ALSA: usb-line6: use the same declaration as definition in header for MIDI manufactur...
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
1f3fe7eb 64#include <linux/file.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
a7165264 184static bool cgrp_dfl_visible;
ddbcc7e8 185
223ffb29 186/* Controllers blocked by the commandline in v1 */
6e5c8307 187static u16 cgroup_no_v1_mask;
223ffb29 188
5533e011 189/* some controllers are not supported in the default hierarchy */
a7165264 190static u16 cgrp_dfl_inhibit_ss_mask;
5533e011 191
f6d635ad
TH
192/* some controllers are implicitly enabled on the default hierarchy */
193static unsigned long cgrp_dfl_implicit_ss_mask;
194
ddbcc7e8
PM
195/* The list of hierarchy roots */
196
9871bf95
TH
197static LIST_HEAD(cgroup_roots);
198static int cgroup_root_count;
ddbcc7e8 199
3417ae1f 200/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 201static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 202
794611a1 203/*
0cb51d71
TH
204 * Assign a monotonically increasing serial number to csses. It guarantees
205 * cgroups with bigger numbers are newer than those with smaller numbers.
206 * Also, as csses are always appended to the parent's ->children list, it
207 * guarantees that sibling csses are always sorted in the ascending serial
208 * number order on the list. Protected by cgroup_mutex.
794611a1 209 */
0cb51d71 210static u64 css_serial_nr_next = 1;
794611a1 211
cb4a3167
AS
212/*
213 * These bitmask flags indicate whether tasks in the fork and exit paths have
214 * fork/exit handlers to call. This avoids us having to do extra work in the
215 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 216 */
6e5c8307
TH
217static u16 have_fork_callback __read_mostly;
218static u16 have_exit_callback __read_mostly;
219static u16 have_free_callback __read_mostly;
ddbcc7e8 220
a79a908f
AK
221/* cgroup namespace for init task */
222struct cgroup_namespace init_cgroup_ns = {
223 .count = { .counter = 2, },
224 .user_ns = &init_user_ns,
225 .ns.ops = &cgroupns_operations,
226 .ns.inum = PROC_CGROUP_INIT_INO,
227 .root_cset = &init_css_set,
228};
229
7e47682e 230/* Ditto for the can_fork callback. */
6e5c8307 231static u16 have_canfork_callback __read_mostly;
7e47682e 232
67e9c74b 233static struct file_system_type cgroup2_fs_type;
a14c6874
TH
234static struct cftype cgroup_dfl_base_files[];
235static struct cftype cgroup_legacy_base_files[];
628f7cd4 236
6e5c8307 237static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask);
945ba199 238static void cgroup_lock_and_drain_offline(struct cgroup *cgrp);
334c3679
TH
239static int cgroup_apply_control(struct cgroup *cgrp);
240static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
ed27b9f7 241static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 242static int cgroup_destroy_locked(struct cgroup *cgrp);
6cd0f5bb
TH
243static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
244 struct cgroup_subsys *ss);
9d755d33 245static void css_release(struct percpu_ref *ref);
f8f22e53 246static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
247static int cgroup_addrm_files(struct cgroup_subsys_state *css,
248 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 249 bool is_add);
42809dd4 250
fc5ed1e9
TH
251/**
252 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
253 * @ssid: subsys ID of interest
254 *
255 * cgroup_subsys_enabled() can only be used with literal subsys names which
256 * is fine for individual subsystems but unsuitable for cgroup core. This
257 * is slower static_key_enabled() based test indexed by @ssid.
258 */
259static bool cgroup_ssid_enabled(int ssid)
260{
cfe02a8a
AB
261 if (CGROUP_SUBSYS_COUNT == 0)
262 return false;
263
fc5ed1e9
TH
264 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
265}
266
223ffb29
JW
267static bool cgroup_ssid_no_v1(int ssid)
268{
269 return cgroup_no_v1_mask & (1 << ssid);
270}
271
9e10a130
TH
272/**
273 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
274 * @cgrp: the cgroup of interest
275 *
276 * The default hierarchy is the v2 interface of cgroup and this function
277 * can be used to test whether a cgroup is on the default hierarchy for
278 * cases where a subsystem should behave differnetly depending on the
279 * interface version.
280 *
281 * The set of behaviors which change on the default hierarchy are still
282 * being determined and the mount option is prefixed with __DEVEL__.
283 *
284 * List of changed behaviors:
285 *
286 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
287 * and "name" are disallowed.
288 *
289 * - When mounting an existing superblock, mount options should match.
290 *
291 * - Remount is disallowed.
292 *
293 * - rename(2) is disallowed.
294 *
295 * - "tasks" is removed. Everything should be at process granularity. Use
296 * "cgroup.procs" instead.
297 *
298 * - "cgroup.procs" is not sorted. pids will be unique unless they got
299 * recycled inbetween reads.
300 *
301 * - "release_agent" and "notify_on_release" are removed. Replacement
302 * notification mechanism will be implemented.
303 *
304 * - "cgroup.clone_children" is removed.
305 *
306 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
307 * and its descendants contain no task; otherwise, 1. The file also
308 * generates kernfs notification which can be monitored through poll and
309 * [di]notify when the value of the file changes.
310 *
311 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
312 * take masks of ancestors with non-empty cpus/mems, instead of being
313 * moved to an ancestor.
314 *
315 * - cpuset: a task can be moved into an empty cpuset, and again it takes
316 * masks of ancestors.
317 *
318 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
319 * is not created.
320 *
321 * - blkcg: blk-throttle becomes properly hierarchical.
322 *
323 * - debug: disallowed on the default hierarchy.
324 */
325static bool cgroup_on_dfl(const struct cgroup *cgrp)
326{
327 return cgrp->root == &cgrp_dfl_root;
328}
329
6fa4918d
TH
330/* IDR wrappers which synchronize using cgroup_idr_lock */
331static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
332 gfp_t gfp_mask)
333{
334 int ret;
335
336 idr_preload(gfp_mask);
54504e97 337 spin_lock_bh(&cgroup_idr_lock);
d0164adc 338 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 339 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
340 idr_preload_end();
341 return ret;
342}
343
344static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
345{
346 void *ret;
347
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 ret = idr_replace(idr, ptr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351 return ret;
352}
353
354static void cgroup_idr_remove(struct idr *idr, int id)
355{
54504e97 356 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 357 idr_remove(idr, id);
54504e97 358 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
359}
360
d51f39b0
TH
361static struct cgroup *cgroup_parent(struct cgroup *cgrp)
362{
363 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
364
365 if (parent_css)
366 return container_of(parent_css, struct cgroup, self);
367 return NULL;
368}
369
5531dc91
TH
370/* subsystems visibly enabled on a cgroup */
371static u16 cgroup_control(struct cgroup *cgrp)
372{
373 struct cgroup *parent = cgroup_parent(cgrp);
374 u16 root_ss_mask = cgrp->root->subsys_mask;
375
376 if (parent)
377 return parent->subtree_control;
378
379 if (cgroup_on_dfl(cgrp))
f6d635ad
TH
380 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
381 cgrp_dfl_implicit_ss_mask);
5531dc91
TH
382 return root_ss_mask;
383}
384
385/* subsystems enabled on a cgroup */
386static u16 cgroup_ss_mask(struct cgroup *cgrp)
387{
388 struct cgroup *parent = cgroup_parent(cgrp);
389
390 if (parent)
391 return parent->subtree_ss_mask;
392
393 return cgrp->root->subsys_mask;
394}
395
95109b62
TH
396/**
397 * cgroup_css - obtain a cgroup's css for the specified subsystem
398 * @cgrp: the cgroup of interest
9d800df1 399 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 400 *
ca8bdcaf
TH
401 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
402 * function must be called either under cgroup_mutex or rcu_read_lock() and
403 * the caller is responsible for pinning the returned css if it wants to
404 * keep accessing it outside the said locks. This function may return
405 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
406 */
407static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 408 struct cgroup_subsys *ss)
95109b62 409{
ca8bdcaf 410 if (ss)
aec25020 411 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 412 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 413 else
9d800df1 414 return &cgrp->self;
95109b62 415}
42809dd4 416
aec3dfcb
TH
417/**
418 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
419 * @cgrp: the cgroup of interest
9d800df1 420 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 421 *
d0f702e6 422 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
423 * as the matching css of the nearest ancestor including self which has @ss
424 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
425 * function is guaranteed to return non-NULL css.
426 */
427static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
428 struct cgroup_subsys *ss)
429{
430 lockdep_assert_held(&cgroup_mutex);
431
432 if (!ss)
9d800df1 433 return &cgrp->self;
aec3dfcb 434
eeecbd19
TH
435 /*
436 * This function is used while updating css associations and thus
5531dc91 437 * can't test the csses directly. Test ss_mask.
eeecbd19 438 */
5531dc91 439 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
d51f39b0 440 cgrp = cgroup_parent(cgrp);
5531dc91
TH
441 if (!cgrp)
442 return NULL;
443 }
aec3dfcb
TH
444
445 return cgroup_css(cgrp, ss);
95109b62 446}
42809dd4 447
eeecbd19
TH
448/**
449 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest
452 *
453 * Find and get the effective css of @cgrp for @ss. The effective css is
454 * defined as the matching css of the nearest ancestor including self which
455 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
456 * the root css is returned, so this function always returns a valid css.
457 * The returned css must be put using css_put().
458 */
459struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
461{
462 struct cgroup_subsys_state *css;
463
464 rcu_read_lock();
465
466 do {
467 css = cgroup_css(cgrp, ss);
468
469 if (css && css_tryget_online(css))
470 goto out_unlock;
471 cgrp = cgroup_parent(cgrp);
472 } while (cgrp);
473
474 css = init_css_set.subsys[ss->id];
475 css_get(css);
476out_unlock:
477 rcu_read_unlock();
478 return css;
479}
480
ddbcc7e8 481/* convenient tests for these bits */
54766d4a 482static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 483{
184faf32 484 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
485}
486
052c3f3a
TH
487static void cgroup_get(struct cgroup *cgrp)
488{
489 WARN_ON_ONCE(cgroup_is_dead(cgrp));
490 css_get(&cgrp->self);
491}
492
493static bool cgroup_tryget(struct cgroup *cgrp)
494{
495 return css_tryget(&cgrp->self);
496}
497
b4168640 498struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 499{
2bd59d48 500 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 501 struct cftype *cft = of_cft(of);
2bd59d48
TH
502
503 /*
504 * This is open and unprotected implementation of cgroup_css().
505 * seq_css() is only called from a kernfs file operation which has
506 * an active reference on the file. Because all the subsystem
507 * files are drained before a css is disassociated with a cgroup,
508 * the matching css from the cgroup's subsys table is guaranteed to
509 * be and stay valid until the enclosing operation is complete.
510 */
511 if (cft->ss)
512 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
513 else
9d800df1 514 return &cgrp->self;
59f5296b 515}
b4168640 516EXPORT_SYMBOL_GPL(of_css);
59f5296b 517
e9685a03 518static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 519{
bd89aabc 520 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
521}
522
1c6727af
TH
523/**
524 * for_each_css - iterate all css's of a cgroup
525 * @css: the iteration cursor
526 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
527 * @cgrp: the target cgroup to iterate css's of
528 *
aec3dfcb 529 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
530 */
531#define for_each_css(css, ssid, cgrp) \
532 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
533 if (!((css) = rcu_dereference_check( \
534 (cgrp)->subsys[(ssid)], \
535 lockdep_is_held(&cgroup_mutex)))) { } \
536 else
537
aec3dfcb
TH
538/**
539 * for_each_e_css - iterate all effective css's of a cgroup
540 * @css: the iteration cursor
541 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
542 * @cgrp: the target cgroup to iterate css's of
543 *
544 * Should be called under cgroup_[tree_]mutex.
545 */
546#define for_each_e_css(css, ssid, cgrp) \
547 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
548 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
549 ; \
550 else
551
30159ec7 552/**
3ed80a62 553 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 554 * @ss: the iteration cursor
780cd8b3 555 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 556 */
780cd8b3 557#define for_each_subsys(ss, ssid) \
3ed80a62
TH
558 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
559 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 560
cb4a3167 561/**
b4e0eeaf 562 * do_each_subsys_mask - filter for_each_subsys with a bitmask
cb4a3167
AS
563 * @ss: the iteration cursor
564 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
b4e0eeaf 565 * @ss_mask: the bitmask
cb4a3167
AS
566 *
567 * The block will only run for cases where the ssid-th bit (1 << ssid) of
b4e0eeaf 568 * @ss_mask is set.
cb4a3167 569 */
b4e0eeaf
TH
570#define do_each_subsys_mask(ss, ssid, ss_mask) do { \
571 unsigned long __ss_mask = (ss_mask); \
572 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
4a705c5c 573 (ssid) = 0; \
b4e0eeaf
TH
574 break; \
575 } \
576 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
577 (ss) = cgroup_subsys[ssid]; \
578 {
579
580#define while_each_subsys_mask() \
581 } \
582 } \
583} while (false)
cb4a3167 584
985ed670
TH
585/* iterate across the hierarchies */
586#define for_each_root(root) \
5549c497 587 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 588
f8f22e53
TH
589/* iterate over child cgrps, lock should be held throughout iteration */
590#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 591 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 592 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
593 cgroup_is_dead(child); })) \
594 ; \
595 else
7ae1bad9 596
ce3f1d9d
TH
597/* walk live descendants in preorder */
598#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
599 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
600 if (({ lockdep_assert_held(&cgroup_mutex); \
601 (dsct) = (d_css)->cgroup; \
602 cgroup_is_dead(dsct); })) \
603 ; \
604 else
605
606/* walk live descendants in postorder */
607#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
608 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
609 if (({ lockdep_assert_held(&cgroup_mutex); \
610 (dsct) = (d_css)->cgroup; \
611 cgroup_is_dead(dsct); })) \
612 ; \
613 else
614
81a6a5cd 615static void cgroup_release_agent(struct work_struct *work);
bd89aabc 616static void check_for_release(struct cgroup *cgrp);
81a6a5cd 617
69d0206c
TH
618/*
619 * A cgroup can be associated with multiple css_sets as different tasks may
620 * belong to different cgroups on different hierarchies. In the other
621 * direction, a css_set is naturally associated with multiple cgroups.
622 * This M:N relationship is represented by the following link structure
623 * which exists for each association and allows traversing the associations
624 * from both sides.
625 */
626struct cgrp_cset_link {
627 /* the cgroup and css_set this link associates */
628 struct cgroup *cgrp;
629 struct css_set *cset;
630
631 /* list of cgrp_cset_links anchored at cgrp->cset_links */
632 struct list_head cset_link;
633
634 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
635 struct list_head cgrp_link;
817929ec
PM
636};
637
172a2c06
TH
638/*
639 * The default css_set - used by init and its children prior to any
817929ec
PM
640 * hierarchies being mounted. It contains a pointer to the root state
641 * for each subsystem. Also used to anchor the list of css_sets. Not
642 * reference-counted, to improve performance when child cgroups
643 * haven't been created.
644 */
5024ae29 645struct css_set init_css_set = {
172a2c06
TH
646 .refcount = ATOMIC_INIT(1),
647 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
648 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
649 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
650 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
651 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 652 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 653};
817929ec 654
172a2c06 655static int css_set_count = 1; /* 1 for init_css_set */
817929ec 656
0de0942d
TH
657/**
658 * css_set_populated - does a css_set contain any tasks?
659 * @cset: target css_set
660 */
661static bool css_set_populated(struct css_set *cset)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
666}
667
842b597e
TH
668/**
669 * cgroup_update_populated - updated populated count of a cgroup
670 * @cgrp: the target cgroup
671 * @populated: inc or dec populated count
672 *
0de0942d
TH
673 * One of the css_sets associated with @cgrp is either getting its first
674 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
675 * count is propagated towards root so that a given cgroup's populated_cnt
676 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
677 *
678 * @cgrp's interface file "cgroup.populated" is zero if
679 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
680 * changes from or to zero, userland is notified that the content of the
681 * interface file has changed. This can be used to detect when @cgrp and
682 * its descendants become populated or empty.
683 */
684static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
842b597e
TH
687
688 do {
689 bool trigger;
690
691 if (populated)
692 trigger = !cgrp->populated_cnt++;
693 else
694 trigger = !--cgrp->populated_cnt;
695
696 if (!trigger)
697 break;
698
ad2ed2b3 699 check_for_release(cgrp);
6f60eade
TH
700 cgroup_file_notify(&cgrp->events_file);
701
d51f39b0 702 cgrp = cgroup_parent(cgrp);
842b597e
TH
703 } while (cgrp);
704}
705
0de0942d
TH
706/**
707 * css_set_update_populated - update populated state of a css_set
708 * @cset: target css_set
709 * @populated: whether @cset is populated or depopulated
710 *
711 * @cset is either getting the first task or losing the last. Update the
712 * ->populated_cnt of all associated cgroups accordingly.
713 */
714static void css_set_update_populated(struct css_set *cset, bool populated)
715{
716 struct cgrp_cset_link *link;
717
f0d9a5f1 718 lockdep_assert_held(&css_set_lock);
0de0942d
TH
719
720 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
721 cgroup_update_populated(link->cgrp, populated);
722}
723
f6d7d049
TH
724/**
725 * css_set_move_task - move a task from one css_set to another
726 * @task: task being moved
727 * @from_cset: css_set @task currently belongs to (may be NULL)
728 * @to_cset: new css_set @task is being moved to (may be NULL)
729 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
730 *
731 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
732 * css_set, @from_cset can be NULL. If @task is being disassociated
733 * instead of moved, @to_cset can be NULL.
734 *
ed27b9f7
TH
735 * This function automatically handles populated_cnt updates and
736 * css_task_iter adjustments but the caller is responsible for managing
737 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
738 */
739static void css_set_move_task(struct task_struct *task,
740 struct css_set *from_cset, struct css_set *to_cset,
741 bool use_mg_tasks)
742{
f0d9a5f1 743 lockdep_assert_held(&css_set_lock);
f6d7d049 744
20b454a6
TH
745 if (to_cset && !css_set_populated(to_cset))
746 css_set_update_populated(to_cset, true);
747
f6d7d049 748 if (from_cset) {
ed27b9f7
TH
749 struct css_task_iter *it, *pos;
750
f6d7d049 751 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
752
753 /*
754 * @task is leaving, advance task iterators which are
755 * pointing to it so that they can resume at the next
756 * position. Advancing an iterator might remove it from
757 * the list, use safe walk. See css_task_iter_advance*()
758 * for details.
759 */
760 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
761 iters_node)
762 if (it->task_pos == &task->cg_list)
763 css_task_iter_advance(it);
764
f6d7d049
TH
765 list_del_init(&task->cg_list);
766 if (!css_set_populated(from_cset))
767 css_set_update_populated(from_cset, false);
768 } else {
769 WARN_ON_ONCE(!list_empty(&task->cg_list));
770 }
771
772 if (to_cset) {
773 /*
774 * We are synchronized through cgroup_threadgroup_rwsem
775 * against PF_EXITING setting such that we can't race
776 * against cgroup_exit() changing the css_set to
777 * init_css_set and dropping the old one.
778 */
779 WARN_ON_ONCE(task->flags & PF_EXITING);
780
f6d7d049
TH
781 rcu_assign_pointer(task->cgroups, to_cset);
782 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
783 &to_cset->tasks);
784 }
785}
786
7717f7ba
PM
787/*
788 * hash table for cgroup groups. This improves the performance to find
789 * an existing css_set. This hash doesn't (currently) take into
790 * account cgroups in empty hierarchies.
791 */
472b1053 792#define CSS_SET_HASH_BITS 7
0ac801fe 793static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 794
0ac801fe 795static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 796{
0ac801fe 797 unsigned long key = 0UL;
30159ec7
TH
798 struct cgroup_subsys *ss;
799 int i;
472b1053 800
30159ec7 801 for_each_subsys(ss, i)
0ac801fe
LZ
802 key += (unsigned long)css[i];
803 key = (key >> 16) ^ key;
472b1053 804
0ac801fe 805 return key;
472b1053
LZ
806}
807
a25eb52e 808static void put_css_set_locked(struct css_set *cset)
b4f48b63 809{
69d0206c 810 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
811 struct cgroup_subsys *ss;
812 int ssid;
5abb8855 813
f0d9a5f1 814 lockdep_assert_held(&css_set_lock);
89c5509b
TH
815
816 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 817 return;
81a6a5cd 818
53254f90
TH
819 /* This css_set is dead. unlink it and release cgroup and css refs */
820 for_each_subsys(ss, ssid) {
2d8f243a 821 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
822 css_put(cset->subsys[ssid]);
823 }
5abb8855 824 hash_del(&cset->hlist);
2c6ab6d2
PM
825 css_set_count--;
826
69d0206c 827 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
828 list_del(&link->cset_link);
829 list_del(&link->cgrp_link);
2ceb231b
TH
830 if (cgroup_parent(link->cgrp))
831 cgroup_put(link->cgrp);
2c6ab6d2 832 kfree(link);
81a6a5cd 833 }
2c6ab6d2 834
5abb8855 835 kfree_rcu(cset, rcu_head);
b4f48b63
PM
836}
837
a25eb52e 838static void put_css_set(struct css_set *cset)
89c5509b 839{
82d6489d
DBO
840 unsigned long flags;
841
89c5509b
TH
842 /*
843 * Ensure that the refcount doesn't hit zero while any readers
844 * can see it. Similar to atomic_dec_and_lock(), but for an
845 * rwlock
846 */
847 if (atomic_add_unless(&cset->refcount, -1, 1))
848 return;
849
82d6489d 850 spin_lock_irqsave(&css_set_lock, flags);
a25eb52e 851 put_css_set_locked(cset);
82d6489d 852 spin_unlock_irqrestore(&css_set_lock, flags);
89c5509b
TH
853}
854
817929ec
PM
855/*
856 * refcounted get/put for css_set objects
857 */
5abb8855 858static inline void get_css_set(struct css_set *cset)
817929ec 859{
5abb8855 860 atomic_inc(&cset->refcount);
817929ec
PM
861}
862
b326f9d0 863/**
7717f7ba 864 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
865 * @cset: candidate css_set being tested
866 * @old_cset: existing css_set for a task
7717f7ba
PM
867 * @new_cgrp: cgroup that's being entered by the task
868 * @template: desired set of css pointers in css_set (pre-calculated)
869 *
6f4b7e63 870 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
871 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
872 */
5abb8855
TH
873static bool compare_css_sets(struct css_set *cset,
874 struct css_set *old_cset,
7717f7ba
PM
875 struct cgroup *new_cgrp,
876 struct cgroup_subsys_state *template[])
877{
878 struct list_head *l1, *l2;
879
aec3dfcb
TH
880 /*
881 * On the default hierarchy, there can be csets which are
882 * associated with the same set of cgroups but different csses.
883 * Let's first ensure that csses match.
884 */
885 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 886 return false;
7717f7ba
PM
887
888 /*
889 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
890 * different cgroups in hierarchies. As different cgroups may
891 * share the same effective css, this comparison is always
892 * necessary.
7717f7ba 893 */
69d0206c
TH
894 l1 = &cset->cgrp_links;
895 l2 = &old_cset->cgrp_links;
7717f7ba 896 while (1) {
69d0206c 897 struct cgrp_cset_link *link1, *link2;
5abb8855 898 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
899
900 l1 = l1->next;
901 l2 = l2->next;
902 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
903 if (l1 == &cset->cgrp_links) {
904 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
905 break;
906 } else {
69d0206c 907 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
908 }
909 /* Locate the cgroups associated with these links. */
69d0206c
TH
910 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
911 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
912 cgrp1 = link1->cgrp;
913 cgrp2 = link2->cgrp;
7717f7ba 914 /* Hierarchies should be linked in the same order. */
5abb8855 915 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
916
917 /*
918 * If this hierarchy is the hierarchy of the cgroup
919 * that's changing, then we need to check that this
920 * css_set points to the new cgroup; if it's any other
921 * hierarchy, then this css_set should point to the
922 * same cgroup as the old css_set.
923 */
5abb8855
TH
924 if (cgrp1->root == new_cgrp->root) {
925 if (cgrp1 != new_cgrp)
7717f7ba
PM
926 return false;
927 } else {
5abb8855 928 if (cgrp1 != cgrp2)
7717f7ba
PM
929 return false;
930 }
931 }
932 return true;
933}
934
b326f9d0
TH
935/**
936 * find_existing_css_set - init css array and find the matching css_set
937 * @old_cset: the css_set that we're using before the cgroup transition
938 * @cgrp: the cgroup that we're moving into
939 * @template: out param for the new set of csses, should be clear on entry
817929ec 940 */
5abb8855
TH
941static struct css_set *find_existing_css_set(struct css_set *old_cset,
942 struct cgroup *cgrp,
943 struct cgroup_subsys_state *template[])
b4f48b63 944{
3dd06ffa 945 struct cgroup_root *root = cgrp->root;
30159ec7 946 struct cgroup_subsys *ss;
5abb8855 947 struct css_set *cset;
0ac801fe 948 unsigned long key;
b326f9d0 949 int i;
817929ec 950
aae8aab4
BB
951 /*
952 * Build the set of subsystem state objects that we want to see in the
953 * new css_set. while subsystems can change globally, the entries here
954 * won't change, so no need for locking.
955 */
30159ec7 956 for_each_subsys(ss, i) {
f392e51c 957 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
958 /*
959 * @ss is in this hierarchy, so we want the
960 * effective css from @cgrp.
961 */
962 template[i] = cgroup_e_css(cgrp, ss);
817929ec 963 } else {
aec3dfcb
TH
964 /*
965 * @ss is not in this hierarchy, so we don't want
966 * to change the css.
967 */
5abb8855 968 template[i] = old_cset->subsys[i];
817929ec
PM
969 }
970 }
971
0ac801fe 972 key = css_set_hash(template);
5abb8855
TH
973 hash_for_each_possible(css_set_table, cset, hlist, key) {
974 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
975 continue;
976
977 /* This css_set matches what we need */
5abb8855 978 return cset;
472b1053 979 }
817929ec
PM
980
981 /* No existing cgroup group matched */
982 return NULL;
983}
984
69d0206c 985static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 986{
69d0206c 987 struct cgrp_cset_link *link, *tmp_link;
36553434 988
69d0206c
TH
989 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
990 list_del(&link->cset_link);
36553434
LZ
991 kfree(link);
992 }
993}
994
69d0206c
TH
995/**
996 * allocate_cgrp_cset_links - allocate cgrp_cset_links
997 * @count: the number of links to allocate
998 * @tmp_links: list_head the allocated links are put on
999 *
1000 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1001 * through ->cset_link. Returns 0 on success or -errno.
817929ec 1002 */
69d0206c 1003static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 1004{
69d0206c 1005 struct cgrp_cset_link *link;
817929ec 1006 int i;
69d0206c
TH
1007
1008 INIT_LIST_HEAD(tmp_links);
1009
817929ec 1010 for (i = 0; i < count; i++) {
f4f4be2b 1011 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 1012 if (!link) {
69d0206c 1013 free_cgrp_cset_links(tmp_links);
817929ec
PM
1014 return -ENOMEM;
1015 }
69d0206c 1016 list_add(&link->cset_link, tmp_links);
817929ec
PM
1017 }
1018 return 0;
1019}
1020
c12f65d4
LZ
1021/**
1022 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 1023 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 1024 * @cset: the css_set to be linked
c12f65d4
LZ
1025 * @cgrp: the destination cgroup
1026 */
69d0206c
TH
1027static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1028 struct cgroup *cgrp)
c12f65d4 1029{
69d0206c 1030 struct cgrp_cset_link *link;
c12f65d4 1031
69d0206c 1032 BUG_ON(list_empty(tmp_links));
6803c006
TH
1033
1034 if (cgroup_on_dfl(cgrp))
1035 cset->dfl_cgrp = cgrp;
1036
69d0206c
TH
1037 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1038 link->cset = cset;
7717f7ba 1039 link->cgrp = cgrp;
842b597e 1040
7717f7ba 1041 /*
389b9c1b
TH
1042 * Always add links to the tail of the lists so that the lists are
1043 * in choronological order.
