ipc: fix double sem unlock in semctl error path
[deliverable/linux.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
e57940d7
MS
98 struct list_head sem_pending; /* pending single-sop operations */
99};
100
101/* One queue for each sleeping process in the system. */
102struct sem_queue {
e57940d7
MS
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
111};
112
113/* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
115 */
116struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
127};
128
129/* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
131 */
132struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
136};
137
138
ed2ddbf8 139#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 140
1b531f21 141#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 142
7748dbfa 143static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 144static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 145#ifdef CONFIG_PROC_FS
19b4946c 146static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
147#endif
148
149#define SEMMSL_FAST 256 /* 512 bytes on stack */
150#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
151
152/*
153 * linked list protection:
154 * sem_undo.id_next,
155 * sem_array.sem_pending{,last},
156 * sem_array.sem_undo: sem_lock() for read/write
157 * sem_undo.proc_next: only "current" is allowed to read/write that field.
158 *
159 */
160
e3893534
KK
161#define sc_semmsl sem_ctls[0]
162#define sc_semmns sem_ctls[1]
163#define sc_semopm sem_ctls[2]
164#define sc_semmni sem_ctls[3]
165
ed2ddbf8 166void sem_init_ns(struct ipc_namespace *ns)
e3893534 167{
e3893534
KK
168 ns->sc_semmsl = SEMMSL;
169 ns->sc_semmns = SEMMNS;
170 ns->sc_semopm = SEMOPM;
171 ns->sc_semmni = SEMMNI;
172 ns->used_sems = 0;
ed2ddbf8 173 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
174}
175
ae5e1b22 176#ifdef CONFIG_IPC_NS
e3893534
KK
177void sem_exit_ns(struct ipc_namespace *ns)
178{
01b8b07a 179 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 180 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 181}
ae5e1b22 182#endif
1da177e4
LT
183
184void __init sem_init (void)
185{
ed2ddbf8 186 sem_init_ns(&init_ipc_ns);
19b4946c
MW
187 ipc_init_proc_interface("sysvipc/sem",
188 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 189 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
190}
191
6062a8dc
RR
192/*
193 * If the request contains only one semaphore operation, and there are
194 * no complex transactions pending, lock only the semaphore involved.
195 * Otherwise, lock the entire semaphore array, since we either have
196 * multiple semaphores in our own semops, or we need to look at
197 * semaphores from other pending complex operations.
198 *
199 * Carefully guard against sma->complex_count changing between zero
200 * and non-zero while we are spinning for the lock. The value of
201 * sma->complex_count cannot change while we are holding the lock,
202 * so sem_unlock should be fine.
203 *
204 * The global lock path checks that all the local locks have been released,
205 * checking each local lock once. This means that the local lock paths
206 * cannot start their critical sections while the global lock is held.
207 */
208static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
209 int nsops)
210{
211 int locknum;
212 again:
213 if (nsops == 1 && !sma->complex_count) {
214 struct sem *sem = sma->sem_base + sops->sem_num;
215
216 /* Lock just the semaphore we are interested in. */
217 spin_lock(&sem->lock);
218
219 /*
220 * If sma->complex_count was set while we were spinning,
221 * we may need to look at things we did not lock here.
222 */
223 if (unlikely(sma->complex_count)) {
224 spin_unlock(&sem->lock);
225 goto lock_array;
226 }
227
228 /*
229 * Another process is holding the global lock on the
230 * sem_array; we cannot enter our critical section,
231 * but have to wait for the global lock to be released.
232 */
233 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
234 spin_unlock(&sem->lock);
235 spin_unlock_wait(&sma->sem_perm.lock);
236 goto again;
237 }
238
239 locknum = sops->sem_num;
240 } else {
241 int i;
242 /*
243 * Lock the semaphore array, and wait for all of the
244 * individual semaphore locks to go away. The code
245 * above ensures no new single-lock holders will enter
246 * their critical section while the array lock is held.
247 */
248 lock_array:
249 spin_lock(&sma->sem_perm.lock);
250 for (i = 0; i < sma->sem_nsems; i++) {
251 struct sem *sem = sma->sem_base + i;
252 spin_unlock_wait(&sem->lock);
253 }
254 locknum = -1;
255 }
256 return locknum;
257}
258
259static inline void sem_unlock(struct sem_array *sma, int locknum)
260{
261 if (locknum == -1) {
262 spin_unlock(&sma->sem_perm.lock);
263 } else {
264 struct sem *sem = sma->sem_base + locknum;
265 spin_unlock(&sem->lock);
266 }
6062a8dc
RR
267}
268
3e148c79
ND
269/*
270 * sem_lock_(check_) routines are called in the paths where the rw_mutex
271 * is not held.
272 */
6062a8dc
RR
273static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
274 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 275{
c460b662
RR
276 struct kern_ipc_perm *ipcp;
277 struct sem_array *sma;
03f02c76 278
c460b662
RR
279 rcu_read_lock();
280 ipcp = ipc_obtain_object(&sem_ids(ns), id);
281 if (IS_ERR(ipcp)) {
282 sma = ERR_CAST(ipcp);
283 goto err;
284 }
b1ed88b4 285
6062a8dc
RR
286 sma = container_of(ipcp, struct sem_array, sem_perm);
287 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
288
289 /* ipc_rmid() may have already freed the ID while sem_lock
290 * was spinning: verify that the structure is still valid
291 */
292 if (!ipcp->deleted)
293 return container_of(ipcp, struct sem_array, sem_perm);
294
6062a8dc 295 sem_unlock(sma, *locknum);
c460b662
RR
296 sma = ERR_PTR(-EINVAL);
297err:
298 rcu_read_unlock();
299 return sma;
023a5355
ND
300}
301
16df3674
DB
302static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
303{
304 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
305
306 if (IS_ERR(ipcp))
307 return ERR_CAST(ipcp);
308
309 return container_of(ipcp, struct sem_array, sem_perm);
310}
311
16df3674
DB
312static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
313 int id)
314{
315 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
316
317 if (IS_ERR(ipcp))
318 return ERR_CAST(ipcp);
b1ed88b4 319
03f02c76 320 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
321}
322
6ff37972
PP
323static inline void sem_lock_and_putref(struct sem_array *sma)
324{
6062a8dc 325 sem_lock(sma, NULL, -1);
6ff37972
PP
326 ipc_rcu_putref(sma);
327}
328
6ff37972
PP
329static inline void sem_putref(struct sem_array *sma)
330{
73b29505 331 ipc_rcu_putref(sma);
6ff37972
PP
332}
333
7ca7e564
ND
334static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
335{
336 ipc_rmid(&sem_ids(ns), &s->sem_perm);
337}
338
1da177e4
LT
339/*
340 * Lockless wakeup algorithm:
341 * Without the check/retry algorithm a lockless wakeup is possible:
342 * - queue.status is initialized to -EINTR before blocking.
343 * - wakeup is performed by
344 * * unlinking the queue entry from sma->sem_pending
345 * * setting queue.status to IN_WAKEUP
346 * This is the notification for the blocked thread that a
347 * result value is imminent.
348 * * call wake_up_process
349 * * set queue.status to the final value.
350 * - the previously blocked thread checks queue.status:
351 * * if it's IN_WAKEUP, then it must wait until the value changes
352 * * if it's not -EINTR, then the operation was completed by
353 * update_queue. semtimedop can return queue.status without
5f921ae9 354 * performing any operation on the sem array.
1da177e4
LT
355 * * otherwise it must acquire the spinlock and check what's up.
