IB/Verbs: Improve docs for rdma-helpers
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
dd5f03be 51#include <uapi/linux/if_ether.h>
e2773c06 52
60063497 53#include <linux/atomic.h>
882214e2 54#include <linux/mmu_notifier.h>
e2773c06 55#include <asm/uaccess.h>
1da177e4 56
f0626710
TH
57extern struct workqueue_struct *ib_wq;
58
1da177e4
LT
59union ib_gid {
60 u8 raw[16];
61 struct {
97f52eb4
SH
62 __be64 subnet_prefix;
63 __be64 interface_id;
1da177e4
LT
64 } global;
65};
66
07ebafba
TT
67enum rdma_node_type {
68 /* IB values map to NodeInfo:NodeType. */
69 RDMA_NODE_IB_CA = 1,
70 RDMA_NODE_IB_SWITCH,
71 RDMA_NODE_IB_ROUTER,
180771a3
UM
72 RDMA_NODE_RNIC,
73 RDMA_NODE_USNIC,
5db5765e 74 RDMA_NODE_USNIC_UDP,
1da177e4
LT
75};
76
07ebafba
TT
77enum rdma_transport_type {
78 RDMA_TRANSPORT_IB,
180771a3 79 RDMA_TRANSPORT_IWARP,
248567f7
UM
80 RDMA_TRANSPORT_USNIC,
81 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
82};
83
6b90a6d6
MW
84enum rdma_protocol_type {
85 RDMA_PROTOCOL_IB,
86 RDMA_PROTOCOL_IBOE,
87 RDMA_PROTOCOL_IWARP,
88 RDMA_PROTOCOL_USNIC_UDP
89};
90
8385fd84
RD
91__attribute_const__ enum rdma_transport_type
92rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 93
a3f5adaf
EC
94enum rdma_link_layer {
95 IB_LINK_LAYER_UNSPECIFIED,
96 IB_LINK_LAYER_INFINIBAND,
97 IB_LINK_LAYER_ETHERNET,
98};
99
1da177e4
LT
100enum ib_device_cap_flags {
101 IB_DEVICE_RESIZE_MAX_WR = 1,
102 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
103 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
104 IB_DEVICE_RAW_MULTI = (1<<3),
105 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
106 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
107 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
108 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
109 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
110 IB_DEVICE_INIT_TYPE = (1<<9),
111 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
112 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
113 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
114 IB_DEVICE_SRQ_RESIZE = (1<<13),
115 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 116 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 117 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
118 IB_DEVICE_MEM_WINDOW = (1<<17),
119 /*
120 * Devices should set IB_DEVICE_UD_IP_SUM if they support
121 * insertion of UDP and TCP checksum on outgoing UD IPoIB
122 * messages and can verify the validity of checksum for
123 * incoming messages. Setting this flag implies that the
124 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
125 */
126 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 127 IB_DEVICE_UD_TSO = (1<<19),
59991f94 128 IB_DEVICE_XRC = (1<<20),
00f7ec36 129 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 130 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 131 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 132 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335 133 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
134 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
135 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
136};
137
138enum ib_signature_prot_cap {
139 IB_PROT_T10DIF_TYPE_1 = 1,
140 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
141 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
142};
143
144enum ib_signature_guard_cap {
145 IB_GUARD_T10DIF_CRC = 1,
146 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
147};
148
149enum ib_atomic_cap {
150 IB_ATOMIC_NONE,
151 IB_ATOMIC_HCA,
152 IB_ATOMIC_GLOB
153};
154
860f10a7
SG
155enum ib_odp_general_cap_bits {
156 IB_ODP_SUPPORT = 1 << 0,
157};
158
159enum ib_odp_transport_cap_bits {
160 IB_ODP_SUPPORT_SEND = 1 << 0,
161 IB_ODP_SUPPORT_RECV = 1 << 1,
162 IB_ODP_SUPPORT_WRITE = 1 << 2,
163 IB_ODP_SUPPORT_READ = 1 << 3,
164 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
165};
166
167struct ib_odp_caps {
168 uint64_t general_caps;
169 struct {
170 uint32_t rc_odp_caps;
171 uint32_t uc_odp_caps;
172 uint32_t ud_odp_caps;
173 } per_transport_caps;
174};
175
1da177e4
LT
176struct ib_device_attr {
177 u64 fw_ver;
97f52eb4 178 __be64 sys_image_guid;
1da177e4
LT
179 u64 max_mr_size;
180 u64 page_size_cap;
181 u32 vendor_id;
182 u32 vendor_part_id;
183 u32 hw_ver;
184 int max_qp;
185 int max_qp_wr;
186 int device_cap_flags;
187 int max_sge;
188 int max_sge_rd;
189 int max_cq;
190 int max_cqe;
191 int max_mr;
192 int max_pd;
193 int max_qp_rd_atom;
194 int max_ee_rd_atom;
195 int max_res_rd_atom;
196 int max_qp_init_rd_atom;
197 int max_ee_init_rd_atom;
198 enum ib_atomic_cap atomic_cap;
5e80ba8f 199 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
200 int max_ee;
201 int max_rdd;
202 int max_mw;
203 int max_raw_ipv6_qp;
204 int max_raw_ethy_qp;
205 int max_mcast_grp;
206 int max_mcast_qp_attach;
207 int max_total_mcast_qp_attach;
208 int max_ah;
209 int max_fmr;
210 int max_map_per_fmr;
211 int max_srq;
212 int max_srq_wr;
213 int max_srq_sge;
00f7ec36 214 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
215 u16 max_pkeys;
216 u8 local_ca_ack_delay;
1b01d335
SG
217 int sig_prot_cap;
218 int sig_guard_cap;
860f10a7 219 struct ib_odp_caps odp_caps;
1da177e4
LT
220};
221
222enum ib_mtu {
223 IB_MTU_256 = 1,
224 IB_MTU_512 = 2,
225 IB_MTU_1024 = 3,
226 IB_MTU_2048 = 4,
227 IB_MTU_4096 = 5
228};
229
230static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
231{
232 switch (mtu) {
233 case IB_MTU_256: return 256;
234 case IB_MTU_512: return 512;
235 case IB_MTU_1024: return 1024;
236 case IB_MTU_2048: return 2048;
237 case IB_MTU_4096: return 4096;
238 default: return -1;
239 }
240}
241
242enum ib_port_state {
243 IB_PORT_NOP = 0,
244 IB_PORT_DOWN = 1,
245 IB_PORT_INIT = 2,
246 IB_PORT_ARMED = 3,
247 IB_PORT_ACTIVE = 4,
248 IB_PORT_ACTIVE_DEFER = 5
249};
250
251enum ib_port_cap_flags {
252 IB_PORT_SM = 1 << 1,
253 IB_PORT_NOTICE_SUP = 1 << 2,
254 IB_PORT_TRAP_SUP = 1 << 3,
255 IB_PORT_OPT_IPD_SUP = 1 << 4,
256 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
257 IB_PORT_SL_MAP_SUP = 1 << 6,
258 IB_PORT_MKEY_NVRAM = 1 << 7,
259 IB_PORT_PKEY_NVRAM = 1 << 8,
260 IB_PORT_LED_INFO_SUP = 1 << 9,
261 IB_PORT_SM_DISABLED = 1 << 10,
262 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
263 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 264 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
265 IB_PORT_CM_SUP = 1 << 16,
266 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
267 IB_PORT_REINIT_SUP = 1 << 18,
268 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
269 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
270 IB_PORT_DR_NOTICE_SUP = 1 << 21,
271 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
272 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
273 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27
MS
274 IB_PORT_CLIENT_REG_SUP = 1 << 25,
275 IB_PORT_IP_BASED_GIDS = 1 << 26
1da177e4
LT
276};
277
278enum ib_port_width {
279 IB_WIDTH_1X = 1,
280 IB_WIDTH_4X = 2,
281 IB_WIDTH_8X = 4,
282 IB_WIDTH_12X = 8
283};
284
285static inline int ib_width_enum_to_int(enum ib_port_width width)
286{
287 switch (width) {
288 case IB_WIDTH_1X: return 1;
289 case IB_WIDTH_4X: return 4;
290 case IB_WIDTH_8X: return 8;
291 case IB_WIDTH_12X: return 12;
292 default: return -1;
293 }
294}
295
2e96691c
OG
296enum ib_port_speed {
297 IB_SPEED_SDR = 1,
298 IB_SPEED_DDR = 2,
299 IB_SPEED_QDR = 4,
300 IB_SPEED_FDR10 = 8,
301 IB_SPEED_FDR = 16,
302 IB_SPEED_EDR = 32
303};
304
7f624d02
SW
305struct ib_protocol_stats {
306 /* TBD... */
307};
308
309struct iw_protocol_stats {
310 u64 ipInReceives;
311 u64 ipInHdrErrors;
312 u64 ipInTooBigErrors;
313 u64 ipInNoRoutes;
314 u64 ipInAddrErrors;
315 u64 ipInUnknownProtos;
316 u64 ipInTruncatedPkts;
317 u64 ipInDiscards;
318 u64 ipInDelivers;
319 u64 ipOutForwDatagrams;
320 u64 ipOutRequests;
321 u64 ipOutDiscards;
322 u64 ipOutNoRoutes;
323 u64 ipReasmTimeout;
324 u64 ipReasmReqds;
325 u64 ipReasmOKs;
326 u64 ipReasmFails;
327 u64 ipFragOKs;
328 u64 ipFragFails;
329 u64 ipFragCreates;
330 u64 ipInMcastPkts;
331 u64 ipOutMcastPkts;
332 u64 ipInBcastPkts;
333 u64 ipOutBcastPkts;
334
335 u64 tcpRtoAlgorithm;
336 u64 tcpRtoMin;
337 u64 tcpRtoMax;
338 u64 tcpMaxConn;
339 u64 tcpActiveOpens;
340 u64 tcpPassiveOpens;
341 u64 tcpAttemptFails;
342 u64 tcpEstabResets;
343 u64 tcpCurrEstab;
344 u64 tcpInSegs;
345 u64 tcpOutSegs;
346 u64 tcpRetransSegs;
347 u64 tcpInErrs;
348 u64 tcpOutRsts;
349};
350
351union rdma_protocol_stats {
352 struct ib_protocol_stats ib;
353 struct iw_protocol_stats iw;
354};
355
1da177e4
LT
356struct ib_port_attr {
357 enum ib_port_state state;
358 enum ib_mtu max_mtu;
359 enum ib_mtu active_mtu;
360 int gid_tbl_len;
361 u32 port_cap_flags;
362 u32 max_msg_sz;
363 u32 bad_pkey_cntr;
364 u32 qkey_viol_cntr;
365 u16 pkey_tbl_len;
366 u16 lid;
367 u16 sm_lid;
368 u8 lmc;
369 u8 max_vl_num;
370 u8 sm_sl;
371 u8 subnet_timeout;
372 u8 init_type_reply;
373 u8 active_width;
374 u8 active_speed;
375 u8 phys_state;
376};
377
378enum ib_device_modify_flags {
c5bcbbb9
RD
379 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
380 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
381};
382
383struct ib_device_modify {
384 u64 sys_image_guid;
c5bcbbb9 385 char node_desc[64];
1da177e4
LT
386};
387
388enum ib_port_modify_flags {
389 IB_PORT_SHUTDOWN = 1,
390 IB_PORT_INIT_TYPE = (1<<2),
391 IB_PORT_RESET_QKEY_CNTR = (1<<3)
392};
393
394struct ib_port_modify {
395 u32 set_port_cap_mask;
396 u32 clr_port_cap_mask;
397 u8 init_type;
398};
399
400enum ib_event_type {
401 IB_EVENT_CQ_ERR,
402 IB_EVENT_QP_FATAL,
403 IB_EVENT_QP_REQ_ERR,
404 IB_EVENT_QP_ACCESS_ERR,
405 IB_EVENT_COMM_EST,
406 IB_EVENT_SQ_DRAINED,
407 IB_EVENT_PATH_MIG,
408 IB_EVENT_PATH_MIG_ERR,
409 IB_EVENT_DEVICE_FATAL,
410 IB_EVENT_PORT_ACTIVE,
411 IB_EVENT_PORT_ERR,
412 IB_EVENT_LID_CHANGE,
413 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
414 IB_EVENT_SM_CHANGE,
415 IB_EVENT_SRQ_ERR,
416 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 417 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
418 IB_EVENT_CLIENT_REREGISTER,
419 IB_EVENT_GID_CHANGE,
1da177e4
LT
420};
421
422struct ib_event {
423 struct ib_device *device;
424 union {
425 struct ib_cq *cq;
426 struct ib_qp *qp;
d41fcc67 427 struct ib_srq *srq;
1da177e4
LT
428 u8 port_num;
429 } element;
430 enum ib_event_type event;
431};
432
433struct ib_event_handler {
434 struct ib_device *device;
435 void (*handler)(struct ib_event_handler *, struct ib_event *);
436 struct list_head list;
437};
438
439#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
440 do { \
441 (_ptr)->device = _device; \
442 (_ptr)->handler = _handler; \
443 INIT_LIST_HEAD(&(_ptr)->list); \
444 } while (0)
445
446struct ib_global_route {
447 union ib_gid dgid;
448 u32 flow_label;
449 u8 sgid_index;
450 u8 hop_limit;
451 u8 traffic_class;
452};
453
513789ed 454struct ib_grh {
97f52eb4
SH
455 __be32 version_tclass_flow;
456 __be16 paylen;
513789ed
HR
457 u8 next_hdr;
458 u8 hop_limit;
459 union ib_gid sgid;
460 union ib_gid dgid;
461};
462
1da177e4
LT
463enum {
464 IB_MULTICAST_QPN = 0xffffff
465};
466
f3a7c66b 467#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 468
1da177e4
LT
469enum ib_ah_flags {
470 IB_AH_GRH = 1
471};
472
bf6a9e31
JM
473enum ib_rate {
474 IB_RATE_PORT_CURRENT = 0,
475 IB_RATE_2_5_GBPS = 2,
476 IB_RATE_5_GBPS = 5,
477 IB_RATE_10_GBPS = 3,
478 IB_RATE_20_GBPS = 6,
479 IB_RATE_30_GBPS = 4,
480 IB_RATE_40_GBPS = 7,
481 IB_RATE_60_GBPS = 8,
482 IB_RATE_80_GBPS = 9,
71eeba16
MA
483 IB_RATE_120_GBPS = 10,
484 IB_RATE_14_GBPS = 11,
485 IB_RATE_56_GBPS = 12,
486 IB_RATE_112_GBPS = 13,
487 IB_RATE_168_GBPS = 14,
488 IB_RATE_25_GBPS = 15,
489 IB_RATE_100_GBPS = 16,
490 IB_RATE_200_GBPS = 17,
491 IB_RATE_300_GBPS = 18
bf6a9e31
JM
492};
493
494/**
495 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
496 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
497 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
498 * @rate: rate to convert.
