IB/core: Make ib_alloc_device init the kobject
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
dd5f03be 52#include <uapi/linux/if_ether.h>
e2773c06 53
60063497 54#include <linux/atomic.h>
882214e2 55#include <linux/mmu_notifier.h>
e2773c06 56#include <asm/uaccess.h>
1da177e4 57
f0626710
TH
58extern struct workqueue_struct *ib_wq;
59
1da177e4
LT
60union ib_gid {
61 u8 raw[16];
62 struct {
97f52eb4
SH
63 __be64 subnet_prefix;
64 __be64 interface_id;
1da177e4
LT
65 } global;
66};
67
07ebafba
TT
68enum rdma_node_type {
69 /* IB values map to NodeInfo:NodeType. */
70 RDMA_NODE_IB_CA = 1,
71 RDMA_NODE_IB_SWITCH,
72 RDMA_NODE_IB_ROUTER,
180771a3
UM
73 RDMA_NODE_RNIC,
74 RDMA_NODE_USNIC,
5db5765e 75 RDMA_NODE_USNIC_UDP,
1da177e4
LT
76};
77
07ebafba
TT
78enum rdma_transport_type {
79 RDMA_TRANSPORT_IB,
180771a3 80 RDMA_TRANSPORT_IWARP,
248567f7
UM
81 RDMA_TRANSPORT_USNIC,
82 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
83};
84
6b90a6d6
MW
85enum rdma_protocol_type {
86 RDMA_PROTOCOL_IB,
87 RDMA_PROTOCOL_IBOE,
88 RDMA_PROTOCOL_IWARP,
89 RDMA_PROTOCOL_USNIC_UDP
90};
91
8385fd84
RD
92__attribute_const__ enum rdma_transport_type
93rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 94
a3f5adaf
EC
95enum rdma_link_layer {
96 IB_LINK_LAYER_UNSPECIFIED,
97 IB_LINK_LAYER_INFINIBAND,
98 IB_LINK_LAYER_ETHERNET,
99};
100
1da177e4
LT
101enum ib_device_cap_flags {
102 IB_DEVICE_RESIZE_MAX_WR = 1,
103 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
104 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
105 IB_DEVICE_RAW_MULTI = (1<<3),
106 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
107 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
108 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
109 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
110 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
111 IB_DEVICE_INIT_TYPE = (1<<9),
112 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
113 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
114 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
115 IB_DEVICE_SRQ_RESIZE = (1<<13),
116 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
96f15c03 117 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 118 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
119 IB_DEVICE_MEM_WINDOW = (1<<17),
120 /*
121 * Devices should set IB_DEVICE_UD_IP_SUM if they support
122 * insertion of UDP and TCP checksum on outgoing UD IPoIB
123 * messages and can verify the validity of checksum for
124 * incoming messages. Setting this flag implies that the
125 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
126 */
127 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 128 IB_DEVICE_UD_TSO = (1<<19),
59991f94 129 IB_DEVICE_XRC = (1<<20),
00f7ec36 130 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 131 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 132 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 133 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
1b01d335 134 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
135 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
136 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
137};
138
139enum ib_signature_prot_cap {
140 IB_PROT_T10DIF_TYPE_1 = 1,
141 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
142 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
143};
144
145enum ib_signature_guard_cap {
146 IB_GUARD_T10DIF_CRC = 1,
147 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
148};
149
150enum ib_atomic_cap {
151 IB_ATOMIC_NONE,
152 IB_ATOMIC_HCA,
153 IB_ATOMIC_GLOB
154};
155
860f10a7
SG
156enum ib_odp_general_cap_bits {
157 IB_ODP_SUPPORT = 1 << 0,
158};
159
160enum ib_odp_transport_cap_bits {
161 IB_ODP_SUPPORT_SEND = 1 << 0,
162 IB_ODP_SUPPORT_RECV = 1 << 1,
163 IB_ODP_SUPPORT_WRITE = 1 << 2,
164 IB_ODP_SUPPORT_READ = 1 << 3,
165 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
166};
167
168struct ib_odp_caps {
169 uint64_t general_caps;
170 struct {
171 uint32_t rc_odp_caps;
172 uint32_t uc_odp_caps;
173 uint32_t ud_odp_caps;
174 } per_transport_caps;
175};
176
b9926b92
MB
177enum ib_cq_creation_flags {
178 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
179};
180
bcf4c1ea
MB
181struct ib_cq_init_attr {
182 unsigned int cqe;
183 int comp_vector;
184 u32 flags;
185};
186
1da177e4
LT
187struct ib_device_attr {
188 u64 fw_ver;
97f52eb4 189 __be64 sys_image_guid;
1da177e4
LT
190 u64 max_mr_size;
191 u64 page_size_cap;
192 u32 vendor_id;
193 u32 vendor_part_id;
194 u32 hw_ver;
195 int max_qp;
196 int max_qp_wr;
197 int device_cap_flags;
198 int max_sge;
199 int max_sge_rd;
200 int max_cq;
201 int max_cqe;
202 int max_mr;
203 int max_pd;
204 int max_qp_rd_atom;
205 int max_ee_rd_atom;
206 int max_res_rd_atom;
207 int max_qp_init_rd_atom;
208 int max_ee_init_rd_atom;
209 enum ib_atomic_cap atomic_cap;
5e80ba8f 210 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
211 int max_ee;
212 int max_rdd;
213 int max_mw;
214 int max_raw_ipv6_qp;
215 int max_raw_ethy_qp;
216 int max_mcast_grp;
217 int max_mcast_qp_attach;
218 int max_total_mcast_qp_attach;
219 int max_ah;
220 int max_fmr;
221 int max_map_per_fmr;
222 int max_srq;
223 int max_srq_wr;
224 int max_srq_sge;
00f7ec36 225 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
226 u16 max_pkeys;
227 u8 local_ca_ack_delay;
1b01d335
SG
228 int sig_prot_cap;
229 int sig_guard_cap;
860f10a7 230 struct ib_odp_caps odp_caps;
24306dc6
MB
231 uint64_t timestamp_mask;
232 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
233};
234
235enum ib_mtu {
236 IB_MTU_256 = 1,
237 IB_MTU_512 = 2,
238 IB_MTU_1024 = 3,
239 IB_MTU_2048 = 4,
240 IB_MTU_4096 = 5
241};
242
243static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
244{
245 switch (mtu) {
246 case IB_MTU_256: return 256;
247 case IB_MTU_512: return 512;
248 case IB_MTU_1024: return 1024;
249 case IB_MTU_2048: return 2048;
250 case IB_MTU_4096: return 4096;
251 default: return -1;
252 }
253}
254
255enum ib_port_state {
256 IB_PORT_NOP = 0,
257 IB_PORT_DOWN = 1,
258 IB_PORT_INIT = 2,
259 IB_PORT_ARMED = 3,
260 IB_PORT_ACTIVE = 4,
261 IB_PORT_ACTIVE_DEFER = 5
262};
263
264enum ib_port_cap_flags {
265 IB_PORT_SM = 1 << 1,
266 IB_PORT_NOTICE_SUP = 1 << 2,
267 IB_PORT_TRAP_SUP = 1 << 3,
268 IB_PORT_OPT_IPD_SUP = 1 << 4,
269 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
270 IB_PORT_SL_MAP_SUP = 1 << 6,
271 IB_PORT_MKEY_NVRAM = 1 << 7,
272 IB_PORT_PKEY_NVRAM = 1 << 8,
273 IB_PORT_LED_INFO_SUP = 1 << 9,
274 IB_PORT_SM_DISABLED = 1 << 10,
275 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
276 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 277 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
278 IB_PORT_CM_SUP = 1 << 16,
279 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
280 IB_PORT_REINIT_SUP = 1 << 18,
281 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
282 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
283 IB_PORT_DR_NOTICE_SUP = 1 << 21,
284 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
285 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
286 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27
MS
287 IB_PORT_CLIENT_REG_SUP = 1 << 25,
288 IB_PORT_IP_BASED_GIDS = 1 << 26
1da177e4
LT
289};
290
291enum ib_port_width {
292 IB_WIDTH_1X = 1,
293 IB_WIDTH_4X = 2,
294 IB_WIDTH_8X = 4,
295 IB_WIDTH_12X = 8
296};
297
298static inline int ib_width_enum_to_int(enum ib_port_width width)
299{
300 switch (width) {
301 case IB_WIDTH_1X: return 1;
302 case IB_WIDTH_4X: return 4;
303 case IB_WIDTH_8X: return 8;
304 case IB_WIDTH_12X: return 12;
305 default: return -1;
306 }
307}
308
2e96691c
OG
309enum ib_port_speed {
310 IB_SPEED_SDR = 1,
311 IB_SPEED_DDR = 2,
312 IB_SPEED_QDR = 4,
313 IB_SPEED_FDR10 = 8,
314 IB_SPEED_FDR = 16,
315 IB_SPEED_EDR = 32
316};
317
7f624d02
SW
318struct ib_protocol_stats {
319 /* TBD... */
320};
321
322struct iw_protocol_stats {
323 u64 ipInReceives;
324 u64 ipInHdrErrors;
325 u64 ipInTooBigErrors;
326 u64 ipInNoRoutes;
327 u64 ipInAddrErrors;
328 u64 ipInUnknownProtos;
329 u64 ipInTruncatedPkts;
330 u64 ipInDiscards;
331 u64 ipInDelivers;
332 u64 ipOutForwDatagrams;
333 u64 ipOutRequests;
334 u64 ipOutDiscards;
335 u64 ipOutNoRoutes;
336 u64 ipReasmTimeout;
337 u64 ipReasmReqds;
338 u64 ipReasmOKs;
339 u64 ipReasmFails;
340 u64 ipFragOKs;
341 u64 ipFragFails;
342 u64 ipFragCreates;
343 u64 ipInMcastPkts;
344 u64 ipOutMcastPkts;
345 u64 ipInBcastPkts;
346 u64 ipOutBcastPkts;
347
348 u64 tcpRtoAlgorithm;
349 u64 tcpRtoMin;
350 u64 tcpRtoMax;
351 u64 tcpMaxConn;
352 u64 tcpActiveOpens;
353 u64 tcpPassiveOpens;
354 u64 tcpAttemptFails;
355 u64 tcpEstabResets;
356 u64 tcpCurrEstab;
357 u64 tcpInSegs;
358 u64 tcpOutSegs;
359 u64 tcpRetransSegs;
360 u64 tcpInErrs;
361 u64 tcpOutRsts;
362};
363
364union rdma_protocol_stats {
365 struct ib_protocol_stats ib;
366 struct iw_protocol_stats iw;
367};
368
f9b22e35
IW
369/* Define bits for the various functionality this port needs to be supported by
370 * the core.