7717f7ba 1044 */
389b9c1b 1045 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 1046 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
1047
1048 if (cgroup_parent(cgrp))
1049 cgroup_get(cgrp);
c12f65d4
LZ
1050}
1051
b326f9d0
TH
1052/**
1053 * find_css_set - return a new css_set with one cgroup updated
1054 * @old_cset: the baseline css_set
1055 * @cgrp: the cgroup to be updated
1056 *
1057 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1058 * substituted into the appropriate hierarchy.
817929ec 1059 */
5abb8855
TH
1060static struct css_set *find_css_set(struct css_set *old_cset,
1061 struct cgroup *cgrp)
817929ec 1062{
b326f9d0 1063 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1064 struct css_set *cset;
69d0206c
TH
1065 struct list_head tmp_links;
1066 struct cgrp_cset_link *link;
2d8f243a 1067 struct cgroup_subsys *ss;
0ac801fe 1068 unsigned long key;
2d8f243a 1069 int ssid;
472b1053 1070
b326f9d0
TH
1071 lockdep_assert_held(&cgroup_mutex);
1072
817929ec
PM
1073 /* First see if we already have a cgroup group that matches
1074 * the desired set */
82d6489d 1075 spin_lock_irq(&css_set_lock);
5abb8855
TH
1076 cset = find_existing_css_set(old_cset, cgrp, template);
1077 if (cset)
1078 get_css_set(cset);
82d6489d 1079 spin_unlock_irq(&css_set_lock);
817929ec 1080
5abb8855
TH
1081 if (cset)
1082 return cset;
817929ec 1083
f4f4be2b 1084 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1085 if (!cset)
817929ec
PM
1086 return NULL;
1087
69d0206c 1088 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1089 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1090 kfree(cset);
817929ec
PM
1091 return NULL;
1092 }
1093
5abb8855 1094 atomic_set(&cset->refcount, 1);
69d0206c 1095 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1096 INIT_LIST_HEAD(&cset->tasks);
c7561128 1097 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1098 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1099 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1100 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1101 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1102
1103 /* Copy the set of subsystem state objects generated in
1104 * find_existing_css_set() */
5abb8855 1105 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1106
82d6489d 1107 spin_lock_irq(&css_set_lock);
817929ec 1108 /* Add reference counts and links from the new css_set. */
69d0206c 1109 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1110 struct cgroup *c = link->cgrp;
69d0206c 1111
7717f7ba
PM
1112 if (c->root == cgrp->root)
1113 c = cgrp;
69d0206c 1114 link_css_set(&tmp_links, cset, c);
7717f7ba 1115 }
817929ec 1116
69d0206c 1117 BUG_ON(!list_empty(&tmp_links));
817929ec 1118
817929ec 1119 css_set_count++;
472b1053 1120
2d8f243a 1121 /* Add @cset to the hash table */
5abb8855
TH
1122 key = css_set_hash(cset->subsys);
1123 hash_add(css_set_table, &cset->hlist, key);
472b1053 1124
53254f90
TH
1125 for_each_subsys(ss, ssid) {
1126 struct cgroup_subsys_state *css = cset->subsys[ssid];
1127
2d8f243a 1128 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1129 &css->cgroup->e_csets[ssid]);
1130 css_get(css);
1131 }
2d8f243a 1132
82d6489d 1133 spin_unlock_irq(&css_set_lock);
817929ec 1134
5abb8855 1135 return cset;
b4f48b63
PM
1136}
1137
3dd06ffa 1138static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1139{
3dd06ffa 1140 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1141
3dd06ffa 1142 return root_cgrp->root;
2bd59d48
TH
1143}
1144
3dd06ffa 1145static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1146{
1147 int id;
1148
1149 lockdep_assert_held(&cgroup_mutex);
1150
985ed670 1151 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1152 if (id < 0)
1153 return id;
1154
1155 root->hierarchy_id = id;
1156 return 0;
1157}
1158
3dd06ffa 1159static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1160{
1161 lockdep_assert_held(&cgroup_mutex);
1162
8c8a5502 1163 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
f2e85d57
TH
1164}
1165
3dd06ffa 1166static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1167{
1168 if (root) {
f2e85d57
TH
1169 idr_destroy(&root->cgroup_idr);
1170 kfree(root);
1171 }
1172}
1173
3dd06ffa 1174static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1175{
3dd06ffa 1176 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1177 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1178
334c3679 1179 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
f2e85d57 1180
776f02fa 1181 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1182 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1183
f2e85d57 1184 /* Rebind all subsystems back to the default hierarchy */
334c3679 1185 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
7717f7ba 1186
7717f7ba 1187 /*
f2e85d57
TH
1188 * Release all the links from cset_links to this hierarchy's
1189 * root cgroup
7717f7ba 1190 */
82d6489d 1191 spin_lock_irq(&css_set_lock);
f2e85d57
TH
1192
1193 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1194 list_del(&link->cset_link);
1195 list_del(&link->cgrp_link);
1196 kfree(link);
1197 }
f0d9a5f1 1198
82d6489d 1199 spin_unlock_irq(&css_set_lock);
f2e85d57
TH
1200
1201 if (!list_empty(&root->root_list)) {
1202 list_del(&root->root_list);
1203 cgroup_root_count--;
1204 }
1205
1206 cgroup_exit_root_id(root);
1207
1208 mutex_unlock(&cgroup_mutex);
f2e85d57 1209
2bd59d48 1210 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1211 cgroup_free_root(root);
1212}
1213
4f41fc59
SH
1214/*
1215 * look up cgroup associated with current task's cgroup namespace on the
1216 * specified hierarchy
1217 */
1218static struct cgroup *
1219current_cgns_cgroup_from_root(struct cgroup_root *root)
1220{
1221 struct cgroup *res = NULL;
1222 struct css_set *cset;
1223
1224 lockdep_assert_held(&css_set_lock);
1225
1226 rcu_read_lock();
1227
1228 cset = current->nsproxy->cgroup_ns->root_cset;
1229 if (cset == &init_css_set) {
1230 res = &root->cgrp;
1231 } else {
1232 struct cgrp_cset_link *link;
1233
1234 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1235 struct cgroup *c = link->cgrp;
1236
1237 if (c->root == root) {
1238 res = c;
1239 break;
1240 }
1241 }
1242 }
1243 rcu_read_unlock();
1244
1245 BUG_ON(!res);
1246 return res;
1247}
1248
ceb6a081
TH
1249/* look up cgroup associated with given css_set on the specified hierarchy */
1250static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1251 struct cgroup_root *root)
7717f7ba 1252{
7717f7ba
PM
1253 struct cgroup *res = NULL;
1254
96d365e0 1255 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1256 lockdep_assert_held(&css_set_lock);
96d365e0 1257
5abb8855 1258 if (cset == &init_css_set) {
3dd06ffa 1259 res = &root->cgrp;
7717f7ba 1260 } else {
69d0206c
TH
1261 struct cgrp_cset_link *link;
1262
1263 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1264 struct cgroup *c = link->cgrp;
69d0206c 1265
7717f7ba
PM
1266 if (c->root == root) {
1267 res = c;
1268 break;
1269 }
1270 }
1271 }
96d365e0 1272
7717f7ba
PM
1273 BUG_ON(!res);
1274 return res;
1275}
1276
ddbcc7e8 1277/*
ceb6a081 1278 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1279 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1280 */
1281static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1282 struct cgroup_root *root)
ceb6a081
TH
1283{
1284 /*
1285 * No need to lock the task - since we hold cgroup_mutex the
1286 * task can't change groups, so the only thing that can happen
1287 * is that it exits and its css is set back to init_css_set.
1288 */
1289 return cset_cgroup_from_root(task_css_set(task), root);
1290}
1291
ddbcc7e8 1292/*
ddbcc7e8
PM
1293 * A task must hold cgroup_mutex to modify cgroups.
1294 *
1295 * Any task can increment and decrement the count field without lock.
1296 * So in general, code holding cgroup_mutex can't rely on the count
1297 * field not changing. However, if the count goes to zero, then only
956db3ca 1298 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1299 * means that no tasks are currently attached, therefore there is no
1300 * way a task attached to that cgroup can fork (the other way to
1301 * increment the count). So code holding cgroup_mutex can safely
1302 * assume that if the count is zero, it will stay zero. Similarly, if
1303 * a task holds cgroup_mutex on a cgroup with zero count, it
1304 * knows that the cgroup won't be removed, as cgroup_rmdir()
1305 * needs that mutex.
1306 *
ddbcc7e8
PM
1307 * A cgroup can only be deleted if both its 'count' of using tasks
1308 * is zero, and its list of 'children' cgroups is empty. Since all
1309 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1310 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1311 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1312 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1313 *
1314 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1315 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1316 */
1317
2bd59d48 1318static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1319static const struct file_operations proc_cgroupstats_operations;
a424316c 1320
8d7e6fb0
TH
1321static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1322 char *buf)
ddbcc7e8 1323{
3e1d2eed
TH
1324 struct cgroup_subsys *ss = cft->ss;
1325
8d7e6fb0
TH
1326 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1327 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1328 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1329 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1330 cft->name);
8d7e6fb0
TH
1331 else
1332 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1333 return buf;
ddbcc7e8
PM
1334}
1335
f2e85d57
TH
1336/**
1337 * cgroup_file_mode - deduce file mode of a control file
1338 * @cft: the control file in question
1339 *
7dbdb199 1340 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1341 */
1342static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1343{
f2e85d57 1344 umode_t mode = 0;
65dff759 1345
f2e85d57
TH
1346 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1347 mode |= S_IRUGO;
1348
7dbdb199
TH
1349 if (cft->write_u64 || cft->write_s64 || cft->write) {
1350 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1351 mode |= S_IWUGO;
1352 else
1353 mode |= S_IWUSR;
1354 }
f2e85d57
TH
1355
1356 return mode;
65dff759
LZ
1357}
1358
af0ba678 1359/**
8699b776 1360 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
0f060deb 1361 * @subtree_control: the new subtree_control mask to consider
5ced2518 1362 * @this_ss_mask: available subsystems
af0ba678
TH
1363 *
1364 * On the default hierarchy, a subsystem may request other subsystems to be
1365 * enabled together through its ->depends_on mask. In such cases, more
1366 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1367 *
0f060deb 1368 * This function calculates which subsystems need to be enabled if
5ced2518 1369 * @subtree_control is to be applied while restricted to @this_ss_mask.
af0ba678 1370 */
5ced2518 1371static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
667c2491 1372{
6e5c8307 1373 u16 cur_ss_mask = subtree_control;
af0ba678
TH
1374 struct cgroup_subsys *ss;
1375 int ssid;
1376
1377 lockdep_assert_held(&cgroup_mutex);
1378
f6d635ad
TH
1379 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1380
af0ba678 1381 while (true) {
6e5c8307 1382 u16 new_ss_mask = cur_ss_mask;
af0ba678 1383
b4e0eeaf 1384 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
a966a4ed 1385 new_ss_mask |= ss->depends_on;
b4e0eeaf 1386 } while_each_subsys_mask();
af0ba678
TH
1387
1388 /*
1389 * Mask out subsystems which aren't available. This can
1390 * happen only if some depended-upon subsystems were bound
1391 * to non-default hierarchies.
1392 */
5ced2518 1393 new_ss_mask &= this_ss_mask;
af0ba678
TH
1394
1395 if (new_ss_mask == cur_ss_mask)
1396 break;
1397 cur_ss_mask = new_ss_mask;
1398 }
1399
0f060deb
TH
1400 return cur_ss_mask;
1401}
1402
a9746d8d
TH
1403/**
1404 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1405 * @kn: the kernfs_node being serviced
1406 *
1407 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1408 * the method finishes if locking succeeded. Note that once this function
1409 * returns the cgroup returned by cgroup_kn_lock_live() may become
1410 * inaccessible any time. If the caller intends to continue to access the
1411 * cgroup, it should pin it before invoking this function.
1412 */
1413static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1414{
a9746d8d
TH
1415 struct cgroup *cgrp;
1416
1417 if (kernfs_type(kn) == KERNFS_DIR)
1418 cgrp = kn->priv;
1419 else
1420 cgrp = kn->parent->priv;
1421
1422 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1423
1424 kernfs_unbreak_active_protection(kn);
1425 cgroup_put(cgrp);
ddbcc7e8
PM
1426}
1427
a9746d8d
TH
1428/**
1429 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1430 * @kn: the kernfs_node being serviced
945ba199 1431 * @drain_offline: perform offline draining on the cgroup
a9746d8d
TH
1432 *
1433 * This helper is to be used by a cgroup kernfs method currently servicing
1434 * @kn. It breaks the active protection, performs cgroup locking and
1435 * verifies that the associated cgroup is alive. Returns the cgroup if
1436 * alive; otherwise, %NULL. A successful return should be undone by a
945ba199
TH
1437 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1438 * cgroup is drained of offlining csses before return.
a9746d8d
TH
1439 *
1440 * Any cgroup kernfs method implementation which requires locking the
1441 * associated cgroup should use this helper. It avoids nesting cgroup
1442 * locking under kernfs active protection and allows all kernfs operations
1443 * including self-removal.
1444 */
945ba199
TH
1445static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn,
1446 bool drain_offline)
05ef1d7c 1447{
a9746d8d
TH
1448 struct cgroup *cgrp;
1449
1450 if (kernfs_type(kn) == KERNFS_DIR)
1451 cgrp = kn->priv;
1452 else
1453 cgrp = kn->parent->priv;
05ef1d7c 1454
2739d3cc 1455 /*
01f6474c 1456 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1457 * active_ref. cgroup liveliness check alone provides enough
1458 * protection against removal. Ensure @cgrp stays accessible and
1459 * break the active_ref protection.
2739d3cc 1460 */
aa32362f
LZ
1461 if (!cgroup_tryget(cgrp))
1462 return NULL;
a9746d8d
TH
1463 kernfs_break_active_protection(kn);
1464
945ba199
TH
1465 if (drain_offline)
1466 cgroup_lock_and_drain_offline(cgrp);
1467 else
1468 mutex_lock(&cgroup_mutex);
05ef1d7c 1469
a9746d8d
TH
1470 if (!cgroup_is_dead(cgrp))
1471 return cgrp;
1472
1473 cgroup_kn_unlock(kn);
1474 return NULL;
ddbcc7e8 1475}
05ef1d7c 1476
2739d3cc 1477static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1478{
2bd59d48 1479 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1480
01f6474c 1481 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1482
1483 if (cft->file_offset) {
1484 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1485 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1486
1487 spin_lock_irq(&cgroup_file_kn_lock);
1488 cfile->kn = NULL;
1489 spin_unlock_irq(&cgroup_file_kn_lock);
1490 }
1491
2bd59d48 1492 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1493}
1494
13af07df 1495/**
4df8dc90
TH
1496 * css_clear_dir - remove subsys files in a cgroup directory
1497 * @css: taget css
13af07df 1498 */
334c3679 1499static void css_clear_dir(struct cgroup_subsys_state *css)
05ef1d7c 1500{
334c3679 1501 struct cgroup *cgrp = css->cgroup;
4df8dc90 1502 struct cftype *cfts;
05ef1d7c 1503
88cb04b9
TH
1504 if (!(css->flags & CSS_VISIBLE))
1505 return;
1506
1507 css->flags &= ~CSS_VISIBLE;
1508
4df8dc90
TH
1509 list_for_each_entry(cfts, &css->ss->cfts, node)
1510 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1511}
1512
ccdca218 1513/**
4df8dc90
TH
1514 * css_populate_dir - create subsys files in a cgroup directory
1515 * @css: target css
ccdca218
TH
1516 *
1517 * On failure, no file is added.
1518 */
334c3679 1519static int css_populate_dir(struct cgroup_subsys_state *css)
ccdca218 1520{
334c3679 1521 struct cgroup *cgrp = css->cgroup;
4df8dc90
TH
1522 struct cftype *cfts, *failed_cfts;
1523 int ret;
ccdca218 1524
03970d3c 1525 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
88cb04b9
TH
1526 return 0;
1527
4df8dc90
TH
1528 if (!css->ss) {
1529 if (cgroup_on_dfl(cgrp))
1530 cfts = cgroup_dfl_base_files;
1531 else
1532 cfts = cgroup_legacy_base_files;
ccdca218 1533
4df8dc90
TH
1534 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1535 }
ccdca218 1536
4df8dc90
TH
1537 list_for_each_entry(cfts, &css->ss->cfts, node) {
1538 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1539 if (ret < 0) {
1540 failed_cfts = cfts;
1541 goto err;
ccdca218
TH
1542 }
1543 }
88cb04b9
TH
1544
1545 css->flags |= CSS_VISIBLE;
1546
ccdca218
TH
1547 return 0;
1548err:
4df8dc90
TH
1549 list_for_each_entry(cfts, &css->ss->cfts, node) {
1550 if (cfts == failed_cfts)
1551 break;
1552 cgroup_addrm_files(css, cgrp, cfts, false);
1553 }
ccdca218
TH
1554 return ret;
1555}
1556
6e5c8307 1557static int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
ddbcc7e8 1558{
1ada4838 1559 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1560 struct cgroup_subsys *ss;
2d8f243a 1561 int ssid, i, ret;
ddbcc7e8 1562
ace2bee8 1563 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1564
b4e0eeaf 1565 do_each_subsys_mask(ss, ssid, ss_mask) {
f6d635ad
TH
1566 /*
1567 * If @ss has non-root csses attached to it, can't move.
1568 * If @ss is an implicit controller, it is exempt from this
1569 * rule and can be stolen.
1570 */
1571 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1572 !ss->implicit_on_dfl)
3ed80a62 1573 return -EBUSY;
1d5be6b2 1574
5df36032 1575 /* can't move between two non-dummy roots either */
7fd8c565 1576 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1577 return -EBUSY;
b4e0eeaf 1578 } while_each_subsys_mask();
ddbcc7e8 1579
b4e0eeaf 1580 do_each_subsys_mask(ss, ssid, ss_mask) {
1ada4838
TH
1581 struct cgroup_root *src_root = ss->root;
1582 struct cgroup *scgrp = &src_root->cgrp;
1583 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1584 struct css_set *cset;
a8a648c4 1585
1ada4838 1586 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1587
334c3679
TH
1588 /* disable from the source */
1589 src_root->subsys_mask &= ~(1 << ssid);
1590 WARN_ON(cgroup_apply_control(scgrp));
1591 cgroup_finalize_control(scgrp, 0);
4df8dc90 1592
334c3679 1593 /* rebind */
1ada4838
TH
1594 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1595 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1596 ss->root = dst_root;
1ada4838 1597 css->cgroup = dcgrp;
73e80ed8 1598
82d6489d 1599 spin_lock_irq(&css_set_lock);
2d8f243a
TH
1600 hash_for_each(css_set_table, i, cset, hlist)
1601 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1602 &dcgrp->e_csets[ss->id]);
82d6489d 1603 spin_unlock_irq(&css_set_lock);
2d8f243a 1604
bd53d617 1605 /* default hierarchy doesn't enable controllers by default */
f392e51c 1606 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1607 if (dst_root == &cgrp_dfl_root) {
1608 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1609 } else {
1ada4838 1610 dcgrp->subtree_control |= 1 << ssid;
49d1dc4b 1611 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1612 }
a8a648c4 1613
334c3679
TH
1614 ret = cgroup_apply_control(dcgrp);
1615 if (ret)
1616 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1617 ss->name, ret);
1618
5df36032
TH
1619 if (ss->bind)
1620 ss->bind(css);
b4e0eeaf 1621 } while_each_subsys_mask();
ddbcc7e8 1622
1ada4838 1623 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1624 return 0;
1625}
1626
4f41fc59
SH
1627static int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1628 struct kernfs_root *kf_root)
1629{
09be4c82 1630 int len = 0;
4f41fc59
SH
1631 char *buf = NULL;
1632 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1633 struct cgroup *ns_cgroup;
1634
1635 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1636 if (!buf)
1637 return -ENOMEM;
1638
82d6489d 1639 spin_lock_irq(&css_set_lock);
4f41fc59
SH
1640 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1641 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
82d6489d 1642 spin_unlock_irq(&css_set_lock);
4f41fc59
SH
1643
1644 if (len >= PATH_MAX)
1645 len = -ERANGE;
1646 else if (len > 0) {
1647 seq_escape(sf, buf, " \t\n\\");
1648 len = 0;
1649 }
1650 kfree(buf);
1651 return len;
1652}
1653
2bd59d48
TH
1654static int cgroup_show_options(struct seq_file *seq,
1655 struct kernfs_root *kf_root)
ddbcc7e8 1656{
3dd06ffa 1657 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1658 struct cgroup_subsys *ss;
b85d2040 1659 int ssid;
ddbcc7e8 1660
d98817d4
TH
1661 if (root != &cgrp_dfl_root)
1662 for_each_subsys(ss, ssid)
1663 if (root->subsys_mask & (1 << ssid))
61e57c0c 1664 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1665 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1666 seq_puts(seq, ",noprefix");
93438629 1667 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1668 seq_puts(seq, ",xattr");
69e943b7
TH
1669
1670 spin_lock(&release_agent_path_lock);
81a6a5cd 1671 if (strlen(root->release_agent_path))
a068acf2
KC
1672 seq_show_option(seq, "release_agent",
1673 root->release_agent_path);
69e943b7
TH
1674 spin_unlock(&release_agent_path_lock);
1675
3dd06ffa 1676 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1677 seq_puts(seq, ",clone_children");
c6d57f33 1678 if (strlen(root->name))
a068acf2 1679 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1680 return 0;
1681}
1682
1683struct cgroup_sb_opts {
6e5c8307 1684 u16 subsys_mask;
69dfa00c 1685 unsigned int flags;
81a6a5cd 1686 char *release_agent;
2260e7fc 1687 bool cpuset_clone_children;
c6d57f33 1688 char *name;
2c6ab6d2
PM
1689 /* User explicitly requested empty subsystem */
1690 bool none;
ddbcc7e8
PM
1691};
1692
cf5d5941 1693static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1694{
32a8cf23
DL
1695 char *token, *o = data;
1696 bool all_ss = false, one_ss = false;
6e5c8307 1697 u16 mask = U16_MAX;
30159ec7 1698 struct cgroup_subsys *ss;
7b9a6ba5 1699 int nr_opts = 0;
30159ec7 1700 int i;
f9ab5b5b
LZ
1701
1702#ifdef CONFIG_CPUSETS
6e5c8307 1703 mask = ~((u16)1 << cpuset_cgrp_id);
f9ab5b5b 1704#endif
ddbcc7e8 1705
c6d57f33 1706 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1707
1708 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1709 nr_opts++;
1710
ddbcc7e8
PM
1711 if (!*token)
1712 return -EINVAL;
32a8cf23 1713 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1714 /* Explicitly have no subsystems */
1715 opts->none = true;
32a8cf23
DL
1716 continue;
1717 }
1718 if (!strcmp(token, "all")) {
1719 /* Mutually exclusive option 'all' + subsystem name */
1720 if (one_ss)
1721 return -EINVAL;
1722 all_ss = true;
1723 continue;
1724 }
1725 if (!strcmp(token, "noprefix")) {
93438629 1726 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1727 continue;
1728 }
1729 if (!strcmp(token, "clone_children")) {
2260e7fc 1730 opts->cpuset_clone_children = true;
32a8cf23
DL
1731 continue;
1732 }
03b1cde6 1733 if (!strcmp(token, "xattr")) {
93438629 1734 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1735 continue;
1736 }
32a8cf23 1737 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1738 /* Specifying two release agents is forbidden */
1739 if (opts->release_agent)
1740 return -EINVAL;
c6d57f33 1741 opts->release_agent =
e400c285 1742 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1743 if (!opts->release_agent)
1744 return -ENOMEM;
32a8cf23
DL
1745 continue;
1746 }
1747 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1748 const char *name = token + 5;
1749 /* Can't specify an empty name */
1750 if (!strlen(name))
1751 return -EINVAL;
1752 /* Must match [\w.-]+ */
1753 for (i = 0; i < strlen(name); i++) {
1754 char c = name[i];
1755 if (isalnum(c))
1756 continue;
1757 if ((c == '.') || (c == '-') || (c == '_'))
1758 continue;
1759 return -EINVAL;
1760 }
1761 /* Specifying two names is forbidden */
1762 if (opts->name)
1763 return -EINVAL;
1764 opts->name = kstrndup(name,
e400c285 1765 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1766 GFP_KERNEL);
1767 if (!opts->name)
1768 return -ENOMEM;
32a8cf23
DL
1769
1770 continue;
1771 }
1772
30159ec7 1773 for_each_subsys(ss, i) {
3e1d2eed 1774 if (strcmp(token, ss->legacy_name))
32a8cf23 1775 continue;
fc5ed1e9 1776 if (!cgroup_ssid_enabled(i))
32a8cf23 1777 continue;
223ffb29
JW
1778 if (cgroup_ssid_no_v1(i))
1779 continue;
32a8cf23
DL
1780
1781 /* Mutually exclusive option 'all' + subsystem name */
1782 if (all_ss)
1783 return -EINVAL;
69dfa00c 1784 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1785 one_ss = true;
1786
1787 break;
1788 }
1789 if (i == CGROUP_SUBSYS_COUNT)
1790 return -ENOENT;
1791 }
1792
7b9a6ba5
TH
1793 /*
1794 * If the 'all' option was specified select all the subsystems,
1795 * otherwise if 'none', 'name=' and a subsystem name options were
1796 * not specified, let's default to 'all'
1797 */
1798 if (all_ss || (!one_ss && !opts->none && !opts->name))
1799 for_each_subsys(ss, i)
223ffb29 1800 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1801 opts->subsys_mask |= (1 << i);
1802
1803 /*
1804 * We either have to specify by name or by subsystems. (So all
1805 * empty hierarchies must have a name).
1806 */
1807 if (!opts->subsys_mask && !opts->name)
1808 return -EINVAL;
1809
f9ab5b5b
LZ
1810 /*
1811 * Option noprefix was introduced just for backward compatibility
1812 * with the old cpuset, so we allow noprefix only if mounting just
1813 * the cpuset subsystem.