499 */
8385fd84 500__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 501
71eeba16
MA
502/**
503 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
504 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
505 * @rate: rate to convert.
506 */
8385fd84 507__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 508
17cd3a2d
SG
509enum ib_mr_create_flags {
510 IB_MR_SIGNATURE_EN = 1,
511};
512
513/**
514 * ib_mr_init_attr - Memory region init attributes passed to routine
515 * ib_create_mr.
516 * @max_reg_descriptors: max number of registration descriptors that
517 * may be used with registration work requests.
518 * @flags: MR creation flags bit mask.
519 */
520struct ib_mr_init_attr {
521 int max_reg_descriptors;
522 u32 flags;
523};
524
1b01d335 525/**
78eda2bb
SG
526 * Signature types
527 * IB_SIG_TYPE_NONE: Unprotected.
528 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 529 */
78eda2bb
SG
530enum ib_signature_type {
531 IB_SIG_TYPE_NONE,
532 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
533};
534
535/**
536 * Signature T10-DIF block-guard types
537 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
538 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
539 */
540enum ib_t10_dif_bg_type {
541 IB_T10DIF_CRC,
542 IB_T10DIF_CSUM
543};
544
545/**
546 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
547 * domain.
1b01d335
SG
548 * @bg_type: T10-DIF block guard type (CRC|CSUM)
549 * @pi_interval: protection information interval.
550 * @bg: seed of guard computation.
551 * @app_tag: application tag of guard block
552 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
553 * @ref_remap: Indicate wethear the reftag increments each block
554 * @app_escape: Indicate to skip block check if apptag=0xffff
555 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
556 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
557 */
558struct ib_t10_dif_domain {
1b01d335
SG
559 enum ib_t10_dif_bg_type bg_type;
560 u16 pi_interval;
561 u16 bg;
562 u16 app_tag;
563 u32 ref_tag;
78eda2bb
SG
564 bool ref_remap;
565 bool app_escape;
566 bool ref_escape;
567 u16 apptag_check_mask;
1b01d335
SG
568};
569
570/**
571 * struct ib_sig_domain - Parameters for signature domain
572 * @sig_type: specific signauture type
573 * @sig: union of all signature domain attributes that may
574 * be used to set domain layout.
575 */
576struct ib_sig_domain {
577 enum ib_signature_type sig_type;
578 union {
579 struct ib_t10_dif_domain dif;
580 } sig;
581};
582
583/**
584 * struct ib_sig_attrs - Parameters for signature handover operation
585 * @check_mask: bitmask for signature byte check (8 bytes)
586 * @mem: memory domain layout desciptor.
587 * @wire: wire domain layout desciptor.
588 */
589struct ib_sig_attrs {
590 u8 check_mask;
591 struct ib_sig_domain mem;
592 struct ib_sig_domain wire;
593};
594
595enum ib_sig_err_type {
596 IB_SIG_BAD_GUARD,
597 IB_SIG_BAD_REFTAG,
598 IB_SIG_BAD_APPTAG,
599};
600
601/**
602 * struct ib_sig_err - signature error descriptor
603 */
604struct ib_sig_err {
605 enum ib_sig_err_type err_type;
606 u32 expected;
607 u32 actual;
608 u64 sig_err_offset;
609 u32 key;
610};
611
612enum ib_mr_status_check {
613 IB_MR_CHECK_SIG_STATUS = 1,
614};
615
616/**
617 * struct ib_mr_status - Memory region status container
618 *
619 * @fail_status: Bitmask of MR checks status. For each
620 * failed check a corresponding status bit is set.
621 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
622 * failure.
623 */
624struct ib_mr_status {
625 u32 fail_status;
626 struct ib_sig_err sig_err;
627};
628
bf6a9e31
JM
629/**
630 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
631 * enum.
632 * @mult: multiple to convert.
633 */
8385fd84 634__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 635
1da177e4
LT
636struct ib_ah_attr {
637 struct ib_global_route grh;
638 u16 dlid;
639 u8 sl;
640 u8 src_path_bits;
641 u8 static_rate;
642 u8 ah_flags;
643 u8 port_num;
dd5f03be
MB
644 u8 dmac[ETH_ALEN];
645 u16 vlan_id;
1da177e4
LT
646};
647
648enum ib_wc_status {
649 IB_WC_SUCCESS,
650 IB_WC_LOC_LEN_ERR,
651 IB_WC_LOC_QP_OP_ERR,
652 IB_WC_LOC_EEC_OP_ERR,
653 IB_WC_LOC_PROT_ERR,
654 IB_WC_WR_FLUSH_ERR,
655 IB_WC_MW_BIND_ERR,
656 IB_WC_BAD_RESP_ERR,
657 IB_WC_LOC_ACCESS_ERR,
658 IB_WC_REM_INV_REQ_ERR,
659 IB_WC_REM_ACCESS_ERR,
660 IB_WC_REM_OP_ERR,
661 IB_WC_RETRY_EXC_ERR,
662 IB_WC_RNR_RETRY_EXC_ERR,
663 IB_WC_LOC_RDD_VIOL_ERR,
664 IB_WC_REM_INV_RD_REQ_ERR,
665 IB_WC_REM_ABORT_ERR,
666 IB_WC_INV_EECN_ERR,
667 IB_WC_INV_EEC_STATE_ERR,
668 IB_WC_FATAL_ERR,
669 IB_WC_RESP_TIMEOUT_ERR,
670 IB_WC_GENERAL_ERR
671};
672
673enum ib_wc_opcode {
674 IB_WC_SEND,
675 IB_WC_RDMA_WRITE,
676 IB_WC_RDMA_READ,
677 IB_WC_COMP_SWAP,
678 IB_WC_FETCH_ADD,
679 IB_WC_BIND_MW,
c93570f2 680 IB_WC_LSO,
00f7ec36
SW
681 IB_WC_LOCAL_INV,
682 IB_WC_FAST_REG_MR,
5e80ba8f
VS
683 IB_WC_MASKED_COMP_SWAP,
684 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
685/*
686 * Set value of IB_WC_RECV so consumers can test if a completion is a
687 * receive by testing (opcode & IB_WC_RECV).
688 */
689 IB_WC_RECV = 1 << 7,
690 IB_WC_RECV_RDMA_WITH_IMM
691};
692
693enum ib_wc_flags {
694 IB_WC_GRH = 1,
00f7ec36
SW
695 IB_WC_WITH_IMM = (1<<1),
696 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 697 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
698 IB_WC_WITH_SMAC = (1<<4),
699 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
700};
701
702struct ib_wc {
703 u64 wr_id;
704 enum ib_wc_status status;
705 enum ib_wc_opcode opcode;
706 u32 vendor_err;
707 u32 byte_len;
062dbb69 708 struct ib_qp *qp;
00f7ec36
SW
709 union {
710 __be32 imm_data;
711 u32 invalidate_rkey;
712 } ex;
1da177e4
LT
713 u32 src_qp;
714 int wc_flags;
715 u16 pkey_index;
716 u16 slid;
717 u8 sl;
718 u8 dlid_path_bits;
719 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
720 u8 smac[ETH_ALEN];
721 u16 vlan_id;
1da177e4
LT
722};
723
ed23a727
RD
724enum ib_cq_notify_flags {
725 IB_CQ_SOLICITED = 1 << 0,
726 IB_CQ_NEXT_COMP = 1 << 1,
727 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
728 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
729};
730
96104eda 731enum ib_srq_type {
418d5130
SH
732 IB_SRQT_BASIC,
733 IB_SRQT_XRC
96104eda
SH
734};
735
d41fcc67
RD
736enum ib_srq_attr_mask {
737 IB_SRQ_MAX_WR = 1 << 0,
738 IB_SRQ_LIMIT = 1 << 1,
739};
740
741struct ib_srq_attr {
742 u32 max_wr;
743 u32 max_sge;
744 u32 srq_limit;
745};
746
747struct ib_srq_init_attr {
748 void (*event_handler)(struct ib_event *, void *);
749 void *srq_context;
750 struct ib_srq_attr attr;
96104eda 751 enum ib_srq_type srq_type;
418d5130
SH
752
753 union {
754 struct {
755 struct ib_xrcd *xrcd;
756 struct ib_cq *cq;
757 } xrc;
758 } ext;
d41fcc67
RD
759};
760
1da177e4
LT
761struct ib_qp_cap {
762 u32 max_send_wr;
763 u32 max_recv_wr;
764 u32 max_send_sge;
765 u32 max_recv_sge;
766 u32 max_inline_data;
767};
768
769enum ib_sig_type {
770 IB_SIGNAL_ALL_WR,
771 IB_SIGNAL_REQ_WR
772};
773
774enum ib_qp_type {
775 /*
776 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
777 * here (and in that order) since the MAD layer uses them as
778 * indices into a 2-entry table.
779 */
780 IB_QPT_SMI,
781 IB_QPT_GSI,
782
783 IB_QPT_RC,
784 IB_QPT_UC,
785 IB_QPT_UD,
786 IB_QPT_RAW_IPV6,
b42b63cf 787 IB_QPT_RAW_ETHERTYPE,
c938a616 788 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
789 IB_QPT_XRC_INI = 9,
790 IB_QPT_XRC_TGT,
0134f16b
JM
791 IB_QPT_MAX,
792 /* Reserve a range for qp types internal to the low level driver.
793 * These qp types will not be visible at the IB core layer, so the
794 * IB_QPT_MAX usages should not be affected in the core layer
795 */
796 IB_QPT_RESERVED1 = 0x1000,
797 IB_QPT_RESERVED2,
798 IB_QPT_RESERVED3,
799 IB_QPT_RESERVED4,
800 IB_QPT_RESERVED5,
801 IB_QPT_RESERVED6,
802 IB_QPT_RESERVED7,
803 IB_QPT_RESERVED8,
804 IB_QPT_RESERVED9,
805 IB_QPT_RESERVED10,
1da177e4
LT
806};
807
b846f25a 808enum ib_qp_create_flags {
47ee1b9f
RL
809 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
810 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 811 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 812 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 813 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
814 /* reserve bits 26-31 for low level drivers' internal use */
815 IB_QP_CREATE_RESERVED_START = 1 << 26,
816 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
817};
818
73c40c61
YH
819
820/*
821 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
822 * callback to destroy the passed in QP.