371 */
372/* Management 0x00000FFF */
373#define RDMA_CORE_CAP_IB_MAD 0x00000001
374#define RDMA_CORE_CAP_IB_SMI 0x00000002
375#define RDMA_CORE_CAP_IB_CM 0x00000004
376#define RDMA_CORE_CAP_IW_CM 0x00000008
377#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 378#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
379
380/* Address format 0x000FF000 */
381#define RDMA_CORE_CAP_AF_IB 0x00001000
382#define RDMA_CORE_CAP_ETH_AH 0x00002000
383
384/* Protocol 0xFFF00000 */
385#define RDMA_CORE_CAP_PROT_IB 0x00100000
386#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
387#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
388
389#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
390 | RDMA_CORE_CAP_IB_MAD \
391 | RDMA_CORE_CAP_IB_SMI \
392 | RDMA_CORE_CAP_IB_CM \
393 | RDMA_CORE_CAP_IB_SA \
394 | RDMA_CORE_CAP_AF_IB)
395#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
396 | RDMA_CORE_CAP_IB_MAD \
397 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
398 | RDMA_CORE_CAP_AF_IB \
399 | RDMA_CORE_CAP_ETH_AH)
400#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
401 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
402#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
403 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 404
1da177e4
LT
405struct ib_port_attr {
406 enum ib_port_state state;
407 enum ib_mtu max_mtu;
408 enum ib_mtu active_mtu;
409 int gid_tbl_len;
410 u32 port_cap_flags;
411 u32 max_msg_sz;
412 u32 bad_pkey_cntr;
413 u32 qkey_viol_cntr;
414 u16 pkey_tbl_len;
415 u16 lid;
416 u16 sm_lid;
417 u8 lmc;
418 u8 max_vl_num;
419 u8 sm_sl;
420 u8 subnet_timeout;
421 u8 init_type_reply;
422 u8 active_width;
423 u8 active_speed;
424 u8 phys_state;
425};
426
427enum ib_device_modify_flags {
c5bcbbb9
RD
428 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
429 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
430};
431
432struct ib_device_modify {
433 u64 sys_image_guid;
c5bcbbb9 434 char node_desc[64];
1da177e4
LT
435};
436
437enum ib_port_modify_flags {
438 IB_PORT_SHUTDOWN = 1,
439 IB_PORT_INIT_TYPE = (1<<2),
440 IB_PORT_RESET_QKEY_CNTR = (1<<3)
441};
442
443struct ib_port_modify {
444 u32 set_port_cap_mask;
445 u32 clr_port_cap_mask;
446 u8 init_type;
447};
448
449enum ib_event_type {
450 IB_EVENT_CQ_ERR,
451 IB_EVENT_QP_FATAL,
452 IB_EVENT_QP_REQ_ERR,
453 IB_EVENT_QP_ACCESS_ERR,
454 IB_EVENT_COMM_EST,
455 IB_EVENT_SQ_DRAINED,
456 IB_EVENT_PATH_MIG,
457 IB_EVENT_PATH_MIG_ERR,
458 IB_EVENT_DEVICE_FATAL,
459 IB_EVENT_PORT_ACTIVE,
460 IB_EVENT_PORT_ERR,
461 IB_EVENT_LID_CHANGE,
462 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
463 IB_EVENT_SM_CHANGE,
464 IB_EVENT_SRQ_ERR,
465 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 466 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
467 IB_EVENT_CLIENT_REREGISTER,
468 IB_EVENT_GID_CHANGE,
1da177e4
LT
469};
470
2b1b5b60
SG
471__attribute_const__ const char *ib_event_msg(enum ib_event_type event);
472
1da177e4
LT
473struct ib_event {
474 struct ib_device *device;
475 union {
476 struct ib_cq *cq;
477 struct ib_qp *qp;
d41fcc67 478 struct ib_srq *srq;
1da177e4
LT
479 u8 port_num;
480 } element;
481 enum ib_event_type event;
482};
483
484struct ib_event_handler {
485 struct ib_device *device;
486 void (*handler)(struct ib_event_handler *, struct ib_event *);
487 struct list_head list;
488};
489
490#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
491 do { \
492 (_ptr)->device = _device; \
493 (_ptr)->handler = _handler; \
494 INIT_LIST_HEAD(&(_ptr)->list); \
495 } while (0)
496
497struct ib_global_route {
498 union ib_gid dgid;
499 u32 flow_label;
500 u8 sgid_index;
501 u8 hop_limit;
502 u8 traffic_class;
503};
504
513789ed 505struct ib_grh {
97f52eb4
SH
506 __be32 version_tclass_flow;
507 __be16 paylen;
513789ed
HR
508 u8 next_hdr;
509 u8 hop_limit;
510 union ib_gid sgid;
511 union ib_gid dgid;
512};
513
1da177e4
LT
514enum {
515 IB_MULTICAST_QPN = 0xffffff
516};
517
f3a7c66b 518#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 519
1da177e4
LT
520enum ib_ah_flags {
521 IB_AH_GRH = 1
522};
523
bf6a9e31
JM
524enum ib_rate {
525 IB_RATE_PORT_CURRENT = 0,
526 IB_RATE_2_5_GBPS = 2,
527 IB_RATE_5_GBPS = 5,
528 IB_RATE_10_GBPS = 3,
529 IB_RATE_20_GBPS = 6,
530 IB_RATE_30_GBPS = 4,
531 IB_RATE_40_GBPS = 7,
532 IB_RATE_60_GBPS = 8,
533 IB_RATE_80_GBPS = 9,
71eeba16
MA
534 IB_RATE_120_GBPS = 10,
535 IB_RATE_14_GBPS = 11,
536 IB_RATE_56_GBPS = 12,
537 IB_RATE_112_GBPS = 13,
538 IB_RATE_168_GBPS = 14,
539 IB_RATE_25_GBPS = 15,
540 IB_RATE_100_GBPS = 16,
541 IB_RATE_200_GBPS = 17,
542 IB_RATE_300_GBPS = 18
bf6a9e31
JM
543};
544
545/**
546 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
547 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
548 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
549 * @rate: rate to convert.
550 */
8385fd84 551__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 552
71eeba16
MA
553/**
554 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
555 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
556 * @rate: rate to convert.
557 */
8385fd84 558__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 559
17cd3a2d
SG
560
561/**
9bee178b
SG
562 * enum ib_mr_type - memory region type
563 * @IB_MR_TYPE_MEM_REG: memory region that is used for
564 * normal registration
565 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
566 * signature operations (data-integrity
567 * capable regions)
17cd3a2d 568 */
9bee178b
SG
569enum ib_mr_type {
570 IB_MR_TYPE_MEM_REG,
571 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
572};
573
1b01d335 574/**
78eda2bb
SG
575 * Signature types
576 * IB_SIG_TYPE_NONE: Unprotected.
577 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 578 */
78eda2bb
SG
579enum ib_signature_type {
580 IB_SIG_TYPE_NONE,
581 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
582};
583
584/**
585 * Signature T10-DIF block-guard types
586 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
587 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
588 */
589enum ib_t10_dif_bg_type {
590 IB_T10DIF_CRC,
591 IB_T10DIF_CSUM
592};
593
594/**
595 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
596 * domain.
1b01d335
SG
597 * @bg_type: T10-DIF block guard type (CRC|CSUM)
598 * @pi_interval: protection information interval.
599 * @bg: seed of guard computation.
600 * @app_tag: application tag of guard block
601 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
602 * @ref_remap: Indicate wethear the reftag increments each block
603 * @app_escape: Indicate to skip block check if apptag=0xffff
604 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
605 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
606 */
607struct ib_t10_dif_domain {
1b01d335
SG
608 enum ib_t10_dif_bg_type bg_type;
609 u16 pi_interval;
610 u16 bg;
611 u16 app_tag;
612 u32 ref_tag;
78eda2bb
SG
613 bool ref_remap;
614 bool app_escape;
615 bool ref_escape;
616 u16 apptag_check_mask;
1b01d335
SG
617};
618
619/**
620 * struct ib_sig_domain - Parameters for signature domain
621 * @sig_type: specific signauture type
622 * @sig: union of all signature domain attributes that may
623 * be used to set domain layout.
624 */
625struct ib_sig_domain {
626 enum ib_signature_type sig_type;
627 union {
628 struct ib_t10_dif_domain dif;
629 } sig;
630};
631
632/**
633 * struct ib_sig_attrs - Parameters for signature handover operation
634 * @check_mask: bitmask for signature byte check (8 bytes)
635 * @mem: memory domain layout desciptor.
636 * @wire: wire domain layout desciptor.
637 */
638struct ib_sig_attrs {
639 u8 check_mask;
640 struct ib_sig_domain mem;
641 struct ib_sig_domain wire;
642};
643
644enum ib_sig_err_type {
645 IB_SIG_BAD_GUARD,
646 IB_SIG_BAD_REFTAG,
647 IB_SIG_BAD_APPTAG,
648};
649
650/**
651 * struct ib_sig_err - signature error descriptor
652 */
653struct ib_sig_err {
654 enum ib_sig_err_type err_type;
655 u32 expected;
656 u32 actual;
657 u64 sig_err_offset;
658 u32 key;
659};
660
661enum ib_mr_status_check {
662 IB_MR_CHECK_SIG_STATUS = 1,
663};
664
665/**
666 * struct ib_mr_status - Memory region status container
667 *
668 * @fail_status: Bitmask of MR checks status. For each
669 * failed check a corresponding status bit is set.
670 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
671 * failure.
672 */
673struct ib_mr_status {
674 u32 fail_status;
675 struct ib_sig_err sig_err;
676};
677
bf6a9e31
JM
678/**
679 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
680 * enum.
681 * @mult: multiple to convert.
682 */
8385fd84 683__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 684
1da177e4
LT
685struct ib_ah_attr {
686 struct ib_global_route grh;
687 u16 dlid;
688 u8 sl;
689 u8 src_path_bits;
690 u8 static_rate;
691 u8 ah_flags;
692 u8 port_num;
dd5f03be
MB
693 u8 dmac[ETH_ALEN];
694 u16 vlan_id;
1da177e4
LT
695};
696
697enum ib_wc_status {
698 IB_WC_SUCCESS,
699 IB_WC_LOC_LEN_ERR,
700 IB_WC_LOC_QP_OP_ERR,
701 IB_WC_LOC_EEC_OP_ERR,
702 IB_WC_LOC_PROT_ERR,
703 IB_WC_WR_FLUSH_ERR,
704 IB_WC_MW_BIND_ERR,
705 IB_WC_BAD_RESP_ERR,
706 IB_WC_LOC_ACCESS_ERR,
707 IB_WC_REM_INV_REQ_ERR,
708 IB_WC_REM_ACCESS_ERR,
709 IB_WC_REM_OP_ERR,
710 IB_WC_RETRY_EXC_ERR,
711 IB_WC_RNR_RETRY_EXC_ERR,
712 IB_WC_LOC_RDD_VIOL_ERR,
713 IB_WC_REM_INV_RD_REQ_ERR,
714 IB_WC_REM_ABORT_ERR,
715 IB_WC_INV_EECN_ERR,
716 IB_WC_INV_EEC_STATE_ERR,
717 IB_WC_FATAL_ERR,
718 IB_WC_RESP_TIMEOUT_ERR,
719 IB_WC_GENERAL_ERR
720};
721
2b1b5b60
SG
722__attribute_const__ const char *ib_wc_status_msg(enum ib_wc_status status);
723
1da177e4
LT
724enum ib_wc_opcode {
725 IB_WC_SEND,
726 IB_WC_RDMA_WRITE,
727 IB_WC_RDMA_READ,
728 IB_WC_COMP_SWAP,
729 IB_WC_FETCH_ADD,
730 IB_WC_BIND_MW,
c93570f2 731 IB_WC_LSO,
00f7ec36
SW
732 IB_WC_LOCAL_INV,
733 IB_WC_FAST_REG_MR,
5e80ba8f
VS
734 IB_WC_MASKED_COMP_SWAP,
735 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
736/*
737 * Set value of IB_WC_RECV so consumers can test if a completion is a
738 * receive by testing (opcode & IB_WC_RECV).
739 */
740 IB_WC_RECV = 1 << 7,
741 IB_WC_RECV_RDMA_WITH_IMM
742};
743
744enum ib_wc_flags {
745 IB_WC_GRH = 1,
00f7ec36
SW
746 IB_WC_WITH_IMM = (1<<1),
747 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 748 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
749 IB_WC_WITH_SMAC = (1<<4),
750 IB_WC_WITH_VLAN = (1<<5),
1da177e4
LT
751};
752
753struct ib_wc {
754 u64 wr_id;
755 enum ib_wc_status status;
756 enum ib_wc_opcode opcode;
757 u32 vendor_err;
758 u32 byte_len;
062dbb69 759 struct ib_qp *qp;
00f7ec36
SW
760 union {
761 __be32 imm_data;
762 u32 invalidate_rkey;
763 } ex;
1da177e4
LT
764 u32 src_qp;
765 int wc_flags;
766 u16 pkey_index;
767 u16 slid;
768 u8 sl;
769 u8 dlid_path_bits;
770 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
771 u8 smac[ETH_ALEN];
772 u16 vlan_id;
1da177e4
LT
773};
774
ed23a727
RD
775enum ib_cq_notify_flags {
776 IB_CQ_SOLICITED = 1 << 0,
777 IB_CQ_NEXT_COMP = 1 << 1,
778 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
779 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
780};
781
96104eda 782enum ib_srq_type {
418d5130
SH
783 IB_SRQT_BASIC,
784 IB_SRQT_XRC
96104eda
SH
785};
786
d41fcc67
RD
787enum ib_srq_attr_mask {
788 IB_SRQ_MAX_WR = 1 << 0,
789 IB_SRQ_LIMIT = 1 << 1,
790};
791
792struct ib_srq_attr {
793 u32 max_wr;
794 u32 max_sge;
795 u32 srq_limit;
796};
797
798struct ib_srq_init_attr {
799 void (*event_handler)(struct ib_event *, void *);
800 void *srq_context;
801 struct ib_srq_attr attr;
96104eda 802 enum ib_srq_type srq_type;
418d5130
SH
803
804 union {
805 struct {
806 struct ib_xrcd *xrcd;
807 struct ib_cq *cq;
808 } xrc;
809 } ext;
d41fcc67
RD
810};
811
1da177e4
LT
812struct ib_qp_cap {
813 u32 max_send_wr;
814 u32 max_recv_wr;
815 u32 max_send_sge;
816 u32 max_recv_sge;
817 u32 max_inline_data;
818};
819
820enum ib_sig_type {
821 IB_SIGNAL_ALL_WR,
822 IB_SIGNAL_REQ_WR
823};
824
825enum ib_qp_type {
826 /*
827 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
828 * here (and in that order) since the MAD layer uses them as
829 * indices into a 2-entry table.
830 */
831 IB_QPT_SMI,
832 IB_QPT_GSI,
833
834 IB_QPT_RC,
835 IB_QPT_UC,
836 IB_QPT_UD,
837 IB_QPT_RAW_IPV6,
b42b63cf 838 IB_QPT_RAW_ETHERTYPE,
c938a616 839 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
840 IB_QPT_XRC_INI = 9,
841 IB_QPT_XRC_TGT,
0134f16b
JM
842 IB_QPT_MAX,
843 /* Reserve a range for qp types internal to the low level driver.