1814 */
93438629 1815 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1816 return -EINVAL;
1817
2c6ab6d2 1818 /* Can't specify "none" and some subsystems */
a1a71b45 1819 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1820 return -EINVAL;
1821
ddbcc7e8
PM
1822 return 0;
1823}
1824
2bd59d48 1825static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1826{
1827 int ret = 0;
3dd06ffa 1828 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1829 struct cgroup_sb_opts opts;
6e5c8307 1830 u16 added_mask, removed_mask;
ddbcc7e8 1831
aa6ec29b
TH
1832 if (root == &cgrp_dfl_root) {
1833 pr_err("remount is not allowed\n");
873fe09e
TH
1834 return -EINVAL;
1835 }
1836
334c3679 1837 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
ddbcc7e8
PM
1838
1839 /* See what subsystems are wanted */
1840 ret = parse_cgroupfs_options(data, &opts);
1841 if (ret)
1842 goto out_unlock;
1843
f392e51c 1844 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1845 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1846 task_tgid_nr(current), current->comm);
8b5a5a9d 1847
f392e51c
TH
1848 added_mask = opts.subsys_mask & ~root->subsys_mask;
1849 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1850
cf5d5941 1851 /* Don't allow flags or name to change at remount */
7450e90b 1852 if ((opts.flags ^ root->flags) ||
cf5d5941 1853 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1854 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1855 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1856 ret = -EINVAL;
1857 goto out_unlock;
1858 }
1859
f172e67c 1860 /* remounting is not allowed for populated hierarchies */
d5c419b6 1861 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1862 ret = -EBUSY;
0670e08b 1863 goto out_unlock;
cf5d5941 1864 }
ddbcc7e8 1865
5df36032 1866 ret = rebind_subsystems(root, added_mask);
3126121f 1867 if (ret)
0670e08b 1868 goto out_unlock;
ddbcc7e8 1869
334c3679 1870 WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask));
5df36032 1871
69e943b7
TH
1872 if (opts.release_agent) {
1873 spin_lock(&release_agent_path_lock);
81a6a5cd 1874 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1875 spin_unlock(&release_agent_path_lock);
1876 }
ddbcc7e8 1877 out_unlock:
66bdc9cf 1878 kfree(opts.release_agent);
c6d57f33 1879 kfree(opts.name);
ddbcc7e8 1880 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1881 return ret;
1882}
1883
afeb0f9f
TH
1884/*
1885 * To reduce the fork() overhead for systems that are not actually using
1886 * their cgroups capability, we don't maintain the lists running through
1887 * each css_set to its tasks until we see the list actually used - in other
1888 * words after the first mount.
1889 */
1890static bool use_task_css_set_links __read_mostly;
1891
1892static void cgroup_enable_task_cg_lists(void)
1893{
1894 struct task_struct *p, *g;
1895
82d6489d 1896 spin_lock_irq(&css_set_lock);
afeb0f9f
TH
1897
1898 if (use_task_css_set_links)
1899 goto out_unlock;
1900
1901 use_task_css_set_links = true;
1902
1903 /*
1904 * We need tasklist_lock because RCU is not safe against
1905 * while_each_thread(). Besides, a forking task that has passed
1906 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1907 * is not guaranteed to have its child immediately visible in the
1908 * tasklist if we walk through it with RCU.
1909 */
1910 read_lock(&tasklist_lock);
1911 do_each_thread(g, p) {
afeb0f9f
TH
1912 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1913 task_css_set(p) != &init_css_set);
1914
1915 /*
1916 * We should check if the process is exiting, otherwise
1917 * it will race with cgroup_exit() in that the list
1918 * entry won't be deleted though the process has exited.
f153ad11
TH
1919 * Do it while holding siglock so that we don't end up
1920 * racing against cgroup_exit().
82d6489d
DBO
1921 *
1922 * Interrupts were already disabled while acquiring
1923 * the css_set_lock, so we do not need to disable it
1924 * again when acquiring the sighand->siglock here.
afeb0f9f 1925 */
82d6489d 1926 spin_lock(&p->sighand->siglock);
eaf797ab
TH
1927 if (!(p->flags & PF_EXITING)) {
1928 struct css_set *cset = task_css_set(p);
1929
0de0942d
TH
1930 if (!css_set_populated(cset))
1931 css_set_update_populated(cset, true);
389b9c1b 1932 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1933 get_css_set(cset);
1934 }
82d6489d 1935 spin_unlock(&p->sighand->siglock);
afeb0f9f
TH
1936 } while_each_thread(g, p);
1937 read_unlock(&tasklist_lock);
1938out_unlock:
82d6489d 1939 spin_unlock_irq(&css_set_lock);
afeb0f9f 1940}
ddbcc7e8 1941
cc31edce
PM
1942static void init_cgroup_housekeeping(struct cgroup *cgrp)
1943{
2d8f243a
TH
1944 struct cgroup_subsys *ss;
1945 int ssid;
1946
d5c419b6
TH
1947 INIT_LIST_HEAD(&cgrp->self.sibling);
1948 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1949 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1950 INIT_LIST_HEAD(&cgrp->pidlists);
1951 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1952 cgrp->self.cgroup = cgrp;
184faf32 1953 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1954
1955 for_each_subsys(ss, ssid)
1956 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1957
1958 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1959 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1960}
c6d57f33 1961
3dd06ffa 1962static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1963 struct cgroup_sb_opts *opts)
ddbcc7e8 1964{
3dd06ffa 1965 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1966
ddbcc7e8 1967 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1968 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1969 cgrp->root = root;
cc31edce 1970 init_cgroup_housekeeping(cgrp);
4e96ee8e 1971 idr_init(&root->cgroup_idr);
c6d57f33 1972
c6d57f33
PM
1973 root->flags = opts->flags;
1974 if (opts->release_agent)
1975 strcpy(root->release_agent_path, opts->release_agent);
1976 if (opts->name)
1977 strcpy(root->name, opts->name);
2260e7fc 1978 if (opts->cpuset_clone_children)
3dd06ffa 1979 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1980}
1981
6e5c8307 1982static int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
2c6ab6d2 1983{
d427dfeb 1984 LIST_HEAD(tmp_links);
3dd06ffa 1985 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1986 struct css_set *cset;
d427dfeb 1987 int i, ret;
2c6ab6d2 1988
d427dfeb 1989 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1990
cf780b7d 1991 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1992 if (ret < 0)
2bd59d48 1993 goto out;
d427dfeb 1994 root_cgrp->id = ret;
b11cfb58 1995 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1996
2aad2a86
TH
1997 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1998 GFP_KERNEL);
9d755d33
TH
1999 if (ret)
2000 goto out;
2001
d427dfeb 2002 /*
f0d9a5f1 2003 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb 2004 * but that's OK - it can only be increased by someone holding
04313591
TH
2005 * cgroup_lock, and that's us. Later rebinding may disable
2006 * controllers on the default hierarchy and thus create new csets,
2007 * which can't be more than the existing ones. Allocate 2x.
d427dfeb 2008 */
04313591 2009 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
d427dfeb 2010 if (ret)
9d755d33 2011 goto cancel_ref;
ddbcc7e8 2012
985ed670 2013 ret = cgroup_init_root_id(root);
ddbcc7e8 2014 if (ret)
9d755d33 2015 goto cancel_ref;
ddbcc7e8 2016
2bd59d48
TH
2017 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
2018 KERNFS_ROOT_CREATE_DEACTIVATED,
2019 root_cgrp);
2020 if (IS_ERR(root->kf_root)) {
2021 ret = PTR_ERR(root->kf_root);
2022 goto exit_root_id;
2023 }
2024 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 2025
334c3679 2026 ret = css_populate_dir(&root_cgrp->self);
d427dfeb 2027 if (ret)
2bd59d48 2028 goto destroy_root;
ddbcc7e8 2029
5df36032 2030 ret = rebind_subsystems(root, ss_mask);
d427dfeb 2031 if (ret)
2bd59d48 2032 goto destroy_root;
ddbcc7e8 2033
d427dfeb
TH
2034 /*
2035 * There must be no failure case after here, since rebinding takes
2036 * care of subsystems' refcounts, which are explicitly dropped in
2037 * the failure exit path.
2038 */
2039 list_add(&root->root_list, &cgroup_roots);
2040 cgroup_root_count++;
0df6a63f 2041
d427dfeb 2042 /*
3dd06ffa 2043 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
2044 * objects.
2045 */
82d6489d 2046 spin_lock_irq(&css_set_lock);
0de0942d 2047 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 2048 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
2049 if (css_set_populated(cset))
2050 cgroup_update_populated(root_cgrp, true);
2051 }
82d6489d 2052 spin_unlock_irq(&css_set_lock);
ddbcc7e8 2053
d5c419b6 2054 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 2055 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 2056
2bd59d48 2057 kernfs_activate(root_cgrp->kn);
d427dfeb 2058 ret = 0;
2bd59d48 2059 goto out;
d427dfeb 2060
2bd59d48
TH
2061destroy_root:
2062 kernfs_destroy_root(root->kf_root);
2063 root->kf_root = NULL;
2064exit_root_id:
d427dfeb 2065 cgroup_exit_root_id(root);
9d755d33 2066cancel_ref:
9a1049da 2067 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 2068out:
d427dfeb
TH
2069 free_cgrp_cset_links(&tmp_links);
2070 return ret;
ddbcc7e8
PM
2071}
2072
f7e83571 2073static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 2074 int flags, const char *unused_dev_name,
f7e83571 2075 void *data)
ddbcc7e8 2076{
67e9c74b 2077 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 2078 struct super_block *pinned_sb = NULL;
ed82571b 2079 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
970317aa 2080 struct cgroup_subsys *ss;
3dd06ffa 2081 struct cgroup_root *root;
ddbcc7e8 2082 struct cgroup_sb_opts opts;
2bd59d48 2083 struct dentry *dentry;
8e30e2b8 2084 int ret;
970317aa 2085 int i;
c6b3d5bc 2086 bool new_sb;
ddbcc7e8 2087
ed82571b
SH
2088 get_cgroup_ns(ns);
2089
2090 /* Check if the caller has permission to mount. */
2091 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2092 put_cgroup_ns(ns);
2093 return ERR_PTR(-EPERM);
2094 }
2095
56fde9e0
TH
2096 /*
2097 * The first time anyone tries to mount a cgroup, enable the list
2098 * linking each css_set to its tasks and fix up all existing tasks.
2099 */
2100 if (!use_task_css_set_links)
2101 cgroup_enable_task_cg_lists();
e37a06f1 2102
67e9c74b
TH
2103 if (is_v2) {
2104 if (data) {
2105 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
ed82571b 2106 put_cgroup_ns(ns);
67e9c74b
TH
2107 return ERR_PTR(-EINVAL);
2108 }
a7165264 2109 cgrp_dfl_visible = true;
67e9c74b
TH
2110 root = &cgrp_dfl_root;
2111 cgroup_get(&root->cgrp);
2112 goto out_mount;
2113 }
2114
334c3679 2115 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
8e30e2b8
TH
2116
2117 /* First find the desired set of subsystems */
ddbcc7e8 2118 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2119 if (ret)
8e30e2b8 2120 goto out_unlock;
a015edd2 2121
970317aa
LZ
2122 /*
2123 * Destruction of cgroup root is asynchronous, so subsystems may
2124 * still be dying after the previous unmount. Let's drain the
2125 * dying subsystems. We just need to ensure that the ones
2126 * unmounted previously finish dying and don't care about new ones
2127 * starting. Testing ref liveliness is good enough.
2128 */
2129 for_each_subsys(ss, i) {
2130 if (!(opts.subsys_mask & (1 << i)) ||
2131 ss->root == &cgrp_dfl_root)
2132 continue;
2133
2134 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2135 mutex_unlock(&cgroup_mutex);
2136 msleep(10);
2137 ret = restart_syscall();
2138 goto out_free;
2139 }
2140 cgroup_put(&ss->root->cgrp);
2141 }
2142
985ed670 2143 for_each_root(root) {
2bd59d48 2144 bool name_match = false;
3126121f 2145
3dd06ffa 2146 if (root == &cgrp_dfl_root)
985ed670 2147 continue;
3126121f 2148
cf5d5941 2149 /*
2bd59d48
TH
2150 * If we asked for a name then it must match. Also, if
2151 * name matches but sybsys_mask doesn't, we should fail.
2152 * Remember whether name matched.
cf5d5941 2153 */
2bd59d48
TH
2154 if (opts.name) {
2155 if (strcmp(opts.name, root->name))
2156 continue;
2157 name_match = true;
2158 }
ddbcc7e8 2159
c6d57f33 2160 /*
2bd59d48
TH
2161 * If we asked for subsystems (or explicitly for no
2162 * subsystems) then they must match.
c6d57f33 2163 */
2bd59d48 2164 if ((opts.subsys_mask || opts.none) &&
f392e51c 2165 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2166 if (!name_match)
2167 continue;
2168 ret = -EBUSY;
2169 goto out_unlock;
2170 }
873fe09e 2171
7b9a6ba5
TH
2172 if (root->flags ^ opts.flags)
2173 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2174
776f02fa 2175 /*
3a32bd72
LZ
2176 * We want to reuse @root whose lifetime is governed by its
2177 * ->cgrp. Let's check whether @root is alive and keep it
2178 * that way. As cgroup_kill_sb() can happen anytime, we
2179 * want to block it by pinning the sb so that @root doesn't
2180 * get killed before mount is complete.
2181 *
2182 * With the sb pinned, tryget_live can reliably indicate
2183 * whether @root can be reused. If it's being killed,
2184 * drain it. We can use wait_queue for the wait but this
2185 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2186 */
3a32bd72
LZ
2187 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2188 if (IS_ERR(pinned_sb) ||
2189 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2190 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2191 if (!IS_ERR_OR_NULL(pinned_sb))
2192 deactivate_super(pinned_sb);
776f02fa 2193 msleep(10);
a015edd2
TH
2194 ret = restart_syscall();
2195 goto out_free;
776f02fa 2196 }
ddbcc7e8 2197
776f02fa 2198 ret = 0;
2bd59d48 2199 goto out_unlock;
ddbcc7e8 2200 }
ddbcc7e8 2201
817929ec 2202 /*
172a2c06
TH
2203 * No such thing, create a new one. name= matching without subsys
2204 * specification is allowed for already existing hierarchies but we
2205 * can't create new one without subsys specification.
817929ec 2206 */
172a2c06
TH
2207 if (!opts.subsys_mask && !opts.none) {
2208 ret = -EINVAL;
2209 goto out_unlock;
817929ec 2210 }
817929ec 2211
726a4994
EB
2212 /* Hierarchies may only be created in the initial cgroup namespace. */
2213 if (ns != &init_cgroup_ns) {
ed82571b
SH
2214 ret = -EPERM;
2215 goto out_unlock;
2216 }
2217
172a2c06
TH
2218 root = kzalloc(sizeof(*root), GFP_KERNEL);
2219 if (!root) {
2220 ret = -ENOMEM;
2bd59d48 2221 goto out_unlock;
839ec545 2222 }
e5f6a860 2223
172a2c06
TH
2224 init_cgroup_root(root, &opts);
2225
35585573 2226 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2227 if (ret)
2228 cgroup_free_root(root);
fa3ca07e 2229
8e30e2b8 2230out_unlock:
ddbcc7e8 2231 mutex_unlock(&cgroup_mutex);
a015edd2 2232out_free:
c6d57f33
PM
2233 kfree(opts.release_agent);
2234 kfree(opts.name);
03b1cde6 2235
ed82571b
SH
2236 if (ret) {
2237 put_cgroup_ns(ns);
8e30e2b8 2238 return ERR_PTR(ret);
ed82571b 2239 }
67e9c74b 2240out_mount:
c9482a5b 2241 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2242 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2243 &new_sb);
ed82571b
SH
2244
2245 /*
2246 * In non-init cgroup namespace, instead of root cgroup's
2247 * dentry, we return the dentry corresponding to the
2248 * cgroupns->root_cgrp.
2249 */
2250 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2251 struct dentry *nsdentry;
2252 struct cgroup *cgrp;
2253
2254 mutex_lock(&cgroup_mutex);
82d6489d 2255 spin_lock_irq(&css_set_lock);
ed82571b
SH
2256
2257 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2258
82d6489d 2259 spin_unlock_irq(&css_set_lock);
ed82571b
SH
2260 mutex_unlock(&cgroup_mutex);
2261
2262 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2263 dput(dentry);
2264 dentry = nsdentry;
2265 }
2266
c6b3d5bc 2267 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2268 cgroup_put(&root->cgrp);
3a32bd72
LZ
2269
2270 /*
2271 * If @pinned_sb, we're reusing an existing root and holding an
2272 * extra ref on its sb. Mount is complete. Put the extra ref.
2273 */
2274 if (pinned_sb) {
2275 WARN_ON(new_sb);
2276 deactivate_super(pinned_sb);
2277 }
2278
ed82571b 2279 put_cgroup_ns(ns);
2bd59d48
TH
2280 return dentry;
2281}
2282
2283static void cgroup_kill_sb(struct super_block *sb)
2284{
2285 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2286 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2287
9d755d33
TH
2288 /*
2289 * If @root doesn't have any mounts or children, start killing it.
2290 * This prevents new mounts by disabling percpu_ref_tryget_live().
2291 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2292 *
2293 * And don't kill the default root.
9d755d33 2294 */
3c606d35 2295 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2296 root == &cgrp_dfl_root)
9d755d33
TH
2297 cgroup_put(&root->cgrp);
2298 else
2299 percpu_ref_kill(&root->cgrp.self.refcnt);
2300
2bd59d48 2301 kernfs_kill_sb(sb);
ddbcc7e8
PM
2302}
2303
2304static struct file_system_type cgroup_fs_type = {
2305 .name = "cgroup",
f7e83571 2306 .mount = cgroup_mount,
ddbcc7e8 2307 .kill_sb = cgroup_kill_sb,
1c53753e 2308 .fs_flags = FS_USERNS_MOUNT,
ddbcc7e8
PM
2309};
2310
67e9c74b
TH
2311static struct file_system_type cgroup2_fs_type = {
2312 .name = "cgroup2",
2313 .mount = cgroup_mount,
2314 .kill_sb = cgroup_kill_sb,
1c53753e 2315 .fs_flags = FS_USERNS_MOUNT,
67e9c74b
TH
2316};
2317
a79a908f
AK
2318static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2319 struct cgroup_namespace *ns)
2320{
2321 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2322 int ret;
2323
2324 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2325 if (ret < 0 || ret >= buflen)
2326 return NULL;
2327 return buf;
2328}
2329
2330char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2331 struct cgroup_namespace *ns)
2332{
2333 char *ret;
2334
2335 mutex_lock(&cgroup_mutex);
82d6489d 2336 spin_lock_irq(&css_set_lock);
a79a908f
AK
2337
2338 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2339
82d6489d 2340 spin_unlock_irq(&css_set_lock);
a79a908f
AK
2341 mutex_unlock(&cgroup_mutex);
2342
2343 return ret;
2344}
2345EXPORT_SYMBOL_GPL(cgroup_path_ns);
2346
857a2beb 2347/**
913ffdb5 2348 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2349 * @task: target task
857a2beb
TH
2350 * @buf: the buffer to write the path into
2351 * @buflen: the length of the buffer
2352 *
913ffdb5
TH
2353 * Determine @task's cgroup on the first (the one with the lowest non-zero
2354 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2355 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2356 * cgroup controller callbacks.
2357 *
e61734c5 2358 * Return value is the same as kernfs_path().
857a2beb 2359 */
e61734c5 2360char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2361{
3dd06ffa 2362 struct cgroup_root *root;
913ffdb5 2363 struct cgroup *cgrp;
e61734c5
TH
2364 int hierarchy_id = 1;
2365 char *path = NULL;
857a2beb
TH
2366
2367 mutex_lock(&cgroup_mutex);
82d6489d 2368 spin_lock_irq(&css_set_lock);
857a2beb 2369
913ffdb5
TH
2370 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2371
857a2beb
TH
2372 if (root) {
2373 cgrp = task_cgroup_from_root(task, root);
a79a908f 2374 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2375 } else {
2376 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2377 if (strlcpy(buf, "/", buflen) < buflen)
2378 path = buf;
857a2beb
TH
2379 }
2380
82d6489d 2381 spin_unlock_irq(&css_set_lock);
857a2beb 2382 mutex_unlock(&cgroup_mutex);
e61734c5 2383 return path;
857a2beb 2384}
913ffdb5 2385EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2386
b3dc094e 2387/* used to track tasks and other necessary states during migration */
2f7ee569 2388struct cgroup_taskset {
b3dc094e
TH
2389 /* the src and dst cset list running through cset->mg_node */
2390 struct list_head src_csets;
2391 struct list_head dst_csets;
2392
1f7dd3e5
TH
2393 /* the subsys currently being processed */
2394 int ssid;
2395
b3dc094e
TH
2396 /*
2397 * Fields for cgroup_taskset_*() iteration.
2398 *
2399 * Before migration is committed, the target migration tasks are on
2400 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2401 * the csets on ->dst_csets. ->csets point to either ->src_csets
2402 * or ->dst_csets depending on whether migration is committed.
2403 *
2404 * ->cur_csets and ->cur_task point to the current task position
2405 * during iteration.
2406 */
2407 struct list_head *csets;
2408 struct css_set *cur_cset;
2409 struct task_struct *cur_task;
2f7ee569
TH
2410};
2411
adaae5dc
TH
2412#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2413 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2414 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2415 .csets = &tset.src_csets, \
2416}
2417
2418/**
2419 * cgroup_taskset_add - try to add a migration target task to a taskset
2420 * @task: target task
2421 * @tset: target taskset
2422 *
2423 * Add @task, which is a migration target, to @tset. This function becomes
2424 * noop if @task doesn't need to be migrated. @task's css_set should have
2425 * been added as a migration source and @task->cg_list will be moved from
2426 * the css_set's tasks list to mg_tasks one.
2427 */
2428static void cgroup_taskset_add(struct task_struct *task,
2429 struct cgroup_taskset *tset)
2430{
2431 struct css_set *cset;
2432
f0d9a5f1 2433 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2434
2435 /* @task either already exited or can't exit until the end */
2436 if (task->flags & PF_EXITING)
2437 return;
2438
2439 /* leave @task alone if post_fork() hasn't linked it yet */
2440 if (list_empty(&task->cg_list))
2441 return;
2442
2443 cset = task_css_set(task);
2444 if (!cset->mg_src_cgrp)
2445 return;
2446
2447 list_move_tail(&task->cg_list, &cset->mg_tasks);
2448 if (list_empty(&cset->mg_node))
2449 list_add_tail(&cset->mg_node, &tset->src_csets);
2450 if (list_empty(&cset->mg_dst_cset->mg_node))
2451 list_move_tail(&cset->mg_dst_cset->mg_node,
2452 &tset->dst_csets);
2453}
2454
2f7ee569
TH
2455/**
2456 * cgroup_taskset_first - reset taskset and return the first task
2457 * @tset: taskset of interest
1f7dd3e5 2458 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2459 *
2460 * @tset iteration is initialized and the first task is returned.
2461 */
1f7dd3e5
TH
2462struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2463 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2464{
b3dc094e
TH
2465 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2466 tset->cur_task = NULL;
2467
1f7dd3e5 2468 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2469}
2f7ee569
TH
2470
2471/**
2472 * cgroup_taskset_next - iterate to the next task in taskset
2473 * @tset: taskset of interest
1f7dd3e5 2474 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2475 *
2476 * Return the next task in @tset. Iteration must have been initialized
2477 * with cgroup_taskset_first().
2478 */
1f7dd3e5
TH
2479struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2480 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2481{
b3dc094e
TH
2482 struct css_set *cset = tset->cur_cset;
2483 struct task_struct *task = tset->cur_task;
2f7ee569 2484
b3dc094e
TH
2485 while (&cset->mg_node != tset->csets) {
2486 if (!task)
2487 task = list_first_entry(&cset->mg_tasks,
2488 struct task_struct, cg_list);
2489 else
2490 task = list_next_entry(task, cg_list);
2f7ee569 2491
b3dc094e
TH
2492 if (&task->cg_list != &cset->mg_tasks) {
2493 tset->cur_cset = cset;
2494 tset->cur_task = task;
1f7dd3e5
TH
2495
2496 /*
2497 * This function may be called both before and
2498 * after cgroup_taskset_migrate(). The two cases
2499 * can be distinguished by looking at whether @cset
2500 * has its ->mg_dst_cset set.
2501 */
2502 if (cset->mg_dst_cset)
2503 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2504 else
2505 *dst_cssp = cset->subsys[tset->ssid];
2506
b3dc094e
TH
2507 return task;
2508 }
2f7ee569 2509
b3dc094e
TH
2510 cset = list_next_entry(cset, mg_node);
2511 task = NULL;
2512 }
2f7ee569 2513
b3dc094e 2514 return NULL;
2f7ee569 2515}
2f7ee569 2516
adaae5dc 2517/**
37ff9f8f 2518 * cgroup_taskset_migrate - migrate a taskset
adaae5dc 2519 * @tset: taget taskset
37ff9f8f 2520 * @root: cgroup root the migration is taking place on
adaae5dc 2521 *
37ff9f8f
TH
2522 * Migrate tasks in @tset as setup by migration preparation functions.
2523 * This function fails iff one of the ->can_attach callbacks fails and
2524 * guarantees that either all or none of the tasks in @tset are migrated.
2525 * @tset is consumed regardless of success.
adaae5dc
TH
2526 */
2527static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
37ff9f8f 2528 struct cgroup_root *root)
adaae5dc 2529{
37ff9f8f 2530 struct cgroup_subsys *ss;
adaae5dc
TH
2531 struct task_struct *task, *tmp_task;
2532 struct css_set *cset, *tmp_cset;
37ff9f8f 2533 int ssid, failed_ssid, ret;
adaae5dc
TH
2534
2535 /* methods shouldn't be called if no task is actually migrating */
2536 if (list_empty(&tset->src_csets))
2537 return 0;
2538
2539 /* check that we can legitimately attach to the cgroup */
37ff9f8f
TH
2540 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2541 if (ss->can_attach) {
2542 tset->ssid = ssid;
2543 ret = ss->can_attach(tset);
adaae5dc 2544 if (ret) {
37ff9f8f 2545 failed_ssid = ssid;
adaae5dc
TH
2546 goto out_cancel_attach;
2547 }
2548 }
37ff9f8f 2549 } while_each_subsys_mask();
adaae5dc
TH
2550
2551 /*
2552 * Now that we're guaranteed success, proceed to move all tasks to
2553 * the new cgroup. There are no failure cases after here, so this
2554 * is the commit point.
2555 */
82d6489d 2556 spin_lock_irq(&css_set_lock);
adaae5dc 2557 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2558 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2559 struct css_set *from_cset = task_css_set(task);
2560 struct css_set *to_cset = cset->mg_dst_cset;
2561
2562 get_css_set(to_cset);
2563 css_set_move_task(task, from_cset, to_cset, true);
2564 put_css_set_locked(from_cset);
2565 }
adaae5dc 2566 }
82d6489d 2567 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2568
2569 /*
2570 * Migration is committed, all target tasks are now on dst_csets.
2571 * Nothing is sensitive to fork() after this point. Notify
2572 * controllers that migration is complete.
2573 */
2574 tset->csets = &tset->dst_csets;
2575
37ff9f8f
TH
2576 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2577 if (ss->attach) {
2578 tset->ssid = ssid;
2579 ss->attach(tset);
1f7dd3e5 2580 }
37ff9f8f 2581 } while_each_subsys_mask();
adaae5dc
TH
2582
2583 ret = 0;
2584 goto out_release_tset;
2585
2586out_cancel_attach:
37ff9f8f
TH
2587 do_each_subsys_mask(ss, ssid, root->subsys_mask) {
2588 if (ssid == failed_ssid)
adaae5dc 2589 break;
37ff9f8f
TH
2590 if (ss->cancel_attach) {
2591 tset->ssid = ssid;
2592 ss->cancel_attach(tset);
1f7dd3e5 2593 }
37ff9f8f 2594 } while_each_subsys_mask();
adaae5dc 2595out_release_tset:
82d6489d 2596 spin_lock_irq(&css_set_lock);
adaae5dc
TH
2597 list_splice_init(&tset->dst_csets, &tset->src_csets);
2598 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2599 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2600 list_del_init(&cset->mg_node);
2601 }
82d6489d 2602 spin_unlock_irq(&css_set_lock);
adaae5dc
TH
2603 return ret;
2604}
2605
6c694c88
TH
2606/**
2607 * cgroup_may_migrate_to - verify whether a cgroup can be migration destination
2608 * @dst_cgrp: destination cgroup to test
2609 *
2610 * On the default hierarchy, except for the root, subtree_control must be
2611 * zero for migration destination cgroups with tasks so that child cgroups
2612 * don't compete against tasks.