356 *
357 * The two-stage algorithm is necessary to protect against the following
358 * races:
359 * - if queue.status is set after wake_up_process, then the woken up idle
360 * thread could race forward and try (and fail) to acquire sma->lock
361 * before update_queue had a chance to set queue.status
362 * - if queue.status is written before wake_up_process and if the
363 * blocked process is woken up by a signal between writing
364 * queue.status and the wake_up_process, then the woken up
365 * process could return from semtimedop and die by calling
366 * sys_exit before wake_up_process is called. Then wake_up_process
367 * will oops, because the task structure is already invalid.
368 * (yes, this happened on s390 with sysv msg).
369 *
370 */
371#define IN_WAKEUP 1
372
f4566f04
ND
373/**
374 * newary - Create a new semaphore set
375 * @ns: namespace
376 * @params: ptr to the structure that contains key, semflg and nsems
377 *
3e148c79 378 * Called with sem_ids.rw_mutex held (as a writer)
f4566f04
ND
379 */
380
7748dbfa 381static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
382{
383 int id;
384 int retval;
385 struct sem_array *sma;
386 int size;
7748dbfa
ND
387 key_t key = params->key;
388 int nsems = params->u.nsems;
389 int semflg = params->flg;
b97e820f 390 int i;
1da177e4
LT
391
392 if (!nsems)
393 return -EINVAL;
e3893534 394 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
395 return -ENOSPC;
396
397 size = sizeof (*sma) + nsems * sizeof (struct sem);
398 sma = ipc_rcu_alloc(size);
399 if (!sma) {
400 return -ENOMEM;
401 }
402 memset (sma, 0, size);
403
404 sma->sem_perm.mode = (semflg & S_IRWXUGO);
405 sma->sem_perm.key = key;
406
407 sma->sem_perm.security = NULL;
408 retval = security_sem_alloc(sma);
409 if (retval) {
410 ipc_rcu_putref(sma);
411 return retval;
412 }
413
e3893534 414 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 415 if (id < 0) {
1da177e4
LT
416 security_sem_free(sma);
417 ipc_rcu_putref(sma);
283bb7fa 418 return id;
1da177e4 419 }
e3893534 420 ns->used_sems += nsems;
1da177e4
LT
421
422 sma->sem_base = (struct sem *) &sma[1];
b97e820f 423
6062a8dc 424 for (i = 0; i < nsems; i++) {
b97e820f 425 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
6062a8dc
RR
426 spin_lock_init(&sma->sem_base[i].lock);
427 }
b97e820f
MS
428
429 sma->complex_count = 0;
a1193f8e 430 INIT_LIST_HEAD(&sma->sem_pending);
4daa28f6 431 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
432 sma->sem_nsems = nsems;
433 sma->sem_ctime = get_seconds();
6062a8dc 434 sem_unlock(sma, -1);
6d49dab8 435 rcu_read_unlock();
1da177e4 436
7ca7e564 437 return sma->sem_perm.id;
1da177e4
LT
438}
439
7748dbfa 440
f4566f04 441/*
3e148c79 442 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 443 */
03f02c76 444static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 445{
03f02c76
ND
446 struct sem_array *sma;
447
448 sma = container_of(ipcp, struct sem_array, sem_perm);
449 return security_sem_associate(sma, semflg);
7748dbfa
ND
450}
451
f4566f04 452/*
3e148c79 453 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 454 */
03f02c76
ND
455static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
456 struct ipc_params *params)
7748dbfa 457{
03f02c76
ND
458 struct sem_array *sma;
459
460 sma = container_of(ipcp, struct sem_array, sem_perm);
461 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
462 return -EINVAL;
463
464 return 0;
465}
466
d5460c99 467SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 468{
e3893534 469 struct ipc_namespace *ns;
7748dbfa
ND
470 struct ipc_ops sem_ops;
471 struct ipc_params sem_params;
e3893534
KK
472
473 ns = current->nsproxy->ipc_ns;
1da177e4 474
e3893534 475 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 476 return -EINVAL;
7ca7e564 477
7748dbfa
ND
478 sem_ops.getnew = newary;
479 sem_ops.associate = sem_security;
480 sem_ops.more_checks = sem_more_checks;
481
482 sem_params.key = key;
483 sem_params.flg = semflg;
484 sem_params.u.nsems = nsems;
1da177e4 485
7748dbfa 486 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
487}
488
1da177e4
LT
489/*
490 * Determine whether a sequence of semaphore operations would succeed
491 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
492 */
493
494static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
495 int nsops, struct sem_undo *un, int pid)
496{
497 int result, sem_op;
498 struct sembuf *sop;
499 struct sem * curr;
500
501 for (sop = sops; sop < sops + nsops; sop++) {
502 curr = sma->sem_base + sop->sem_num;
503 sem_op = sop->sem_op;
504 result = curr->semval;
505
506 if (!sem_op && result)
507 goto would_block;
508
509 result += sem_op;
510 if (result < 0)
511 goto would_block;
512 if (result > SEMVMX)
513 goto out_of_range;
514 if (sop->sem_flg & SEM_UNDO) {
515 int undo = un->semadj[sop->sem_num] - sem_op;
516 /*
517 * Exceeding the undo range is an error.
518 */
519 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
520 goto out_of_range;
521 }
522 curr->semval = result;
523 }
524
525 sop--;
526 while (sop >= sops) {
527 sma->sem_base[sop->sem_num].sempid = pid;
528 if (sop->sem_flg & SEM_UNDO)
529 un->semadj[sop->sem_num] -= sop->sem_op;
530 sop--;
531 }
532
1da177e4
LT
533 return 0;
534
535out_of_range:
536 result = -ERANGE;
537 goto undo;
538
539would_block:
540 if (sop->sem_flg & IPC_NOWAIT)
541 result = -EAGAIN;
542 else
543 result = 1;
544
545undo:
546 sop--;
547 while (sop >= sops) {
548 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
549 sop--;
550 }
551
552 return result;
553}
554
0a2b9d4c
MS
555/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
556 * @q: queue entry that must be signaled
557 * @error: Error value for the signal
558 *
559 * Prepare the wake-up of the queue entry q.
d4212093 560 */
0a2b9d4c
MS
561static void wake_up_sem_queue_prepare(struct list_head *pt,
562 struct sem_queue *q, int error)
d4212093 563{
0a2b9d4c
MS
564 if (list_empty(pt)) {
565 /*
566 * Hold preempt off so that we don't get preempted and have the
567 * wakee busy-wait until we're scheduled back on.
568 */
569 preempt_disable();
570 }
d4212093 571 q->status = IN_WAKEUP;
0a2b9d4c
MS
572 q->pid = error;
573
9f1bc2c9 574 list_add_tail(&q->list, pt);
0a2b9d4c
MS
575}
576
577/**
578 * wake_up_sem_queue_do(pt) - do the actual wake-up
579 * @pt: list of tasks to be woken up
580 *
581 * Do the actual wake-up.
582 * The function is called without any locks held, thus the semaphore array
583 * could be destroyed already and the tasks can disappear as soon as the
584 * status is set to the actual return code.