823 */
824
1da177e4
LT
825struct ib_qp_init_attr {
826 void (*event_handler)(struct ib_event *, void *);
827 void *qp_context;
828 struct ib_cq *send_cq;
829 struct ib_cq *recv_cq;
830 struct ib_srq *srq;
b42b63cf 831 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
832 struct ib_qp_cap cap;
833 enum ib_sig_type sq_sig_type;
834 enum ib_qp_type qp_type;
b846f25a 835 enum ib_qp_create_flags create_flags;
1da177e4
LT
836 u8 port_num; /* special QP types only */
837};
838
0e0ec7e0
SH
839struct ib_qp_open_attr {
840 void (*event_handler)(struct ib_event *, void *);
841 void *qp_context;
842 u32 qp_num;
843 enum ib_qp_type qp_type;
844};
845
1da177e4
LT
846enum ib_rnr_timeout {
847 IB_RNR_TIMER_655_36 = 0,
848 IB_RNR_TIMER_000_01 = 1,
849 IB_RNR_TIMER_000_02 = 2,
850 IB_RNR_TIMER_000_03 = 3,
851 IB_RNR_TIMER_000_04 = 4,
852 IB_RNR_TIMER_000_06 = 5,
853 IB_RNR_TIMER_000_08 = 6,
854 IB_RNR_TIMER_000_12 = 7,
855 IB_RNR_TIMER_000_16 = 8,
856 IB_RNR_TIMER_000_24 = 9,
857 IB_RNR_TIMER_000_32 = 10,
858 IB_RNR_TIMER_000_48 = 11,
859 IB_RNR_TIMER_000_64 = 12,
860 IB_RNR_TIMER_000_96 = 13,
861 IB_RNR_TIMER_001_28 = 14,
862 IB_RNR_TIMER_001_92 = 15,
863 IB_RNR_TIMER_002_56 = 16,
864 IB_RNR_TIMER_003_84 = 17,
865 IB_RNR_TIMER_005_12 = 18,
866 IB_RNR_TIMER_007_68 = 19,
867 IB_RNR_TIMER_010_24 = 20,
868 IB_RNR_TIMER_015_36 = 21,
869 IB_RNR_TIMER_020_48 = 22,
870 IB_RNR_TIMER_030_72 = 23,
871 IB_RNR_TIMER_040_96 = 24,
872 IB_RNR_TIMER_061_44 = 25,
873 IB_RNR_TIMER_081_92 = 26,
874 IB_RNR_TIMER_122_88 = 27,
875 IB_RNR_TIMER_163_84 = 28,
876 IB_RNR_TIMER_245_76 = 29,
877 IB_RNR_TIMER_327_68 = 30,
878 IB_RNR_TIMER_491_52 = 31
879};
880
881enum ib_qp_attr_mask {
882 IB_QP_STATE = 1,
883 IB_QP_CUR_STATE = (1<<1),
884 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
885 IB_QP_ACCESS_FLAGS = (1<<3),
886 IB_QP_PKEY_INDEX = (1<<4),
887 IB_QP_PORT = (1<<5),
888 IB_QP_QKEY = (1<<6),
889 IB_QP_AV = (1<<7),
890 IB_QP_PATH_MTU = (1<<8),
891 IB_QP_TIMEOUT = (1<<9),
892 IB_QP_RETRY_CNT = (1<<10),
893 IB_QP_RNR_RETRY = (1<<11),
894 IB_QP_RQ_PSN = (1<<12),
895 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
896 IB_QP_ALT_PATH = (1<<14),
897 IB_QP_MIN_RNR_TIMER = (1<<15),
898 IB_QP_SQ_PSN = (1<<16),
899 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
900 IB_QP_PATH_MIG_STATE = (1<<18),
901 IB_QP_CAP = (1<<19),
dd5f03be
MB
902 IB_QP_DEST_QPN = (1<<20),
903 IB_QP_SMAC = (1<<21),
904 IB_QP_ALT_SMAC = (1<<22),
905 IB_QP_VID = (1<<23),
906 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
907};
908
909enum ib_qp_state {
910 IB_QPS_RESET,
911 IB_QPS_INIT,
912 IB_QPS_RTR,
913 IB_QPS_RTS,
914 IB_QPS_SQD,
915 IB_QPS_SQE,
916 IB_QPS_ERR
917};
918
919enum ib_mig_state {
920 IB_MIG_MIGRATED,
921 IB_MIG_REARM,
922 IB_MIG_ARMED
923};
924
7083e42e
SM
925enum ib_mw_type {
926 IB_MW_TYPE_1 = 1,
927 IB_MW_TYPE_2 = 2
928};
929
1da177e4
LT
930struct ib_qp_attr {
931 enum ib_qp_state qp_state;
932 enum ib_qp_state cur_qp_state;
933 enum ib_mtu path_mtu;
934 enum ib_mig_state path_mig_state;
935 u32 qkey;
936 u32 rq_psn;
937 u32 sq_psn;
938 u32 dest_qp_num;
939 int qp_access_flags;
940 struct ib_qp_cap cap;
941 struct ib_ah_attr ah_attr;
942 struct ib_ah_attr alt_ah_attr;
943 u16 pkey_index;
944 u16 alt_pkey_index;
945 u8 en_sqd_async_notify;
946 u8 sq_draining;
947 u8 max_rd_atomic;
948 u8 max_dest_rd_atomic;
949 u8 min_rnr_timer;
950 u8 port_num;
951 u8 timeout;
952 u8 retry_cnt;
953 u8 rnr_retry;
954 u8 alt_port_num;
955 u8 alt_timeout;
dd5f03be
MB
956 u8 smac[ETH_ALEN];
957 u8 alt_smac[ETH_ALEN];
958 u16 vlan_id;
959 u16 alt_vlan_id;
1da177e4
LT
960};
961
962enum ib_wr_opcode {
963 IB_WR_RDMA_WRITE,
964 IB_WR_RDMA_WRITE_WITH_IMM,
965 IB_WR_SEND,
966 IB_WR_SEND_WITH_IMM,
967 IB_WR_RDMA_READ,
968 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 969 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
970 IB_WR_LSO,
971 IB_WR_SEND_WITH_INV,
00f7ec36
SW
972 IB_WR_RDMA_READ_WITH_INV,
973 IB_WR_LOCAL_INV,
974 IB_WR_FAST_REG_MR,
5e80ba8f
VS
975 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
976 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 977 IB_WR_BIND_MW,
1b01d335 978 IB_WR_REG_SIG_MR,
0134f16b
JM
979 /* reserve values for low level drivers' internal use.
980 * These values will not be used at all in the ib core layer.
981 */
982 IB_WR_RESERVED1 = 0xf0,
983 IB_WR_RESERVED2,
984 IB_WR_RESERVED3,
985 IB_WR_RESERVED4,
986 IB_WR_RESERVED5,
987 IB_WR_RESERVED6,
988 IB_WR_RESERVED7,
989 IB_WR_RESERVED8,
990 IB_WR_RESERVED9,
991 IB_WR_RESERVED10,
1da177e4
LT
992};
993
994enum ib_send_flags {
995 IB_SEND_FENCE = 1,
996 IB_SEND_SIGNALED = (1<<1),
997 IB_SEND_SOLICITED = (1<<2),
e0605d91 998 IB_SEND_INLINE = (1<<3),
0134f16b
JM
999 IB_SEND_IP_CSUM = (1<<4),
1000
1001 /* reserve bits 26-31 for low level drivers' internal use */
1002 IB_SEND_RESERVED_START = (1 << 26),
1003 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1004};
1005
1006struct ib_sge {
1007 u64 addr;
1008 u32 length;
1009 u32 lkey;
1010};
1011
00f7ec36
SW
1012struct ib_fast_reg_page_list {
1013 struct ib_device *device;
1014 u64 *page_list;
1015 unsigned int max_page_list_len;
1016};
1017
7083e42e
SM
1018/**
1019 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1020 * @mr: A memory region to bind the memory window to.
1021 * @addr: The address where the memory window should begin.
1022 * @length: The length of the memory window, in bytes.
1023 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1024 *
1025 * This struct contains the shared parameters for type 1 and type 2
1026 * memory window bind operations.
1027 */
1028struct ib_mw_bind_info {
1029 struct ib_mr *mr;
1030 u64 addr;
1031 u64 length;
1032 int mw_access_flags;
1033};
1034
1da177e4
LT
1035struct ib_send_wr {
1036 struct ib_send_wr *next;
1037 u64 wr_id;
1038 struct ib_sge *sg_list;
1039 int num_sge;
1040 enum ib_wr_opcode opcode;
1041 int send_flags;
0f39cf3d
RD
1042 union {
1043 __be32 imm_data;
1044 u32 invalidate_rkey;
1045 } ex;
1da177e4
LT
1046 union {
1047 struct {
1048 u64 remote_addr;
1049 u32 rkey;
1050 } rdma;
1051 struct {
1052 u64 remote_addr;
1053 u64 compare_add;
1054 u64 swap;
5e80ba8f
VS
1055 u64 compare_add_mask;
1056 u64 swap_mask;
1da177e4
LT
1057 u32 rkey;
1058 } atomic;
1059 struct {
1060 struct ib_ah *ah;
c93570f2
EC
1061 void *header;
1062 int hlen;
1063 int mss;
1da177e4
LT
1064 u32 remote_qpn;
1065 u32 remote_qkey;
1da177e4
LT
1066 u16 pkey_index; /* valid for GSI only */
1067 u8 port_num; /* valid for DR SMPs on switch only */
1068 } ud;
00f7ec36
SW
1069 struct {
1070 u64 iova_start;
1071 struct ib_fast_reg_page_list *page_list;
1072 unsigned int page_shift;
1073 unsigned int page_list_len;
1074 u32 length;
1075 int access_flags;
1076 u32 rkey;
1077 } fast_reg;
7083e42e
SM
1078 struct {
1079 struct ib_mw *mw;
1080 /* The new rkey for the memory window. */
1081 u32 rkey;
1082 struct ib_mw_bind_info bind_info;
1083 } bind_mw;
1b01d335
SG
1084 struct {
1085 struct ib_sig_attrs *sig_attrs;
1086 struct ib_mr *sig_mr;
1087 int access_flags;
1088 struct ib_sge *prot;
1089 } sig_handover;
1da177e4 1090 } wr;
b42b63cf 1091 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1092};
1093
1094struct ib_recv_wr {
1095 struct ib_recv_wr *next;
1096 u64 wr_id;
1097 struct ib_sge *sg_list;
1098 int num_sge;
1099};
1100
1101enum ib_access_flags {
1102 IB_ACCESS_LOCAL_WRITE = 1,
1103 IB_ACCESS_REMOTE_WRITE = (1<<1),
1104 IB_ACCESS_REMOTE_READ = (1<<2),
1105 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1106 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1107 IB_ZERO_BASED = (1<<5),
1108 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1109};
1110
1111struct ib_phys_buf {
1112 u64 addr;
1113 u64 size;
1114};
1115
1116struct ib_mr_attr {
1117 struct ib_pd *pd;
1118 u64 device_virt_addr;
1119 u64 size;
1120 int mr_access_flags;
1121 u32 lkey;
1122 u32 rkey;
1123};
1124
1125enum ib_mr_rereg_flags {
1126 IB_MR_REREG_TRANS = 1,
1127 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1128 IB_MR_REREG_ACCESS = (1<<2),
1129 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1130};
1131
7083e42e
SM
1132/**
1133 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1134 * @wr_id: Work request id.
1135 * @send_flags: Flags from ib_send_flags enum.
1136 * @bind_info: More parameters of the bind operation.
1137 */
1da177e4 1138struct ib_mw_bind {
7083e42e
SM
1139 u64 wr_id;
1140 int send_flags;
1141 struct ib_mw_bind_info bind_info;
1da177e4
LT
1142};
1143
1144struct ib_fmr_attr {
1145 int max_pages;
1146 int max_maps;
d36f34aa 1147 u8 page_shift;
1da177e4
LT
1148};
1149
882214e2
HE
1150struct ib_umem;
1151
e2773c06
RD
1152struct ib_ucontext {
1153 struct ib_device *device;
1154 struct list_head pd_list;
1155 struct list_head mr_list;
1156 struct list_head mw_list;
1157 struct list_head cq_list;
1158 struct list_head qp_list;
1159 struct list_head srq_list;
1160 struct list_head ah_list;
53d0bd1e 1161 struct list_head xrcd_list;
436f2ad0 1162 struct list_head rule_list;
f7c6a7b5 1163 int closing;
8ada2c1c
SR
1164
1165 struct pid *tgid;
882214e2
HE
1166#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1167 struct rb_root umem_tree;
1168 /*
1169 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1170 * mmu notifiers registration.