844 * These qp types will not be visible at the IB core layer, so the
845 * IB_QPT_MAX usages should not be affected in the core layer
846 */
847 IB_QPT_RESERVED1 = 0x1000,
848 IB_QPT_RESERVED2,
849 IB_QPT_RESERVED3,
850 IB_QPT_RESERVED4,
851 IB_QPT_RESERVED5,
852 IB_QPT_RESERVED6,
853 IB_QPT_RESERVED7,
854 IB_QPT_RESERVED8,
855 IB_QPT_RESERVED9,
856 IB_QPT_RESERVED10,
1da177e4
LT
857};
858
b846f25a 859enum ib_qp_create_flags {
47ee1b9f
RL
860 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
861 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 862 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 863 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 864 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
865 /* reserve bits 26-31 for low level drivers' internal use */
866 IB_QP_CREATE_RESERVED_START = 1 << 26,
867 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
868};
869
73c40c61
YH
870
871/*
872 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
873 * callback to destroy the passed in QP.
874 */
875
1da177e4
LT
876struct ib_qp_init_attr {
877 void (*event_handler)(struct ib_event *, void *);
878 void *qp_context;
879 struct ib_cq *send_cq;
880 struct ib_cq *recv_cq;
881 struct ib_srq *srq;
b42b63cf 882 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
883 struct ib_qp_cap cap;
884 enum ib_sig_type sq_sig_type;
885 enum ib_qp_type qp_type;
b846f25a 886 enum ib_qp_create_flags create_flags;
1da177e4
LT
887 u8 port_num; /* special QP types only */
888};
889
0e0ec7e0
SH
890struct ib_qp_open_attr {
891 void (*event_handler)(struct ib_event *, void *);
892 void *qp_context;
893 u32 qp_num;
894 enum ib_qp_type qp_type;
895};
896
1da177e4
LT
897enum ib_rnr_timeout {
898 IB_RNR_TIMER_655_36 = 0,
899 IB_RNR_TIMER_000_01 = 1,
900 IB_RNR_TIMER_000_02 = 2,
901 IB_RNR_TIMER_000_03 = 3,
902 IB_RNR_TIMER_000_04 = 4,
903 IB_RNR_TIMER_000_06 = 5,
904 IB_RNR_TIMER_000_08 = 6,
905 IB_RNR_TIMER_000_12 = 7,
906 IB_RNR_TIMER_000_16 = 8,
907 IB_RNR_TIMER_000_24 = 9,
908 IB_RNR_TIMER_000_32 = 10,
909 IB_RNR_TIMER_000_48 = 11,
910 IB_RNR_TIMER_000_64 = 12,
911 IB_RNR_TIMER_000_96 = 13,
912 IB_RNR_TIMER_001_28 = 14,
913 IB_RNR_TIMER_001_92 = 15,
914 IB_RNR_TIMER_002_56 = 16,
915 IB_RNR_TIMER_003_84 = 17,
916 IB_RNR_TIMER_005_12 = 18,
917 IB_RNR_TIMER_007_68 = 19,
918 IB_RNR_TIMER_010_24 = 20,
919 IB_RNR_TIMER_015_36 = 21,
920 IB_RNR_TIMER_020_48 = 22,
921 IB_RNR_TIMER_030_72 = 23,
922 IB_RNR_TIMER_040_96 = 24,
923 IB_RNR_TIMER_061_44 = 25,
924 IB_RNR_TIMER_081_92 = 26,
925 IB_RNR_TIMER_122_88 = 27,
926 IB_RNR_TIMER_163_84 = 28,
927 IB_RNR_TIMER_245_76 = 29,
928 IB_RNR_TIMER_327_68 = 30,
929 IB_RNR_TIMER_491_52 = 31
930};
931
932enum ib_qp_attr_mask {
933 IB_QP_STATE = 1,
934 IB_QP_CUR_STATE = (1<<1),
935 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
936 IB_QP_ACCESS_FLAGS = (1<<3),
937 IB_QP_PKEY_INDEX = (1<<4),
938 IB_QP_PORT = (1<<5),
939 IB_QP_QKEY = (1<<6),
940 IB_QP_AV = (1<<7),
941 IB_QP_PATH_MTU = (1<<8),
942 IB_QP_TIMEOUT = (1<<9),
943 IB_QP_RETRY_CNT = (1<<10),
944 IB_QP_RNR_RETRY = (1<<11),
945 IB_QP_RQ_PSN = (1<<12),
946 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
947 IB_QP_ALT_PATH = (1<<14),
948 IB_QP_MIN_RNR_TIMER = (1<<15),
949 IB_QP_SQ_PSN = (1<<16),
950 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
951 IB_QP_PATH_MIG_STATE = (1<<18),
952 IB_QP_CAP = (1<<19),
dd5f03be
MB
953 IB_QP_DEST_QPN = (1<<20),
954 IB_QP_SMAC = (1<<21),
955 IB_QP_ALT_SMAC = (1<<22),
956 IB_QP_VID = (1<<23),
957 IB_QP_ALT_VID = (1<<24),
1da177e4
LT
958};
959
960enum ib_qp_state {
961 IB_QPS_RESET,
962 IB_QPS_INIT,
963 IB_QPS_RTR,
964 IB_QPS_RTS,
965 IB_QPS_SQD,
966 IB_QPS_SQE,
967 IB_QPS_ERR
968};
969
970enum ib_mig_state {
971 IB_MIG_MIGRATED,
972 IB_MIG_REARM,
973 IB_MIG_ARMED
974};
975
7083e42e
SM
976enum ib_mw_type {
977 IB_MW_TYPE_1 = 1,
978 IB_MW_TYPE_2 = 2
979};
980
1da177e4
LT
981struct ib_qp_attr {
982 enum ib_qp_state qp_state;
983 enum ib_qp_state cur_qp_state;
984 enum ib_mtu path_mtu;
985 enum ib_mig_state path_mig_state;
986 u32 qkey;
987 u32 rq_psn;
988 u32 sq_psn;
989 u32 dest_qp_num;
990 int qp_access_flags;
991 struct ib_qp_cap cap;
992 struct ib_ah_attr ah_attr;
993 struct ib_ah_attr alt_ah_attr;
994 u16 pkey_index;
995 u16 alt_pkey_index;
996 u8 en_sqd_async_notify;
997 u8 sq_draining;
998 u8 max_rd_atomic;
999 u8 max_dest_rd_atomic;
1000 u8 min_rnr_timer;
1001 u8 port_num;
1002 u8 timeout;
1003 u8 retry_cnt;
1004 u8 rnr_retry;
1005 u8 alt_port_num;
1006 u8 alt_timeout;
dd5f03be
MB
1007 u8 smac[ETH_ALEN];
1008 u8 alt_smac[ETH_ALEN];
1009 u16 vlan_id;
1010 u16 alt_vlan_id;
1da177e4
LT
1011};
1012
1013enum ib_wr_opcode {
1014 IB_WR_RDMA_WRITE,
1015 IB_WR_RDMA_WRITE_WITH_IMM,
1016 IB_WR_SEND,
1017 IB_WR_SEND_WITH_IMM,
1018 IB_WR_RDMA_READ,
1019 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1020 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1021 IB_WR_LSO,
1022 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1023 IB_WR_RDMA_READ_WITH_INV,
1024 IB_WR_LOCAL_INV,
1025 IB_WR_FAST_REG_MR,
5e80ba8f
VS
1026 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1027 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1028 IB_WR_BIND_MW,
1b01d335 1029 IB_WR_REG_SIG_MR,
0134f16b
JM
1030 /* reserve values for low level drivers' internal use.
1031 * These values will not be used at all in the ib core layer.
1032 */
1033 IB_WR_RESERVED1 = 0xf0,
1034 IB_WR_RESERVED2,
1035 IB_WR_RESERVED3,
1036 IB_WR_RESERVED4,
1037 IB_WR_RESERVED5,
1038 IB_WR_RESERVED6,
1039 IB_WR_RESERVED7,
1040 IB_WR_RESERVED8,
1041 IB_WR_RESERVED9,
1042 IB_WR_RESERVED10,
1da177e4
LT
1043};
1044
1045enum ib_send_flags {
1046 IB_SEND_FENCE = 1,
1047 IB_SEND_SIGNALED = (1<<1),
1048 IB_SEND_SOLICITED = (1<<2),
e0605d91 1049 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1050 IB_SEND_IP_CSUM = (1<<4),
1051
1052 /* reserve bits 26-31 for low level drivers' internal use */
1053 IB_SEND_RESERVED_START = (1 << 26),
1054 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1055};
1056
1057struct ib_sge {
1058 u64 addr;
1059 u32 length;
1060 u32 lkey;
1061};
1062
00f7ec36
SW
1063struct ib_fast_reg_page_list {
1064 struct ib_device *device;
1065 u64 *page_list;
1066 unsigned int max_page_list_len;
1067};
1068
7083e42e
SM
1069/**
1070 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1071 * @mr: A memory region to bind the memory window to.
1072 * @addr: The address where the memory window should begin.
1073 * @length: The length of the memory window, in bytes.
1074 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1075 *
1076 * This struct contains the shared parameters for type 1 and type 2
1077 * memory window bind operations.
1078 */
1079struct ib_mw_bind_info {
1080 struct ib_mr *mr;
1081 u64 addr;
1082 u64 length;
1083 int mw_access_flags;
1084};
1085
1da177e4
LT
1086struct ib_send_wr {
1087 struct ib_send_wr *next;
1088 u64 wr_id;
1089 struct ib_sge *sg_list;
1090 int num_sge;
1091 enum ib_wr_opcode opcode;
1092 int send_flags;
0f39cf3d
RD
1093 union {
1094 __be32 imm_data;
1095 u32 invalidate_rkey;
1096 } ex;
1da177e4
LT
1097 union {
1098 struct {
1099 u64 remote_addr;
1100 u32 rkey;
1101 } rdma;
1102 struct {
1103 u64 remote_addr;
1104 u64 compare_add;
1105 u64 swap;
5e80ba8f
VS
1106 u64 compare_add_mask;
1107 u64 swap_mask;
1da177e4
LT
1108 u32 rkey;
1109 } atomic;
1110 struct {
1111 struct ib_ah *ah;
c93570f2
EC
1112 void *header;
1113 int hlen;
1114 int mss;
1da177e4
LT
1115 u32 remote_qpn;
1116 u32 remote_qkey;
1da177e4
LT
1117 u16 pkey_index; /* valid for GSI only */
1118 u8 port_num; /* valid for DR SMPs on switch only */
1119 } ud;
00f7ec36
SW
1120 struct {
1121 u64 iova_start;
1122 struct ib_fast_reg_page_list *page_list;
1123 unsigned int page_shift;
1124 unsigned int page_list_len;
1125 u32 length;
1126 int access_flags;
1127 u32 rkey;
1128 } fast_reg;
7083e42e
SM
1129 struct {
1130 struct ib_mw *mw;
1131 /* The new rkey for the memory window. */
1132 u32 rkey;
1133 struct ib_mw_bind_info bind_info;
1134 } bind_mw;
1b01d335
SG
1135 struct {
1136 struct ib_sig_attrs *sig_attrs;
1137 struct ib_mr *sig_mr;
1138 int access_flags;
1139 struct ib_sge *prot;
1140 } sig_handover;
1da177e4 1141 } wr;
b42b63cf 1142 u32 xrc_remote_srq_num; /* XRC TGT QPs only */
1da177e4
LT
1143};
1144
1145struct ib_recv_wr {
1146 struct ib_recv_wr *next;
1147 u64 wr_id;
1148 struct ib_sge *sg_list;
1149 int num_sge;
1150};
1151
1152enum ib_access_flags {
1153 IB_ACCESS_LOCAL_WRITE = 1,
1154 IB_ACCESS_REMOTE_WRITE = (1<<1),
1155 IB_ACCESS_REMOTE_READ = (1<<2),
1156 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1157 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1158 IB_ZERO_BASED = (1<<5),
1159 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1160};
1161
1162struct ib_phys_buf {
1163 u64 addr;
1164 u64 size;
1165};
1166
1167struct ib_mr_attr {
1168 struct ib_pd *pd;
1169 u64 device_virt_addr;
1170 u64 size;
1171 int mr_access_flags;
1172 u32 lkey;
1173 u32 rkey;
1174};
1175
1176enum ib_mr_rereg_flags {
1177 IB_MR_REREG_TRANS = 1,
1178 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1179 IB_MR_REREG_ACCESS = (1<<2),
1180 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1181};
1182
7083e42e
SM
1183/**
1184 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1185 * @wr_id: Work request id.
1186 * @send_flags: Flags from ib_send_flags enum.
1187 * @bind_info: More parameters of the bind operation.