585 */
586static void wake_up_sem_queue_do(struct list_head *pt)
587{
588 struct sem_queue *q, *t;
589 int did_something;
590
591 did_something = !list_empty(pt);
9f1bc2c9 592 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
593 wake_up_process(q->sleeper);
594 /* q can disappear immediately after writing q->status. */
595 smp_wmb();
596 q->status = q->pid;
597 }
598 if (did_something)
599 preempt_enable();
d4212093
NP
600}
601
b97e820f
MS
602static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
603{
604 list_del(&q->list);
9f1bc2c9 605 if (q->nsops > 1)
b97e820f
MS
606 sma->complex_count--;
607}
608
fd5db422
MS
609/** check_restart(sma, q)
610 * @sma: semaphore array
611 * @q: the operation that just completed
612 *
613 * update_queue is O(N^2) when it restarts scanning the whole queue of
614 * waiting operations. Therefore this function checks if the restart is
615 * really necessary. It is called after a previously waiting operation
616 * was completed.
617 */
618static int check_restart(struct sem_array *sma, struct sem_queue *q)
619{
620 struct sem *curr;
621 struct sem_queue *h;
622
623 /* if the operation didn't modify the array, then no restart */
624 if (q->alter == 0)
625 return 0;
626
627 /* pending complex operations are too difficult to analyse */
628 if (sma->complex_count)
629 return 1;
630
631 /* we were a sleeping complex operation. Too difficult */
632 if (q->nsops > 1)
633 return 1;
634
635 curr = sma->sem_base + q->sops[0].sem_num;
636
637 /* No-one waits on this queue */
638 if (list_empty(&curr->sem_pending))
639 return 0;
640
641 /* the new semaphore value */
642 if (curr->semval) {
643 /* It is impossible that someone waits for the new value:
644 * - q is a previously sleeping simple operation that
645 * altered the array. It must be a decrement, because
646 * simple increments never sleep.
647 * - The value is not 0, thus wait-for-zero won't proceed.
648 * - If there are older (higher priority) decrements
649 * in the queue, then they have observed the original
650 * semval value and couldn't proceed. The operation
651 * decremented to value - thus they won't proceed either.
652 */
653 BUG_ON(q->sops[0].sem_op >= 0);
654 return 0;
655 }
656 /*
657 * semval is 0. Check if there are wait-for-zero semops.
9f1bc2c9 658 * They must be the first entries in the per-semaphore queue
fd5db422 659 */
9f1bc2c9 660 h = list_first_entry(&curr->sem_pending, struct sem_queue, list);
fd5db422
MS
661 BUG_ON(h->nsops != 1);
662 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
663
664 /* Yes, there is a wait-for-zero semop. Restart */
665 if (h->sops[0].sem_op == 0)
666 return 1;
667
668 /* Again - no-one is waiting for the new value. */
669 return 0;
670}
671
636c6be8
MS
672
673/**
674 * update_queue(sma, semnum): Look for tasks that can be completed.
675 * @sma: semaphore array.
676 * @semnum: semaphore that was modified.
0a2b9d4c 677 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
678 *
679 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
680 * was modified. If multiple semaphores were modified, update_queue must
681 * be called with semnum = -1, as well as with the number of each modified
682 * semaphore.
0a2b9d4c
MS
683 * The tasks that must be woken up are added to @pt. The return code
684 * is stored in q->pid.
685 * The function return 1 if at least one semop was completed successfully.
1da177e4 686 */
0a2b9d4c 687static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 688{
636c6be8
MS
689 struct sem_queue *q;
690 struct list_head *walk;
691 struct list_head *pending_list;
0a2b9d4c 692 int semop_completed = 0;
636c6be8 693
9f1bc2c9 694 if (semnum == -1)
636c6be8 695 pending_list = &sma->sem_pending;
9f1bc2c9 696 else
636c6be8 697 pending_list = &sma->sem_base[semnum].sem_pending;
9cad200c
NP
698
699again:
636c6be8
MS
700 walk = pending_list->next;
701 while (walk != pending_list) {
fd5db422 702 int error, restart;
636c6be8 703
9f1bc2c9 704 q = container_of(walk, struct sem_queue, list);
636c6be8 705 walk = walk->next;
1da177e4 706
d987f8b2
MS
707 /* If we are scanning the single sop, per-semaphore list of
708 * one semaphore and that semaphore is 0, then it is not
709 * necessary to scan the "alter" entries: simple increments
710 * that affect only one entry succeed immediately and cannot
711 * be in the per semaphore pending queue, and decrements
712 * cannot be successful if the value is already 0.
713 */
714 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
715 q->alter)
716 break;
717
1da177e4
LT
718 error = try_atomic_semop(sma, q->sops, q->nsops,
719 q->undo, q->pid);
720
721 /* Does q->sleeper still need to sleep? */
9cad200c
NP
722 if (error > 0)
723 continue;
724
b97e820f 725 unlink_queue(sma, q);
9cad200c 726
0a2b9d4c 727 if (error) {
fd5db422 728 restart = 0;
0a2b9d4c
MS
729 } else {
730 semop_completed = 1;
fd5db422 731 restart = check_restart(sma, q);
0a2b9d4c 732 }
fd5db422 733
0a2b9d4c 734 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 735 if (restart)
9cad200c 736 goto again;
1da177e4 737 }
0a2b9d4c 738 return semop_completed;
1da177e4
LT
739}
740
0a2b9d4c
MS
741/**
742 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
743 * @sma: semaphore array
744 * @sops: operations that were performed
745 * @nsops: number of operations
0a2b9d4c
MS
746 * @otime: force setting otime
747 * @pt: list head of the tasks that must be woken up.
fd5db422
MS
748 *
749 * do_smart_update() does the required called to update_queue, based on the
750 * actual changes that were performed on the semaphore array.
0a2b9d4c
MS
751 * Note that the function does not do the actual wake-up: the caller is
752 * responsible for calling wake_up_sem_queue_do(@pt).
753 * It is safe to perform this call after dropping all locks.
fd5db422 754 */
0a2b9d4c
MS
755static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
756 int otime, struct list_head *pt)
fd5db422
MS
757{
758 int i;
759
760 if (sma->complex_count || sops == NULL) {
0a2b9d4c
MS
761 if (update_queue(sma, -1, pt))
762 otime = 1;
9f1bc2c9
RR
763 }
764
765 if (!sops) {
766 /* No semops; something special is going on. */
767 for (i = 0; i < sma->sem_nsems; i++) {
768 if (update_queue(sma, i, pt))
769 otime = 1;
770 }
0a2b9d4c 771 goto done;
fd5db422
MS
772 }
773
9f1bc2c9 774 /* Check the semaphores that were modified. */
fd5db422
MS
775 for (i = 0; i < nsops; i++) {
776 if (sops[i].sem_op > 0 ||
777 (sops[i].sem_op < 0 &&
778 sma->sem_base[sops[i].sem_num].semval == 0))
0a2b9d4c
MS
779 if (update_queue(sma, sops[i].sem_num, pt))
780 otime = 1;
fd5db422 781 }
0a2b9d4c
MS
782done:
783 if (otime)
784 sma->sem_otime = get_seconds();
fd5db422
MS
785}
786
787
1da177e4
LT
788/* The following counts are associated to each semaphore:
789 * semncnt number of tasks waiting on semval being nonzero
790 * semzcnt number of tasks waiting on semval being zero
791 * This model assumes that a task waits on exactly one semaphore.
792 * Since semaphore operations are to be performed atomically, tasks actually
793 * wait on a whole sequence of semaphores simultaneously.