1171 */
1172 struct rw_semaphore umem_rwsem;
1173 void (*invalidate_range)(struct ib_umem *umem,
1174 unsigned long start, unsigned long end);
1175
1176 struct mmu_notifier mn;
1177 atomic_t notifier_count;
1178 /* A list of umems that don't have private mmu notifier counters yet. */
1179 struct list_head no_private_counters;
1180 int odp_mrs_count;
1181#endif
e2773c06
RD
1182};
1183
1184struct ib_uobject {
1185 u64 user_handle; /* handle given to us by userspace */
1186 struct ib_ucontext *context; /* associated user context */
9ead190b 1187 void *object; /* containing object */
e2773c06 1188 struct list_head list; /* link to context's list */
b3d636b0 1189 int id; /* index into kernel idr */
9ead190b
RD
1190 struct kref ref;
1191 struct rw_semaphore mutex; /* protects .live */
1192 int live;
e2773c06
RD
1193};
1194
e2773c06 1195struct ib_udata {
309243ec 1196 const void __user *inbuf;
e2773c06
RD
1197 void __user *outbuf;
1198 size_t inlen;
1199 size_t outlen;
1200};
1201
1da177e4 1202struct ib_pd {
e2773c06
RD
1203 struct ib_device *device;
1204 struct ib_uobject *uobject;
1205 atomic_t usecnt; /* count all resources */
1da177e4
LT
1206};
1207
59991f94
SH
1208struct ib_xrcd {
1209 struct ib_device *device;
d3d72d90 1210 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1211 struct inode *inode;
d3d72d90
SH
1212
1213 struct mutex tgt_qp_mutex;
1214 struct list_head tgt_qp_list;
59991f94
SH
1215};
1216
1da177e4
LT
1217struct ib_ah {
1218 struct ib_device *device;
1219 struct ib_pd *pd;
e2773c06 1220 struct ib_uobject *uobject;
1da177e4
LT
1221};
1222
1223typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1224
1225struct ib_cq {
e2773c06
RD
1226 struct ib_device *device;
1227 struct ib_uobject *uobject;
1228 ib_comp_handler comp_handler;
1229 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1230 void *cq_context;
e2773c06
RD
1231 int cqe;
1232 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1233};
1234
1235struct ib_srq {
d41fcc67
RD
1236 struct ib_device *device;
1237 struct ib_pd *pd;
1238 struct ib_uobject *uobject;
1239 void (*event_handler)(struct ib_event *, void *);
1240 void *srq_context;
96104eda 1241 enum ib_srq_type srq_type;
1da177e4 1242 atomic_t usecnt;
418d5130
SH
1243
1244 union {
1245 struct {
1246 struct ib_xrcd *xrcd;
1247 struct ib_cq *cq;
1248 u32 srq_num;
1249 } xrc;
1250 } ext;
1da177e4
LT
1251};
1252
1253struct ib_qp {
1254 struct ib_device *device;
1255 struct ib_pd *pd;
1256 struct ib_cq *send_cq;
1257 struct ib_cq *recv_cq;
1258 struct ib_srq *srq;
b42b63cf 1259 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1260 struct list_head xrcd_list;
319a441d
HHZ
1261 /* count times opened, mcast attaches, flow attaches */
1262 atomic_t usecnt;
0e0ec7e0
SH
1263 struct list_head open_list;
1264 struct ib_qp *real_qp;
e2773c06 1265 struct ib_uobject *uobject;
1da177e4
LT
1266 void (*event_handler)(struct ib_event *, void *);
1267 void *qp_context;
1268 u32 qp_num;
1269 enum ib_qp_type qp_type;
1270};
1271
1272struct ib_mr {
e2773c06
RD
1273 struct ib_device *device;
1274 struct ib_pd *pd;
1275 struct ib_uobject *uobject;
1276 u32 lkey;
1277 u32 rkey;
1278 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1279};
1280
1281struct ib_mw {
1282 struct ib_device *device;
1283 struct ib_pd *pd;
e2773c06 1284 struct ib_uobject *uobject;
1da177e4 1285 u32 rkey;
7083e42e 1286 enum ib_mw_type type;
1da177e4
LT
1287};
1288
1289struct ib_fmr {
1290 struct ib_device *device;
1291 struct ib_pd *pd;
1292 struct list_head list;
1293 u32 lkey;
1294 u32 rkey;
1295};
1296
319a441d
HHZ
1297/* Supported steering options */
1298enum ib_flow_attr_type {
1299 /* steering according to rule specifications */
1300 IB_FLOW_ATTR_NORMAL = 0x0,
1301 /* default unicast and multicast rule -
1302 * receive all Eth traffic which isn't steered to any QP
1303 */
1304 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1305 /* default multicast rule -
1306 * receive all Eth multicast traffic which isn't steered to any QP
1307 */
1308 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1309 /* sniffer rule - receive all port traffic */
1310 IB_FLOW_ATTR_SNIFFER = 0x3
1311};
1312
1313/* Supported steering header types */
1314enum ib_flow_spec_type {
1315 /* L2 headers*/
1316 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1317 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1318 /* L3 header*/
1319 IB_FLOW_SPEC_IPV4 = 0x30,
1320 /* L4 headers*/
1321 IB_FLOW_SPEC_TCP = 0x40,
1322 IB_FLOW_SPEC_UDP = 0x41
1323};
240ae00e 1324#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1325#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1326
319a441d
HHZ
1327/* Flow steering rule priority is set according to it's domain.
1328 * Lower domain value means higher priority.
1329 */
1330enum ib_flow_domain {
1331 IB_FLOW_DOMAIN_USER,
1332 IB_FLOW_DOMAIN_ETHTOOL,
1333 IB_FLOW_DOMAIN_RFS,
1334 IB_FLOW_DOMAIN_NIC,
1335 IB_FLOW_DOMAIN_NUM /* Must be last */
1336};
1337
1338struct ib_flow_eth_filter {
1339 u8 dst_mac[6];
1340 u8 src_mac[6];
1341 __be16 ether_type;
1342 __be16 vlan_tag;
1343};
1344
1345struct ib_flow_spec_eth {
1346 enum ib_flow_spec_type type;
1347 u16 size;
1348 struct ib_flow_eth_filter val;
1349 struct ib_flow_eth_filter mask;
1350};
1351
240ae00e
MB
1352struct ib_flow_ib_filter {
1353 __be16 dlid;
1354 __u8 sl;
1355};
1356
1357struct ib_flow_spec_ib {
1358 enum ib_flow_spec_type type;
1359 u16 size;
1360 struct ib_flow_ib_filter val;
1361 struct ib_flow_ib_filter mask;
1362};
1363
319a441d
HHZ
1364struct ib_flow_ipv4_filter {
1365 __be32 src_ip;
1366 __be32 dst_ip;
1367};
1368
1369struct ib_flow_spec_ipv4 {
1370 enum ib_flow_spec_type type;
1371 u16 size;
1372 struct ib_flow_ipv4_filter val;
1373 struct ib_flow_ipv4_filter mask;
1374};
1375
1376struct ib_flow_tcp_udp_filter {
1377 __be16 dst_port;
1378 __be16 src_port;
1379};
1380
1381struct ib_flow_spec_tcp_udp {
1382 enum ib_flow_spec_type type;
1383 u16 size;
1384 struct ib_flow_tcp_udp_filter val;
1385 struct ib_flow_tcp_udp_filter mask;
1386};
1387
1388union ib_flow_spec {
1389 struct {
1390 enum ib_flow_spec_type type;
1391 u16 size;
1392 };
1393 struct ib_flow_spec_eth eth;
240ae00e 1394 struct ib_flow_spec_ib ib;
319a441d
HHZ
1395 struct ib_flow_spec_ipv4 ipv4;
1396 struct ib_flow_spec_tcp_udp tcp_udp;
1397};
1398
1399struct ib_flow_attr {
1400 enum ib_flow_attr_type type;
1401 u16 size;
1402 u16 priority;
1403 u32 flags;
1404 u8 num_of_specs;
1405 u8 port;
1406 /* Following are the optional layers according to user request
1407 * struct ib_flow_spec_xxx
1408 * struct ib_flow_spec_yyy
1409 */
1410};
1411
1412struct ib_flow {
1413 struct ib_qp *qp;
1414 struct ib_uobject *uobject;
1415};
1416
1da177e4
LT
1417struct ib_mad;
1418struct ib_grh;
1419
1420enum ib_process_mad_flags {
1421 IB_MAD_IGNORE_MKEY = 1,
1422 IB_MAD_IGNORE_BKEY = 2,
1423 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1424};
1425
1426enum ib_mad_result {
1427 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1428 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1429 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1430 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1431};
1432
1433#define IB_DEVICE_NAME_MAX 64
1434
1435struct ib_cache {
1436 rwlock_t lock;
1437 struct ib_event_handler event_handler;
1438 struct ib_pkey_cache **pkey_cache;
1439 struct ib_gid_cache **gid_cache;
6fb9cdbf 1440 u8 *lmc_cache;
1da177e4
LT
1441};
1442
9b513090
RC
1443struct ib_dma_mapping_ops {
1444 int (*mapping_error)(struct ib_device *dev,
1445 u64 dma_addr);
1446 u64 (*map_single)(struct ib_device *dev,
1447 void *ptr, size_t size,
1448 enum dma_data_direction direction);
1449 void (*unmap_single)(struct ib_device *dev,
1450 u64 addr, size_t size,
1451 enum dma_data_direction direction);
1452 u64 (*map_page)(struct ib_device *dev,
1453 struct page *page, unsigned long offset,
1454 size_t size,
1455 enum dma_data_direction direction);
1456 void (*unmap_page)(struct ib_device *dev,
1457 u64 addr, size_t size,
1458 enum dma_data_direction direction);
1459 int (*map_sg)(struct ib_device *dev,
1460 struct scatterlist *sg, int nents,
1461 enum dma_data_direction direction);
1462 void (*unmap_sg)(struct ib_device *dev,
1463 struct scatterlist *sg, int nents,
1464 enum dma_data_direction direction);
9b513090
RC
1465 void (*sync_single_for_cpu)(struct ib_device *dev,
1466 u64 dma_handle,
1467 size_t size,
4deccd6d 1468 enum dma_data_direction dir);
9b513090
RC
1469 void (*sync_single_for_device)(struct ib_device *dev,
1470 u64 dma_handle,
1471 size_t size,
1472 enum dma_data_direction dir);
1473 void *(*alloc_coherent)(struct ib_device *dev,
1474 size_t size,
1475 u64 *dma_handle,
1476 gfp_t flag);
1477 void (*free_coherent)(struct ib_device *dev,
1478 size_t size, void *cpu_addr,
1479 u64 dma_handle);
1480};
1481
07ebafba
TT
1482struct iw_cm_verbs;
1483
1da177e4
LT
1484struct ib_device {
1485 struct device *dma_device;
1486
1487 char name[IB_DEVICE_NAME_MAX];
1488
1489 struct list_head event_handler_list;
1490 spinlock_t event_handler_lock;
1491
17a55f79 1492 spinlock_t client_data_lock;
1da177e4
LT
1493 struct list_head core_list;
1494 struct list_head client_data_list;
1da177e4
LT
1495
1496 struct ib_cache cache;
5eb620c8
YE
1497 int *pkey_tbl_len;
1498 int *gid_tbl_len;
1da177e4 1499
f4fd0b22
MT
1500 int num_comp_vectors;
1501
07ebafba
TT
1502 struct iw_cm_verbs *iwcm;
1503
7f624d02
SW
1504 int (*get_protocol_stats)(struct ib_device *device,
1505 union rdma_protocol_stats *stats);
1da177e4
LT
1506 int (*query_device)(struct ib_device *device,
1507 struct ib_device_attr *device_attr);
1508 int (*query_port)(struct ib_device *device,
1509 u8 port_num,
1510 struct ib_port_attr *port_attr);
6b90a6d6
MW
1511 enum rdma_protocol_type (*query_protocol)(struct ib_device *device,
1512 u8 port_num);
a3f5adaf
EC
1513 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1514 u8 port_num);
1da177e4
LT
1515 int (*query_gid)(struct ib_device *device,
1516 u8 port_num, int index,
1517 union ib_gid *gid);
1518 int (*query_pkey)(struct ib_device *device,
1519 u8 port_num, u16 index, u16 *pkey);
1520 int (*modify_device)(struct ib_device *device,
1521 int device_modify_mask,
1522 struct ib_device_modify *device_modify);
1523 int (*modify_port)(struct ib_device *device,
1524 u8 port_num, int port_modify_mask,
1525 struct ib_port_modify *port_modify);
e2773c06
RD
1526 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1527 struct ib_udata *udata);
1528 int (*dealloc_ucontext)(struct ib_ucontext *context);
1529 int (*mmap)(struct ib_ucontext *context,
1530 struct vm_area_struct *vma);
1531 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1532 struct ib_ucontext *context,
1533 struct ib_udata *udata);
1da177e4
LT
1534 int (*dealloc_pd)(struct ib_pd *pd);
1535 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1536 struct ib_ah_attr *ah_attr);
1537 int (*modify_ah)(struct ib_ah *ah,
1538 struct ib_ah_attr *ah_attr);
1539 int (*query_ah)(struct ib_ah *ah,
1540 struct ib_ah_attr *ah_attr);
1541 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1542 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1543 struct ib_srq_init_attr *srq_init_attr,
