cgroup: clean up cgroup_serial_nr_cursor
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 99static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8
PM
103/*
104 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
105 * subsystems that are otherwise unattached - it never has more than a
106 * single cgroup, and all tasks are part of that cgroup.
107 */
108static struct cgroupfs_root rootnode;
109
05ef1d7c
TH
110/*
111 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
112 */
113struct cfent {
114 struct list_head node;
115 struct dentry *dentry;
116 struct cftype *type;
712317ad
LZ
117
118 /* file xattrs */
119 struct simple_xattrs xattrs;
05ef1d7c
TH
120};
121
38460b48
KH
122/*
123 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
124 * cgroup_subsys->use_id != 0.
125 */
126#define CSS_ID_MAX (65535)
127struct css_id {
128 /*
129 * The css to which this ID points. This pointer is set to valid value
130 * after cgroup is populated. If cgroup is removed, this will be NULL.
131 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
132 * is called after synchronize_rcu(). But for safe use, css_tryget()
133 * should be used for avoiding race.
38460b48 134 */
2c392b8c 135 struct cgroup_subsys_state __rcu *css;
38460b48
KH
136 /*
137 * ID of this css.
138 */
139 unsigned short id;
140 /*
141 * Depth in hierarchy which this ID belongs to.
142 */
143 unsigned short depth;
144 /*
145 * ID is freed by RCU. (and lookup routine is RCU safe.)
146 */
147 struct rcu_head rcu_head;
148 /*
149 * Hierarchy of CSS ID belongs to.
150 */
151 unsigned short stack[0]; /* Array of Length (depth+1) */
152};
153
0dea1168 154/*
25985edc 155 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
156 */
157struct cgroup_event {
158 /*
159 * Cgroup which the event belongs to.
160 */
161 struct cgroup *cgrp;
162 /*
163 * Control file which the event associated.
164 */
165 struct cftype *cft;
166 /*
167 * eventfd to signal userspace about the event.
168 */
169 struct eventfd_ctx *eventfd;
170 /*
171 * Each of these stored in a list by the cgroup.
172 */
173 struct list_head list;
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
38460b48 183
ddbcc7e8
PM
184/* The list of hierarchy roots */
185
186static LIST_HEAD(roots);
817929ec 187static int root_count;
ddbcc7e8 188
54e7b4eb
TH
189/*
190 * Hierarchy ID allocation and mapping. It follows the same exclusion
191 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
192 * writes, either for reads.
193 */
1a574231 194static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 195
ddbcc7e8
PM
196/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197#define dummytop (&rootnode.top_cgroup)
198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
206 * the ascending serial number order on the list. Protected by
207 * cgroup_mutex.
794611a1 208 */
00356bd5 209static u64 cgroup_serial_nr_next = 1;
794611a1 210
ddbcc7e8 211/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
212 * check for fork/exit handlers to call. This avoids us having to do
213 * extra work in the fork/exit path if none of the subsystems need to
214 * be called.
ddbcc7e8 215 */
8947f9d5 216static int need_forkexit_callback __read_mostly;
ddbcc7e8 217
ea15f8cc 218static void cgroup_offline_fn(struct work_struct *work);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
220static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
221 struct cftype cfts[], bool is_add);
42809dd4 222
ddbcc7e8 223/* convenient tests for these bits */
54766d4a 224static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 225{
54766d4a 226 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
227}
228
78574cf9
LZ
229/**
230 * cgroup_is_descendant - test ancestry
231 * @cgrp: the cgroup to be tested
232 * @ancestor: possible ancestor of @cgrp
233 *
234 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
235 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
236 * and @ancestor are accessible.
237 */
238bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
239{
240 while (cgrp) {
241 if (cgrp == ancestor)
242 return true;
243 cgrp = cgrp->parent;
244 }
245 return false;
246}
247EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 248
e9685a03 249static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
250{
251 const int bits =
bd89aabc
PM
252 (1 << CGRP_RELEASABLE) |
253 (1 << CGRP_NOTIFY_ON_RELEASE);
254 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
255}
256
e9685a03 257static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 258{
bd89aabc 259 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
260}
261
ddbcc7e8
PM
262/*
263 * for_each_subsys() allows you to iterate on each subsystem attached to
264 * an active hierarchy
265 */
266#define for_each_subsys(_root, _ss) \
267list_for_each_entry(_ss, &_root->subsys_list, sibling)
268
e5f6a860
LZ
269/* for_each_active_root() allows you to iterate across the active hierarchies */
270#define for_each_active_root(_root) \
ddbcc7e8
PM
271list_for_each_entry(_root, &roots, root_list)
272
f6ea9372
TH
273static inline struct cgroup *__d_cgrp(struct dentry *dentry)
274{
275 return dentry->d_fsdata;
276}
277
05ef1d7c 278static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
279{
280 return dentry->d_fsdata;
281}
282
05ef1d7c
TH
283static inline struct cftype *__d_cft(struct dentry *dentry)
284{
285 return __d_cfe(dentry)->type;
286}
287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
e6a1105b
BB
343static int cgroup_init_idr(struct cgroup_subsys *ss,
344 struct cgroup_subsys_state *css);
38460b48 345
817929ec
PM
346/* css_set_lock protects the list of css_set objects, and the
347 * chain of tasks off each css_set. Nests outside task->alloc_lock
348 * due to cgroup_iter_start() */
349static DEFINE_RWLOCK(css_set_lock);
350static int css_set_count;
351
7717f7ba
PM
352/*
353 * hash table for cgroup groups. This improves the performance to find
354 * an existing css_set. This hash doesn't (currently) take into
355 * account cgroups in empty hierarchies.
356 */
472b1053 357#define CSS_SET_HASH_BITS 7
0ac801fe 358static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 359
0ac801fe 360static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
361{
362 int i;
0ac801fe 363 unsigned long key = 0UL;
472b1053
LZ
364
365 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
366 key += (unsigned long)css[i];
367 key = (key >> 16) ^ key;
472b1053 368
0ac801fe 369 return key;
472b1053
LZ
370}
371
817929ec
PM
372/* We don't maintain the lists running through each css_set to its
373 * task until after the first call to cgroup_iter_start(). This
374 * reduces the fork()/exit() overhead for people who have cgroups
375 * compiled into their kernel but not actually in use */
8947f9d5 376static int use_task_css_set_links __read_mostly;
817929ec 377
5abb8855 378static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 379{
69d0206c 380 struct cgrp_cset_link *link, *tmp_link;
5abb8855 381
146aa1bd
LJ
382 /*
383 * Ensure that the refcount doesn't hit zero while any readers
384 * can see it. Similar to atomic_dec_and_lock(), but for an
385 * rwlock
386 */
5abb8855 387 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
388 return;
389 write_lock(&css_set_lock);
5abb8855 390 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
391 write_unlock(&css_set_lock);
392 return;
393 }
81a6a5cd 394
2c6ab6d2 395 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 396 hash_del(&cset->hlist);
2c6ab6d2
PM
397 css_set_count--;
398
69d0206c 399 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 400 struct cgroup *cgrp = link->cgrp;
5abb8855 401
69d0206c
TH
402 list_del(&link->cset_link);
403 list_del(&link->cgrp_link);
71b5707e 404
ddd69148 405 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 406 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 407 if (taskexit)
bd89aabc
PM
408 set_bit(CGRP_RELEASABLE, &cgrp->flags);
409 check_for_release(cgrp);
81a6a5cd 410 }
2c6ab6d2
PM
411
412 kfree(link);
81a6a5cd 413 }
2c6ab6d2
PM
414
415 write_unlock(&css_set_lock);
5abb8855 416 kfree_rcu(cset, rcu_head);
b4f48b63
PM
417}
418
817929ec
PM
419/*
420 * refcounted get/put for css_set objects
421 */
5abb8855 422static inline void get_css_set(struct css_set *cset)
817929ec 423{
5abb8855 424 atomic_inc(&cset->refcount);
817929ec
PM
425}
426
5abb8855 427static inline void put_css_set(struct css_set *cset)
817929ec 428{
5abb8855 429 __put_css_set(cset, 0);
817929ec
PM
430}
431
5abb8855 432static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 433{
5abb8855 434 __put_css_set(cset, 1);
81a6a5cd
PM
435}
436
7717f7ba
PM
437/*
438 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
439 * @cset: candidate css_set being tested
440 * @old_cset: existing css_set for a task
7717f7ba
PM
441 * @new_cgrp: cgroup that's being entered by the task
442 * @template: desired set of css pointers in css_set (pre-calculated)
443 *
444 * Returns true if "cg" matches "old_cg" except for the hierarchy
445 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
446 */
5abb8855
TH
447static bool compare_css_sets(struct css_set *cset,
448 struct css_set *old_cset,
7717f7ba
PM
449 struct cgroup *new_cgrp,
450 struct cgroup_subsys_state *template[])
451{
452 struct list_head *l1, *l2;
453
5abb8855 454 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
455 /* Not all subsystems matched */
456 return false;
457 }
458
459 /*
460 * Compare cgroup pointers in order to distinguish between
461 * different cgroups in heirarchies with no subsystems. We
462 * could get by with just this check alone (and skip the
463 * memcmp above) but on most setups the memcmp check will
464 * avoid the need for this more expensive check on almost all
465 * candidates.
466 */
467
69d0206c
TH
468 l1 = &cset->cgrp_links;
469 l2 = &old_cset->cgrp_links;
7717f7ba 470 while (1) {
69d0206c 471 struct cgrp_cset_link *link1, *link2;
5abb8855 472 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
473
474 l1 = l1->next;
475 l2 = l2->next;
476 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
477 if (l1 == &cset->cgrp_links) {
478 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
479 break;
480 } else {
69d0206c 481 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
482 }
483 /* Locate the cgroups associated with these links. */
69d0206c
TH
484 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
485 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
486 cgrp1 = link1->cgrp;
487 cgrp2 = link2->cgrp;
7717f7ba 488 /* Hierarchies should be linked in the same order. */
5abb8855 489 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
490
491 /*
492 * If this hierarchy is the hierarchy of the cgroup
493 * that's changing, then we need to check that this
494 * css_set points to the new cgroup; if it's any other
495 * hierarchy, then this css_set should point to the
496 * same cgroup as the old css_set.
497 */
5abb8855
TH
498 if (cgrp1->root == new_cgrp->root) {
499 if (cgrp1 != new_cgrp)
7717f7ba
PM
500 return false;
501 } else {
5abb8855 502 if (cgrp1 != cgrp2)
7717f7ba
PM
503 return false;
504 }
505 }
506 return true;
507}
508
817929ec
PM
509/*
510 * find_existing_css_set() is a helper for
511 * find_css_set(), and checks to see whether an existing
472b1053 512 * css_set is suitable.
817929ec
PM
513 *
514 * oldcg: the cgroup group that we're using before the cgroup
515 * transition
516 *
bd89aabc 517 * cgrp: the cgroup that we're moving into
817929ec
PM
518 *
519 * template: location in which to build the desired set of subsystem
520 * state objects for the new cgroup group
521 */
5abb8855
TH
522static struct css_set *find_existing_css_set(struct css_set *old_cset,
523 struct cgroup *cgrp,
524 struct cgroup_subsys_state *template[])
b4f48b63
PM
525{
526 int i;
bd89aabc 527 struct cgroupfs_root *root = cgrp->root;
5abb8855 528 struct css_set *cset;
0ac801fe 529 unsigned long key;
817929ec 530
aae8aab4
BB
531 /*
532 * Build the set of subsystem state objects that we want to see in the
533 * new css_set. while subsystems can change globally, the entries here
534 * won't change, so no need for locking.
535 */
817929ec 536 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 537 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
538 /* Subsystem is in this hierarchy. So we want
539 * the subsystem state from the new
540 * cgroup */
bd89aabc 541 template[i] = cgrp->subsys[i];
817929ec
PM
542 } else {
543 /* Subsystem is not in this hierarchy, so we
544 * don't want to change the subsystem state */
5abb8855 545 template[i] = old_cset->subsys[i];
817929ec
PM
546 }
547 }
548
0ac801fe 549 key = css_set_hash(template);
5abb8855
TH
550 hash_for_each_possible(css_set_table, cset, hlist, key) {
551 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
552 continue;
553
554 /* This css_set matches what we need */
5abb8855 555 return cset;
472b1053 556 }
817929ec
PM
557
558 /* No existing cgroup group matched */
559 return NULL;
560}
561
69d0206c 562static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 563{
69d0206c 564 struct cgrp_cset_link *link, *tmp_link;
36553434 565
69d0206c
TH
566 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
567 list_del(&link->cset_link);
36553434
LZ
568 kfree(link);
569 }
570}
571
69d0206c
TH
572/**
573 * allocate_cgrp_cset_links - allocate cgrp_cset_links
574 * @count: the number of links to allocate
575 * @tmp_links: list_head the allocated links are put on
576 *
577 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
578 * through ->cset_link. Returns 0 on success or -errno.
817929ec 579 */
69d0206c 580static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 581{
69d0206c 582 struct cgrp_cset_link *link;
817929ec 583 int i;
69d0206c
TH
584
585 INIT_LIST_HEAD(tmp_links);
586
817929ec 587 for (i = 0; i < count; i++) {
f4f4be2b 588 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 589 if (!link) {
69d0206c 590 free_cgrp_cset_links(tmp_links);
817929ec
PM
591 return -ENOMEM;
592 }
69d0206c 593 list_add(&link->cset_link, tmp_links);
817929ec
PM
594 }
595 return 0;
596}
597
c12f65d4
LZ
598/**
599 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 600 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 601 * @cset: the css_set to be linked
c12f65d4
LZ
602 * @cgrp: the destination cgroup
603 */
69d0206c
TH
604static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
605 struct cgroup *cgrp)
c12f65d4 606{
69d0206c 607 struct cgrp_cset_link *link;
c12f65d4 608
69d0206c
TH
609 BUG_ON(list_empty(tmp_links));
610 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
611 link->cset = cset;
7717f7ba 612 link->cgrp = cgrp;
69d0206c 613 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
614 /*
615 * Always add links to the tail of the list so that the list
616 * is sorted by order of hierarchy creation
617 */
69d0206c 618 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
619}
620
817929ec
PM
621/*
622 * find_css_set() takes an existing cgroup group and a
623 * cgroup object, and returns a css_set object that's
624 * equivalent to the old group, but with the given cgroup
625 * substituted into the appropriate hierarchy. Must be called with
626 * cgroup_mutex held
627 */
5abb8855
TH
628static struct css_set *find_css_set(struct css_set *old_cset,
629 struct cgroup *cgrp)
817929ec 630{
5abb8855 631 struct css_set *cset;
817929ec 632 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
69d0206c
TH
633 struct list_head tmp_links;
634 struct cgrp_cset_link *link;
0ac801fe 635 unsigned long key;
472b1053 636
817929ec
PM
637 /* First see if we already have a cgroup group that matches
638 * the desired set */
7e9abd89 639 read_lock(&css_set_lock);
5abb8855
TH
640 cset = find_existing_css_set(old_cset, cgrp, template);
641 if (cset)
642 get_css_set(cset);
7e9abd89 643 read_unlock(&css_set_lock);
817929ec 644
5abb8855
TH
645 if (cset)
646 return cset;
817929ec 647
f4f4be2b 648 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 649 if (!cset)
817929ec
PM
650 return NULL;
651
69d0206c
TH
652 /* Allocate all the cgrp_cset_link objects that we'll need */
653 if (allocate_cgrp_cset_links(root_count, &tmp_links) < 0) {
5abb8855 654 kfree(cset);
817929ec
PM
655 return NULL;
656 }
657
5abb8855 658 atomic_set(&cset->refcount, 1);
69d0206c 659 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
660 INIT_LIST_HEAD(&cset->tasks);
661 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
662
663 /* Copy the set of subsystem state objects generated in
664 * find_existing_css_set() */
5abb8855 665 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
666
667 write_lock(&css_set_lock);
668 /* Add reference counts and links from the new css_set. */
69d0206c 669 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 670 struct cgroup *c = link->cgrp;
69d0206c 671
7717f7ba
PM
672 if (c->root == cgrp->root)
673 c = cgrp;
69d0206c 674 link_css_set(&tmp_links, cset, c);
7717f7ba 675 }
817929ec 676
69d0206c 677 BUG_ON(!list_empty(&tmp_links));
817929ec 678
817929ec 679 css_set_count++;
472b1053
LZ
680
681 /* Add this cgroup group to the hash table */
5abb8855
TH
682 key = css_set_hash(cset->subsys);
683 hash_add(css_set_table, &cset->hlist, key);
472b1053 684
817929ec
PM
685 write_unlock(&css_set_lock);
686
5abb8855 687 return cset;
b4f48b63
PM
688}
689
7717f7ba
PM
690/*
691 * Return the cgroup for "task" from the given hierarchy. Must be
692 * called with cgroup_mutex held.
693 */
694static struct cgroup *task_cgroup_from_root(struct task_struct *task,
695 struct cgroupfs_root *root)
696{
5abb8855 697 struct css_set *cset;
7717f7ba
PM
698 struct cgroup *res = NULL;
699
700 BUG_ON(!mutex_is_locked(&cgroup_mutex));
701 read_lock(&css_set_lock);
702 /*
703 * No need to lock the task - since we hold cgroup_mutex the
704 * task can't change groups, so the only thing that can happen
705 * is that it exits and its css is set back to init_css_set.
706 */
5abb8855
TH
707 cset = task->cgroups;
708 if (cset == &init_css_set) {
7717f7ba
PM
709 res = &root->top_cgroup;
710 } else {
69d0206c
TH
711 struct cgrp_cset_link *link;
712
713 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 714 struct cgroup *c = link->cgrp;
69d0206c 715
7717f7ba
PM
716 if (c->root == root) {
717 res = c;
718 break;
719 }
720 }
721 }
722 read_unlock(&css_set_lock);
723 BUG_ON(!res);
724 return res;
725}
726
ddbcc7e8
PM
727/*
728 * There is one global cgroup mutex. We also require taking
729 * task_lock() when dereferencing a task's cgroup subsys pointers.