2613 */
2614static bool cgroup_may_migrate_to(struct cgroup *dst_cgrp)
2615{
2616 return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) ||
2617 !dst_cgrp->subtree_control;
2618}
2619
a043e3b2 2620/**
1958d2d5
TH
2621 * cgroup_migrate_finish - cleanup after attach
2622 * @preloaded_csets: list of preloaded css_sets
74a1166d 2623 *
1958d2d5
TH
2624 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2625 * those functions for details.
74a1166d 2626 */
1958d2d5 2627static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2628{
1958d2d5 2629 struct css_set *cset, *tmp_cset;
74a1166d 2630
1958d2d5
TH
2631 lockdep_assert_held(&cgroup_mutex);
2632
82d6489d 2633 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2634 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2635 cset->mg_src_cgrp = NULL;
e4857982 2636 cset->mg_dst_cgrp = NULL;
1958d2d5
TH
2637 cset->mg_dst_cset = NULL;
2638 list_del_init(&cset->mg_preload_node);
a25eb52e 2639 put_css_set_locked(cset);
1958d2d5 2640 }
82d6489d 2641 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2642}
2643
2644/**
2645 * cgroup_migrate_add_src - add a migration source css_set
2646 * @src_cset: the source css_set to add
2647 * @dst_cgrp: the destination cgroup
2648 * @preloaded_csets: list of preloaded css_sets
2649 *
2650 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2651 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2652 * up by cgroup_migrate_finish().
2653 *
1ed13287
TH
2654 * This function may be called without holding cgroup_threadgroup_rwsem
2655 * even if the target is a process. Threads may be created and destroyed
2656 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2657 * into play and the preloaded css_sets are guaranteed to cover all
2658 * migrations.
1958d2d5
TH
2659 */
2660static void cgroup_migrate_add_src(struct css_set *src_cset,
2661 struct cgroup *dst_cgrp,
2662 struct list_head *preloaded_csets)
2663{
2664 struct cgroup *src_cgrp;
2665
2666 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2667 lockdep_assert_held(&css_set_lock);
1958d2d5 2668
2b021cbf
TH
2669 /*
2670 * If ->dead, @src_set is associated with one or more dead cgroups
2671 * and doesn't contain any migratable tasks. Ignore it early so
2672 * that the rest of migration path doesn't get confused by it.
2673 */
2674 if (src_cset->dead)
2675 return;
2676
1958d2d5
TH
2677 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2678
1958d2d5
TH
2679 if (!list_empty(&src_cset->mg_preload_node))
2680 return;
2681
2682 WARN_ON(src_cset->mg_src_cgrp);
e4857982 2683 WARN_ON(src_cset->mg_dst_cgrp);
1958d2d5
TH
2684 WARN_ON(!list_empty(&src_cset->mg_tasks));
2685 WARN_ON(!list_empty(&src_cset->mg_node));
2686
2687 src_cset->mg_src_cgrp = src_cgrp;
e4857982 2688 src_cset->mg_dst_cgrp = dst_cgrp;
1958d2d5
TH
2689 get_css_set(src_cset);
2690 list_add(&src_cset->mg_preload_node, preloaded_csets);
2691}
2692
2693/**
2694 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
1958d2d5
TH
2695 * @preloaded_csets: list of preloaded source css_sets
2696 *
e4857982
TH
2697 * Tasks are about to be moved and all the source css_sets have been
2698 * preloaded to @preloaded_csets. This function looks up and pins all
2699 * destination css_sets, links each to its source, and append them to
2700 * @preloaded_csets.
1958d2d5
TH
2701 *
2702 * This function must be called after cgroup_migrate_add_src() has been
2703 * called on each migration source css_set. After migration is performed
2704 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2705 * @preloaded_csets.
2706 */
e4857982 2707static int cgroup_migrate_prepare_dst(struct list_head *preloaded_csets)
1958d2d5
TH
2708{
2709 LIST_HEAD(csets);
f817de98 2710 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2711
2712 lockdep_assert_held(&cgroup_mutex);
2713
2714 /* look up the dst cset for each src cset and link it to src */
f817de98 2715 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2716 struct css_set *dst_cset;
2717
e4857982 2718 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
1958d2d5
TH
2719 if (!dst_cset)
2720 goto err;
2721
2722 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2723
2724 /*
2725 * If src cset equals dst, it's noop. Drop the src.
2726 * cgroup_migrate() will skip the cset too. Note that we
2727 * can't handle src == dst as some nodes are used by both.
2728 */
2729 if (src_cset == dst_cset) {
2730 src_cset->mg_src_cgrp = NULL;
e4857982 2731 src_cset->mg_dst_cgrp = NULL;
f817de98 2732 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2733 put_css_set(src_cset);
2734 put_css_set(dst_cset);
f817de98
TH
2735 continue;
2736 }
2737
1958d2d5
TH
2738 src_cset->mg_dst_cset = dst_cset;
2739
2740 if (list_empty(&dst_cset->mg_preload_node))
2741 list_add(&dst_cset->mg_preload_node, &csets);
2742 else
a25eb52e 2743 put_css_set(dst_cset);
1958d2d5
TH
2744 }
2745
f817de98 2746 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2747 return 0;
2748err:
2749 cgroup_migrate_finish(&csets);
2750 return -ENOMEM;
2751}
2752
2753/**
2754 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2755 * @leader: the leader of the process or the task to migrate
2756 * @threadgroup: whether @leader points to the whole process or a single task
37ff9f8f 2757 * @root: cgroup root migration is taking place on
1958d2d5 2758 *
37ff9f8f
TH
2759 * Migrate a process or task denoted by @leader. If migrating a process,
2760 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2761 * responsible for invoking cgroup_migrate_add_src() and
1958d2d5
TH
2762 * cgroup_migrate_prepare_dst() on the targets before invoking this
2763 * function and following up with cgroup_migrate_finish().
2764 *
2765 * As long as a controller's ->can_attach() doesn't fail, this function is
2766 * guaranteed to succeed. This means that, excluding ->can_attach()
2767 * failure, when migrating multiple targets, the success or failure can be
2768 * decided for all targets by invoking group_migrate_prepare_dst() before
2769 * actually starting migrating.
2770 */
9af2ec45 2771static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
37ff9f8f 2772 struct cgroup_root *root)
74a1166d 2773{
adaae5dc
TH
2774 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2775 struct task_struct *task;
74a1166d 2776
fb5d2b4c
MSB
2777 /*
2778 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2779 * already PF_EXITING could be freed from underneath us unless we
2780 * take an rcu_read_lock.
2781 */
82d6489d 2782 spin_lock_irq(&css_set_lock);
fb5d2b4c 2783 rcu_read_lock();
9db8de37 2784 task = leader;
74a1166d 2785 do {
adaae5dc 2786 cgroup_taskset_add(task, &tset);
081aa458
LZ
2787 if (!threadgroup)
2788 break;
9db8de37 2789 } while_each_thread(leader, task);
fb5d2b4c 2790 rcu_read_unlock();
82d6489d 2791 spin_unlock_irq(&css_set_lock);
74a1166d 2792
37ff9f8f 2793 return cgroup_taskset_migrate(&tset, root);
74a1166d
BB
2794}
2795
1958d2d5
TH
2796/**
2797 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2798 * @dst_cgrp: the cgroup to attach to
2799 * @leader: the task or the leader of the threadgroup to be attached
2800 * @threadgroup: attach the whole threadgroup?
2801 *
1ed13287 2802 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2803 */
2804static int cgroup_attach_task(struct cgroup *dst_cgrp,
2805 struct task_struct *leader, bool threadgroup)
2806{
2807 LIST_HEAD(preloaded_csets);
2808 struct task_struct *task;
2809 int ret;
2810
6c694c88
TH
2811 if (!cgroup_may_migrate_to(dst_cgrp))
2812 return -EBUSY;
2813
1958d2d5 2814 /* look up all src csets */
82d6489d 2815 spin_lock_irq(&css_set_lock);
1958d2d5
TH
2816 rcu_read_lock();
2817 task = leader;
2818 do {
2819 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2820 &preloaded_csets);
2821 if (!threadgroup)
2822 break;
2823 } while_each_thread(leader, task);
2824 rcu_read_unlock();
82d6489d 2825 spin_unlock_irq(&css_set_lock);
1958d2d5
TH
2826
2827 /* prepare dst csets and commit */
e4857982 2828 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
1958d2d5 2829 if (!ret)
37ff9f8f 2830 ret = cgroup_migrate(leader, threadgroup, dst_cgrp->root);
1958d2d5
TH
2831
2832 cgroup_migrate_finish(&preloaded_csets);
2833 return ret;
74a1166d
BB
2834}
2835
187fe840
TH
2836static int cgroup_procs_write_permission(struct task_struct *task,
2837 struct cgroup *dst_cgrp,
2838 struct kernfs_open_file *of)
dedf22e9
TH
2839{
2840 const struct cred *cred = current_cred();
2841 const struct cred *tcred = get_task_cred(task);
2842 int ret = 0;
2843
2844 /*
2845 * even if we're attaching all tasks in the thread group, we only
2846 * need to check permissions on one of them.
2847 */
2848 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2849 !uid_eq(cred->euid, tcred->uid) &&
2850 !uid_eq(cred->euid, tcred->suid))
2851 ret = -EACCES;
2852
187fe840
TH
2853 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2854 struct super_block *sb = of->file->f_path.dentry->d_sb;
2855 struct cgroup *cgrp;
2856 struct inode *inode;
2857
82d6489d 2858 spin_lock_irq(&css_set_lock);
187fe840 2859 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
82d6489d 2860 spin_unlock_irq(&css_set_lock);
187fe840
TH
2861
2862 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2863 cgrp = cgroup_parent(cgrp);
2864
2865 ret = -ENOMEM;
6f60eade 2866 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2867 if (inode) {
2868 ret = inode_permission(inode, MAY_WRITE);
2869 iput(inode);
2870 }
2871 }
2872
dedf22e9
TH
2873 put_cred(tcred);
2874 return ret;
2875}
2876
74a1166d
BB
2877/*
2878 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2879 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2880 * cgroup_mutex and threadgroup.
bbcb81d0 2881 */
acbef755
TH
2882static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2883 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2884{
bbcb81d0 2885 struct task_struct *tsk;
5cf1cacb 2886 struct cgroup_subsys *ss;
e76ecaee 2887 struct cgroup *cgrp;
acbef755 2888 pid_t pid;
5cf1cacb 2889 int ssid, ret;
bbcb81d0 2890
acbef755
TH
2891 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2892 return -EINVAL;
2893
945ba199 2894 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2895 if (!cgrp)
74a1166d
BB
2896 return -ENODEV;
2897
3014dde7 2898 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2899 rcu_read_lock();
bbcb81d0 2900 if (pid) {
73507f33 2901 tsk = find_task_by_vpid(pid);
74a1166d 2902 if (!tsk) {
dd4b0a46 2903 ret = -ESRCH;
3014dde7 2904 goto out_unlock_rcu;
bbcb81d0 2905 }
dedf22e9 2906 } else {
b78949eb 2907 tsk = current;
dedf22e9 2908 }
cd3d0952
TH
2909
2910 if (threadgroup)
b78949eb 2911 tsk = tsk->group_leader;
c4c27fbd
MG
2912
2913 /*
14a40ffc 2914 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2915 * trapped in a cpuset, or RT worker may be born in a cgroup
2916 * with no rt_runtime allocated. Just say no.
2917 */
14a40ffc 2918 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2919 ret = -EINVAL;
3014dde7 2920 goto out_unlock_rcu;
c4c27fbd
MG
2921 }
2922
b78949eb
MSB
2923 get_task_struct(tsk);
2924 rcu_read_unlock();
2925
187fe840 2926 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2927 if (!ret)
2928 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2929
f9f9e7b7 2930 put_task_struct(tsk);
3014dde7
TH
2931 goto out_unlock_threadgroup;
2932
2933out_unlock_rcu:
2934 rcu_read_unlock();
2935out_unlock_threadgroup:
2936 percpu_up_write(&cgroup_threadgroup_rwsem);
5cf1cacb
TH
2937 for_each_subsys(ss, ssid)
2938 if (ss->post_attach)
2939 ss->post_attach();
e76ecaee 2940 cgroup_kn_unlock(of->kn);
acbef755 2941 return ret ?: nbytes;
bbcb81d0
PM
2942}
2943
7ae1bad9
TH
2944/**
2945 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2946 * @from: attach to all cgroups of a given task
2947 * @tsk: the task to be attached
2948 */
2949int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2950{
3dd06ffa 2951 struct cgroup_root *root;
7ae1bad9
TH
2952 int retval = 0;
2953
47cfcd09 2954 mutex_lock(&cgroup_mutex);
eedd0f4c 2955 percpu_down_write(&cgroup_threadgroup_rwsem);
985ed670 2956 for_each_root(root) {
96d365e0
TH
2957 struct cgroup *from_cgrp;
2958
3dd06ffa 2959 if (root == &cgrp_dfl_root)
985ed670
TH
2960 continue;
2961
82d6489d 2962 spin_lock_irq(&css_set_lock);
96d365e0 2963 from_cgrp = task_cgroup_from_root(from, root);
82d6489d 2964 spin_unlock_irq(&css_set_lock);
7ae1bad9 2965
6f4b7e63 2966 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2967 if (retval)
2968 break;
2969 }
eedd0f4c 2970 percpu_up_write(&cgroup_threadgroup_rwsem);
47cfcd09 2971 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2972
2973 return retval;
2974}
2975EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2976
acbef755
TH
2977static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2978 char *buf, size_t nbytes, loff_t off)
74a1166d 2979{
acbef755 2980 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2981}
2982
acbef755
TH
2983static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes, loff_t off)
af351026 2985{
acbef755 2986 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2987}
2988
451af504
TH
2989static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2990 char *buf, size_t nbytes, loff_t off)
e788e066 2991{
e76ecaee 2992 struct cgroup *cgrp;
5f469907 2993
e76ecaee 2994 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2995
945ba199 2996 cgrp = cgroup_kn_lock_live(of->kn, false);
e76ecaee 2997 if (!cgrp)
e788e066 2998 return -ENODEV;
69e943b7 2999 spin_lock(&release_agent_path_lock);
e76ecaee
TH
3000 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
3001 sizeof(cgrp->root->release_agent_path));
69e943b7 3002 spin_unlock(&release_agent_path_lock);
e76ecaee 3003 cgroup_kn_unlock(of->kn);
451af504 3004 return nbytes;
e788e066
PM
3005}
3006
2da8ca82 3007static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 3008{
2da8ca82 3009 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 3010
46cfeb04 3011 spin_lock(&release_agent_path_lock);
e788e066 3012 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 3013 spin_unlock(&release_agent_path_lock);
e788e066 3014 seq_putc(seq, '\n');
e788e066
PM
3015 return 0;
3016}
3017
2da8ca82 3018static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 3019{
c1d5d42e 3020 seq_puts(seq, "0\n");
e788e066
PM
3021 return 0;
3022}
3023
6e5c8307 3024static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
355e0c48 3025{
f8f22e53
TH
3026 struct cgroup_subsys *ss;
3027 bool printed = false;
3028 int ssid;
a742c59d 3029
b4e0eeaf 3030 do_each_subsys_mask(ss, ssid, ss_mask) {
a966a4ed
AS
3031 if (printed)
3032 seq_putc(seq, ' ');
3033 seq_printf(seq, "%s", ss->name);
3034 printed = true;
b4e0eeaf 3035 } while_each_subsys_mask();
f8f22e53
TH
3036 if (printed)
3037 seq_putc(seq, '\n');
355e0c48
PM
3038}
3039
f8f22e53
TH
3040/* show controllers which are enabled from the parent */
3041static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 3042{
f8f22e53
TH
3043 struct cgroup *cgrp = seq_css(seq)->cgroup;
3044
5531dc91 3045 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
f8f22e53 3046 return 0;
ddbcc7e8
PM
3047}
3048
f8f22e53
TH
3049/* show controllers which are enabled for a given cgroup's children */
3050static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 3051{
f8f22e53
TH
3052 struct cgroup *cgrp = seq_css(seq)->cgroup;
3053
667c2491 3054 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
3055 return 0;
3056}
3057
3058/**
3059 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
3060 * @cgrp: root of the subtree to update csses for
3061 *
54962604
TH
3062 * @cgrp's control masks have changed and its subtree's css associations
3063 * need to be updated accordingly. This function looks up all css_sets
3064 * which are attached to the subtree, creates the matching updated css_sets
3065 * and migrates the tasks to the new ones.
f8f22e53
TH
3066 */
3067static int cgroup_update_dfl_csses(struct cgroup *cgrp)
3068{
3069 LIST_HEAD(preloaded_csets);
10265075 3070 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
54962604
TH
3071 struct cgroup_subsys_state *d_css;
3072 struct cgroup *dsct;
f8f22e53
TH
3073 struct css_set *src_cset;
3074 int ret;
3075
f8f22e53
TH
3076 lockdep_assert_held(&cgroup_mutex);
3077
3014dde7
TH
3078 percpu_down_write(&cgroup_threadgroup_rwsem);
3079
f8f22e53 3080 /* look up all csses currently attached to @cgrp's subtree */
82d6489d 3081 spin_lock_irq(&css_set_lock);
54962604 3082 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
f8f22e53
TH
3083 struct cgrp_cset_link *link;
3084
54962604 3085 list_for_each_entry(link, &dsct->cset_links, cset_link)
58cdb1ce 3086 cgroup_migrate_add_src(link->cset, dsct,
f8f22e53
TH
3087 &preloaded_csets);
3088 }
82d6489d 3089 spin_unlock_irq(&css_set_lock);
f8f22e53
TH
3090
3091 /* NULL dst indicates self on default hierarchy */
e4857982 3092 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
f8f22e53
TH
3093 if (ret)
3094 goto out_finish;
3095
82d6489d 3096 spin_lock_irq(&css_set_lock);
f8f22e53 3097 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 3098 struct task_struct *task, *ntask;
f8f22e53
TH
3099
3100 /* src_csets precede dst_csets, break on the first dst_cset */
3101 if (!src_cset->mg_src_cgrp)
3102 break;
3103
10265075
TH
3104 /* all tasks in src_csets need to be migrated */
3105 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
3106 cgroup_taskset_add(task, &tset);
f8f22e53 3107 }
82d6489d 3108 spin_unlock_irq(&css_set_lock);
f8f22e53 3109
37ff9f8f 3110 ret = cgroup_taskset_migrate(&tset, cgrp->root);
f8f22e53
TH
3111out_finish:
3112 cgroup_migrate_finish(&preloaded_csets);
3014dde7 3113 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
3114 return ret;
3115}
3116
1b9b96a1 3117/**
945ba199 3118 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
ce3f1d9d 3119 * @cgrp: root of the target subtree
1b9b96a1
TH
3120 *
3121 * Because css offlining is asynchronous, userland may try to re-enable a
945ba199
TH
3122 * controller while the previous css is still around. This function grabs
3123 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
1b9b96a1 3124 */
945ba199
TH
3125static void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
3126 __acquires(&cgroup_mutex)
1b9b96a1
TH
3127{
3128 struct cgroup *dsct;
ce3f1d9d 3129 struct cgroup_subsys_state *d_css;
1b9b96a1
TH
3130 struct cgroup_subsys *ss;
3131 int ssid;
3132
945ba199
TH
3133restart:
3134 mutex_lock(&cgroup_mutex);
1b9b96a1 3135
ce3f1d9d 3136 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
1b9b96a1
TH
3137 for_each_subsys(ss, ssid) {
3138 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3139 DEFINE_WAIT(wait);
3140
ce3f1d9d 3141 if (!css || !percpu_ref_is_dying(&css->refcnt))
1b9b96a1
TH
3142 continue;
3143
3144 cgroup_get(dsct);
3145 prepare_to_wait(&dsct->offline_waitq, &wait,
3146 TASK_UNINTERRUPTIBLE);
3147
3148 mutex_unlock(&cgroup_mutex);
3149 schedule();
3150 finish_wait(&dsct->offline_waitq, &wait);
1b9b96a1
TH
3151
3152 cgroup_put(dsct);
945ba199 3153 goto restart;
1b9b96a1
TH
3154 }
3155 }
1b9b96a1
TH
3156}
3157
15a27c36
TH
3158/**
3159 * cgroup_save_control - save control masks of a subtree
3160 * @cgrp: root of the target subtree
3161 *
3162 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
3163 * prefixed fields for @cgrp's subtree including @cgrp itself.
3164 */
3165static void cgroup_save_control(struct cgroup *cgrp)
3166{
3167 struct cgroup *dsct;
3168 struct cgroup_subsys_state *d_css;
3169
3170 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3171 dsct->old_subtree_control = dsct->subtree_control;
3172 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
3173 }
3174}
3175
3176/**
3177 * cgroup_propagate_control - refresh control masks of a subtree
3178 * @cgrp: root of the target subtree
3179 *
3180 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
3181 * ->subtree_control and propagate controller availability through the
3182 * subtree so that descendants don't have unavailable controllers enabled.
3183 */
3184static void cgroup_propagate_control(struct cgroup *cgrp)
3185{
3186 struct cgroup *dsct;
3187 struct cgroup_subsys_state *d_css;
3188
3189 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
3190 dsct->subtree_control &= cgroup_control(dsct);
5ced2518
TH
3191 dsct->subtree_ss_mask =
3192 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
3193 cgroup_ss_mask(dsct));
15a27c36
TH
3194 }
3195}
3196
3197/**
3198 * cgroup_restore_control - restore control masks of a subtree
3199 * @cgrp: root of the target subtree
3200 *
3201 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
3202 * prefixed fields for @cgrp's subtree including @cgrp itself.
3203 */
3204static void cgroup_restore_control(struct cgroup *cgrp)
3205{
3206 struct cgroup *dsct;
3207 struct cgroup_subsys_state *d_css;
3208
3209 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
3210 dsct->subtree_control = dsct->old_subtree_control;
3211 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
3212 }
3213}
3214
f6d635ad
TH
3215static bool css_visible(struct cgroup_subsys_state *css)
3216{
3217 struct cgroup_subsys *ss = css->ss;
3218 struct cgroup *cgrp = css->cgroup;
3219
3220 if (cgroup_control(cgrp) & (1 << ss->id))
3221 return true;
3222 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
3223 return false;
3224 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
3225}
3226
bdb53bd7
TH
3227/**
3228 * cgroup_apply_control_enable - enable or show csses according to control
ce3f1d9d 3229 * @cgrp: root of the target subtree
bdb53bd7 3230 *
ce3f1d9d 3231 * Walk @cgrp's subtree and create new csses or make the existing ones
bdb53bd7
TH
3232 * visible. A css is created invisible if it's being implicitly enabled
3233 * through dependency. An invisible css is made visible when the userland
3234 * explicitly enables it.
3235 *
3236 * Returns 0 on success, -errno on failure. On failure, csses which have
3237 * been processed already aren't cleaned up. The caller is responsible for
3238 * cleaning up with cgroup_apply_control_disble().
3239 */
3240static int cgroup_apply_control_enable(struct cgroup *cgrp)
3241{
3242 struct cgroup *dsct;
ce3f1d9d 3243 struct cgroup_subsys_state *d_css;
bdb53bd7
TH
3244 struct cgroup_subsys *ss;
3245 int ssid, ret;
3246
ce3f1d9d 3247 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
bdb53bd7
TH
3248 for_each_subsys(ss, ssid) {
3249 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3250
945ba199
TH
3251 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3252
bdb53bd7
TH
3253 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
3254 continue;
3255
3256 if (!css) {
3257 css = css_create(dsct, ss);
3258 if (IS_ERR(css))
3259 return PTR_ERR(css);
3260 }
3261
f6d635ad 3262 if (css_visible(css)) {
334c3679 3263 ret = css_populate_dir(css);
bdb53bd7
TH
3264 if (ret)
3265 return ret;
3266 }
3267 }
3268 }
3269
3270 return 0;
3271}
3272
12b3bb6a
TH
3273/**
3274 * cgroup_apply_control_disable - kill or hide csses according to control
ce3f1d9d 3275 * @cgrp: root of the target subtree
12b3bb6a 3276 *
ce3f1d9d 3277 * Walk @cgrp's subtree and kill and hide csses so that they match
12b3bb6a
TH
3278 * cgroup_ss_mask() and cgroup_visible_mask().
3279 *
3280 * A css is hidden when the userland requests it to be disabled while other
3281 * subsystems are still depending on it. The css must not actively control
3282 * resources and be in the vanilla state if it's made visible again later.
3283 * Controllers which may be depended upon should provide ->css_reset() for
3284 * this purpose.
3285 */
3286static void cgroup_apply_control_disable(struct cgroup *cgrp)
3287{
3288 struct cgroup *dsct;
ce3f1d9d 3289 struct cgroup_subsys_state *d_css;
12b3bb6a
TH
3290 struct cgroup_subsys *ss;
3291 int ssid;
3292
ce3f1d9d 3293 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
12b3bb6a
TH
3294 for_each_subsys(ss, ssid) {
3295 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
3296
945ba199
TH
3297 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
3298
12b3bb6a
TH
3299 if (!css)
3300 continue;
3301
334c3679
TH
3302 if (css->parent &&
3303 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
12b3bb6a 3304 kill_css(css);
f6d635ad 3305 } else if (!css_visible(css)) {
334c3679 3306 css_clear_dir(css);
12b3bb6a
TH
3307 if (ss->css_reset)
3308 ss->css_reset(css);
3309 }
3310 }
3311 }
3312}
3313
f7b2814b
TH
3314/**
3315 * cgroup_apply_control - apply control mask updates to the subtree
3316 * @cgrp: root of the target subtree
3317 *
3318 * subsystems can be enabled and disabled in a subtree using the following
3319 * steps.
3320 *
3321 * 1. Call cgroup_save_control() to stash the current state.
3322 * 2. Update ->subtree_control masks in the subtree as desired.
3323 * 3. Call cgroup_apply_control() to apply the changes.
3324 * 4. Optionally perform other related operations.
3325 * 5. Call cgroup_finalize_control() to finish up.
3326 *
3327 * This function implements step 3 and propagates the mask changes
3328 * throughout @cgrp's subtree, updates csses accordingly and perform
3329 * process migrations.
3330 */
3331static int cgroup_apply_control(struct cgroup *cgrp)
3332{
3333 int ret;
3334
3335 cgroup_propagate_control(cgrp);
3336
3337 ret = cgroup_apply_control_enable(cgrp);
3338 if (ret)
3339 return ret;
3340
3341 /*
3342 * At this point, cgroup_e_css() results reflect the new csses
3343 * making the following cgroup_update_dfl_csses() properly update
3344 * css associations of all tasks in the subtree.
3345 */
3346 ret = cgroup_update_dfl_csses(cgrp);
3347 if (ret)
3348 return ret;
3349
3350 return 0;
3351}
3352
3353/**
3354 * cgroup_finalize_control - finalize control mask update
3355 * @cgrp: root of the target subtree
3356 * @ret: the result of the update
3357 *
3358 * Finalize control mask update. See cgroup_apply_control() for more info.