1188 */
1da177e4 1189struct ib_mw_bind {
7083e42e
SM
1190 u64 wr_id;
1191 int send_flags;
1192 struct ib_mw_bind_info bind_info;
1da177e4
LT
1193};
1194
1195struct ib_fmr_attr {
1196 int max_pages;
1197 int max_maps;
d36f34aa 1198 u8 page_shift;
1da177e4
LT
1199};
1200
882214e2
HE
1201struct ib_umem;
1202
e2773c06
RD
1203struct ib_ucontext {
1204 struct ib_device *device;
1205 struct list_head pd_list;
1206 struct list_head mr_list;
1207 struct list_head mw_list;
1208 struct list_head cq_list;
1209 struct list_head qp_list;
1210 struct list_head srq_list;
1211 struct list_head ah_list;
53d0bd1e 1212 struct list_head xrcd_list;
436f2ad0 1213 struct list_head rule_list;
f7c6a7b5 1214 int closing;
8ada2c1c
SR
1215
1216 struct pid *tgid;
882214e2
HE
1217#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1218 struct rb_root umem_tree;
1219 /*
1220 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1221 * mmu notifiers registration.
1222 */
1223 struct rw_semaphore umem_rwsem;
1224 void (*invalidate_range)(struct ib_umem *umem,
1225 unsigned long start, unsigned long end);
1226
1227 struct mmu_notifier mn;
1228 atomic_t notifier_count;
1229 /* A list of umems that don't have private mmu notifier counters yet. */
1230 struct list_head no_private_counters;
1231 int odp_mrs_count;
1232#endif
e2773c06
RD
1233};
1234
1235struct ib_uobject {
1236 u64 user_handle; /* handle given to us by userspace */
1237 struct ib_ucontext *context; /* associated user context */
9ead190b 1238 void *object; /* containing object */
e2773c06 1239 struct list_head list; /* link to context's list */
b3d636b0 1240 int id; /* index into kernel idr */
9ead190b
RD
1241 struct kref ref;
1242 struct rw_semaphore mutex; /* protects .live */
1243 int live;
e2773c06
RD
1244};
1245
e2773c06 1246struct ib_udata {
309243ec 1247 const void __user *inbuf;
e2773c06
RD
1248 void __user *outbuf;
1249 size_t inlen;
1250 size_t outlen;
1251};
1252
1da177e4 1253struct ib_pd {
e2773c06
RD
1254 struct ib_device *device;
1255 struct ib_uobject *uobject;
1256 atomic_t usecnt; /* count all resources */
1da177e4
LT
1257};
1258
59991f94
SH
1259struct ib_xrcd {
1260 struct ib_device *device;
d3d72d90 1261 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1262 struct inode *inode;
d3d72d90
SH
1263
1264 struct mutex tgt_qp_mutex;
1265 struct list_head tgt_qp_list;
59991f94
SH
1266};
1267
1da177e4
LT
1268struct ib_ah {
1269 struct ib_device *device;
1270 struct ib_pd *pd;
e2773c06 1271 struct ib_uobject *uobject;
1da177e4
LT
1272};
1273
1274typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1275
1276struct ib_cq {
e2773c06
RD
1277 struct ib_device *device;
1278 struct ib_uobject *uobject;
1279 ib_comp_handler comp_handler;
1280 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1281 void *cq_context;
e2773c06
RD
1282 int cqe;
1283 atomic_t usecnt; /* count number of work queues */
1da177e4
LT
1284};
1285
1286struct ib_srq {
d41fcc67
RD
1287 struct ib_device *device;
1288 struct ib_pd *pd;
1289 struct ib_uobject *uobject;
1290 void (*event_handler)(struct ib_event *, void *);
1291 void *srq_context;
96104eda 1292 enum ib_srq_type srq_type;
1da177e4 1293 atomic_t usecnt;
418d5130
SH
1294
1295 union {
1296 struct {
1297 struct ib_xrcd *xrcd;
1298 struct ib_cq *cq;
1299 u32 srq_num;
1300 } xrc;
1301 } ext;
1da177e4
LT
1302};
1303
1304struct ib_qp {
1305 struct ib_device *device;
1306 struct ib_pd *pd;
1307 struct ib_cq *send_cq;
1308 struct ib_cq *recv_cq;
1309 struct ib_srq *srq;
b42b63cf 1310 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1311 struct list_head xrcd_list;
319a441d
HHZ
1312 /* count times opened, mcast attaches, flow attaches */
1313 atomic_t usecnt;
0e0ec7e0
SH
1314 struct list_head open_list;
1315 struct ib_qp *real_qp;
e2773c06 1316 struct ib_uobject *uobject;
1da177e4
LT
1317 void (*event_handler)(struct ib_event *, void *);
1318 void *qp_context;
1319 u32 qp_num;
1320 enum ib_qp_type qp_type;
1321};
1322
1323struct ib_mr {
e2773c06
RD
1324 struct ib_device *device;
1325 struct ib_pd *pd;
1326 struct ib_uobject *uobject;
1327 u32 lkey;
1328 u32 rkey;
1329 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1330};
1331
1332struct ib_mw {
1333 struct ib_device *device;
1334 struct ib_pd *pd;
e2773c06 1335 struct ib_uobject *uobject;
1da177e4 1336 u32 rkey;
7083e42e 1337 enum ib_mw_type type;
1da177e4
LT
1338};
1339
1340struct ib_fmr {
1341 struct ib_device *device;
1342 struct ib_pd *pd;
1343 struct list_head list;
1344 u32 lkey;
1345 u32 rkey;
1346};
1347
319a441d
HHZ
1348/* Supported steering options */
1349enum ib_flow_attr_type {
1350 /* steering according to rule specifications */
1351 IB_FLOW_ATTR_NORMAL = 0x0,
1352 /* default unicast and multicast rule -
1353 * receive all Eth traffic which isn't steered to any QP
1354 */
1355 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1356 /* default multicast rule -
1357 * receive all Eth multicast traffic which isn't steered to any QP
1358 */
1359 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1360 /* sniffer rule - receive all port traffic */
1361 IB_FLOW_ATTR_SNIFFER = 0x3
1362};
1363
1364/* Supported steering header types */
1365enum ib_flow_spec_type {
1366 /* L2 headers*/
1367 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1368 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1369 /* L3 header*/
1370 IB_FLOW_SPEC_IPV4 = 0x30,
1371 /* L4 headers*/
1372 IB_FLOW_SPEC_TCP = 0x40,
1373 IB_FLOW_SPEC_UDP = 0x41
1374};
240ae00e 1375#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1376#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1377
319a441d
HHZ
1378/* Flow steering rule priority is set according to it's domain.
1379 * Lower domain value means higher priority.
1380 */
1381enum ib_flow_domain {
1382 IB_FLOW_DOMAIN_USER,
1383 IB_FLOW_DOMAIN_ETHTOOL,
1384 IB_FLOW_DOMAIN_RFS,
1385 IB_FLOW_DOMAIN_NIC,
1386 IB_FLOW_DOMAIN_NUM /* Must be last */
1387};
1388
1389struct ib_flow_eth_filter {
1390 u8 dst_mac[6];
1391 u8 src_mac[6];
1392 __be16 ether_type;
1393 __be16 vlan_tag;
1394};
1395
1396struct ib_flow_spec_eth {
1397 enum ib_flow_spec_type type;
1398 u16 size;
1399 struct ib_flow_eth_filter val;
1400 struct ib_flow_eth_filter mask;
1401};
1402
240ae00e
MB
1403struct ib_flow_ib_filter {
1404 __be16 dlid;
1405 __u8 sl;
1406};
1407
1408struct ib_flow_spec_ib {
1409 enum ib_flow_spec_type type;
1410 u16 size;
1411 struct ib_flow_ib_filter val;
1412 struct ib_flow_ib_filter mask;
1413};
1414
319a441d
HHZ
1415struct ib_flow_ipv4_filter {
1416 __be32 src_ip;
1417 __be32 dst_ip;
1418};
1419
1420struct ib_flow_spec_ipv4 {
1421 enum ib_flow_spec_type type;
1422 u16 size;
1423 struct ib_flow_ipv4_filter val;
1424 struct ib_flow_ipv4_filter mask;
1425};
1426
1427struct ib_flow_tcp_udp_filter {
1428 __be16 dst_port;
1429 __be16 src_port;
1430};
1431
1432struct ib_flow_spec_tcp_udp {
1433 enum ib_flow_spec_type type;
1434 u16 size;
1435 struct ib_flow_tcp_udp_filter val;
1436 struct ib_flow_tcp_udp_filter mask;
1437};
1438
1439union ib_flow_spec {
1440 struct {
1441 enum ib_flow_spec_type type;
1442 u16 size;
1443 };
1444 struct ib_flow_spec_eth eth;
240ae00e 1445 struct ib_flow_spec_ib ib;
319a441d
HHZ
1446 struct ib_flow_spec_ipv4 ipv4;
1447 struct ib_flow_spec_tcp_udp tcp_udp;
1448};
1449
1450struct ib_flow_attr {
1451 enum ib_flow_attr_type type;
1452 u16 size;
1453 u16 priority;
1454 u32 flags;
1455 u8 num_of_specs;
1456 u8 port;
1457 /* Following are the optional layers according to user request
1458 * struct ib_flow_spec_xxx
1459 * struct ib_flow_spec_yyy
1460 */
1461};
1462
1463struct ib_flow {
1464 struct ib_qp *qp;
1465 struct ib_uobject *uobject;
1466};
1467
4cd7c947 1468struct ib_mad_hdr;
1da177e4
LT
1469struct ib_grh;
1470
1471enum ib_process_mad_flags {
1472 IB_MAD_IGNORE_MKEY = 1,
1473 IB_MAD_IGNORE_BKEY = 2,
1474 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1475};
1476
1477enum ib_mad_result {
1478 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1479 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1480 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1481 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1482};
1483
1484#define IB_DEVICE_NAME_MAX 64
1485
1486struct ib_cache {
1487 rwlock_t lock;
1488 struct ib_event_handler event_handler;
1489 struct ib_pkey_cache **pkey_cache;
1490 struct ib_gid_cache **gid_cache;
6fb9cdbf 1491 u8 *lmc_cache;
1da177e4
LT
1492};
1493
9b513090
RC
1494struct ib_dma_mapping_ops {
1495 int (*mapping_error)(struct ib_device *dev,
1496 u64 dma_addr);
1497 u64 (*map_single)(struct ib_device *dev,
1498 void *ptr, size_t size,
1499 enum dma_data_direction direction);
1500 void (*unmap_single)(struct ib_device *dev,
1501 u64 addr, size_t size,
1502 enum dma_data_direction direction);
1503 u64 (*map_page)(struct ib_device *dev,
1504 struct page *page, unsigned long offset,
1505 size_t size,
1506 enum dma_data_direction direction);
1507 void (*unmap_page)(struct ib_device *dev,
1508 u64 addr, size_t size,
1509 enum dma_data_direction direction);
1510 int (*map_sg)(struct ib_device *dev,
1511 struct scatterlist *sg, int nents,
1512 enum dma_data_direction direction);
1513 void (*unmap_sg)(struct ib_device *dev,
1514 struct scatterlist *sg, int nents,
1515 enum dma_data_direction direction);
9b513090
RC
1516 void (*sync_single_for_cpu)(struct ib_device *dev,
1517 u64 dma_handle,
1518 size_t size,
4deccd6d 1519 enum dma_data_direction dir);
9b513090
RC
1520 void (*sync_single_for_device)(struct ib_device *dev,
1521 u64 dma_handle,
1522 size_t size,
1523 enum dma_data_direction dir);
1524 void *(*alloc_coherent)(struct ib_device *dev,
1525 size_t size,
1526 u64 *dma_handle,
1527 gfp_t flag);
1528 void (*free_coherent)(struct ib_device *dev,
1529 size_t size, void *cpu_addr,
1530 u64 dma_handle);
1531};
1532
07ebafba
TT
1533struct iw_cm_verbs;
1534
7738613e
IW
1535struct ib_port_immutable {
1536 int pkey_tbl_len;
1537 int gid_tbl_len;
f9b22e35 1538 u32 core_cap_flags;
337877a4 1539 u32 max_mad_size;
7738613e
IW
1540};
1541
1da177e4
LT
1542struct ib_device {
1543 struct device *dma_device;
1544
1545 char name[IB_DEVICE_NAME_MAX];
1546
1547 struct list_head event_handler_list;
1548 spinlock_t event_handler_lock;
1549
17a55f79 1550 spinlock_t client_data_lock;
1da177e4 1551 struct list_head core_list;
7c1eb45a
HE
1552 /* Access to the client_data_list is protected by the client_data_lock
1553 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1554 struct list_head client_data_list;
1da177e4
LT
1555
1556 struct ib_cache cache;
7738613e
IW
1557 /**
1558 * port_immutable is indexed by port number
1559 */
1560 struct ib_port_immutable *port_immutable;
1da177e4 1561
f4fd0b22
MT
1562 int num_comp_vectors;
1563
07ebafba
TT
1564 struct iw_cm_verbs *iwcm;
1565
7f624d02
SW
1566 int (*get_protocol_stats)(struct ib_device *device,
1567 union rdma_protocol_stats *stats);
1da177e4 1568 int (*query_device)(struct ib_device *device,
2528e33e
MB
1569 struct ib_device_attr *device_attr,
1570 struct ib_udata *udata);
1da177e4
LT
1571 int (*query_port)(struct ib_device *device,
1572 u8 port_num,
1573 struct ib_port_attr *port_attr);
a3f5adaf
EC
1574 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1575 u8 port_num);
1da177e4
LT
1576 int (*query_gid)(struct ib_device *device,
1577 u8 port_num, int index,
1578 union ib_gid *gid);
1579 int (*query_pkey)(struct ib_device *device,
1580 u8 port_num, u16 index, u16 *pkey);
1581 int (*modify_device)(struct ib_device *device,
1582 int device_modify_mask,
1583 struct ib_device_modify *device_modify);
1584 int (*modify_port)(struct ib_device *device,
1585 u8 port_num, int port_modify_mask,
1586 struct ib_port_modify *port_modify);
e2773c06
RD
1587 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1588 struct ib_udata *udata);
1589 int (*dealloc_ucontext)(struct ib_ucontext *context);