730 * See "The task_lock() exception", at the end of this comment.
731 *
732 * A task must hold cgroup_mutex to modify cgroups.
733 *
734 * Any task can increment and decrement the count field without lock.
735 * So in general, code holding cgroup_mutex can't rely on the count
736 * field not changing. However, if the count goes to zero, then only
956db3ca 737 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
738 * means that no tasks are currently attached, therefore there is no
739 * way a task attached to that cgroup can fork (the other way to
740 * increment the count). So code holding cgroup_mutex can safely
741 * assume that if the count is zero, it will stay zero. Similarly, if
742 * a task holds cgroup_mutex on a cgroup with zero count, it
743 * knows that the cgroup won't be removed, as cgroup_rmdir()
744 * needs that mutex.
745 *
ddbcc7e8
PM
746 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
747 * (usually) take cgroup_mutex. These are the two most performance
748 * critical pieces of code here. The exception occurs on cgroup_exit(),
749 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
750 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
751 * to the release agent with the name of the cgroup (path relative to
752 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
753 *
754 * A cgroup can only be deleted if both its 'count' of using tasks
755 * is zero, and its list of 'children' cgroups is empty. Since all
756 * tasks in the system use _some_ cgroup, and since there is always at
757 * least one task in the system (init, pid == 1), therefore, top_cgroup
758 * always has either children cgroups and/or using tasks. So we don't
759 * need a special hack to ensure that top_cgroup cannot be deleted.
760 *
761 * The task_lock() exception
762 *
763 * The need for this exception arises from the action of
d0b2fdd2 764 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 765 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
766 * several performance critical places that need to reference
767 * task->cgroup without the expense of grabbing a system global
768 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 769 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
770 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
771 * the task_struct routinely used for such matters.
772 *
773 * P.S. One more locking exception. RCU is used to guard the
956db3ca 774 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
775 */
776
ddbcc7e8
PM
777/*
778 * A couple of forward declarations required, due to cyclic reference loop:
779 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
780 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
781 * -> cgroup_mkdir.
782 */
783
18bb1db3 784static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 785static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 786static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
787static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
788 unsigned long subsys_mask);
6e1d5dcc 789static const struct inode_operations cgroup_dir_inode_operations;
828c0950 790static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
791
792static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 793 .name = "cgroup",
e4ad08fe 794 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 795};
ddbcc7e8 796
38460b48
KH
797static int alloc_css_id(struct cgroup_subsys *ss,
798 struct cgroup *parent, struct cgroup *child);
799
a5e7ed32 800static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
801{
802 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
803
804 if (inode) {
85fe4025 805 inode->i_ino = get_next_ino();
ddbcc7e8 806 inode->i_mode = mode;
76aac0e9
DH
807 inode->i_uid = current_fsuid();
808 inode->i_gid = current_fsgid();
ddbcc7e8
PM
809 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
810 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
811 }
812 return inode;
813}
814
65dff759
LZ
815static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
816{
817 struct cgroup_name *name;
818
819 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
820 if (!name)
821 return NULL;
822 strcpy(name->name, dentry->d_name.name);
823 return name;
824}
825
be445626
LZ
826static void cgroup_free_fn(struct work_struct *work)
827{
ea15f8cc 828 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
829 struct cgroup_subsys *ss;
830
831 mutex_lock(&cgroup_mutex);
832 /*
833 * Release the subsystem state objects.
834 */
835 for_each_subsys(cgrp->root, ss)
836 ss->css_free(cgrp);
837
838 cgrp->root->number_of_cgroups--;
839 mutex_unlock(&cgroup_mutex);
840
415cf07a
LZ
841 /*
842 * We get a ref to the parent's dentry, and put the ref when
843 * this cgroup is being freed, so it's guaranteed that the
844 * parent won't be destroyed before its children.
845 */
846 dput(cgrp->parent->dentry);
847
cc20e01c
LZ
848 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
849
be445626
LZ
850 /*
851 * Drop the active superblock reference that we took when we
cc20e01c
LZ
852 * created the cgroup. This will free cgrp->root, if we are
853 * holding the last reference to @sb.
be445626
LZ
854 */
855 deactivate_super(cgrp->root->sb);
856
857 /*
858 * if we're getting rid of the cgroup, refcount should ensure
859 * that there are no pidlists left.
860 */
861 BUG_ON(!list_empty(&cgrp->pidlists));
862
863 simple_xattrs_free(&cgrp->xattrs);
864
65dff759 865 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
866 kfree(cgrp);
867}
868
869static void cgroup_free_rcu(struct rcu_head *head)
870{
871 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
872
ea15f8cc
TH
873 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
874 schedule_work(&cgrp->destroy_work);
be445626
LZ
875}
876
ddbcc7e8
PM
877static void cgroup_diput(struct dentry *dentry, struct inode *inode)
878{
879 /* is dentry a directory ? if so, kfree() associated cgroup */
880 if (S_ISDIR(inode->i_mode)) {
bd89aabc 881 struct cgroup *cgrp = dentry->d_fsdata;
be445626 882
54766d4a 883 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 884 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
885 } else {
886 struct cfent *cfe = __d_cfe(dentry);
887 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
888
889 WARN_ONCE(!list_empty(&cfe->node) &&
890 cgrp != &cgrp->root->top_cgroup,
891 "cfe still linked for %s\n", cfe->type->name);
712317ad 892 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 893 kfree(cfe);
ddbcc7e8
PM
894 }
895 iput(inode);
896}
897
c72a04e3
AV
898static int cgroup_delete(const struct dentry *d)
899{
900 return 1;
901}
902
ddbcc7e8
PM
903static void remove_dir(struct dentry *d)
904{
905 struct dentry *parent = dget(d->d_parent);
906
907 d_delete(d);
908 simple_rmdir(parent->d_inode, d);
909 dput(parent);
910}
911
2739d3cc 912static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
913{
914 struct cfent *cfe;
915
916 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
917 lockdep_assert_held(&cgroup_mutex);
918
2739d3cc
LZ
919 /*
920 * If we're doing cleanup due to failure of cgroup_create(),
921 * the corresponding @cfe may not exist.
922 */
05ef1d7c
TH
923 list_for_each_entry(cfe, &cgrp->files, node) {
924 struct dentry *d = cfe->dentry;
925
926 if (cft && cfe->type != cft)
927 continue;
928
929 dget(d);
930 d_delete(d);
ce27e317 931 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
932 list_del_init(&cfe->node);
933 dput(d);
934
2739d3cc 935 break;
ddbcc7e8 936 }
05ef1d7c
TH
937}
938
13af07df
AR
939/**
940 * cgroup_clear_directory - selective removal of base and subsystem files
941 * @dir: directory containing the files
942 * @base_files: true if the base files should be removed
943 * @subsys_mask: mask of the subsystem ids whose files should be removed
944 */
945static void cgroup_clear_directory(struct dentry *dir, bool base_files,
946 unsigned long subsys_mask)
05ef1d7c
TH
947{
948 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 949 struct cgroup_subsys *ss;
05ef1d7c 950
13af07df
AR
951 for_each_subsys(cgrp->root, ss) {
952 struct cftype_set *set;
953 if (!test_bit(ss->subsys_id, &subsys_mask))
954 continue;
955 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 956 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
957 }
958 if (base_files) {
959 while (!list_empty(&cgrp->files))
960 cgroup_rm_file(cgrp, NULL);
961 }
ddbcc7e8
PM
962}
963
964/*
965 * NOTE : the dentry must have been dget()'ed
966 */
967static void cgroup_d_remove_dir(struct dentry *dentry)
968{
2fd6b7f5 969 struct dentry *parent;
13af07df 970 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 971
a1a71b45 972 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 973
2fd6b7f5
NP
974 parent = dentry->d_parent;
975 spin_lock(&parent->d_lock);
3ec762ad 976 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 977 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
978 spin_unlock(&dentry->d_lock);
979 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
980 remove_dir(dentry);
981}
982
aae8aab4 983/*
cf5d5941
BB
984 * Call with cgroup_mutex held. Drops reference counts on modules, including
985 * any duplicate ones that parse_cgroupfs_options took. If this function
986 * returns an error, no reference counts are touched.
aae8aab4 987 */
ddbcc7e8 988static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 989 unsigned long final_subsys_mask)
ddbcc7e8 990{
a1a71b45 991 unsigned long added_mask, removed_mask;
bd89aabc 992 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
993 int i;
994
aae8aab4 995 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 996 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 997
a1a71b45
AR
998 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
999 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1000 /* Check that any added subsystems are currently free */
1001 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1002 unsigned long bit = 1UL << i;
ddbcc7e8 1003 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1004 if (!(bit & added_mask))
ddbcc7e8 1005 continue;
aae8aab4
BB
1006 /*
1007 * Nobody should tell us to do a subsys that doesn't exist:
1008 * parse_cgroupfs_options should catch that case and refcounts
1009 * ensure that subsystems won't disappear once selected.
1010 */
1011 BUG_ON(ss == NULL);
ddbcc7e8
PM
1012 if (ss->root != &rootnode) {
1013 /* Subsystem isn't free */
1014 return -EBUSY;
1015 }
1016 }
1017
1018 /* Currently we don't handle adding/removing subsystems when
1019 * any child cgroups exist. This is theoretically supportable
1020 * but involves complex error handling, so it's being left until
1021 * later */
307257cf 1022 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1023 return -EBUSY;
1024
1025 /* Process each subsystem */
1026 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1027 struct cgroup_subsys *ss = subsys[i];
1028 unsigned long bit = 1UL << i;
a1a71b45 1029 if (bit & added_mask) {
ddbcc7e8 1030 /* We're binding this subsystem to this hierarchy */
aae8aab4 1031 BUG_ON(ss == NULL);
bd89aabc 1032 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1033 BUG_ON(!dummytop->subsys[i]);
1034 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1035 cgrp->subsys[i] = dummytop->subsys[i];
1036 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1037 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1038 ss->root = root;
ddbcc7e8 1039 if (ss->bind)
761b3ef5 1040 ss->bind(cgrp);
cf5d5941 1041 /* refcount was already taken, and we're keeping it */
a1a71b45 1042 } else if (bit & removed_mask) {
ddbcc7e8 1043 /* We're removing this subsystem */
aae8aab4 1044 BUG_ON(ss == NULL);
bd89aabc
PM
1045 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1046 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1047 if (ss->bind)
761b3ef5 1048 ss->bind(dummytop);
ddbcc7e8 1049 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1050 cgrp->subsys[i] = NULL;
b2aa30f7 1051 subsys[i]->root = &rootnode;
33a68ac1 1052 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1053 /* subsystem is now free - drop reference on module */
1054 module_put(ss->module);
a1a71b45 1055 } else if (bit & final_subsys_mask) {
ddbcc7e8 1056 /* Subsystem state should already exist */
aae8aab4 1057 BUG_ON(ss == NULL);
bd89aabc 1058 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1059 /*
1060 * a refcount was taken, but we already had one, so
1061 * drop the extra reference.
1062 */
1063 module_put(ss->module);
1064#ifdef CONFIG_MODULE_UNLOAD
1065 BUG_ON(ss->module && !module_refcount(ss->module));
1066#endif
ddbcc7e8
PM
1067 } else {
1068 /* Subsystem state shouldn't exist */
bd89aabc 1069 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1070 }
1071 }
a1a71b45 1072 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1073
1074 return 0;
1075}
1076
34c80b1d 1077static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1078{
34c80b1d 1079 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1080 struct cgroup_subsys *ss;
1081
e25e2cbb 1082 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1083 for_each_subsys(root, ss)
1084 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1085 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1086 seq_puts(seq, ",sane_behavior");
93438629 1087 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1088 seq_puts(seq, ",noprefix");
93438629 1089 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1090 seq_puts(seq, ",xattr");
81a6a5cd
PM
1091 if (strlen(root->release_agent_path))
1092 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1093 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1094 seq_puts(seq, ",clone_children");
c6d57f33
PM
1095 if (strlen(root->name))
1096 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1097 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1098 return 0;
1099}
1100
1101struct cgroup_sb_opts {
a1a71b45 1102 unsigned long subsys_mask;
ddbcc7e8 1103 unsigned long flags;
81a6a5cd 1104 char *release_agent;
2260e7fc 1105 bool cpuset_clone_children;
c6d57f33 1106 char *name;
2c6ab6d2
PM
1107 /* User explicitly requested empty subsystem */
1108 bool none;
c6d57f33
PM
1109
1110 struct cgroupfs_root *new_root;
2c6ab6d2 1111
ddbcc7e8
PM
1112};
1113
aae8aab4
BB
1114/*
1115 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1116 * with cgroup_mutex held to protect the subsys[] array. This function takes
1117 * refcounts on subsystems to be used, unless it returns error, in which case
1118 * no refcounts are taken.
aae8aab4 1119 */
cf5d5941 1120static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1121{
32a8cf23
DL
1122 char *token, *o = data;
1123 bool all_ss = false, one_ss = false;
f9ab5b5b 1124 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1125 int i;
1126 bool module_pin_failed = false;
f9ab5b5b 1127
aae8aab4
BB
1128 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1129
f9ab5b5b
LZ
1130#ifdef CONFIG_CPUSETS
1131 mask = ~(1UL << cpuset_subsys_id);
1132#endif
ddbcc7e8 1133
c6d57f33 1134 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1135
1136 while ((token = strsep(&o, ",")) != NULL) {
1137 if (!*token)
1138 return -EINVAL;
32a8cf23 1139 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1140 /* Explicitly have no subsystems */
1141 opts->none = true;
32a8cf23
DL
1142 continue;
1143 }
1144 if (!strcmp(token, "all")) {
1145 /* Mutually exclusive option 'all' + subsystem name */
1146 if (one_ss)
1147 return -EINVAL;
1148 all_ss = true;
1149 continue;
1150 }
873fe09e
TH
1151 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1152 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1153 continue;
1154 }
32a8cf23 1155 if (!strcmp(token, "noprefix")) {
93438629 1156 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1157 continue;
1158 }
1159 if (!strcmp(token, "clone_children")) {
2260e7fc 1160 opts->cpuset_clone_children = true;
32a8cf23
DL
1161 continue;
1162 }
03b1cde6 1163 if (!strcmp(token, "xattr")) {
93438629 1164 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1165 continue;
1166 }
32a8cf23 1167 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1168 /* Specifying two release agents is forbidden */
1169 if (opts->release_agent)
1170 return -EINVAL;
c6d57f33 1171 opts->release_agent =
e400c285 1172 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1173 if (!opts->release_agent)
1174 return -ENOMEM;
32a8cf23
DL
1175 continue;
1176 }
1177 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1178 const char *name = token + 5;
1179 /* Can't specify an empty name */
1180 if (!strlen(name))
1181 return -EINVAL;
1182 /* Must match [\w.-]+ */
1183 for (i = 0; i < strlen(name); i++) {
1184 char c = name[i];
1185 if (isalnum(c))
1186 continue;
1187 if ((c == '.') || (c == '-') || (c == '_'))
1188 continue;
1189 return -EINVAL;
1190 }
1191 /* Specifying two names is forbidden */
1192 if (opts->name)
1193 return -EINVAL;
1194 opts->name = kstrndup(name,
e400c285 1195 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1196 GFP_KERNEL);
1197 if (!opts->name)
1198 return -ENOMEM;
32a8cf23
DL
1199
1200 continue;
1201 }
1202
1203 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1204 struct cgroup_subsys *ss = subsys[i];
1205 if (ss == NULL)
1206 continue;
1207 if (strcmp(token, ss->name))
1208 continue;
1209 if (ss->disabled)
1210 continue;
1211
1212 /* Mutually exclusive option 'all' + subsystem name */
1213 if (all_ss)
1214 return -EINVAL;
a1a71b45 1215 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1216 one_ss = true;
1217
1218 break;
1219 }
1220 if (i == CGROUP_SUBSYS_COUNT)
1221 return -ENOENT;
1222 }
1223
1224 /*
1225 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1226 * otherwise if 'none', 'name=' and a subsystem name options
1227 * were not specified, let's default to 'all'
32a8cf23 1228 */
0d19ea86 1229 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1230 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1231 struct cgroup_subsys *ss = subsys[i];
1232 if (ss == NULL)
1233 continue;
1234 if (ss->disabled)
1235 continue;
a1a71b45 1236 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1237 }
1238 }
1239
2c6ab6d2
PM
1240 /* Consistency checks */
1241
873fe09e
TH
1242 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1243 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1244
1245 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1246 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1247 return -EINVAL;
1248 }
1249
1250 if (opts->cpuset_clone_children) {
1251 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1252 return -EINVAL;
1253 }
1254 }
1255
f9ab5b5b
LZ
1256 /*
1257 * Option noprefix was introduced just for backward compatibility
1258 * with the old cpuset, so we allow noprefix only if mounting just
1259 * the cpuset subsystem.
1260 */
93438629 1261 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1262 return -EINVAL;
1263
2c6ab6d2
PM
1264
1265 /* Can't specify "none" and some subsystems */
a1a71b45 1266 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1267 return -EINVAL;
1268
1269 /*
1270 * We either have to specify by name or by subsystems. (So all
1271 * empty hierarchies must have a name).
1272 */
a1a71b45 1273 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1274 return -EINVAL;
1275
cf5d5941
BB
1276 /*
1277 * Grab references on all the modules we'll need, so the subsystems
1278 * don't dance around before rebind_subsystems attaches them. This may
1279 * take duplicate reference counts on a subsystem that's already used,
1280 * but rebind_subsystems handles this case.
1281 */
be45c900 1282 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1283 unsigned long bit = 1UL << i;
1284
a1a71b45 1285 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1286 continue;
1287 if (!try_module_get(subsys[i]->module)) {
1288 module_pin_failed = true;
1289 break;
1290 }
1291 }
1292 if (module_pin_failed) {
1293 /*
1294 * oops, one of the modules was going away. this means that we
1295 * raced with a module_delete call, and to the user this is
1296 * essentially a "subsystem doesn't exist" case.
