CPUS];
298#else
1da177e4 299 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 300#endif
1da177e4
LT
301 /*
302 * free areas of different sizes
303 */
304 spinlock_t lock;
bdc8cb98
DH
305#ifdef CONFIG_MEMORY_HOTPLUG
306 /* see spanned/present_pages for more description */
307 seqlock_t span_seqlock;
308#endif
1da177e4
LT
309 struct free_area free_area[MAX_ORDER];
310
835c134e
MG
311#ifndef CONFIG_SPARSEMEM
312 /*
d9c23400 313 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
314 * In SPARSEMEM, this map is stored in struct mem_section
315 */
316 unsigned long *pageblock_flags;
317#endif /* CONFIG_SPARSEMEM */
318
1da177e4
LT
319
320 ZONE_PADDING(_pad1_)
321
322 /* Fields commonly accessed by the page reclaim scanner */
323 spinlock_t lru_lock;
6e08a369 324 struct zone_lru {
b69408e8 325 struct list_head list;
6e08a369 326 unsigned long nr_saved_scan; /* accumulated for batching */
b69408e8 327 } lru[NR_LRU_LISTS];
4f98a2fe 328
6e901571 329 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 330
1da177e4 331 unsigned long pages_scanned; /* since last reclaim */
e815af95 332 unsigned long flags; /* zone flags, see below */
753ee728 333
2244b95a
CL
334 /* Zone statistics */
335 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 336
1da177e4
LT
337 /*
338 * prev_priority holds the scanning priority for this zone. It is
339 * defined as the scanning priority at which we achieved our reclaim
340 * target at the previous try_to_free_pages() or balance_pgdat()
341 * invokation.
342 *
343 * We use prev_priority as a measure of how much stress page reclaim is
344 * under - it drives the swappiness decision: whether to unmap mapped
345 * pages.
346 *
3bb1a852 347 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
348 * it is expected to average out OK.
349 */
1da177e4
LT
350 int prev_priority;
351
556adecb
RR
352 /*
353 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
354 * this zone's LRU. Maintained by the pageout code.
355 */
356 unsigned int inactive_ratio;
357
1da177e4
LT
358
359 ZONE_PADDING(_pad2_)
360 /* Rarely used or read-mostly fields */
361
362 /*
363 * wait_table -- the array holding the hash table
02b694de 364 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
365 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
366 *
367 * The purpose of all these is to keep track of the people
368 * waiting for a page to become available and make them
369 * runnable again when possible. The trouble is that this
370 * consumes a lot of space, especially when so few things
371 * wait on pages at a given time. So instead of using
372 * per-page waitqueues, we use a waitqueue hash table.
373 *
374 * The bucket discipline is to sleep on the same queue when
375 * colliding and wake all in that wait queue when removing.
376 * When something wakes, it must check to be sure its page is
377 * truly available, a la thundering herd. The cost of a
378 * collision is great, but given the expected load of the
379 * table, they should be so rare as to be outweighed by the
380 * benefits from the saved space.
381 *
382 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
383 * primary users of these fields, and in mm/page_alloc.c
384 * free_area_init_core() performs the initialization of them.
385 */
386 wait_queue_head_t * wait_table;
02b694de 387 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
388 unsigned long wait_table_bits;
389
390 /*
391 * Discontig memory support fields.
392 */
393 struct pglist_data *zone_pgdat;
1da177e4
LT
394 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
395 unsigned long zone_start_pfn;
396
bdc8cb98
DH
397 /*
398 * zone_start_pfn, spanned_pages and present_pages are all
399 * protected by span_seqlock. It is a seqlock because it has
400 * to be read outside of zone->lock, and it is done in the main
401 * allocator path. But, it is written quite infrequently.
402 *
403 * The lock is declared along with zone->lock because it is
404 * frequently read in proximity to zone->lock. It's good to
405 * give them a chance of being in the same cacheline.
