sparc: implement is_32bit_task
[deliverable/linux.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
f952d10f
RGB
45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
1da177e4 47#include <linux/init.h>
1da177e4 48#include <asm/types.h>
60063497 49#include <linux/atomic.h>
73241ccc
AG
50#include <linux/fs.h>
51#include <linux/namei.h>
1da177e4 52#include <linux/mm.h>
9984de1a 53#include <linux/export.h>
5a0e3ad6 54#include <linux/slab.h>
01116105 55#include <linux/mount.h>
3ec3b2fb 56#include <linux/socket.h>
20ca73bc 57#include <linux/mqueue.h>
1da177e4
LT
58#include <linux/audit.h>
59#include <linux/personality.h>
60#include <linux/time.h>
5bb289b5 61#include <linux/netlink.h>
f5561964 62#include <linux/compiler.h>
1da177e4 63#include <asm/unistd.h>
8c8570fb 64#include <linux/security.h>
fe7752ba 65#include <linux/list.h>
a6c043a8 66#include <linux/tty.h>
473ae30b 67#include <linux/binfmts.h>
a1f8e7f7 68#include <linux/highmem.h>
f46038ff 69#include <linux/syscalls.h>
84db564a 70#include <asm/syscall.h>
851f7ff5 71#include <linux/capability.h>
5ad4e53b 72#include <linux/fs_struct.h>
3dc1c1b2 73#include <linux/compat.h>
3f1c8250 74#include <linux/ctype.h>
1da177e4 75
fe7752ba 76#include "audit.h"
1da177e4 77
d7e7528b
EP
78/* flags stating the success for a syscall */
79#define AUDITSC_INVALID 0
80#define AUDITSC_SUCCESS 1
81#define AUDITSC_FAILURE 2
82
de6bbd1d
EP
83/* no execve audit message should be longer than this (userspace limits) */
84#define MAX_EXECVE_AUDIT_LEN 7500
85
3f1c8250
WR
86/* max length to print of cmdline/proctitle value during audit */
87#define MAX_PROCTITLE_AUDIT_LEN 128
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
1da177e4
LT
95struct audit_aux_data {
96 struct audit_aux_data *next;
97 int type;
98};
99
100#define AUDIT_AUX_IPCPERM 0
101
e54dc243
AG
102/* Number of target pids per aux struct. */
103#define AUDIT_AUX_PIDS 16
104
e54dc243
AG
105struct audit_aux_data_pids {
106 struct audit_aux_data d;
107 pid_t target_pid[AUDIT_AUX_PIDS];
e1760bd5 108 kuid_t target_auid[AUDIT_AUX_PIDS];
cca080d9 109 kuid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 110 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 111 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 112 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
113 int pid_count;
114};
115
3fc689e9
EP
116struct audit_aux_data_bprm_fcaps {
117 struct audit_aux_data d;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 struct audit_cap_data old_pcap;
121 struct audit_cap_data new_pcap;
122};
123
74c3cbe3
AV
124struct audit_tree_refs {
125 struct audit_tree_refs *next;
126 struct audit_chunk *c[31];
127};
128
55669bfa
AV
129static inline int open_arg(int flags, int mask)
130{
131 int n = ACC_MODE(flags);
132 if (flags & (O_TRUNC | O_CREAT))
133 n |= AUDIT_PERM_WRITE;
134 return n & mask;
135}
136
137static int audit_match_perm(struct audit_context *ctx, int mask)
138{
c4bacefb 139 unsigned n;
1a61c88d 140 if (unlikely(!ctx))
141 return 0;
c4bacefb 142 n = ctx->major;
dbda4c0b 143
55669bfa
AV
144 switch (audit_classify_syscall(ctx->arch, n)) {
145 case 0: /* native */
146 if ((mask & AUDIT_PERM_WRITE) &&
147 audit_match_class(AUDIT_CLASS_WRITE, n))
148 return 1;
149 if ((mask & AUDIT_PERM_READ) &&
150 audit_match_class(AUDIT_CLASS_READ, n))
151 return 1;
152 if ((mask & AUDIT_PERM_ATTR) &&
153 audit_match_class(AUDIT_CLASS_CHATTR, n))
154 return 1;
155 return 0;
156 case 1: /* 32bit on biarch */
157 if ((mask & AUDIT_PERM_WRITE) &&
158 audit_match_class(AUDIT_CLASS_WRITE_32, n))
159 return 1;
160 if ((mask & AUDIT_PERM_READ) &&
161 audit_match_class(AUDIT_CLASS_READ_32, n))
162 return 1;
163 if ((mask & AUDIT_PERM_ATTR) &&
164 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
165 return 1;
166 return 0;
167 case 2: /* open */
168 return mask & ACC_MODE(ctx->argv[1]);
169 case 3: /* openat */
170 return mask & ACC_MODE(ctx->argv[2]);
171 case 4: /* socketcall */
172 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
173 case 5: /* execve */
174 return mask & AUDIT_PERM_EXEC;
175 default:
176 return 0;
177 }
178}
179
5ef30ee5 180static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 181{
5195d8e2 182 struct audit_names *n;
5ef30ee5 183 umode_t mode = (umode_t)val;
1a61c88d 184
185 if (unlikely(!ctx))
186 return 0;
187
5195d8e2
EP
188 list_for_each_entry(n, &ctx->names_list, list) {
189 if ((n->ino != -1) &&
190 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
191 return 1;
192 }
5195d8e2 193
5ef30ee5 194 return 0;
8b67dca9
AV
195}
196
74c3cbe3
AV
197/*
198 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
199 * ->first_trees points to its beginning, ->trees - to the current end of data.
200 * ->tree_count is the number of free entries in array pointed to by ->trees.
201 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
202 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
203 * it's going to remain 1-element for almost any setup) until we free context itself.
204 * References in it _are_ dropped - at the same time we free/drop aux stuff.
205 */
206
207#ifdef CONFIG_AUDIT_TREE
679173b7
EP
208static void audit_set_auditable(struct audit_context *ctx)
209{
210 if (!ctx->prio) {
211 ctx->prio = 1;
212 ctx->current_state = AUDIT_RECORD_CONTEXT;
213 }
214}
215
74c3cbe3
AV
216static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
217{
218 struct audit_tree_refs *p = ctx->trees;
219 int left = ctx->tree_count;
220 if (likely(left)) {
221 p->c[--left] = chunk;
222 ctx->tree_count = left;
223 return 1;
224 }
225 if (!p)
226 return 0;
227 p = p->next;
228 if (p) {
229 p->c[30] = chunk;
230 ctx->trees = p;
231 ctx->tree_count = 30;
232 return 1;
233 }
234 return 0;
235}
236
237static int grow_tree_refs(struct audit_context *ctx)
238{
239 struct audit_tree_refs *p = ctx->trees;
240 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
241 if (!ctx->trees) {
242 ctx->trees = p;
243 return 0;
244 }
245 if (p)
246 p->next = ctx->trees;
247 else
248 ctx->first_trees = ctx->trees;
249 ctx->tree_count = 31;
250 return 1;
251}
252#endif
253
254static void unroll_tree_refs(struct audit_context *ctx,
255 struct audit_tree_refs *p, int count)
256{
257#ifdef CONFIG_AUDIT_TREE
258 struct audit_tree_refs *q;
259 int n;
260 if (!p) {
261 /* we started with empty chain */
262 p = ctx->first_trees;
263 count = 31;
264 /* if the very first allocation has failed, nothing to do */
265 if (!p)
266 return;
267 }
268 n = count;
269 for (q = p; q != ctx->trees; q = q->next, n = 31) {
270 while (n--) {
271 audit_put_chunk(q->c[n]);
272 q->c[n] = NULL;
273 }
274 }
275 while (n-- > ctx->tree_count) {
276 audit_put_chunk(q->c[n]);
277 q->c[n] = NULL;
278 }
279 ctx->trees = p;
280 ctx->tree_count = count;
281#endif
282}
283
284static void free_tree_refs(struct audit_context *ctx)
285{
286 struct audit_tree_refs *p, *q;
287 for (p = ctx->first_trees; p; p = q) {
288 q = p->next;
289 kfree(p);
290 }
291}
292
293static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
294{
295#ifdef CONFIG_AUDIT_TREE
296 struct audit_tree_refs *p;
297 int n;
298 if (!tree)
299 return 0;
300 /* full ones */
301 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
302 for (n = 0; n < 31; n++)
303 if (audit_tree_match(p->c[n], tree))
304 return 1;
305 }
306 /* partial */
307 if (p) {
308 for (n = ctx->tree_count; n < 31; n++)
309 if (audit_tree_match(p->c[n], tree))
310 return 1;
311 }
312#endif
313 return 0;
314}
315
ca57ec0f
EB
316static int audit_compare_uid(kuid_t uid,
317 struct audit_names *name,
318 struct audit_field *f,
319 struct audit_context *ctx)
b34b0393
EP
320{
321 struct audit_names *n;
b34b0393 322 int rc;
ca57ec0f 323
b34b0393 324 if (name) {
ca57ec0f 325 rc = audit_uid_comparator(uid, f->op, name->uid);
b34b0393
EP
326 if (rc)
327 return rc;
328 }
ca57ec0f 329
b34b0393
EP
330 if (ctx) {
331 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f
EB
332 rc = audit_uid_comparator(uid, f->op, n->uid);
333 if (rc)
334 return rc;
335 }
336 }
337 return 0;
338}
b34b0393 339
ca57ec0f
EB
340static int audit_compare_gid(kgid_t gid,
341 struct audit_names *name,
342 struct audit_field *f,
343 struct audit_context *ctx)
344{
345 struct audit_names *n;
346 int rc;
347
348 if (name) {
349 rc = audit_gid_comparator(gid, f->op, name->gid);
350 if (rc)
351 return rc;
352 }
353
354 if (ctx) {
355 list_for_each_entry(n, &ctx->names_list, list) {
356 rc = audit_gid_comparator(gid, f->op, n->gid);
b34b0393
EP
357 if (rc)
358 return rc;
359 }
360 }
361 return 0;
362}
363
02d86a56
EP
364static int audit_field_compare(struct task_struct *tsk,
365 const struct cred *cred,
366 struct audit_field *f,
367 struct audit_context *ctx,
368 struct audit_names *name)
369{
02d86a56 370 switch (f->val) {
4a6633ed 371 /* process to file object comparisons */
02d86a56 372 case AUDIT_COMPARE_UID_TO_OBJ_UID:
ca57ec0f 373 return audit_compare_uid(cred->uid, name, f, ctx);
c9fe685f 374 case AUDIT_COMPARE_GID_TO_OBJ_GID:
ca57ec0f 375 return audit_compare_gid(cred->gid, name, f, ctx);
4a6633ed 376 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
ca57ec0f 377 return audit_compare_uid(cred->euid, name, f, ctx);
4a6633ed 378 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
ca57ec0f 379 return audit_compare_gid(cred->egid, name, f, ctx);
4a6633ed 380 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
ca57ec0f 381 return audit_compare_uid(tsk->loginuid, name, f, ctx);
4a6633ed 382 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
ca57ec0f 383 return audit_compare_uid(cred->suid, name, f, ctx);
4a6633ed 384 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
ca57ec0f 385 return audit_compare_gid(cred->sgid, name, f, ctx);
4a6633ed 386 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
ca57ec0f 387 return audit_compare_uid(cred->fsuid, name, f, ctx);
4a6633ed 388 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
ca57ec0f 389 return audit_compare_gid(cred->fsgid, name, f, ctx);
10d68360
PM
390 /* uid comparisons */
391 case AUDIT_COMPARE_UID_TO_AUID:
ca57ec0f 392 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
10d68360 393 case AUDIT_COMPARE_UID_TO_EUID:
ca57ec0f 394 return audit_uid_comparator(cred->uid, f->op, cred->euid);
10d68360 395 case AUDIT_COMPARE_UID_TO_SUID:
ca57ec0f 396 return audit_uid_comparator(cred->uid, f->op, cred->suid);
10d68360 397 case AUDIT_COMPARE_UID_TO_FSUID:
ca57ec0f 398 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
10d68360
PM
399 /* auid comparisons */
400 case AUDIT_COMPARE_AUID_TO_EUID:
ca57ec0f 401 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
10d68360 402 case AUDIT_COMPARE_AUID_TO_SUID:
ca57ec0f 403 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
10d68360 404 case AUDIT_COMPARE_AUID_TO_FSUID:
ca57ec0f 405 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
10d68360
PM
406 /* euid comparisons */
407 case AUDIT_COMPARE_EUID_TO_SUID:
ca57ec0f 408 return audit_uid_comparator(cred->euid, f->op, cred->suid);
10d68360 409 case AUDIT_COMPARE_EUID_TO_FSUID:
ca57ec0f 410 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
10d68360
PM
411 /* suid comparisons */
412 case AUDIT_COMPARE_SUID_TO_FSUID:
ca57ec0f 413 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
10d68360
PM
414 /* gid comparisons */
415 case AUDIT_COMPARE_GID_TO_EGID:
ca57ec0f 416 return audit_gid_comparator(cred->gid, f->op, cred->egid);
10d68360 417 case AUDIT_COMPARE_GID_TO_SGID:
ca57ec0f 418 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
10d68360 419 case AUDIT_COMPARE_GID_TO_FSGID:
ca57ec0f 420 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
10d68360
PM
421 /* egid comparisons */
422 case AUDIT_COMPARE_EGID_TO_SGID:
ca57ec0f 423 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
10d68360 424 case AUDIT_COMPARE_EGID_TO_FSGID:
ca57ec0f 425 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
10d68360
PM
426 /* sgid comparison */
427 case AUDIT_COMPARE_SGID_TO_FSGID:
ca57ec0f 428 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
02d86a56
EP
429 default:
430 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
431 return 0;
432 }
433 return 0;
434}
435
f368c07d 436/* Determine if any context name data matches a rule's watch data */
1da177e4 437/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
438 * otherwise.