794 * The counts we return here are a rough approximation, but still
795 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
796 */
797static int count_semncnt (struct sem_array * sma, ushort semnum)
798{
799 int semncnt;
800 struct sem_queue * q;
801
802 semncnt = 0;
a1193f8e 803 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
804 struct sembuf * sops = q->sops;
805 int nsops = q->nsops;
806 int i;
807 for (i = 0; i < nsops; i++)
808 if (sops[i].sem_num == semnum
809 && (sops[i].sem_op < 0)
810 && !(sops[i].sem_flg & IPC_NOWAIT))
811 semncnt++;
812 }
813 return semncnt;
814}
a1193f8e 815
1da177e4
LT
816static int count_semzcnt (struct sem_array * sma, ushort semnum)
817{
818 int semzcnt;
819 struct sem_queue * q;
820
821 semzcnt = 0;
a1193f8e 822 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
823 struct sembuf * sops = q->sops;
824 int nsops = q->nsops;
825 int i;
826 for (i = 0; i < nsops; i++)
827 if (sops[i].sem_num == semnum
828 && (sops[i].sem_op == 0)
829 && !(sops[i].sem_flg & IPC_NOWAIT))
830 semzcnt++;
831 }
832 return semzcnt;
833}
834
3e148c79
ND
835/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
836 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
837 * remains locked on exit.
1da177e4 838 */
01b8b07a 839static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 840{
380af1b3
MS
841 struct sem_undo *un, *tu;
842 struct sem_queue *q, *tq;
01b8b07a 843 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 844 struct list_head tasks;
9f1bc2c9 845 int i;
1da177e4 846
380af1b3 847 /* Free the existing undo structures for this semaphore set. */
4daa28f6 848 assert_spin_locked(&sma->sem_perm.lock);
380af1b3
MS
849 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
850 list_del(&un->list_id);
851 spin_lock(&un->ulp->lock);
1da177e4 852 un->semid = -1;
380af1b3
MS
853 list_del_rcu(&un->list_proc);
854 spin_unlock(&un->ulp->lock);
693a8b6e 855 kfree_rcu(un, rcu);
380af1b3 856 }
1da177e4
LT
857
858 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 859 INIT_LIST_HEAD(&tasks);
380af1b3 860 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
b97e820f 861 unlink_queue(sma, q);
0a2b9d4c 862 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 863 }
9f1bc2c9
RR
864 for (i = 0; i < sma->sem_nsems; i++) {
865 struct sem *sem = sma->sem_base + i;
866 list_for_each_entry_safe(q, tq, &sem->sem_pending, list) {
867 unlink_queue(sma, q);
868 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
869 }
870 }
1da177e4 871
7ca7e564
ND
872 /* Remove the semaphore set from the IDR */
873 sem_rmid(ns, sma);
6062a8dc 874 sem_unlock(sma, -1);
6d49dab8 875 rcu_read_unlock();
1da177e4 876
0a2b9d4c 877 wake_up_sem_queue_do(&tasks);
e3893534 878 ns->used_sems -= sma->sem_nsems;
1da177e4
LT
879 security_sem_free(sma);
880 ipc_rcu_putref(sma);
881}
882
883static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
884{
885 switch(version) {
886 case IPC_64:
887 return copy_to_user(buf, in, sizeof(*in));
888 case IPC_OLD:
889 {
890 struct semid_ds out;
891
982f7c2b
DR
892 memset(&out, 0, sizeof(out));
893
1da177e4
LT
894 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
895
896 out.sem_otime = in->sem_otime;
897 out.sem_ctime = in->sem_ctime;
898 out.sem_nsems = in->sem_nsems;
899
900 return copy_to_user(buf, &out, sizeof(out));
901 }
902 default:
903 return -EINVAL;
904 }
905}
906
4b9fcb0e 907static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 908 int cmd, int version, void __user *p)
1da177e4 909{
e5cc9c7b 910 int err;
1da177e4
LT
911 struct sem_array *sma;
912
913 switch(cmd) {
914 case IPC_INFO:
915 case SEM_INFO:
916 {
917 struct seminfo seminfo;
918 int max_id;
919
920 err = security_sem_semctl(NULL, cmd);
921 if (err)
922 return err;
923
924 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
925 seminfo.semmni = ns->sc_semmni;
926 seminfo.semmns = ns->sc_semmns;
927 seminfo.semmsl = ns->sc_semmsl;
928 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
929 seminfo.semvmx = SEMVMX;
930 seminfo.semmnu = SEMMNU;
931 seminfo.semmap = SEMMAP;
932 seminfo.semume = SEMUME;
3e148c79 933 down_read(&sem_ids(ns).rw_mutex);
1da177e4 934 if (cmd == SEM_INFO) {
e3893534
KK
935 seminfo.semusz = sem_ids(ns).in_use;
936 seminfo.semaem = ns->used_sems;
1da177e4
LT
937 } else {
938 seminfo.semusz = SEMUSZ;
939 seminfo.semaem = SEMAEM;
940 }
7ca7e564 941 max_id = ipc_get_maxid(&sem_ids(ns));
3e148c79 942 up_read(&sem_ids(ns).rw_mutex);
e1fd1f49 943 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
944 return -EFAULT;
945 return (max_id < 0) ? 0: max_id;
946 }
4b9fcb0e 947 case IPC_STAT:
1da177e4
LT
948 case SEM_STAT:
949 {
950 struct semid64_ds tbuf;
16df3674
DB
951 int id = 0;
952
953 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 954
4b9fcb0e 955 if (cmd == SEM_STAT) {
16df3674
DB
956 rcu_read_lock();
957 sma = sem_obtain_object(ns, semid);
958 if (IS_ERR(sma)) {
959 err = PTR_ERR(sma);
960 goto out_unlock;
961 }
4b9fcb0e
PP
962 id = sma->sem_perm.id;
963 } else {
16df3674
DB
964 rcu_read_lock();
965 sma = sem_obtain_object_check(ns, semid);
966 if (IS_ERR(sma)) {
967 err = PTR_ERR(sma);
968 goto out_unlock;
969 }
4b9fcb0e 970 }
1da177e4
LT
971
972 err = -EACCES;
b0e77598 973 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
974 goto out_unlock;
975
976 err = security_sem_semctl(sma, cmd);
977 if (err)
978 goto out_unlock;
979
1da177e4
LT
980 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
981 tbuf.sem_otime = sma->sem_otime;
982 tbuf.sem_ctime = sma->sem_ctime;
983 tbuf.sem_nsems = sma->sem_nsems;
16df3674 984 rcu_read_unlock();
e1fd1f49 985 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
986 return -EFAULT;
987 return id;
988 }
989 default:
990 return -EINVAL;
991 }
1da177e4 992out_unlock:
16df3674 993 rcu_read_unlock();
1da177e4
LT
994 return err;
995}
996
e1fd1f49
AV
997static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
998 unsigned long arg)
999{
1000 struct sem_undo *un;
1001 struct sem_array *sma;
1002 struct sem* curr;
1003 int err;
e1fd1f49
AV
1004 struct list_head tasks;
1005 int val;
1006#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1007 /* big-endian 64bit */
1008 val = arg >> 32;
1009#else
1010 /* 32bit or little-endian 64bit */
1011 val = arg;
1012#endif
1013
6062a8dc
RR
1014 if (val > SEMVMX || val < 0)
1015 return -ERANGE;
e1fd1f49
AV
1016
1017 INIT_LIST_HEAD(&tasks);
e1fd1f49 1018
6062a8dc
RR
1019 rcu_read_lock();
1020 sma = sem_obtain_object_check(ns, semid);