406 */
1da177e4
LT
407 unsigned long spanned_pages; /* total size, including holes */
408 unsigned long present_pages; /* amount of memory (excluding holes) */
409
410 /*
411 * rarely used fields:
412 */
15ad7cdc 413 const char *name;
22fc6ecc 414} ____cacheline_internodealigned_in_smp;
1da177e4 415
e815af95
DR
416typedef enum {
417 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
418 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 419 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
420} zone_flags_t;
421
422static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
423{
424 set_bit(flag, &zone->flags);
425}
d773ed6b
DR
426
427static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
428{
429 return test_and_set_bit(flag, &zone->flags);
430}
431
e815af95
DR
432static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
433{
434 clear_bit(flag, &zone->flags);
435}
436
437static inline int zone_is_all_unreclaimable(const struct zone *zone)
438{
439 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
440}
d773ed6b 441
e815af95
DR
442static inline int zone_is_reclaim_locked(const struct zone *zone)
443{
444 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
445}
d773ed6b 446
098d7f12
DR
447static inline int zone_is_oom_locked(const struct zone *zone)
448{
449 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
450}
e815af95 451
1da177e4
LT
452/*
453 * The "priority" of VM scanning is how much of the queues we will scan in one
454 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
455 * queues ("queue_length >> 12") during an aging round.
456 */
457#define DEF_PRIORITY 12
458
9276b1bc
PJ
459/* Maximum number of zones on a zonelist */
460#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
461
462#ifdef CONFIG_NUMA
523b9458
CL
463
464/*
465 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
466 * allocations to a single node for GFP_THISNODE.
467 *
54a6eb5c
MG
468 * [0] : Zonelist with fallback
469 * [1] : No fallback (GFP_THISNODE)
523b9458 470 */
54a6eb5c 471#define MAX_ZONELISTS 2
523b9458
CL
472
473
9276b1bc
PJ
474/*
475 * We cache key information from each zonelist for smaller cache
476 * footprint when scanning for free pages in get_page_from_freelist().
477 *
478 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
479 * up short of free memory since the last time (last_fullzone_zap)
480 * we zero'd fullzones.
481 * 2) The array z_to_n[] maps each zone in the zonelist to its node
482 * id, so that we can efficiently evaluate whether that node is
483 * set in the current tasks mems_allowed.
484 *
485 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
486 * indexed by a zones offset in the zonelist zones[] array.
487 *
488 * The get_page_from_freelist() routine does two scans. During the
489 * first scan, we skip zones whose corresponding bit in 'fullzones'
490 * is set or whose corresponding node in current->mems_allowed (which
491 * comes from cpusets) is not set. During the second scan, we bypass
492 * this zonelist_cache, to ensure we look methodically at each zone.
493 *
494 * Once per second, we zero out (zap) fullzones, forcing us to
495 * reconsider nodes that might have regained more free memory.
496 * The field last_full_zap is the time we last zapped fullzones.
497 *
498 * This mechanism reduces the amount of time we waste repeatedly
499 * reexaming zones for free memory when they just came up low on
500 * memory momentarilly ago.
501 *
502 * The zonelist_cache struct members logically belong in struct
503 * zonelist. However, the mempolicy zonelists constructed for
504 * MPOL_BIND are intentionally variable length (and usually much
505 * shorter). A general purpose mechanism for handling structs with
506 * multiple variable length members is more mechanism than we want
507 * here. We resort to some special case hackery instead.
508 *
509 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
510 * part because they are shorter), so we put the fixed length stuff
511 * at the front of the zonelist struct, ending in a variable length
512 * zones[], as is needed by MPOL_BIND.
513 *
514 * Then we put the optional zonelist cache on the end of the zonelist
515 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
516 * the fixed length portion at the front of the struct. This pointer
517 * both enables us to find the zonelist cache, and in the case of
518 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
519 * to know that the zonelist cache is not there.
520 *
521 * The end result is that struct zonelists come in two flavors:
522 * 1) The full, fixed length version, shown below, and
523 * 2) The custom zonelists for MPOL_BIND.
524 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
525 *
526 * Even though there may be multiple CPU cores on a node modifying
527 * fullzones or last_full_zap in the same zonelist_cache at the same
528 * time, we don't lock it. This is just hint data - if it is wrong now
529 * and then, the allocator will still function, perhaps a bit slower.
530 */
531
532
533struct zonelist_cache {
9276b1bc 534 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 535 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
536 unsigned long last_full_zap; /* when last zap'd (jiffies) */
537};
538#else
54a6eb5c 539#define MAX_ZONELISTS 1
9276b1bc
PJ
540struct zonelist_cache;
541#endif
542
dd1a239f
MG
543/*
544 * This struct contains information about a zone in a zonelist. It is stored
545 * here to avoid dereferences into large structures and lookups of tables
546 */
547struct zoneref {
548 struct zone *zone; /* Pointer to actual zone */
549 int zone_idx; /* zone_idx(zoneref->zone) */
550};
551
1da177e4
LT
552/*
553 * One allocation request operates on a zonelist. A zonelist
554 * is a list of zones, the first one is the 'goal' of the
555 * allocation, the other zones are fallback zones, in decreasing
556 * priority.