1297 */
be45c900 1298 for (i--; i >= 0; i--) {
cf5d5941
BB
1299 /* drop refcounts only on the ones we took */
1300 unsigned long bit = 1UL << i;
1301
a1a71b45 1302 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1303 continue;
1304 module_put(subsys[i]->module);
1305 }
1306 return -ENOENT;
1307 }
1308
ddbcc7e8
PM
1309 return 0;
1310}
1311
a1a71b45 1312static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1313{
1314 int i;
be45c900 1315 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1316 unsigned long bit = 1UL << i;
1317
a1a71b45 1318 if (!(bit & subsys_mask))
cf5d5941
BB
1319 continue;
1320 module_put(subsys[i]->module);
1321 }
1322}
1323
ddbcc7e8
PM
1324static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1325{
1326 int ret = 0;
1327 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1328 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1329 struct cgroup_sb_opts opts;
a1a71b45 1330 unsigned long added_mask, removed_mask;
ddbcc7e8 1331
873fe09e
TH
1332 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1333 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1334 return -EINVAL;
1335 }
1336
bd89aabc 1337 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1338 mutex_lock(&cgroup_mutex);
e25e2cbb 1339 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1340
1341 /* See what subsystems are wanted */
1342 ret = parse_cgroupfs_options(data, &opts);
1343 if (ret)
1344 goto out_unlock;
1345
a1a71b45 1346 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1347 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1348 task_tgid_nr(current), current->comm);
1349
a1a71b45
AR
1350 added_mask = opts.subsys_mask & ~root->subsys_mask;
1351 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1352
cf5d5941
BB
1353 /* Don't allow flags or name to change at remount */
1354 if (opts.flags != root->flags ||
1355 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1356 ret = -EINVAL;
a1a71b45 1357 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1358 goto out_unlock;
1359 }
1360
7083d037
G
1361 /*
1362 * Clear out the files of subsystems that should be removed, do
1363 * this before rebind_subsystems, since rebind_subsystems may
1364 * change this hierarchy's subsys_list.
1365 */
1366 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1367
a1a71b45 1368 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1369 if (ret) {
7083d037
G
1370 /* rebind_subsystems failed, re-populate the removed files */
1371 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1372 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1373 goto out_unlock;
cf5d5941 1374 }
ddbcc7e8 1375
13af07df 1376 /* re-populate subsystem files */
a1a71b45 1377 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1378
81a6a5cd
PM
1379 if (opts.release_agent)
1380 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1381 out_unlock:
66bdc9cf 1382 kfree(opts.release_agent);
c6d57f33 1383 kfree(opts.name);
e25e2cbb 1384 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1385 mutex_unlock(&cgroup_mutex);
bd89aabc 1386 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1387 return ret;
1388}
1389
b87221de 1390static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1391 .statfs = simple_statfs,
1392 .drop_inode = generic_delete_inode,
1393 .show_options = cgroup_show_options,
1394 .remount_fs = cgroup_remount,
1395};
1396
cc31edce
PM
1397static void init_cgroup_housekeeping(struct cgroup *cgrp)
1398{
1399 INIT_LIST_HEAD(&cgrp->sibling);
1400 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1401 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1402 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1403 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1404 INIT_LIST_HEAD(&cgrp->pidlists);
1405 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1406 INIT_LIST_HEAD(&cgrp->event_list);
1407 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1408 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1409}
c6d57f33 1410
ddbcc7e8
PM
1411static void init_cgroup_root(struct cgroupfs_root *root)
1412{
bd89aabc 1413 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1414
ddbcc7e8
PM
1415 INIT_LIST_HEAD(&root->subsys_list);
1416 INIT_LIST_HEAD(&root->root_list);
1417 root->number_of_cgroups = 1;
bd89aabc 1418 cgrp->root = root;
65dff759 1419 cgrp->name = &root_cgroup_name;
cc31edce 1420 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1421}
1422
fa3ca07e 1423static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1424{
1a574231 1425 int id;
2c6ab6d2 1426
54e7b4eb
TH
1427 lockdep_assert_held(&cgroup_mutex);
1428 lockdep_assert_held(&cgroup_root_mutex);
1429
1a574231
TH
1430 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1431 if (id < 0)
1432 return id;
1433
1434 root->hierarchy_id = id;
fa3ca07e
TH
1435 return 0;
1436}
1437
1438static void cgroup_exit_root_id(struct cgroupfs_root *root)
1439{
54e7b4eb
TH
1440 lockdep_assert_held(&cgroup_mutex);
1441 lockdep_assert_held(&cgroup_root_mutex);
1442
fa3ca07e 1443 if (root->hierarchy_id) {
1a574231 1444 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1445 root->hierarchy_id = 0;
1446 }
2c6ab6d2
PM
1447}
1448
ddbcc7e8
PM
1449static int cgroup_test_super(struct super_block *sb, void *data)
1450{
c6d57f33 1451 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1452 struct cgroupfs_root *root = sb->s_fs_info;
1453
c6d57f33
PM
1454 /* If we asked for a name then it must match */
1455 if (opts->name && strcmp(opts->name, root->name))
1456 return 0;
ddbcc7e8 1457
2c6ab6d2
PM
1458 /*
1459 * If we asked for subsystems (or explicitly for no
1460 * subsystems) then they must match
1461 */
a1a71b45
AR
1462 if ((opts->subsys_mask || opts->none)
1463 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1464 return 0;
1465
1466 return 1;
1467}
1468
c6d57f33
PM
1469static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1470{
1471 struct cgroupfs_root *root;
1472
a1a71b45 1473 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1474 return NULL;
1475
1476 root = kzalloc(sizeof(*root), GFP_KERNEL);
1477 if (!root)
1478 return ERR_PTR(-ENOMEM);
1479
1480 init_cgroup_root(root);
2c6ab6d2 1481
a1a71b45 1482 root->subsys_mask = opts->subsys_mask;
c6d57f33 1483 root->flags = opts->flags;
0a950f65 1484 ida_init(&root->cgroup_ida);
c6d57f33
PM
1485 if (opts->release_agent)
1486 strcpy(root->release_agent_path, opts->release_agent);
1487 if (opts->name)
1488 strcpy(root->name, opts->name);
2260e7fc
TH
1489 if (opts->cpuset_clone_children)
1490 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1491 return root;
1492}
1493
fa3ca07e 1494static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1495{
fa3ca07e
TH
1496 if (root) {
1497 /* hierarhcy ID shoulid already have been released */
1498 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1499
fa3ca07e
TH
1500 ida_destroy(&root->cgroup_ida);
1501 kfree(root);
1502 }
2c6ab6d2
PM
1503}
1504
ddbcc7e8
PM
1505static int cgroup_set_super(struct super_block *sb, void *data)
1506{
1507 int ret;
c6d57f33
PM
1508 struct cgroup_sb_opts *opts = data;
1509
1510 /* If we don't have a new root, we can't set up a new sb */
1511 if (!opts->new_root)
1512 return -EINVAL;
1513
a1a71b45 1514 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1515
1516 ret = set_anon_super(sb, NULL);
1517 if (ret)
1518 return ret;
1519
c6d57f33
PM
1520 sb->s_fs_info = opts->new_root;
1521 opts->new_root->sb = sb;
ddbcc7e8
PM
1522
1523 sb->s_blocksize = PAGE_CACHE_SIZE;
1524 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1525 sb->s_magic = CGROUP_SUPER_MAGIC;
1526 sb->s_op = &cgroup_ops;
1527
1528 return 0;
1529}
1530
1531static int cgroup_get_rootdir(struct super_block *sb)
1532{
0df6a63f
AV
1533 static const struct dentry_operations cgroup_dops = {
1534 .d_iput = cgroup_diput,
c72a04e3 1535 .d_delete = cgroup_delete,
0df6a63f
AV
1536 };
1537
ddbcc7e8
PM
1538 struct inode *inode =
1539 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1540
1541 if (!inode)
1542 return -ENOMEM;
1543
ddbcc7e8
PM
1544 inode->i_fop = &simple_dir_operations;
1545 inode->i_op = &cgroup_dir_inode_operations;
1546 /* directories start off with i_nlink == 2 (for "." entry) */
1547 inc_nlink(inode);
48fde701
AV
1548 sb->s_root = d_make_root(inode);
1549 if (!sb->s_root)
ddbcc7e8 1550 return -ENOMEM;
0df6a63f
AV
1551 /* for everything else we want ->d_op set */
1552 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1553 return 0;
1554}
1555
f7e83571 1556static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1557 int flags, const char *unused_dev_name,
f7e83571 1558 void *data)
ddbcc7e8
PM
1559{
1560 struct cgroup_sb_opts opts;
c6d57f33 1561 struct cgroupfs_root *root;
ddbcc7e8
PM
1562 int ret = 0;
1563 struct super_block *sb;
c6d57f33 1564 struct cgroupfs_root *new_root;
e25e2cbb 1565 struct inode *inode;
ddbcc7e8
PM
1566
1567 /* First find the desired set of subsystems */
aae8aab4 1568 mutex_lock(&cgroup_mutex);
ddbcc7e8 1569 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1570 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1571 if (ret)
1572 goto out_err;
ddbcc7e8 1573
c6d57f33
PM
1574 /*
1575 * Allocate a new cgroup root. We may not need it if we're
1576 * reusing an existing hierarchy.
1577 */
1578 new_root = cgroup_root_from_opts(&opts);
1579 if (IS_ERR(new_root)) {
1580 ret = PTR_ERR(new_root);
cf5d5941 1581 goto drop_modules;
81a6a5cd 1582 }
c6d57f33 1583 opts.new_root = new_root;
ddbcc7e8 1584
c6d57f33 1585 /* Locate an existing or new sb for this hierarchy */
9249e17f 1586 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1587 if (IS_ERR(sb)) {
c6d57f33 1588 ret = PTR_ERR(sb);
fa3ca07e 1589 cgroup_free_root(opts.new_root);
cf5d5941 1590 goto drop_modules;
ddbcc7e8
PM
1591 }
1592
c6d57f33
PM
1593 root = sb->s_fs_info;
1594 BUG_ON(!root);
1595 if (root == opts.new_root) {
1596 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1597 struct list_head tmp_links;
c12f65d4 1598 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1599 struct cgroupfs_root *existing_root;
2ce9738b 1600 const struct cred *cred;
28fd5dfc 1601 int i;
5abb8855 1602 struct css_set *cset;
ddbcc7e8
PM
1603
1604 BUG_ON(sb->s_root != NULL);
1605
1606 ret = cgroup_get_rootdir(sb);
1607 if (ret)
1608 goto drop_new_super;
817929ec 1609 inode = sb->s_root->d_inode;
ddbcc7e8 1610
817929ec 1611 mutex_lock(&inode->i_mutex);
ddbcc7e8 1612 mutex_lock(&cgroup_mutex);
e25e2cbb 1613 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1614
e25e2cbb
TH
1615 /* Check for name clashes with existing mounts */
1616 ret = -EBUSY;
1617 if (strlen(root->name))
1618 for_each_active_root(existing_root)
1619 if (!strcmp(existing_root->name, root->name))
1620 goto unlock_drop;
c6d57f33 1621
817929ec
PM
1622 /*
1623 * We're accessing css_set_count without locking
1624 * css_set_lock here, but that's OK - it can only be
1625 * increased by someone holding cgroup_lock, and
1626 * that's us. The worst that can happen is that we
1627 * have some link structures left over
1628 */
69d0206c 1629 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1630 if (ret)
1631 goto unlock_drop;
817929ec 1632
fa3ca07e
TH
1633 ret = cgroup_init_root_id(root);
1634 if (ret)
1635 goto unlock_drop;
1636
a1a71b45 1637 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1638 if (ret == -EBUSY) {
69d0206c 1639 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1640 goto unlock_drop;
ddbcc7e8 1641 }
cf5d5941
BB
1642 /*
1643 * There must be no failure case after here, since rebinding
1644 * takes care of subsystems' refcounts, which are explicitly
1645 * dropped in the failure exit path.
1646 */
ddbcc7e8
PM
1647
1648 /* EBUSY should be the only error here */
1649 BUG_ON(ret);
1650
1651 list_add(&root->root_list, &roots);
817929ec 1652 root_count++;
ddbcc7e8 1653
c12f65d4 1654 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1655 root->top_cgroup.dentry = sb->s_root;
1656
817929ec
PM
1657 /* Link the top cgroup in this hierarchy into all
1658 * the css_set objects */
1659 write_lock(&css_set_lock);
5abb8855 1660 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1661 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1662 write_unlock(&css_set_lock);
1663
69d0206c 1664 free_cgrp_cset_links(&tmp_links);
817929ec 1665
c12f65d4 1666 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1667 BUG_ON(root->number_of_cgroups != 1);
1668
2ce9738b 1669 cred = override_creds(&init_cred);
a1a71b45 1670 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1671 revert_creds(cred);
e25e2cbb 1672 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1673 mutex_unlock(&cgroup_mutex);
34f77a90 1674 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1675 } else {
1676 /*
1677 * We re-used an existing hierarchy - the new root (if
1678 * any) is not needed
1679 */
fa3ca07e 1680 cgroup_free_root(opts.new_root);
873fe09e 1681
2a0ff3fb
JL
1682 if (root->flags != opts.flags) {
1683 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1684 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1685 ret = -EINVAL;
1686 goto drop_new_super;
1687 } else {
1688 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1689 }
873fe09e
TH
1690 }
1691
cf5d5941 1692 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1693 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1694 }
1695
c6d57f33
PM
1696 kfree(opts.release_agent);
1697 kfree(opts.name);
f7e83571 1698 return dget(sb->s_root);
ddbcc7e8 1699
e25e2cbb 1700 unlock_drop:
fa3ca07e 1701 cgroup_exit_root_id(root);
e25e2cbb
TH
1702 mutex_unlock(&cgroup_root_mutex);
1703 mutex_unlock(&cgroup_mutex);
1704 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1705 drop_new_super:
6f5bbff9 1706 deactivate_locked_super(sb);
cf5d5941 1707 drop_modules:
a1a71b45 1708 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1709 out_err:
1710 kfree(opts.release_agent);
1711 kfree(opts.name);
f7e83571 1712 return ERR_PTR(ret);
ddbcc7e8
PM
1713}
1714
1715static void cgroup_kill_sb(struct super_block *sb) {
1716 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1717 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1718 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1719 int ret;
1720
1721 BUG_ON(!root);
1722
1723 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1724 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1725
1726 mutex_lock(&cgroup_mutex);
e25e2cbb 1727 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1728
1729 /* Rebind all subsystems back to the default hierarchy */
1730 ret = rebind_subsystems(root, 0);
1731 /* Shouldn't be able to fail ... */
1732 BUG_ON(ret);
1733
817929ec 1734 /*
69d0206c 1735 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1736 * root cgroup
1737 */
1738 write_lock(&css_set_lock);
71cbb949 1739
69d0206c
TH
1740 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1741 list_del(&link->cset_link);
1742 list_del(&link->cgrp_link);
817929ec
PM
1743 kfree(link);
1744 }
1745 write_unlock(&css_set_lock);
1746
839ec545
PM
1747 if (!list_empty(&root->root_list)) {
1748 list_del(&root->root_list);
1749 root_count--;
1750 }
e5f6a860 1751
fa3ca07e
TH
1752 cgroup_exit_root_id(root);
1753
e25e2cbb 1754 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1755 mutex_unlock(&cgroup_mutex);
1756
03b1cde6
AR
1757 simple_xattrs_free(&cgrp->xattrs);
1758
ddbcc7e8 1759 kill_litter_super(sb);
fa3ca07e 1760 cgroup_free_root(root);
ddbcc7e8
PM
1761}
1762
1763static struct file_system_type cgroup_fs_type = {
1764 .name = "cgroup",
f7e83571 1765 .mount = cgroup_mount,
ddbcc7e8
PM
1766 .kill_sb = cgroup_kill_sb,
1767};
1768
676db4af
GK
1769static struct kobject *cgroup_kobj;
1770
a043e3b2
LZ
1771/**
1772 * cgroup_path - generate the path of a cgroup
1773 * @cgrp: the cgroup in question
1774 * @buf: the buffer to write the path into
1775 * @buflen: the length of the buffer
1776 *
65dff759
LZ
1777 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1778 *
1779 * We can't generate cgroup path using dentry->d_name, as accessing
1780 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1781 * inode's i_mutex, while on the other hand cgroup_path() can be called
1782 * with some irq-safe spinlocks held.
ddbcc7e8 1783 */
bd89aabc 1784int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1785{
65dff759 1786 int ret = -ENAMETOOLONG;
ddbcc7e8 1787 char *start;
febfcef6 1788
da1f296f
TH
1789 if (!cgrp->parent) {
1790 if (strlcpy(buf, "/", buflen) >= buflen)
1791 return -ENAMETOOLONG;
ddbcc7e8
PM
1792 return 0;
1793 }
1794
316eb661 1795 start = buf + buflen - 1;
316eb661 1796 *start = '\0';
9a9686b6 1797
65dff759 1798 rcu_read_lock();
da1f296f 1799 do {
65dff759
LZ
1800 const char *name = cgroup_name(cgrp);
1801 int len;
1802
1803 len = strlen(name);
ddbcc7e8 1804 if ((start -= len) < buf)
65dff759
LZ
1805 goto out;
1806 memcpy(start, name, len);
9a9686b6 1807
ddbcc7e8 1808 if (--start < buf)
65dff759 1809 goto out;
ddbcc7e8 1810 *start = '/';
65dff759
LZ
1811
1812 cgrp = cgrp->parent;
da1f296f 1813 } while (cgrp->parent);
65dff759 1814 ret = 0;
ddbcc7e8 1815 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1816out:
1817 rcu_read_unlock();
1818 return ret;
ddbcc7e8 1819}
67523c48 1820EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1821
857a2beb
TH
1822/**
1823 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1824 * @task: target task
1825 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1826 * @buf: the buffer to write the path into
1827 * @buflen: the length of the buffer
1828 *
1829 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1830 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1831 * be used inside locks used by cgroup controller callbacks.