439 *
440 * If task_creation is true, this is an explicit indication that we are
441 * filtering a task rule at task creation time. This and tsk == current are
442 * the only situations where tsk->cred may be accessed without an rcu read lock.
443 */
1da177e4 444static int audit_filter_rules(struct task_struct *tsk,
93315ed6 445 struct audit_krule *rule,
1da177e4 446 struct audit_context *ctx,
f368c07d 447 struct audit_names *name,
f5629883
TJ
448 enum audit_state *state,
449 bool task_creation)
1da177e4 450{
f5629883 451 const struct cred *cred;
5195d8e2 452 int i, need_sid = 1;
3dc7e315
DG
453 u32 sid;
454
f5629883
TJ
455 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
456
1da177e4 457 for (i = 0; i < rule->field_count; i++) {
93315ed6 458 struct audit_field *f = &rule->fields[i];
5195d8e2 459 struct audit_names *n;
1da177e4 460 int result = 0;
f1dc4867 461 pid_t pid;
1da177e4 462
93315ed6 463 switch (f->type) {
1da177e4 464 case AUDIT_PID:
f1dc4867
RGB
465 pid = task_pid_nr(tsk);
466 result = audit_comparator(pid, f->op, f->val);
1da177e4 467 break;
3c66251e 468 case AUDIT_PPID:
419c58f1
AV
469 if (ctx) {
470 if (!ctx->ppid)
c92cdeb4 471 ctx->ppid = task_ppid_nr(tsk);
3c66251e 472 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 473 }
3c66251e 474 break;
1da177e4 475 case AUDIT_UID:
ca57ec0f 476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
1da177e4
LT
477 break;
478 case AUDIT_EUID:
ca57ec0f 479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
1da177e4
LT
480 break;
481 case AUDIT_SUID:
ca57ec0f 482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
1da177e4
LT
483 break;
484 case AUDIT_FSUID:
ca57ec0f 485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
1da177e4
LT
486 break;
487 case AUDIT_GID:
ca57ec0f 488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
37eebe39
MI
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = in_group_p(f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !in_group_p(f->gid);
495 }
1da177e4
LT
496 break;
497 case AUDIT_EGID:
ca57ec0f 498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
37eebe39
MI
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = in_egroup_p(f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !in_egroup_p(f->gid);
505 }
1da177e4
LT
506 break;
507 case AUDIT_SGID:
ca57ec0f 508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
1da177e4
LT
509 break;
510 case AUDIT_FSGID:
ca57ec0f 511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
1da177e4
LT
512 break;
513 case AUDIT_PERS:
93315ed6 514 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 515 break;
2fd6f58b 516 case AUDIT_ARCH:
9f8dbe9c 517 if (ctx)
93315ed6 518 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 519 break;
1da177e4
LT
520
521 case AUDIT_EXIT:
522 if (ctx && ctx->return_valid)
93315ed6 523 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
524 break;
525 case AUDIT_SUCCESS:
b01f2cc1 526 if (ctx && ctx->return_valid) {
93315ed6
AG
527 if (f->val)
528 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 529 else
93315ed6 530 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 531 }
1da177e4
LT
532 break;
533 case AUDIT_DEVMAJOR:
16c174bd
EP
534 if (name) {
535 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
536 audit_comparator(MAJOR(name->rdev), f->op, f->val))
537 ++result;
538 } else if (ctx) {
5195d8e2 539 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
540 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
541 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
542 ++result;
543 break;
544 }
545 }
546 }
547 break;
548 case AUDIT_DEVMINOR:
16c174bd
EP
549 if (name) {
550 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
551 audit_comparator(MINOR(name->rdev), f->op, f->val))
552 ++result;
553 } else if (ctx) {
5195d8e2 554 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
555 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
556 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
557 ++result;
558 break;
559 }
560 }
561 }
562 break;
563 case AUDIT_INODE:
f368c07d 564 if (name)
db510fc5 565 result = audit_comparator(name->ino, f->op, f->val);
f368c07d 566 else if (ctx) {
5195d8e2
EP
567 list_for_each_entry(n, &ctx->names_list, list) {
568 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
569 ++result;
570 break;
571 }
572 }
573 }
574 break;
efaffd6e
EP
575 case AUDIT_OBJ_UID:
576 if (name) {
ca57ec0f 577 result = audit_uid_comparator(name->uid, f->op, f->uid);
efaffd6e
EP
578 } else if (ctx) {
579 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 580 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
efaffd6e
EP
581 ++result;
582 break;
583 }
584 }
585 }
586 break;
54d3218b
EP
587 case AUDIT_OBJ_GID:
588 if (name) {
ca57ec0f 589 result = audit_gid_comparator(name->gid, f->op, f->gid);
54d3218b
EP
590 } else if (ctx) {
591 list_for_each_entry(n, &ctx->names_list, list) {
ca57ec0f 592 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
54d3218b
EP
593 ++result;
594 break;
595 }
596 }
597 }
598 break;
f368c07d 599 case AUDIT_WATCH:
ae7b8f41
EP
600 if (name)
601 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 602 break;
74c3cbe3
AV
603 case AUDIT_DIR:
604 if (ctx)
605 result = match_tree_refs(ctx, rule->tree);
606 break;
1da177e4
LT
607 case AUDIT_LOGINUID:
608 result = 0;
609 if (ctx)
ca57ec0f 610 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
1da177e4 611 break;
780a7654
EB
612 case AUDIT_LOGINUID_SET:
613 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
614 break;
3a6b9f85
DG
615 case AUDIT_SUBJ_USER:
616 case AUDIT_SUBJ_ROLE:
617 case AUDIT_SUBJ_TYPE:
618 case AUDIT_SUBJ_SEN:
619 case AUDIT_SUBJ_CLR:
3dc7e315
DG
620 /* NOTE: this may return negative values indicating
621 a temporary error. We simply treat this as a
622 match for now to avoid losing information that
623 may be wanted. An error message will also be
624 logged upon error */
04305e4a 625 if (f->lsm_rule) {
2ad312d2 626 if (need_sid) {
2a862b32 627 security_task_getsecid(tsk, &sid);
2ad312d2
SG
628 need_sid = 0;
629 }
d7a96f3a 630 result = security_audit_rule_match(sid, f->type,
3dc7e315 631 f->op,
04305e4a 632 f->lsm_rule,
3dc7e315 633 ctx);
2ad312d2 634 }
3dc7e315 635 break;
6e5a2d1d
DG
636 case AUDIT_OBJ_USER:
637 case AUDIT_OBJ_ROLE:
638 case AUDIT_OBJ_TYPE:
639 case AUDIT_OBJ_LEV_LOW:
640 case AUDIT_OBJ_LEV_HIGH:
641 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
642 also applies here */
04305e4a 643 if (f->lsm_rule) {
6e5a2d1d
DG
644 /* Find files that match */
645 if (name) {
d7a96f3a 646 result = security_audit_rule_match(
6e5a2d1d 647 name->osid, f->type, f->op,
04305e4a 648 f->lsm_rule, ctx);
6e5a2d1d 649 } else if (ctx) {
5195d8e2
EP
650 list_for_each_entry(n, &ctx->names_list, list) {
651 if (security_audit_rule_match(n->osid, f->type,
652 f->op, f->lsm_rule,
653 ctx)) {
6e5a2d1d
DG
654 ++result;
655 break;
656 }
657 }
658 }
659 /* Find ipc objects that match */
a33e6751
AV
660 if (!ctx || ctx->type != AUDIT_IPC)
661 break;
662 if (security_audit_rule_match(ctx->ipc.osid,
663 f->type, f->op,
664 f->lsm_rule, ctx))
665 ++result;
6e5a2d1d
DG
666 }
667 break;
1da177e4
LT
668 case AUDIT_ARG0:
669 case AUDIT_ARG1:
670 case AUDIT_ARG2:
671 case AUDIT_ARG3:
672 if (ctx)
93315ed6 673 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 674 break;
5adc8a6a
AG
675 case AUDIT_FILTERKEY:
676 /* ignore this field for filtering */
677 result = 1;
678 break;
55669bfa
AV
679 case AUDIT_PERM:
680 result = audit_match_perm(ctx, f->val);
681 break;
8b67dca9
AV
682 case AUDIT_FILETYPE:
683 result = audit_match_filetype(ctx, f->val);
684 break;
02d86a56
EP
685 case AUDIT_FIELD_COMPARE:
686 result = audit_field_compare(tsk, cred, f, ctx, name);
687 break;
1da177e4 688 }
f5629883 689 if (!result)
1da177e4
LT
690 return 0;
691 }
0590b933
AV
692
693 if (ctx) {
694 if (rule->prio <= ctx->prio)
695 return 0;
696 if (rule->filterkey) {
697 kfree(ctx->filterkey);
698 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
699 }
700 ctx->prio = rule->prio;
701 }
1da177e4
LT
702 switch (rule->action) {
703 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
704 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
705 }
706 return 1;
707}
708
709/* At process creation time, we can determine if system-call auditing is
710 * completely disabled for this task. Since we only have the task
711 * structure at this point, we can only check uid and gid.