557 *
9276b1bc
PJ
558 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
559 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
560 * *
561 * To speed the reading of the zonelist, the zonerefs contain the zone index
562 * of the entry being read. Helper functions to access information given
563 * a struct zoneref are
564 *
565 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
566 * zonelist_zone_idx() - Return the index of the zone for an entry
567 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
568 */
569struct zonelist {
9276b1bc 570 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 571 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
572#ifdef CONFIG_NUMA
573 struct zonelist_cache zlcache; // optional ...
574#endif
1da177e4
LT
575};
576
c713216d
MG
577#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
578struct node_active_region {
579 unsigned long start_pfn;
580 unsigned long end_pfn;
581 int nid;
582};
583#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 584
5b99cd0e
HC
585#ifndef CONFIG_DISCONTIGMEM
586/* The array of struct pages - for discontigmem use pgdat->lmem_map */
587extern struct page *mem_map;
588#endif
589
1da177e4
LT
590/*
591 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
592 * (mostly NUMA machines?) to denote a higher-level memory zone than the
593 * zone denotes.
594 *
595 * On NUMA machines, each NUMA node would have a pg_data_t to describe
596 * it's memory layout.
597 *
598 * Memory statistics and page replacement data structures are maintained on a
599 * per-zone basis.
600 */
601struct bootmem_data;
602typedef struct pglist_data {
603 struct zone node_zones[MAX_NR_ZONES];
523b9458 604 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 605 int nr_zones;
52d4b9ac 606#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 607 struct page *node_mem_map;
52d4b9ac
KH
608#ifdef CONFIG_CGROUP_MEM_RES_CTLR
609 struct page_cgroup *node_page_cgroup;
610#endif
d41dee36 611#endif
1da177e4 612 struct bootmem_data *bdata;
208d54e5
DH
613#ifdef CONFIG_MEMORY_HOTPLUG
614 /*
615 * Must be held any time you expect node_start_pfn, node_present_pages
616 * or node_spanned_pages stay constant. Holding this will also
617 * guarantee that any pfn_valid() stays that way.
618 *
619 * Nests above zone->lock and zone->size_seqlock.
620 */
621 spinlock_t node_size_lock;
622#endif
1da177e4
LT
623 unsigned long node_start_pfn;
624 unsigned long node_present_pages; /* total number of physical pages */
625 unsigned long node_spanned_pages; /* total size of physical page
626 range, including holes */
627 int node_id;
1da177e4
LT
628 wait_queue_head_t kswapd_wait;
629 struct task_struct *kswapd;
630 int kswapd_max_order;
631} pg_data_t;
632
633#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
634#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 635#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 636#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
637#else
638#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
639#endif
408fde81 640#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 641
208d54e5
DH
642#include <linux/memory_hotplug.h>
643
1da177e4
LT
644void get_zone_counts(unsigned long *active, unsigned long *inactive,
645 unsigned long *free);
646void build_all_zonelists(void);
647void wakeup_kswapd(struct zone *zone, int order);
648int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 649 int classzone_idx, int alloc_flags);
a2f3aa02
DH
650enum memmap_context {
651 MEMMAP_EARLY,
652 MEMMAP_HOTPLUG,
653};
718127cc 654extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
655 unsigned long size,
656 enum memmap_context context);
718127cc 657
1da177e4
LT
658#ifdef CONFIG_HAVE_MEMORY_PRESENT
659void memory_present(int nid, unsigned long start, unsigned long end);
660#else
661static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
662#endif
663
664#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
665unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
666#endif
667
668/*
669 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
670 */
671#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
672
f3fe6512
CK
673static inline int populated_zone(struct zone *zone)
674{
675 return (!!zone->present_pages);
676}
677
2a1e274a
MG
678extern int movable_zone;
679
680static inline int zone_movable_is_highmem(void)
681{
682#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
683 return movable_zone == ZONE_HIGHMEM;
684#else
685 return 0;
686#endif
687}
688
2f1b6248 689static inline int is_highmem_idx(enum zone_type idx)
1da177e4 690{
e53ef38d 691#ifdef CONFIG_HIGHMEM
2a1e274a
MG
692 return (idx == ZONE_HIGHMEM ||
693 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
694#else
695 return 0;
696#endif
1da177e4
LT
697}
698
2f1b6248 699static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