1832 */
1833int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1834 char *buf, size_t buflen)
1835{
1836 struct cgroupfs_root *root;
1837 struct cgroup *cgrp = NULL;
1838 int ret = -ENOENT;
1839
1840 mutex_lock(&cgroup_mutex);
1841
1842 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1843 if (root) {
1844 cgrp = task_cgroup_from_root(task, root);
1845 ret = cgroup_path(cgrp, buf, buflen);
1846 }
1847
1848 mutex_unlock(&cgroup_mutex);
1849
1850 return ret;
1851}
1852EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1853
2f7ee569
TH
1854/*
1855 * Control Group taskset
1856 */
134d3373
TH
1857struct task_and_cgroup {
1858 struct task_struct *task;
1859 struct cgroup *cgrp;
61d1d219 1860 struct css_set *cg;
134d3373
TH
1861};
1862
2f7ee569
TH
1863struct cgroup_taskset {
1864 struct task_and_cgroup single;
1865 struct flex_array *tc_array;
1866 int tc_array_len;
1867 int idx;
1868 struct cgroup *cur_cgrp;
1869};
1870
1871/**
1872 * cgroup_taskset_first - reset taskset and return the first task
1873 * @tset: taskset of interest
1874 *
1875 * @tset iteration is initialized and the first task is returned.
1876 */
1877struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1878{
1879 if (tset->tc_array) {
1880 tset->idx = 0;
1881 return cgroup_taskset_next(tset);
1882 } else {
1883 tset->cur_cgrp = tset->single.cgrp;
1884 return tset->single.task;
1885 }
1886}
1887EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1888
1889/**
1890 * cgroup_taskset_next - iterate to the next task in taskset
1891 * @tset: taskset of interest
1892 *
1893 * Return the next task in @tset. Iteration must have been initialized
1894 * with cgroup_taskset_first().
1895 */
1896struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1897{
1898 struct task_and_cgroup *tc;
1899
1900 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1901 return NULL;
1902
1903 tc = flex_array_get(tset->tc_array, tset->idx++);
1904 tset->cur_cgrp = tc->cgrp;
1905 return tc->task;
1906}
1907EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1908
1909/**
1910 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1911 * @tset: taskset of interest
1912 *
1913 * Return the cgroup for the current (last returned) task of @tset. This
1914 * function must be preceded by either cgroup_taskset_first() or
1915 * cgroup_taskset_next().
1916 */
1917struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1918{
1919 return tset->cur_cgrp;
1920}
1921EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1922
1923/**
1924 * cgroup_taskset_size - return the number of tasks in taskset
1925 * @tset: taskset of interest
1926 */
1927int cgroup_taskset_size(struct cgroup_taskset *tset)
1928{
1929 return tset->tc_array ? tset->tc_array_len : 1;
1930}
1931EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1932
1933
74a1166d
BB
1934/*
1935 * cgroup_task_migrate - move a task from one cgroup to another.
1936 *
d0b2fdd2 1937 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1938 */
5abb8855
TH
1939static void cgroup_task_migrate(struct cgroup *old_cgrp,
1940 struct task_struct *tsk,
1941 struct css_set *new_cset)
74a1166d 1942{
5abb8855 1943 struct css_set *old_cset;
74a1166d
BB
1944
1945 /*
026085ef
MSB
1946 * We are synchronized through threadgroup_lock() against PF_EXITING
1947 * setting such that we can't race against cgroup_exit() changing the
1948 * css_set to init_css_set and dropping the old one.
74a1166d 1949 */
c84cdf75 1950 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1951 old_cset = tsk->cgroups;
74a1166d 1952
74a1166d 1953 task_lock(tsk);
5abb8855 1954 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1955 task_unlock(tsk);
1956
1957 /* Update the css_set linked lists if we're using them */
1958 write_lock(&css_set_lock);
1959 if (!list_empty(&tsk->cg_list))
5abb8855 1960 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1961 write_unlock(&css_set_lock);
1962
1963 /*
5abb8855
TH
1964 * We just gained a reference on old_cset by taking it from the
1965 * task. As trading it for new_cset is protected by cgroup_mutex,
1966 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1967 */
5abb8855
TH
1968 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1969 put_css_set(old_cset);
74a1166d
BB
1970}
1971
a043e3b2 1972/**
081aa458 1973 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1974 * @cgrp: the cgroup to attach to
081aa458
LZ
1975 * @tsk: the task or the leader of the threadgroup to be attached
1976 * @threadgroup: attach the whole threadgroup?
74a1166d 1977 *
257058ae 1978 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1979 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1980 */
47cfcd09
TH
1981static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1982 bool threadgroup)
74a1166d
BB
1983{
1984 int retval, i, group_size;
1985 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1986 struct cgroupfs_root *root = cgrp->root;
1987 /* threadgroup list cursor and array */
081aa458 1988 struct task_struct *leader = tsk;
134d3373 1989 struct task_and_cgroup *tc;
d846687d 1990 struct flex_array *group;
2f7ee569 1991 struct cgroup_taskset tset = { };
74a1166d
BB
1992
1993 /*
1994 * step 0: in order to do expensive, possibly blocking operations for
1995 * every thread, we cannot iterate the thread group list, since it needs
1996 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1997 * group - group_rwsem prevents new threads from appearing, and if
1998 * threads exit, this will just be an over-estimate.
74a1166d 1999 */
081aa458
LZ
2000 if (threadgroup)
2001 group_size = get_nr_threads(tsk);
2002 else
2003 group_size = 1;
d846687d 2004 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2005 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2006 if (!group)
2007 return -ENOMEM;
d846687d 2008 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2009 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2010 if (retval)
2011 goto out_free_group_list;
74a1166d 2012
74a1166d 2013 i = 0;
fb5d2b4c
MSB
2014 /*
2015 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2016 * already PF_EXITING could be freed from underneath us unless we
2017 * take an rcu_read_lock.
2018 */
2019 rcu_read_lock();
74a1166d 2020 do {
134d3373
TH
2021 struct task_and_cgroup ent;
2022
cd3d0952
TH
2023 /* @tsk either already exited or can't exit until the end */
2024 if (tsk->flags & PF_EXITING)
2025 continue;
2026
74a1166d
BB
2027 /* as per above, nr_threads may decrease, but not increase. */
2028 BUG_ON(i >= group_size);
134d3373
TH
2029 ent.task = tsk;
2030 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2031 /* nothing to do if this task is already in the cgroup */
2032 if (ent.cgrp == cgrp)
2033 continue;
61d1d219
MSB
2034 /*
2035 * saying GFP_ATOMIC has no effect here because we did prealloc
2036 * earlier, but it's good form to communicate our expectations.
2037 */
134d3373 2038 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2039 BUG_ON(retval != 0);
74a1166d 2040 i++;
081aa458
LZ
2041
2042 if (!threadgroup)
2043 break;
74a1166d 2044 } while_each_thread(leader, tsk);
fb5d2b4c 2045 rcu_read_unlock();
74a1166d
BB
2046 /* remember the number of threads in the array for later. */
2047 group_size = i;
2f7ee569
TH
2048 tset.tc_array = group;
2049 tset.tc_array_len = group_size;
74a1166d 2050
134d3373
TH
2051 /* methods shouldn't be called if no task is actually migrating */
2052 retval = 0;
892a2b90 2053 if (!group_size)
b07ef774 2054 goto out_free_group_list;
134d3373 2055
74a1166d
BB
2056 /*
2057 * step 1: check that we can legitimately attach to the cgroup.
2058 */
2059 for_each_subsys(root, ss) {
2060 if (ss->can_attach) {
761b3ef5 2061 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2062 if (retval) {
2063 failed_ss = ss;
2064 goto out_cancel_attach;
2065 }
2066 }
74a1166d
BB
2067 }
2068
2069 /*
2070 * step 2: make sure css_sets exist for all threads to be migrated.
2071 * we use find_css_set, which allocates a new one if necessary.
2072 */
74a1166d 2073 for (i = 0; i < group_size; i++) {
134d3373 2074 tc = flex_array_get(group, i);
61d1d219
MSB
2075 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2076 if (!tc->cg) {
2077 retval = -ENOMEM;
2078 goto out_put_css_set_refs;
74a1166d
BB
2079 }
2080 }
2081
2082 /*
494c167c
TH
2083 * step 3: now that we're guaranteed success wrt the css_sets,
2084 * proceed to move all tasks to the new cgroup. There are no
2085 * failure cases after here, so this is the commit point.
74a1166d 2086 */
74a1166d 2087 for (i = 0; i < group_size; i++) {
134d3373 2088 tc = flex_array_get(group, i);
1e2ccd1c 2089 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2090 }
2091 /* nothing is sensitive to fork() after this point. */
2092
2093 /*
494c167c 2094 * step 4: do subsystem attach callbacks.
74a1166d
BB
2095 */
2096 for_each_subsys(root, ss) {
2097 if (ss->attach)
761b3ef5 2098 ss->attach(cgrp, &tset);
74a1166d
BB
2099 }
2100
2101 /*
2102 * step 5: success! and cleanup
2103 */
74a1166d 2104 retval = 0;
61d1d219
MSB
2105out_put_css_set_refs:
2106 if (retval) {
2107 for (i = 0; i < group_size; i++) {
2108 tc = flex_array_get(group, i);
2109 if (!tc->cg)
2110 break;
2111 put_css_set(tc->cg);
2112 }
74a1166d
BB
2113 }
2114out_cancel_attach:
74a1166d
BB
2115 if (retval) {
2116 for_each_subsys(root, ss) {
494c167c 2117 if (ss == failed_ss)
74a1166d 2118 break;
74a1166d 2119 if (ss->cancel_attach)
761b3ef5 2120 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2121 }
2122 }
74a1166d 2123out_free_group_list:
d846687d 2124 flex_array_free(group);
74a1166d
BB
2125 return retval;
2126}
2127
2128/*
2129 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2130 * function to attach either it or all tasks in its threadgroup. Will lock
2131 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2132 */
74a1166d 2133static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2134{
bbcb81d0 2135 struct task_struct *tsk;
c69e8d9c 2136 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2137 int ret;
2138
74a1166d
BB
2139 if (!cgroup_lock_live_group(cgrp))
2140 return -ENODEV;
2141
b78949eb
MSB
2142retry_find_task:
2143 rcu_read_lock();
bbcb81d0 2144 if (pid) {
73507f33 2145 tsk = find_task_by_vpid(pid);
74a1166d
BB
2146 if (!tsk) {
2147 rcu_read_unlock();
b78949eb
MSB
2148 ret= -ESRCH;
2149 goto out_unlock_cgroup;
bbcb81d0 2150 }
74a1166d
BB
2151 /*
2152 * even if we're attaching all tasks in the thread group, we
2153 * only need to check permissions on one of them.
2154 */
c69e8d9c 2155 tcred = __task_cred(tsk);
14a590c3
EB
2156 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2157 !uid_eq(cred->euid, tcred->uid) &&
2158 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2159 rcu_read_unlock();
b78949eb
MSB
2160 ret = -EACCES;
2161 goto out_unlock_cgroup;
bbcb81d0 2162 }
b78949eb
MSB
2163 } else
2164 tsk = current;
cd3d0952
TH
2165
2166 if (threadgroup)
b78949eb 2167 tsk = tsk->group_leader;
c4c27fbd
MG
2168
2169 /*
14a40ffc 2170 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2171 * trapped in a cpuset, or RT worker may be born in a cgroup
2172 * with no rt_runtime allocated. Just say no.
2173 */
14a40ffc 2174 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2175 ret = -EINVAL;
2176 rcu_read_unlock();
2177 goto out_unlock_cgroup;
2178 }
2179
b78949eb
MSB
2180 get_task_struct(tsk);
2181 rcu_read_unlock();
2182
2183 threadgroup_lock(tsk);
2184 if (threadgroup) {
2185 if (!thread_group_leader(tsk)) {
2186 /*
2187 * a race with de_thread from another thread's exec()
2188 * may strip us of our leadership, if this happens,
2189 * there is no choice but to throw this task away and
2190 * try again; this is
2191 * "double-double-toil-and-trouble-check locking".
2192 */
2193 threadgroup_unlock(tsk);
2194 put_task_struct(tsk);
2195 goto retry_find_task;
2196 }
081aa458
LZ
2197 }
2198
2199 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2200
cd3d0952
TH
2201 threadgroup_unlock(tsk);
2202
bbcb81d0 2203 put_task_struct(tsk);
b78949eb 2204out_unlock_cgroup:
47cfcd09 2205 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2206 return ret;
2207}
2208
7ae1bad9
TH
2209/**
2210 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2211 * @from: attach to all cgroups of a given task
2212 * @tsk: the task to be attached
2213 */
2214int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2215{
2216 struct cgroupfs_root *root;
2217 int retval = 0;
2218
47cfcd09 2219 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2220 for_each_active_root(root) {
2221 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2222
2223 retval = cgroup_attach_task(from_cg, tsk, false);
2224 if (retval)
2225 break;
2226 }
47cfcd09 2227 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2228
2229 return retval;
2230}
2231EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2232
af351026 2233static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2234{
2235 return attach_task_by_pid(cgrp, pid, false);
2236}
2237
2238static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2239{
b78949eb 2240 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2241}
2242
e788e066
PM
2243static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2244 const char *buffer)
2245{
2246 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2247 if (strlen(buffer) >= PATH_MAX)
2248 return -EINVAL;
e788e066
PM
2249 if (!cgroup_lock_live_group(cgrp))
2250 return -ENODEV;
e25e2cbb 2251 mutex_lock(&cgroup_root_mutex);
e788e066 2252 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2253 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2254 mutex_unlock(&cgroup_mutex);
e788e066
PM
2255 return 0;
2256}
2257
2258static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2259 struct seq_file *seq)
2260{
2261 if (!cgroup_lock_live_group(cgrp))
2262 return -ENODEV;
2263 seq_puts(seq, cgrp->root->release_agent_path);
2264 seq_putc(seq, '\n');
47cfcd09 2265 mutex_unlock(&cgroup_mutex);
e788e066
PM
2266 return 0;
2267}
2268
873fe09e
TH
2269static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2270 struct seq_file *seq)
2271{
2272 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2273 return 0;
2274}
2275
84eea842
PM
2276/* A buffer size big enough for numbers or short strings */
2277#define CGROUP_LOCAL_BUFFER_SIZE 64
2278
e73d2c61 2279static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2280 struct file *file,
2281 const char __user *userbuf,
2282 size_t nbytes, loff_t *unused_ppos)
355e0c48 2283{
84eea842 2284 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2285 int retval = 0;
355e0c48
PM
2286 char *end;
2287
2288 if (!nbytes)
2289 return -EINVAL;
2290 if (nbytes >= sizeof(buffer))
2291 return -E2BIG;
2292 if (copy_from_user(buffer, userbuf, nbytes))
2293 return -EFAULT;
2294
2295 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2296 if (cft->write_u64) {
478988d3 2297 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2298 if (*end)
2299 return -EINVAL;
2300 retval = cft->write_u64(cgrp, cft, val);
2301 } else {
478988d3 2302 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2303 if (*end)
2304 return -EINVAL;
2305 retval = cft->write_s64(cgrp, cft, val);
2306 }
355e0c48
PM
2307 if (!retval)
2308 retval = nbytes;
2309 return retval;
2310}
2311
db3b1497
PM
2312static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2313 struct file *file,
2314 const char __user *userbuf,
2315 size_t nbytes, loff_t *unused_ppos)
2316{
84eea842 2317 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2318 int retval = 0;
2319 size_t max_bytes = cft->max_write_len;
2320 char *buffer = local_buffer;
2321
2322 if (!max_bytes)
2323 max_bytes = sizeof(local_buffer) - 1;
2324 if (nbytes >= max_bytes)
2325 return -E2BIG;
2326 /* Allocate a dynamic buffer if we need one */
2327 if (nbytes >= sizeof(local_buffer)) {
2328 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2329 if (buffer == NULL)
2330 return -ENOMEM;
2331 }
5a3eb9f6
LZ
2332 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2333 retval = -EFAULT;
2334 goto out;
2335 }
db3b1497
PM
2336
2337 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2338 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2339 if (!retval)
2340 retval = nbytes;
5a3eb9f6 2341out:
db3b1497
PM
2342 if (buffer != local_buffer)
2343 kfree(buffer);
2344 return retval;
2345}
2346
ddbcc7e8
PM
2347static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2348 size_t nbytes, loff_t *ppos)
2349{
2350 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2351 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2352
54766d4a 2353 if (cgroup_is_dead(cgrp))
ddbcc7e8 2354 return -ENODEV;
355e0c48 2355 if (cft->write)
bd89aabc 2356 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2357 if (cft->write_u64 || cft->write_s64)
2358 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2359 if (cft->write_string)
2360 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2361 if (cft->trigger) {
2362 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2363 return ret ? ret : nbytes;
2364 }
355e0c48 2365 return -EINVAL;
ddbcc7e8
PM
2366}
2367
f4c753b7
PM
2368static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2369 struct file *file,
2370 char __user *buf, size_t nbytes,
2371 loff_t *ppos)
ddbcc7e8 2372{
84eea842 2373 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2374 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2375 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2376
2377 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2378}
2379
e73d2c61
PM
2380static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2381 struct file *file,
2382 char __user *buf, size_t nbytes,
2383 loff_t *ppos)
2384{
84eea842 2385 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2386 s64 val = cft->read_s64(cgrp, cft);
2387 int len = sprintf(tmp, "%lld\n", (long long) val);
2388
2389 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2390}
2391
ddbcc7e8
PM
2392static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2393 size_t nbytes, loff_t *ppos)
2394{
2395 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2396 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2397
54766d4a 2398 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2399 return -ENODEV;
2400
2401 if (cft->read)
bd89aabc 2402 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2403 if (cft->read_u64)
2404 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2405 if (cft->read_s64)
2406 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2407 return -EINVAL;
2408}
2409
91796569
PM
2410/*
2411 * seqfile ops/methods for returning structured data. Currently just
2412 * supports string->u64 maps, but can be extended in future.