3359 */
3360static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3361{
3362 if (ret) {
3363 cgroup_restore_control(cgrp);
3364 cgroup_propagate_control(cgrp);
3365 }
3366
3367 cgroup_apply_control_disable(cgrp);
3368}
3369
f8f22e53 3370/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
3371static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3372 char *buf, size_t nbytes,
3373 loff_t off)
f8f22e53 3374{
6e5c8307 3375 u16 enable = 0, disable = 0;
a9746d8d 3376 struct cgroup *cgrp, *child;
f8f22e53 3377 struct cgroup_subsys *ss;
451af504 3378 char *tok;
f8f22e53
TH
3379 int ssid, ret;
3380
3381 /*
d37167ab
TH
3382 * Parse input - space separated list of subsystem names prefixed
3383 * with either + or -.
f8f22e53 3384 */
451af504
TH
3385 buf = strstrip(buf);
3386 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
3387 if (tok[0] == '\0')
3388 continue;
a7165264 3389 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
fc5ed1e9
TH
3390 if (!cgroup_ssid_enabled(ssid) ||
3391 strcmp(tok + 1, ss->name))
f8f22e53
TH
3392 continue;
3393
3394 if (*tok == '+') {
7d331fa9
TH
3395 enable |= 1 << ssid;
3396 disable &= ~(1 << ssid);
f8f22e53 3397 } else if (*tok == '-') {
7d331fa9
TH
3398 disable |= 1 << ssid;
3399 enable &= ~(1 << ssid);
f8f22e53
TH
3400 } else {
3401 return -EINVAL;
3402 }
3403 break;
b4e0eeaf 3404 } while_each_subsys_mask();
f8f22e53
TH
3405 if (ssid == CGROUP_SUBSYS_COUNT)
3406 return -EINVAL;
3407 }
3408
945ba199 3409 cgrp = cgroup_kn_lock_live(of->kn, true);
a9746d8d
TH
3410 if (!cgrp)
3411 return -ENODEV;
f8f22e53
TH
3412
3413 for_each_subsys(ss, ssid) {
3414 if (enable & (1 << ssid)) {
667c2491 3415 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3416 enable &= ~(1 << ssid);
3417 continue;
3418 }
3419
5531dc91 3420 if (!(cgroup_control(cgrp) & (1 << ssid))) {
c29adf24
TH
3421 ret = -ENOENT;
3422 goto out_unlock;
3423 }
f8f22e53 3424 } else if (disable & (1 << ssid)) {
667c2491 3425 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3426 disable &= ~(1 << ssid);
3427 continue;
3428 }
3429
3430 /* a child has it enabled? */
3431 cgroup_for_each_live_child(child, cgrp) {
667c2491 3432 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3433 ret = -EBUSY;
ddab2b6e 3434 goto out_unlock;
f8f22e53
TH
3435 }
3436 }
3437 }
3438 }
3439
3440 if (!enable && !disable) {
3441 ret = 0;
ddab2b6e 3442 goto out_unlock;
f8f22e53
TH
3443 }
3444
3445 /*
667c2491 3446 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3447 * with tasks so that child cgroups don't compete against tasks.
3448 */
9157056d
TH
3449 if (enable && cgroup_parent(cgrp)) {
3450 struct cgrp_cset_link *link;
3451
3452 /*
3453 * Because namespaces pin csets too, @cgrp->cset_links
3454 * might not be empty even when @cgrp is empty. Walk and
3455 * verify each cset.
3456 */
3457 spin_lock_irq(&css_set_lock);
3458
3459 ret = 0;
3460 list_for_each_entry(link, &cgrp->cset_links, cset_link) {
3461 if (css_set_populated(link->cset)) {
3462 ret = -EBUSY;
3463 break;
3464 }
3465 }
3466
3467 spin_unlock_irq(&css_set_lock);
3468
3469 if (ret)
3470 goto out_unlock;
f8f22e53
TH
3471 }
3472
15a27c36
TH
3473 /* save and update control masks and prepare csses */
3474 cgroup_save_control(cgrp);
f63070d3 3475
15a27c36
TH
3476 cgrp->subtree_control |= enable;
3477 cgrp->subtree_control &= ~disable;
c29adf24 3478
f7b2814b 3479 ret = cgroup_apply_control(cgrp);
f8f22e53 3480
f7b2814b 3481 cgroup_finalize_control(cgrp, ret);
f8f22e53
TH
3482
3483 kernfs_activate(cgrp->kn);
3484 ret = 0;
3485out_unlock:
a9746d8d 3486 cgroup_kn_unlock(of->kn);
451af504 3487 return ret ?: nbytes;
f8f22e53
TH
3488}
3489
4a07c222 3490static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3491{
4a07c222 3492 seq_printf(seq, "populated %d\n",
27bd4dbb 3493 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3494 return 0;
3495}
3496
2bd59d48
TH
3497static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3498 size_t nbytes, loff_t off)
355e0c48 3499{
2bd59d48
TH
3500 struct cgroup *cgrp = of->kn->parent->priv;
3501 struct cftype *cft = of->kn->priv;
3502 struct cgroup_subsys_state *css;
a742c59d 3503 int ret;
355e0c48 3504
b4168640
TH
3505 if (cft->write)
3506 return cft->write(of, buf, nbytes, off);
3507
2bd59d48
TH
3508 /*
3509 * kernfs guarantees that a file isn't deleted with operations in
3510 * flight, which means that the matching css is and stays alive and
3511 * doesn't need to be pinned. The RCU locking is not necessary
3512 * either. It's just for the convenience of using cgroup_css().
3513 */
3514 rcu_read_lock();
3515 css = cgroup_css(cgrp, cft->ss);
3516 rcu_read_unlock();
a742c59d 3517
451af504 3518 if (cft->write_u64) {
a742c59d
TH
3519 unsigned long long v;
3520 ret = kstrtoull(buf, 0, &v);
3521 if (!ret)
3522 ret = cft->write_u64(css, cft, v);
3523 } else if (cft->write_s64) {
3524 long long v;
3525 ret = kstrtoll(buf, 0, &v);
3526 if (!ret)
3527 ret = cft->write_s64(css, cft, v);
e73d2c61 3528 } else {
a742c59d 3529 ret = -EINVAL;
e73d2c61 3530 }
2bd59d48 3531
a742c59d 3532 return ret ?: nbytes;
355e0c48
PM
3533}
3534
6612f05b 3535static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3536{
2bd59d48 3537 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3538}
3539
6612f05b 3540static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3541{
2bd59d48 3542 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3543}
3544
6612f05b 3545static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3546{
2bd59d48 3547 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3548}
3549
91796569 3550static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3551{
7da11279
TH
3552 struct cftype *cft = seq_cft(m);
3553 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3554
2da8ca82
TH
3555 if (cft->seq_show)
3556 return cft->seq_show(m, arg);
e73d2c61 3557
f4c753b7 3558 if (cft->read_u64)
896f5199
TH
3559 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3560 else if (cft->read_s64)
3561 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3562 else
3563 return -EINVAL;
3564 return 0;
91796569
PM
3565}
3566
2bd59d48
TH
3567static struct kernfs_ops cgroup_kf_single_ops = {
3568 .atomic_write_len = PAGE_SIZE,
3569 .write = cgroup_file_write,
3570 .seq_show = cgroup_seqfile_show,
91796569
PM
3571};
3572
2bd59d48
TH
3573static struct kernfs_ops cgroup_kf_ops = {
3574 .atomic_write_len = PAGE_SIZE,
3575 .write = cgroup_file_write,
3576 .seq_start = cgroup_seqfile_start,
3577 .seq_next = cgroup_seqfile_next,
3578 .seq_stop = cgroup_seqfile_stop,
3579 .seq_show = cgroup_seqfile_show,
3580};
ddbcc7e8
PM
3581
3582/*
3583 * cgroup_rename - Only allow simple rename of directories in place.
3584 */
2bd59d48
TH
3585static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3586 const char *new_name_str)
ddbcc7e8 3587{
2bd59d48 3588 struct cgroup *cgrp = kn->priv;
65dff759 3589 int ret;
65dff759 3590
2bd59d48 3591 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3592 return -ENOTDIR;
2bd59d48 3593 if (kn->parent != new_parent)
ddbcc7e8 3594 return -EIO;
65dff759 3595
6db8e85c
TH
3596 /*
3597 * This isn't a proper migration and its usefulness is very
aa6ec29b 3598 * limited. Disallow on the default hierarchy.
6db8e85c 3599 */
aa6ec29b 3600 if (cgroup_on_dfl(cgrp))
6db8e85c 3601 return -EPERM;
099fca32 3602
e1b2dc17 3603 /*
8353da1f 3604 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3605 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3606 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3607 */
3608 kernfs_break_active_protection(new_parent);
3609 kernfs_break_active_protection(kn);
099fca32 3610
2bd59d48 3611 mutex_lock(&cgroup_mutex);
099fca32 3612
2bd59d48 3613 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3614
2bd59d48 3615 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3616
3617 kernfs_unbreak_active_protection(kn);
3618 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3619 return ret;
099fca32
LZ
3620}
3621
49957f8e
TH
3622/* set uid and gid of cgroup dirs and files to that of the creator */
3623static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3624{
3625 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3626 .ia_uid = current_fsuid(),
3627 .ia_gid = current_fsgid(), };
3628
3629 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3630 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3631 return 0;
3632
3633 return kernfs_setattr(kn, &iattr);
3634}
3635
4df8dc90
TH
3636static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3637 struct cftype *cft)
ddbcc7e8 3638{
8d7e6fb0 3639 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3640 struct kernfs_node *kn;
3641 struct lock_class_key *key = NULL;
49957f8e 3642 int ret;
05ef1d7c 3643
2bd59d48
TH
3644#ifdef CONFIG_DEBUG_LOCK_ALLOC
3645 key = &cft->lockdep_key;
3646#endif
3647 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3648 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3649 NULL, key);
49957f8e
TH
3650 if (IS_ERR(kn))
3651 return PTR_ERR(kn);
3652
3653 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3654 if (ret) {
49957f8e 3655 kernfs_remove(kn);
f8f22e53
TH
3656 return ret;
3657 }
3658
6f60eade
TH
3659 if (cft->file_offset) {
3660 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3661
34c06254 3662 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3663 cfile->kn = kn;
34c06254 3664 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3665 }
3666
f8f22e53 3667 return 0;
ddbcc7e8
PM
3668}
3669
b1f28d31
TH
3670/**
3671 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3672 * @css: the target css
3673 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3674 * @cfts: array of cftypes to be added
3675 * @is_add: whether to add or remove
3676 *
3677 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3678 * For removals, this function never fails.
b1f28d31 3679 */
4df8dc90
TH
3680static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3681 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3682 bool is_add)
ddbcc7e8 3683{
6732ed85 3684 struct cftype *cft, *cft_end = NULL;
b598dde3 3685 int ret = 0;
b1f28d31 3686
01f6474c 3687 lockdep_assert_held(&cgroup_mutex);
db0416b6 3688
6732ed85
TH
3689restart:
3690 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3691 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3692 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3693 continue;
05ebb6e6 3694 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3695 continue;
d51f39b0 3696 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3697 continue;
d51f39b0 3698 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3699 continue;
3700
2739d3cc 3701 if (is_add) {
4df8dc90 3702 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3703 if (ret) {
ed3d261b
JP
3704 pr_warn("%s: failed to add %s, err=%d\n",
3705 __func__, cft->name, ret);
6732ed85
TH
3706 cft_end = cft;
3707 is_add = false;
3708 goto restart;
b1f28d31 3709 }
2739d3cc
LZ
3710 } else {
3711 cgroup_rm_file(cgrp, cft);
db0416b6 3712 }
ddbcc7e8 3713 }
b598dde3 3714 return ret;
ddbcc7e8
PM
3715}
3716
21a2d343 3717static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3718{
3719 LIST_HEAD(pending);
2bb566cb 3720 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3721 struct cgroup *root = &ss->root->cgrp;
492eb21b 3722 struct cgroup_subsys_state *css;
9ccece80 3723 int ret = 0;
8e3f6541 3724
01f6474c 3725 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3726
e8c82d20 3727 /* add/rm files for all cgroups created before */
ca8bdcaf 3728 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3729 struct cgroup *cgrp = css->cgroup;
3730
88cb04b9 3731 if (!(css->flags & CSS_VISIBLE))
e8c82d20
LZ
3732 continue;
3733
4df8dc90 3734 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3735 if (ret)
3736 break;
8e3f6541 3737 }
21a2d343
TH
3738
3739 if (is_add && !ret)
3740 kernfs_activate(root->kn);
9ccece80 3741 return ret;
8e3f6541
TH
3742}
3743
2da440a2 3744static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3745{
2bb566cb 3746 struct cftype *cft;
8e3f6541 3747
2bd59d48
TH
3748 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3749 /* free copy for custom atomic_write_len, see init_cftypes() */
3750 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3751 kfree(cft->kf_ops);
3752 cft->kf_ops = NULL;
2da440a2 3753 cft->ss = NULL;
a8ddc821
TH
3754
3755 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3756 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3757 }
2da440a2
TH
3758}
3759
2bd59d48 3760static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3761{
3762 struct cftype *cft;
3763
2bd59d48
TH
3764 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3765 struct kernfs_ops *kf_ops;
3766
0adb0704
TH
3767 WARN_ON(cft->ss || cft->kf_ops);
3768
2bd59d48
TH
3769 if (cft->seq_start)
3770 kf_ops = &cgroup_kf_ops;
3771 else
3772 kf_ops = &cgroup_kf_single_ops;
3773
3774 /*
3775 * Ugh... if @cft wants a custom max_write_len, we need to
3776 * make a copy of kf_ops to set its atomic_write_len.
3777 */
3778 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3779 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3780 if (!kf_ops) {
3781 cgroup_exit_cftypes(cfts);
3782 return -ENOMEM;
3783 }
3784 kf_ops->atomic_write_len = cft->max_write_len;
3785 }
8e3f6541 3786
2bd59d48 3787 cft->kf_ops = kf_ops;
2bb566cb 3788 cft->ss = ss;
2bd59d48 3789 }
2bb566cb 3790
2bd59d48 3791 return 0;
2da440a2
TH
3792}
3793
21a2d343
TH
3794static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3795{
01f6474c 3796 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3797
3798 if (!cfts || !cfts[0].ss)
3799 return -ENOENT;
3800
3801 list_del(&cfts->node);
3802 cgroup_apply_cftypes(cfts, false);
3803 cgroup_exit_cftypes(cfts);
3804 return 0;
8e3f6541 3805}
8e3f6541 3806
79578621
TH
3807/**
3808 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3809 * @cfts: zero-length name terminated array of cftypes
3810 *
2bb566cb
TH
3811 * Unregister @cfts. Files described by @cfts are removed from all
3812 * existing cgroups and all future cgroups won't have them either. This
3813 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3814 *
3815 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3816 * registered.
79578621 3817 */
2bb566cb 3818int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3819{
21a2d343 3820 int ret;
79578621 3821
01f6474c 3822 mutex_lock(&cgroup_mutex);
21a2d343 3823 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3824 mutex_unlock(&cgroup_mutex);
21a2d343 3825 return ret;
80b13586
TH
3826}
3827
8e3f6541
TH
3828/**
3829 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3830 * @ss: target cgroup subsystem
3831 * @cfts: zero-length name terminated array of cftypes
3832 *
3833 * Register @cfts to @ss. Files described by @cfts are created for all
3834 * existing cgroups to which @ss is attached and all future cgroups will
3835 * have them too. This function can be called anytime whether @ss is
3836 * attached or not.
3837 *
3838 * Returns 0 on successful registration, -errno on failure. Note that this
3839 * function currently returns 0 as long as @cfts registration is successful
3840 * even if some file creation attempts on existing cgroups fail.
3841 */
2cf669a5 3842static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3843{
9ccece80 3844 int ret;
8e3f6541 3845
fc5ed1e9 3846 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3847 return 0;
3848
dc5736ed
LZ
3849 if (!cfts || cfts[0].name[0] == '\0')
3850 return 0;
2bb566cb 3851
2bd59d48
TH
3852 ret = cgroup_init_cftypes(ss, cfts);
3853 if (ret)
3854 return ret;
79578621 3855
01f6474c 3856 mutex_lock(&cgroup_mutex);
21a2d343 3857
0adb0704 3858 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3859 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3860 if (ret)
21a2d343 3861 cgroup_rm_cftypes_locked(cfts);
79578621 3862
01f6474c 3863 mutex_unlock(&cgroup_mutex);
9ccece80 3864 return ret;
79578621
TH
3865}
3866
a8ddc821
TH
3867/**
3868 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3869 * @ss: target cgroup subsystem
3870 * @cfts: zero-length name terminated array of cftypes
3871 *
3872 * Similar to cgroup_add_cftypes() but the added files are only used for
3873 * the default hierarchy.
3874 */
3875int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3876{
3877 struct cftype *cft;
3878
3879 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3880 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3881 return cgroup_add_cftypes(ss, cfts);
3882}
3883
3884/**
3885 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3886 * @ss: target cgroup subsystem
3887 * @cfts: zero-length name terminated array of cftypes
3888 *
3889 * Similar to cgroup_add_cftypes() but the added files are only used for
3890 * the legacy hierarchies.
3891 */
2cf669a5
TH
3892int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3893{
a8ddc821
TH
3894 struct cftype *cft;
3895
e4b7037c
TH
3896 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3897 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3898 return cgroup_add_cftypes(ss, cfts);
3899}
3900
34c06254
TH
3901/**
3902 * cgroup_file_notify - generate a file modified event for a cgroup_file
3903 * @cfile: target cgroup_file
3904 *
3905 * @cfile must have been obtained by setting cftype->file_offset.
3906 */
3907void cgroup_file_notify(struct cgroup_file *cfile)
3908{
3909 unsigned long flags;
3910
3911 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3912 if (cfile->kn)
3913 kernfs_notify(cfile->kn);
3914 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3915}
3916
a043e3b2
LZ
3917/**
3918 * cgroup_task_count - count the number of tasks in a cgroup.
3919 * @cgrp: the cgroup in question
3920 *
9157056d
TH
3921 * Return the number of tasks in the cgroup. The returned number can be
3922 * higher than the actual number of tasks due to css_set references from
3923 * namespace roots and temporary usages.
a043e3b2 3924 */
07bc356e 3925static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3926{
3927 int count = 0;
69d0206c 3928 struct cgrp_cset_link *link;
817929ec 3929
82d6489d 3930 spin_lock_irq(&css_set_lock);
69d0206c
TH
3931 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3932 count += atomic_read(&link->cset->refcount);
82d6489d 3933 spin_unlock_irq(&css_set_lock);
bbcb81d0
PM
3934 return count;
3935}
3936
53fa5261 3937/**
492eb21b 3938 * css_next_child - find the next child of a given css
c2931b70
TH
3939 * @pos: the current position (%NULL to initiate traversal)
3940 * @parent: css whose children to walk
53fa5261 3941 *
c2931b70 3942 * This function returns the next child of @parent and should be called
87fb54f1 3943 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3944 * that @parent and @pos are accessible. The next sibling is guaranteed to
3945 * be returned regardless of their states.
3946 *
3947 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3948 * css which finished ->css_online() is guaranteed to be visible in the
3949 * future iterations and will stay visible until the last reference is put.
3950 * A css which hasn't finished ->css_online() or already finished
3951 * ->css_offline() may show up during traversal. It's each subsystem's
3952 * responsibility to synchronize against on/offlining.
53fa5261 3953 */
c2931b70
TH
3954struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3955 struct cgroup_subsys_state *parent)
53fa5261 3956{
c2931b70 3957 struct cgroup_subsys_state *next;
53fa5261 3958
8353da1f 3959 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3960
3961 /*
de3f0341
TH
3962 * @pos could already have been unlinked from the sibling list.
3963 * Once a cgroup is removed, its ->sibling.next is no longer
3964 * updated when its next sibling changes. CSS_RELEASED is set when
3965 * @pos is taken off list, at which time its next pointer is valid,
3966 * and, as releases are serialized, the one pointed to by the next
3967 * pointer is guaranteed to not have started release yet. This
3968 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3969 * critical section, the one pointed to by its next pointer is
3970 * guaranteed to not have finished its RCU grace period even if we
3971 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3972 *
de3f0341
TH
3973 * If @pos has CSS_RELEASED set, its next pointer can't be
3974 * dereferenced; however, as each css is given a monotonically
3975 * increasing unique serial number and always appended to the
3976 * sibling list, the next one can be found by walking the parent's
3977 * children until the first css with higher serial number than
3978 * @pos's. While this path can be slower, it happens iff iteration
3979 * races against release and the race window is very small.
53fa5261 3980 */
3b287a50 3981 if (!pos) {
c2931b70
TH
3982 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3983 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3984 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3985 } else {
c2931b70 3986 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3987 if (next->serial_nr > pos->serial_nr)
3988 break;
53fa5261
TH
3989 }
3990
3b281afb
TH
3991 /*
3992 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3993 * the next sibling.
3b281afb 3994 */
c2931b70
TH
3995 if (&next->sibling != &parent->children)
3996 return next;
3b281afb 3997 return NULL;
53fa5261 3998}
53fa5261 3999
574bd9f7 4000/**
492eb21b 4001 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 4002 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4003 * @root: css whose descendants to walk
574bd9f7 4004 *
492eb21b 4005 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
4006 * to visit for pre-order traversal of @root's descendants. @root is
4007 * included in the iteration and the first node to be visited.
75501a6d 4008 *
87fb54f1
TH
4009 * While this function requires cgroup_mutex or RCU read locking, it
4010 * doesn't require the whole traversal to be contained in a single critical
4011 * section. This function will return the correct next descendant as long
4012 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
4013 *
4014 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4015 * css which finished ->css_online() is guaranteed to be visible in the
4016 * future iterations and will stay visible until the last reference is put.
4017 * A css which hasn't finished ->css_online() or already finished
4018 * ->css_offline() may show up during traversal. It's each subsystem's
4019 * responsibility to synchronize against on/offlining.
574bd9f7 4020 */
492eb21b
TH
4021struct cgroup_subsys_state *
4022css_next_descendant_pre(struct cgroup_subsys_state *pos,
4023 struct cgroup_subsys_state *root)
574bd9f7 4024{
492eb21b 4025 struct cgroup_subsys_state *next;
574bd9f7 4026
8353da1f 4027 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4028
bd8815a6 4029 /* if first iteration, visit @root */
7805d000 4030 if (!pos)
bd8815a6 4031 return root;
574bd9f7
TH
4032
4033 /* visit the first child if exists */
492eb21b 4034 next = css_next_child(NULL, pos);
574bd9f7
TH
4035 if (next)
4036 return next;
4037
4038 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 4039 while (pos != root) {
5c9d535b 4040 next = css_next_child(pos, pos->parent);
75501a6d 4041 if (next)
574bd9f7 4042 return next;
5c9d535b 4043 pos = pos->parent;
7805d000 4044 }
574bd9f7
TH
4045
4046 return NULL;
4047}
574bd9f7 4048
12a9d2fe 4049/**
492eb21b
TH
4050 * css_rightmost_descendant - return the rightmost descendant of a css
4051 * @pos: css of interest
12a9d2fe 4052 *
492eb21b
TH
4053 * Return the rightmost descendant of @pos. If there's no descendant, @pos
4054 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 4055 * subtree of @pos.
75501a6d 4056 *
87fb54f1
TH
4057 * While this function requires cgroup_mutex or RCU read locking, it
4058 * doesn't require the whole traversal to be contained in a single critical
4059 * section. This function will return the correct rightmost descendant as
4060 * long as @pos is accessible.
12a9d2fe 4061 */
492eb21b
TH
4062struct cgroup_subsys_state *
4063css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 4064{
492eb21b 4065 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 4066
8353da1f 4067 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
4068
4069 do {
4070 last = pos;
4071 /* ->prev isn't RCU safe, walk ->next till the end */
4072 pos = NULL;
492eb21b 4073 css_for_each_child(tmp, last)
12a9d2fe
TH
4074 pos = tmp;
4075 } while (pos);
4076
4077 return last;
4078}
12a9d2fe 4079
492eb21b
TH
4080static struct cgroup_subsys_state *
4081css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 4082{
492eb21b 4083 struct cgroup_subsys_state *last;
574bd9f7
TH
4084
4085 do {
4086 last = pos;
492eb21b 4087 pos = css_next_child(NULL, pos);
574bd9f7
TH
4088 } while (pos);
4089
4090 return last;
4091}
4092
4093/**
492eb21b 4094 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 4095 * @pos: the current position (%NULL to initiate traversal)
492eb21b 4096 * @root: css whose descendants to walk
574bd9f7 4097 *
492eb21b 4098 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
4099 * to visit for post-order traversal of @root's descendants. @root is
4100 * included in the iteration and the last node to be visited.
75501a6d 4101 *
87fb54f1
TH
4102 * While this function requires cgroup_mutex or RCU read locking, it
4103 * doesn't require the whole traversal to be contained in a single critical
4104 * section. This function will return the correct next descendant as long
4105 * as both @pos and @cgroup are accessible and @pos is a descendant of
4106 * @cgroup.
c2931b70
TH
4107 *
4108 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4109 * css which finished ->css_online() is guaranteed to be visible in the
4110 * future iterations and will stay visible until the last reference is put.
4111 * A css which hasn't finished ->css_online() or already finished
4112 * ->css_offline() may show up during traversal. It's each subsystem's
4113 * responsibility to synchronize against on/offlining.
574bd9f7 4114 */
492eb21b
TH
4115struct cgroup_subsys_state *
4116css_next_descendant_post(struct cgroup_subsys_state *pos,
4117 struct cgroup_subsys_state *root)
574bd9f7 4118{
492eb21b 4119 struct cgroup_subsys_state *next;
574bd9f7 4120
8353da1f 4121 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 4122
58b79a91
TH
4123 /* if first iteration, visit leftmost descendant which may be @root */
4124 if (!pos)
4125 return css_leftmost_descendant(root);
574bd9f7 4126
bd8815a6
TH
4127 /* if we visited @root, we're done */
4128 if (pos == root)
4129 return NULL;
4130
574bd9f7 4131 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 4132 next = css_next_child(pos, pos->parent);
75501a6d 4133 if (next)
492eb21b 4134 return css_leftmost_descendant(next);
574bd9f7
TH
4135
4136 /* no sibling left, visit parent */
5c9d535b 4137 return pos->parent;
574bd9f7 4138}
574bd9f7 4139
f3d46500
TH
4140/**
4141 * css_has_online_children - does a css have online children
4142 * @css: the target css
4143 *
4144 * Returns %true if @css has any online children; otherwise, %false. This
4145 * function can be called from any context but the caller is responsible
4146 * for synchronizing against on/offlining as necessary.