1590 int (*mmap)(struct ib_ucontext *context,
1591 struct vm_area_struct *vma);
1592 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1593 struct ib_ucontext *context,
1594 struct ib_udata *udata);
1da177e4
LT
1595 int (*dealloc_pd)(struct ib_pd *pd);
1596 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1597 struct ib_ah_attr *ah_attr);
1598 int (*modify_ah)(struct ib_ah *ah,
1599 struct ib_ah_attr *ah_attr);
1600 int (*query_ah)(struct ib_ah *ah,
1601 struct ib_ah_attr *ah_attr);
1602 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1603 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1604 struct ib_srq_init_attr *srq_init_attr,
1605 struct ib_udata *udata);
1606 int (*modify_srq)(struct ib_srq *srq,
1607 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1608 enum ib_srq_attr_mask srq_attr_mask,
1609 struct ib_udata *udata);
d41fcc67
RD
1610 int (*query_srq)(struct ib_srq *srq,
1611 struct ib_srq_attr *srq_attr);
1612 int (*destroy_srq)(struct ib_srq *srq);
1613 int (*post_srq_recv)(struct ib_srq *srq,
1614 struct ib_recv_wr *recv_wr,
1615 struct ib_recv_wr **bad_recv_wr);
1da177e4 1616 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1617 struct ib_qp_init_attr *qp_init_attr,
1618 struct ib_udata *udata);
1da177e4
LT
1619 int (*modify_qp)(struct ib_qp *qp,
1620 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1621 int qp_attr_mask,
1622 struct ib_udata *udata);
1da177e4
LT
1623 int (*query_qp)(struct ib_qp *qp,
1624 struct ib_qp_attr *qp_attr,
1625 int qp_attr_mask,
1626 struct ib_qp_init_attr *qp_init_attr);
1627 int (*destroy_qp)(struct ib_qp *qp);
1628 int (*post_send)(struct ib_qp *qp,
1629 struct ib_send_wr *send_wr,
1630 struct ib_send_wr **bad_send_wr);
1631 int (*post_recv)(struct ib_qp *qp,
1632 struct ib_recv_wr *recv_wr,
1633 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1634 struct ib_cq * (*create_cq)(struct ib_device *device,
1635 const struct ib_cq_init_attr *attr,
e2773c06
RD
1636 struct ib_ucontext *context,
1637 struct ib_udata *udata);
2dd57162
EC
1638 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1639 u16 cq_period);
1da177e4 1640 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1641 int (*resize_cq)(struct ib_cq *cq, int cqe,
1642 struct ib_udata *udata);
1da177e4
LT
1643 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1644 struct ib_wc *wc);
1645 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1646 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1647 enum ib_cq_notify_flags flags);
1da177e4
LT
1648 int (*req_ncomp_notif)(struct ib_cq *cq,
1649 int wc_cnt);
1650 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1651 int mr_access_flags);
1652 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1653 struct ib_phys_buf *phys_buf_array,
1654 int num_phys_buf,
1655 int mr_access_flags,
1656 u64 *iova_start);
e2773c06 1657 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1658 u64 start, u64 length,
1659 u64 virt_addr,
e2773c06
RD
1660 int mr_access_flags,
1661 struct ib_udata *udata);
7e6edb9b
MB
1662 int (*rereg_user_mr)(struct ib_mr *mr,
1663 int flags,
1664 u64 start, u64 length,
1665 u64 virt_addr,
1666 int mr_access_flags,
1667 struct ib_pd *pd,
1668 struct ib_udata *udata);
1da177e4
LT
1669 int (*query_mr)(struct ib_mr *mr,
1670 struct ib_mr_attr *mr_attr);
1671 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1672 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1673 enum ib_mr_type mr_type,
1674 u32 max_num_sg);
00f7ec36
SW
1675 struct ib_fast_reg_page_list * (*alloc_fast_reg_page_list)(struct ib_device *device,
1676 int page_list_len);
1677 void (*free_fast_reg_page_list)(struct ib_fast_reg_page_list *page_list);
1da177e4
LT
1678 int (*rereg_phys_mr)(struct ib_mr *mr,
1679 int mr_rereg_mask,
1680 struct ib_pd *pd,
1681 struct ib_phys_buf *phys_buf_array,
1682 int num_phys_buf,
1683 int mr_access_flags,
1684 u64 *iova_start);
7083e42e
SM
1685 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1686 enum ib_mw_type type);
1da177e4
LT
1687 int (*bind_mw)(struct ib_qp *qp,
1688 struct ib_mw *mw,
1689 struct ib_mw_bind *mw_bind);
1690 int (*dealloc_mw)(struct ib_mw *mw);
1691 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1692 int mr_access_flags,
1693 struct ib_fmr_attr *fmr_attr);
1694 int (*map_phys_fmr)(struct ib_fmr *fmr,
1695 u64 *page_list, int list_len,
1696 u64 iova);
1697 int (*unmap_fmr)(struct list_head *fmr_list);
1698 int (*dealloc_fmr)(struct ib_fmr *fmr);
1699 int (*attach_mcast)(struct ib_qp *qp,
1700 union ib_gid *gid,
1701 u16 lid);
1702 int (*detach_mcast)(struct ib_qp *qp,
1703 union ib_gid *gid,
1704 u16 lid);
1705 int (*process_mad)(struct ib_device *device,
1706 int process_mad_flags,
1707 u8 port_num,
a97e2d86
IW
1708 const struct ib_wc *in_wc,
1709 const struct ib_grh *in_grh,
4cd7c947
IW
1710 const struct ib_mad_hdr *in_mad,
1711 size_t in_mad_size,
1712 struct ib_mad_hdr *out_mad,
1713 size_t *out_mad_size,
1714 u16 *out_mad_pkey_index);
59991f94
SH
1715 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1716 struct ib_ucontext *ucontext,
1717 struct ib_udata *udata);
1718 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1719 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1720 struct ib_flow_attr
1721 *flow_attr,
1722 int domain);
1723 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1724 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1725 struct ib_mr_status *mr_status);
1da177e4 1726
9b513090
RC
1727 struct ib_dma_mapping_ops *dma_ops;
1728
e2773c06 1729 struct module *owner;
f4e91eb4 1730 struct device dev;
35be0681 1731 struct kobject *ports_parent;
1da177e4
LT
1732 struct list_head port_list;
1733
1734 enum {
1735 IB_DEV_UNINITIALIZED,
1736 IB_DEV_REGISTERED,
1737 IB_DEV_UNREGISTERED
1738 } reg_state;
1739
274c0891 1740 int uverbs_abi_ver;
17a55f79 1741 u64 uverbs_cmd_mask;
f21519b2 1742 u64 uverbs_ex_cmd_mask;
274c0891 1743
c5bcbbb9 1744 char node_desc[64];
cf311cd4 1745 __be64 node_guid;
96f15c03 1746 u32 local_dma_lkey;
4139032b 1747 u16 is_switch:1;
1da177e4
LT
1748 u8 node_type;
1749 u8 phys_port_cnt;
7738613e
IW
1750
1751 /**
1752 * The following mandatory functions are used only at device
1753 * registration. Keep functions such as these at the end of this
1754 * structure to avoid cache line misses when accessing struct ib_device
1755 * in fast paths.
1756 */
1757 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1758};
1759
1760struct ib_client {
1761 char *name;
1762 void (*add) (struct ib_device *);
7c1eb45a 1763 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1764
9268f72d
YK
1765 /* Returns the net_dev belonging to this ib_client and matching the
1766 * given parameters.
1767 * @dev: An RDMA device that the net_dev use for communication.
1768 * @port: A physical port number on the RDMA device.
1769 * @pkey: P_Key that the net_dev uses if applicable.
1770 * @gid: A GID that the net_dev uses to communicate.
1771 * @addr: An IP address the net_dev is configured with.
1772 * @client_data: The device's client data set by ib_set_client_data().
1773 *
1774 * An ib_client that implements a net_dev on top of RDMA devices
1775 * (such as IP over IB) should implement this callback, allowing the
1776 * rdma_cm module to find the right net_dev for a given request.
1777 *
1778 * The caller is responsible for calling dev_put on the returned
1779 * netdev. */
1780 struct net_device *(*get_net_dev_by_params)(
1781 struct ib_device *dev,
1782 u8 port,
1783 u16 pkey,
1784 const union ib_gid *gid,
1785 const struct sockaddr *addr,
1786 void *client_data);
1da177e4
LT
1787 struct list_head list;
1788};
1789
1790struct ib_device *ib_alloc_device(size_t size);
1791void ib_dealloc_device(struct ib_device *device);
1792
9a6edb60
RC
1793int ib_register_device(struct ib_device *device,
1794 int (*port_callback)(struct ib_device *,
1795 u8, struct kobject *));
1da177e4
LT
1796void ib_unregister_device(struct ib_device *device);
1797
1798int ib_register_client (struct ib_client *client);
1799void ib_unregister_client(struct ib_client *client);
1800
1801void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1802void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1803 void *data);
1804
e2773c06
RD
1805static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1806{
1807 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1808}
1809
1810static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1811{
43c61165 1812 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1813}
1814
8a51866f
RD
1815/**
1816 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1817 * contains all required attributes and no attributes not allowed for
1818 * the given QP state transition.
1819 * @cur_state: Current QP state
1820 * @next_state: Next QP state
1821 * @type: QP type
1822 * @mask: Mask of supplied QP attributes
dd5f03be 1823 * @ll : link layer of port
8a51866f
RD
1824 *
1825 * This function is a helper function that a low-level driver's
1826 * modify_qp method can use to validate the consumer's input. It
1827 * checks that cur_state and next_state are valid QP states, that a
1828 * transition from cur_state to next_state is allowed by the IB spec,
1829 * and that the attribute mask supplied is allowed for the transition.
1830 */
1831int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
1832 enum ib_qp_type type, enum ib_qp_attr_mask mask,
1833 enum rdma_link_layer ll);
8a51866f 1834
1da177e4
LT
1835int ib_register_event_handler (struct ib_event_handler *event_handler);
1836int ib_unregister_event_handler(struct ib_event_handler *event_handler);
1837void ib_dispatch_event(struct ib_event *event);
1838
1839int ib_query_device(struct ib_device *device,
1840 struct ib_device_attr *device_attr);
1841
1842int ib_query_port(struct ib_device *device,
1843 u8 port_num, struct ib_port_attr *port_attr);
1844
a3f5adaf
EC
1845enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
1846 u8 port_num);
1847
4139032b
HR
1848/**
1849 * rdma_cap_ib_switch - Check if the device is IB switch
1850 * @device: Device to check
1851 *
1852 * Device driver is responsible for setting is_switch bit on
1853 * in ib_device structure at init time.
1854 *
1855 * Return: true if the device is IB switch.
1856 */
1857static inline bool rdma_cap_ib_switch(const struct ib_device *device)
1858{
1859 return device->is_switch;
1860}
1861
0cf18d77
IW
1862/**
1863 * rdma_start_port - Return the first valid port number for the device
1864 * specified
1865 *
1866 * @device: Device to be checked
1867 *
1868 * Return start port number
1869 */
1870static inline u8 rdma_start_port(const struct ib_device *device)
1871{
4139032b 1872 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
1873}
1874
1875/**
1876 * rdma_end_port - Return the last valid port number for the device
1877 * specified
1878 *
1879 * @device: Device to be checked
1880 *
1881 * Return last port number
1882 */
1883static inline u8 rdma_end_port(const struct ib_device *device)
1884{
4139032b 1885 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
1886}
1887
5ede9289 1888static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 1889{
f9b22e35 1890 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
1891}
1892
5ede9289 1893static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
de66be94 1894{
f9b22e35 1895 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
1896}
1897
5ede9289 1898static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 1899{
f9b22e35 1900 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
1901}
1902
5ede9289 1903static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 1904{
f9b22e35
IW
1905 return device->port_immutable[port_num].core_cap_flags &
1906 (RDMA_CORE_CAP_PROT_IB | RDMA_CORE_CAP_PROT_ROCE);
de66be94
MW
1907}
1908
c757dea8 1909/**
296ec009 1910 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 1911 * Management Datagrams.