2413 */
2414
2415struct cgroup_seqfile_state {
2416 struct cftype *cft;
2417 struct cgroup *cgroup;
2418};
2419
2420static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2421{
2422 struct seq_file *sf = cb->state;
2423 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2424}
2425
2426static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2427{
2428 struct cgroup_seqfile_state *state = m->private;
2429 struct cftype *cft = state->cft;
29486df3
SH
2430 if (cft->read_map) {
2431 struct cgroup_map_cb cb = {
2432 .fill = cgroup_map_add,
2433 .state = m,
2434 };
2435 return cft->read_map(state->cgroup, cft, &cb);
2436 }
2437 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2438}
2439
96930a63 2440static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2441{
2442 struct seq_file *seq = file->private_data;
2443 kfree(seq->private);
2444 return single_release(inode, file);
2445}
2446
828c0950 2447static const struct file_operations cgroup_seqfile_operations = {
91796569 2448 .read = seq_read,
e788e066 2449 .write = cgroup_file_write,
91796569
PM
2450 .llseek = seq_lseek,
2451 .release = cgroup_seqfile_release,
2452};
2453
ddbcc7e8
PM
2454static int cgroup_file_open(struct inode *inode, struct file *file)
2455{
2456 int err;
2457 struct cftype *cft;
2458
2459 err = generic_file_open(inode, file);
2460 if (err)
2461 return err;
ddbcc7e8 2462 cft = __d_cft(file->f_dentry);
75139b82 2463
29486df3 2464 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2465 struct cgroup_seqfile_state *state;
2466
2467 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2468 if (!state)
2469 return -ENOMEM;
f4f4be2b 2470
91796569
PM
2471 state->cft = cft;
2472 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2473 file->f_op = &cgroup_seqfile_operations;
2474 err = single_open(file, cgroup_seqfile_show, state);
2475 if (err < 0)
2476 kfree(state);
2477 } else if (cft->open)
ddbcc7e8
PM
2478 err = cft->open(inode, file);
2479 else
2480 err = 0;
2481
2482 return err;
2483}
2484
2485static int cgroup_file_release(struct inode *inode, struct file *file)
2486{
2487 struct cftype *cft = __d_cft(file->f_dentry);
2488 if (cft->release)
2489 return cft->release(inode, file);
2490 return 0;
2491}
2492
2493/*
2494 * cgroup_rename - Only allow simple rename of directories in place.
2495 */
2496static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2497 struct inode *new_dir, struct dentry *new_dentry)
2498{
65dff759
LZ
2499 int ret;
2500 struct cgroup_name *name, *old_name;
2501 struct cgroup *cgrp;
2502
2503 /*
2504 * It's convinient to use parent dir's i_mutex to protected
2505 * cgrp->name.
2506 */
2507 lockdep_assert_held(&old_dir->i_mutex);
2508
ddbcc7e8
PM
2509 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2510 return -ENOTDIR;
2511 if (new_dentry->d_inode)
2512 return -EEXIST;
2513 if (old_dir != new_dir)
2514 return -EIO;
65dff759
LZ
2515
2516 cgrp = __d_cgrp(old_dentry);
2517
6db8e85c
TH
2518 /*
2519 * This isn't a proper migration and its usefulness is very
2520 * limited. Disallow if sane_behavior.
2521 */
2522 if (cgroup_sane_behavior(cgrp))
2523 return -EPERM;
2524
65dff759
LZ
2525 name = cgroup_alloc_name(new_dentry);
2526 if (!name)
2527 return -ENOMEM;
2528
2529 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2530 if (ret) {
2531 kfree(name);
2532 return ret;
2533 }
2534
2535 old_name = cgrp->name;
2536 rcu_assign_pointer(cgrp->name, name);
2537
2538 kfree_rcu(old_name, rcu_head);
2539 return 0;
ddbcc7e8
PM
2540}
2541
03b1cde6
AR
2542static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2543{
2544 if (S_ISDIR(dentry->d_inode->i_mode))
2545 return &__d_cgrp(dentry)->xattrs;
2546 else
712317ad 2547 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2548}
2549
2550static inline int xattr_enabled(struct dentry *dentry)
2551{
2552 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2553 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2554}
2555
2556static bool is_valid_xattr(const char *name)
2557{
2558 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2559 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2560 return true;
2561 return false;
2562}
2563
2564static int cgroup_setxattr(struct dentry *dentry, const char *name,
2565 const void *val, size_t size, int flags)
2566{
2567 if (!xattr_enabled(dentry))
2568 return -EOPNOTSUPP;
2569 if (!is_valid_xattr(name))
2570 return -EINVAL;
2571 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2572}
2573
2574static int cgroup_removexattr(struct dentry *dentry, const char *name)
2575{
2576 if (!xattr_enabled(dentry))
2577 return -EOPNOTSUPP;
2578 if (!is_valid_xattr(name))
2579 return -EINVAL;
2580 return simple_xattr_remove(__d_xattrs(dentry), name);
2581}
2582
2583static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2584 void *buf, size_t size)
2585{
2586 if (!xattr_enabled(dentry))
2587 return -EOPNOTSUPP;
2588 if (!is_valid_xattr(name))
2589 return -EINVAL;
2590 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2591}
2592
2593static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2594{
2595 if (!xattr_enabled(dentry))
2596 return -EOPNOTSUPP;
2597 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2598}
2599
828c0950 2600static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2601 .read = cgroup_file_read,
2602 .write = cgroup_file_write,
2603 .llseek = generic_file_llseek,
2604 .open = cgroup_file_open,
2605 .release = cgroup_file_release,
2606};
2607
03b1cde6
AR
2608static const struct inode_operations cgroup_file_inode_operations = {
2609 .setxattr = cgroup_setxattr,
2610 .getxattr = cgroup_getxattr,
2611 .listxattr = cgroup_listxattr,
2612 .removexattr = cgroup_removexattr,
2613};
2614
6e1d5dcc 2615static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2616 .lookup = cgroup_lookup,
ddbcc7e8
PM
2617 .mkdir = cgroup_mkdir,
2618 .rmdir = cgroup_rmdir,
2619 .rename = cgroup_rename,
03b1cde6
AR
2620 .setxattr = cgroup_setxattr,
2621 .getxattr = cgroup_getxattr,
2622 .listxattr = cgroup_listxattr,
2623 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2624};
2625
00cd8dd3 2626static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2627{
2628 if (dentry->d_name.len > NAME_MAX)
2629 return ERR_PTR(-ENAMETOOLONG);
2630 d_add(dentry, NULL);
2631 return NULL;
2632}
2633
0dea1168
KS
2634/*
2635 * Check if a file is a control file
2636 */
2637static inline struct cftype *__file_cft(struct file *file)
2638{
496ad9aa 2639 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2640 return ERR_PTR(-EINVAL);
2641 return __d_cft(file->f_dentry);
2642}
2643
a5e7ed32 2644static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2645 struct super_block *sb)
2646{
ddbcc7e8
PM
2647 struct inode *inode;
2648
2649 if (!dentry)
2650 return -ENOENT;
2651 if (dentry->d_inode)
2652 return -EEXIST;
2653
2654 inode = cgroup_new_inode(mode, sb);
2655 if (!inode)
2656 return -ENOMEM;
2657
2658 if (S_ISDIR(mode)) {
2659 inode->i_op = &cgroup_dir_inode_operations;
2660 inode->i_fop = &simple_dir_operations;
2661
2662 /* start off with i_nlink == 2 (for "." entry) */
2663 inc_nlink(inode);
28fd6f30 2664 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2665
b8a2df6a
TH
2666 /*
2667 * Control reaches here with cgroup_mutex held.
2668 * @inode->i_mutex should nest outside cgroup_mutex but we
2669 * want to populate it immediately without releasing
2670 * cgroup_mutex. As @inode isn't visible to anyone else
2671 * yet, trylock will always succeed without affecting
2672 * lockdep checks.
2673 */
2674 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2675 } else if (S_ISREG(mode)) {
2676 inode->i_size = 0;
2677 inode->i_fop = &cgroup_file_operations;
03b1cde6 2678 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2679 }
ddbcc7e8
PM
2680 d_instantiate(dentry, inode);
2681 dget(dentry); /* Extra count - pin the dentry in core */
2682 return 0;
2683}
2684
099fca32
LZ
2685/**
2686 * cgroup_file_mode - deduce file mode of a control file
2687 * @cft: the control file in question
2688 *
2689 * returns cft->mode if ->mode is not 0
2690 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2691 * returns S_IRUGO if it has only a read handler
2692 * returns S_IWUSR if it has only a write hander
2693 */
a5e7ed32 2694static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2695{
a5e7ed32 2696 umode_t mode = 0;
099fca32
LZ
2697
2698 if (cft->mode)
2699 return cft->mode;
2700
2701 if (cft->read || cft->read_u64 || cft->read_s64 ||
2702 cft->read_map || cft->read_seq_string)
2703 mode |= S_IRUGO;
2704
2705 if (cft->write || cft->write_u64 || cft->write_s64 ||
2706 cft->write_string || cft->trigger)
2707 mode |= S_IWUSR;
2708
2709 return mode;
2710}
2711
db0416b6 2712static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2713 struct cftype *cft)
ddbcc7e8 2714{
bd89aabc 2715 struct dentry *dir = cgrp->dentry;
05ef1d7c 2716 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2717 struct dentry *dentry;
05ef1d7c 2718 struct cfent *cfe;
ddbcc7e8 2719 int error;
a5e7ed32 2720 umode_t mode;
ddbcc7e8 2721 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2722
93438629 2723 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2724 strcpy(name, subsys->name);
2725 strcat(name, ".");
2726 }
2727 strcat(name, cft->name);
05ef1d7c 2728
ddbcc7e8 2729 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2730
2731 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2732 if (!cfe)
2733 return -ENOMEM;
2734
ddbcc7e8 2735 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2736 if (IS_ERR(dentry)) {
ddbcc7e8 2737 error = PTR_ERR(dentry);
05ef1d7c
TH
2738 goto out;
2739 }
2740
d6cbf35d
LZ
2741 cfe->type = (void *)cft;
2742 cfe->dentry = dentry;
2743 dentry->d_fsdata = cfe;
2744 simple_xattrs_init(&cfe->xattrs);
2745
05ef1d7c
TH
2746 mode = cgroup_file_mode(cft);
2747 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2748 if (!error) {
05ef1d7c
TH
2749 list_add_tail(&cfe->node, &parent->files);
2750 cfe = NULL;
2751 }
2752 dput(dentry);
2753out:
2754 kfree(cfe);
ddbcc7e8
PM
2755 return error;
2756}
2757
79578621 2758static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2759 struct cftype cfts[], bool is_add)
ddbcc7e8 2760{
03b1cde6 2761 struct cftype *cft;
db0416b6
TH
2762 int err, ret = 0;
2763
2764 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2765 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2766 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2767 continue;
f33fddc2
G
2768 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2769 continue;
2770 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2771 continue;
2772
2739d3cc 2773 if (is_add) {
79578621 2774 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2775 if (err)
2776 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2777 cft->name, err);
db0416b6 2778 ret = err;
2739d3cc
LZ
2779 } else {
2780 cgroup_rm_file(cgrp, cft);
db0416b6 2781 }
ddbcc7e8 2782 }
db0416b6 2783 return ret;
ddbcc7e8
PM
2784}
2785
8e3f6541 2786static void cgroup_cfts_prepare(void)
e8c82d20 2787 __acquires(&cgroup_mutex)
8e3f6541
TH
2788{
2789 /*
2790 * Thanks to the entanglement with vfs inode locking, we can't walk
2791 * the existing cgroups under cgroup_mutex and create files.
e8c82d20
LZ
2792 * Instead, we use cgroup_for_each_descendant_pre() and drop RCU
2793 * read lock before calling cgroup_addrm_files().
8e3f6541 2794 */
8e3f6541
TH
2795 mutex_lock(&cgroup_mutex);
2796}
2797
2798static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2799 struct cftype *cfts, bool is_add)
e8c82d20 2800 __releases(&cgroup_mutex)
8e3f6541
TH
2801{
2802 LIST_HEAD(pending);
e8c82d20 2803 struct cgroup *cgrp, *root = &ss->root->top_cgroup;
084457f2 2804 struct super_block *sb = ss->root->sb;
e8c82d20
LZ
2805 struct dentry *prev = NULL;
2806 struct inode *inode;
00356bd5 2807 u64 update_before;
8e3f6541
TH
2808
2809 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
e8c82d20
LZ
2810 if (!cfts || ss->root == &rootnode ||
2811 !atomic_inc_not_zero(&sb->s_active)) {
2812 mutex_unlock(&cgroup_mutex);
2813 return;
8e3f6541
TH
2814 }
2815
8e3f6541 2816 /*
e8c82d20
LZ
2817 * All cgroups which are created after we drop cgroup_mutex will
2818 * have the updated set of files, so we only need to update the
00356bd5 2819 * cgroups created before the current @cgroup_serial_nr_next.
8e3f6541 2820 */
00356bd5 2821 update_before = cgroup_serial_nr_next;
e8c82d20
LZ
2822
2823 mutex_unlock(&cgroup_mutex);
2824
2825 /* @root always needs to be updated */
2826 inode = root->dentry->d_inode;
2827 mutex_lock(&inode->i_mutex);
2828 mutex_lock(&cgroup_mutex);
2829 cgroup_addrm_files(root, ss, cfts, is_add);
2830 mutex_unlock(&cgroup_mutex);
2831 mutex_unlock(&inode->i_mutex);
2832
2833 /* add/rm files for all cgroups created before */
2834 rcu_read_lock();
2835 cgroup_for_each_descendant_pre(cgrp, root) {
2836 if (cgroup_is_dead(cgrp))
2837 continue;
2838
2839 inode = cgrp->dentry->d_inode;
2840 dget(cgrp->dentry);
2841 rcu_read_unlock();
2842
2843 dput(prev);
2844 prev = cgrp->dentry;
8e3f6541
TH
2845
2846 mutex_lock(&inode->i_mutex);
2847 mutex_lock(&cgroup_mutex);
00356bd5 2848 if (cgrp->serial_nr < update_before && !cgroup_is_dead(cgrp))
79578621 2849 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2850 mutex_unlock(&cgroup_mutex);
2851 mutex_unlock(&inode->i_mutex);
2852
e8c82d20 2853 rcu_read_lock();
8e3f6541 2854 }
e8c82d20
LZ
2855 rcu_read_unlock();
2856 dput(prev);
2857 deactivate_super(sb);
8e3f6541
TH
2858}
2859
2860/**
2861 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2862 * @ss: target cgroup subsystem
2863 * @cfts: zero-length name terminated array of cftypes
2864 *
2865 * Register @cfts to @ss. Files described by @cfts are created for all
2866 * existing cgroups to which @ss is attached and all future cgroups will
2867 * have them too. This function can be called anytime whether @ss is
2868 * attached or not.
2869 *
2870 * Returns 0 on successful registration, -errno on failure. Note that this
2871 * function currently returns 0 as long as @cfts registration is successful
2872 * even if some file creation attempts on existing cgroups fail.
2873 */
03b1cde6 2874int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2875{
2876 struct cftype_set *set;
2877
2878 set = kzalloc(sizeof(*set), GFP_KERNEL);
2879 if (!set)
2880 return -ENOMEM;
2881
2882 cgroup_cfts_prepare();
2883 set->cfts = cfts;
2884 list_add_tail(&set->node, &ss->cftsets);
79578621 2885 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2886
2887 return 0;
2888}
2889EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2890
79578621
TH
2891/**
2892 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2893 * @ss: target cgroup subsystem
2894 * @cfts: zero-length name terminated array of cftypes
2895 *
2896 * Unregister @cfts from @ss. Files described by @cfts are removed from
2897 * all existing cgroups to which @ss is attached and all future cgroups
2898 * won't have them either. This function can be called anytime whether @ss
2899 * is attached or not.
2900 *
2901 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2902 * registered with @ss.
2903 */
03b1cde6 2904int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2905{
2906 struct cftype_set *set;
2907
2908 cgroup_cfts_prepare();
2909
2910 list_for_each_entry(set, &ss->cftsets, node) {
2911 if (set->cfts == cfts) {
f57947d2
LZ
2912 list_del(&set->node);
2913 kfree(set);
79578621
TH
2914 cgroup_cfts_commit(ss, cfts, false);
2915 return 0;
2916 }
2917 }
2918
2919 cgroup_cfts_commit(ss, NULL, false);
2920 return -ENOENT;
2921}
2922
a043e3b2
LZ
2923/**
2924 * cgroup_task_count - count the number of tasks in a cgroup.
2925 * @cgrp: the cgroup in question
2926 *
2927 * Return the number of tasks in the cgroup.