712 */
e048e02c 713static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
714{
715 struct audit_entry *e;
716 enum audit_state state;
717
718 rcu_read_lock();
0f45aa18 719 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
720 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
721 &state, true)) {
e048e02c
AV
722 if (state == AUDIT_RECORD_CONTEXT)
723 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
724 rcu_read_unlock();
725 return state;
726 }
727 }
728 rcu_read_unlock();
729 return AUDIT_BUILD_CONTEXT;
730}
731
a3c54931
AL
732static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
733{
734 int word, bit;
735
736 if (val > 0xffffffff)
737 return false;
738
739 word = AUDIT_WORD(val);
740 if (word >= AUDIT_BITMASK_SIZE)
741 return false;
742
743 bit = AUDIT_BIT(val);
744
745 return rule->mask[word] & bit;
746}
747
1da177e4
LT
748/* At syscall entry and exit time, this filter is called if the
749 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 750 * also not high enough that we already know we have to write an audit
b0dd25a8 751 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
752 */
753static enum audit_state audit_filter_syscall(struct task_struct *tsk,
754 struct audit_context *ctx,
755 struct list_head *list)
756{
757 struct audit_entry *e;
c3896495 758 enum audit_state state;
1da177e4 759
351bb722 760 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
761 return AUDIT_DISABLED;
762
1da177e4 763 rcu_read_lock();
c3896495 764 if (!list_empty(list)) {
b63862f4 765 list_for_each_entry_rcu(e, list, list) {
a3c54931 766 if (audit_in_mask(&e->rule, ctx->major) &&
f368c07d 767 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 768 &state, false)) {
f368c07d 769 rcu_read_unlock();
0590b933 770 ctx->current_state = state;
f368c07d
AG
771 return state;
772 }
773 }
774 }
775 rcu_read_unlock();
776 return AUDIT_BUILD_CONTEXT;
777}
778
5195d8e2
EP
779/*
780 * Given an audit_name check the inode hash table to see if they match.
781 * Called holding the rcu read lock to protect the use of audit_inode_hash
782 */
783static int audit_filter_inode_name(struct task_struct *tsk,
784 struct audit_names *n,
785 struct audit_context *ctx) {
5195d8e2
EP
786 int h = audit_hash_ino((u32)n->ino);
787 struct list_head *list = &audit_inode_hash[h];
788 struct audit_entry *e;
789 enum audit_state state;
790
5195d8e2
EP
791 if (list_empty(list))
792 return 0;
793
794 list_for_each_entry_rcu(e, list, list) {
a3c54931 795 if (audit_in_mask(&e->rule, ctx->major) &&
5195d8e2
EP
796 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
797 ctx->current_state = state;
798 return 1;
799 }
800 }
801
802 return 0;
803}
804
805/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 806 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 807 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
808 * Regarding audit_state, same rules apply as for audit_filter_syscall().
809 */
0590b933 810void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 811{
5195d8e2 812 struct audit_names *n;
f368c07d
AG
813
814 if (audit_pid && tsk->tgid == audit_pid)
0590b933 815 return;
f368c07d
AG
816
817 rcu_read_lock();
f368c07d 818
5195d8e2
EP
819 list_for_each_entry(n, &ctx->names_list, list) {
820 if (audit_filter_inode_name(tsk, n, ctx))
821 break;
0f45aa18
DW
822 }
823 rcu_read_unlock();
0f45aa18
DW
824}
825
4a3eb726
RGB
826/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
827static inline struct audit_context *audit_take_context(struct task_struct *tsk,
1da177e4 828 int return_valid,
6d208da8 829 long return_code)
1da177e4
LT
830{
831 struct audit_context *context = tsk->audit_context;
832
56179a6e 833 if (!context)
1da177e4
LT
834 return NULL;
835 context->return_valid = return_valid;
f701b75e
EP
836
837 /*
838 * we need to fix up the return code in the audit logs if the actual
839 * return codes are later going to be fixed up by the arch specific
840 * signal handlers
841 *
842 * This is actually a test for:
843 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
844 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
845 *
846 * but is faster than a bunch of ||
847 */
848 if (unlikely(return_code <= -ERESTARTSYS) &&
849 (return_code >= -ERESTART_RESTARTBLOCK) &&
850 (return_code != -ENOIOCTLCMD))
851 context->return_code = -EINTR;
852 else
853 context->return_code = return_code;
1da177e4 854
0590b933
AV
855 if (context->in_syscall && !context->dummy) {
856 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
857 audit_filter_inodes(tsk, context);
1da177e4
LT
858 }
859
1da177e4
LT
860 tsk->audit_context = NULL;
861 return context;
862}
863
3f1c8250
WR
864static inline void audit_proctitle_free(struct audit_context *context)
865{
866 kfree(context->proctitle.value);
867 context->proctitle.value = NULL;
868 context->proctitle.len = 0;
869}
870
1da177e4
LT
871static inline void audit_free_names(struct audit_context *context)
872{
5195d8e2 873 struct audit_names *n, *next;
1da177e4
LT
874
875#if AUDIT_DEBUG == 2
0590b933 876 if (context->put_count + context->ino_count != context->name_count) {
34c474de
EP
877 int i = 0;
878
f952d10f
RGB
879 pr_err("%s:%d(:%d): major=%d in_syscall=%d"
880 " name_count=%d put_count=%d ino_count=%d"
881 " [NOT freeing]\n", __FILE__, __LINE__,
1da177e4
LT
882 context->serial, context->major, context->in_syscall,
883 context->name_count, context->put_count,
884 context->ino_count);
5195d8e2 885 list_for_each_entry(n, &context->names_list, list) {
f952d10f
RGB
886 pr_err("names[%d] = %p = %s\n", i++, n->name,
887 n->name->name ?: "(null)");
8c8570fb 888 }
1da177e4
LT
889 dump_stack();
890 return;
891 }
892#endif
893#if AUDIT_DEBUG
894 context->put_count = 0;
895 context->ino_count = 0;
896#endif
897
5195d8e2
EP
898 list_for_each_entry_safe(n, next, &context->names_list, list) {
899 list_del(&n->list);
900 if (n->name && n->name_put)
65ada7bc 901 final_putname(n->name);
5195d8e2
EP
902 if (n->should_free)
903 kfree(n);
8c8570fb 904 }
1da177e4 905 context->name_count = 0;
44707fdf
JB
906 path_put(&context->pwd);
907 context->pwd.dentry = NULL;
908 context->pwd.mnt = NULL;
1da177e4
LT
909}
910
911static inline void audit_free_aux(struct audit_context *context)
912{
913 struct audit_aux_data *aux;
914
915 while ((aux = context->aux)) {
916 context->aux = aux->next;
917 kfree(aux);
918 }
e54dc243
AG
919 while ((aux = context->aux_pids)) {
920 context->aux_pids = aux->next;
921 kfree(aux);
922 }
1da177e4
LT
923}
924
1da177e4
LT
925static inline struct audit_context *audit_alloc_context(enum audit_state state)
926{
927 struct audit_context *context;
928
17c6ee70
RM
929 context = kzalloc(sizeof(*context), GFP_KERNEL);
930 if (!context)
1da177e4 931 return NULL;
e2c5adc8
AM
932 context->state = state;
933 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
916d7576 934 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 935 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
936 return context;
937}
938
b0dd25a8
RD
939/**
940 * audit_alloc - allocate an audit context block for a task
941 * @tsk: task
942 *
943 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
944 * if necessary. Doing so turns on system call auditing for the
945 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
946 * needed.
947 */
1da177e4
LT
948int audit_alloc(struct task_struct *tsk)
949{
950 struct audit_context *context;
951 enum audit_state state;
e048e02c 952 char *key = NULL;
1da177e4 953
b593d384 954 if (likely(!audit_ever_enabled))
1da177e4
LT
955 return 0; /* Return if not auditing. */
956
e048e02c 957 state = audit_filter_task(tsk, &key);
d48d8051
ON
958 if (state == AUDIT_DISABLED) {
959 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1da177e4 960 return 0;
d48d8051 961 }
1da177e4
LT
962
963 if (!(context = audit_alloc_context(state))) {
e048e02c 964 kfree(key);
1da177e4
LT
965 audit_log_lost("out of memory in audit_alloc");
966 return -ENOMEM;
967 }
e048e02c 968 context->filterkey = key;
1da177e4 969
1da177e4
LT
970 tsk->audit_context = context;
971 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
972 return 0;
973}
974
975static inline void audit_free_context(struct audit_context *context)
976{
c62d773a
AV
977 audit_free_names(context);
978 unroll_tree_refs(context, NULL, 0);
979 free_tree_refs(context);
980 audit_free_aux(context);
981 kfree(context->filterkey);
982 kfree(context->sockaddr);
3f1c8250 983 audit_proctitle_free(context);
c62d773a 984 kfree(context);
1da177e4
LT
985}
986
e54dc243 987static int audit_log_pid_context(struct audit_context *context, pid_t pid,
cca080d9 988 kuid_t auid, kuid_t uid, unsigned int sessionid,
4746ec5b 989 u32 sid, char *comm)
e54dc243
AG
990{
991 struct audit_buffer *ab;
2a862b32 992 char *ctx = NULL;
e54dc243
AG
993 u32 len;
994 int rc = 0;
995
996 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
997 if (!ab)
6246ccab 998 return rc;
e54dc243 999
e1760bd5
EB
1000 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1001 from_kuid(&init_user_ns, auid),
cca080d9 1002 from_kuid(&init_user_ns, uid), sessionid);
ad395abe
EP
1003 if (sid) {
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
2a862b32 1011 }
c2a7780e
EP
1012 audit_log_format(ab, " ocomm=");
1013 audit_log_untrustedstring(ab, comm);
e54dc243 1014 audit_log_end(ab);
e54dc243
AG
1015
1016 return rc;
1017}
1018
de6bbd1d
EP
1019/*
1020 * to_send and len_sent accounting are very loose estimates. We aren't
1021 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1022 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1023 *
1024 * why snprintf? an int is up to 12 digits long. if we just assumed when
1025 * logging that a[%d]= was going to be 16 characters long we would be wasting
1026 * space in every audit message. In one 7500 byte message we can log up to
1027 * about 1000 min size arguments. That comes down to about 50% waste of space
1028 * if we didn't do the snprintf to find out how long arg_num_len was.