700{
701 return (idx == ZONE_NORMAL);
702}
9328b8fa 703
1da177e4
LT
704/**
705 * is_highmem - helper function to quickly check if a struct zone is a
706 * highmem zone or not. This is an attempt to keep references
707 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
708 * @zone - pointer to struct zone variable
709 */
710static inline int is_highmem(struct zone *zone)
711{
e53ef38d 712#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
713 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
714 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
715 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
716 zone_movable_is_highmem());
e53ef38d
CL
717#else
718 return 0;
719#endif
1da177e4
LT
720}
721
722static inline int is_normal(struct zone *zone)
723{
724 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
725}
726
9328b8fa
NP
727static inline int is_dma32(struct zone *zone)
728{
fb0e7942 729#ifdef CONFIG_ZONE_DMA32
9328b8fa 730 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
731#else
732 return 0;
733#endif
9328b8fa
NP
734}
735
736static inline int is_dma(struct zone *zone)
737{
4b51d669 738#ifdef CONFIG_ZONE_DMA
9328b8fa 739 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
740#else
741 return 0;
742#endif
9328b8fa
NP
743}
744
1da177e4
LT
745/* These two functions are used to setup the per zone pages min values */
746struct ctl_table;
747struct file;
748int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
749 void __user *, size_t *, loff_t *);
750extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
751int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
752 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
753int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
754 void __user *, size_t *, loff_t *);
9614634f
CL
755int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
756 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
757int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
758 struct file *, void __user *, size_t *, loff_t *);
1da177e4 759
f0c0b2b8
KH
760extern int numa_zonelist_order_handler(struct ctl_table *, int,
761 struct file *, void __user *, size_t *, loff_t *);
762extern char numa_zonelist_order[];
763#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
764
93b7504e 765#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
766
767extern struct pglist_data contig_page_data;
768#define NODE_DATA(nid) (&contig_page_data)
769#define NODE_MEM_MAP(nid) mem_map
1da177e4 770
93b7504e 771#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
772
773#include <asm/mmzone.h>
774
93b7504e 775#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 776
95144c78
KH
777extern struct pglist_data *first_online_pgdat(void);
778extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
779extern struct zone *next_zone(struct zone *zone);
8357f869
KH
780
781/**
12d15f0d 782 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
783 * @pgdat - pointer to a pg_data_t variable
784 */
785#define for_each_online_pgdat(pgdat) \
786 for (pgdat = first_online_pgdat(); \
787 pgdat; \
788 pgdat = next_online_pgdat(pgdat))
8357f869
KH
789/**
790 * for_each_zone - helper macro to iterate over all memory zones
791 * @zone - pointer to struct zone variable
792 *
793 * The user only needs to declare the zone variable, for_each_zone
794 * fills it in.
795 */
796#define for_each_zone(zone) \
797 for (zone = (first_online_pgdat())->node_zones; \
798 zone; \
799 zone = next_zone(zone))
800
ee99c71c
KM
801#define for_each_populated_zone(zone) \
802 for (zone = (first_online_pgdat())->node_zones; \
803 zone; \
804 zone = next_zone(zone)) \
805 if (!populated_zone(zone)) \
806 ; /* do nothing */ \
807 else
808
dd1a239f
MG
809static inline struct zone *zonelist_zone(struct zoneref *zoneref)
810{
811 return zoneref->zone;
812}
813
814static inline int zonelist_zone_idx(struct zoneref *zoneref)
815{
816 return zoneref->zone_idx;
817}
818
819static inline int zonelist_node_idx(struct zoneref *zoneref)
820{
821#ifdef CONFIG_NUMA
822 /* zone_to_nid not available in this context */
823 return zoneref->zone->node;
824#else
825 return 0;
826#endif /* CONFIG_NUMA */
827}
828
19770b32
MG
829/**
830 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
831 * @z - The cursor used as a starting point for the search
832 * @highest_zoneidx - The zone index of the highest zone to return
833 * @nodes - An optional nodemask to filter the zonelist with
834 * @zone - The first suitable zone found is returned via this parameter
835 *
836 * This function returns the next zone at or below a given zone index that is
837 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
838 * search. The zoneref returned is a cursor that represents the current zone
839 * being examined. It should be advanced by one before calling
840 * next_zones_zonelist again.