2928 */
bd89aabc 2929int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2930{
2931 int count = 0;
69d0206c 2932 struct cgrp_cset_link *link;
817929ec
PM
2933
2934 read_lock(&css_set_lock);
69d0206c
TH
2935 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2936 count += atomic_read(&link->cset->refcount);
817929ec 2937 read_unlock(&css_set_lock);
bbcb81d0
PM
2938 return count;
2939}
2940
817929ec
PM
2941/*
2942 * Advance a list_head iterator. The iterator should be positioned at
2943 * the start of a css_set
2944 */
69d0206c 2945static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2946{
69d0206c
TH
2947 struct list_head *l = it->cset_link;
2948 struct cgrp_cset_link *link;
5abb8855 2949 struct css_set *cset;
817929ec
PM
2950
2951 /* Advance to the next non-empty css_set */
2952 do {
2953 l = l->next;
69d0206c
TH
2954 if (l == &cgrp->cset_links) {
2955 it->cset_link = NULL;
817929ec
PM
2956 return;
2957 }
69d0206c
TH
2958 link = list_entry(l, struct cgrp_cset_link, cset_link);
2959 cset = link->cset;
5abb8855 2960 } while (list_empty(&cset->tasks));
69d0206c 2961 it->cset_link = l;
5abb8855 2962 it->task = cset->tasks.next;
817929ec
PM
2963}
2964
31a7df01
CW
2965/*
2966 * To reduce the fork() overhead for systems that are not actually
2967 * using their cgroups capability, we don't maintain the lists running
2968 * through each css_set to its tasks until we see the list actually
2969 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2970 */
3df91fe3 2971static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2972{
2973 struct task_struct *p, *g;
2974 write_lock(&css_set_lock);
2975 use_task_css_set_links = 1;
3ce3230a
FW
2976 /*
2977 * We need tasklist_lock because RCU is not safe against
2978 * while_each_thread(). Besides, a forking task that has passed
2979 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2980 * is not guaranteed to have its child immediately visible in the
2981 * tasklist if we walk through it with RCU.
2982 */
2983 read_lock(&tasklist_lock);
31a7df01
CW
2984 do_each_thread(g, p) {
2985 task_lock(p);
0e04388f
LZ
2986 /*
2987 * We should check if the process is exiting, otherwise
2988 * it will race with cgroup_exit() in that the list
2989 * entry won't be deleted though the process has exited.
2990 */
2991 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2992 list_add(&p->cg_list, &p->cgroups->tasks);
2993 task_unlock(p);
2994 } while_each_thread(g, p);
3ce3230a 2995 read_unlock(&tasklist_lock);
31a7df01
CW
2996 write_unlock(&css_set_lock);
2997}
2998
53fa5261
TH
2999/**
3000 * cgroup_next_sibling - find the next sibling of a given cgroup
3001 * @pos: the current cgroup
3002 *
3003 * This function returns the next sibling of @pos and should be called
3004 * under RCU read lock. The only requirement is that @pos is accessible.
3005 * The next sibling is guaranteed to be returned regardless of @pos's
3006 * state.
3007 */
3008struct cgroup *cgroup_next_sibling(struct cgroup *pos)
3009{
3010 struct cgroup *next;
3011
3012 WARN_ON_ONCE(!rcu_read_lock_held());
3013
3014 /*
3015 * @pos could already have been removed. Once a cgroup is removed,
3016 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3017 * changes. As CGRP_DEAD assertion is serialized and happens
3018 * before the cgroup is taken off the ->sibling list, if we see it
3019 * unasserted, it's guaranteed that the next sibling hasn't
3020 * finished its grace period even if it's already removed, and thus
3021 * safe to dereference from this RCU critical section. If
3022 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3023 * to be visible as %true here.
53fa5261 3024 */
54766d4a 3025 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3026 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3027 if (&next->sibling != &pos->parent->children)
3028 return next;
3029 return NULL;
3030 }
3031
3032 /*
3033 * Can't dereference the next pointer. Each cgroup is given a
3034 * monotonically increasing unique serial number and always
3035 * appended to the sibling list, so the next one can be found by
3036 * walking the parent's children until we see a cgroup with higher
3037 * serial number than @pos's.
3038 *
3039 * While this path can be slow, it's taken only when either the
3040 * current cgroup is removed or iteration and removal race.
3041 */
3042 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3043 if (next->serial_nr > pos->serial_nr)
3044 return next;
3045 return NULL;
3046}
3047EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3048
574bd9f7
TH
3049/**
3050 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3051 * @pos: the current position (%NULL to initiate traversal)
3052 * @cgroup: cgroup whose descendants to walk
3053 *
3054 * To be used by cgroup_for_each_descendant_pre(). Find the next
3055 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3056 *
3057 * While this function requires RCU read locking, it doesn't require the
3058 * whole traversal to be contained in a single RCU critical section. This
3059 * function will return the correct next descendant as long as both @pos
3060 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3061 */
3062struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3063 struct cgroup *cgroup)
3064{
3065 struct cgroup *next;
3066
3067 WARN_ON_ONCE(!rcu_read_lock_held());
3068
3069 /* if first iteration, pretend we just visited @cgroup */
7805d000 3070 if (!pos)
574bd9f7 3071 pos = cgroup;
574bd9f7
TH
3072
3073 /* visit the first child if exists */
3074 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3075 if (next)
3076 return next;
3077
3078 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3079 while (pos != cgroup) {
75501a6d
TH
3080 next = cgroup_next_sibling(pos);
3081 if (next)
574bd9f7 3082 return next;
574bd9f7 3083 pos = pos->parent;
7805d000 3084 }
574bd9f7
TH
3085
3086 return NULL;
3087}
3088EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3089
12a9d2fe
TH
3090/**
3091 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3092 * @pos: cgroup of interest
3093 *
3094 * Return the rightmost descendant of @pos. If there's no descendant,
3095 * @pos is returned. This can be used during pre-order traversal to skip
3096 * subtree of @pos.
75501a6d
TH
3097 *
3098 * While this function requires RCU read locking, it doesn't require the
3099 * whole traversal to be contained in a single RCU critical section. This
3100 * function will return the correct rightmost descendant as long as @pos is
3101 * accessible.
12a9d2fe
TH
3102 */
3103struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3104{
3105 struct cgroup *last, *tmp;
3106
3107 WARN_ON_ONCE(!rcu_read_lock_held());
3108
3109 do {
3110 last = pos;
3111 /* ->prev isn't RCU safe, walk ->next till the end */
3112 pos = NULL;
3113 list_for_each_entry_rcu(tmp, &last->children, sibling)
3114 pos = tmp;
3115 } while (pos);
3116
3117 return last;
3118}
3119EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3120
574bd9f7
TH
3121static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3122{
3123 struct cgroup *last;
3124
3125 do {
3126 last = pos;
3127 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3128 sibling);
3129 } while (pos);
3130
3131 return last;
3132}
3133
3134/**
3135 * cgroup_next_descendant_post - find the next descendant for post-order walk
3136 * @pos: the current position (%NULL to initiate traversal)
3137 * @cgroup: cgroup whose descendants to walk
3138 *
3139 * To be used by cgroup_for_each_descendant_post(). Find the next
3140 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3141 *
3142 * While this function requires RCU read locking, it doesn't require the
3143 * whole traversal to be contained in a single RCU critical section. This
3144 * function will return the correct next descendant as long as both @pos
3145 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3146 */
3147struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3148 struct cgroup *cgroup)
3149{
3150 struct cgroup *next;
3151
3152 WARN_ON_ONCE(!rcu_read_lock_held());
3153
3154 /* if first iteration, visit the leftmost descendant */
3155 if (!pos) {
3156 next = cgroup_leftmost_descendant(cgroup);
3157 return next != cgroup ? next : NULL;
3158 }
3159
3160 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3161 next = cgroup_next_sibling(pos);
3162 if (next)
574bd9f7
TH
3163 return cgroup_leftmost_descendant(next);
3164
3165 /* no sibling left, visit parent */
3166 next = pos->parent;
3167 return next != cgroup ? next : NULL;
3168}
3169EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3170
bd89aabc 3171void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3172 __acquires(css_set_lock)
817929ec
PM
3173{
3174 /*
3175 * The first time anyone tries to iterate across a cgroup,
3176 * we need to enable the list linking each css_set to its
3177 * tasks, and fix up all existing tasks.
3178 */
31a7df01
CW
3179 if (!use_task_css_set_links)
3180 cgroup_enable_task_cg_lists();
3181
817929ec 3182 read_lock(&css_set_lock);
69d0206c 3183 it->cset_link = &cgrp->cset_links;
bd89aabc 3184 cgroup_advance_iter(cgrp, it);
817929ec
PM
3185}
3186
bd89aabc 3187struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3188 struct cgroup_iter *it)
3189{
3190 struct task_struct *res;
3191 struct list_head *l = it->task;
69d0206c 3192 struct cgrp_cset_link *link;
817929ec
PM
3193
3194 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3195 if (!it->cset_link)
817929ec
PM
3196 return NULL;
3197 res = list_entry(l, struct task_struct, cg_list);
3198 /* Advance iterator to find next entry */
3199 l = l->next;
69d0206c
TH
3200 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3201 if (l == &link->cset->tasks) {
817929ec
PM
3202 /* We reached the end of this task list - move on to
3203 * the next cg_cgroup_link */
bd89aabc 3204 cgroup_advance_iter(cgrp, it);
817929ec
PM
3205 } else {
3206 it->task = l;
3207 }
3208 return res;
3209}
3210
bd89aabc 3211void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3212 __releases(css_set_lock)
817929ec
PM
3213{
3214 read_unlock(&css_set_lock);
3215}
3216
31a7df01
CW
3217static inline int started_after_time(struct task_struct *t1,
3218 struct timespec *time,
3219 struct task_struct *t2)
3220{
3221 int start_diff = timespec_compare(&t1->start_time, time);
3222 if (start_diff > 0) {
3223 return 1;
3224 } else if (start_diff < 0) {
3225 return 0;
3226 } else {
3227 /*
3228 * Arbitrarily, if two processes started at the same
3229 * time, we'll say that the lower pointer value
3230 * started first. Note that t2 may have exited by now
3231 * so this may not be a valid pointer any longer, but
3232 * that's fine - it still serves to distinguish
3233 * between two tasks started (effectively) simultaneously.
3234 */
3235 return t1 > t2;
3236 }
3237}
3238
3239/*
3240 * This function is a callback from heap_insert() and is used to order
3241 * the heap.
3242 * In this case we order the heap in descending task start time.
3243 */
3244static inline int started_after(void *p1, void *p2)
3245{
3246 struct task_struct *t1 = p1;
3247 struct task_struct *t2 = p2;
3248 return started_after_time(t1, &t2->start_time, t2);
3249}
3250
3251/**
3252 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3253 * @scan: struct cgroup_scanner containing arguments for the scan
3254 *
3255 * Arguments include pointers to callback functions test_task() and
3256 * process_task().
3257 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3258 * and if it returns true, call process_task() for it also.
3259 * The test_task pointer may be NULL, meaning always true (select all tasks).
3260 * Effectively duplicates cgroup_iter_{start,next,end}()
3261 * but does not lock css_set_lock for the call to process_task().
3262 * The struct cgroup_scanner may be embedded in any structure of the caller's
3263 * creation.
3264 * It is guaranteed that process_task() will act on every task that
3265 * is a member of the cgroup for the duration of this call. This
3266 * function may or may not call process_task() for tasks that exit
3267 * or move to a different cgroup during the call, or are forked or
3268 * move into the cgroup during the call.
3269 *
3270 * Note that test_task() may be called with locks held, and may in some
3271 * situations be called multiple times for the same task, so it should
3272 * be cheap.
3273 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3274 * pre-allocated and will be used for heap operations (and its "gt" member will
3275 * be overwritten), else a temporary heap will be used (allocation of which
3276 * may cause this function to fail).
3277 */
3278int cgroup_scan_tasks(struct cgroup_scanner *scan)
3279{
3280 int retval, i;
3281 struct cgroup_iter it;
3282 struct task_struct *p, *dropped;
3283 /* Never dereference latest_task, since it's not refcounted */
3284 struct task_struct *latest_task = NULL;
3285 struct ptr_heap tmp_heap;
3286 struct ptr_heap *heap;
3287 struct timespec latest_time = { 0, 0 };
3288
3289 if (scan->heap) {
3290 /* The caller supplied our heap and pre-allocated its memory */
3291 heap = scan->heap;
3292 heap->gt = &started_after;
3293 } else {
3294 /* We need to allocate our own heap memory */
3295 heap = &tmp_heap;
3296 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3297 if (retval)
3298 /* cannot allocate the heap */
3299 return retval;
3300 }
3301
3302 again:
3303 /*
3304 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3305 * to determine which are of interest, and using the scanner's
3306 * "process_task" callback to process any of them that need an update.
3307 * Since we don't want to hold any locks during the task updates,
3308 * gather tasks to be processed in a heap structure.
3309 * The heap is sorted by descending task start time.
3310 * If the statically-sized heap fills up, we overflow tasks that
3311 * started later, and in future iterations only consider tasks that
3312 * started after the latest task in the previous pass. This
3313 * guarantees forward progress and that we don't miss any tasks.
3314 */
3315 heap->size = 0;
3316 cgroup_iter_start(scan->cg, &it);
3317 while ((p = cgroup_iter_next(scan->cg, &it))) {
3318 /*
3319 * Only affect tasks that qualify per the caller's callback,
3320 * if he provided one
3321 */
3322 if (scan->test_task && !scan->test_task(p, scan))
3323 continue;
3324 /*
3325 * Only process tasks that started after the last task
3326 * we processed
3327 */
3328 if (!started_after_time(p, &latest_time, latest_task))
3329 continue;
3330 dropped = heap_insert(heap, p);
3331 if (dropped == NULL) {
3332 /*
3333 * The new task was inserted; the heap wasn't
3334 * previously full
3335 */
3336 get_task_struct(p);
3337 } else if (dropped != p) {
3338 /*
3339 * The new task was inserted, and pushed out a
3340 * different task
3341 */
3342 get_task_struct(p);
3343 put_task_struct(dropped);
3344 }
3345 /*
3346 * Else the new task was newer than anything already in
3347 * the heap and wasn't inserted
3348 */
3349 }
3350 cgroup_iter_end(scan->cg, &it);
3351
3352 if (heap->size) {
3353 for (i = 0; i < heap->size; i++) {
4fe91d51 3354 struct task_struct *q = heap->ptrs[i];
31a7df01 3355 if (i == 0) {
4fe91d51
PJ
3356 latest_time = q->start_time;
3357 latest_task = q;
31a7df01
CW
3358 }
3359 /* Process the task per the caller's callback */
4fe91d51
PJ
3360 scan->process_task(q, scan);
3361 put_task_struct(q);
31a7df01
CW
3362 }
3363 /*
3364 * If we had to process any tasks at all, scan again
3365 * in case some of them were in the middle of forking
3366 * children that didn't get processed.
3367 * Not the most efficient way to do it, but it avoids
3368 * having to take callback_mutex in the fork path
3369 */
3370 goto again;
3371 }
3372 if (heap == &tmp_heap)
3373 heap_free(&tmp_heap);
3374 return 0;
3375}
3376
8cc99345
TH
3377static void cgroup_transfer_one_task(struct task_struct *task,
3378 struct cgroup_scanner *scan)
3379{
3380 struct cgroup *new_cgroup = scan->data;
3381
47cfcd09 3382 mutex_lock(&cgroup_mutex);
8cc99345 3383 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3384 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3385}
3386
3387/**
3388 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3389 * @to: cgroup to which the tasks will be moved
3390 * @from: cgroup in which the tasks currently reside
3391 */
3392int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3393{
3394 struct cgroup_scanner scan;
3395
3396 scan.cg = from;
3397 scan.test_task = NULL; /* select all tasks in cgroup */
3398 scan.process_task = cgroup_transfer_one_task;
3399 scan.heap = NULL;
3400 scan.data = to;
3401
3402 return cgroup_scan_tasks(&scan);
3403}
3404
bbcb81d0 3405/*
102a775e 3406 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3407 *
3408 * Reading this file can return large amounts of data if a cgroup has
3409 * *lots* of attached tasks. So it may need several calls to read(),
3410 * but we cannot guarantee that the information we produce is correct
3411 * unless we produce it entirely atomically.
3412 *
bbcb81d0 3413 */
bbcb81d0 3414
24528255
LZ
3415/* which pidlist file are we talking about? */
3416enum cgroup_filetype {
3417 CGROUP_FILE_PROCS,
3418 CGROUP_FILE_TASKS,
3419};
3420
3421/*
3422 * A pidlist is a list of pids that virtually represents the contents of one
3423 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3424 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3425 * to the cgroup.
3426 */
3427struct cgroup_pidlist {
3428 /*
3429 * used to find which pidlist is wanted. doesn't change as long as
3430 * this particular list stays in the list.
3431 */
3432 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3433 /* array of xids */
3434 pid_t *list;
3435 /* how many elements the above list has */
3436 int length;
3437 /* how many files are using the current array */
3438 int use_count;
3439 /* each of these stored in a list by its cgroup */
3440 struct list_head links;
3441 /* pointer to the cgroup we belong to, for list removal purposes */
3442 struct cgroup *owner;
3443 /* protects the other fields */
3444 struct rw_semaphore mutex;
3445};
3446
d1d9fd33
BB
3447/*
3448 * The following two functions "fix" the issue where there are more pids
3449 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3450 * TODO: replace with a kernel-wide solution to this problem
3451 */
3452#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3453static void *pidlist_allocate(int count)
3454{
3455 if (PIDLIST_TOO_LARGE(count))
3456 return vmalloc(count * sizeof(pid_t));
3457 else
3458 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3459}
3460static void pidlist_free(void *p)
3461{
3462 if (is_vmalloc_addr(p))
3463 vfree(p);
3464 else
3465 kfree(p);
3466}
d1d9fd33 3467
bbcb81d0 3468/*
102a775e 3469 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3470 * Returns the number of unique elements.
bbcb81d0 3471 */
6ee211ad 3472static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3473{
102a775e 3474 int src, dest = 1;
102a775e
BB
3475
3476 /*
3477 * we presume the 0th element is unique, so i starts at 1. trivial
3478 * edge cases first; no work needs to be done for either
3479 */
3480 if (length == 0 || length == 1)
3481 return length;
3482 /* src and dest walk down the list; dest counts unique elements */
3483 for (src = 1; src < length; src++) {
3484 /* find next unique element */
3485 while (list[src] == list[src-1]) {
3486 src++;
3487 if (src == length)
3488 goto after;
3489 }
3490 /* dest always points to where the next unique element goes */
3491 list[dest] = list[src];
3492 dest++;
3493 }
3494after:
102a775e
BB
3495 return dest;
3496}
3497
3498static int cmppid(const void *a, const void *b)
3499{
3500 return *(pid_t *)a - *(pid_t *)b;
3501}
3502
72a8cb30
BB
3503/*
3504 * find the appropriate pidlist for our purpose (given procs vs tasks)
3505 * returns with the lock on that pidlist already held, and takes care
3506 * of the use count, or returns NULL with no locks held if we're out of
3507 * memory.