1029 */
1030static int audit_log_single_execve_arg(struct audit_context *context,
1031 struct audit_buffer **ab,
1032 int arg_num,
1033 size_t *len_sent,
1034 const char __user *p,
1035 char *buf)
bdf4c48a 1036{
de6bbd1d
EP
1037 char arg_num_len_buf[12];
1038 const char __user *tmp_p = p;
b87ce6e4
EP
1039 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1040 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1041 size_t len, len_left, to_send;
1042 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1043 unsigned int i, has_cntl = 0, too_long = 0;
1044 int ret;
1045
1046 /* strnlen_user includes the null we don't want to send */
1047 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1048
de6bbd1d
EP
1049 /*
1050 * We just created this mm, if we can't find the strings
1051 * we just copied into it something is _very_ wrong. Similar
1052 * for strings that are too long, we should not have created
1053 * any.
1054 */
b0abcfc1 1055 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1056 WARN_ON(1);
1057 send_sig(SIGKILL, current, 0);
b0abcfc1 1058 return -1;
de6bbd1d 1059 }
040b3a2d 1060
de6bbd1d
EP
1061 /* walk the whole argument looking for non-ascii chars */
1062 do {
1063 if (len_left > MAX_EXECVE_AUDIT_LEN)
1064 to_send = MAX_EXECVE_AUDIT_LEN;
1065 else
1066 to_send = len_left;
1067 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1068 /*
de6bbd1d
EP
1069 * There is no reason for this copy to be short. We just
1070 * copied them here, and the mm hasn't been exposed to user-
1071 * space yet.
bdf4c48a 1072 */
de6bbd1d 1073 if (ret) {
bdf4c48a
PZ
1074 WARN_ON(1);
1075 send_sig(SIGKILL, current, 0);
b0abcfc1 1076 return -1;
bdf4c48a 1077 }
de6bbd1d
EP
1078 buf[to_send] = '\0';
1079 has_cntl = audit_string_contains_control(buf, to_send);
1080 if (has_cntl) {
1081 /*
1082 * hex messages get logged as 2 bytes, so we can only
1083 * send half as much in each message
1084 */
1085 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1086 break;
1087 }
de6bbd1d
EP
1088 len_left -= to_send;
1089 tmp_p += to_send;
1090 } while (len_left > 0);
1091
1092 len_left = len;
1093
1094 if (len > max_execve_audit_len)
1095 too_long = 1;
1096
1097 /* rewalk the argument actually logging the message */
1098 for (i = 0; len_left > 0; i++) {
1099 int room_left;
1100
1101 if (len_left > max_execve_audit_len)
1102 to_send = max_execve_audit_len;
1103 else
1104 to_send = len_left;
1105
1106 /* do we have space left to send this argument in this ab? */
1107 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1108 if (has_cntl)
1109 room_left -= (to_send * 2);
1110 else
1111 room_left -= to_send;
1112 if (room_left < 0) {
1113 *len_sent = 0;
1114 audit_log_end(*ab);
1115 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1116 if (!*ab)
1117 return 0;
1118 }
bdf4c48a 1119
bdf4c48a 1120 /*
de6bbd1d
EP
1121 * first record needs to say how long the original string was
1122 * so we can be sure nothing was lost.
1123 */
1124 if ((i == 0) && (too_long))
ca96a895 1125 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1126 has_cntl ? 2*len : len);
1127
1128 /*
1129 * normally arguments are small enough to fit and we already
1130 * filled buf above when we checked for control characters
1131 * so don't bother with another copy_from_user
bdf4c48a 1132 */
de6bbd1d
EP
1133 if (len >= max_execve_audit_len)
1134 ret = copy_from_user(buf, p, to_send);
1135 else
1136 ret = 0;
040b3a2d 1137 if (ret) {
bdf4c48a
PZ
1138 WARN_ON(1);
1139 send_sig(SIGKILL, current, 0);
b0abcfc1 1140 return -1;
bdf4c48a 1141 }
de6bbd1d
EP
1142 buf[to_send] = '\0';
1143
1144 /* actually log it */
ca96a895 1145 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1146 if (too_long)
1147 audit_log_format(*ab, "[%d]", i);
1148 audit_log_format(*ab, "=");
1149 if (has_cntl)
b556f8ad 1150 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1151 else
9d960985 1152 audit_log_string(*ab, buf);
de6bbd1d
EP
1153
1154 p += to_send;
1155 len_left -= to_send;
1156 *len_sent += arg_num_len;
1157 if (has_cntl)
1158 *len_sent += to_send * 2;
1159 else
1160 *len_sent += to_send;
1161 }
1162 /* include the null we didn't log */
1163 return len + 1;
1164}
1165
1166static void audit_log_execve_info(struct audit_context *context,
d9cfea91 1167 struct audit_buffer **ab)
de6bbd1d 1168{
5afb8a3f
XW
1169 int i, len;
1170 size_t len_sent = 0;
de6bbd1d
EP
1171 const char __user *p;
1172 char *buf;
bdf4c48a 1173
d9cfea91 1174 p = (const char __user *)current->mm->arg_start;
bdf4c48a 1175
d9cfea91 1176 audit_log_format(*ab, "argc=%d", context->execve.argc);
de6bbd1d
EP
1177
1178 /*
1179 * we need some kernel buffer to hold the userspace args. Just
1180 * allocate one big one rather than allocating one of the right size
1181 * for every single argument inside audit_log_single_execve_arg()
1182 * should be <8k allocation so should be pretty safe.
1183 */
1184 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1185 if (!buf) {
b7550787 1186 audit_panic("out of memory for argv string");
de6bbd1d 1187 return;
bdf4c48a 1188 }
de6bbd1d 1189
d9cfea91 1190 for (i = 0; i < context->execve.argc; i++) {
de6bbd1d
EP
1191 len = audit_log_single_execve_arg(context, ab, i,
1192 &len_sent, p, buf);
1193 if (len <= 0)
1194 break;
1195 p += len;
1196 }
1197 kfree(buf);
bdf4c48a
PZ
1198}
1199
a33e6751 1200static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1201{
1202 struct audit_buffer *ab;
1203 int i;
1204
1205 ab = audit_log_start(context, GFP_KERNEL, context->type);
1206 if (!ab)
1207 return;
1208
1209 switch (context->type) {
1210 case AUDIT_SOCKETCALL: {
1211 int nargs = context->socketcall.nargs;
1212 audit_log_format(ab, "nargs=%d", nargs);
1213 for (i = 0; i < nargs; i++)
1214 audit_log_format(ab, " a%d=%lx", i,
1215 context->socketcall.args[i]);
1216 break; }
a33e6751
AV
1217 case AUDIT_IPC: {
1218 u32 osid = context->ipc.osid;
1219
2570ebbd 1220 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
cca080d9
EB
1221 from_kuid(&init_user_ns, context->ipc.uid),
1222 from_kgid(&init_user_ns, context->ipc.gid),
1223 context->ipc.mode);
a33e6751
AV
1224 if (osid) {
1225 char *ctx = NULL;
1226 u32 len;
1227 if (security_secid_to_secctx(osid, &ctx, &len)) {
1228 audit_log_format(ab, " osid=%u", osid);
1229 *call_panic = 1;
1230 } else {
1231 audit_log_format(ab, " obj=%s", ctx);
1232 security_release_secctx(ctx, len);
1233 }
1234 }
e816f370
AV
1235 if (context->ipc.has_perm) {
1236 audit_log_end(ab);
1237 ab = audit_log_start(context, GFP_KERNEL,
1238 AUDIT_IPC_SET_PERM);
0644ec0c
KC
1239 if (unlikely(!ab))
1240 return;
e816f370 1241 audit_log_format(ab,
2570ebbd 1242 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1243 context->ipc.qbytes,
1244 context->ipc.perm_uid,
1245 context->ipc.perm_gid,
1246 context->ipc.perm_mode);
e816f370 1247 }
a33e6751 1248 break; }
564f6993
AV
1249 case AUDIT_MQ_OPEN: {
1250 audit_log_format(ab,
df0a4283 1251 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1252 "mq_msgsize=%ld mq_curmsgs=%ld",
1253 context->mq_open.oflag, context->mq_open.mode,
1254 context->mq_open.attr.mq_flags,
1255 context->mq_open.attr.mq_maxmsg,
1256 context->mq_open.attr.mq_msgsize,
1257 context->mq_open.attr.mq_curmsgs);
1258 break; }
c32c8af4
AV
1259 case AUDIT_MQ_SENDRECV: {
1260 audit_log_format(ab,
1261 "mqdes=%d msg_len=%zd msg_prio=%u "
1262 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1263 context->mq_sendrecv.mqdes,
1264 context->mq_sendrecv.msg_len,
1265 context->mq_sendrecv.msg_prio,
1266 context->mq_sendrecv.abs_timeout.tv_sec,
1267 context->mq_sendrecv.abs_timeout.tv_nsec);
1268 break; }
20114f71
AV
1269 case AUDIT_MQ_NOTIFY: {
1270 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1271 context->mq_notify.mqdes,
1272 context->mq_notify.sigev_signo);
1273 break; }
7392906e
AV
1274 case AUDIT_MQ_GETSETATTR: {
1275 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1276 audit_log_format(ab,
1277 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1278 "mq_curmsgs=%ld ",
1279 context->mq_getsetattr.mqdes,
1280 attr->mq_flags, attr->mq_maxmsg,
1281 attr->mq_msgsize, attr->mq_curmsgs);
1282 break; }
57f71a0a
AV
1283 case AUDIT_CAPSET: {
1284 audit_log_format(ab, "pid=%d", context->capset.pid);
1285 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1286 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1287 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1288 break; }
120a795d
AV
1289 case AUDIT_MMAP: {
1290 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1291 context->mmap.flags);
1292 break; }
d9cfea91
RGB
1293 case AUDIT_EXECVE: {
1294 audit_log_execve_info(context, &ab);
1295 break; }
f3298dc4
AV
1296 }
1297 audit_log_end(ab);
1298}
1299
3f1c8250
WR
1300static inline int audit_proctitle_rtrim(char *proctitle, int len)
1301{
1302 char *end = proctitle + len - 1;
1303 while (end > proctitle && !isprint(*end))
1304 end--;
1305
1306 /* catch the case where proctitle is only 1 non-print character */
1307 len = end - proctitle + 1;
1308 len -= isprint(proctitle[len-1]) == 0;
1309 return len;
1310}
1311