4147 */
4148bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 4149{
f3d46500
TH
4150 struct cgroup_subsys_state *child;
4151 bool ret = false;
cbc125ef
TH
4152
4153 rcu_read_lock();
f3d46500 4154 css_for_each_child(child, css) {
99bae5f9 4155 if (child->flags & CSS_ONLINE) {
f3d46500
TH
4156 ret = true;
4157 break;
cbc125ef
TH
4158 }
4159 }
4160 rcu_read_unlock();
f3d46500 4161 return ret;
574bd9f7 4162}
574bd9f7 4163
0942eeee 4164/**
ecb9d535 4165 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
4166 * @it: the iterator to advance
4167 *
4168 * Advance @it to the next css_set to walk.
d515876e 4169 */
ecb9d535 4170static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 4171{
0f0a2b4f 4172 struct list_head *l = it->cset_pos;
d515876e
TH
4173 struct cgrp_cset_link *link;
4174 struct css_set *cset;
4175
f0d9a5f1 4176 lockdep_assert_held(&css_set_lock);
ed27b9f7 4177
d515876e
TH
4178 /* Advance to the next non-empty css_set */
4179 do {
4180 l = l->next;
0f0a2b4f
TH
4181 if (l == it->cset_head) {
4182 it->cset_pos = NULL;
ecb9d535 4183 it->task_pos = NULL;
d515876e
TH
4184 return;
4185 }
3ebb2b6e
TH
4186
4187 if (it->ss) {
4188 cset = container_of(l, struct css_set,
4189 e_cset_node[it->ss->id]);
4190 } else {
4191 link = list_entry(l, struct cgrp_cset_link, cset_link);
4192 cset = link->cset;
4193 }
0de0942d 4194 } while (!css_set_populated(cset));
c7561128 4195
0f0a2b4f 4196 it->cset_pos = l;
c7561128
TH
4197
4198 if (!list_empty(&cset->tasks))
0f0a2b4f 4199 it->task_pos = cset->tasks.next;
c7561128 4200 else
0f0a2b4f
TH
4201 it->task_pos = cset->mg_tasks.next;
4202
4203 it->tasks_head = &cset->tasks;
4204 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
4205
4206 /*
4207 * We don't keep css_sets locked across iteration steps and thus
4208 * need to take steps to ensure that iteration can be resumed after
4209 * the lock is re-acquired. Iteration is performed at two levels -
4210 * css_sets and tasks in them.
4211 *
4212 * Once created, a css_set never leaves its cgroup lists, so a
4213 * pinned css_set is guaranteed to stay put and we can resume
4214 * iteration afterwards.
4215 *
4216 * Tasks may leave @cset across iteration steps. This is resolved
4217 * by registering each iterator with the css_set currently being
4218 * walked and making css_set_move_task() advance iterators whose
4219 * next task is leaving.
4220 */
4221 if (it->cur_cset) {
4222 list_del(&it->iters_node);
4223 put_css_set_locked(it->cur_cset);
4224 }
4225 get_css_set(cset);
4226 it->cur_cset = cset;
4227 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
4228}
4229
ecb9d535
TH
4230static void css_task_iter_advance(struct css_task_iter *it)
4231{
4232 struct list_head *l = it->task_pos;
4233
f0d9a5f1 4234 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
4235 WARN_ON_ONCE(!l);
4236
4237 /*
4238 * Advance iterator to find next entry. cset->tasks is consumed
4239 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4240 * next cset.
4241 */
4242 l = l->next;
4243
4244 if (l == it->tasks_head)
4245 l = it->mg_tasks_head->next;
4246
4247 if (l == it->mg_tasks_head)
4248 css_task_iter_advance_css_set(it);
4249 else
4250 it->task_pos = l;
4251}
4252
0942eeee 4253/**
72ec7029
TH
4254 * css_task_iter_start - initiate task iteration
4255 * @css: the css to walk tasks of
0942eeee
TH
4256 * @it: the task iterator to use
4257 *
72ec7029
TH
4258 * Initiate iteration through the tasks of @css. The caller can call
4259 * css_task_iter_next() to walk through the tasks until the function
4260 * returns NULL. On completion of iteration, css_task_iter_end() must be
4261 * called.
0942eeee 4262 */
72ec7029
TH
4263void css_task_iter_start(struct cgroup_subsys_state *css,
4264 struct css_task_iter *it)
817929ec 4265{
56fde9e0
TH
4266 /* no one should try to iterate before mounting cgroups */
4267 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 4268
ed27b9f7
TH
4269 memset(it, 0, sizeof(*it));
4270
82d6489d 4271 spin_lock_irq(&css_set_lock);
c59cd3d8 4272
3ebb2b6e
TH
4273 it->ss = css->ss;
4274
4275 if (it->ss)
4276 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4277 else
4278 it->cset_pos = &css->cgroup->cset_links;
4279
0f0a2b4f 4280 it->cset_head = it->cset_pos;
c59cd3d8 4281
ecb9d535 4282 css_task_iter_advance_css_set(it);
ed27b9f7 4283
82d6489d 4284 spin_unlock_irq(&css_set_lock);
817929ec
PM
4285}
4286
0942eeee 4287/**
72ec7029 4288 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4289 * @it: the task iterator being iterated
4290 *
4291 * The "next" function for task iteration. @it should have been
72ec7029
TH
4292 * initialized via css_task_iter_start(). Returns NULL when the iteration
4293 * reaches the end.
0942eeee 4294 */
72ec7029 4295struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4296{
d5745675 4297 if (it->cur_task) {
ed27b9f7 4298 put_task_struct(it->cur_task);
d5745675
TH
4299 it->cur_task = NULL;
4300 }
ed27b9f7 4301
82d6489d 4302 spin_lock_irq(&css_set_lock);
ed27b9f7 4303
d5745675
TH
4304 if (it->task_pos) {
4305 it->cur_task = list_entry(it->task_pos, struct task_struct,
4306 cg_list);
4307 get_task_struct(it->cur_task);
4308 css_task_iter_advance(it);
4309 }
ed27b9f7 4310
82d6489d 4311 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4312
4313 return it->cur_task;
817929ec
PM
4314}
4315
0942eeee 4316/**
72ec7029 4317 * css_task_iter_end - finish task iteration
0942eeee
TH
4318 * @it: the task iterator to finish
4319 *
72ec7029 4320 * Finish task iteration started by css_task_iter_start().
0942eeee 4321 */
72ec7029 4322void css_task_iter_end(struct css_task_iter *it)
31a7df01 4323{
ed27b9f7 4324 if (it->cur_cset) {
82d6489d 4325 spin_lock_irq(&css_set_lock);
ed27b9f7
TH
4326 list_del(&it->iters_node);
4327 put_css_set_locked(it->cur_cset);
82d6489d 4328 spin_unlock_irq(&css_set_lock);
ed27b9f7
TH
4329 }
4330
4331 if (it->cur_task)
4332 put_task_struct(it->cur_task);
31a7df01
CW
4333}
4334
4335/**
8cc99345
TH
4336 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4337 * @to: cgroup to which the tasks will be moved
4338 * @from: cgroup in which the tasks currently reside
31a7df01 4339 *
eaf797ab
TH
4340 * Locking rules between cgroup_post_fork() and the migration path
4341 * guarantee that, if a task is forking while being migrated, the new child
4342 * is guaranteed to be either visible in the source cgroup after the
4343 * parent's migration is complete or put into the target cgroup. No task
4344 * can slip out of migration through forking.
31a7df01 4345 */
8cc99345 4346int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4347{
952aaa12
TH
4348 LIST_HEAD(preloaded_csets);
4349 struct cgrp_cset_link *link;
72ec7029 4350 struct css_task_iter it;
e406d1cf 4351 struct task_struct *task;
952aaa12 4352 int ret;
31a7df01 4353
6c694c88
TH
4354 if (!cgroup_may_migrate_to(to))
4355 return -EBUSY;
4356
952aaa12 4357 mutex_lock(&cgroup_mutex);
31a7df01 4358
eedd0f4c
EB
4359 percpu_down_write(&cgroup_threadgroup_rwsem);
4360
952aaa12 4361 /* all tasks in @from are being moved, all csets are source */
82d6489d 4362 spin_lock_irq(&css_set_lock);
952aaa12
TH
4363 list_for_each_entry(link, &from->cset_links, cset_link)
4364 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
82d6489d 4365 spin_unlock_irq(&css_set_lock);
31a7df01 4366
e4857982 4367 ret = cgroup_migrate_prepare_dst(&preloaded_csets);
952aaa12
TH
4368 if (ret)
4369 goto out_err;
8cc99345 4370
952aaa12 4371 /*
2cfa2b19 4372 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4373 * ->can_attach() fails.
4374 */
e406d1cf 4375 do {
9d800df1 4376 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4377 task = css_task_iter_next(&it);
4378 if (task)
4379 get_task_struct(task);
4380 css_task_iter_end(&it);
4381
4382 if (task) {
37ff9f8f 4383 ret = cgroup_migrate(task, false, to->root);
e406d1cf
TH
4384 put_task_struct(task);
4385 }
4386 } while (task && !ret);
952aaa12
TH
4387out_err:
4388 cgroup_migrate_finish(&preloaded_csets);
eedd0f4c 4389 percpu_up_write(&cgroup_threadgroup_rwsem);
47cfcd09 4390 mutex_unlock(&cgroup_mutex);
e406d1cf 4391 return ret;
8cc99345
TH
4392}
4393
bbcb81d0 4394/*
102a775e 4395 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4396 *
4397 * Reading this file can return large amounts of data if a cgroup has
4398 * *lots* of attached tasks. So it may need several calls to read(),
4399 * but we cannot guarantee that the information we produce is correct
4400 * unless we produce it entirely atomically.
4401 *
bbcb81d0 4402 */
bbcb81d0 4403
24528255
LZ
4404/* which pidlist file are we talking about? */
4405enum cgroup_filetype {
4406 CGROUP_FILE_PROCS,
4407 CGROUP_FILE_TASKS,
4408};
4409
4410/*
4411 * A pidlist is a list of pids that virtually represents the contents of one
4412 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4413 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4414 * to the cgroup.
4415 */
4416struct cgroup_pidlist {
4417 /*
4418 * used to find which pidlist is wanted. doesn't change as long as
4419 * this particular list stays in the list.
4420 */
4421 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4422 /* array of xids */
4423 pid_t *list;
4424 /* how many elements the above list has */
4425 int length;
24528255
LZ
4426 /* each of these stored in a list by its cgroup */
4427 struct list_head links;
4428 /* pointer to the cgroup we belong to, for list removal purposes */
4429 struct cgroup *owner;
b1a21367
TH
4430 /* for delayed destruction */
4431 struct delayed_work destroy_dwork;
24528255
LZ
4432};
4433
d1d9fd33
BB
4434/*
4435 * The following two functions "fix" the issue where there are more pids
4436 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4437 * TODO: replace with a kernel-wide solution to this problem
4438 */
4439#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4440static void *pidlist_allocate(int count)
4441{
4442 if (PIDLIST_TOO_LARGE(count))
4443 return vmalloc(count * sizeof(pid_t));
4444 else
4445 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4446}
b1a21367 4447
d1d9fd33
BB
4448static void pidlist_free(void *p)
4449{
58794514 4450 kvfree(p);
d1d9fd33 4451}
d1d9fd33 4452
b1a21367
TH
4453/*
4454 * Used to destroy all pidlists lingering waiting for destroy timer. None
4455 * should be left afterwards.
4456 */
4457static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4458{
4459 struct cgroup_pidlist *l, *tmp_l;
4460
4461 mutex_lock(&cgrp->pidlist_mutex);
4462 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4463 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4464 mutex_unlock(&cgrp->pidlist_mutex);
4465
4466 flush_workqueue(cgroup_pidlist_destroy_wq);
4467 BUG_ON(!list_empty(&cgrp->pidlists));
4468}
4469
4470static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4471{
4472 struct delayed_work *dwork = to_delayed_work(work);
4473 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4474 destroy_dwork);
4475 struct cgroup_pidlist *tofree = NULL;
4476
4477 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4478
4479 /*
04502365
TH
4480 * Destroy iff we didn't get queued again. The state won't change
4481 * as destroy_dwork can only be queued while locked.
b1a21367 4482 */
04502365 4483 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4484 list_del(&l->links);
4485 pidlist_free(l->list);
4486 put_pid_ns(l->key.ns);
4487 tofree = l;
4488 }
4489
b1a21367
TH
4490 mutex_unlock(&l->owner->pidlist_mutex);
4491 kfree(tofree);
4492}
4493
bbcb81d0 4494/*
102a775e 4495 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4496 * Returns the number of unique elements.
bbcb81d0 4497 */
6ee211ad 4498static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4499{
102a775e 4500 int src, dest = 1;
102a775e
BB
4501
4502 /*
4503 * we presume the 0th element is unique, so i starts at 1. trivial
4504 * edge cases first; no work needs to be done for either
4505 */
4506 if (length == 0 || length == 1)
4507 return length;
4508 /* src and dest walk down the list; dest counts unique elements */
4509 for (src = 1; src < length; src++) {
4510 /* find next unique element */
4511 while (list[src] == list[src-1]) {
4512 src++;
4513 if (src == length)
4514 goto after;
4515 }
4516 /* dest always points to where the next unique element goes */
4517 list[dest] = list[src];
4518 dest++;
4519 }
4520after:
102a775e
BB
4521 return dest;
4522}
4523
afb2bc14
TH
4524/*
4525 * The two pid files - task and cgroup.procs - guaranteed that the result
4526 * is sorted, which forced this whole pidlist fiasco. As pid order is
4527 * different per namespace, each namespace needs differently sorted list,
4528 * making it impossible to use, for example, single rbtree of member tasks
4529 * sorted by task pointer. As pidlists can be fairly large, allocating one
4530 * per open file is dangerous, so cgroup had to implement shared pool of
4531 * pidlists keyed by cgroup and namespace.
4532 *
4533 * All this extra complexity was caused by the original implementation
4534 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4535 * want to do away with it. Explicitly scramble sort order if on the
4536 * default hierarchy so that no such expectation exists in the new
4537 * interface.
afb2bc14
TH
4538 *
4539 * Scrambling is done by swapping every two consecutive bits, which is
4540 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4541 */
4542static pid_t pid_fry(pid_t pid)
4543{
4544 unsigned a = pid & 0x55555555;
4545 unsigned b = pid & 0xAAAAAAAA;
4546
4547 return (a << 1) | (b >> 1);
4548}
4549
4550static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4551{
aa6ec29b 4552 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4553 return pid_fry(pid);
4554 else
4555 return pid;
4556}
4557
102a775e
BB
4558static int cmppid(const void *a, const void *b)
4559{
4560 return *(pid_t *)a - *(pid_t *)b;
4561}
4562
afb2bc14
TH
4563static int fried_cmppid(const void *a, const void *b)
4564{
4565 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4566}
4567
e6b81710
TH
4568static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4569 enum cgroup_filetype type)
4570{
4571 struct cgroup_pidlist *l;
4572 /* don't need task_nsproxy() if we're looking at ourself */
4573 struct pid_namespace *ns = task_active_pid_ns(current);
4574
4575 lockdep_assert_held(&cgrp->pidlist_mutex);
4576
4577 list_for_each_entry(l, &cgrp->pidlists, links)
4578 if (l->key.type == type && l->key.ns == ns)
4579 return l;
4580 return NULL;
4581}
4582
72a8cb30
BB
4583/*
4584 * find the appropriate pidlist for our purpose (given procs vs tasks)
4585 * returns with the lock on that pidlist already held, and takes care
4586 * of the use count, or returns NULL with no locks held if we're out of
4587 * memory.
4588 */
e6b81710
TH
4589static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4590 enum cgroup_filetype type)
72a8cb30
BB
4591{
4592 struct cgroup_pidlist *l;
b70cc5fd 4593
e6b81710
TH
4594 lockdep_assert_held(&cgrp->pidlist_mutex);
4595
4596 l = cgroup_pidlist_find(cgrp, type);
4597 if (l)
4598 return l;
4599
72a8cb30 4600 /* entry not found; create a new one */
f4f4be2b 4601 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4602 if (!l)
72a8cb30 4603 return l;
e6b81710 4604
b1a21367 4605 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4606 l->key.type = type;
e6b81710
TH
4607 /* don't need task_nsproxy() if we're looking at ourself */
4608 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4609 l->owner = cgrp;
4610 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4611 return l;
4612}
4613
102a775e
BB
4614/*
4615 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4616 */
72a8cb30
BB
4617static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4618 struct cgroup_pidlist **lp)
102a775e
BB
4619{
4620 pid_t *array;
4621 int length;
4622 int pid, n = 0; /* used for populating the array */
72ec7029 4623 struct css_task_iter it;
817929ec 4624 struct task_struct *tsk;
102a775e
BB
4625 struct cgroup_pidlist *l;
4626
4bac00d1
TH
4627 lockdep_assert_held(&cgrp->pidlist_mutex);
4628
102a775e
BB
4629 /*
4630 * If cgroup gets more users after we read count, we won't have
4631 * enough space - tough. This race is indistinguishable to the
4632 * caller from the case that the additional cgroup users didn't
4633 * show up until sometime later on.
4634 */
4635 length = cgroup_task_count(cgrp);
d1d9fd33 4636 array = pidlist_allocate(length);
102a775e
BB
4637 if (!array)
4638 return -ENOMEM;
4639 /* now, populate the array */
9d800df1 4640 css_task_iter_start(&cgrp->self, &it);
72ec7029 4641 while ((tsk = css_task_iter_next(&it))) {
102a775e 4642 if (unlikely(n == length))
817929ec 4643 break;
102a775e 4644 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4645 if (type == CGROUP_FILE_PROCS)
4646 pid = task_tgid_vnr(tsk);
4647 else
4648 pid = task_pid_vnr(tsk);
102a775e
BB
4649 if (pid > 0) /* make sure to only use valid results */
4650 array[n++] = pid;
817929ec 4651 }
72ec7029 4652 css_task_iter_end(&it);
102a775e
BB
4653 length = n;
4654 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4655 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4656 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4657 else
4658 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4659 if (type == CGROUP_FILE_PROCS)
6ee211ad 4660 length = pidlist_uniq(array, length);
e6b81710 4661
e6b81710 4662 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4663 if (!l) {
d1d9fd33 4664 pidlist_free(array);
72a8cb30 4665 return -ENOMEM;
102a775e 4666 }
e6b81710
TH
4667
4668 /* store array, freeing old if necessary */
d1d9fd33 4669 pidlist_free(l->list);
102a775e
BB
4670 l->list = array;
4671 l->length = length;
72a8cb30 4672 *lp = l;
102a775e 4673 return 0;
bbcb81d0
PM
4674}
4675
846c7bb0 4676/**
a043e3b2 4677 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4678 * @stats: cgroupstats to fill information into
4679 * @dentry: A dentry entry belonging to the cgroup for which stats have
4680 * been requested.
a043e3b2
LZ
4681 *
4682 * Build and fill cgroupstats so that taskstats can export it to user
4683 * space.
846c7bb0
BS
4684 */
4685int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4686{
2bd59d48 4687 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4688 struct cgroup *cgrp;
72ec7029 4689 struct css_task_iter it;
846c7bb0 4690 struct task_struct *tsk;
33d283be 4691
2bd59d48
TH
4692 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4693 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4694 kernfs_type(kn) != KERNFS_DIR)
4695 return -EINVAL;
4696
bad34660
LZ
4697 mutex_lock(&cgroup_mutex);
4698
846c7bb0 4699 /*
2bd59d48 4700 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4701 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4702 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4703 */
2bd59d48
TH
4704 rcu_read_lock();
4705 cgrp = rcu_dereference(kn->priv);
bad34660 4706 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4707 rcu_read_unlock();
bad34660 4708 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4709 return -ENOENT;
4710 }
bad34660 4711 rcu_read_unlock();
846c7bb0 4712
9d800df1 4713 css_task_iter_start(&cgrp->self, &it);
72ec7029 4714 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4715 switch (tsk->state) {
4716 case TASK_RUNNING:
4717 stats->nr_running++;
4718 break;
4719 case TASK_INTERRUPTIBLE:
4720 stats->nr_sleeping++;
4721 break;
4722 case TASK_UNINTERRUPTIBLE:
4723 stats->nr_uninterruptible++;
4724 break;
4725 case TASK_STOPPED:
4726 stats->nr_stopped++;
4727 break;
4728 default:
4729 if (delayacct_is_task_waiting_on_io(tsk))
4730 stats->nr_io_wait++;
4731 break;
4732 }
4733 }
72ec7029 4734 css_task_iter_end(&it);
846c7bb0 4735
bad34660 4736 mutex_unlock(&cgroup_mutex);
2bd59d48 4737 return 0;
846c7bb0
BS
4738}
4739
8f3ff208 4740
bbcb81d0 4741/*
102a775e 4742 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4743 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4744 * in the cgroup->l->list array.
bbcb81d0 4745 */
cc31edce 4746
102a775e 4747static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4748{
cc31edce
PM
4749 /*
4750 * Initially we receive a position value that corresponds to
4751 * one more than the last pid shown (or 0 on the first call or
4752 * after a seek to the start). Use a binary-search to find the
4753 * next pid to display, if any
4754 */
2bd59d48 4755 struct kernfs_open_file *of = s->private;
7da11279 4756 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4757 struct cgroup_pidlist *l;
7da11279 4758 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4759 int index = 0, pid = *pos;
4bac00d1
TH
4760 int *iter, ret;
4761
4762 mutex_lock(&cgrp->pidlist_mutex);
4763
4764 /*
5d22444f 4765 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4766 * after open. If the matching pidlist is around, we can use that.
5d22444f 4767 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4768 * could already have been destroyed.
4769 */
5d22444f
TH
4770 if (of->priv)
4771 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4772
4773 /*
4774 * Either this is the first start() after open or the matching
4775 * pidlist has been destroyed inbetween. Create a new one.
4776 */
5d22444f
TH
4777 if (!of->priv) {
4778 ret = pidlist_array_load(cgrp, type,
4779 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4780 if (ret)
4781 return ERR_PTR(ret);
4782 }
5d22444f 4783 l = of->priv;
cc31edce 4784
cc31edce 4785 if (pid) {
102a775e 4786 int end = l->length;
20777766 4787
cc31edce
PM
4788 while (index < end) {
4789 int mid = (index + end) / 2;
afb2bc14 4790 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4791 index = mid;
4792 break;
afb2bc14 4793 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4794 index = mid + 1;
4795 else
4796 end = mid;
4797 }
4798 }
4799 /* If we're off the end of the array, we're done */
102a775e 4800 if (index >= l->length)
cc31edce
PM
4801 return NULL;
4802 /* Update the abstract position to be the actual pid that we found */
102a775e 4803 iter = l->list + index;
afb2bc14 4804 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4805 return iter;
4806}
4807
102a775e 4808static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4809{
2bd59d48 4810 struct kernfs_open_file *of = s->private;
5d22444f 4811 struct cgroup_pidlist *l = of->priv;
62236858 4812
5d22444f
TH
4813 if (l)
4814 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4815 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4816 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4817}
4818
102a775e 4819static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4820{
2bd59d48 4821 struct kernfs_open_file *of = s->private;
5d22444f 4822 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4823 pid_t *p = v;
4824 pid_t *end = l->list + l->length;
cc31edce
PM
4825 /*
4826 * Advance to the next pid in the array. If this goes off the
4827 * end, we're done
4828 */
4829 p++;
4830 if (p >= end) {
4831 return NULL;
4832 } else {
7da11279 4833 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4834 return p;
4835 }
4836}
4837
102a775e 4838static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4839{
94ff212d
JP
4840 seq_printf(s, "%d\n", *(int *)v);
4841
4842 return 0;
cc31edce 4843}
bbcb81d0 4844
182446d0
TH
4845static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4846 struct cftype *cft)
81a6a5cd 4847{
182446d0 4848 return notify_on_release(css->cgroup);
81a6a5cd
PM
4849}
4850
182446d0
TH
4851static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4852 struct cftype *cft, u64 val)
6379c106 4853{
6379c106 4854 if (val)
182446d0 4855 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4856 else
182446d0 4857 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4858 return 0;
4859}
4860
182446d0
TH
4861static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4862 struct cftype *cft)
97978e6d 4863{
182446d0 4864 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4865}
4866
182446d0
TH
4867static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4868 struct cftype *cft, u64 val)
97978e6d
DL
4869{
4870 if (val)
182446d0 4871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4872 else
182446d0 4873 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4874 return 0;
4875}
4876
a14c6874
TH
4877/* cgroup core interface files for the default hierarchy */
4878static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4879 {
d5c56ced 4880 .name = "cgroup.procs",
6f60eade 4881 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4882 .seq_start = cgroup_pidlist_start,
4883 .seq_next = cgroup_pidlist_next,
4884 .seq_stop = cgroup_pidlist_stop,
4885 .seq_show = cgroup_pidlist_show,
5d22444f 4886 .private = CGROUP_FILE_PROCS,
acbef755 4887 .write = cgroup_procs_write,
102a775e 4888 },
f8f22e53
TH
4889 {
4890 .name = "cgroup.controllers",
f8f22e53
TH
4891 .seq_show = cgroup_controllers_show,
4892 },
4893 {
4894 .name = "cgroup.subtree_control",
f8f22e53 4895 .seq_show = cgroup_subtree_control_show,
451af504 4896 .write = cgroup_subtree_control_write,
f8f22e53 4897 },
842b597e 4898 {
4a07c222 4899 .name = "cgroup.events",
a14c6874 4900 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4901 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4902 .seq_show = cgroup_events_show,
842b597e 4903 },
a14c6874
TH
4904 { } /* terminate */
4905};
d5c56ced 4906
a14c6874
TH
4907/* cgroup core interface files for the legacy hierarchies */
4908static struct cftype cgroup_legacy_base_files[] = {
4909 {
4910 .name = "cgroup.procs",
4911 .seq_start = cgroup_pidlist_start,
4912 .seq_next = cgroup_pidlist_next,
4913 .seq_stop = cgroup_pidlist_stop,
4914 .seq_show = cgroup_pidlist_show,
4915 .private = CGROUP_FILE_PROCS,
4916 .write = cgroup_procs_write,
a14c6874
TH
4917 },
4918 {
4919 .name = "cgroup.clone_children",
4920 .read_u64 = cgroup_clone_children_read,
4921 .write_u64 = cgroup_clone_children_write,
4922 },
4923 {
4924 .name = "cgroup.sane_behavior",
4925 .flags = CFTYPE_ONLY_ON_ROOT,
4926 .seq_show = cgroup_sane_behavior_show,
4927 },
d5c56ced
TH
4928 {
4929 .name = "tasks",
6612f05b
TH
4930 .seq_start = cgroup_pidlist_start,
4931 .seq_next = cgroup_pidlist_next,
4932 .seq_stop = cgroup_pidlist_stop,
4933 .seq_show = cgroup_pidlist_show,
5d22444f 4934 .private = CGROUP_FILE_TASKS,
acbef755 4935 .write = cgroup_tasks_write,
d5c56ced
TH
4936 },
4937 {
4938 .name = "notify_on_release",
d5c56ced
TH
4939 .read_u64 = cgroup_read_notify_on_release,
4940 .write_u64 = cgroup_write_notify_on_release,
4941 },
6e6ff25b
TH
4942 {
4943 .name = "release_agent",
a14c6874 4944 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4945 .seq_show = cgroup_release_agent_show,
451af504 4946 .write = cgroup_release_agent_write,
5f469907 4947 .max_write_len = PATH_MAX - 1,
6e6ff25b 4948 },
db0416b6 4949 { } /* terminate */
bbcb81d0
PM
4950};
4951
0c21ead1
TH
4952/*
4953 * css destruction is four-stage process.
4954 *
4955 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4956 * Implemented in kill_css().
4957 *
4958 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4959 * and thus css_tryget_online() is guaranteed to fail, the css can be
4960 * offlined by invoking offline_css(). After offlining, the base ref is
4961 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4962 *
4963 * 3. When the percpu_ref reaches zero, the only possible remaining
4964 * accessors are inside RCU read sections. css_release() schedules the
4965 * RCU callback.