1544 struct ib_udata *udata);
1545 int (*modify_srq)(struct ib_srq *srq,
1546 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1547 enum ib_srq_attr_mask srq_attr_mask,
1548 struct ib_udata *udata);
d41fcc67
RD
1549 int (*query_srq)(struct ib_srq *srq,
1550 struct ib_srq_attr *srq_attr);
1551 int (*destroy_srq)(struct ib_srq *srq);
1552 int (*post_srq_recv)(struct ib_srq *srq,
1553 struct ib_recv_wr *recv_wr,
1554 struct ib_recv_wr **bad_recv_wr);
1da177e4 1555 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1556 struct ib_qp_init_attr *qp_init_attr,
1557 struct ib_udata *udata);
1da177e4
LT
1558 int (*modify_qp)(struct ib_qp *qp,
1559 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1560 int qp_attr_mask,
1561 struct ib_udata *udata);
1da177e4
LT
1562 int (*query_qp)(struct ib_qp *qp,
1563 struct ib_qp_attr *qp_attr,
1564 int qp_attr_mask,
1565 struct ib_qp_init_attr *qp_init_attr);
1566 int (*destroy_qp)(struct ib_qp *qp);
1567 int (*post_send)(struct ib_qp *qp,
1568 struct ib_send_wr *send_wr,
1569 struct ib_send_wr **bad_send_wr);
1570 int (*post_recv)(struct ib_qp *qp,
1571 struct ib_recv_wr *recv_wr,
1572 struct ib_recv_wr **bad_recv_wr);
e2773c06 1573 struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
f4fd0b22 1574 int comp_vector,
e2773c06
RD
1575 struct ib_ucontext *context,
1576 struct ib_udata *udata);
2dd57162
EC
1577 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1578 u16 cq_period);
1da177e4 1579 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1580 int (*resize_cq)(struct ib_cq *cq, int cqe,
1581 struct ib_udata *udata);
1da177e4
LT
1582 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1583 struct ib_wc *wc);
1584 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1585 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1586 enum ib_cq_notify_flags flags);
1da177e4
LT
1587 int (*req_ncomp_notif)(struct ib_cq *cq,
1588 int wc_cnt);
1589 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1590 int mr_access_flags);
1591 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1592 struct ib_phys_buf *phys_buf_array,
1593 int num_phys_buf,
1594 int mr_access_flags,
1595 u64 *iova_start);
e2773c06 1596 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1597 u64 start, u64 length,
1598 u64 virt_addr,
e2773c06
RD
1599 int mr_access_flags,
1600 struct ib_udata *udata);
7e6edb9b
MB
1601 int (*rereg_user_mr)(struct ib_mr *mr,
1602 int flags,
1603 u64 start, u64 length,
1604 u64 virt_addr,
1605 int mr_access_flags,
1606 struct ib_pd *pd,
1607 struct ib_udata *udata);
1da177e4
LT
1608 int (*query_mr)(struct ib_mr *mr,
1609 struct ib_mr_attr *mr_attr);
1610 int (*dereg_mr)(struct ib_mr *mr);
17cd3a2d
SG
1611 int (*destroy_mr)(struct ib_mr *mr);
1612 struct ib_mr * (*create_mr)(struct ib_pd *pd,
1613 struct ib_mr_init_attr *mr_init_attr);
00f7ec36
SW
1614 struct ib_mr * (*alloc_fast_reg_mr)(struct ib_pd *pd,
1615 int max_page_list_len);
1616 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1617 int page_list_len);
1618 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1619 int (*rereg_phys_mr)(struct ib_mr *mr,
1620 int mr_rereg_mask,
1621 struct ib_pd *pd,
1622 struct ib_phys_buf *phys_buf_array,
1623 int num_phys_buf,
1624 int mr_access_flags,
1625 u64 *iova_start);
7083e42e
SM
1626 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1627 enum ib_mw_type type);
1da177e4
LT
1628 int (*bind_mw)(struct ib_qp *qp,
1629 struct ib_mw *mw,
1630 struct ib_mw_bind *mw_bind);
1631 int (*dealloc_mw)(struct ib_mw *mw);
1632 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1633 int mr_access_flags,
1634 struct ib_fmr_attr *fmr_attr);
1635 int (*map_phys_fmr)(struct ib_fmr *fmr,
1636 u64 *page_list, int list_len,
1637 u64 iova);
1638 int (*unmap_fmr)(struct list_head *fmr_list);
1639 int (*dealloc_fmr)(struct ib_fmr *fmr);
1640 int (*attach_mcast)(struct ib_qp *qp,
1641 union ib_gid *gid,
1642 u16 lid);
1643 int (*detach_mcast)(struct ib_qp *qp,
1644 union ib_gid *gid,
1645 u16 lid);
1646 int (*process_mad)(struct ib_device *device,
1647 int process_mad_flags,
1648 u8 port_num,
1649 struct ib_wc *in_wc,
1650 struct ib_grh *in_grh,
1651 struct ib_mad *in_mad,
1652 struct ib_mad *out_mad);
59991f94
SH
1653 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1654 struct ib_ucontext *ucontext,
1655 struct ib_udata *udata);
1656 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1657 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1658 struct ib_flow_attr
1659 *flow_attr,
1660 int domain);
1661 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1662 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1663 struct ib_mr_status *mr_status);
1da177e4 1664
9b513090
RC
1665 struct ib_dma_mapping_ops *dma_ops;
1666
e2773c06 1667 struct module *owner;
f4e91eb4 1668 struct device dev;
35be0681 1669 struct kobject *ports_parent;
1da177e4
LT
1670 struct list_head port_list;
1671
1672 enum {
1673 IB_DEV_UNINITIALIZED,
1674 IB_DEV_REGISTERED,
1675 IB_DEV_UNREGISTERED
1676 } reg_state;
1677
274c0891 1678 int uverbs_abi_ver;
17a55f79 1679 u64 uverbs_cmd_mask;
f21519b2 1680 u64 uverbs_ex_cmd_mask;
274c0891 1681
c5bcbbb9 1682 char node_desc[64];
cf311cd4 1683 __be64 node_guid;
96f15c03 1684 u32 local_dma_lkey;
1da177e4
LT
1685 u8 node_type;
1686 u8 phys_port_cnt;
1687};
1688
1689struct ib_client {
1690 char *name;
1691 void (*add) (struct ib_device *);
1692 void (*remove)(struct ib_device *);
1693
1694 struct list_head list;
1695};
1696
1697struct ib_device *ib_alloc_device(size_t size);
1698void ib_dealloc_device(struct ib_device *device);
1699
9a6edb60
RC
1700int ib_register_device(struct ib_device *device,
1701 int (*port_callback)(struct ib_device *,
1702 u8, struct kobject *));
1da177e4
LT
1703void ib_unregister_device(struct ib_device *device);
1704
1705int ib_register_client (struct ib_client *client);
1706void ib_unregister_client(struct ib_client *client);
1707
1708void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1709void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1710 void *data);
1711
e2773c06
RD
1712static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1713{
1714 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1715}
1716
1717static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1718{
43c61165 1719 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1720}
1721
8a51866f
RD
1722/**
1723 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1724 * contains all required attributes and no attributes not allowed for
1725 * the given QP state transition.
1726 * @cur_state: Current QP state
1727 * @next_state: Next QP state
1728 * @type: QP type
1729 * @mask: Mask of supplied QP attributes
dd5f03be 1730 * @ll : link layer of port
8a51866f
RD
1731 *
1732 * This function is a helper function that a low-level driver's
1733 * modify_qp method can use to validate the consumer's input. It
1734 * checks that cur_state and next_state are valid QP states, that a
1735 * transition from cur_state to next_state is allowed by the IB spec,
1736 * and that the attribute mask supplied is allowed for the transition.
1737 */
1738int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1739 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1740 enum rdma_link_layer ll);
8a51866f 1741
1da177e4
LT
1742int ib_register_event_handler (struct ib_event_handler *event_handler);
1743int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1744void ib_dispatch_event(struct ib_event *event);
1745
1746int ib_query_device(struct ib_device *device,
1747 struct ib_device_attr *device_attr);
1748
1749int ib_query_port(struct ib_device *device,
1750 u8 port_num, struct ib_port_attr *port_attr);
1751
a3f5adaf
EC
1752enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1753 u8 port_num);
1754
de66be94
MW
1755static inline bool rdma_protocol_ib(struct ib_device *device, u8 port_num)
1756{
1757 return device->query_protocol(device, port_num) == RDMA_PROTOCOL_IB;
1758}
1759
1760static inline bool rdma_protocol_iboe(struct ib_device *device, u8 port_num)
1761{
1762 return device->query_protocol(device, port_num) == RDMA_PROTOCOL_IBOE;
1763}
1764
1765static inline bool rdma_protocol_iwarp(struct ib_device *device, u8 port_num)
1766{
1767 return device->query_protocol(device, port_num) == RDMA_PROTOCOL_IWARP;
1768}
1769
1770static inline bool rdma_ib_or_iboe(struct ib_device *device, u8 port_num)
1771{
1772 enum rdma_protocol_type pt = device->query_protocol(device, port_num);
1773
1774 return (pt == RDMA_PROTOCOL_IB || pt == RDMA_PROTOCOL_IBOE);
1775}
1776
c757dea8 1777/**
296ec009 1778 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1779 * Management Datagrams.
296ec009
MW
1780 * @device: Device to check
1781 * @port_num: Port number to check
c757dea8 1782 *
296ec009
MW
1783 * Management Datagrams (MAD) are a required part of the InfiniBand
1784 * specification and are supported on all InfiniBand devices. A slightly
1785 * extended version are also supported on OPA interfaces.
c757dea8 1786 *
296ec009 1787 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8
MW
1788 */
1789static inline bool rdma_cap_ib_mad(struct ib_device *device, u8 port_num)
1790{
1791 return rdma_ib_or_iboe(device, port_num);
1792}
1793
29541e3a 1794/**
296ec009
MW
1795 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1796 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1797 * @device: Device to check
1798 * @port_num: Port number to check
29541e3a 1799 *
296ec009
MW
1800 * Each InfiniBand node is required to provide a Subnet Management Agent
1801 * that the subnet manager can access. Prior to the fabric being fully
1802 * configured by the subnet manager, the SMA is accessed via a well known
1803 * interface called the Subnet Management Interface (SMI). This interface
1804 * uses directed route packets to communicate with the SM to get around the
1805 * chicken and egg problem of the SM needing to know what's on the fabric
1806 * in order to configure the fabric, and needing to configure the fabric in
1807 * order to send packets to the devices on the fabric. These directed
1808 * route packets do not need the fabric fully configured in order to reach
1809 * their destination. The SMI is the only method allowed to send
1810 * directed route packets on an InfiniBand fabric.
29541e3a 1811 *
296ec009 1812 * Return: true if the port provides an SMI.
29541e3a
MW
1813 */
1814static inline bool rdma_cap_ib_smi(struct ib_device *device, u8 port_num)
1815{
1816 return rdma_protocol_ib(device, port_num);
1817}
1818
72219cea
MW
1819/**
1820 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1821 * Communication Manager.
296ec009
MW
1822 * @device: Device to check
1823 * @port_num: Port number to check
72219cea 1824 *
296ec009
MW
1825 * The InfiniBand Communication Manager is one of many pre-defined General
1826 * Service Agents (GSA) that are accessed via the General Service
1827 * Interface (GSI). It's role is to facilitate establishment of connections
1828 * between nodes as well as other management related tasks for established
1829 * connections.