1312static void audit_log_proctitle(struct task_struct *tsk,
1313 struct audit_context *context)
1314{
1315 int res;
1316 char *buf;
1317 char *msg = "(null)";
1318 int len = strlen(msg);
1319 struct audit_buffer *ab;
1320
1321 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1322 if (!ab)
1323 return; /* audit_panic or being filtered */
1324
1325 audit_log_format(ab, "proctitle=");
1326
1327 /* Not cached */
1328 if (!context->proctitle.value) {
1329 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1330 if (!buf)
1331 goto out;
1332 /* Historically called this from procfs naming */
1333 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1334 if (res == 0) {
1335 kfree(buf);
1336 goto out;
1337 }
1338 res = audit_proctitle_rtrim(buf, res);
1339 if (res == 0) {
1340 kfree(buf);
1341 goto out;
1342 }
1343 context->proctitle.value = buf;
1344 context->proctitle.len = res;
1345 }
1346 msg = context->proctitle.value;
1347 len = context->proctitle.len;
1348out:
1349 audit_log_n_untrustedstring(ab, msg, len);
1350 audit_log_end(ab);
1351}
1352
e495149b 1353static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1354{
9c7aa6aa 1355 int i, call_panic = 0;
1da177e4 1356 struct audit_buffer *ab;
7551ced3 1357 struct audit_aux_data *aux;
5195d8e2 1358 struct audit_names *n;
1da177e4 1359
e495149b 1360 /* tsk == current */
3f2792ff 1361 context->personality = tsk->personality;
e495149b
AV
1362
1363 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1364 if (!ab)
1365 return; /* audit_panic has been called */
bccf6ae0
DW
1366 audit_log_format(ab, "arch=%x syscall=%d",
1367 context->arch, context->major);
1da177e4
LT
1368 if (context->personality != PER_LINUX)
1369 audit_log_format(ab, " per=%lx", context->personality);
1370 if (context->return_valid)
9f8dbe9c 1371 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1372 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1373 context->return_code);
eb84a20e 1374
1da177e4 1375 audit_log_format(ab,
e23eb920
PM
1376 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1377 context->argv[0],
1378 context->argv[1],
1379 context->argv[2],
1380 context->argv[3],
1381 context->name_count);
eb84a20e 1382
e495149b 1383 audit_log_task_info(ab, tsk);
9d960985 1384 audit_log_key(ab, context->filterkey);
1da177e4 1385 audit_log_end(ab);
1da177e4 1386
7551ced3 1387 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1388
e495149b 1389 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1390 if (!ab)
1391 continue; /* audit_panic has been called */
1392
1da177e4 1393 switch (aux->type) {
20ca73bc 1394
3fc689e9
EP
1395 case AUDIT_BPRM_FCAPS: {
1396 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1397 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1398 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1399 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1400 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1401 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1402 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1403 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1404 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1405 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1406 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1407 break; }
1408
1da177e4
LT
1409 }
1410 audit_log_end(ab);
1da177e4
LT
1411 }
1412
f3298dc4 1413 if (context->type)
a33e6751 1414 show_special(context, &call_panic);
f3298dc4 1415
157cf649
AV
1416 if (context->fds[0] >= 0) {
1417 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1418 if (ab) {
1419 audit_log_format(ab, "fd0=%d fd1=%d",
1420 context->fds[0], context->fds[1]);
1421 audit_log_end(ab);
1422 }
1423 }
1424
4f6b434f
AV
1425 if (context->sockaddr_len) {
1426 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1427 if (ab) {
1428 audit_log_format(ab, "saddr=");
1429 audit_log_n_hex(ab, (void *)context->sockaddr,
1430 context->sockaddr_len);
1431 audit_log_end(ab);
1432 }
1433 }
1434
e54dc243
AG
1435 for (aux = context->aux_pids; aux; aux = aux->next) {
1436 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1437
1438 for (i = 0; i < axs->pid_count; i++)
1439 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1440 axs->target_auid[i],
1441 axs->target_uid[i],
4746ec5b 1442 axs->target_sessionid[i],
c2a7780e
EP
1443 axs->target_sid[i],
1444 axs->target_comm[i]))
e54dc243 1445 call_panic = 1;
a5cb013d
AV
1446 }
1447
e54dc243
AG
1448 if (context->target_pid &&
1449 audit_log_pid_context(context, context->target_pid,
c2a7780e 1450 context->target_auid, context->target_uid,
4746ec5b 1451 context->target_sessionid,
c2a7780e 1452 context->target_sid, context->target_comm))
e54dc243
AG
1453 call_panic = 1;
1454
44707fdf 1455 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1456 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1457 if (ab) {
c158a35c 1458 audit_log_d_path(ab, " cwd=", &context->pwd);
8f37d47c
DW
1459 audit_log_end(ab);
1460 }
1461 }
73241ccc 1462
5195d8e2 1463 i = 0;
79f6530c
JL
1464 list_for_each_entry(n, &context->names_list, list) {
1465 if (n->hidden)
1466 continue;
b24a30a7 1467 audit_log_name(context, n, NULL, i++, &call_panic);
79f6530c 1468 }
c0641f28 1469
3f1c8250
WR
1470 audit_log_proctitle(tsk, context);
1471
c0641f28
EP
1472 /* Send end of event record to help user space know we are finished */
1473 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1474 if (ab)
1475 audit_log_end(ab);
9c7aa6aa
SG
1476 if (call_panic)
1477 audit_panic("error converting sid to string");
1da177e4
LT
1478}
1479
b0dd25a8
RD
1480/**
1481 * audit_free - free a per-task audit context
1482 * @tsk: task whose audit context block to free
1483 *
fa84cb93 1484 * Called from copy_process and do_exit
b0dd25a8 1485 */
a4ff8dba 1486void __audit_free(struct task_struct *tsk)
1da177e4
LT
1487{
1488 struct audit_context *context;
1489
4a3eb726 1490 context = audit_take_context(tsk, 0, 0);
56179a6e 1491 if (!context)
1da177e4
LT
1492 return;
1493
1494 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1495 * function (e.g., exit_group), then free context block.
1496 * We use GFP_ATOMIC here because we might be doing this
f5561964 1497 * in the context of the idle thread */
e495149b 1498 /* that can happen only if we are called from do_exit() */
0590b933 1499 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1500 audit_log_exit(context, tsk);
916d7576
AV
1501 if (!list_empty(&context->killed_trees))
1502 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1503
1504 audit_free_context(context);
1505}
1506
b0dd25a8
RD
1507/**
1508 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1509 * @arch: architecture type
1510 * @major: major syscall type (function)
1511 * @a1: additional syscall register 1
1512 * @a2: additional syscall register 2
1513 * @a3: additional syscall register 3
1514 * @a4: additional syscall register 4
1515 *
1516 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1517 * audit context was created when the task was created and the state or
1518 * filters demand the audit context be built. If the state from the
1519 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1520 * then the record will be written at syscall exit time (otherwise, it
1521 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1522 * be written).
1523 */
b05d8447 1524void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1525 unsigned long a1, unsigned long a2,
1526 unsigned long a3, unsigned long a4)
1527{
5411be59 1528 struct task_struct *tsk = current;
1da177e4
LT
1529 struct audit_context *context = tsk->audit_context;
1530 enum audit_state state;
1531
56179a6e 1532 if (!context)
86a1c34a 1533 return;
1da177e4 1534
1da177e4
LT
1535 BUG_ON(context->in_syscall || context->name_count);
1536
1537 if (!audit_enabled)
1538 return;
1539
4a99854c 1540 context->arch = syscall_get_arch();
1da177e4
LT
1541 context->major = major;
1542 context->argv[0] = a1;
1543 context->argv[1] = a2;
1544 context->argv[2] = a3;
1545 context->argv[3] = a4;
1546
1547 state = context->state;
d51374ad 1548 context->dummy = !audit_n_rules;
0590b933
AV
1549 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1550 context->prio = 0;
0f45aa18 1551 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1552 }
56179a6e 1553 if (state == AUDIT_DISABLED)
1da177e4
LT
1554 return;
1555
ce625a80 1556 context->serial = 0;
1da177e4
LT
1557 context->ctime = CURRENT_TIME;
1558 context->in_syscall = 1;
0590b933 1559 context->current_state = state;
419c58f1 1560 context->ppid = 0;
1da177e4
LT
1561}
1562
b0dd25a8
RD
1563/**
1564 * audit_syscall_exit - deallocate audit context after a system call
42ae610c
RD
1565 * @success: success value of the syscall
1566 * @return_code: return value of the syscall
b0dd25a8
RD
1567 *
1568 * Tear down after system call. If the audit context has been marked as
1da177e4 1569 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
42ae610c 1570 * filtering, or because some other part of the kernel wrote an audit
1da177e4 1571 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1572 * free the names stored from getname().