19770b32
MG
841 */
842struct zoneref *next_zones_zonelist(struct zoneref *z,
843 enum zone_type highest_zoneidx,
844 nodemask_t *nodes,
845 struct zone **zone);
dd1a239f 846
19770b32
MG
847/**
848 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
849 * @zonelist - The zonelist to search for a suitable zone
850 * @highest_zoneidx - The zone index of the highest zone to return
851 * @nodes - An optional nodemask to filter the zonelist with
852 * @zone - The first suitable zone found is returned via this parameter
853 *
854 * This function returns the first zone at or below a given zone index that is
855 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
856 * used to iterate the zonelist with next_zones_zonelist by advancing it by
857 * one before calling.
19770b32 858 */
dd1a239f 859static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
860 enum zone_type highest_zoneidx,
861 nodemask_t *nodes,
862 struct zone **zone)
54a6eb5c 863{
19770b32
MG
864 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
865 zone);
54a6eb5c
MG
866}
867
19770b32
MG
868/**
869 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
870 * @zone - The current zone in the iterator
871 * @z - The current pointer within zonelist->zones being iterated
872 * @zlist - The zonelist being iterated
873 * @highidx - The zone index of the highest zone to return
874 * @nodemask - Nodemask allowed by the allocator
875 *
876 * This iterator iterates though all zones at or below a given zone index and
877 * within a given nodemask
878 */
879#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
880 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
881 zone; \
5bead2a0 882 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
883
884/**
885 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
886 * @zone - The current zone in the iterator
887 * @z - The current pointer within zonelist->zones being iterated
888 * @zlist - The zonelist being iterated
889 * @highidx - The zone index of the highest zone to return
890 *
891 * This iterator iterates though all zones at or below a given zone index.
892 */
893#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 894 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 895
d41dee36
AW
896#ifdef CONFIG_SPARSEMEM
897#include <asm/sparsemem.h>
898#endif
899
c713216d
MG
900#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
901 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
902static inline unsigned long early_pfn_to_nid(unsigned long pfn)
903{
904 return 0;
905}
b159d43f
AW
906#endif
907
2bdaf115
AW
908#ifdef CONFIG_FLATMEM
909#define pfn_to_nid(pfn) (0)
910#endif
911
d41dee36
AW
912#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
913#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
914
915#ifdef CONFIG_SPARSEMEM
916
917/*
918 * SECTION_SHIFT #bits space required to store a section #
919 *
920 * PA_SECTION_SHIFT physical address to/from section number
921 * PFN_SECTION_SHIFT pfn to/from section number
922 */
923#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
924
925#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
926#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
927
928#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
929
930#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
931#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
932
835c134e 933#define SECTION_BLOCKFLAGS_BITS \
d9c23400 934 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 935
d41dee36
AW
936#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
937#error Allocator MAX_ORDER exceeds SECTION_SIZE
938#endif
939
940struct page;
52d4b9ac 941struct page_cgroup;
d41dee36 942struct mem_section {
29751f69
AW
943 /*
944 * This is, logically, a pointer to an array of struct
945 * pages. However, it is stored with some other magic.
946 * (see sparse.c::sparse_init_one_section())
947 *
30c253e6
AW
948 * Additionally during early boot we encode node id of
949 * the location of the section here to guide allocation.
950 * (see sparse.c::memory_present())
951 *
29751f69
AW
952 * Making it a UL at least makes someone do a cast
953 * before using it wrong.
954 */
955 unsigned long section_mem_map;
5c0e3066
MG
956
957 /* See declaration of similar field in struct zone */
958 unsigned long *pageblock_flags;
52d4b9ac
KH
959#ifdef CONFIG_CGROUP_MEM_RES_CTLR
960 /*
961 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
962 * section. (see memcontrol.h/page_cgroup.h about this.)
963 */
964 struct page_cgroup *page_cgroup;
965 unsigned long pad;
966#endif
d41dee36
AW
967};
968
3e347261
BP
969#ifdef CONFIG_SPARSEMEM_EXTREME
970#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
971#else
972#define SECTIONS_PER_ROOT 1
973#endif
802f192e 974
3e347261
BP
975#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
976#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
977#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 978
3e347261
BP
979#ifdef CONFIG_SPARSEMEM_EXTREME
980extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 981#else
3e347261
BP
982extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
983#endif
d41dee36 984
29751f69
AW
985static inline struct mem_section *__nr_to_section(unsigned long nr)
986{
3e347261
BP
987 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
988 return NULL;
989 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 990}
4ca644d9 991extern int __section_nr(struct mem_section* ms);
04753278 992extern unsigned long usemap_size(void);
29751f69
AW
993
994/*
995 * We use the lower bits of the mem_map pointer to store
996 * a little bit of information. There should be at least
997 * 3 bits here due to 32-bit alignment.