72219cea 1830 *
296ec009
MW
1831 * Return: true if the port supports an IB CM (this does not guarantee that
1832 * a CM is actually running however).
72219cea
MW
1833 */
1834static inline bool rdma_cap_ib_cm(struct ib_device *device, u8 port_num)
1835{
1836 return rdma_ib_or_iboe(device, port_num);
1837}
1838
04215330
MW
1839/**
1840 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
1841 * Communication Manager.
296ec009
MW
1842 * @device: Device to check
1843 * @port_num: Port number to check
04215330 1844 *
296ec009
MW
1845 * Similar to above, but specific to iWARP connections which have a different
1846 * managment protocol than InfiniBand.
04215330 1847 *
296ec009
MW
1848 * Return: true if the port supports an iWARP CM (this does not guarantee that
1849 * a CM is actually running however).
04215330
MW
1850 */
1851static inline bool rdma_cap_iw_cm(struct ib_device *device, u8 port_num)
1852{
1853 return rdma_protocol_iwarp(device, port_num);
1854}
1855
fe53ba2f
MW
1856/**
1857 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
1858 * Subnet Administration.
296ec009
MW
1859 * @device: Device to check
1860 * @port_num: Port number to check
fe53ba2f 1861 *
296ec009
MW
1862 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
1863 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
1864 * fabrics, devices should resolve routes to other hosts by contacting the
1865 * SA to query the proper route.
fe53ba2f 1866 *
296ec009
MW
1867 * Return: true if the port should act as a client to the fabric Subnet
1868 * Administration interface. This does not imply that the SA service is
1869 * running locally.
fe53ba2f
MW
1870 */
1871static inline bool rdma_cap_ib_sa(struct ib_device *device, u8 port_num)
1872{
1873 return rdma_protocol_ib(device, port_num);
1874}
1875
a31ad3b0
MW
1876/**
1877 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
1878 * Multicast.
296ec009
MW
1879 * @device: Device to check
1880 * @port_num: Port number to check
a31ad3b0 1881 *
296ec009
MW
1882 * InfiniBand multicast registration is more complex than normal IPv4 or
1883 * IPv6 multicast registration. Each Host Channel Adapter must register
1884 * with the Subnet Manager when it wishes to join a multicast group. It
1885 * should do so only once regardless of how many queue pairs it subscribes
1886 * to this group. And it should leave the group only after all queue pairs
1887 * attached to the group have been detached.
a31ad3b0 1888 *
296ec009
MW
1889 * Return: true if the port must undertake the additional adminstrative
1890 * overhead of registering/unregistering with the SM and tracking of the
1891 * total number of queue pairs attached to the multicast group.
a31ad3b0
MW
1892 */
1893static inline bool rdma_cap_ib_mcast(struct ib_device *device, u8 port_num)
1894{
1895 return rdma_cap_ib_sa(device, port_num);
1896}
1897
30a74ef4
MW
1898/**
1899 * rdma_cap_af_ib - Check if the port of device has the capability
1900 * Native Infiniband Address.
296ec009
MW
1901 * @device: Device to check
1902 * @port_num: Port number to check
30a74ef4 1903 *
296ec009
MW
1904 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
1905 * GID. RoCE uses a different mechanism, but still generates a GID via
1906 * a prescribed mechanism and port specific data.
30a74ef4 1907 *
296ec009
MW
1908 * Return: true if the port uses a GID address to identify devices on the
1909 * network.
30a74ef4
MW
1910 */
1911static inline bool rdma_cap_af_ib(struct ib_device *device, u8 port_num)
1912{
1913 return rdma_ib_or_iboe(device, port_num);
1914}
1915
227128fc
MW
1916/**
1917 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
1918 * Ethernet Address Handle.
1919 * @device: Device to check
1920 * @port_num: Port number to check
227128fc 1921 *
296ec009
MW
1922 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
1923 * to fabricate GIDs over Ethernet/IP specific addresses native to the
1924 * port. Normally, packet headers are generated by the sending host
1925 * adapter, but when sending connectionless datagrams, we must manually
1926 * inject the proper headers for the fabric we are communicating over.
227128fc 1927 *
296ec009
MW
1928 * Return: true if we are running as a RoCE port and must force the
1929 * addition of a Global Route Header built from our Ethernet Address
1930 * Handle into our header list for connectionless packets.
227128fc
MW
1931 */
1932static inline bool rdma_cap_eth_ah(struct ib_device *device, u8 port_num)
1933{
1934 return rdma_protocol_iboe(device, port_num);
1935}
1936
bc0f1d71
MW
1937/**
1938 * rdma_cap_read_multi_sge - Check if the port of device has the capability
1939 * RDMA Read Multiple Scatter-Gather Entries.
296ec009
MW
1940 * @device: Device to check
1941 * @port_num: Port number to check
bc0f1d71 1942 *
296ec009
MW
1943 * iWARP has a restriction that RDMA READ requests may only have a single
1944 * Scatter/Gather Entry (SGE) in the work request.
bc0f1d71 1945 *
296ec009
MW
1946 * NOTE: although the linux kernel currently assumes all devices are either
1947 * single SGE RDMA READ devices or identical SGE maximums for RDMA READs and
1948 * WRITEs, according to Tom Talpey, this is not accurate. There are some
1949 * devices out there that support more than a single SGE on RDMA READ
1950 * requests, but do not support the same number of SGEs as they do on
1951 * RDMA WRITE requests. The linux kernel would need rearchitecting to
1952 * support these imbalanced READ/WRITE SGEs allowed devices. So, for now,
1953 * suffice with either the device supports the same READ/WRITE SGEs, or
1954 * it only gets one READ sge.
1955 *
1956 * Return: true for any device that allows more than one SGE in RDMA READ
1957 * requests.
bc0f1d71
MW
1958 */
1959static inline bool rdma_cap_read_multi_sge(struct ib_device *device,
1960 u8 port_num)
1961{
1962 return !rdma_protocol_iwarp(device, port_num);
1963}
1964
1da177e4
LT
1965int ib_query_gid(struct ib_device *device,
1966 u8 port_num, int index, union ib_gid *gid);
1967
1968int ib_query_pkey(struct ib_device *device,
1969 u8 port_num, u16 index, u16 *pkey);
1970
1971int ib_modify_device(struct ib_device *device,
1972 int device_modify_mask,
1973 struct ib_device_modify *device_modify);
1974
1975int ib_modify_port(struct ib_device *device,
1976 u8 port_num, int port_modify_mask,
1977 struct ib_port_modify *port_modify);
1978
5eb620c8
YE
1979int ib_find_gid(struct ib_device *device, union ib_gid *gid,
1980 u8 *port_num, u16 *index);
1981
1982int ib_find_pkey(struct ib_device *device,
1983 u8 port_num, u16 pkey, u16 *index);
1984
1da177e4
LT
1985/**
1986 * ib_alloc_pd - Allocates an unused protection domain.
1987 * @device: The device on which to allocate the protection domain.
1988 *
1989 * A protection domain object provides an association between QPs, shared
1990 * receive queues, address handles, memory regions, and memory windows.
1991 */
1992struct ib_pd *ib_alloc_pd(struct ib_device *device);
1993
1994/**
1995 * ib_dealloc_pd - Deallocates a protection domain.
1996 * @pd: The protection domain to deallocate.
1997 */
1998int ib_dealloc_pd(struct ib_pd *pd);
1999
2000/**
2001 * ib_create_ah - Creates an address handle for the given address vector.
2002 * @pd: The protection domain associated with the address handle.
2003 * @ah_attr: The attributes of the address vector.
2004 *
2005 * The address handle is used to reference a local or global destination
2006 * in all UD QP post sends.
2007 */
2008struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2009
4e00d694
SH
2010/**
2011 * ib_init_ah_from_wc - Initializes address handle attributes from a
2012 * work completion.
2013 * @device: Device on which the received message arrived.
2014 * @port_num: Port on which the received message arrived.
2015 * @wc: Work completion associated with the received message.
2016 * @grh: References the received global route header. This parameter is
2017 * ignored unless the work completion indicates that the GRH is valid.
2018 * @ah_attr: Returned attributes that can be used when creating an address
2019 * handle for replying to the message.
2020 */
2021int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
2022 struct ib_grh *grh, struct ib_ah_attr *ah_attr);
2023
513789ed
HR
2024/**
2025 * ib_create_ah_from_wc - Creates an address handle associated with the
2026 * sender of the specified work completion.
2027 * @pd: The protection domain associated with the address handle.
2028 * @wc: Work completion information associated with a received message.
2029 * @grh: References the received global route header. This parameter is
2030 * ignored unless the work completion indicates that the GRH is valid.
2031 * @port_num: The outbound port number to associate with the address.
2032 *
2033 * The address handle is used to reference a local or global destination
2034 * in all UD QP post sends.
2035 */
2036struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
2037 struct ib_grh *grh, u8 port_num);
2038
1da177e4
LT
2039/**
2040 * ib_modify_ah - Modifies the address vector associated with an address
2041 * handle.
2042 * @ah: The address handle to modify.
2043 * @ah_attr: The new address vector attributes to associate with the
2044 * address handle.
2045 */
2046int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2047
2048/**
2049 * ib_query_ah - Queries the address vector associated with an address
2050 * handle.
2051 * @ah: The address handle to query.
2052 * @ah_attr: The address vector attributes associated with the address
2053 * handle.
2054 */
2055int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2056
2057/**
2058 * ib_destroy_ah - Destroys an address handle.
2059 * @ah: The address handle to destroy.
2060 */
2061int ib_destroy_ah(struct ib_ah *ah);
2062
d41fcc67
RD
2063/**
2064 * ib_create_srq - Creates a SRQ associated with the specified protection
2065 * domain.
2066 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2067 * @srq_init_attr: A list of initial attributes required to create the
2068 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2069 * the actual capabilities of the created SRQ.
d41fcc67
RD
2070 *
2071 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2072 * requested size of the SRQ, and set to the actual values allocated
2073 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2074 * will always be at least as large as the requested values.
2075 */
2076struct ib_srq *ib_create_srq(struct ib_pd *pd,
2077 struct ib_srq_init_attr *srq_init_attr);
2078
2079/**
2080 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2081 * @srq: The SRQ to modify.
2082 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2083 * the current values of selected SRQ attributes are returned.
2084 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2085 * are being modified.
2086 *
2087 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2088 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2089 * the number of receives queued drops below the limit.
2090 */
2091int ib_modify_srq(struct ib_srq *srq,
2092 struct ib_srq_attr *srq_attr,
2093 enum ib_srq_attr_mask srq_attr_mask);
2094
2095/**
2096 * ib_query_srq - Returns the attribute list and current values for the
2097 * specified SRQ.
2098 * @srq: The SRQ to query.
2099 * @srq_attr: The attributes of the specified SRQ.
2100 */
2101int ib_query_srq(struct ib_srq *srq,
2102 struct ib_srq_attr *srq_attr);
2103
2104/**
2105 * ib_destroy_srq - Destroys the specified SRQ.
2106 * @srq: The SRQ to destroy.
2107 */
2108int ib_destroy_srq(struct ib_srq *srq);
2109
2110/**
2111 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2112 * @srq: The SRQ to post the work request on.
2113 * @recv_wr: A list of work requests to post on the receive queue.
2114 * @bad_recv_wr: On an immediate failure, this parameter will reference
2115 * the work request that failed to be posted on the QP.
2116 */
2117static inline int ib_post_srq_recv(struct ib_srq *srq,
2118 struct ib_recv_wr *recv_wr,
2119 struct ib_recv_wr **bad_recv_wr)
2120{
2121 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2122}
2123
1da177e4
LT
2124/**
2125 * ib_create_qp - Creates a QP associated with the specified protection
2126 * domain.
2127 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2128 * @qp_init_attr: A list of initial attributes required to create the
2129 * QP. If QP creation succeeds, then the attributes are updated to
2130 * the actual capabilities of the created QP.
1da177e4
LT
2131 */
2132struct ib_qp *ib_create_qp(struct ib_pd *pd,
2133 struct ib_qp_init_attr *qp_init_attr);
2134
2135/**
2136 * ib_modify_qp - Modifies the attributes for the specified QP and then
2137 * transitions the QP to the given state.
2138 * @qp: The QP to modify.
2139 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2140 * the current values of selected QP attributes are returned.
2141 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2142 * are being modified.
2143 */
2144int ib_modify_qp(struct ib_qp *qp,
2145 struct ib_qp_attr *qp_attr,
2146 int qp_attr_mask);
2147
2148/**
2149 * ib_query_qp - Returns the attribute list and current values for the
2150 * specified QP.