4966 *
4967 * 4. After the grace period, the css can be freed. Implemented in
4968 * css_free_work_fn().
4969 *
4970 * It is actually hairier because both step 2 and 4 require process context
4971 * and thus involve punting to css->destroy_work adding two additional
4972 * steps to the already complex sequence.
4973 */
35ef10da 4974static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4975{
4976 struct cgroup_subsys_state *css =
35ef10da 4977 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4978 struct cgroup_subsys *ss = css->ss;
0c21ead1 4979 struct cgroup *cgrp = css->cgroup;
48ddbe19 4980
9a1049da
TH
4981 percpu_ref_exit(&css->refcnt);
4982
01e58659 4983 if (ss) {
9d755d33 4984 /* css free path */
8bb5ef79 4985 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4986 int id = css->id;
4987
01e58659
VD
4988 ss->css_free(css);
4989 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4990 cgroup_put(cgrp);
8bb5ef79
TH
4991
4992 if (parent)
4993 css_put(parent);
9d755d33
TH
4994 } else {
4995 /* cgroup free path */
4996 atomic_dec(&cgrp->root->nr_cgrps);
4997 cgroup_pidlist_destroy_all(cgrp);
971ff493 4998 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4999
d51f39b0 5000 if (cgroup_parent(cgrp)) {
9d755d33
TH
5001 /*
5002 * We get a ref to the parent, and put the ref when
5003 * this cgroup is being freed, so it's guaranteed
5004 * that the parent won't be destroyed before its
5005 * children.
5006 */
d51f39b0 5007 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
5008 kernfs_put(cgrp->kn);
5009 kfree(cgrp);
5010 } else {
5011 /*
5012 * This is root cgroup's refcnt reaching zero,
5013 * which indicates that the root should be
5014 * released.
5015 */
5016 cgroup_destroy_root(cgrp->root);
5017 }
5018 }
48ddbe19
TH
5019}
5020
0c21ead1 5021static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
5022{
5023 struct cgroup_subsys_state *css =
0c21ead1 5024 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 5025
35ef10da 5026 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 5027 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
5028}
5029
25e15d83 5030static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
5031{
5032 struct cgroup_subsys_state *css =
25e15d83 5033 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 5034 struct cgroup_subsys *ss = css->ss;
9d755d33 5035 struct cgroup *cgrp = css->cgroup;
15a4c835 5036
1fed1b2e
TH
5037 mutex_lock(&cgroup_mutex);
5038
de3f0341 5039 css->flags |= CSS_RELEASED;
1fed1b2e
TH
5040 list_del_rcu(&css->sibling);
5041
9d755d33
TH
5042 if (ss) {
5043 /* css release path */
01e58659 5044 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
5045 if (ss->css_released)
5046 ss->css_released(css);
9d755d33
TH
5047 } else {
5048 /* cgroup release path */
9d755d33
TH
5049 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
5050 cgrp->id = -1;
a4189487
LZ
5051
5052 /*
5053 * There are two control paths which try to determine
5054 * cgroup from dentry without going through kernfs -
5055 * cgroupstats_build() and css_tryget_online_from_dir().
5056 * Those are supported by RCU protecting clearing of
5057 * cgrp->kn->priv backpointer.
5058 */
6cd0f5bb
TH
5059 if (cgrp->kn)
5060 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
5061 NULL);
9d755d33 5062 }
d3daf28d 5063
1fed1b2e
TH
5064 mutex_unlock(&cgroup_mutex);
5065
0c21ead1 5066 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
5067}
5068
d3daf28d
TH
5069static void css_release(struct percpu_ref *ref)
5070{
5071 struct cgroup_subsys_state *css =
5072 container_of(ref, struct cgroup_subsys_state, refcnt);
5073
25e15d83
TH
5074 INIT_WORK(&css->destroy_work, css_release_work_fn);
5075 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5076}
5077
ddfcadab
TH
5078static void init_and_link_css(struct cgroup_subsys_state *css,
5079 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 5080{
0cb51d71
TH
5081 lockdep_assert_held(&cgroup_mutex);
5082
ddfcadab
TH
5083 cgroup_get(cgrp);
5084
d5c419b6 5085 memset(css, 0, sizeof(*css));
bd89aabc 5086 css->cgroup = cgrp;
72c97e54 5087 css->ss = ss;
8fa3b8d6 5088 css->id = -1;
d5c419b6
TH
5089 INIT_LIST_HEAD(&css->sibling);
5090 INIT_LIST_HEAD(&css->children);
0cb51d71 5091 css->serial_nr = css_serial_nr_next++;
aa226ff4 5092 atomic_set(&css->online_cnt, 0);
0ae78e0b 5093
d51f39b0
TH
5094 if (cgroup_parent(cgrp)) {
5095 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 5096 css_get(css->parent);
ddfcadab 5097 }
48ddbe19 5098
ca8bdcaf 5099 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
5100}
5101
2a4ac633 5102/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 5103static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 5104{
623f926b 5105 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
5106 int ret = 0;
5107
a31f2d3f
TH
5108 lockdep_assert_held(&cgroup_mutex);
5109
92fb9748 5110 if (ss->css_online)
eb95419b 5111 ret = ss->css_online(css);
ae7f164a 5112 if (!ret) {
eb95419b 5113 css->flags |= CSS_ONLINE;
aec25020 5114 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
5115
5116 atomic_inc(&css->online_cnt);
5117 if (css->parent)
5118 atomic_inc(&css->parent->online_cnt);
ae7f164a 5119 }
b1929db4 5120 return ret;
a31f2d3f
TH
5121}
5122
2a4ac633 5123/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 5124static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 5125{
623f926b 5126 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
5127
5128 lockdep_assert_held(&cgroup_mutex);
5129
5130 if (!(css->flags & CSS_ONLINE))
5131 return;
5132
fa06235b
VD
5133 if (ss->css_reset)
5134 ss->css_reset(css);
5135
d7eeac19 5136 if (ss->css_offline)
eb95419b 5137 ss->css_offline(css);
a31f2d3f 5138
eb95419b 5139 css->flags &= ~CSS_ONLINE;
e3297803 5140 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
5141
5142 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
5143}
5144
c81c925a 5145/**
6cd0f5bb 5146 * css_create - create a cgroup_subsys_state
c81c925a
TH
5147 * @cgrp: the cgroup new css will be associated with
5148 * @ss: the subsys of new css
5149 *
5150 * Create a new css associated with @cgrp - @ss pair. On success, the new
6cd0f5bb
TH
5151 * css is online and installed in @cgrp. This function doesn't create the
5152 * interface files. Returns 0 on success, -errno on failure.
c81c925a 5153 */
6cd0f5bb
TH
5154static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
5155 struct cgroup_subsys *ss)
c81c925a 5156{
d51f39b0 5157 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 5158 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
5159 struct cgroup_subsys_state *css;
5160 int err;
5161
c81c925a
TH
5162 lockdep_assert_held(&cgroup_mutex);
5163
1fed1b2e 5164 css = ss->css_alloc(parent_css);
e7e15b87
TH
5165 if (!css)
5166 css = ERR_PTR(-ENOMEM);
c81c925a 5167 if (IS_ERR(css))
6cd0f5bb 5168 return css;
c81c925a 5169
ddfcadab 5170 init_and_link_css(css, ss, cgrp);
a2bed820 5171
2aad2a86 5172 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 5173 if (err)
3eb59ec6 5174 goto err_free_css;
c81c925a 5175
cf780b7d 5176 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835 5177 if (err < 0)
b00c52da 5178 goto err_free_css;
15a4c835 5179 css->id = err;
c81c925a 5180
15a4c835 5181 /* @css is ready to be brought online now, make it visible */
1fed1b2e 5182 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 5183 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
5184
5185 err = online_css(css);
5186 if (err)
1fed1b2e 5187 goto err_list_del;
94419627 5188
c81c925a 5189 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 5190 cgroup_parent(parent)) {
ed3d261b 5191 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 5192 current->comm, current->pid, ss->name);
c81c925a 5193 if (!strcmp(ss->name, "memory"))
ed3d261b 5194 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
5195 ss->warned_broken_hierarchy = true;
5196 }
5197
6cd0f5bb 5198 return css;
c81c925a 5199
1fed1b2e
TH
5200err_list_del:
5201 list_del_rcu(&css->sibling);
3eb59ec6 5202err_free_css:
a2bed820 5203 call_rcu(&css->rcu_head, css_free_rcu_fn);
6cd0f5bb 5204 return ERR_PTR(err);
c81c925a
TH
5205}
5206
a5bca215 5207static struct cgroup *cgroup_create(struct cgroup *parent)
ddbcc7e8 5208{
a5bca215 5209 struct cgroup_root *root = parent->root;
a5bca215
TH
5210 struct cgroup *cgrp, *tcgrp;
5211 int level = parent->level + 1;
03970d3c 5212 int ret;
ddbcc7e8 5213
0a950f65 5214 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
5215 cgrp = kzalloc(sizeof(*cgrp) +
5216 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
a5bca215
TH
5217 if (!cgrp)
5218 return ERR_PTR(-ENOMEM);
0ab02ca8 5219
2aad2a86 5220 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
5221 if (ret)
5222 goto out_free_cgrp;
5223
0ab02ca8
LZ
5224 /*
5225 * Temporarily set the pointer to NULL, so idr_find() won't return
5226 * a half-baked cgroup.
5227 */
cf780b7d 5228 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 5229 if (cgrp->id < 0) {
ba0f4d76 5230 ret = -ENOMEM;
9d755d33 5231 goto out_cancel_ref;
976c06bc
TH
5232 }
5233
cc31edce 5234 init_cgroup_housekeeping(cgrp);
ddbcc7e8 5235
9d800df1 5236 cgrp->self.parent = &parent->self;
ba0f4d76 5237 cgrp->root = root;
b11cfb58
TH
5238 cgrp->level = level;
5239
5240 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
5241 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 5242
b6abdb0e
LZ
5243 if (notify_on_release(parent))
5244 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
5245
2260e7fc
TH
5246 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
5247 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 5248
0cb51d71 5249 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5250
4e139afc 5251 /* allocation complete, commit to creation */
d5c419b6 5252 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5253 atomic_inc(&root->nr_cgrps);
59f5296b 5254 cgroup_get(parent);
415cf07a 5255
0d80255e
TH
5256 /*
5257 * @cgrp is now fully operational. If something fails after this
5258 * point, it'll be released via the normal destruction path.
5259 */
6fa4918d 5260 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5261
bd53d617
TH
5262 /*
5263 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5264 * subtree_control from the parent. Each is configured manually.
bd53d617 5265 */
03970d3c 5266 if (!cgroup_on_dfl(cgrp))
5531dc91 5267 cgrp->subtree_control = cgroup_control(cgrp);
03970d3c
TH
5268
5269 cgroup_propagate_control(cgrp);
5270
5271 /* @cgrp doesn't have dir yet so the following will only create csses */
5272 ret = cgroup_apply_control_enable(cgrp);
5273 if (ret)
5274 goto out_destroy;
2bd59d48 5275
a5bca215
TH
5276 return cgrp;
5277
5278out_cancel_ref:
5279 percpu_ref_exit(&cgrp->self.refcnt);
5280out_free_cgrp:
5281 kfree(cgrp);
5282 return ERR_PTR(ret);
5283out_destroy:
5284 cgroup_destroy_locked(cgrp);
5285 return ERR_PTR(ret);
5286}
5287
5288static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
5289 umode_t mode)
5290{
5291 struct cgroup *parent, *cgrp;
a5bca215 5292 struct kernfs_node *kn;
03970d3c 5293 int ret;
a5bca215
TH
5294
5295 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
5296 if (strchr(name, '\n'))
5297 return -EINVAL;
5298
945ba199 5299 parent = cgroup_kn_lock_live(parent_kn, false);
a5bca215
TH
5300 if (!parent)
5301 return -ENODEV;
5302
5303 cgrp = cgroup_create(parent);
5304 if (IS_ERR(cgrp)) {
5305 ret = PTR_ERR(cgrp);
5306 goto out_unlock;
5307 }
5308
195e9b6c
TH
5309 /* create the directory */
5310 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
5311 if (IS_ERR(kn)) {
5312 ret = PTR_ERR(kn);
5313 goto out_destroy;
5314 }
5315 cgrp->kn = kn;
5316
5317 /*
5318 * This extra ref will be put in cgroup_free_fn() and guarantees
5319 * that @cgrp->kn is always accessible.
5320 */
5321 kernfs_get(kn);
5322
5323 ret = cgroup_kn_set_ugid(kn);
5324 if (ret)
5325 goto out_destroy;
5326
334c3679 5327 ret = css_populate_dir(&cgrp->self);
195e9b6c
TH
5328 if (ret)
5329 goto out_destroy;
5330
03970d3c
TH
5331 ret = cgroup_apply_control_enable(cgrp);
5332 if (ret)
5333 goto out_destroy;
195e9b6c
TH
5334
5335 /* let's create and online css's */
2bd59d48 5336 kernfs_activate(kn);
ddbcc7e8 5337
ba0f4d76
TH
5338 ret = 0;
5339 goto out_unlock;
ddbcc7e8 5340
a5bca215
TH
5341out_destroy:
5342 cgroup_destroy_locked(cgrp);
ba0f4d76 5343out_unlock:
a9746d8d 5344 cgroup_kn_unlock(parent_kn);
ba0f4d76 5345 return ret;
ddbcc7e8
PM
5346}
5347
223dbc38
TH
5348/*
5349 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5350 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5351 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5352 */
5353static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5354{
223dbc38
TH
5355 struct cgroup_subsys_state *css =
5356 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5357
f20104de 5358 mutex_lock(&cgroup_mutex);
09a503ea 5359
aa226ff4
TH
5360 do {
5361 offline_css(css);
5362 css_put(css);
5363 /* @css can't go away while we're holding cgroup_mutex */
5364 css = css->parent;
5365 } while (css && atomic_dec_and_test(&css->online_cnt));
5366
5367 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5368}
5369
223dbc38
TH
5370/* css kill confirmation processing requires process context, bounce */
5371static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5372{
5373 struct cgroup_subsys_state *css =
5374 container_of(ref, struct cgroup_subsys_state, refcnt);
5375
aa226ff4
TH
5376 if (atomic_dec_and_test(&css->online_cnt)) {
5377 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5378 queue_work(cgroup_destroy_wq, &css->destroy_work);
5379 }
d3daf28d
TH
5380}
5381
f392e51c
TH
5382/**
5383 * kill_css - destroy a css
5384 * @css: css to destroy
5385 *
5386 * This function initiates destruction of @css by removing cgroup interface
5387 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5388 * asynchronously once css_tryget_online() is guaranteed to fail and when
5389 * the reference count reaches zero, @css will be released.
f392e51c
TH
5390 */
5391static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5392{
01f6474c 5393 lockdep_assert_held(&cgroup_mutex);
94419627 5394
2bd59d48
TH
5395 /*
5396 * This must happen before css is disassociated with its cgroup.
5397 * See seq_css() for details.
5398 */
334c3679 5399 css_clear_dir(css);
3c14f8b4 5400
edae0c33
TH
5401 /*
5402 * Killing would put the base ref, but we need to keep it alive
5403 * until after ->css_offline().
5404 */
5405 css_get(css);
5406
5407 /*
5408 * cgroup core guarantees that, by the time ->css_offline() is
5409 * invoked, no new css reference will be given out via
ec903c0c 5410 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5411 * proceed to offlining css's because percpu_ref_kill() doesn't
5412 * guarantee that the ref is seen as killed on all CPUs on return.
5413 *
5414 * Use percpu_ref_kill_and_confirm() to get notifications as each
5415 * css is confirmed to be seen as killed on all CPUs.
5416 */
5417 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5418}
5419
5420/**
5421 * cgroup_destroy_locked - the first stage of cgroup destruction
5422 * @cgrp: cgroup to be destroyed
5423 *
5424 * css's make use of percpu refcnts whose killing latency shouldn't be
5425 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5426 * guarantee that css_tryget_online() won't succeed by the time
5427 * ->css_offline() is invoked. To satisfy all the requirements,
5428 * destruction is implemented in the following two steps.
d3daf28d
TH
5429 *
5430 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5431 * userland visible parts and start killing the percpu refcnts of
5432 * css's. Set up so that the next stage will be kicked off once all
5433 * the percpu refcnts are confirmed to be killed.
5434 *
5435 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5436 * rest of destruction. Once all cgroup references are gone, the
5437 * cgroup is RCU-freed.
5438 *
5439 * This function implements s1. After this step, @cgrp is gone as far as
5440 * the userland is concerned and a new cgroup with the same name may be
5441 * created. As cgroup doesn't care about the names internally, this
5442 * doesn't cause any problem.
5443 */
42809dd4
TH
5444static int cgroup_destroy_locked(struct cgroup *cgrp)
5445 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5446{
2bd59d48 5447 struct cgroup_subsys_state *css;
2b021cbf 5448 struct cgrp_cset_link *link;
1c6727af 5449 int ssid;
ddbcc7e8 5450
42809dd4
TH
5451 lockdep_assert_held(&cgroup_mutex);
5452
91486f61
TH
5453 /*
5454 * Only migration can raise populated from zero and we're already
5455 * holding cgroup_mutex.
5456 */
5457 if (cgroup_is_populated(cgrp))
ddbcc7e8 5458 return -EBUSY;
a043e3b2 5459
bb78a92f 5460 /*
d5c419b6
TH
5461 * Make sure there's no live children. We can't test emptiness of
5462 * ->self.children as dead children linger on it while being
5463 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5464 */
f3d46500 5465 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5466 return -EBUSY;
5467
455050d2 5468 /*
2b021cbf
TH
5469 * Mark @cgrp and the associated csets dead. The former prevents
5470 * further task migration and child creation by disabling
5471 * cgroup_lock_live_group(). The latter makes the csets ignored by
5472 * the migration path.
455050d2 5473 */
184faf32 5474 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5475
82d6489d 5476 spin_lock_irq(&css_set_lock);
2b021cbf
TH
5477 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5478 link->cset->dead = true;
82d6489d 5479 spin_unlock_irq(&css_set_lock);
2b021cbf 5480
249f3468 5481 /* initiate massacre of all css's */
1c6727af
TH
5482 for_each_css(css, ssid, cgrp)
5483 kill_css(css);
455050d2 5484
455050d2 5485 /*
01f6474c
TH
5486 * Remove @cgrp directory along with the base files. @cgrp has an
5487 * extra ref on its kn.
f20104de 5488 */
01f6474c 5489 kernfs_remove(cgrp->kn);
f20104de 5490
d51f39b0 5491 check_for_release(cgroup_parent(cgrp));
2bd59d48 5492
249f3468 5493 /* put the base reference */
9d755d33 5494 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5495
ea15f8cc
TH
5496 return 0;
5497};
5498
2bd59d48 5499static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5500{
a9746d8d 5501 struct cgroup *cgrp;
2bd59d48 5502 int ret = 0;
42809dd4 5503
945ba199 5504 cgrp = cgroup_kn_lock_live(kn, false);
a9746d8d
TH
5505 if (!cgrp)
5506 return 0;
42809dd4 5507
a9746d8d 5508 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5509
a9746d8d 5510 cgroup_kn_unlock(kn);
42809dd4 5511 return ret;
8e3f6541
TH
5512}
5513
2bd59d48
TH
5514static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5515 .remount_fs = cgroup_remount,
5516 .show_options = cgroup_show_options,
5517 .mkdir = cgroup_mkdir,
5518 .rmdir = cgroup_rmdir,
5519 .rename = cgroup_rename,
4f41fc59 5520 .show_path = cgroup_show_path,
2bd59d48
TH
5521};
5522
15a4c835 5523static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5524{
ddbcc7e8 5525 struct cgroup_subsys_state *css;
cfe36bde 5526
a5ae9899 5527 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5528
648bb56d
TH
5529 mutex_lock(&cgroup_mutex);
5530
15a4c835 5531 idr_init(&ss->css_idr);
0adb0704 5532 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5533
3dd06ffa
TH
5534 /* Create the root cgroup state for this subsystem */
5535 ss->root = &cgrp_dfl_root;
5536 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5537 /* We don't handle early failures gracefully */
5538 BUG_ON(IS_ERR(css));
ddfcadab 5539 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5540
5541 /*
5542 * Root csses are never destroyed and we can't initialize
5543 * percpu_ref during early init. Disable refcnting.
5544 */
5545 css->flags |= CSS_NO_REF;
5546
15a4c835 5547 if (early) {
9395a450 5548 /* allocation can't be done safely during early init */
15a4c835
TH
5549 css->id = 1;
5550 } else {
5551 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5552 BUG_ON(css->id < 0);
5553 }
ddbcc7e8 5554
e8d55fde 5555 /* Update the init_css_set to contain a subsys
817929ec 5556 * pointer to this state - since the subsystem is
e8d55fde 5557 * newly registered, all tasks and hence the
3dd06ffa 5558 * init_css_set is in the subsystem's root cgroup. */
aec25020 5559 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5560
cb4a3167
AS
5561 have_fork_callback |= (bool)ss->fork << ss->id;
5562 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5563 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5564 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5565
e8d55fde
LZ
5566 /* At system boot, before all subsystems have been
5567 * registered, no tasks have been forked, so we don't
5568 * need to invoke fork callbacks here. */
5569 BUG_ON(!list_empty(&init_task.tasks));
5570
ae7f164a 5571 BUG_ON(online_css(css));
a8638030 5572
cf5d5941
BB
5573 mutex_unlock(&cgroup_mutex);
5574}
cf5d5941 5575
ddbcc7e8 5576/**
a043e3b2
LZ
5577 * cgroup_init_early - cgroup initialization at system boot
5578 *
5579 * Initialize cgroups at system boot, and initialize any
5580 * subsystems that request early init.
ddbcc7e8
PM
5581 */
5582int __init cgroup_init_early(void)
5583{
7b9a6ba5 5584 static struct cgroup_sb_opts __initdata opts;
30159ec7 5585 struct cgroup_subsys *ss;
ddbcc7e8 5586 int i;
30159ec7 5587
3dd06ffa 5588 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5589 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5590
a4ea1cc9 5591 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5592
3ed80a62 5593 for_each_subsys(ss, i) {
aec25020 5594 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
63253ad8 5595 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
073219e9 5596 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5597 ss->id, ss->name);
073219e9
TH
5598 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5599 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5600
aec25020 5601 ss->id = i;
073219e9 5602 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5603 if (!ss->legacy_name)
5604 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5605
5606 if (ss->early_init)
15a4c835 5607 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5608 }
5609 return 0;
5610}
5611
6e5c8307 5612static u16 cgroup_disable_mask __initdata;
a3e72739 5613
ddbcc7e8 5614/**
a043e3b2
LZ
5615 * cgroup_init - cgroup initialization
5616 *
5617 * Register cgroup filesystem and /proc file, and initialize
5618 * any subsystems that didn't request early init.
ddbcc7e8
PM
5619 */
5620int __init cgroup_init(void)
5621{
30159ec7 5622 struct cgroup_subsys *ss;
035f4f51 5623 int ssid;
ddbcc7e8 5624
6e5c8307 5625 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
1ed13287 5626 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5627 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5628 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5629
a79a908f
AK
5630 get_user_ns(init_cgroup_ns.user_ns);
5631
54e7b4eb 5632 mutex_lock(&cgroup_mutex);
54e7b4eb 5633
2378d8b8
TH
5634 /*
5635 * Add init_css_set to the hash table so that dfl_root can link to
5636 * it during init.
5637 */
5638 hash_add(css_set_table, &init_css_set.hlist,
5639 css_set_hash(init_css_set.subsys));
82fe9b0d 5640
3dd06ffa 5641 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5642
54e7b4eb
TH
5643 mutex_unlock(&cgroup_mutex);
5644
172a2c06 5645 for_each_subsys(ss, ssid) {
15a4c835
TH
5646 if (ss->early_init) {
5647 struct cgroup_subsys_state *css =
5648 init_css_set.subsys[ss->id];
5649
5650 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5651 GFP_KERNEL);
5652 BUG_ON(css->id < 0);
5653 } else {
5654 cgroup_init_subsys(ss, false);
5655 }
172a2c06 5656
2d8f243a
TH
5657 list_add_tail(&init_css_set.e_cset_node[ssid],
5658 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5659
5660 /*
c731ae1d
LZ
5661 * Setting dfl_root subsys_mask needs to consider the
5662 * disabled flag and cftype registration needs kmalloc,
5663 * both of which aren't available during early_init.
172a2c06 5664 */
a3e72739
TH
5665 if (cgroup_disable_mask & (1 << ssid)) {
5666 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5667 printk(KERN_INFO "Disabling %s control group subsystem\n",
5668 ss->name);
a8ddc821 5669 continue;
a3e72739 5670 }
a8ddc821 5671
223ffb29
JW
5672 if (cgroup_ssid_no_v1(ssid))
5673 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5674 ss->name);
5675
a8ddc821
TH
5676 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5677
f6d635ad
TH
5678 if (ss->implicit_on_dfl)
5679 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5680 else if (!ss->dfl_cftypes)
a7165264 5681 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5de4fa13 5682
a8ddc821
TH
5683 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5684 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5685 } else {
5686 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5687 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5688 }
295458e6
VD
5689
5690 if (ss->bind)
5691 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5692 }
5693
2378d8b8
TH
5694 /* init_css_set.subsys[] has been updated, re-hash */
5695 hash_del(&init_css_set.hlist);
5696 hash_add(css_set_table, &init_css_set.hlist,
5697 css_set_hash(init_css_set.subsys));
5698
035f4f51
TH
5699 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5700 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5701 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5702 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5703
2bd59d48 5704 return 0;
ddbcc7e8 5705}
b4f48b63 5706
e5fca243
TH
5707static int __init cgroup_wq_init(void)
5708{
5709 /*
5710 * There isn't much point in executing destruction path in
5711 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5712 * Use 1 for @max_active.
e5fca243
TH
5713 *
5714 * We would prefer to do this in cgroup_init() above, but that
5715 * is called before init_workqueues(): so leave this until after.
5716 */
1a11533f 5717 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5718 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5719
5720 /*
5721 * Used to destroy pidlists and separate to serve as flush domain.
5722 * Cap @max_active to 1 too.
5723 */
5724 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5725 0, 1);
5726 BUG_ON(!cgroup_pidlist_destroy_wq);
5727
e5fca243
TH
5728 return 0;
5729}
5730core_initcall(cgroup_wq_init);
5731
a424316c
PM
5732/*
5733 * proc_cgroup_show()
5734 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5735 * - Used for /proc/<pid>/cgroup.
a424316c 5736 */
006f4ac4
ZL
5737int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5738 struct pid *pid, struct task_struct *tsk)
a424316c 5739{
e61734c5 5740 char *buf, *path;
a424316c 5741 int retval;
3dd06ffa 5742 struct cgroup_root *root;
a424316c
PM
5743
5744 retval = -ENOMEM;
e61734c5 5745 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5746 if (!buf)
5747 goto out;
5748
a424316c 5749 mutex_lock(&cgroup_mutex);
82d6489d 5750 spin_lock_irq(&css_set_lock);
a424316c 5751
985ed670 5752 for_each_root(root) {
a424316c 5753 struct cgroup_subsys *ss;
bd89aabc 5754 struct cgroup *cgrp;
b85d2040 5755 int ssid, count = 0;
a424316c 5756
a7165264 5757 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
985ed670
TH
5758 continue;
5759
2c6ab6d2 5760 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5761 if (root != &cgrp_dfl_root)
5762 for_each_subsys(ss, ssid)
5763 if (root->subsys_mask & (1 << ssid))
5764 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5765 ss->legacy_name);
c6d57f33
PM
5766 if (strlen(root->name))
5767 seq_printf(m, "%sname=%s", count ? "," : "",
5768 root->name);
a424316c 5769 seq_putc(m, ':');
2e91fa7f 5770
7717f7ba 5771 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5772
5773 /*
5774 * On traditional hierarchies, all zombie tasks show up as
5775 * belonging to the root cgroup. On the default hierarchy,
5776 * while a zombie doesn't show up in "cgroup.procs" and
5777 * thus can't be migrated, its /proc/PID/cgroup keeps
5778 * reporting the cgroup it belonged to before exiting. If
5779 * the cgroup is removed before the zombie is reaped,
5780 * " (deleted)" is appended to the cgroup path.