1573 */
d7e7528b 1574void __audit_syscall_exit(int success, long return_code)
1da177e4 1575{
5411be59 1576 struct task_struct *tsk = current;
1da177e4
LT
1577 struct audit_context *context;
1578
d7e7528b
EP
1579 if (success)
1580 success = AUDITSC_SUCCESS;
1581 else
1582 success = AUDITSC_FAILURE;
1da177e4 1583
4a3eb726 1584 context = audit_take_context(tsk, success, return_code);
56179a6e 1585 if (!context)
97e94c45 1586 return;
1da177e4 1587
0590b933 1588 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1589 audit_log_exit(context, tsk);
1da177e4
LT
1590
1591 context->in_syscall = 0;
0590b933 1592 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1593
916d7576
AV
1594 if (!list_empty(&context->killed_trees))
1595 audit_kill_trees(&context->killed_trees);
1596
c62d773a
AV
1597 audit_free_names(context);
1598 unroll_tree_refs(context, NULL, 0);
1599 audit_free_aux(context);
1600 context->aux = NULL;
1601 context->aux_pids = NULL;
1602 context->target_pid = 0;
1603 context->target_sid = 0;
1604 context->sockaddr_len = 0;
1605 context->type = 0;
1606 context->fds[0] = -1;
1607 if (context->state != AUDIT_RECORD_CONTEXT) {
1608 kfree(context->filterkey);
1609 context->filterkey = NULL;
1da177e4 1610 }
c62d773a 1611 tsk->audit_context = context;
1da177e4
LT
1612}
1613
74c3cbe3
AV
1614static inline void handle_one(const struct inode *inode)
1615{
1616#ifdef CONFIG_AUDIT_TREE
1617 struct audit_context *context;
1618 struct audit_tree_refs *p;
1619 struct audit_chunk *chunk;
1620 int count;
e61ce867 1621 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1622 return;
1623 context = current->audit_context;
1624 p = context->trees;
1625 count = context->tree_count;
1626 rcu_read_lock();
1627 chunk = audit_tree_lookup(inode);
1628 rcu_read_unlock();
1629 if (!chunk)
1630 return;
1631 if (likely(put_tree_ref(context, chunk)))
1632 return;
1633 if (unlikely(!grow_tree_refs(context))) {
f952d10f 1634 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1635 audit_set_auditable(context);
1636 audit_put_chunk(chunk);
1637 unroll_tree_refs(context, p, count);
1638 return;
1639 }
1640 put_tree_ref(context, chunk);
1641#endif
1642}
1643
1644static void handle_path(const struct dentry *dentry)
1645{
1646#ifdef CONFIG_AUDIT_TREE
1647 struct audit_context *context;
1648 struct audit_tree_refs *p;
1649 const struct dentry *d, *parent;
1650 struct audit_chunk *drop;
1651 unsigned long seq;
1652 int count;
1653
1654 context = current->audit_context;
1655 p = context->trees;
1656 count = context->tree_count;
1657retry:
1658 drop = NULL;
1659 d = dentry;
1660 rcu_read_lock();
1661 seq = read_seqbegin(&rename_lock);
1662 for(;;) {
1663 struct inode *inode = d->d_inode;
e61ce867 1664 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1665 struct audit_chunk *chunk;
1666 chunk = audit_tree_lookup(inode);
1667 if (chunk) {
1668 if (unlikely(!put_tree_ref(context, chunk))) {
1669 drop = chunk;
1670 break;
1671 }
1672 }
1673 }
1674 parent = d->d_parent;
1675 if (parent == d)
1676 break;
1677 d = parent;
1678 }
1679 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1680 rcu_read_unlock();
1681 if (!drop) {
1682 /* just a race with rename */
1683 unroll_tree_refs(context, p, count);
1684 goto retry;
1685 }
1686 audit_put_chunk(drop);
1687 if (grow_tree_refs(context)) {
1688 /* OK, got more space */
1689 unroll_tree_refs(context, p, count);
1690 goto retry;
1691 }
1692 /* too bad */
f952d10f 1693 pr_warn("out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1694 unroll_tree_refs(context, p, count);
1695 audit_set_auditable(context);
1696 return;
1697 }
1698 rcu_read_unlock();
1699#endif
1700}
1701
78e2e802
JL
1702static struct audit_names *audit_alloc_name(struct audit_context *context,
1703 unsigned char type)
5195d8e2
EP
1704{
1705 struct audit_names *aname;
1706
1707 if (context->name_count < AUDIT_NAMES) {
1708 aname = &context->preallocated_names[context->name_count];
1709 memset(aname, 0, sizeof(*aname));
1710 } else {
1711 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1712 if (!aname)
1713 return NULL;
1714 aname->should_free = true;
1715 }
1716
1717 aname->ino = (unsigned long)-1;
78e2e802 1718 aname->type = type;
5195d8e2
EP
1719 list_add_tail(&aname->list, &context->names_list);
1720
1721 context->name_count++;
1722#if AUDIT_DEBUG
1723 context->ino_count++;
1724#endif
1725 return aname;
1726}
1727
7ac86265
JL
1728/**
1729 * audit_reusename - fill out filename with info from existing entry
1730 * @uptr: userland ptr to pathname
1731 *
1732 * Search the audit_names list for the current audit context. If there is an
1733 * existing entry with a matching "uptr" then return the filename
1734 * associated with that audit_name. If not, return NULL.
1735 */
1736struct filename *
1737__audit_reusename(const __user char *uptr)
1738{
1739 struct audit_context *context = current->audit_context;
1740 struct audit_names *n;
1741
1742 list_for_each_entry(n, &context->names_list, list) {
1743 if (!n->name)
1744 continue;
1745 if (n->name->uptr == uptr)
1746 return n->name;
1747 }
1748 return NULL;
1749}
1750
b0dd25a8
RD
1751/**
1752 * audit_getname - add a name to the list
1753 * @name: name to add
1754 *
1755 * Add a name to the list of audit names for this context.
1756 * Called from fs/namei.c:getname().
1757 */
91a27b2a 1758void __audit_getname(struct filename *name)
1da177e4
LT
1759{
1760 struct audit_context *context = current->audit_context;
5195d8e2 1761 struct audit_names *n;
1da177e4 1762
1da177e4
LT
1763 if (!context->in_syscall) {
1764#if AUDIT_DEBUG == 2
f952d10f 1765 pr_err("%s:%d(:%d): ignoring getname(%p)\n",
1da177e4
LT
1766 __FILE__, __LINE__, context->serial, name);
1767 dump_stack();
1768#endif
1769 return;
1770 }
5195d8e2 1771
91a27b2a
JL
1772#if AUDIT_DEBUG
1773 /* The filename _must_ have a populated ->name */
1774 BUG_ON(!name->name);
1775#endif
1776
78e2e802 1777 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
5195d8e2
EP
1778 if (!n)
1779 return;
1780
1781 n->name = name;
1782 n->name_len = AUDIT_NAME_FULL;
1783 n->name_put = true;
adb5c247 1784 name->aname = n;
5195d8e2 1785
f7ad3c6b
MS
1786 if (!context->pwd.dentry)
1787 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1788}
1789
b0dd25a8
RD
1790/* audit_putname - intercept a putname request
1791 * @name: name to intercept and delay for putname
1792 *
1793 * If we have stored the name from getname in the audit context,
1794 * then we delay the putname until syscall exit.
1795 * Called from include/linux/fs.h:putname().
1796 */
91a27b2a 1797void audit_putname(struct filename *name)
1da177e4
LT
1798{
1799 struct audit_context *context = current->audit_context;
1800
1801 BUG_ON(!context);
c4ad8f98 1802 if (!name->aname || !context->in_syscall) {
1da177e4 1803#if AUDIT_DEBUG == 2
f952d10f 1804 pr_err("%s:%d(:%d): final_putname(%p)\n",
1da177e4
LT
1805 __FILE__, __LINE__, context->serial, name);
1806 if (context->name_count) {
5195d8e2 1807 struct audit_names *n;
34c474de 1808 int i = 0;
5195d8e2
EP
1809
1810 list_for_each_entry(n, &context->names_list, list)
f952d10f
RGB
1811 pr_err("name[%d] = %p = %s\n", i++, n->name,
1812 n->name->name ?: "(null)");
5195d8e2 1813 }
1da177e4 1814#endif
65ada7bc 1815 final_putname(name);
1da177e4
LT
1816 }
1817#if AUDIT_DEBUG
1818 else {
1819 ++context->put_count;
1820 if (context->put_count > context->name_count) {
f952d10f
RGB
1821 pr_err("%s:%d(:%d): major=%d in_syscall=%d putname(%p)"
1822 " name_count=%d put_count=%d\n",
1da177e4
LT
1823 __FILE__, __LINE__,
1824 context->serial, context->major,
91a27b2a
JL
1825 context->in_syscall, name->name,
1826 context->name_count, context->put_count);
1da177e4
LT
1827 dump_stack();
1828 }
1829 }
1830#endif
1831}
1832
b0dd25a8 1833/**
bfcec708 1834 * __audit_inode - store the inode and device from a lookup
b0dd25a8 1835 * @name: name being audited
481968f4 1836 * @dentry: dentry being audited
79f6530c 1837 * @flags: attributes for this particular entry
b0dd25a8 1838 */
adb5c247 1839void __audit_inode(struct filename *name, const struct dentry *dentry,
79f6530c 1840 unsigned int flags)
1da177e4 1841{
1da177e4 1842 struct audit_context *context = current->audit_context;
74c3cbe3 1843 const struct inode *inode = dentry->d_inode;
5195d8e2 1844 struct audit_names *n;
79f6530c 1845 bool parent = flags & AUDIT_INODE_PARENT;
1da177e4
LT
1846
1847 if (!context->in_syscall)
1848 return;
5195d8e2 1849
9cec9d68
JL
1850 if (!name)
1851 goto out_alloc;
1852
adb5c247
JL
1853#if AUDIT_DEBUG
1854 /* The struct filename _must_ have a populated ->name */
1855 BUG_ON(!name->name);
1856#endif
1857 /*
1858 * If we have a pointer to an audit_names entry already, then we can
1859 * just use it directly if the type is correct.
1860 */
1861 n = name->aname;
1862 if (n) {
1863 if (parent) {
1864 if (n->type == AUDIT_TYPE_PARENT ||
1865 n->type == AUDIT_TYPE_UNKNOWN)
1866 goto out;
1867 } else {
1868 if (n->type != AUDIT_TYPE_PARENT)
1869 goto out;
1870 }
1871 }
1872
5195d8e2 1873 list_for_each_entry_reverse(n, &context->names_list, list) {
bfcec708 1874 /* does the name pointer match? */
adb5c247 1875 if (!n->name || n->name->name != name->name)
bfcec708
JL
1876 continue;
1877
1878 /* match the correct record type */
1879 if (parent) {
1880 if (n->type == AUDIT_TYPE_PARENT ||
1881 n->type == AUDIT_TYPE_UNKNOWN)
1882 goto out;
1883 } else {
1884 if (n->type != AUDIT_TYPE_PARENT)
1885 goto out;
1886 }
1da177e4 1887 }
5195d8e2 1888
9cec9d68 1889out_alloc:
bfcec708
JL
1890 /* unable to find the name from a previous getname(). Allocate a new
1891 * anonymous entry.
1892 */
78e2e802 1893 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
5195d8e2
EP
1894 if (!n)
1895 return;
1896out:
bfcec708 1897 if (parent) {
91a27b2a 1898 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
bfcec708 1899 n->type = AUDIT_TYPE_PARENT;
79f6530c
JL
1900 if (flags & AUDIT_INODE_HIDDEN)
1901 n->hidden = true;
bfcec708
JL
1902 } else {
1903 n->name_len = AUDIT_NAME_FULL;
1904 n->type = AUDIT_TYPE_NORMAL;
1905 }
74c3cbe3 1906 handle_path(dentry);
5195d8e2 1907 audit_copy_inode(n, dentry, inode);
73241ccc
AG
1908}
1909
1910/**
c43a25ab 1911 * __audit_inode_child - collect inode info for created/removed objects
73d3ec5a 1912 * @parent: inode of dentry parent
c43a25ab 1913 * @dentry: dentry being audited
4fa6b5ec 1914 * @type: AUDIT_TYPE_* value that we're looking for
73241ccc
AG
1915 *
1916 * For syscalls that create or remove filesystem objects, audit_inode
1917 * can only collect information for the filesystem object's parent.