2151 * @qp: The QP to query.
2152 * @qp_attr: The attributes of the specified QP.
2153 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2154 * @qp_init_attr: Additional attributes of the selected QP.
2155 *
2156 * The qp_attr_mask may be used to limit the query to gathering only the
2157 * selected attributes.
2158 */
2159int ib_query_qp(struct ib_qp *qp,
2160 struct ib_qp_attr *qp_attr,
2161 int qp_attr_mask,
2162 struct ib_qp_init_attr *qp_init_attr);
2163
2164/**
2165 * ib_destroy_qp - Destroys the specified QP.
2166 * @qp: The QP to destroy.
2167 */
2168int ib_destroy_qp(struct ib_qp *qp);
2169
d3d72d90 2170/**
0e0ec7e0
SH
2171 * ib_open_qp - Obtain a reference to an existing sharable QP.
2172 * @xrcd - XRC domain
2173 * @qp_open_attr: Attributes identifying the QP to open.
2174 *
2175 * Returns a reference to a sharable QP.
2176 */
2177struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2178 struct ib_qp_open_attr *qp_open_attr);
2179
2180/**
2181 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2182 * @qp: The QP handle to release
2183 *
0e0ec7e0
SH
2184 * The opened QP handle is released by the caller. The underlying
2185 * shared QP is not destroyed until all internal references are released.
d3d72d90 2186 */
0e0ec7e0 2187int ib_close_qp(struct ib_qp *qp);
d3d72d90 2188
1da177e4
LT
2189/**
2190 * ib_post_send - Posts a list of work requests to the send queue of
2191 * the specified QP.
2192 * @qp: The QP to post the work request on.
2193 * @send_wr: A list of work requests to post on the send queue.
2194 * @bad_send_wr: On an immediate failure, this parameter will reference
2195 * the work request that failed to be posted on the QP.
55464d46
BVA
2196 *
2197 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2198 * error is returned, the QP state shall not be affected,
2199 * ib_post_send() will return an immediate error after queueing any
2200 * earlier work requests in the list.
1da177e4
LT
2201 */
2202static inline int ib_post_send(struct ib_qp *qp,
2203 struct ib_send_wr *send_wr,
2204 struct ib_send_wr **bad_send_wr)
2205{
2206 return qp->device->post_send(qp, send_wr, bad_send_wr);
2207}
2208
2209/**
2210 * ib_post_recv - Posts a list of work requests to the receive queue of
2211 * the specified QP.
2212 * @qp: The QP to post the work request on.
2213 * @recv_wr: A list of work requests to post on the receive queue.
2214 * @bad_recv_wr: On an immediate failure, this parameter will reference
2215 * the work request that failed to be posted on the QP.
2216 */
2217static inline int ib_post_recv(struct ib_qp *qp,
2218 struct ib_recv_wr *recv_wr,
2219 struct ib_recv_wr **bad_recv_wr)
2220{
2221 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2222}
2223
2224/**
2225 * ib_create_cq - Creates a CQ on the specified device.
2226 * @device: The device on which to create the CQ.
2227 * @comp_handler: A user-specified callback that is invoked when a
2228 * completion event occurs on the CQ.
2229 * @event_handler: A user-specified callback that is invoked when an
2230 * asynchronous event not associated with a completion occurs on the CQ.
2231 * @cq_context: Context associated with the CQ returned to the user via
2232 * the associated completion and event handlers.
2233 * @cqe: The minimum size of the CQ.
f4fd0b22
MT
2234 * @comp_vector - Completion vector used to signal completion events.
2235 * Must be >= 0 and < context->num_comp_vectors.
1da177e4
LT
2236 *
2237 * Users can examine the cq structure to determine the actual CQ size.
2238 */
2239struct ib_cq *ib_create_cq(struct ib_device *device,
2240 ib_comp_handler comp_handler,
2241 void (*event_handler)(struct ib_event *, void *),
f4fd0b22 2242 void *cq_context, int cqe, int comp_vector);
1da177e4
LT
2243
2244/**
2245 * ib_resize_cq - Modifies the capacity of the CQ.
2246 * @cq: The CQ to resize.
2247 * @cqe: The minimum size of the CQ.
2248 *
2249 * Users can examine the cq structure to determine the actual CQ size.
2250 */
2251int ib_resize_cq(struct ib_cq *cq, int cqe);
2252
2dd57162
EC
2253/**
2254 * ib_modify_cq - Modifies moderation params of the CQ
2255 * @cq: The CQ to modify.
2256 * @cq_count: number of CQEs that will trigger an event
2257 * @cq_period: max period of time in usec before triggering an event
2258 *
2259 */
2260int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2261
1da177e4
LT
2262/**
2263 * ib_destroy_cq - Destroys the specified CQ.
2264 * @cq: The CQ to destroy.
2265 */
2266int ib_destroy_cq(struct ib_cq *cq);
2267
2268/**
2269 * ib_poll_cq - poll a CQ for completion(s)
2270 * @cq:the CQ being polled
2271 * @num_entries:maximum number of completions to return
2272 * @wc:array of at least @num_entries &struct ib_wc where completions
2273 * will be returned
2274 *
2275 * Poll a CQ for (possibly multiple) completions. If the return value
2276 * is < 0, an error occurred. If the return value is >= 0, it is the
2277 * number of completions returned. If the return value is
2278 * non-negative and < num_entries, then the CQ was emptied.
2279 */
2280static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2281 struct ib_wc *wc)
2282{
2283 return cq->device->poll_cq(cq, num_entries, wc);
2284}
2285
2286/**
2287 * ib_peek_cq - Returns the number of unreaped completions currently
2288 * on the specified CQ.
2289 * @cq: The CQ to peek.
2290 * @wc_cnt: A minimum number of unreaped completions to check for.
2291 *
2292 * If the number of unreaped completions is greater than or equal to wc_cnt,
2293 * this function returns wc_cnt, otherwise, it returns the actual number of
2294 * unreaped completions.
2295 */
2296int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2297
2298/**
2299 * ib_req_notify_cq - Request completion notification on a CQ.
2300 * @cq: The CQ to generate an event for.
ed23a727
RD
2301 * @flags:
2302 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2303 * to request an event on the next solicited event or next work
2304 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2305 * may also be |ed in to request a hint about missed events, as
2306 * described below.
2307 *
2308 * Return Value:
2309 * < 0 means an error occurred while requesting notification
2310 * == 0 means notification was requested successfully, and if
2311 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2312 * were missed and it is safe to wait for another event. In
2313 * this case is it guaranteed that any work completions added
2314 * to the CQ since the last CQ poll will trigger a completion
2315 * notification event.
2316 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2317 * in. It means that the consumer must poll the CQ again to
2318 * make sure it is empty to avoid missing an event because of a
2319 * race between requesting notification and an entry being
2320 * added to the CQ. This return value means it is possible
2321 * (but not guaranteed) that a work completion has been added
2322 * to the CQ since the last poll without triggering a
2323 * completion notification event.
1da177e4
LT
2324 */
2325static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2326 enum ib_cq_notify_flags flags)
1da177e4 2327{
ed23a727 2328 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2329}
2330
2331/**
2332 * ib_req_ncomp_notif - Request completion notification when there are
2333 * at least the specified number of unreaped completions on the CQ.
2334 * @cq: The CQ to generate an event for.
2335 * @wc_cnt: The number of unreaped completions that should be on the
2336 * CQ before an event is generated.
2337 */
2338static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2339{
2340 return cq->device->req_ncomp_notif ?
2341 cq->device->req_ncomp_notif(cq, wc_cnt) :
2342 -ENOSYS;
2343}
2344
2345/**
2346 * ib_get_dma_mr - Returns a memory region for system memory that is
2347 * usable for DMA.
2348 * @pd: The protection domain associated with the memory region.
2349 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2350 *
2351 * Note that the ib_dma_*() functions defined below must be used
2352 * to create/destroy addresses used with the Lkey or Rkey returned
2353 * by ib_get_dma_mr().
1da177e4
LT
2354 */
2355struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2356
9b513090
RC
2357/**
2358 * ib_dma_mapping_error - check a DMA addr for error
2359 * @dev: The device for which the dma_addr was created
2360 * @dma_addr: The DMA address to check
2361 */
2362static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2363{
d1998ef3
BC
2364 if (dev->dma_ops)
2365 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2366 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2367}
2368
2369/**
2370 * ib_dma_map_single - Map a kernel virtual address to DMA address
2371 * @dev: The device for which the dma_addr is to be created
2372 * @cpu_addr: The kernel virtual address
2373 * @size: The size of the region in bytes
2374 * @direction: The direction of the DMA
2375 */
2376static inline u64 ib_dma_map_single(struct ib_device *dev,
2377 void *cpu_addr, size_t size,
2378 enum dma_data_direction direction)
2379{
d1998ef3
BC
2380 if (dev->dma_ops)
2381 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2382 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2383}
2384
2385/**
2386 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2387 * @dev: The device for which the DMA address was created
2388 * @addr: The DMA address
2389 * @size: The size of the region in bytes
2390 * @direction: The direction of the DMA
2391 */
2392static inline void ib_dma_unmap_single(struct ib_device *dev,
2393 u64 addr, size_t size,
2394 enum dma_data_direction direction)
2395{
d1998ef3
BC
2396 if (dev->dma_ops)
2397 dev->dma_ops->unmap_single(dev, addr, size, direction);
2398 else
9b513090
RC
2399 dma_unmap_single(dev->dma_device, addr, size, direction);
2400}
2401
cb9fbc5c
AK
2402static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2403 void *cpu_addr, size_t size,
2404 enum dma_data_direction direction,
2405 struct dma_attrs *attrs)
2406{
2407 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2408 direction, attrs);
2409}
2410
2411static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2412 u64 addr, size_t size,
2413 enum dma_data_direction direction,
2414 struct dma_attrs *attrs)
2415{
2416 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2417 direction, attrs);
2418}
2419
9b513090
RC
2420/**
2421 * ib_dma_map_page - Map a physical page to DMA address
2422 * @dev: The device for which the dma_addr is to be created
2423 * @page: The page to be mapped
2424 * @offset: The offset within the page
2425 * @size: The size of the region in bytes
2426 * @direction: The direction of the DMA
2427 */
2428static inline u64 ib_dma_map_page(struct ib_device *dev,
2429 struct page *page,
2430 unsigned long offset,
2431 size_t size,
2432 enum dma_data_direction direction)
2433{
d1998ef3
BC
2434 if (dev->dma_ops)
2435 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2436 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2437}
2438
2439/**
2440 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2441 * @dev: The device for which the DMA address was created
2442 * @addr: The DMA address
2443 * @size: The size of the region in bytes
2444 * @direction: The direction of the DMA
2445 */
2446static inline void ib_dma_unmap_page(struct ib_device *dev,
2447 u64 addr, size_t size,
2448 enum dma_data_direction direction)
2449{
d1998ef3
BC
2450 if (dev->dma_ops)
2451 dev->dma_ops->unmap_page(dev, addr, size, direction);
2452 else
9b513090
RC
2453 dma_unmap_page(dev->dma_device, addr, size, direction);
2454}
2455
2456/**
2457 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2458 * @dev: The device for which the DMA addresses are to be created
2459 * @sg: The array of scatter/gather entries
2460 * @nents: The number of scatter/gather entries
2461 * @direction: The direction of the DMA
2462 */
2463static inline int ib_dma_map_sg(struct ib_device *dev,
2464 struct scatterlist *sg, int nents,
2465 enum dma_data_direction direction)
2466{
d1998ef3
BC
2467 if (dev->dma_ops)
2468 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2469 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2470}
2471
2472/**
2473 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2474 * @dev: The device for which the DMA addresses were created
2475 * @sg: The array of scatter/gather entries
2476 * @nents: The number of scatter/gather entries
2477 * @direction: The direction of the DMA
2478 */
2479static inline void ib_dma_unmap_sg(struct ib_device *dev,
2480 struct scatterlist *sg, int nents,
2481 enum dma_data_direction direction)
2482{
d1998ef3
BC
2483 if (dev->dma_ops)
2484 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2485 else
9b513090
RC
2486 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2487}
2488
cb9fbc5c
AK
2489static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2490 struct scatterlist *sg, int nents,
2491 enum dma_data_direction direction,
2492 struct dma_attrs *attrs)
2493{
2494 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2495}
2496
2497static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2498 struct scatterlist *sg, int nents,
2499 enum dma_data_direction direction,
2500 struct dma_attrs *attrs)
2501{
2502 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2503}
9b513090
RC
2504/**
2505 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2506 * @dev: The device for which the DMA addresses were created
2507 * @sg: The scatter/gather entry
ea58a595
MM
2508 *
2509 * Note: this function is obsolete. To do: change all occurrences of
2510 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2511 */
2512static inline u64 ib_sg_dma_address(struct ib_device *dev,
2513 struct scatterlist *sg)
2514{
d1998ef3 2515 return sg_dma_address(sg);
9b513090
RC
2516}
2517
2518/**
2519 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2520 * @dev: The device for which the DMA addresses were created
2521 * @sg: The scatter/gather entry
ea58a595
MM
2522 *
2523 * Note: this function is obsolete. To do: change all occurrences of
2524 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2525 */
2526static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2527 struct scatterlist *sg)
2528{
d1998ef3 2529 return sg_dma_len(sg);
9b513090
RC
2530}
2531
2532/**
2533 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2534 * @dev: The device for which the DMA address was created
2535 * @addr: The DMA address
2536 * @size: The size of the region in bytes
2537 * @dir: The direction of the DMA
2538 */
2539static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2540 u64 addr,
2541 size_t size,
2542 enum dma_data_direction dir)
2543{
d1998ef3
BC
2544 if (dev->dma_ops)
2545 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2546 else
9b513090
RC
2547 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2548}
2549
2550/**
2551 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2552 * @dev: The device for which the DMA address was created
2553 * @addr: The DMA address
2554 * @size: The size of the region in bytes
2555 * @dir: The direction of the DMA
2556 */
2557static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2558 u64 addr,
2559 size_t size,
2560 enum dma_data_direction dir)
2561{
d1998ef3
BC
2562 if (dev->dma_ops)
2563 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2564 else
9b513090
RC
2565 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2566}
2567
2568/**
2569 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2570 * @dev: The device for which the DMA address is requested
2571 * @size: The size of the region to allocate in bytes
2572 * @dma_handle: A pointer for returning the DMA address of the region
2573 * @flag: memory allocator flags
2574 */
2575static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2576 size_t size,
2577 u64 *dma_handle,
2578 gfp_t flag)
2579{
d1998ef3
BC
2580 if (dev->dma_ops)
2581 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2582 else {
2583 dma_addr_t handle;
2584 void *ret;
2585
2586 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2587 *dma_handle = handle;
2588 return ret;
2589 }
9b513090
RC
2590}
2591
2592/**
2593 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2594 * @dev: The device for which the DMA addresses were allocated
2595 * @size: The size of the region
2596 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2597 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2598 */
2599static inline void ib_dma_free_coherent(struct ib_device *dev,
2600 size_t size, void *cpu_addr,
2601 u64 dma_handle)
2602{
d1998ef3
BC
2603 if (dev->dma_ops)
2604 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2605 else
9b513090
RC
2606 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2607}
2608
1da177e4
LT
2609/**
2610 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2611 * by an HCA.