1021 if (IS_ERR(sma)) {
1022 rcu_read_unlock();
1023 return PTR_ERR(sma);
1024 }
1025
1026 if (semnum < 0 || semnum >= sma->sem_nsems) {
1027 rcu_read_unlock();
1028 return -EINVAL;
1029 }
1030
1031
1032 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1033 rcu_read_unlock();
1034 return -EACCES;
1035 }
e1fd1f49
AV
1036
1037 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1038 if (err) {
1039 rcu_read_unlock();
1040 return -EACCES;
1041 }
e1fd1f49 1042
6062a8dc 1043 sem_lock(sma, NULL, -1);
e1fd1f49
AV
1044
1045 curr = &sma->sem_base[semnum];
1046
e1fd1f49
AV
1047 assert_spin_locked(&sma->sem_perm.lock);
1048 list_for_each_entry(un, &sma->list_id, list_id)
1049 un->semadj[semnum] = 0;
1050
1051 curr->semval = val;
1052 curr->sempid = task_tgid_vnr(current);
1053 sma->sem_ctime = get_seconds();
1054 /* maybe some queued-up processes were waiting for this */
1055 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1056 sem_unlock(sma, -1);
6d49dab8 1057 rcu_read_unlock();
e1fd1f49 1058 wake_up_sem_queue_do(&tasks);
6062a8dc 1059 return 0;
e1fd1f49
AV
1060}
1061
e3893534 1062static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1063 int cmd, void __user *p)
1da177e4
LT
1064{
1065 struct sem_array *sma;
1066 struct sem* curr;
16df3674 1067 int err, nsems;
1da177e4
LT
1068 ushort fast_sem_io[SEMMSL_FAST];
1069 ushort* sem_io = fast_sem_io;
0a2b9d4c 1070 struct list_head tasks;
1da177e4 1071
16df3674
DB
1072 INIT_LIST_HEAD(&tasks);
1073
1074 rcu_read_lock();
1075 sma = sem_obtain_object_check(ns, semid);
1076 if (IS_ERR(sma)) {
1077 rcu_read_unlock();
023a5355 1078 return PTR_ERR(sma);
16df3674 1079 }
1da177e4
LT
1080
1081 nsems = sma->sem_nsems;
1082
1da177e4 1083 err = -EACCES;
b0e77598 1084 if (ipcperms(ns, &sma->sem_perm,
16df3674
DB
1085 cmd == SETALL ? S_IWUGO : S_IRUGO)) {
1086 rcu_read_unlock();
1087 goto out_wakeup;
1088 }
1da177e4
LT
1089
1090 err = security_sem_semctl(sma, cmd);
16df3674
DB
1091 if (err) {
1092 rcu_read_unlock();
1093 goto out_wakeup;
1094 }
1da177e4
LT
1095
1096 err = -EACCES;
1097 switch (cmd) {
1098 case GETALL:
1099 {
e1fd1f49 1100 ushort __user *array = p;
1da177e4
LT
1101 int i;
1102
ce857229 1103 sem_lock(sma, NULL, -1);
1da177e4 1104 if(nsems > SEMMSL_FAST) {
ce857229
AV
1105 if (!ipc_rcu_getref(sma)) {
1106 sem_unlock(sma, -1);
6d49dab8 1107 rcu_read_unlock();
ce857229
AV
1108 err = -EIDRM;
1109 goto out_free;
1110 }
1111 sem_unlock(sma, -1);
6d49dab8 1112 rcu_read_unlock();
1da177e4
LT
1113 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1114 if(sem_io == NULL) {
6ff37972 1115 sem_putref(sma);
1da177e4
LT
1116 return -ENOMEM;
1117 }
1118
4091fd94 1119 rcu_read_lock();
6ff37972 1120 sem_lock_and_putref(sma);
1da177e4 1121 if (sma->sem_perm.deleted) {
6062a8dc 1122 sem_unlock(sma, -1);
6d49dab8 1123 rcu_read_unlock();
1da177e4
LT
1124 err = -EIDRM;
1125 goto out_free;
1126 }
ce857229 1127 }
1da177e4
LT
1128 for (i = 0; i < sma->sem_nsems; i++)
1129 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1130 sem_unlock(sma, -1);
6d49dab8 1131 rcu_read_unlock();
1da177e4
LT
1132 err = 0;
1133 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1134 err = -EFAULT;
1135 goto out_free;
1136 }
1137 case SETALL:
1138 {
1139 int i;
1140 struct sem_undo *un;
1141
6062a8dc
RR
1142 if (!ipc_rcu_getref(sma)) {
1143 rcu_read_unlock();
1144 return -EIDRM;
1145 }
16df3674 1146 rcu_read_unlock();
1da177e4
LT
1147
1148 if(nsems > SEMMSL_FAST) {
1149 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1150 if(sem_io == NULL) {
6ff37972 1151 sem_putref(sma);
1da177e4
LT
1152 return -ENOMEM;
1153 }
1154 }
1155
e1fd1f49 1156 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
6ff37972 1157 sem_putref(sma);
1da177e4
LT
1158 err = -EFAULT;
1159 goto out_free;
1160 }
1161
1162 for (i = 0; i < nsems; i++) {
1163 if (sem_io[i] > SEMVMX) {
6ff37972 1164 sem_putref(sma);
1da177e4
LT
1165 err = -ERANGE;
1166 goto out_free;
1167 }
1168 }
4091fd94 1169 rcu_read_lock();
6ff37972 1170 sem_lock_and_putref(sma);
1da177e4 1171 if (sma->sem_perm.deleted) {
6062a8dc 1172 sem_unlock(sma, -1);
6d49dab8 1173 rcu_read_unlock();
1da177e4
LT
1174 err = -EIDRM;
1175 goto out_free;
1176 }
1177
1178 for (i = 0; i < nsems; i++)
1179 sma->sem_base[i].semval = sem_io[i];
4daa28f6
MS
1180
1181 assert_spin_locked(&sma->sem_perm.lock);
1182 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1183 for (i = 0; i < nsems; i++)
1184 un->semadj[i] = 0;
4daa28f6 1185 }
1da177e4
LT
1186 sma->sem_ctime = get_seconds();
1187 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1188 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1189 err = 0;
1190 goto out_unlock;
1191 }
e1fd1f49 1192 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1193 }
1194 err = -EINVAL;
16df3674
DB
1195 if (semnum < 0 || semnum >= nsems) {
1196 rcu_read_unlock();
1197 goto out_wakeup;
1198 }
1da177e4 1199
6062a8dc 1200 sem_lock(sma, NULL, -1);
1da177e4
LT
1201 curr = &sma->sem_base[semnum];
1202
1203 switch (cmd) {
1204 case GETVAL:
1205 err = curr->semval;
1206 goto out_unlock;
1207 case GETPID:
1208 err = curr->sempid;
1209 goto out_unlock;
1210 case GETNCNT:
1211 err = count_semncnt(sma,semnum);
1212 goto out_unlock;
1213 case GETZCNT:
1214 err = count_semzcnt(sma,semnum);
1215 goto out_unlock;
1da177e4 1216 }
16df3674 1217
1da177e4 1218out_unlock:
6062a8dc 1219 sem_unlock(sma, -1);
6d49dab8 1220 rcu_read_unlock();
16df3674 1221out_wakeup:
0a2b9d4c 1222 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1223out_free:
1224 if(sem_io != fast_sem_io)
1225 ipc_free(sem_io, sizeof(ushort)*nsems);
1226 return err;
1227}
1228
016d7132
PP
1229static inline unsigned long
1230copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1231{
1232 switch(version) {
1233 case IPC_64:
016d7132 1234 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1235 return -EFAULT;
1da177e4 1236 return 0;
1da177e4
LT
1237 case IPC_OLD:
1238 {
1239 struct semid_ds tbuf_old;
1240
1241 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1242 return -EFAULT;
1243
016d7132
PP
1244 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1245 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1246 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1247
1248 return 0;
1249 }
1250 default:
1251 return -EINVAL;
1252 }
1253}
1254
522bb2a2
PP
1255/*
1256 * This function handles some semctl commands which require the rw_mutex
1257 * to be held in write mode.