296ec009
MW
1912 * @device: Device to check
1913 * @port_num: Port number to check
c757dea8 1914 *
296ec009
MW
1915 * Management Datagrams (MAD) are a required part of the InfiniBand
1916 * specification and are supported on all InfiniBand devices. A slightly
1917 * extended version are also supported on OPA interfaces.
c757dea8 1918 *
296ec009 1919 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 1920 */
5ede9289 1921static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 1922{
f9b22e35 1923 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
1924}
1925
65995fee
IW
1926/**
1927 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
1928 * Management Datagrams.
1929 * @device: Device to check
1930 * @port_num: Port number to check
1931 *
1932 * Intel OmniPath devices extend and/or replace the InfiniBand Management
1933 * datagrams with their own versions. These OPA MADs share many but not all of
1934 * the characteristics of InfiniBand MADs.
1935 *
1936 * OPA MADs differ in the following ways:
1937 *
1938 * 1) MADs are variable size up to 2K
1939 * IBTA defined MADs remain fixed at 256 bytes
1940 * 2) OPA SMPs must carry valid PKeys
1941 * 3) OPA SMP packets are a different format
1942 *
1943 * Return: true if the port supports OPA MAD packet formats.
1944 */
1945static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
1946{
1947 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
1948 == RDMA_CORE_CAP_OPA_MAD;
1949}
1950
29541e3a 1951/**
296ec009
MW
1952 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
1953 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
1954 * @device: Device to check
1955 * @port_num: Port number to check
29541e3a 1956 *
296ec009
MW
1957 * Each InfiniBand node is required to provide a Subnet Management Agent
1958 * that the subnet manager can access. Prior to the fabric being fully
1959 * configured by the subnet manager, the SMA is accessed via a well known
1960 * interface called the Subnet Management Interface (SMI). This interface
1961 * uses directed route packets to communicate with the SM to get around the
1962 * chicken and egg problem of the SM needing to know what's on the fabric
1963 * in order to configure the fabric, and needing to configure the fabric in
1964 * order to send packets to the devices on the fabric. These directed
1965 * route packets do not need the fabric fully configured in order to reach
1966 * their destination. The SMI is the only method allowed to send
1967 * directed route packets on an InfiniBand fabric.
29541e3a 1968 *
296ec009 1969 * Return: true if the port provides an SMI.
29541e3a 1970 */
5ede9289 1971static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 1972{
f9b22e35 1973 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
1974}
1975
72219cea
MW
1976/**
1977 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
1978 * Communication Manager.
296ec009
MW
1979 * @device: Device to check
1980 * @port_num: Port number to check
72219cea 1981 *
296ec009
MW
1982 * The InfiniBand Communication Manager is one of many pre-defined General
1983 * Service Agents (GSA) that are accessed via the General Service
1984 * Interface (GSI). It's role is to facilitate establishment of connections
1985 * between nodes as well as other management related tasks for established
1986 * connections.
72219cea 1987 *
296ec009
MW
1988 * Return: true if the port supports an IB CM (this does not guarantee that
1989 * a CM is actually running however).
72219cea 1990 */
5ede9289 1991static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 1992{
f9b22e35 1993 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
1994}
1995
04215330
MW
1996/**
1997 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
1998 * Communication Manager.
296ec009
MW
1999 * @device: Device to check
2000 * @port_num: Port number to check
04215330 2001 *
296ec009
MW
2002 * Similar to above, but specific to iWARP connections which have a different
2003 * managment protocol than InfiniBand.
04215330 2004 *
296ec009
MW
2005 * Return: true if the port supports an iWARP CM (this does not guarantee that
2006 * a CM is actually running however).
04215330 2007 */
5ede9289 2008static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2009{
f9b22e35 2010 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2011}
2012
fe53ba2f
MW
2013/**
2014 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2015 * Subnet Administration.
296ec009
MW
2016 * @device: Device to check
2017 * @port_num: Port number to check
fe53ba2f 2018 *
296ec009
MW
2019 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2020 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2021 * fabrics, devices should resolve routes to other hosts by contacting the
2022 * SA to query the proper route.
fe53ba2f 2023 *
296ec009
MW
2024 * Return: true if the port should act as a client to the fabric Subnet
2025 * Administration interface. This does not imply that the SA service is
2026 * running locally.
fe53ba2f 2027 */
5ede9289 2028static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2029{
f9b22e35 2030 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2031}
2032
a31ad3b0
MW
2033/**
2034 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2035 * Multicast.
296ec009
MW
2036 * @device: Device to check
2037 * @port_num: Port number to check
a31ad3b0 2038 *
296ec009
MW
2039 * InfiniBand multicast registration is more complex than normal IPv4 or
2040 * IPv6 multicast registration. Each Host Channel Adapter must register
2041 * with the Subnet Manager when it wishes to join a multicast group. It
2042 * should do so only once regardless of how many queue pairs it subscribes
2043 * to this group. And it should leave the group only after all queue pairs
2044 * attached to the group have been detached.
a31ad3b0 2045 *
296ec009
MW
2046 * Return: true if the port must undertake the additional adminstrative
2047 * overhead of registering/unregistering with the SM and tracking of the
2048 * total number of queue pairs attached to the multicast group.
a31ad3b0 2049 */
5ede9289 2050static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2051{
2052 return rdma_cap_ib_sa(device, port_num);
2053}
2054
30a74ef4
MW
2055/**
2056 * rdma_cap_af_ib - Check if the port of device has the capability
2057 * Native Infiniband Address.
296ec009
MW
2058 * @device: Device to check
2059 * @port_num: Port number to check
30a74ef4 2060 *
296ec009
MW
2061 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2062 * GID. RoCE uses a different mechanism, but still generates a GID via
2063 * a prescribed mechanism and port specific data.
30a74ef4 2064 *
296ec009
MW
2065 * Return: true if the port uses a GID address to identify devices on the
2066 * network.
30a74ef4 2067 */
5ede9289 2068static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2069{
f9b22e35 2070 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2071}
2072
227128fc
MW
2073/**
2074 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2075 * Ethernet Address Handle.
2076 * @device: Device to check
2077 * @port_num: Port number to check
227128fc 2078 *
296ec009
MW
2079 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2080 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2081 * port. Normally, packet headers are generated by the sending host
2082 * adapter, but when sending connectionless datagrams, we must manually
2083 * inject the proper headers for the fabric we are communicating over.
227128fc 2084 *
296ec009
MW
2085 * Return: true if we are running as a RoCE port and must force the
2086 * addition of a Global Route Header built from our Ethernet Address
2087 * Handle into our header list for connectionless packets.
227128fc 2088 */
5ede9289 2089static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2090{
f9b22e35 2091 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2092}
2093
337877a4
IW
2094/**
2095 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2096 *
2097 * @device: Device
2098 * @port_num: Port number
2099 *
2100 * This MAD size includes the MAD headers and MAD payload. No other headers
2101 * are included.
2102 *
2103 * Return the max MAD size required by the Port. Will return 0 if the port
2104 * does not support MADs
2105 */
2106static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2107{
2108 return device->port_immutable[port_num].max_mad_size;
2109}
2110
1da177e4
LT
2111int ib_query_gid(struct ib_device *device,
2112 u8 port_num, int index, union ib_gid *gid);
2113
2114int ib_query_pkey(struct ib_device *device,
2115 u8 port_num, u16 index, u16 *pkey);
2116
2117int ib_modify_device(struct ib_device *device,
2118 int device_modify_mask,
2119 struct ib_device_modify *device_modify);
2120
2121int ib_modify_port(struct ib_device *device,
2122 u8 port_num, int port_modify_mask,
2123 struct ib_port_modify *port_modify);
2124
5eb620c8
YE
2125int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2126 u8 *port_num, u16 *index);
2127
2128int ib_find_pkey(struct ib_device *device,
2129 u8 port_num, u16 pkey, u16 *index);
2130
1da177e4
LT
2131/**
2132 * ib_alloc_pd - Allocates an unused protection domain.
2133 * @device: The device on which to allocate the protection domain.
2134 *
2135 * A protection domain object provides an association between QPs, shared
2136 * receive queues, address handles, memory regions, and memory windows.
2137 */
2138struct ib_pd *ib_alloc_pd(struct ib_device *device);
2139
2140/**
2141 * ib_dealloc_pd - Deallocates a protection domain.
2142 * @pd: The protection domain to deallocate.
2143 */
2144int ib_dealloc_pd(struct ib_pd *pd);
2145
2146/**
2147 * ib_create_ah - Creates an address handle for the given address vector.
2148 * @pd: The protection domain associated with the address handle.
2149 * @ah_attr: The attributes of the address vector.
2150 *
2151 * The address handle is used to reference a local or global destination
2152 * in all UD QP post sends.
2153 */
2154struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2155
4e00d694
SH
2156/**
2157 * ib_init_ah_from_wc - Initializes address handle attributes from a
2158 * work completion.
2159 * @device: Device on which the received message arrived.
2160 * @port_num: Port on which the received message arrived.
2161 * @wc: Work completion associated with the received message.
2162 * @grh: References the received global route header. This parameter is
2163 * ignored unless the work completion indicates that the GRH is valid.
2164 * @ah_attr: Returned attributes that can be used when creating an address
2165 * handle for replying to the message.
2166 */
73cdaaee
IW
2167int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2168 const struct ib_wc *wc, const struct ib_grh *grh,
2169 struct ib_ah_attr *ah_attr);
4e00d694 2170
513789ed
HR
2171/**
2172 * ib_create_ah_from_wc - Creates an address handle associated with the
2173 * sender of the specified work completion.
2174 * @pd: The protection domain associated with the address handle.
2175 * @wc: Work completion information associated with a received message.
2176 * @grh: References the received global route header. This parameter is
2177 * ignored unless the work completion indicates that the GRH is valid.
2178 * @port_num: The outbound port number to associate with the address.
2179 *
2180 * The address handle is used to reference a local or global destination
2181 * in all UD QP post sends.
2182 */
73cdaaee
IW
2183struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2184 const struct ib_grh *grh, u8 port_num);
513789ed 2185
1da177e4
LT
2186/**
2187 * ib_modify_ah - Modifies the address vector associated with an address
2188 * handle.
2189 * @ah: The address handle to modify.
2190 * @ah_attr: The new address vector attributes to associate with the
2191 * address handle.
2192 */
2193int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2194
2195/**
2196 * ib_query_ah - Queries the address vector associated with an address
2197 * handle.
2198 * @ah: The address handle to query.
2199 * @ah_attr: The address vector attributes associated with the address
2200 * handle.
2201 */
2202int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2203
2204/**
2205 * ib_destroy_ah - Destroys an address handle.
2206 * @ah: The address handle to destroy.
2207 */
2208int ib_destroy_ah(struct ib_ah *ah);
2209
d41fcc67
RD
2210/**
2211 * ib_create_srq - Creates a SRQ associated with the specified protection
2212 * domain.
2213 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2214 * @srq_init_attr: A list of initial attributes required to create the
2215 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2216 * the actual capabilities of the created SRQ.
d41fcc67
RD
2217 *
2218 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2219 * requested size of the SRQ, and set to the actual values allocated
2220 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2221 * will always be at least as large as the requested values.
2222 */
2223struct ib_srq *ib_create_srq(struct ib_pd *pd,
2224 struct ib_srq_init_attr *srq_init_attr);
2225
2226/**
2227 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2228 * @srq: The SRQ to modify.
2229 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2230 * the current values of selected SRQ attributes are returned.
2231 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2232 * are being modified.
2233 *
2234 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2235 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2236 * the number of receives queued drops below the limit.
2237 */
2238int ib_modify_srq(struct ib_srq *srq,
2239 struct ib_srq_attr *srq_attr,
2240 enum ib_srq_attr_mask srq_attr_mask);
2241
2242/**
2243 * ib_query_srq - Returns the attribute list and current values for the
2244 * specified SRQ.
2245 * @srq: The SRQ to query.
2246 * @srq_attr: The attributes of the specified SRQ.
2247 */
2248int ib_query_srq(struct ib_srq *srq,
2249 struct ib_srq_attr *srq_attr);
2250
2251/**
2252 * ib_destroy_srq - Destroys the specified SRQ.
2253 * @srq: The SRQ to destroy.
2254 */
2255int ib_destroy_srq(struct ib_srq *srq);
2256
2257/**
2258 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2259 * @srq: The SRQ to post the work request on.
2260 * @recv_wr: A list of work requests to post on the receive queue.
2261 * @bad_recv_wr: On an immediate failure, this parameter will reference
2262 * the work request that failed to be posted on the QP.