2612 * @pd: The protection domain associated assigned to the registered region.
2613 * @phys_buf_array: Specifies a list of physical buffers to use in the
2614 * memory region.
2615 * @num_phys_buf: Specifies the size of the phys_buf_array.
2616 * @mr_access_flags: Specifies the memory access rights.
2617 * @iova_start: The offset of the region's starting I/O virtual address.
2618 */
2619struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2620 struct ib_phys_buf *phys_buf_array,
2621 int num_phys_buf,
2622 int mr_access_flags,
2623 u64 *iova_start);
2624
2625/**
2626 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2627 * Conceptually, this call performs the functions deregister memory region
2628 * followed by register physical memory region. Where possible,
2629 * resources are reused instead of deallocated and reallocated.
2630 * @mr: The memory region to modify.
2631 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2632 * properties of the memory region are being modified.
2633 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2634 * the new protection domain to associated with the memory region,
2635 * otherwise, this parameter is ignored.
2636 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2637 * field specifies a list of physical buffers to use in the new
2638 * translation, otherwise, this parameter is ignored.
2639 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2640 * field specifies the size of the phys_buf_array, otherwise, this
2641 * parameter is ignored.
2642 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2643 * field specifies the new memory access rights, otherwise, this
2644 * parameter is ignored.
2645 * @iova_start: The offset of the region's starting I/O virtual address.
2646 */
2647int ib_rereg_phys_mr(struct ib_mr *mr,
2648 int mr_rereg_mask,
2649 struct ib_pd *pd,
2650 struct ib_phys_buf *phys_buf_array,
2651 int num_phys_buf,
2652 int mr_access_flags,
2653 u64 *iova_start);
2654
2655/**
2656 * ib_query_mr - Retrieves information about a specific memory region.
2657 * @mr: The memory region to retrieve information about.
2658 * @mr_attr: The attributes of the specified memory region.
2659 */
2660int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2661
2662/**
2663 * ib_dereg_mr - Deregisters a memory region and removes it from the
2664 * HCA translation table.
2665 * @mr: The memory region to deregister.
7083e42e
SM
2666 *
2667 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2668 */
2669int ib_dereg_mr(struct ib_mr *mr);
2670
17cd3a2d
SG
2671
2672/**
2673 * ib_create_mr - Allocates a memory region that may be used for
2674 * signature handover operations.
2675 * @pd: The protection domain associated with the region.
2676 * @mr_init_attr: memory region init attributes.
2677 */
2678struct ib_mr *ib_create_mr(struct ib_pd *pd,
2679 struct ib_mr_init_attr *mr_init_attr);
2680
2681/**
2682 * ib_destroy_mr - Destroys a memory region that was created using
2683 * ib_create_mr and removes it from HW translation tables.
2684 * @mr: The memory region to destroy.
2685 *
2686 * This function can fail, if the memory region has memory windows bound to it.
2687 */
2688int ib_destroy_mr(struct ib_mr *mr);
2689
00f7ec36
SW
2690/**
2691 * ib_alloc_fast_reg_mr - Allocates memory region usable with the
2692 * IB_WR_FAST_REG_MR send work request.
2693 * @pd: The protection domain associated with the region.
2694 * @max_page_list_len: requested max physical buffer list length to be
2695 * used with fast register work requests for this MR.
2696 */
2697struct ib_mr *ib_alloc_fast_reg_mr(struct ib_pd *pd, int max_page_list_len);
2698
2699/**
2700 * ib_alloc_fast_reg_page_list - Allocates a page list array
2701 * @device - ib device pointer.
2702 * @page_list_len - size of the page list array to be allocated.
2703 *
2704 * This allocates and returns a struct ib_fast_reg_page_list * and a
2705 * page_list array that is at least page_list_len in size. The actual
2706 * size is returned in max_page_list_len. The caller is responsible
2707 * for initializing the contents of the page_list array before posting
2708 * a send work request with the IB_WC_FAST_REG_MR opcode.
2709 *
2710 * The page_list array entries must be translated using one of the
2711 * ib_dma_*() functions just like the addresses passed to
2712 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2713 * ib_fast_reg_page_list must not be modified by the caller until the
2714 * IB_WC_FAST_REG_MR work request completes.
2715 */
2716struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2717 struct ib_device *device, int page_list_len);
2718
2719/**
2720 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2721 * page list array.
2722 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2723 */
2724void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2725
2726/**
2727 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2728 * R_Key and L_Key.
2729 * @mr - struct ib_mr pointer to be updated.
2730 * @newkey - new key to be used.
2731 */
2732static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2733{
2734 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2735 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2736}
2737
7083e42e
SM
2738/**
2739 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2740 * for calculating a new rkey for type 2 memory windows.
2741 * @rkey - the rkey to increment.
2742 */
2743static inline u32 ib_inc_rkey(u32 rkey)
2744{
2745 const u32 mask = 0x000000ff;
2746 return ((rkey + 1) & mask) | (rkey & ~mask);
2747}
2748
1da177e4
LT
2749/**
2750 * ib_alloc_mw - Allocates a memory window.
2751 * @pd: The protection domain associated with the memory window.
7083e42e 2752 * @type: The type of the memory window (1 or 2).
1da177e4 2753 */
7083e42e 2754struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2755
2756/**
2757 * ib_bind_mw - Posts a work request to the send queue of the specified
2758 * QP, which binds the memory window to the given address range and
2759 * remote access attributes.
2760 * @qp: QP to post the bind work request on.
2761 * @mw: The memory window to bind.
2762 * @mw_bind: Specifies information about the memory window, including
2763 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2764 *
2765 * If there is no immediate error, the function will update the rkey member
2766 * of the mw parameter to its new value. The bind operation can still fail
2767 * asynchronously.
1da177e4
LT
2768 */
2769static inline int ib_bind_mw(struct ib_qp *qp,
2770 struct ib_mw *mw,
2771 struct ib_mw_bind *mw_bind)
2772{
2773 /* XXX reference counting in corresponding MR? */
2774 return mw->device->bind_mw ?
2775 mw->device->bind_mw(qp, mw, mw_bind) :
2776 -ENOSYS;
2777}
2778
2779/**
2780 * ib_dealloc_mw - Deallocates a memory window.
2781 * @mw: The memory window to deallocate.
2782 */
2783int ib_dealloc_mw(struct ib_mw *mw);
2784
2785/**
2786 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2787 * @pd: The protection domain associated with the unmapped region.
2788 * @mr_access_flags: Specifies the memory access rights.
2789 * @fmr_attr: Attributes of the unmapped region.
2790 *
2791 * A fast memory region must be mapped before it can be used as part of
2792 * a work request.
2793 */
2794struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2795 int mr_access_flags,
2796 struct ib_fmr_attr *fmr_attr);
2797
2798/**
2799 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2800 * @fmr: The fast memory region to associate with the pages.
2801 * @page_list: An array of physical pages to map to the fast memory region.
2802 * @list_len: The number of pages in page_list.
2803 * @iova: The I/O virtual address to use with the mapped region.
2804 */
2805static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2806 u64 *page_list, int list_len,
2807 u64 iova)
2808{
2809 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2810}
2811
2812/**
2813 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2814 * @fmr_list: A linked list of fast memory regions to unmap.
2815 */
2816int ib_unmap_fmr(struct list_head *fmr_list);
2817
2818/**
2819 * ib_dealloc_fmr - Deallocates a fast memory region.
2820 * @fmr: The fast memory region to deallocate.
2821 */
2822int ib_dealloc_fmr(struct ib_fmr *fmr);
2823
2824/**
2825 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2826 * @qp: QP to attach to the multicast group. The QP must be type
2827 * IB_QPT_UD.
2828 * @gid: Multicast group GID.
2829 * @lid: Multicast group LID in host byte order.
2830 *
2831 * In order to send and receive multicast packets, subnet
2832 * administration must have created the multicast group and configured
2833 * the fabric appropriately. The port associated with the specified
2834 * QP must also be a member of the multicast group.
2835 */
2836int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2837
2838/**
2839 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2840 * @qp: QP to detach from the multicast group.
2841 * @gid: Multicast group GID.
2842 * @lid: Multicast group LID in host byte order.
2843 */
2844int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2845
59991f94
SH
2846/**
2847 * ib_alloc_xrcd - Allocates an XRC domain.
2848 * @device: The device on which to allocate the XRC domain.
2849 */
2850struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2851
2852/**
2853 * ib_dealloc_xrcd - Deallocates an XRC domain.
2854 * @xrcd: The XRC domain to deallocate.
2855 */
2856int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2857
319a441d
HHZ
2858struct ib_flow *ib_create_flow(struct ib_qp *qp,
2859 struct ib_flow_attr *flow_attr, int domain);
2860int ib_destroy_flow(struct ib_flow *flow_id);
2861
1c636f80
EC
2862static inline int ib_check_mr_access(int flags)
2863{
2864 /*
2865 * Local write permission is required if remote write or
2866 * remote atomic permission is also requested.
2867 */
2868 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2869 !(flags & IB_ACCESS_LOCAL_WRITE))
2870 return -EINVAL;
2871
2872 return 0;
2873}
2874
1b01d335
SG
2875/**
2876 * ib_check_mr_status: lightweight check of MR status.
2877 * This routine may provide status checks on a selected
2878 * ib_mr. first use is for signature status check.
2879 *
2880 * @mr: A memory region.
2881 * @check_mask: Bitmask of which checks to perform from
2882 * ib_mr_status_check enumeration.
2883 * @mr_status: The container of relevant status checks.
2884 * failed checks will be indicated in the status bitmask
2885 * and the relevant info shall be in the error item.
2886 */
2887int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2888 struct ib_mr_status *mr_status);
2889
1da177e4 2890#endif /* IB_VERBS_H */
This page took 0.814179 seconds and 5 git commands to generate.