3508 */
3509static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3510 enum cgroup_filetype type)
3511{
3512 struct cgroup_pidlist *l;
3513 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3514 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3515
72a8cb30
BB
3516 /*
3517 * We can't drop the pidlist_mutex before taking the l->mutex in case
3518 * the last ref-holder is trying to remove l from the list at the same
3519 * time. Holding the pidlist_mutex precludes somebody taking whichever
3520 * list we find out from under us - compare release_pid_array().
3521 */
3522 mutex_lock(&cgrp->pidlist_mutex);
3523 list_for_each_entry(l, &cgrp->pidlists, links) {
3524 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3525 /* make sure l doesn't vanish out from under us */
3526 down_write(&l->mutex);
3527 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3528 return l;
3529 }
3530 }
3531 /* entry not found; create a new one */
f4f4be2b 3532 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3533 if (!l) {
3534 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3535 return l;
3536 }
3537 init_rwsem(&l->mutex);
3538 down_write(&l->mutex);
3539 l->key.type = type;
b70cc5fd 3540 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3541 l->owner = cgrp;
3542 list_add(&l->links, &cgrp->pidlists);
3543 mutex_unlock(&cgrp->pidlist_mutex);
3544 return l;
3545}
3546
102a775e
BB
3547/*
3548 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3549 */
72a8cb30
BB
3550static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3551 struct cgroup_pidlist **lp)
102a775e
BB
3552{
3553 pid_t *array;
3554 int length;
3555 int pid, n = 0; /* used for populating the array */
817929ec
PM
3556 struct cgroup_iter it;
3557 struct task_struct *tsk;
102a775e
BB
3558 struct cgroup_pidlist *l;
3559
3560 /*
3561 * If cgroup gets more users after we read count, we won't have
3562 * enough space - tough. This race is indistinguishable to the
3563 * caller from the case that the additional cgroup users didn't
3564 * show up until sometime later on.
3565 */
3566 length = cgroup_task_count(cgrp);
d1d9fd33 3567 array = pidlist_allocate(length);
102a775e
BB
3568 if (!array)
3569 return -ENOMEM;
3570 /* now, populate the array */
bd89aabc
PM
3571 cgroup_iter_start(cgrp, &it);
3572 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3573 if (unlikely(n == length))
817929ec 3574 break;
102a775e 3575 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3576 if (type == CGROUP_FILE_PROCS)
3577 pid = task_tgid_vnr(tsk);
3578 else
3579 pid = task_pid_vnr(tsk);
102a775e
BB
3580 if (pid > 0) /* make sure to only use valid results */
3581 array[n++] = pid;
817929ec 3582 }
bd89aabc 3583 cgroup_iter_end(cgrp, &it);
102a775e
BB
3584 length = n;
3585 /* now sort & (if procs) strip out duplicates */
3586 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3587 if (type == CGROUP_FILE_PROCS)
6ee211ad 3588 length = pidlist_uniq(array, length);
72a8cb30
BB
3589 l = cgroup_pidlist_find(cgrp, type);
3590 if (!l) {
d1d9fd33 3591 pidlist_free(array);
72a8cb30 3592 return -ENOMEM;
102a775e 3593 }
72a8cb30 3594 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3595 pidlist_free(l->list);
102a775e
BB
3596 l->list = array;
3597 l->length = length;
3598 l->use_count++;
3599 up_write(&l->mutex);
72a8cb30 3600 *lp = l;
102a775e 3601 return 0;
bbcb81d0
PM
3602}
3603
846c7bb0 3604/**
a043e3b2 3605 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3606 * @stats: cgroupstats to fill information into
3607 * @dentry: A dentry entry belonging to the cgroup for which stats have
3608 * been requested.
a043e3b2
LZ
3609 *
3610 * Build and fill cgroupstats so that taskstats can export it to user
3611 * space.
846c7bb0
BS
3612 */
3613int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3614{
3615 int ret = -EINVAL;
bd89aabc 3616 struct cgroup *cgrp;
846c7bb0
BS
3617 struct cgroup_iter it;
3618 struct task_struct *tsk;
33d283be 3619
846c7bb0 3620 /*
33d283be
LZ
3621 * Validate dentry by checking the superblock operations,
3622 * and make sure it's a directory.
846c7bb0 3623 */
33d283be
LZ
3624 if (dentry->d_sb->s_op != &cgroup_ops ||
3625 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3626 goto err;
3627
3628 ret = 0;
bd89aabc 3629 cgrp = dentry->d_fsdata;
846c7bb0 3630
bd89aabc
PM
3631 cgroup_iter_start(cgrp, &it);
3632 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3633 switch (tsk->state) {
3634 case TASK_RUNNING:
3635 stats->nr_running++;
3636 break;
3637 case TASK_INTERRUPTIBLE:
3638 stats->nr_sleeping++;
3639 break;
3640 case TASK_UNINTERRUPTIBLE:
3641 stats->nr_uninterruptible++;
3642 break;
3643 case TASK_STOPPED:
3644 stats->nr_stopped++;
3645 break;
3646 default:
3647 if (delayacct_is_task_waiting_on_io(tsk))
3648 stats->nr_io_wait++;
3649 break;
3650 }
3651 }
bd89aabc 3652 cgroup_iter_end(cgrp, &it);
846c7bb0 3653
846c7bb0
BS
3654err:
3655 return ret;
3656}
3657
8f3ff208 3658
bbcb81d0 3659/*
102a775e 3660 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3661 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3662 * in the cgroup->l->list array.
bbcb81d0 3663 */
cc31edce 3664
102a775e 3665static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3666{
cc31edce
PM
3667 /*
3668 * Initially we receive a position value that corresponds to
3669 * one more than the last pid shown (or 0 on the first call or
3670 * after a seek to the start). Use a binary-search to find the
3671 * next pid to display, if any
3672 */
102a775e 3673 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3674 int index = 0, pid = *pos;
3675 int *iter;
3676
102a775e 3677 down_read(&l->mutex);
cc31edce 3678 if (pid) {
102a775e 3679 int end = l->length;
20777766 3680
cc31edce
PM
3681 while (index < end) {
3682 int mid = (index + end) / 2;
102a775e 3683 if (l->list[mid] == pid) {
cc31edce
PM
3684 index = mid;
3685 break;
102a775e 3686 } else if (l->list[mid] <= pid)
cc31edce
PM
3687 index = mid + 1;
3688 else
3689 end = mid;
3690 }
3691 }
3692 /* If we're off the end of the array, we're done */
102a775e 3693 if (index >= l->length)
cc31edce
PM
3694 return NULL;
3695 /* Update the abstract position to be the actual pid that we found */
102a775e 3696 iter = l->list + index;
cc31edce
PM
3697 *pos = *iter;
3698 return iter;
3699}
3700
102a775e 3701static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3702{
102a775e
BB
3703 struct cgroup_pidlist *l = s->private;
3704 up_read(&l->mutex);
cc31edce
PM
3705}
3706
102a775e 3707static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3708{
102a775e
BB
3709 struct cgroup_pidlist *l = s->private;
3710 pid_t *p = v;
3711 pid_t *end = l->list + l->length;
cc31edce
PM
3712 /*
3713 * Advance to the next pid in the array. If this goes off the
3714 * end, we're done
3715 */
3716 p++;
3717 if (p >= end) {
3718 return NULL;
3719 } else {
3720 *pos = *p;
3721 return p;
3722 }
3723}
3724
102a775e 3725static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3726{
3727 return seq_printf(s, "%d\n", *(int *)v);
3728}
bbcb81d0 3729
102a775e
BB
3730/*
3731 * seq_operations functions for iterating on pidlists through seq_file -
3732 * independent of whether it's tasks or procs
3733 */
3734static const struct seq_operations cgroup_pidlist_seq_operations = {
3735 .start = cgroup_pidlist_start,
3736 .stop = cgroup_pidlist_stop,
3737 .next = cgroup_pidlist_next,
3738 .show = cgroup_pidlist_show,
cc31edce
PM
3739};
3740
102a775e 3741static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3742{
72a8cb30
BB
3743 /*
3744 * the case where we're the last user of this particular pidlist will
3745 * have us remove it from the cgroup's list, which entails taking the
3746 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3747 * pidlist_mutex, we have to take pidlist_mutex first.
3748 */
3749 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3750 down_write(&l->mutex);
3751 BUG_ON(!l->use_count);
3752 if (!--l->use_count) {
72a8cb30
BB
3753 /* we're the last user if refcount is 0; remove and free */
3754 list_del(&l->links);
3755 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3756 pidlist_free(l->list);
72a8cb30
BB
3757 put_pid_ns(l->key.ns);
3758 up_write(&l->mutex);
3759 kfree(l);
3760 return;
cc31edce 3761 }
72a8cb30 3762 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3763 up_write(&l->mutex);
bbcb81d0
PM
3764}
3765
102a775e 3766static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3767{
102a775e 3768 struct cgroup_pidlist *l;
cc31edce
PM
3769 if (!(file->f_mode & FMODE_READ))
3770 return 0;
102a775e
BB
3771 /*
3772 * the seq_file will only be initialized if the file was opened for
3773 * reading; hence we check if it's not null only in that case.
3774 */
3775 l = ((struct seq_file *)file->private_data)->private;
3776 cgroup_release_pid_array(l);
cc31edce
PM
3777 return seq_release(inode, file);
3778}
3779
102a775e 3780static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3781 .read = seq_read,
3782 .llseek = seq_lseek,
3783 .write = cgroup_file_write,
102a775e 3784 .release = cgroup_pidlist_release,
cc31edce
PM
3785};
3786
bbcb81d0 3787/*
102a775e
BB
3788 * The following functions handle opens on a file that displays a pidlist
3789 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3790 * in the cgroup.
bbcb81d0 3791 */
102a775e 3792/* helper function for the two below it */
72a8cb30 3793static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3794{
bd89aabc 3795 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3796 struct cgroup_pidlist *l;
cc31edce 3797 int retval;
bbcb81d0 3798
cc31edce 3799 /* Nothing to do for write-only files */
bbcb81d0
PM
3800 if (!(file->f_mode & FMODE_READ))
3801 return 0;
3802
102a775e 3803 /* have the array populated */
72a8cb30 3804 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3805 if (retval)
3806 return retval;
3807 /* configure file information */
3808 file->f_op = &cgroup_pidlist_operations;
cc31edce 3809
102a775e 3810 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3811 if (retval) {
102a775e 3812 cgroup_release_pid_array(l);
cc31edce 3813 return retval;
bbcb81d0 3814 }
102a775e 3815 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3816 return 0;
3817}
102a775e
BB
3818static int cgroup_tasks_open(struct inode *unused, struct file *file)
3819{
72a8cb30 3820 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3821}
3822static int cgroup_procs_open(struct inode *unused, struct file *file)
3823{
72a8cb30 3824 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3825}
bbcb81d0 3826
bd89aabc 3827static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3828 struct cftype *cft)
3829{
bd89aabc 3830 return notify_on_release(cgrp);
81a6a5cd
PM
3831}
3832
6379c106
PM
3833static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3834 struct cftype *cft,
3835 u64 val)
3836{
3837 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3838 if (val)
3839 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3840 else
3841 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3842 return 0;
3843}
3844
1c8158ee
LZ
3845/*
3846 * When dput() is called asynchronously, if umount has been done and
3847 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3848 * there's a small window that vfs will see the root dentry with non-zero
3849 * refcnt and trigger BUG().
3850 *
3851 * That's why we hold a reference before dput() and drop it right after.
3852 */
3853static void cgroup_dput(struct cgroup *cgrp)
3854{
3855 struct super_block *sb = cgrp->root->sb;
3856
3857 atomic_inc(&sb->s_active);
3858 dput(cgrp->dentry);
3859 deactivate_super(sb);
3860}
3861
0dea1168
KS
3862/*
3863 * Unregister event and free resources.
3864 *
3865 * Gets called from workqueue.
3866 */
3867static void cgroup_event_remove(struct work_struct *work)
3868{
3869 struct cgroup_event *event = container_of(work, struct cgroup_event,
3870 remove);
3871 struct cgroup *cgrp = event->cgrp;
3872
810cbee4
LZ
3873 remove_wait_queue(event->wqh, &event->wait);
3874
0dea1168
KS
3875 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3876
810cbee4
LZ
3877 /* Notify userspace the event is going away. */
3878 eventfd_signal(event->eventfd, 1);
3879
0dea1168 3880 eventfd_ctx_put(event->eventfd);
0dea1168 3881 kfree(event);
1c8158ee 3882 cgroup_dput(cgrp);
0dea1168
KS
3883}
3884
3885/*
3886 * Gets called on POLLHUP on eventfd when user closes it.
3887 *
3888 * Called with wqh->lock held and interrupts disabled.
3889 */
3890static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3891 int sync, void *key)
3892{
3893 struct cgroup_event *event = container_of(wait,
3894 struct cgroup_event, wait);
3895 struct cgroup *cgrp = event->cgrp;
3896 unsigned long flags = (unsigned long)key;
3897
3898 if (flags & POLLHUP) {
0dea1168 3899 /*
810cbee4
LZ
3900 * If the event has been detached at cgroup removal, we
3901 * can simply return knowing the other side will cleanup
3902 * for us.
3903 *
3904 * We can't race against event freeing since the other
3905 * side will require wqh->lock via remove_wait_queue(),
3906 * which we hold.
0dea1168 3907 */
810cbee4
LZ
3908 spin_lock(&cgrp->event_list_lock);
3909 if (!list_empty(&event->list)) {
3910 list_del_init(&event->list);
3911 /*
3912 * We are in atomic context, but cgroup_event_remove()
3913 * may sleep, so we have to call it in workqueue.
3914 */
3915 schedule_work(&event->remove);
3916 }
3917 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3918 }
3919
3920 return 0;
3921}
3922
3923static void cgroup_event_ptable_queue_proc(struct file *file,
3924 wait_queue_head_t *wqh, poll_table *pt)
3925{
3926 struct cgroup_event *event = container_of(pt,
3927 struct cgroup_event, pt);
3928
3929 event->wqh = wqh;
3930 add_wait_queue(wqh, &event->wait);
3931}
3932
3933/*
3934 * Parse input and register new cgroup event handler.
3935 *
3936 * Input must be in format '<event_fd> <control_fd> <args>'.
3937 * Interpretation of args is defined by control file implementation.
3938 */
3939static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3940 const char *buffer)
3941{
3942 struct cgroup_event *event = NULL;
f169007b 3943 struct cgroup *cgrp_cfile;
0dea1168
KS
3944 unsigned int efd, cfd;
3945 struct file *efile = NULL;
3946 struct file *cfile = NULL;
3947 char *endp;
3948 int ret;
3949
3950 efd = simple_strtoul(buffer, &endp, 10);
3951 if (*endp != ' ')
3952 return -EINVAL;
3953 buffer = endp + 1;
3954
3955 cfd = simple_strtoul(buffer, &endp, 10);
3956 if ((*endp != ' ') && (*endp != '\0'))
3957 return -EINVAL;
3958 buffer = endp + 1;
3959
3960 event = kzalloc(sizeof(*event), GFP_KERNEL);
3961 if (!event)
3962 return -ENOMEM;
3963 event->cgrp = cgrp;
3964 INIT_LIST_HEAD(&event->list);
3965 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3966 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3967 INIT_WORK(&event->remove, cgroup_event_remove);
3968
3969 efile = eventfd_fget(efd);
3970 if (IS_ERR(efile)) {
3971 ret = PTR_ERR(efile);
3972 goto fail;
3973 }
3974
3975 event->eventfd = eventfd_ctx_fileget(efile);
3976 if (IS_ERR(event->eventfd)) {
3977 ret = PTR_ERR(event->eventfd);
3978 goto fail;
3979 }
3980
3981 cfile = fget(cfd);
3982 if (!cfile) {
3983 ret = -EBADF;
3984 goto fail;
3985 }
3986
3987 /* the process need read permission on control file */
3bfa784a 3988 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3989 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3990 if (ret < 0)
3991 goto fail;
3992
3993 event->cft = __file_cft(cfile);
3994 if (IS_ERR(event->cft)) {
3995 ret = PTR_ERR(event->cft);
3996 goto fail;
3997 }
3998
f169007b
LZ
3999 /*
4000 * The file to be monitored must be in the same cgroup as
4001 * cgroup.event_control is.
4002 */
4003 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
4004 if (cgrp_cfile != cgrp) {
4005 ret = -EINVAL;
4006 goto fail;
4007 }
4008
0dea1168
KS
4009 if (!event->cft->register_event || !event->cft->unregister_event) {
4010 ret = -EINVAL;
4011 goto fail;
4012 }
4013
4014 ret = event->cft->register_event(cgrp, event->cft,
4015 event->eventfd, buffer);
4016 if (ret)
4017 goto fail;
4018
7ef70e48 4019 efile->f_op->poll(efile, &event->pt);
0dea1168 4020
a0a4db54
KS
4021 /*
4022 * Events should be removed after rmdir of cgroup directory, but before
4023 * destroying subsystem state objects. Let's take reference to cgroup
4024 * directory dentry to do that.