998 */
999#define SECTION_MARKED_PRESENT (1UL<<0)
1000#define SECTION_HAS_MEM_MAP (1UL<<1)
1001#define SECTION_MAP_LAST_BIT (1UL<<2)
1002#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1003#define SECTION_NID_SHIFT 2
29751f69
AW
1004
1005static inline struct page *__section_mem_map_addr(struct mem_section *section)
1006{
1007 unsigned long map = section->section_mem_map;
1008 map &= SECTION_MAP_MASK;
1009 return (struct page *)map;
1010}
1011
540557b9 1012static inline int present_section(struct mem_section *section)
29751f69 1013{
802f192e 1014 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1015}
1016
540557b9
AW
1017static inline int present_section_nr(unsigned long nr)
1018{
1019 return present_section(__nr_to_section(nr));
1020}
1021
1022static inline int valid_section(struct mem_section *section)
29751f69 1023{
802f192e 1024 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1025}
1026
1027static inline int valid_section_nr(unsigned long nr)
1028{
1029 return valid_section(__nr_to_section(nr));
1030}
1031
d41dee36
AW
1032static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1033{
29751f69 1034 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1035}
1036
d41dee36
AW
1037static inline int pfn_valid(unsigned long pfn)
1038{
1039 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1040 return 0;
29751f69 1041 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1042}
1043
540557b9
AW
1044static inline int pfn_present(unsigned long pfn)
1045{
1046 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1047 return 0;
1048 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1049}
1050
d41dee36
AW
1051/*
1052 * These are _only_ used during initialisation, therefore they
1053 * can use __initdata ... They could have names to indicate
1054 * this restriction.
1055 */
1056#ifdef CONFIG_NUMA
161599ff
AW
1057#define pfn_to_nid(pfn) \
1058({ \
1059 unsigned long __pfn_to_nid_pfn = (pfn); \
1060 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1061})
2bdaf115
AW
1062#else
1063#define pfn_to_nid(pfn) (0)
d41dee36
AW
1064#endif
1065
d41dee36
AW
1066#define early_pfn_valid(pfn) pfn_valid(pfn)
1067void sparse_init(void);
1068#else
1069#define sparse_init() do {} while (0)
28ae55c9 1070#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1071#endif /* CONFIG_SPARSEMEM */
1072
75167957 1073#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1074bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1075#else
1076#define early_pfn_in_nid(pfn, nid) (1)
1077#endif
1078
d41dee36
AW
1079#ifndef early_pfn_valid
1080#define early_pfn_valid(pfn) (1)
1081#endif
1082
1083void memory_present(int nid, unsigned long start, unsigned long end);
1084unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1085
14e07298
AW
1086/*
1087 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1088 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1089 * pfn_valid_within() should be used in this case; we optimise this away
1090 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1091 */
1092#ifdef CONFIG_HOLES_IN_ZONE
1093#define pfn_valid_within(pfn) pfn_valid(pfn)
1094#else
1095#define pfn_valid_within(pfn) (1)
1096#endif
1097
eb33575c
MG
1098#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1099/*
1100 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1101 * associated with it or not. In FLATMEM, it is expected that holes always
1102 * have valid memmap as long as there is valid PFNs either side of the hole.
1103 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1104 * entire section.
1105 *
1106 * However, an ARM, and maybe other embedded architectures in the future
1107 * free memmap backing holes to save memory on the assumption the memmap is
1108 * never used. The page_zone linkages are then broken even though pfn_valid()
1109 * returns true. A walker of the full memmap must then do this additional
1110 * check to ensure the memmap they are looking at is sane by making sure
1111 * the zone and PFN linkages are still valid. This is expensive, but walkers
1112 * of the full memmap are extremely rare.
1113 */
1114int memmap_valid_within(unsigned long pfn,
1115 struct page *page, struct zone *zone);
1116#else
1117static inline int memmap_valid_within(unsigned long pfn,
1118 struct page *page, struct zone *zone)
1119{
1120 return 1;
1121}
1122#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1123
97965478 1124#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1125#endif /* !__ASSEMBLY__ */
1da177e4 1126#endif /* _LINUX_MMZONE_H */
This page took 0.734183 seconds and 5 git commands to generate.