5781 */
5782 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5783 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5784 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5785 if (!path) {
5786 retval = -ENAMETOOLONG;
5787 goto out_unlock;
5788 }
5789 } else {
5790 path = "/";
e61734c5 5791 }
2e91fa7f 5792
e61734c5 5793 seq_puts(m, path);
2e91fa7f
TH
5794
5795 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5796 seq_puts(m, " (deleted)\n");
5797 else
5798 seq_putc(m, '\n');
a424316c
PM
5799 }
5800
006f4ac4 5801 retval = 0;
a424316c 5802out_unlock:
82d6489d 5803 spin_unlock_irq(&css_set_lock);
a424316c 5804 mutex_unlock(&cgroup_mutex);
a424316c
PM
5805 kfree(buf);
5806out:
5807 return retval;
5808}
5809
a424316c
PM
5810/* Display information about each subsystem and each hierarchy */
5811static int proc_cgroupstats_show(struct seq_file *m, void *v)
5812{
30159ec7 5813 struct cgroup_subsys *ss;
a424316c 5814 int i;
a424316c 5815
8bab8dde 5816 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5817 /*
5818 * ideally we don't want subsystems moving around while we do this.
5819 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5820 * subsys/hierarchy state.
5821 */
a424316c 5822 mutex_lock(&cgroup_mutex);
30159ec7
TH
5823
5824 for_each_subsys(ss, i)
2c6ab6d2 5825 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5826 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5827 atomic_read(&ss->root->nr_cgrps),
5828 cgroup_ssid_enabled(i));
30159ec7 5829
a424316c
PM
5830 mutex_unlock(&cgroup_mutex);
5831 return 0;
5832}
5833
5834static int cgroupstats_open(struct inode *inode, struct file *file)
5835{
9dce07f1 5836 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5837}
5838
828c0950 5839static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5840 .open = cgroupstats_open,
5841 .read = seq_read,
5842 .llseek = seq_lseek,
5843 .release = single_release,
5844};
5845
b4f48b63 5846/**
eaf797ab 5847 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5848 * @child: pointer to task_struct of forking parent process.
b4f48b63 5849 *
eaf797ab
TH
5850 * A task is associated with the init_css_set until cgroup_post_fork()
5851 * attaches it to the parent's css_set. Empty cg_list indicates that
5852 * @child isn't holding reference to its css_set.
b4f48b63
PM
5853 */
5854void cgroup_fork(struct task_struct *child)
5855{
eaf797ab 5856 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5857 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5858}
5859
7e47682e
AS
5860/**
5861 * cgroup_can_fork - called on a new task before the process is exposed
5862 * @child: the task in question.
5863 *
5864 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5865 * returns an error, the fork aborts with that error code. This allows for
5866 * a cgroup subsystem to conditionally allow or deny new forks.
5867 */
b53202e6 5868int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5869{
5870 struct cgroup_subsys *ss;
5871 int i, j, ret;
5872
b4e0eeaf 5873 do_each_subsys_mask(ss, i, have_canfork_callback) {
b53202e6 5874 ret = ss->can_fork(child);
7e47682e
AS
5875 if (ret)
5876 goto out_revert;
b4e0eeaf 5877 } while_each_subsys_mask();
7e47682e
AS
5878
5879 return 0;
5880
5881out_revert:
5882 for_each_subsys(ss, j) {
5883 if (j >= i)
5884 break;
5885 if (ss->cancel_fork)
b53202e6 5886 ss->cancel_fork(child);
7e47682e
AS
5887 }
5888
5889 return ret;
5890}
5891
5892/**
5893 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5894 * @child: the task in question
5895 *
5896 * This calls the cancel_fork() callbacks if a fork failed *after*
5897 * cgroup_can_fork() succeded.
5898 */
b53202e6 5899void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5900{
5901 struct cgroup_subsys *ss;
5902 int i;
5903
5904 for_each_subsys(ss, i)
5905 if (ss->cancel_fork)
b53202e6 5906 ss->cancel_fork(child);
7e47682e
AS
5907}
5908
817929ec 5909/**
a043e3b2
LZ
5910 * cgroup_post_fork - called on a new task after adding it to the task list
5911 * @child: the task in question
5912 *
5edee61e
TH
5913 * Adds the task to the list running through its css_set if necessary and
5914 * call the subsystem fork() callbacks. Has to be after the task is
5915 * visible on the task list in case we race with the first call to
0942eeee 5916 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5917 * list.
a043e3b2 5918 */
b53202e6 5919void cgroup_post_fork(struct task_struct *child)
817929ec 5920{
30159ec7 5921 struct cgroup_subsys *ss;
5edee61e
TH
5922 int i;
5923
3ce3230a 5924 /*
251f8c03 5925 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5926 * function sets use_task_css_set_links before grabbing
5927 * tasklist_lock and we just went through tasklist_lock to add
5928 * @child, it's guaranteed that either we see the set
5929 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5930 * @child during its iteration.
5931 *
5932 * If we won the race, @child is associated with %current's
f0d9a5f1 5933 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5934 * association is stable, and, on completion of the parent's
5935 * migration, @child is visible in the source of migration or
5936 * already in the destination cgroup. This guarantee is necessary
5937 * when implementing operations which need to migrate all tasks of
5938 * a cgroup to another.
5939 *
251f8c03 5940 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5941 * will remain in init_css_set. This is safe because all tasks are
5942 * in the init_css_set before cg_links is enabled and there's no
5943 * operation which transfers all tasks out of init_css_set.
3ce3230a 5944 */
817929ec 5945 if (use_task_css_set_links) {
eaf797ab
TH
5946 struct css_set *cset;
5947
82d6489d 5948 spin_lock_irq(&css_set_lock);
0e1d768f 5949 cset = task_css_set(current);
eaf797ab 5950 if (list_empty(&child->cg_list)) {
eaf797ab 5951 get_css_set(cset);
f6d7d049 5952 css_set_move_task(child, NULL, cset, false);
eaf797ab 5953 }
82d6489d 5954 spin_unlock_irq(&css_set_lock);
817929ec 5955 }
5edee61e
TH
5956
5957 /*
5958 * Call ss->fork(). This must happen after @child is linked on
5959 * css_set; otherwise, @child might change state between ->fork()
5960 * and addition to css_set.
5961 */
b4e0eeaf 5962 do_each_subsys_mask(ss, i, have_fork_callback) {
b53202e6 5963 ss->fork(child);
b4e0eeaf 5964 } while_each_subsys_mask();
817929ec 5965}
5edee61e 5966
b4f48b63
PM
5967/**
5968 * cgroup_exit - detach cgroup from exiting task
5969 * @tsk: pointer to task_struct of exiting process
5970 *
5971 * Description: Detach cgroup from @tsk and release it.
5972 *
5973 * Note that cgroups marked notify_on_release force every task in
5974 * them to take the global cgroup_mutex mutex when exiting.
5975 * This could impact scaling on very large systems. Be reluctant to
5976 * use notify_on_release cgroups where very high task exit scaling
5977 * is required on large systems.
5978 *
0e1d768f
TH
5979 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5980 * call cgroup_exit() while the task is still competent to handle
5981 * notify_on_release(), then leave the task attached to the root cgroup in
5982 * each hierarchy for the remainder of its exit. No need to bother with
5983 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5984 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5985 */
1ec41830 5986void cgroup_exit(struct task_struct *tsk)
b4f48b63 5987{
30159ec7 5988 struct cgroup_subsys *ss;
5abb8855 5989 struct css_set *cset;
d41d5a01 5990 int i;
817929ec
PM
5991
5992 /*
0e1d768f 5993 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5994 * with us, we can check css_set and cg_list without synchronization.
817929ec 5995 */
0de0942d
TH
5996 cset = task_css_set(tsk);
5997
817929ec 5998 if (!list_empty(&tsk->cg_list)) {
82d6489d 5999 spin_lock_irq(&css_set_lock);
f6d7d049 6000 css_set_move_task(tsk, cset, NULL, false);
82d6489d 6001 spin_unlock_irq(&css_set_lock);
2e91fa7f
TH
6002 } else {
6003 get_css_set(cset);
817929ec
PM
6004 }
6005
cb4a3167 6006 /* see cgroup_post_fork() for details */
b4e0eeaf 6007 do_each_subsys_mask(ss, i, have_exit_callback) {
2e91fa7f 6008 ss->exit(tsk);
b4e0eeaf 6009 } while_each_subsys_mask();
2e91fa7f 6010}
30159ec7 6011
2e91fa7f
TH
6012void cgroup_free(struct task_struct *task)
6013{
6014 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
6015 struct cgroup_subsys *ss;
6016 int ssid;
6017
b4e0eeaf 6018 do_each_subsys_mask(ss, ssid, have_free_callback) {
afcf6c8b 6019 ss->free(task);
b4e0eeaf 6020 } while_each_subsys_mask();
d41d5a01 6021
2e91fa7f 6022 put_css_set(cset);
b4f48b63 6023}
697f4161 6024
bd89aabc 6025static void check_for_release(struct cgroup *cgrp)
81a6a5cd 6026{
27bd4dbb 6027 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
6028 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
6029 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
6030}
6031
81a6a5cd
PM
6032/*
6033 * Notify userspace when a cgroup is released, by running the
6034 * configured release agent with the name of the cgroup (path
6035 * relative to the root of cgroup file system) as the argument.
6036 *
6037 * Most likely, this user command will try to rmdir this cgroup.
6038 *
6039 * This races with the possibility that some other task will be
6040 * attached to this cgroup before it is removed, or that some other
6041 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
6042 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
6043 * unused, and this cgroup will be reprieved from its death sentence,
6044 * to continue to serve a useful existence. Next time it's released,
6045 * we will get notified again, if it still has 'notify_on_release' set.
6046 *
6047 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
6048 * means only wait until the task is successfully execve()'d. The
6049 * separate release agent task is forked by call_usermodehelper(),
6050 * then control in this thread returns here, without waiting for the
6051 * release agent task. We don't bother to wait because the caller of
6052 * this routine has no use for the exit status of the release agent
6053 * task, so no sense holding our caller up for that.
81a6a5cd 6054 */
81a6a5cd
PM
6055static void cgroup_release_agent(struct work_struct *work)
6056{
971ff493
ZL
6057 struct cgroup *cgrp =
6058 container_of(work, struct cgroup, release_agent_work);
6059 char *pathbuf = NULL, *agentbuf = NULL, *path;
6060 char *argv[3], *envp[3];
6061
81a6a5cd 6062 mutex_lock(&cgroup_mutex);
971ff493
ZL
6063
6064 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
6065 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
6066 if (!pathbuf || !agentbuf)
6067 goto out;
6068
82d6489d 6069 spin_lock_irq(&css_set_lock);
a79a908f 6070 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
82d6489d 6071 spin_unlock_irq(&css_set_lock);
971ff493
ZL
6072 if (!path)
6073 goto out;
6074
6075 argv[0] = agentbuf;
6076 argv[1] = path;
6077 argv[2] = NULL;
6078
6079 /* minimal command environment */
6080 envp[0] = "HOME=/";
6081 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
6082 envp[2] = NULL;
6083
81a6a5cd 6084 mutex_unlock(&cgroup_mutex);
971ff493 6085 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 6086 goto out_free;
971ff493 6087out:
81a6a5cd 6088 mutex_unlock(&cgroup_mutex);
3e2cd91a 6089out_free:
971ff493
ZL
6090 kfree(agentbuf);
6091 kfree(pathbuf);
81a6a5cd 6092}
8bab8dde
PM
6093
6094static int __init cgroup_disable(char *str)
6095{
30159ec7 6096 struct cgroup_subsys *ss;
8bab8dde 6097 char *token;
30159ec7 6098 int i;
8bab8dde
PM
6099
6100 while ((token = strsep(&str, ",")) != NULL) {
6101 if (!*token)
6102 continue;
be45c900 6103
3ed80a62 6104 for_each_subsys(ss, i) {
3e1d2eed
TH
6105 if (strcmp(token, ss->name) &&
6106 strcmp(token, ss->legacy_name))
6107 continue;
a3e72739 6108 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
6109 }
6110 }
6111 return 1;
6112}
6113__setup("cgroup_disable=", cgroup_disable);
38460b48 6114
223ffb29
JW
6115static int __init cgroup_no_v1(char *str)
6116{
6117 struct cgroup_subsys *ss;
6118 char *token;
6119 int i;
6120
6121 while ((token = strsep(&str, ",")) != NULL) {
6122 if (!*token)
6123 continue;
6124
6125 if (!strcmp(token, "all")) {
6e5c8307 6126 cgroup_no_v1_mask = U16_MAX;
223ffb29
JW
6127 break;
6128 }
6129
6130 for_each_subsys(ss, i) {
6131 if (strcmp(token, ss->name) &&
6132 strcmp(token, ss->legacy_name))
6133 continue;
6134
6135 cgroup_no_v1_mask |= 1 << i;
6136 }
6137 }
6138 return 1;
6139}
6140__setup("cgroup_no_v1=", cgroup_no_v1);
6141
b77d7b60 6142/**
ec903c0c 6143 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
6144 * @dentry: directory dentry of interest
6145 * @ss: subsystem of interest
b77d7b60 6146 *
5a17f543
TH
6147 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
6148 * to get the corresponding css and return it. If such css doesn't exist
6149 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 6150 */
ec903c0c
TH
6151struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
6152 struct cgroup_subsys *ss)
e5d1367f 6153{
2bd59d48 6154 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
f17fc25f 6155 struct file_system_type *s_type = dentry->d_sb->s_type;
2bd59d48 6156 struct cgroup_subsys_state *css = NULL;
e5d1367f 6157 struct cgroup *cgrp;
e5d1367f 6158
35cf0836 6159 /* is @dentry a cgroup dir? */
f17fc25f
TH
6160 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
6161 !kn || kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
6162 return ERR_PTR(-EBADF);
6163
5a17f543
TH
6164 rcu_read_lock();
6165
2bd59d48
TH
6166 /*
6167 * This path doesn't originate from kernfs and @kn could already
6168 * have been or be removed at any point. @kn->priv is RCU
a4189487 6169 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
6170 */
6171 cgrp = rcu_dereference(kn->priv);
6172 if (cgrp)
6173 css = cgroup_css(cgrp, ss);
5a17f543 6174
ec903c0c 6175 if (!css || !css_tryget_online(css))
5a17f543
TH
6176 css = ERR_PTR(-ENOENT);
6177
6178 rcu_read_unlock();
6179 return css;
e5d1367f 6180}
e5d1367f 6181
1cb650b9
LZ
6182/**
6183 * css_from_id - lookup css by id
6184 * @id: the cgroup id
6185 * @ss: cgroup subsys to be looked into
6186 *
6187 * Returns the css if there's valid one with @id, otherwise returns NULL.
6188 * Should be called under rcu_read_lock().
6189 */
6190struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
6191{
6fa4918d 6192 WARN_ON_ONCE(!rcu_read_lock_held());
d6ccc55e 6193 return idr_find(&ss->css_idr, id);
e5d1367f
SE
6194}
6195
16af4396
TH
6196/**
6197 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
6198 * @path: path on the default hierarchy
6199 *
6200 * Find the cgroup at @path on the default hierarchy, increment its
6201 * reference count and return it. Returns pointer to the found cgroup on
6202 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
6203 * if @path points to a non-directory.
6204 */
6205struct cgroup *cgroup_get_from_path(const char *path)
6206{
6207 struct kernfs_node *kn;
6208 struct cgroup *cgrp;
6209
6210 mutex_lock(&cgroup_mutex);
6211
6212 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
6213 if (kn) {
6214 if (kernfs_type(kn) == KERNFS_DIR) {
6215 cgrp = kn->priv;
6216 cgroup_get(cgrp);
6217 } else {
6218 cgrp = ERR_PTR(-ENOTDIR);
6219 }
6220 kernfs_put(kn);
6221 } else {
6222 cgrp = ERR_PTR(-ENOENT);
6223 }
6224
6225 mutex_unlock(&cgroup_mutex);
6226 return cgrp;
6227}
6228EXPORT_SYMBOL_GPL(cgroup_get_from_path);
6229
1f3fe7eb
MKL
6230/**
6231 * cgroup_get_from_fd - get a cgroup pointer from a fd
6232 * @fd: fd obtained by open(cgroup2_dir)
6233 *
6234 * Find the cgroup from a fd which should be obtained
6235 * by opening a cgroup directory. Returns a pointer to the
6236 * cgroup on success. ERR_PTR is returned if the cgroup
6237 * cannot be found.
6238 */
6239struct cgroup *cgroup_get_from_fd(int fd)
6240{
6241 struct cgroup_subsys_state *css;
6242 struct cgroup *cgrp;
6243 struct file *f;
6244
6245 f = fget_raw(fd);
6246 if (!f)
6247 return ERR_PTR(-EBADF);
6248
6249 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
6250 fput(f);
6251 if (IS_ERR(css))
6252 return ERR_CAST(css);
6253
6254 cgrp = css->cgroup;
6255 if (!cgroup_on_dfl(cgrp)) {
6256 cgroup_put(cgrp);
6257 return ERR_PTR(-EBADF);
6258 }
6259
6260 return cgrp;
6261}
6262EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
6263
bd1060a1
TH
6264/*
6265 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
6266 * definition in cgroup-defs.h.
6267 */
6268#ifdef CONFIG_SOCK_CGROUP_DATA
6269
6270#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
6271
3fa4cc9c 6272DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
6273static bool cgroup_sk_alloc_disabled __read_mostly;
6274
6275void cgroup_sk_alloc_disable(void)
6276{
6277 if (cgroup_sk_alloc_disabled)
6278 return;
6279 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
6280 cgroup_sk_alloc_disabled = true;
6281}
6282
6283#else
6284
6285#define cgroup_sk_alloc_disabled false
6286
6287#endif
6288
6289void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
6290{
6291 if (cgroup_sk_alloc_disabled)
6292 return;
6293
d979a39d
JW
6294 /* Socket clone path */
6295 if (skcd->val) {
6296 cgroup_get(sock_cgroup_ptr(skcd));
6297 return;
6298 }
6299
bd1060a1
TH
6300 rcu_read_lock();
6301
6302 while (true) {
6303 struct css_set *cset;
6304
6305 cset = task_css_set(current);
6306 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
6307 skcd->val = (unsigned long)cset->dfl_cgrp;
6308 break;
6309 }
6310 cpu_relax();
6311 }
6312
6313 rcu_read_unlock();
6314}
6315
6316void cgroup_sk_free(struct sock_cgroup_data *skcd)
6317{
6318 cgroup_put(sock_cgroup_ptr(skcd));
6319}
6320
6321#endif /* CONFIG_SOCK_CGROUP_DATA */
6322
a79a908f
AK
6323/* cgroup namespaces */
6324
6325static struct cgroup_namespace *alloc_cgroup_ns(void)
6326{
6327 struct cgroup_namespace *new_ns;
6328 int ret;
6329
6330 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
6331 if (!new_ns)
6332 return ERR_PTR(-ENOMEM);
6333 ret = ns_alloc_inum(&new_ns->ns);
6334 if (ret) {
6335 kfree(new_ns);
6336 return ERR_PTR(ret);
6337 }
6338 atomic_set(&new_ns->count, 1);
6339 new_ns->ns.ops = &cgroupns_operations;
6340 return new_ns;
6341}
6342
6343void free_cgroup_ns(struct cgroup_namespace *ns)
6344{
6345 put_css_set(ns->root_cset);
6346 put_user_ns(ns->user_ns);
6347 ns_free_inum(&ns->ns);
6348 kfree(ns);
6349}
6350EXPORT_SYMBOL(free_cgroup_ns);
6351
6352struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6353 struct user_namespace *user_ns,
6354 struct cgroup_namespace *old_ns)
6355{
fa5ff8a1
TH
6356 struct cgroup_namespace *new_ns;
6357 struct css_set *cset;
a79a908f
AK
6358
6359 BUG_ON(!old_ns);
6360
6361 if (!(flags & CLONE_NEWCGROUP)) {
6362 get_cgroup_ns(old_ns);
6363 return old_ns;
6364 }
6365
6366 /* Allow only sysadmin to create cgroup namespace. */
a79a908f 6367 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
fa5ff8a1 6368 return ERR_PTR(-EPERM);
a79a908f 6369
7bd88308 6370 /* It is not safe to take cgroup_mutex here */
82d6489d 6371 spin_lock_irq(&css_set_lock);
a79a908f
AK
6372 cset = task_css_set(current);
6373 get_css_set(cset);
82d6489d 6374 spin_unlock_irq(&css_set_lock);
a79a908f 6375
a79a908f 6376 new_ns = alloc_cgroup_ns();
d2202557 6377 if (IS_ERR(new_ns)) {
fa5ff8a1
TH
6378 put_css_set(cset);
6379 return new_ns;
d2202557 6380 }
a79a908f
AK
6381
6382 new_ns->user_ns = get_user_ns(user_ns);
6383 new_ns->root_cset = cset;
6384
6385 return new_ns;
a79a908f
AK
6386}
6387
6388static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6389{
6390 return container_of(ns, struct cgroup_namespace, ns);
6391}
6392
a0530e08 6393static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns)
a79a908f 6394{
a0530e08
AK
6395 struct cgroup_namespace *cgroup_ns = to_cg_ns(ns);
6396
6397 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) ||
6398 !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN))
6399 return -EPERM;
6400
6401 /* Don't need to do anything if we are attaching to our own cgroupns. */
6402 if (cgroup_ns == nsproxy->cgroup_ns)
6403 return 0;
6404
6405 get_cgroup_ns(cgroup_ns);
6406 put_cgroup_ns(nsproxy->cgroup_ns);
6407 nsproxy->cgroup_ns = cgroup_ns;
6408
6409 return 0;
a79a908f
AK
6410}
6411
6412static struct ns_common *cgroupns_get(struct task_struct *task)
6413{
6414 struct cgroup_namespace *ns = NULL;
6415 struct nsproxy *nsproxy;
6416
6417 task_lock(task);
6418 nsproxy = task->nsproxy;
6419 if (nsproxy) {
6420 ns = nsproxy->cgroup_ns;
6421 get_cgroup_ns(ns);
6422 }
6423 task_unlock(task);
6424
6425 return ns ? &ns->ns : NULL;
6426}
6427
6428static void cgroupns_put(struct ns_common *ns)
6429{
6430 put_cgroup_ns(to_cg_ns(ns));
6431}
6432
6433const struct proc_ns_operations cgroupns_operations = {
6434 .name = "cgroup",
6435 .type = CLONE_NEWCGROUP,
6436 .get = cgroupns_get,
6437 .put = cgroupns_put,
6438 .install = cgroupns_install,
6439};
6440
6441static __init int cgroup_namespaces_init(void)
6442{
6443 return 0;
6444}
6445subsys_initcall(cgroup_namespaces_init);
6446
fe693435 6447#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6448static struct cgroup_subsys_state *
6449debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6450{
6451 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6452
6453 if (!css)
6454 return ERR_PTR(-ENOMEM);
6455
6456 return css;
6457}
6458
eb95419b 6459static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6460{
eb95419b 6461 kfree(css);
fe693435
PM
6462}
6463
182446d0
TH
6464static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6465 struct cftype *cft)
fe693435 6466{
182446d0 6467 return cgroup_task_count(css->cgroup);
fe693435
PM
6468}
6469
182446d0
TH
6470static u64 current_css_set_read(struct cgroup_subsys_state *css,
6471 struct cftype *cft)
fe693435
PM
6472{
6473 return (u64)(unsigned long)current->cgroups;
6474}
6475
182446d0 6476static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6477 struct cftype *cft)
fe693435
PM
6478{
6479 u64 count;
6480
6481 rcu_read_lock();
a8ad805c 6482 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6483 rcu_read_unlock();
6484 return count;
6485}
6486
2da8ca82 6487static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6488{
69d0206c 6489 struct cgrp_cset_link *link;
5abb8855 6490 struct css_set *cset;
e61734c5
TH
6491 char *name_buf;
6492
6493 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6494 if (!name_buf)
6495 return -ENOMEM;
7717f7ba 6496
82d6489d 6497 spin_lock_irq(&css_set_lock);
7717f7ba 6498 rcu_read_lock();
5abb8855 6499 cset = rcu_dereference(current->cgroups);
69d0206c 6500 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6501 struct cgroup *c = link->cgrp;
7717f7ba 6502
a2dd4247 6503 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6504 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6505 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6506 }
6507 rcu_read_unlock();
82d6489d 6508 spin_unlock_irq(&css_set_lock);
e61734c5 6509 kfree(name_buf);
7717f7ba
PM
6510 return 0;
6511}
6512
6513#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6514static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6515{
2da8ca82 6516 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6517 struct cgrp_cset_link *link;
7717f7ba 6518
82d6489d 6519 spin_lock_irq(&css_set_lock);
182446d0 6520 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6521 struct css_set *cset = link->cset;
7717f7ba
PM
6522 struct task_struct *task;
6523 int count = 0;
c7561128 6524
5abb8855 6525 seq_printf(seq, "css_set %p\n", cset);
c7561128 6526
5abb8855 6527 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6528 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6529 goto overflow;
6530 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6531 }
6532
6533 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6534 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6535 goto overflow;
6536 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6537 }
c7561128
TH
6538 continue;
6539 overflow:
6540 seq_puts(seq, " ...\n");
7717f7ba 6541 }
82d6489d 6542 spin_unlock_irq(&css_set_lock);
7717f7ba
PM
6543 return 0;
6544}
6545
182446d0 6546static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6547{
27bd4dbb 6548 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6549 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6550}
6551
6552static struct cftype debug_files[] = {
fe693435
PM
6553 {
6554 .name = "taskcount",
6555 .read_u64 = debug_taskcount_read,
6556 },
6557
6558 {
6559 .name = "current_css_set",
6560 .read_u64 = current_css_set_read,
6561 },
6562
6563 {
6564 .name = "current_css_set_refcount",
6565 .read_u64 = current_css_set_refcount_read,
6566 },
6567
7717f7ba
PM
6568 {
6569 .name = "current_css_set_cg_links",
2da8ca82 6570 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6571 },
6572
6573 {
6574 .name = "cgroup_css_links",
2da8ca82 6575 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6576 },
6577
fe693435
PM
6578 {
6579 .name = "releasable",
6580 .read_u64 = releasable_read,
6581 },
fe693435 6582
4baf6e33
TH
6583 { } /* terminate */
6584};
fe693435 6585
073219e9 6586struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6587 .css_alloc = debug_css_alloc,
6588 .css_free = debug_css_free,
5577964e 6589 .legacy_cftypes = debug_files,
fe693435
PM
6590};
6591#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.216884 seconds and 5 git commands to generate.