1258 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1259 */
21a4826a 1260static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1261 int cmd, int version, void __user *p)
1da177e4
LT
1262{
1263 struct sem_array *sma;
1264 int err;
016d7132 1265 struct semid64_ds semid64;
1da177e4
LT
1266 struct kern_ipc_perm *ipcp;
1267
1268 if(cmd == IPC_SET) {
e1fd1f49 1269 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1270 return -EFAULT;
1da177e4 1271 }
073115d6 1272
16df3674
DB
1273 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1274 &semid64.sem_perm, 0);
a5f75e7f
PP
1275 if (IS_ERR(ipcp))
1276 return PTR_ERR(ipcp);
073115d6 1277
a5f75e7f 1278 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1279
1280 err = security_sem_semctl(sma, cmd);
16df3674
DB
1281 if (err) {
1282 rcu_read_unlock();
fbfd1d28 1283 goto out_up;
16df3674 1284 }
1da177e4
LT
1285
1286 switch(cmd){
1287 case IPC_RMID:
6062a8dc 1288 sem_lock(sma, NULL, -1);
01b8b07a 1289 freeary(ns, ipcp);
522bb2a2 1290 goto out_up;
1da177e4 1291 case IPC_SET:
6062a8dc 1292 sem_lock(sma, NULL, -1);
1efdb69b
EB
1293 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1294 if (err)
1295 goto out_unlock;
1da177e4 1296 sma->sem_ctime = get_seconds();
1da177e4
LT
1297 break;
1298 default:
16df3674 1299 rcu_read_unlock();
1da177e4 1300 err = -EINVAL;
16df3674 1301 goto out_up;
1da177e4 1302 }
1da177e4
LT
1303
1304out_unlock:
6062a8dc 1305 sem_unlock(sma, -1);
6d49dab8 1306 rcu_read_unlock();
522bb2a2
PP
1307out_up:
1308 up_write(&sem_ids(ns).rw_mutex);
1da177e4
LT
1309 return err;
1310}
1311
e1fd1f49 1312SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1313{
1da177e4 1314 int version;
e3893534 1315 struct ipc_namespace *ns;
e1fd1f49 1316 void __user *p = (void __user *)arg;
1da177e4
LT
1317
1318 if (semid < 0)
1319 return -EINVAL;
1320
1321 version = ipc_parse_version(&cmd);
e3893534 1322 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1323
1324 switch(cmd) {
1325 case IPC_INFO:
1326 case SEM_INFO:
4b9fcb0e 1327 case IPC_STAT:
1da177e4 1328 case SEM_STAT:
e1fd1f49 1329 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1330 case GETALL:
1331 case GETVAL:
1332 case GETPID:
1333 case GETNCNT:
1334 case GETZCNT:
1da177e4 1335 case SETALL:
e1fd1f49
AV
1336 return semctl_main(ns, semid, semnum, cmd, p);
1337 case SETVAL:
1338 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1339 case IPC_RMID:
1340 case IPC_SET:
e1fd1f49 1341 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1342 default:
1343 return -EINVAL;
1344 }
1345}
1346
1da177e4
LT
1347/* If the task doesn't already have a undo_list, then allocate one
1348 * here. We guarantee there is only one thread using this undo list,
1349 * and current is THE ONE
1350 *
1351 * If this allocation and assignment succeeds, but later
1352 * portions of this code fail, there is no need to free the sem_undo_list.
1353 * Just let it stay associated with the task, and it'll be freed later
1354 * at exit time.
1355 *
1356 * This can block, so callers must hold no locks.
1357 */
1358static inline int get_undo_list(struct sem_undo_list **undo_listp)
1359{
1360 struct sem_undo_list *undo_list;
1da177e4
LT
1361
1362 undo_list = current->sysvsem.undo_list;
1363 if (!undo_list) {
2453a306 1364 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1365 if (undo_list == NULL)
1366 return -ENOMEM;
00a5dfdb 1367 spin_lock_init(&undo_list->lock);
1da177e4 1368 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1369 INIT_LIST_HEAD(&undo_list->list_proc);
1370
1da177e4
LT
1371 current->sysvsem.undo_list = undo_list;
1372 }
1373 *undo_listp = undo_list;
1374 return 0;
1375}
1376
bf17bb71 1377static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1378{
bf17bb71 1379 struct sem_undo *un;
4daa28f6 1380
bf17bb71
NP
1381 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1382 if (un->semid == semid)
1383 return un;
1da177e4 1384 }
4daa28f6 1385 return NULL;
1da177e4
LT
1386}
1387
bf17bb71
NP
1388static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1389{
1390 struct sem_undo *un;
1391
1392 assert_spin_locked(&ulp->lock);
1393
1394 un = __lookup_undo(ulp, semid);
1395 if (un) {
1396 list_del_rcu(&un->list_proc);
1397 list_add_rcu(&un->list_proc, &ulp->list_proc);
1398 }
1399 return un;
1400}
1401
4daa28f6
MS
1402/**
1403 * find_alloc_undo - Lookup (and if not present create) undo array
1404 * @ns: namespace
1405 * @semid: semaphore array id
1406 *
1407 * The function looks up (and if not present creates) the undo structure.
1408 * The size of the undo structure depends on the size of the semaphore
1409 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1410 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1411 * performs a rcu_read_lock().
4daa28f6
MS
1412 */
1413static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1414{
1415 struct sem_array *sma;
1416 struct sem_undo_list *ulp;
1417 struct sem_undo *un, *new;
6062a8dc 1418 int nsems, error;
1da177e4
LT
1419
1420 error = get_undo_list(&ulp);
1421 if (error)
1422 return ERR_PTR(error);
1423
380af1b3 1424 rcu_read_lock();
c530c6ac 1425 spin_lock(&ulp->lock);
1da177e4 1426 un = lookup_undo(ulp, semid);
c530c6ac 1427 spin_unlock(&ulp->lock);
1da177e4
LT
1428 if (likely(un!=NULL))
1429 goto out;
1430
1431 /* no undo structure around - allocate one. */
4daa28f6 1432 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1433 sma = sem_obtain_object_check(ns, semid);
1434 if (IS_ERR(sma)) {
1435 rcu_read_unlock();
4de85cd6 1436 return ERR_CAST(sma);
16df3674 1437 }
023a5355 1438
1da177e4 1439 nsems = sma->sem_nsems;
6062a8dc
RR
1440 if (!ipc_rcu_getref(sma)) {
1441 rcu_read_unlock();
1442 un = ERR_PTR(-EIDRM);
1443 goto out;
1444 }
16df3674 1445 rcu_read_unlock();
1da177e4 1446
4daa28f6 1447 /* step 2: allocate new undo structure */
4668edc3 1448 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1449 if (!new) {
6ff37972 1450 sem_putref(sma);
1da177e4
LT
1451 return ERR_PTR(-ENOMEM);
1452 }
1da177e4 1453
380af1b3 1454 /* step 3: Acquire the lock on semaphore array */
4091fd94 1455 rcu_read_lock();
6ff37972 1456 sem_lock_and_putref(sma);
1da177e4 1457 if (sma->sem_perm.deleted) {
6062a8dc 1458 sem_unlock(sma, -1);
6d49dab8 1459 rcu_read_unlock();
1da177e4
LT
1460 kfree(new);
1461 un = ERR_PTR(-EIDRM);
1462 goto out;
1463 }
380af1b3
MS
1464 spin_lock(&ulp->lock);
1465
1466 /*
1467 * step 4: check for races: did someone else allocate the undo struct?