1918 * This call updates the audit context with the child's information.
1919 * Syscalls that create a new filesystem object must be hooked after
1920 * the object is created. Syscalls that remove a filesystem object
1921 * must be hooked prior, in order to capture the target inode during
1922 * unsuccessful attempts.
1923 */
c43a25ab 1924void __audit_inode_child(const struct inode *parent,
4fa6b5ec
JL
1925 const struct dentry *dentry,
1926 const unsigned char type)
73241ccc 1927{
73241ccc 1928 struct audit_context *context = current->audit_context;
5a190ae6 1929 const struct inode *inode = dentry->d_inode;
cccc6bba 1930 const char *dname = dentry->d_name.name;
4fa6b5ec 1931 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
73241ccc
AG
1932
1933 if (!context->in_syscall)
1934 return;
1935
74c3cbe3
AV
1936 if (inode)
1937 handle_one(inode);
73241ccc 1938
4fa6b5ec 1939 /* look for a parent entry first */
5195d8e2 1940 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec 1941 if (!n->name || n->type != AUDIT_TYPE_PARENT)
5712e88f
AG
1942 continue;
1943
1944 if (n->ino == parent->i_ino &&
91a27b2a 1945 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
4fa6b5ec
JL
1946 found_parent = n;
1947 break;
f368c07d 1948 }
5712e88f 1949 }
73241ccc 1950
4fa6b5ec 1951 /* is there a matching child entry? */
5195d8e2 1952 list_for_each_entry(n, &context->names_list, list) {
4fa6b5ec
JL
1953 /* can only match entries that have a name */
1954 if (!n->name || n->type != type)
1955 continue;
1956
1957 /* if we found a parent, make sure this one is a child of it */
1958 if (found_parent && (n->name != found_parent->name))
5712e88f
AG
1959 continue;
1960
91a27b2a
JL
1961 if (!strcmp(dname, n->name->name) ||
1962 !audit_compare_dname_path(dname, n->name->name,
4fa6b5ec
JL
1963 found_parent ?
1964 found_parent->name_len :
e3d6b07b 1965 AUDIT_NAME_FULL)) {
4fa6b5ec
JL
1966 found_child = n;
1967 break;
5712e88f 1968 }
ac9910ce 1969 }
5712e88f 1970
5712e88f 1971 if (!found_parent) {
4fa6b5ec
JL
1972 /* create a new, "anonymous" parent record */
1973 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
5195d8e2 1974 if (!n)
ac9910ce 1975 return;
5195d8e2 1976 audit_copy_inode(n, NULL, parent);
73d3ec5a 1977 }
5712e88f
AG
1978
1979 if (!found_child) {
4fa6b5ec
JL
1980 found_child = audit_alloc_name(context, type);
1981 if (!found_child)
5712e88f 1982 return;
5712e88f
AG
1983
1984 /* Re-use the name belonging to the slot for a matching parent
1985 * directory. All names for this context are relinquished in
1986 * audit_free_names() */
1987 if (found_parent) {
4fa6b5ec
JL
1988 found_child->name = found_parent->name;
1989 found_child->name_len = AUDIT_NAME_FULL;
5712e88f 1990 /* don't call __putname() */
4fa6b5ec 1991 found_child->name_put = false;
5712e88f 1992 }
5712e88f 1993 }
4fa6b5ec
JL
1994 if (inode)
1995 audit_copy_inode(found_child, dentry, inode);
1996 else
1997 found_child->ino = (unsigned long)-1;
3e2efce0 1998}
50e437d5 1999EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2000
b0dd25a8
RD
2001/**
2002 * auditsc_get_stamp - get local copies of audit_context values
2003 * @ctx: audit_context for the task
2004 * @t: timespec to store time recorded in the audit_context
2005 * @serial: serial value that is recorded in the audit_context
2006 *
2007 * Also sets the context as auditable.
2008 */
48887e63 2009int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2010 struct timespec *t, unsigned int *serial)
1da177e4 2011{
48887e63
AV
2012 if (!ctx->in_syscall)
2013 return 0;
ce625a80
DW
2014 if (!ctx->serial)
2015 ctx->serial = audit_serial();
bfb4496e
DW
2016 t->tv_sec = ctx->ctime.tv_sec;
2017 t->tv_nsec = ctx->ctime.tv_nsec;
2018 *serial = ctx->serial;
0590b933
AV
2019 if (!ctx->prio) {
2020 ctx->prio = 1;
2021 ctx->current_state = AUDIT_RECORD_CONTEXT;
2022 }
48887e63 2023 return 1;
1da177e4
LT
2024}
2025
4746ec5b
EP
2026/* global counter which is incremented every time something logs in */
2027static atomic_t session_id = ATOMIC_INIT(0);
2028
da0a6104
EP
2029static int audit_set_loginuid_perm(kuid_t loginuid)
2030{
da0a6104
EP
2031 /* if we are unset, we don't need privs */
2032 if (!audit_loginuid_set(current))
2033 return 0;
21b85c31
EP
2034 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2035 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2036 return -EPERM;
83fa6bbe
EP
2037 /* it is set, you need permission */
2038 if (!capable(CAP_AUDIT_CONTROL))
2039 return -EPERM;
d040e5af
EP
2040 /* reject if this is not an unset and we don't allow that */
2041 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2042 return -EPERM;
83fa6bbe 2043 return 0;
da0a6104
EP
2044}
2045
2046static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2047 unsigned int oldsessionid, unsigned int sessionid,
2048 int rc)
2049{
2050 struct audit_buffer *ab;
5ee9a75c 2051 uid_t uid, oldloginuid, loginuid;
da0a6104 2052
c2412d91
G
2053 if (!audit_enabled)
2054 return;
2055
da0a6104 2056 uid = from_kuid(&init_user_ns, task_uid(current));
5ee9a75c
RGB
2057 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2058 loginuid = from_kuid(&init_user_ns, kloginuid),
da0a6104
EP
2059
2060 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2061 if (!ab)
2062 return;
ddfad8af
EP
2063 audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
2064 audit_log_task_context(ab);
2065 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
2066 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
da0a6104
EP
2067 audit_log_end(ab);
2068}
2069
b0dd25a8 2070/**
0a300be6 2071 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2072 * @loginuid: loginuid value
2073 *
2074 * Returns 0.
2075 *
2076 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2077 */
e1760bd5 2078int audit_set_loginuid(kuid_t loginuid)
1da177e4 2079{
0a300be6 2080 struct task_struct *task = current;
9175c9d2
EP
2081 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2082 kuid_t oldloginuid;
da0a6104 2083 int rc;
41757106 2084
da0a6104
EP
2085 oldloginuid = audit_get_loginuid(current);
2086 oldsessionid = audit_get_sessionid(current);
2087
2088 rc = audit_set_loginuid_perm(loginuid);
2089 if (rc)
2090 goto out;
633b4545 2091
81407c84
EP
2092 /* are we setting or clearing? */
2093 if (uid_valid(loginuid))
4440e854 2094 sessionid = (unsigned int)atomic_inc_return(&session_id);
bfef93a5 2095
4746ec5b 2096 task->sessionid = sessionid;
bfef93a5 2097 task->loginuid = loginuid;
da0a6104
EP
2098out:
2099 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2100 return rc;
1da177e4
LT
2101}
2102
20ca73bc
GW
2103/**
2104 * __audit_mq_open - record audit data for a POSIX MQ open
2105 * @oflag: open flag
2106 * @mode: mode bits
6b962559 2107 * @attr: queue attributes
20ca73bc 2108 *
20ca73bc 2109 */
df0a4283 2110void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2111{
20ca73bc
GW
2112 struct audit_context *context = current->audit_context;
2113
564f6993
AV
2114 if (attr)
2115 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2116 else
2117 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2118
564f6993
AV
2119 context->mq_open.oflag = oflag;
2120 context->mq_open.mode = mode;
20ca73bc 2121
564f6993 2122 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2123}
2124
2125/**
c32c8af4 2126 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2127 * @mqdes: MQ descriptor
2128 * @msg_len: Message length
2129 * @msg_prio: Message priority
c32c8af4 2130 * @abs_timeout: Message timeout in absolute time
20ca73bc 2131 *
20ca73bc 2132 */
c32c8af4
AV
2133void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2134 const struct timespec *abs_timeout)
20ca73bc 2135{
20ca73bc 2136 struct audit_context *context = current->audit_context;
c32c8af4 2137 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2138
c32c8af4
AV
2139 if (abs_timeout)
2140 memcpy(p, abs_timeout, sizeof(struct timespec));
2141 else
2142 memset(p, 0, sizeof(struct timespec));
20ca73bc 2143
c32c8af4
AV
2144 context->mq_sendrecv.mqdes = mqdes;
2145 context->mq_sendrecv.msg_len = msg_len;
2146 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2147
c32c8af4 2148 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2149}
2150
2151/**
2152 * __audit_mq_notify - record audit data for a POSIX MQ notify
2153 * @mqdes: MQ descriptor
6b962559 2154 * @notification: Notification event
20ca73bc 2155 *
20ca73bc
GW
2156 */
2157
20114f71 2158void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2159{
20ca73bc
GW
2160 struct audit_context *context = current->audit_context;
2161
20114f71
AV
2162 if (notification)
2163 context->mq_notify.sigev_signo = notification->sigev_signo;
2164 else
2165 context->mq_notify.sigev_signo = 0;
20ca73bc 2166
20114f71
AV
2167 context->mq_notify.mqdes = mqdes;
2168 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2169}
2170
2171/**
2172 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2173 * @mqdes: MQ descriptor
2174 * @mqstat: MQ flags
2175 *
20ca73bc 2176 */
7392906e 2177void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2178{
20ca73bc 2179 struct audit_context *context = current->audit_context;
7392906e
AV
2180 context->mq_getsetattr.mqdes = mqdes;
2181 context->mq_getsetattr.mqstat = *mqstat;
2182 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2183}
2184
b0dd25a8 2185/**
073115d6
SG
2186 * audit_ipc_obj - record audit data for ipc object
2187 * @ipcp: ipc permissions
2188 *
073115d6 2189 */
a33e6751 2190void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2191{
073115d6 2192 struct audit_context *context = current->audit_context;
a33e6751
AV
2193 context->ipc.uid = ipcp->uid;
2194 context->ipc.gid = ipcp->gid;
2195 context->ipc.mode = ipcp->mode;
e816f370 2196 context->ipc.has_perm = 0;
a33e6751
AV
2197 security_ipc_getsecid(ipcp, &context->ipc.osid);
2198 context->type = AUDIT_IPC;
073115d6
SG
2199}
2200
2201/**
2202 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2203 * @qbytes: msgq bytes
2204 * @uid: msgq user id
2205 * @gid: msgq group id
2206 * @mode: msgq mode (permissions)
2207 *
e816f370 2208 * Called only after audit_ipc_obj().