2263 */
2264static inline int ib_post_srq_recv(struct ib_srq *srq,
2265 struct ib_recv_wr *recv_wr,
2266 struct ib_recv_wr **bad_recv_wr)
2267{
2268 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2269}
2270
1da177e4
LT
2271/**
2272 * ib_create_qp - Creates a QP associated with the specified protection
2273 * domain.
2274 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2275 * @qp_init_attr: A list of initial attributes required to create the
2276 * QP. If QP creation succeeds, then the attributes are updated to
2277 * the actual capabilities of the created QP.
1da177e4
LT
2278 */
2279struct ib_qp *ib_create_qp(struct ib_pd *pd,
2280 struct ib_qp_init_attr *qp_init_attr);
2281
2282/**
2283 * ib_modify_qp - Modifies the attributes for the specified QP and then
2284 * transitions the QP to the given state.
2285 * @qp: The QP to modify.
2286 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2287 * the current values of selected QP attributes are returned.
2288 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2289 * are being modified.
2290 */
2291int ib_modify_qp(struct ib_qp *qp,
2292 struct ib_qp_attr *qp_attr,
2293 int qp_attr_mask);
2294
2295/**
2296 * ib_query_qp - Returns the attribute list and current values for the
2297 * specified QP.
2298 * @qp: The QP to query.
2299 * @qp_attr: The attributes of the specified QP.
2300 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2301 * @qp_init_attr: Additional attributes of the selected QP.
2302 *
2303 * The qp_attr_mask may be used to limit the query to gathering only the
2304 * selected attributes.
2305 */
2306int ib_query_qp(struct ib_qp *qp,
2307 struct ib_qp_attr *qp_attr,
2308 int qp_attr_mask,
2309 struct ib_qp_init_attr *qp_init_attr);
2310
2311/**
2312 * ib_destroy_qp - Destroys the specified QP.
2313 * @qp: The QP to destroy.
2314 */
2315int ib_destroy_qp(struct ib_qp *qp);
2316
d3d72d90 2317/**
0e0ec7e0
SH
2318 * ib_open_qp - Obtain a reference to an existing sharable QP.
2319 * @xrcd - XRC domain
2320 * @qp_open_attr: Attributes identifying the QP to open.
2321 *
2322 * Returns a reference to a sharable QP.
2323 */
2324struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2325 struct ib_qp_open_attr *qp_open_attr);
2326
2327/**
2328 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2329 * @qp: The QP handle to release
2330 *
0e0ec7e0
SH
2331 * The opened QP handle is released by the caller. The underlying
2332 * shared QP is not destroyed until all internal references are released.
d3d72d90 2333 */
0e0ec7e0 2334int ib_close_qp(struct ib_qp *qp);
d3d72d90 2335
1da177e4
LT
2336/**
2337 * ib_post_send - Posts a list of work requests to the send queue of
2338 * the specified QP.
2339 * @qp: The QP to post the work request on.
2340 * @send_wr: A list of work requests to post on the send queue.
2341 * @bad_send_wr: On an immediate failure, this parameter will reference
2342 * the work request that failed to be posted on the QP.
55464d46
BVA
2343 *
2344 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2345 * error is returned, the QP state shall not be affected,
2346 * ib_post_send() will return an immediate error after queueing any
2347 * earlier work requests in the list.
1da177e4
LT
2348 */
2349static inline int ib_post_send(struct ib_qp *qp,
2350 struct ib_send_wr *send_wr,
2351 struct ib_send_wr **bad_send_wr)
2352{
2353 return qp->device->post_send(qp, send_wr, bad_send_wr);
2354}
2355
2356/**
2357 * ib_post_recv - Posts a list of work requests to the receive queue of
2358 * the specified QP.
2359 * @qp: The QP to post the work request on.
2360 * @recv_wr: A list of work requests to post on the receive queue.
2361 * @bad_recv_wr: On an immediate failure, this parameter will reference
2362 * the work request that failed to be posted on the QP.
2363 */
2364static inline int ib_post_recv(struct ib_qp *qp,
2365 struct ib_recv_wr *recv_wr,
2366 struct ib_recv_wr **bad_recv_wr)
2367{
2368 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2369}
2370
2371/**
2372 * ib_create_cq - Creates a CQ on the specified device.
2373 * @device: The device on which to create the CQ.
2374 * @comp_handler: A user-specified callback that is invoked when a
2375 * completion event occurs on the CQ.
2376 * @event_handler: A user-specified callback that is invoked when an
2377 * asynchronous event not associated with a completion occurs on the CQ.
2378 * @cq_context: Context associated with the CQ returned to the user via
2379 * the associated completion and event handlers.
8e37210b 2380 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2381 *
2382 * Users can examine the cq structure to determine the actual CQ size.
2383 */
2384struct ib_cq *ib_create_cq(struct ib_device *device,
2385 ib_comp_handler comp_handler,
2386 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2387 void *cq_context,
2388 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2389
2390/**
2391 * ib_resize_cq - Modifies the capacity of the CQ.
2392 * @cq: The CQ to resize.
2393 * @cqe: The minimum size of the CQ.
2394 *
2395 * Users can examine the cq structure to determine the actual CQ size.
2396 */
2397int ib_resize_cq(struct ib_cq *cq, int cqe);
2398
2dd57162
EC
2399/**
2400 * ib_modify_cq - Modifies moderation params of the CQ
2401 * @cq: The CQ to modify.
2402 * @cq_count: number of CQEs that will trigger an event
2403 * @cq_period: max period of time in usec before triggering an event
2404 *
2405 */
2406int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2407
1da177e4
LT
2408/**
2409 * ib_destroy_cq - Destroys the specified CQ.
2410 * @cq: The CQ to destroy.
2411 */
2412int ib_destroy_cq(struct ib_cq *cq);
2413
2414/**
2415 * ib_poll_cq - poll a CQ for completion(s)
2416 * @cq:the CQ being polled
2417 * @num_entries:maximum number of completions to return
2418 * @wc:array of at least @num_entries &struct ib_wc where completions
2419 * will be returned
2420 *
2421 * Poll a CQ for (possibly multiple) completions. If the return value
2422 * is < 0, an error occurred. If the return value is >= 0, it is the
2423 * number of completions returned. If the return value is
2424 * non-negative and < num_entries, then the CQ was emptied.
2425 */
2426static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2427 struct ib_wc *wc)
2428{
2429 return cq->device->poll_cq(cq, num_entries, wc);
2430}
2431
2432/**
2433 * ib_peek_cq - Returns the number of unreaped completions currently
2434 * on the specified CQ.
2435 * @cq: The CQ to peek.
2436 * @wc_cnt: A minimum number of unreaped completions to check for.
2437 *
2438 * If the number of unreaped completions is greater than or equal to wc_cnt,
2439 * this function returns wc_cnt, otherwise, it returns the actual number of
2440 * unreaped completions.
2441 */
2442int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2443
2444/**
2445 * ib_req_notify_cq - Request completion notification on a CQ.
2446 * @cq: The CQ to generate an event for.
ed23a727
RD
2447 * @flags:
2448 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2449 * to request an event on the next solicited event or next work
2450 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2451 * may also be |ed in to request a hint about missed events, as
2452 * described below.
2453 *
2454 * Return Value:
2455 * < 0 means an error occurred while requesting notification
2456 * == 0 means notification was requested successfully, and if
2457 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2458 * were missed and it is safe to wait for another event. In
2459 * this case is it guaranteed that any work completions added
2460 * to the CQ since the last CQ poll will trigger a completion
2461 * notification event.
2462 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2463 * in. It means that the consumer must poll the CQ again to
2464 * make sure it is empty to avoid missing an event because of a
2465 * race between requesting notification and an entry being
2466 * added to the CQ. This return value means it is possible
2467 * (but not guaranteed) that a work completion has been added
2468 * to the CQ since the last poll without triggering a
2469 * completion notification event.
1da177e4
LT
2470 */
2471static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2472 enum ib_cq_notify_flags flags)
1da177e4 2473{
ed23a727 2474 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2475}
2476
2477/**
2478 * ib_req_ncomp_notif - Request completion notification when there are
2479 * at least the specified number of unreaped completions on the CQ.
2480 * @cq: The CQ to generate an event for.
2481 * @wc_cnt: The number of unreaped completions that should be on the
2482 * CQ before an event is generated.
2483 */
2484static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2485{
2486 return cq->device->req_ncomp_notif ?
2487 cq->device->req_ncomp_notif(cq, wc_cnt) :
2488 -ENOSYS;
2489}
2490
2491/**
2492 * ib_get_dma_mr - Returns a memory region for system memory that is
2493 * usable for DMA.
2494 * @pd: The protection domain associated with the memory region.
2495 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2496 *
2497 * Note that the ib_dma_*() functions defined below must be used
2498 * to create/destroy addresses used with the Lkey or Rkey returned
2499 * by ib_get_dma_mr().
1da177e4
LT
2500 */
2501struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2502
9b513090
RC
2503/**
2504 * ib_dma_mapping_error - check a DMA addr for error
2505 * @dev: The device for which the dma_addr was created
2506 * @dma_addr: The DMA address to check
2507 */
2508static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2509{
d1998ef3
BC
2510 if (dev->dma_ops)
2511 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2512 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2513}
2514
2515/**
2516 * ib_dma_map_single - Map a kernel virtual address to DMA address
2517 * @dev: The device for which the dma_addr is to be created
2518 * @cpu_addr: The kernel virtual address
2519 * @size: The size of the region in bytes
2520 * @direction: The direction of the DMA
2521 */
2522static inline u64 ib_dma_map_single(struct ib_device *dev,
2523 void *cpu_addr, size_t size,
2524 enum dma_data_direction direction)
2525{
d1998ef3
BC
2526 if (dev->dma_ops)
2527 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2528 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2529}
2530
2531/**
2532 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2533 * @dev: The device for which the DMA address was created
2534 * @addr: The DMA address
2535 * @size: The size of the region in bytes
2536 * @direction: The direction of the DMA
2537 */
2538static inline void ib_dma_unmap_single(struct ib_device *dev,
2539 u64 addr, size_t size,
2540 enum dma_data_direction direction)
2541{
d1998ef3
BC
2542 if (dev->dma_ops)
2543 dev->dma_ops->unmap_single(dev, addr, size, direction);
2544 else
9b513090
RC
2545 dma_unmap_single(dev->dma_device, addr, size, direction);
2546}
2547
cb9fbc5c
AK
2548static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2549 void *cpu_addr, size_t size,
2550 enum dma_data_direction direction,
2551 struct dma_attrs *attrs)
2552{
2553 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2554 direction, attrs);
2555}
2556
2557static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2558 u64 addr, size_t size,
2559 enum dma_data_direction direction,
2560 struct dma_attrs *attrs)
2561{
2562 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2563 direction, attrs);
2564}
2565
9b513090
RC
2566/**
2567 * ib_dma_map_page - Map a physical page to DMA address
2568 * @dev: The device for which the dma_addr is to be created
2569 * @page: The page to be mapped
2570 * @offset: The offset within the page
2571 * @size: The size of the region in bytes
2572 * @direction: The direction of the DMA
2573 */
2574static inline u64 ib_dma_map_page(struct ib_device *dev,
2575 struct page *page,
2576 unsigned long offset,
2577 size_t size,
2578 enum dma_data_direction direction)
2579{
d1998ef3
BC
2580 if (dev->dma_ops)
2581 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2582 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2583}
2584
2585/**
2586 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2587 * @dev: The device for which the DMA address was created
2588 * @addr: The DMA address
2589 * @size: The size of the region in bytes
2590 * @direction: The direction of the DMA
2591 */
2592static inline void ib_dma_unmap_page(struct ib_device *dev,
2593 u64 addr, size_t size,
2594 enum dma_data_direction direction)
2595{
d1998ef3
BC
2596 if (dev->dma_ops)
2597 dev->dma_ops->unmap_page(dev, addr, size, direction);
2598 else
9b513090
RC
2599 dma_unmap_page(dev->dma_device, addr, size, direction);
2600}
2601
2602/**
2603 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2604 * @dev: The device for which the DMA addresses are to be created
2605 * @sg: The array of scatter/gather entries
2606 * @nents: The number of scatter/gather entries
2607 * @direction: The direction of the DMA
2608 */
2609static inline int ib_dma_map_sg(struct ib_device *dev,
2610 struct scatterlist *sg, int nents,
2611 enum dma_data_direction direction)
2612{
d1998ef3
BC
2613 if (dev->dma_ops)
2614 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2615 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2616}
2617
2618/**
2619 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2620 * @dev: The device for which the DMA addresses were created
2621 * @sg: The array of scatter/gather entries
2622 * @nents: The number of scatter/gather entries
2623 * @direction: The direction of the DMA
2624 */
2625static inline void ib_dma_unmap_sg(struct ib_device *dev,
2626 struct scatterlist *sg, int nents,
2627 enum dma_data_direction direction)
2628{
d1998ef3
BC
2629 if (dev->dma_ops)
2630 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2631 else
9b513090
RC
2632 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2633}
2634
cb9fbc5c
AK
2635static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2636 struct scatterlist *sg, int nents,
2637 enum dma_data_direction direction,
2638 struct dma_attrs *attrs)
2639{
2640 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2641}
2642
2643static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2644 struct scatterlist *sg, int nents,
2645 enum dma_data_direction direction,
2646 struct dma_attrs *attrs)
2647{
2648 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2649}
9b513090
RC
2650/**
2651 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2652 * @dev: The device for which the DMA addresses were created
2653 * @sg: The scatter/gather entry
ea58a595
MM
2654 *
2655 * Note: this function is obsolete. To do: change all occurrences of
2656 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2657 */
2658static inline u64 ib_sg_dma_address(struct ib_device *dev,
2659 struct scatterlist *sg)
2660{
d1998ef3 2661 return sg_dma_address(sg);
9b513090
RC
2662}
2663
2664/**
2665 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2666 * @dev: The device for which the DMA addresses were created
2667 * @sg: The scatter/gather entry
ea58a595
MM
2668 *
2669 * Note: this function is obsolete. To do: change all occurrences of
2670 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2671 */
2672static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2673 struct scatterlist *sg)
2674{
d1998ef3 2675 return sg_dma_len(sg);
9b513090
RC
2676}
2677
2678/**
2679 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2680 * @dev: The device for which the DMA address was created
2681 * @addr: The DMA address
2682 * @size: The size of the region in bytes
2683 * @dir: The direction of the DMA
2684 */
2685static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2686 u64 addr,
2687 size_t size,
2688 enum dma_data_direction dir)
2689{
d1998ef3
BC
2690 if (dev->dma_ops)
2691 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2692 else
9b513090
RC
2693 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2694}
2695
2696/**
2697 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2698 * @dev: The device for which the DMA address was created
2699 * @addr: The DMA address
2700 * @size: The size of the region in bytes
2701 * @dir: The direction of the DMA
2702 */
2703static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2704 u64 addr,
2705 size_t size,
2706 enum dma_data_direction dir)
2707{
d1998ef3
BC
2708 if (dev->dma_ops)
2709 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2710 else
9b513090
RC
2711 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2712}
2713
2714/**
2715 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2716 * @dev: The device for which the DMA address is requested
2717 * @size: The size of the region to allocate in bytes
2718 * @dma_handle: A pointer for returning the DMA address of the region
2719 * @flag: memory allocator flags
2720 */
2721static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2722 size_t size,
2723 u64 *dma_handle,
2724 gfp_t flag)
2725{
d1998ef3
BC
2726 if (dev->dma_ops)
2727 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2728 else {
2729 dma_addr_t handle;
2730 void *ret;
2731
2732 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2733 *dma_handle = handle;
2734 return ret;
2735 }
9b513090
RC
2736}
2737
2738/**
2739 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2740 * @dev: The device for which the DMA addresses were allocated
2741 * @size: The size of the region
2742 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2743 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2744 */
2745static inline void ib_dma_free_coherent(struct ib_device *dev,
2746 size_t size, void *cpu_addr,
2747 u64 dma_handle)
2748{
d1998ef3
BC
2749 if (dev->dma_ops)
2750 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2751 else
9b513090
RC
2752 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2753}
2754
1da177e4
LT
2755/**
2756 * ib_reg_phys_mr - Prepares a virtually addressed memory region for use
2757 * by an HCA.