1468 */
1469 un = lookup_undo(ulp, semid);
1470 if (un) {
1471 kfree(new);
1472 goto success;
1473 }
4daa28f6
MS
1474 /* step 5: initialize & link new undo structure */
1475 new->semadj = (short *) &new[1];
380af1b3 1476 new->ulp = ulp;
4daa28f6
MS
1477 new->semid = semid;
1478 assert_spin_locked(&ulp->lock);
380af1b3 1479 list_add_rcu(&new->list_proc, &ulp->list_proc);
4daa28f6
MS
1480 assert_spin_locked(&sma->sem_perm.lock);
1481 list_add(&new->list_id, &sma->list_id);
380af1b3 1482 un = new;
4daa28f6 1483
380af1b3 1484success:
c530c6ac 1485 spin_unlock(&ulp->lock);
6062a8dc 1486 sem_unlock(sma, -1);
1da177e4
LT
1487out:
1488 return un;
1489}
1490
c61284e9
MS
1491
1492/**
1493 * get_queue_result - Retrieve the result code from sem_queue
1494 * @q: Pointer to queue structure
1495 *
1496 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1497 * q->status, then we must loop until the value is replaced with the final
1498 * value: This may happen if a task is woken up by an unrelated event (e.g.
1499 * signal) and in parallel the task is woken up by another task because it got
1500 * the requested semaphores.
1501 *
1502 * The function can be called with or without holding the semaphore spinlock.
1503 */
1504static int get_queue_result(struct sem_queue *q)
1505{
1506 int error;
1507
1508 error = q->status;
1509 while (unlikely(error == IN_WAKEUP)) {
1510 cpu_relax();
1511 error = q->status;
1512 }
1513
1514 return error;
1515}
1516
1517
d5460c99
HC
1518SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1519 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1520{
1521 int error = -EINVAL;
1522 struct sem_array *sma;
1523 struct sembuf fast_sops[SEMOPM_FAST];
1524 struct sembuf* sops = fast_sops, *sop;
1525 struct sem_undo *un;
6062a8dc 1526 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1527 struct sem_queue queue;
1528 unsigned long jiffies_left = 0;
e3893534 1529 struct ipc_namespace *ns;
0a2b9d4c 1530 struct list_head tasks;
e3893534
KK
1531
1532 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1533
1534 if (nsops < 1 || semid < 0)
1535 return -EINVAL;
e3893534 1536 if (nsops > ns->sc_semopm)
1da177e4
LT
1537 return -E2BIG;
1538 if(nsops > SEMOPM_FAST) {
1539 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1540 if(sops==NULL)
1541 return -ENOMEM;
1542 }
1543 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1544 error=-EFAULT;
1545 goto out_free;
1546 }
1547 if (timeout) {
1548 struct timespec _timeout;
1549 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1550 error = -EFAULT;
1551 goto out_free;
1552 }
1553 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1554 _timeout.tv_nsec >= 1000000000L) {
1555 error = -EINVAL;
1556 goto out_free;
1557 }
1558 jiffies_left = timespec_to_jiffies(&_timeout);
1559 }
1560 max = 0;
1561 for (sop = sops; sop < sops + nsops; sop++) {
1562 if (sop->sem_num >= max)
1563 max = sop->sem_num;
1564 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1565 undos = 1;
1566 if (sop->sem_op != 0)
1da177e4
LT
1567 alter = 1;
1568 }
1da177e4 1569
6062a8dc
RR
1570 INIT_LIST_HEAD(&tasks);
1571
1da177e4 1572 if (undos) {
6062a8dc 1573 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1574 un = find_alloc_undo(ns, semid);
1da177e4
LT
1575 if (IS_ERR(un)) {
1576 error = PTR_ERR(un);
1577 goto out_free;
1578 }
6062a8dc 1579 } else {
1da177e4 1580 un = NULL;
6062a8dc
RR
1581 rcu_read_lock();
1582 }
1da177e4 1583
16df3674 1584 sma = sem_obtain_object_check(ns, semid);
023a5355 1585 if (IS_ERR(sma)) {
6062a8dc 1586 rcu_read_unlock();
023a5355 1587 error = PTR_ERR(sma);
1da177e4 1588 goto out_free;
023a5355
ND
1589 }
1590
16df3674
DB
1591 error = -EFBIG;
1592 if (max >= sma->sem_nsems) {
1593 rcu_read_unlock();
1594 goto out_wakeup;
1595 }
1596
1597 error = -EACCES;
1598 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1599 rcu_read_unlock();
1600 goto out_wakeup;
1601 }
1602
1603 error = security_sem_semop(sma, sops, nsops, alter);
1604 if (error) {
1605 rcu_read_unlock();
1606 goto out_wakeup;
1607 }
1608
1da177e4 1609 /*
4daa28f6 1610 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1611 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1612 * and now a new array with received the same id. Check and fail.
25985edc 1613 * This case can be detected checking un->semid. The existence of
380af1b3 1614 * "un" itself is guaranteed by rcu.
1da177e4 1615 */
4daa28f6 1616 error = -EIDRM;
6062a8dc
RR
1617 locknum = sem_lock(sma, sops, nsops);
1618 if (un && un->semid == -1)
1619 goto out_unlock_free;
4daa28f6 1620
b488893a 1621 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1da177e4
LT
1622 if (error <= 0) {
1623 if (alter && error == 0)
0a2b9d4c 1624 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1625
1da177e4
LT
1626 goto out_unlock_free;
1627 }
1628
1629 /* We need to sleep on this operation, so we put the current
1630 * task into the pending queue and go to sleep.
1631 */
1632
1da177e4
LT
1633 queue.sops = sops;
1634 queue.nsops = nsops;
1635 queue.undo = un;
b488893a 1636 queue.pid = task_tgid_vnr(current);
1da177e4 1637 queue.alter = alter;
1da177e4 1638
b97e820f
MS
1639 if (nsops == 1) {
1640 struct sem *curr;
1641 curr = &sma->sem_base[sops->sem_num];
1642
1643 if (alter)
9f1bc2c9 1644 list_add_tail(&queue.list, &curr->sem_pending);
b97e820f 1645 else
9f1bc2c9 1646 list_add(&queue.list, &curr->sem_pending);
b97e820f 1647 } else {
9f1bc2c9
RR
1648 if (alter)
1649 list_add_tail(&queue.list, &sma->sem_pending);
1650 else
1651 list_add(&queue.list, &sma->sem_pending);
b97e820f
MS
1652 sma->complex_count++;
1653 }
1654
1da177e4
LT
1655 queue.status = -EINTR;
1656 queue.sleeper = current;
0b0577f6
MS
1657
1658sleep_again:
1da177e4 1659 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1660 sem_unlock(sma, locknum);
6d49dab8 1661 rcu_read_unlock();
1da177e4
LT
1662
1663 if (timeout)
1664 jiffies_left = schedule_timeout(jiffies_left);
1665 else
1666 schedule();
1667
c61284e9 1668 error = get_queue_result(&queue);
1da177e4
LT
1669
1670 if (error != -EINTR) {
1671 /* fast path: update_queue already obtained all requested
c61284e9
MS
1672 * resources.