b0dd25a8 2209 */
2570ebbd 2210void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2211{
1da177e4
LT
2212 struct audit_context *context = current->audit_context;
2213
e816f370
AV
2214 context->ipc.qbytes = qbytes;
2215 context->ipc.perm_uid = uid;
2216 context->ipc.perm_gid = gid;
2217 context->ipc.perm_mode = mode;
2218 context->ipc.has_perm = 1;
1da177e4 2219}
c2f0c7c3 2220
d9cfea91 2221void __audit_bprm(struct linux_binprm *bprm)
473ae30b 2222{
473ae30b 2223 struct audit_context *context = current->audit_context;
473ae30b 2224
d9cfea91
RGB
2225 context->type = AUDIT_EXECVE;
2226 context->execve.argc = bprm->argc;
473ae30b
AV
2227}
2228
2229
b0dd25a8
RD
2230/**
2231 * audit_socketcall - record audit data for sys_socketcall
2950fa9d 2232 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
b0dd25a8
RD
2233 * @args: args array
2234 *
b0dd25a8 2235 */
2950fa9d 2236int __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2237{
3ec3b2fb
DW
2238 struct audit_context *context = current->audit_context;
2239
2950fa9d
CG
2240 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2241 return -EINVAL;
f3298dc4
AV
2242 context->type = AUDIT_SOCKETCALL;
2243 context->socketcall.nargs = nargs;
2244 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2950fa9d 2245 return 0;
3ec3b2fb
DW
2246}
2247
db349509
AV
2248/**
2249 * __audit_fd_pair - record audit data for pipe and socketpair
2250 * @fd1: the first file descriptor
2251 * @fd2: the second file descriptor
2252 *
db349509 2253 */
157cf649 2254void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2255{
2256 struct audit_context *context = current->audit_context;
157cf649
AV
2257 context->fds[0] = fd1;
2258 context->fds[1] = fd2;
db349509
AV
2259}
2260
b0dd25a8
RD
2261/**
2262 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2263 * @len: data length in user space
2264 * @a: data address in kernel space
2265 *
2266 * Returns 0 for success or NULL context or < 0 on error.
2267 */
07c49417 2268int __audit_sockaddr(int len, void *a)
3ec3b2fb 2269{
3ec3b2fb
DW
2270 struct audit_context *context = current->audit_context;
2271
4f6b434f
AV
2272 if (!context->sockaddr) {
2273 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2274 if (!p)
2275 return -ENOMEM;
2276 context->sockaddr = p;
2277 }
3ec3b2fb 2278
4f6b434f
AV
2279 context->sockaddr_len = len;
2280 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2281 return 0;
2282}
2283
a5cb013d
AV
2284void __audit_ptrace(struct task_struct *t)
2285{
2286 struct audit_context *context = current->audit_context;
2287
f1dc4867 2288 context->target_pid = task_pid_nr(t);
c2a7780e 2289 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2290 context->target_uid = task_uid(t);
4746ec5b 2291 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2292 security_task_getsecid(t, &context->target_sid);
c2a7780e 2293 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2294}
2295
b0dd25a8
RD
2296/**
2297 * audit_signal_info - record signal info for shutting down audit subsystem
2298 * @sig: signal value
2299 * @t: task being signaled
2300 *
2301 * If the audit subsystem is being terminated, record the task (pid)
2302 * and uid that is doing that.
2303 */
e54dc243 2304int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2305{
e54dc243
AG
2306 struct audit_aux_data_pids *axp;
2307 struct task_struct *tsk = current;
2308 struct audit_context *ctx = tsk->audit_context;
cca080d9 2309 kuid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2310
175fc484 2311 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2312 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
f1dc4867 2313 audit_sig_pid = task_pid_nr(tsk);
e1760bd5 2314 if (uid_valid(tsk->loginuid))
bfef93a5 2315 audit_sig_uid = tsk->loginuid;
175fc484 2316 else
c69e8d9c 2317 audit_sig_uid = uid;
2a862b32 2318 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2319 }
2320 if (!audit_signals || audit_dummy_context())
2321 return 0;
c2f0c7c3 2322 }
e54dc243 2323
e54dc243
AG
2324 /* optimize the common case by putting first signal recipient directly
2325 * in audit_context */
2326 if (!ctx->target_pid) {
f1dc4867 2327 ctx->target_pid = task_tgid_nr(t);
c2a7780e 2328 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2329 ctx->target_uid = t_uid;
4746ec5b 2330 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2331 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2332 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2333 return 0;
2334 }
2335
2336 axp = (void *)ctx->aux_pids;
2337 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2338 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2339 if (!axp)
2340 return -ENOMEM;
2341
2342 axp->d.type = AUDIT_OBJ_PID;
2343 axp->d.next = ctx->aux_pids;
2344 ctx->aux_pids = (void *)axp;
2345 }
88ae704c 2346 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243 2347
f1dc4867 2348 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
c2a7780e 2349 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2350 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2351 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2352 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2353 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2354 axp->pid_count++;
2355
2356 return 0;
c2f0c7c3 2357}
0a4ff8c2 2358
3fc689e9
EP
2359/**
2360 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2361 * @bprm: pointer to the bprm being processed
2362 * @new: the proposed new credentials
2363 * @old: the old credentials
3fc689e9
EP
2364 *
2365 * Simply check if the proc already has the caps given by the file and if not
2366 * store the priv escalation info for later auditing at the end of the syscall
2367 *
3fc689e9
EP
2368 * -Eric
2369 */
d84f4f99
DH
2370int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2371 const struct cred *new, const struct cred *old)
3fc689e9
EP
2372{
2373 struct audit_aux_data_bprm_fcaps *ax;
2374 struct audit_context *context = current->audit_context;
2375 struct cpu_vfs_cap_data vcaps;
2376 struct dentry *dentry;
2377
2378 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2379 if (!ax)
d84f4f99 2380 return -ENOMEM;
3fc689e9
EP
2381
2382 ax->d.type = AUDIT_BPRM_FCAPS;
2383 ax->d.next = context->aux;
2384 context->aux = (void *)ax;
2385
2386 dentry = dget(bprm->file->f_dentry);
2387 get_vfs_caps_from_disk(dentry, &vcaps);
2388 dput(dentry);
2389
2390 ax->fcap.permitted = vcaps.permitted;
2391 ax->fcap.inheritable = vcaps.inheritable;
2392 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2393 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2394
d84f4f99
DH
2395 ax->old_pcap.permitted = old->cap_permitted;
2396 ax->old_pcap.inheritable = old->cap_inheritable;
2397 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2398
d84f4f99
DH
2399 ax->new_pcap.permitted = new->cap_permitted;
2400 ax->new_pcap.inheritable = new->cap_inheritable;
2401 ax->new_pcap.effective = new->cap_effective;
2402 return 0;
3fc689e9
EP
2403}
2404
e68b75a0
EP
2405/**
2406 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2407 * @new: the new credentials
2408 * @old: the old (current) credentials
e68b75a0
EP
2409 *
2410 * Record the aguments userspace sent to sys_capset for later printing by the
2411 * audit system if applicable
2412 */
ca24a23e 2413void __audit_log_capset(const struct cred *new, const struct cred *old)
e68b75a0 2414{
e68b75a0 2415 struct audit_context *context = current->audit_context;
ca24a23e 2416 context->capset.pid = task_pid_nr(current);
57f71a0a
AV
2417 context->capset.cap.effective = new->cap_effective;
2418 context->capset.cap.inheritable = new->cap_effective;
2419 context->capset.cap.permitted = new->cap_permitted;
2420 context->type = AUDIT_CAPSET;
e68b75a0
EP
2421}
2422
120a795d
AV
2423void __audit_mmap_fd(int fd, int flags)
2424{
2425 struct audit_context *context = current->audit_context;
2426 context->mmap.fd = fd;
2427 context->mmap.flags = flags;
2428 context->type = AUDIT_MMAP;
2429}
2430
7b9205bd 2431static void audit_log_task(struct audit_buffer *ab)
85e7bac3 2432{
cca080d9
EB
2433 kuid_t auid, uid;
2434 kgid_t gid;
85e7bac3 2435 unsigned int sessionid;
ff235f51 2436 struct mm_struct *mm = current->mm;
85e7bac3
EP
2437
2438 auid = audit_get_loginuid(current);
2439 sessionid = audit_get_sessionid(current);
2440 current_uid_gid(&uid, &gid);
2441
2442 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
cca080d9
EB
2443 from_kuid(&init_user_ns, auid),
2444 from_kuid(&init_user_ns, uid),
2445 from_kgid(&init_user_ns, gid),
2446 sessionid);
85e7bac3 2447 audit_log_task_context(ab);
f1dc4867 2448 audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
85e7bac3 2449 audit_log_untrustedstring(ab, current->comm);
ff235f51
PD
2450 if (mm) {
2451 down_read(&mm->mmap_sem);
2452 if (mm->exe_file)
2453 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2454 up_read(&mm->mmap_sem);
2455 } else
2456 audit_log_format(ab, " exe=(null)");
7b9205bd
KC
2457}
2458
0a4ff8c2
SG
2459/**
2460 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2461 * @signr: signal value
0a4ff8c2
SG
2462 *
2463 * If a process ends with a core dump, something fishy is going on and we
2464 * should record the event for investigation.
2465 */
2466void audit_core_dumps(long signr)
2467{
2468 struct audit_buffer *ab;
0a4ff8c2
SG
2469
2470 if (!audit_enabled)
2471 return;
2472
2473 if (signr == SIGQUIT) /* don't care for those */
2474 return;
2475
2476 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
0644ec0c
KC
2477 if (unlikely(!ab))
2478 return;
61c0ee87
PD
2479 audit_log_task(ab);
2480 audit_log_format(ab, " sig=%ld", signr);
85e7bac3
EP
2481 audit_log_end(ab);
2482}
0a4ff8c2 2483
3dc1c1b2 2484void __audit_seccomp(unsigned long syscall, long signr, int code)
85e7bac3
EP
2485{
2486 struct audit_buffer *ab;
2487
7b9205bd
KC
2488 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2489 if (unlikely(!ab))
2490 return;
2491 audit_log_task(ab);
84db564a
RGB
2492 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2493 signr, syscall_get_arch(), syscall, is_compat_task(),
2494 KSTK_EIP(current), code);
0a4ff8c2
SG
2495 audit_log_end(ab);
2496}
916d7576
AV
2497
2498struct list_head *audit_killed_trees(void)
2499{
2500 struct audit_context *ctx = current->audit_context;
2501 if (likely(!ctx || !ctx->in_syscall))
2502 return NULL;
2503 return &ctx->killed_trees;
2504}
This page took 0.791638 seconds and 5 git commands to generate.