2758 * @pd: The protection domain associated assigned to the registered region.
2759 * @phys_buf_array: Specifies a list of physical buffers to use in the
2760 * memory region.
2761 * @num_phys_buf: Specifies the size of the phys_buf_array.
2762 * @mr_access_flags: Specifies the memory access rights.
2763 * @iova_start: The offset of the region's starting I/O virtual address.
2764 */
2765struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
2766 struct ib_phys_buf *phys_buf_array,
2767 int num_phys_buf,
2768 int mr_access_flags,
2769 u64 *iova_start);
2770
2771/**
2772 * ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
2773 * Conceptually, this call performs the functions deregister memory region
2774 * followed by register physical memory region. Where possible,
2775 * resources are reused instead of deallocated and reallocated.
2776 * @mr: The memory region to modify.
2777 * @mr_rereg_mask: A bit-mask used to indicate which of the following
2778 * properties of the memory region are being modified.
2779 * @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
2780 * the new protection domain to associated with the memory region,
2781 * otherwise, this parameter is ignored.
2782 * @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2783 * field specifies a list of physical buffers to use in the new
2784 * translation, otherwise, this parameter is ignored.
2785 * @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
2786 * field specifies the size of the phys_buf_array, otherwise, this
2787 * parameter is ignored.
2788 * @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
2789 * field specifies the new memory access rights, otherwise, this
2790 * parameter is ignored.
2791 * @iova_start: The offset of the region's starting I/O virtual address.
2792 */
2793int ib_rereg_phys_mr(struct ib_mr *mr,
2794 int mr_rereg_mask,
2795 struct ib_pd *pd,
2796 struct ib_phys_buf *phys_buf_array,
2797 int num_phys_buf,
2798 int mr_access_flags,
2799 u64 *iova_start);
2800
2801/**
2802 * ib_query_mr - Retrieves information about a specific memory region.
2803 * @mr: The memory region to retrieve information about.
2804 * @mr_attr: The attributes of the specified memory region.
2805 */
2806int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2807
2808/**
2809 * ib_dereg_mr - Deregisters a memory region and removes it from the
2810 * HCA translation table.
2811 * @mr: The memory region to deregister.
7083e42e
SM
2812 *
2813 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2814 */
2815int ib_dereg_mr(struct ib_mr *mr);
2816
9bee178b
SG
2817struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2818 enum ib_mr_type mr_type,
2819 u32 max_num_sg);
17cd3a2d 2820
00f7ec36
SW
2821/**
2822 * ib_alloc_fast_reg_page_list - Allocates a page list array
2823 * @device - ib device pointer.
2824 * @page_list_len - size of the page list array to be allocated.
2825 *
2826 * This allocates and returns a struct ib_fast_reg_page_list * and a
2827 * page_list array that is at least page_list_len in size. The actual
2828 * size is returned in max_page_list_len. The caller is responsible
2829 * for initializing the contents of the page_list array before posting
2830 * a send work request with the IB_WC_FAST_REG_MR opcode.
2831 *
2832 * The page_list array entries must be translated using one of the
2833 * ib_dma_*() functions just like the addresses passed to
2834 * ib_map_phys_fmr(). Once the ib_post_send() is issued, the struct
2835 * ib_fast_reg_page_list must not be modified by the caller until the
2836 * IB_WC_FAST_REG_MR work request completes.
2837 */
2838struct ib_fast_reg_page_list *ib_alloc_fast_reg_page_list(
2839 struct ib_device *device, int page_list_len);
2840
2841/**
2842 * ib_free_fast_reg_page_list - Deallocates a previously allocated
2843 * page list array.
2844 * @page_list - struct ib_fast_reg_page_list pointer to be deallocated.
2845 */
2846void ib_free_fast_reg_page_list(struct ib_fast_reg_page_list *page_list);
2847
2848/**
2849 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2850 * R_Key and L_Key.
2851 * @mr - struct ib_mr pointer to be updated.
2852 * @newkey - new key to be used.
2853 */
2854static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2855{
2856 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2857 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2858}
2859
7083e42e
SM
2860/**
2861 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2862 * for calculating a new rkey for type 2 memory windows.
2863 * @rkey - the rkey to increment.
2864 */
2865static inline u32 ib_inc_rkey(u32 rkey)
2866{
2867 const u32 mask = 0x000000ff;
2868 return ((rkey + 1) & mask) | (rkey & ~mask);
2869}
2870
1da177e4
LT
2871/**
2872 * ib_alloc_mw - Allocates a memory window.
2873 * @pd: The protection domain associated with the memory window.
7083e42e 2874 * @type: The type of the memory window (1 or 2).
1da177e4 2875 */
7083e42e 2876struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
2877
2878/**
2879 * ib_bind_mw - Posts a work request to the send queue of the specified
2880 * QP, which binds the memory window to the given address range and
2881 * remote access attributes.
2882 * @qp: QP to post the bind work request on.
2883 * @mw: The memory window to bind.
2884 * @mw_bind: Specifies information about the memory window, including
2885 * its address range, remote access rights, and associated memory region.
7083e42e
SM
2886 *
2887 * If there is no immediate error, the function will update the rkey member
2888 * of the mw parameter to its new value. The bind operation can still fail
2889 * asynchronously.
1da177e4
LT
2890 */
2891static inline int ib_bind_mw(struct ib_qp *qp,
2892 struct ib_mw *mw,
2893 struct ib_mw_bind *mw_bind)
2894{
2895 /* XXX reference counting in corresponding MR? */
2896 return mw->device->bind_mw ?
2897 mw->device->bind_mw(qp, mw, mw_bind) :
2898 -ENOSYS;
2899}
2900
2901/**
2902 * ib_dealloc_mw - Deallocates a memory window.
2903 * @mw: The memory window to deallocate.
2904 */
2905int ib_dealloc_mw(struct ib_mw *mw);
2906
2907/**
2908 * ib_alloc_fmr - Allocates a unmapped fast memory region.
2909 * @pd: The protection domain associated with the unmapped region.
2910 * @mr_access_flags: Specifies the memory access rights.
2911 * @fmr_attr: Attributes of the unmapped region.
2912 *
2913 * A fast memory region must be mapped before it can be used as part of
2914 * a work request.
2915 */
2916struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
2917 int mr_access_flags,
2918 struct ib_fmr_attr *fmr_attr);
2919
2920/**
2921 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
2922 * @fmr: The fast memory region to associate with the pages.
2923 * @page_list: An array of physical pages to map to the fast memory region.
2924 * @list_len: The number of pages in page_list.
2925 * @iova: The I/O virtual address to use with the mapped region.
2926 */
2927static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
2928 u64 *page_list, int list_len,
2929 u64 iova)
2930{
2931 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
2932}
2933
2934/**
2935 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
2936 * @fmr_list: A linked list of fast memory regions to unmap.
2937 */
2938int ib_unmap_fmr(struct list_head *fmr_list);
2939
2940/**
2941 * ib_dealloc_fmr - Deallocates a fast memory region.
2942 * @fmr: The fast memory region to deallocate.
2943 */
2944int ib_dealloc_fmr(struct ib_fmr *fmr);
2945
2946/**
2947 * ib_attach_mcast - Attaches the specified QP to a multicast group.
2948 * @qp: QP to attach to the multicast group. The QP must be type
2949 * IB_QPT_UD.
2950 * @gid: Multicast group GID.
2951 * @lid: Multicast group LID in host byte order.
2952 *
2953 * In order to send and receive multicast packets, subnet
2954 * administration must have created the multicast group and configured
2955 * the fabric appropriately. The port associated with the specified
2956 * QP must also be a member of the multicast group.
2957 */
2958int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2959
2960/**
2961 * ib_detach_mcast - Detaches the specified QP from a multicast group.
2962 * @qp: QP to detach from the multicast group.
2963 * @gid: Multicast group GID.
2964 * @lid: Multicast group LID in host byte order.
2965 */
2966int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2967
59991f94
SH
2968/**
2969 * ib_alloc_xrcd - Allocates an XRC domain.
2970 * @device: The device on which to allocate the XRC domain.
2971 */
2972struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
2973
2974/**
2975 * ib_dealloc_xrcd - Deallocates an XRC domain.
2976 * @xrcd: The XRC domain to deallocate.
2977 */
2978int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
2979
319a441d
HHZ
2980struct ib_flow *ib_create_flow(struct ib_qp *qp,
2981 struct ib_flow_attr *flow_attr, int domain);
2982int ib_destroy_flow(struct ib_flow *flow_id);
2983
1c636f80
EC
2984static inline int ib_check_mr_access(int flags)
2985{
2986 /*
2987 * Local write permission is required if remote write or
2988 * remote atomic permission is also requested.
2989 */
2990 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
2991 !(flags & IB_ACCESS_LOCAL_WRITE))
2992 return -EINVAL;
2993
2994 return 0;
2995}
2996
1b01d335
SG
2997/**
2998 * ib_check_mr_status: lightweight check of MR status.
2999 * This routine may provide status checks on a selected
3000 * ib_mr. first use is for signature status check.
3001 *
3002 * @mr: A memory region.
3003 * @check_mask: Bitmask of which checks to perform from
3004 * ib_mr_status_check enumeration.
3005 * @mr_status: The container of relevant status checks.
3006 * failed checks will be indicated in the status bitmask
3007 * and the relevant info shall be in the error item.
3008 */
3009int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3010 struct ib_mr_status *mr_status);
3011
9268f72d
YK
3012struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3013 u16 pkey, const union ib_gid *gid,
3014 const struct sockaddr *addr);
3015
1da177e4 3016#endif /* IB_VERBS_H */
This page took 0.828429 seconds and 5 git commands to generate.