1673 * Perform a smp_mb(): User space could assume that semop()
1674 * is a memory barrier: Without the mb(), the cpu could
1675 * speculatively read in user space stale data that was
1676 * overwritten by the previous owner of the semaphore.
1677 */
1678 smp_mb();
1679
1da177e4
LT
1680 goto out_free;
1681 }
1682
6062a8dc 1683 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1684
1685 /*
1686 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1687 */
1688 error = get_queue_result(&queue);
1689
1690 /*
1691 * Array removed? If yes, leave without sem_unlock().
1692 */
023a5355 1693 if (IS_ERR(sma)) {
1da177e4
LT
1694 goto out_free;
1695 }
1696
c61284e9 1697
1da177e4 1698 /*
d694ad62
MS
1699 * If queue.status != -EINTR we are woken up by another process.
1700 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1701 */
c61284e9 1702
1da177e4
LT
1703 if (error != -EINTR) {
1704 goto out_unlock_free;
1705 }
1706
1707 /*
1708 * If an interrupt occurred we have to clean up the queue
1709 */
1710 if (timeout && jiffies_left == 0)
1711 error = -EAGAIN;
0b0577f6
MS
1712
1713 /*
1714 * If the wakeup was spurious, just retry
1715 */
1716 if (error == -EINTR && !signal_pending(current))
1717 goto sleep_again;
1718
b97e820f 1719 unlink_queue(sma, &queue);
1da177e4
LT
1720
1721out_unlock_free:
6062a8dc 1722 sem_unlock(sma, locknum);
6d49dab8 1723 rcu_read_unlock();
16df3674 1724out_wakeup:
0a2b9d4c 1725 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1726out_free:
1727 if(sops != fast_sops)
1728 kfree(sops);
1729 return error;
1730}
1731
d5460c99
HC
1732SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1733 unsigned, nsops)
1da177e4
LT
1734{
1735 return sys_semtimedop(semid, tsops, nsops, NULL);
1736}
1737
1738/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1739 * parent and child tasks.
1da177e4
LT
1740 */
1741
1742int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1743{
1744 struct sem_undo_list *undo_list;
1745 int error;
1746
1747 if (clone_flags & CLONE_SYSVSEM) {
1748 error = get_undo_list(&undo_list);
1749 if (error)
1750 return error;
1da177e4
LT
1751 atomic_inc(&undo_list->refcnt);
1752 tsk->sysvsem.undo_list = undo_list;
1753 } else
1754 tsk->sysvsem.undo_list = NULL;
1755
1756 return 0;
1757}
1758
1759/*
1760 * add semadj values to semaphores, free undo structures.
1761 * undo structures are not freed when semaphore arrays are destroyed
1762 * so some of them may be out of date.
1763 * IMPLEMENTATION NOTE: There is some confusion over whether the
1764 * set of adjustments that needs to be done should be done in an atomic
1765 * manner or not. That is, if we are attempting to decrement the semval
1766 * should we queue up and wait until we can do so legally?
1767 * The original implementation attempted to do this (queue and wait).
1768 * The current implementation does not do so. The POSIX standard
1769 * and SVID should be consulted to determine what behavior is mandated.
1770 */
1771void exit_sem(struct task_struct *tsk)
1772{
4daa28f6 1773 struct sem_undo_list *ulp;
1da177e4 1774
4daa28f6
MS
1775 ulp = tsk->sysvsem.undo_list;
1776 if (!ulp)
1da177e4 1777 return;
9edff4ab 1778 tsk->sysvsem.undo_list = NULL;
1da177e4 1779
4daa28f6 1780 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
1781 return;
1782
380af1b3 1783 for (;;) {
1da177e4 1784 struct sem_array *sma;
380af1b3 1785 struct sem_undo *un;
0a2b9d4c 1786 struct list_head tasks;
6062a8dc 1787 int semid, i;
4daa28f6 1788
380af1b3 1789 rcu_read_lock();
05725f7e
JP
1790 un = list_entry_rcu(ulp->list_proc.next,
1791 struct sem_undo, list_proc);
380af1b3
MS
1792 if (&un->list_proc == &ulp->list_proc)
1793 semid = -1;
1794 else
1795 semid = un->semid;
4daa28f6 1796
6062a8dc
RR
1797 if (semid == -1) {
1798 rcu_read_unlock();
380af1b3 1799 break;
6062a8dc 1800 }
1da177e4 1801
6062a8dc 1802 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 1803 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
1804 if (IS_ERR(sma)) {
1805 rcu_read_unlock();
380af1b3 1806 continue;
6062a8dc 1807 }
1da177e4 1808
6062a8dc 1809 sem_lock(sma, NULL, -1);
bf17bb71 1810 un = __lookup_undo(ulp, semid);
380af1b3
MS
1811 if (un == NULL) {
1812 /* exit_sem raced with IPC_RMID+semget() that created
1813 * exactly the same semid. Nothing to do.
1814 */
6062a8dc 1815 sem_unlock(sma, -1);
6d49dab8 1816 rcu_read_unlock();
380af1b3
MS
1817 continue;
1818 }
1819
1820 /* remove un from the linked lists */
4daa28f6
MS
1821 assert_spin_locked(&sma->sem_perm.lock);
1822 list_del(&un->list_id);
1823
380af1b3
MS
1824 spin_lock(&ulp->lock);
1825 list_del_rcu(&un->list_proc);
1826 spin_unlock(&ulp->lock);
1827
4daa28f6
MS
1828 /* perform adjustments registered in un */
1829 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 1830 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
1831 if (un->semadj[i]) {
1832 semaphore->semval += un->semadj[i];
1da177e4
LT
1833 /*
1834 * Range checks of the new semaphore value,
1835 * not defined by sus:
1836 * - Some unices ignore the undo entirely
1837 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1838 * - some cap the value (e.g. FreeBSD caps
1839 * at 0, but doesn't enforce SEMVMX)
1840 *
1841 * Linux caps the semaphore value, both at 0
1842 * and at SEMVMX.
1843 *
1844 * Manfred <manfred@colorfullife.com>
1845 */
5f921ae9
IM
1846 if (semaphore->semval < 0)
1847 semaphore->semval = 0;
1848 if (semaphore->semval > SEMVMX)
1849 semaphore->semval = SEMVMX;
b488893a 1850 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
1851 }
1852 }
1da177e4 1853 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
1854 INIT_LIST_HEAD(&tasks);
1855 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 1856 sem_unlock(sma, -1);
6d49dab8 1857 rcu_read_unlock();
0a2b9d4c 1858 wake_up_sem_queue_do(&tasks);
380af1b3 1859
693a8b6e 1860 kfree_rcu(un, rcu);
1da177e4 1861 }
4daa28f6 1862 kfree(ulp);
1da177e4
LT
1863}
1864
1865#ifdef CONFIG_PROC_FS
19b4946c 1866static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1867{
1efdb69b 1868 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c
MW
1869 struct sem_array *sma = it;
1870
1871 return seq_printf(s,
b97e820f 1872 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 1873 sma->sem_perm.key,
7ca7e564 1874 sma->sem_perm.id,
19b4946c
MW
1875 sma->sem_perm.mode,
1876 sma->sem_nsems,
1efdb69b
EB
1877 from_kuid_munged(user_ns, sma->sem_perm.uid),
1878 from_kgid_munged(user_ns, sma->sem_perm.gid),
1879 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1880 from_kgid_munged(user_ns, sma->sem_perm.cgid),
19b4946c
MW
1881 sma->sem_otime,
1882 sma->sem_ctime);
1da177e4
LT
1883}
1884#endif
This page took 0.663926 seconds and 5 git commands to generate.