4025 */
4026 dget(cgrp->dentry);
4027
0dea1168
KS
4028 spin_lock(&cgrp->event_list_lock);
4029 list_add(&event->list, &cgrp->event_list);
4030 spin_unlock(&cgrp->event_list_lock);
4031
4032 fput(cfile);
4033 fput(efile);
4034
4035 return 0;
4036
4037fail:
4038 if (cfile)
4039 fput(cfile);
4040
4041 if (event && event->eventfd && !IS_ERR(event->eventfd))
4042 eventfd_ctx_put(event->eventfd);
4043
4044 if (!IS_ERR_OR_NULL(efile))
4045 fput(efile);
4046
4047 kfree(event);
4048
4049 return ret;
4050}
4051
97978e6d
DL
4052static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4053 struct cftype *cft)
4054{
2260e7fc 4055 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4056}
4057
4058static int cgroup_clone_children_write(struct cgroup *cgrp,
4059 struct cftype *cft,
4060 u64 val)
4061{
4062 if (val)
2260e7fc 4063 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4064 else
2260e7fc 4065 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4066 return 0;
4067}
4068
d5c56ced 4069static struct cftype cgroup_base_files[] = {
81a6a5cd 4070 {
d5c56ced 4071 .name = "cgroup.procs",
102a775e 4072 .open = cgroup_procs_open,
74a1166d 4073 .write_u64 = cgroup_procs_write,
102a775e 4074 .release = cgroup_pidlist_release,
74a1166d 4075 .mode = S_IRUGO | S_IWUSR,
102a775e 4076 },
81a6a5cd 4077 {
d5c56ced 4078 .name = "cgroup.event_control",
0dea1168
KS
4079 .write_string = cgroup_write_event_control,
4080 .mode = S_IWUGO,
4081 },
97978e6d
DL
4082 {
4083 .name = "cgroup.clone_children",
873fe09e 4084 .flags = CFTYPE_INSANE,
97978e6d
DL
4085 .read_u64 = cgroup_clone_children_read,
4086 .write_u64 = cgroup_clone_children_write,
4087 },
873fe09e
TH
4088 {
4089 .name = "cgroup.sane_behavior",
4090 .flags = CFTYPE_ONLY_ON_ROOT,
4091 .read_seq_string = cgroup_sane_behavior_show,
4092 },
d5c56ced
TH
4093
4094 /*
4095 * Historical crazy stuff. These don't have "cgroup." prefix and
4096 * don't exist if sane_behavior. If you're depending on these, be
4097 * prepared to be burned.
4098 */
4099 {
4100 .name = "tasks",
4101 .flags = CFTYPE_INSANE, /* use "procs" instead */
4102 .open = cgroup_tasks_open,
4103 .write_u64 = cgroup_tasks_write,
4104 .release = cgroup_pidlist_release,
4105 .mode = S_IRUGO | S_IWUSR,
4106 },
4107 {
4108 .name = "notify_on_release",
4109 .flags = CFTYPE_INSANE,
4110 .read_u64 = cgroup_read_notify_on_release,
4111 .write_u64 = cgroup_write_notify_on_release,
4112 },
6e6ff25b
TH
4113 {
4114 .name = "release_agent",
cc5943a7 4115 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4116 .read_seq_string = cgroup_release_agent_show,
4117 .write_string = cgroup_release_agent_write,
4118 .max_write_len = PATH_MAX,
4119 },
db0416b6 4120 { } /* terminate */
bbcb81d0
PM
4121};
4122
13af07df
AR
4123/**
4124 * cgroup_populate_dir - selectively creation of files in a directory
4125 * @cgrp: target cgroup
4126 * @base_files: true if the base files should be added
4127 * @subsys_mask: mask of the subsystem ids whose files should be added
4128 */
4129static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4130 unsigned long subsys_mask)
ddbcc7e8
PM
4131{
4132 int err;
4133 struct cgroup_subsys *ss;
4134
13af07df 4135 if (base_files) {
d5c56ced 4136 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4137 if (err < 0)
4138 return err;
4139 }
bbcb81d0 4140
8e3f6541 4141 /* process cftsets of each subsystem */
bd89aabc 4142 for_each_subsys(cgrp->root, ss) {
8e3f6541 4143 struct cftype_set *set;
13af07df
AR
4144 if (!test_bit(ss->subsys_id, &subsys_mask))
4145 continue;
8e3f6541 4146
db0416b6 4147 list_for_each_entry(set, &ss->cftsets, node)
79578621 4148 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4149 }
8e3f6541 4150
38460b48
KH
4151 /* This cgroup is ready now */
4152 for_each_subsys(cgrp->root, ss) {
4153 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4154 /*
4155 * Update id->css pointer and make this css visible from
4156 * CSS ID functions. This pointer will be dereferened
4157 * from RCU-read-side without locks.
4158 */
4159 if (css->id)
4160 rcu_assign_pointer(css->id->css, css);
4161 }
ddbcc7e8
PM
4162
4163 return 0;
4164}
4165
48ddbe19
TH
4166static void css_dput_fn(struct work_struct *work)
4167{
4168 struct cgroup_subsys_state *css =
4169 container_of(work, struct cgroup_subsys_state, dput_work);
4170
1c8158ee 4171 cgroup_dput(css->cgroup);
48ddbe19
TH
4172}
4173
d3daf28d
TH
4174static void css_release(struct percpu_ref *ref)
4175{
4176 struct cgroup_subsys_state *css =
4177 container_of(ref, struct cgroup_subsys_state, refcnt);
4178
4179 schedule_work(&css->dput_work);
4180}
4181
ddbcc7e8
PM
4182static void init_cgroup_css(struct cgroup_subsys_state *css,
4183 struct cgroup_subsys *ss,
bd89aabc 4184 struct cgroup *cgrp)
ddbcc7e8 4185{
bd89aabc 4186 css->cgroup = cgrp;
ddbcc7e8 4187 css->flags = 0;
38460b48 4188 css->id = NULL;
bd89aabc 4189 if (cgrp == dummytop)
38b53aba 4190 css->flags |= CSS_ROOT;
bd89aabc
PM
4191 BUG_ON(cgrp->subsys[ss->subsys_id]);
4192 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4193
4194 /*
ed957793
TH
4195 * css holds an extra ref to @cgrp->dentry which is put on the last
4196 * css_put(). dput() requires process context, which css_put() may
4197 * be called without. @css->dput_work will be used to invoke
4198 * dput() asynchronously from css_put().
48ddbe19
TH
4199 */
4200 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4201}
4202
b1929db4
TH
4203/* invoke ->post_create() on a new CSS and mark it online if successful */
4204static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4205{
b1929db4
TH
4206 int ret = 0;
4207
a31f2d3f
TH
4208 lockdep_assert_held(&cgroup_mutex);
4209
92fb9748
TH
4210 if (ss->css_online)
4211 ret = ss->css_online(cgrp);
b1929db4
TH
4212 if (!ret)
4213 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4214 return ret;
a31f2d3f
TH
4215}
4216
4217/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4218static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4219 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4220{
4221 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4222
4223 lockdep_assert_held(&cgroup_mutex);
4224
4225 if (!(css->flags & CSS_ONLINE))
4226 return;
4227
d7eeac19 4228 if (ss->css_offline)
92fb9748 4229 ss->css_offline(cgrp);
a31f2d3f
TH
4230
4231 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4232}
4233
ddbcc7e8 4234/*
a043e3b2
LZ
4235 * cgroup_create - create a cgroup
4236 * @parent: cgroup that will be parent of the new cgroup
4237 * @dentry: dentry of the new cgroup
4238 * @mode: mode to set on new inode
ddbcc7e8 4239 *
a043e3b2 4240 * Must be called with the mutex on the parent inode held
ddbcc7e8 4241 */
ddbcc7e8 4242static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4243 umode_t mode)
ddbcc7e8 4244{
bd89aabc 4245 struct cgroup *cgrp;
65dff759 4246 struct cgroup_name *name;
ddbcc7e8
PM
4247 struct cgroupfs_root *root = parent->root;
4248 int err = 0;
4249 struct cgroup_subsys *ss;
4250 struct super_block *sb = root->sb;
4251
0a950f65 4252 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4253 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4254 if (!cgrp)
ddbcc7e8
PM
4255 return -ENOMEM;
4256
65dff759
LZ
4257 name = cgroup_alloc_name(dentry);
4258 if (!name)
4259 goto err_free_cgrp;
4260 rcu_assign_pointer(cgrp->name, name);
4261
0a950f65
TH
4262 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4263 if (cgrp->id < 0)
65dff759 4264 goto err_free_name;
0a950f65 4265
976c06bc
TH
4266 /*
4267 * Only live parents can have children. Note that the liveliness
4268 * check isn't strictly necessary because cgroup_mkdir() and
4269 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4270 * anyway so that locking is contained inside cgroup proper and we
4271 * don't get nasty surprises if we ever grow another caller.
4272 */
4273 if (!cgroup_lock_live_group(parent)) {
4274 err = -ENODEV;
0a950f65 4275 goto err_free_id;
976c06bc
TH
4276 }
4277
ddbcc7e8
PM
4278 /* Grab a reference on the superblock so the hierarchy doesn't
4279 * get deleted on unmount if there are child cgroups. This
4280 * can be done outside cgroup_mutex, since the sb can't
4281 * disappear while someone has an open control file on the
4282 * fs */
4283 atomic_inc(&sb->s_active);
4284
cc31edce 4285 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4286
fe1c06ca
LZ
4287 dentry->d_fsdata = cgrp;
4288 cgrp->dentry = dentry;
4289
bd89aabc
PM
4290 cgrp->parent = parent;
4291 cgrp->root = parent->root;
ddbcc7e8 4292
b6abdb0e
LZ
4293 if (notify_on_release(parent))
4294 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4295
2260e7fc
TH
4296 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4297 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4298
ddbcc7e8 4299 for_each_subsys(root, ss) {
8c7f6edb 4300 struct cgroup_subsys_state *css;
4528fd05 4301
92fb9748 4302 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4303 if (IS_ERR(css)) {
4304 err = PTR_ERR(css);
4b8b47eb 4305 goto err_free_all;
ddbcc7e8 4306 }
d3daf28d
TH
4307
4308 err = percpu_ref_init(&css->refcnt, css_release);
4309 if (err)
4310 goto err_free_all;
4311
bd89aabc 4312 init_cgroup_css(css, ss, cgrp);
d3daf28d 4313
4528fd05
LZ
4314 if (ss->use_id) {
4315 err = alloc_css_id(ss, parent, cgrp);
4316 if (err)
4b8b47eb 4317 goto err_free_all;
4528fd05 4318 }
ddbcc7e8
PM
4319 }
4320
4e139afc
TH
4321 /*
4322 * Create directory. cgroup_create_file() returns with the new
4323 * directory locked on success so that it can be populated without
4324 * dropping cgroup_mutex.
4325 */
28fd6f30 4326 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4327 if (err < 0)
4b8b47eb 4328 goto err_free_all;
4e139afc 4329 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4330
00356bd5 4331 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 4332
4e139afc 4333 /* allocation complete, commit to creation */
4e139afc
TH
4334 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4335 root->number_of_cgroups++;
28fd6f30 4336
b1929db4
TH
4337 /* each css holds a ref to the cgroup's dentry */
4338 for_each_subsys(root, ss)
ed957793 4339 dget(dentry);
48ddbe19 4340
415cf07a
LZ
4341 /* hold a ref to the parent's dentry */
4342 dget(parent->dentry);
4343
b1929db4
TH
4344 /* creation succeeded, notify subsystems */
4345 for_each_subsys(root, ss) {
4346 err = online_css(ss, cgrp);
4347 if (err)
4348 goto err_destroy;
1f869e87
GC
4349
4350 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4351 parent->parent) {
4352 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4353 current->comm, current->pid, ss->name);
4354 if (!strcmp(ss->name, "memory"))
4355 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4356 ss->warned_broken_hierarchy = true;
4357 }
a8638030
TH
4358 }
4359
a1a71b45 4360 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4361 if (err)
4362 goto err_destroy;
ddbcc7e8
PM
4363
4364 mutex_unlock(&cgroup_mutex);
bd89aabc 4365 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4366
4367 return 0;
4368
4b8b47eb 4369err_free_all:
ddbcc7e8 4370 for_each_subsys(root, ss) {
d3daf28d
TH
4371 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4372
4373 if (css) {
4374 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4375 ss->css_free(cgrp);
d3daf28d 4376 }
ddbcc7e8 4377 }
ddbcc7e8 4378 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4379 /* Release the reference count that we took on the superblock */
4380 deactivate_super(sb);
0a950f65
TH
4381err_free_id:
4382 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4383err_free_name:
4384 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4385err_free_cgrp:
bd89aabc 4386 kfree(cgrp);
ddbcc7e8 4387 return err;
4b8b47eb
TH
4388
4389err_destroy:
4390 cgroup_destroy_locked(cgrp);
4391 mutex_unlock(&cgroup_mutex);
4392 mutex_unlock(&dentry->d_inode->i_mutex);
4393 return err;
ddbcc7e8
PM
4394}
4395
18bb1db3 4396static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4397{
4398 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4399
4400 /* the vfs holds inode->i_mutex already */
4401 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4402}
4403
d3daf28d
TH
4404static void cgroup_css_killed(struct cgroup *cgrp)
4405{
4406 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4407 return;
4408
4409 /* percpu ref's of all css's are killed, kick off the next step */
4410 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4411 schedule_work(&cgrp->destroy_work);
4412}
4413
4414static void css_ref_killed_fn(struct percpu_ref *ref)
4415{
4416 struct cgroup_subsys_state *css =
4417 container_of(ref, struct cgroup_subsys_state, refcnt);
4418
4419 cgroup_css_killed(css->cgroup);
4420}
4421
4422/**
4423 * cgroup_destroy_locked - the first stage of cgroup destruction
4424 * @cgrp: cgroup to be destroyed
4425 *
4426 * css's make use of percpu refcnts whose killing latency shouldn't be
4427 * exposed to userland and are RCU protected. Also, cgroup core needs to
4428 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4429 * invoked. To satisfy all the requirements, destruction is implemented in
4430 * the following two steps.
4431 *
4432 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4433 * userland visible parts and start killing the percpu refcnts of
4434 * css's. Set up so that the next stage will be kicked off once all
4435 * the percpu refcnts are confirmed to be killed.
4436 *
4437 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4438 * rest of destruction. Once all cgroup references are gone, the
4439 * cgroup is RCU-freed.
4440 *
4441 * This function implements s1. After this step, @cgrp is gone as far as
4442 * the userland is concerned and a new cgroup with the same name may be
4443 * created. As cgroup doesn't care about the names internally, this
4444 * doesn't cause any problem.
4445 */
42809dd4
TH
4446static int cgroup_destroy_locked(struct cgroup *cgrp)
4447 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4448{
42809dd4 4449 struct dentry *d = cgrp->dentry;
4ab78683 4450 struct cgroup_event *event, *tmp;
ed957793 4451 struct cgroup_subsys *ss;
ddd69148 4452 bool empty;
ddbcc7e8 4453
42809dd4
TH
4454 lockdep_assert_held(&d->d_inode->i_mutex);
4455 lockdep_assert_held(&cgroup_mutex);
4456
ddd69148 4457 /*
6f3d828f
TH
4458 * css_set_lock synchronizes access to ->cset_links and prevents
4459 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4460 */
4461 read_lock(&css_set_lock);
6f3d828f 4462 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4463 read_unlock(&css_set_lock);
4464 if (!empty)
ddbcc7e8 4465 return -EBUSY;
a043e3b2 4466
88703267 4467 /*
d3daf28d
TH
4468 * Block new css_tryget() by killing css refcnts. cgroup core
4469 * guarantees that, by the time ->css_offline() is invoked, no new
4470 * css reference will be given out via css_tryget(). We can't
4471 * simply call percpu_ref_kill() and proceed to offlining css's
4472 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4473 * as killed on all CPUs on return.
4474 *
4475 * Use percpu_ref_kill_and_confirm() to get notifications as each
4476 * css is confirmed to be seen as killed on all CPUs. The
4477 * notification callback keeps track of the number of css's to be
4478 * killed and schedules cgroup_offline_fn() to perform the rest of
4479 * destruction once the percpu refs of all css's are confirmed to
4480 * be killed.
88703267 4481 */
d3daf28d 4482 atomic_set(&cgrp->css_kill_cnt, 1);
ed957793
TH
4483 for_each_subsys(cgrp->root, ss) {
4484 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4485
d3daf28d
TH
4486 /*
4487 * Killing would put the base ref, but we need to keep it
4488 * alive until after ->css_offline.
4489 */
4490 percpu_ref_get(&css->refcnt);
4491
4492 atomic_inc(&cgrp->css_kill_cnt);
4493 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4494 }
d3daf28d 4495 cgroup_css_killed(cgrp);
455050d2
TH
4496
4497 /*
4498 * Mark @cgrp dead. This prevents further task migration and child
4499 * creation by disabling cgroup_lock_live_group(). Note that
4500 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4501 * resume iteration after dropping RCU read lock. See
4502 * cgroup_next_sibling() for details.
4503 */
54766d4a 4504 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4505
455050d2
TH
4506 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4507 raw_spin_lock(&release_list_lock);
4508 if (!list_empty(&cgrp->release_list))
4509 list_del_init(&cgrp->release_list);
4510 raw_spin_unlock(&release_list_lock);
4511
4512 /*
4513 * Remove @cgrp directory. The removal puts the base ref but we
4514 * aren't quite done with @cgrp yet, so hold onto it.
4515 */
4516 dget(d);
4517 cgroup_d_remove_dir(d);
4518
4519 /*
4520 * Unregister events and notify userspace.
4521 * Notify userspace about cgroup removing only after rmdir of cgroup
4522 * directory to avoid race between userspace and kernelspace.
4523 */
4524 spin_lock(&cgrp->event_list_lock);
4525 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4526 list_del_init(&event->list);
4527 schedule_work(&event->remove);
4528 }
4529 spin_unlock(&cgrp->event_list_lock);
4530
ea15f8cc
TH
4531 return 0;
4532};
4533
d3daf28d
TH
4534/**
4535 * cgroup_offline_fn - the second step of cgroup destruction
4536 * @work: cgroup->destroy_free_work
4537 *
4538 * This function is invoked from a work item for a cgroup which is being
4539 * destroyed after the percpu refcnts of all css's are guaranteed to be
4540 * seen as killed on all CPUs, and performs the rest of destruction. This
4541 * is the second step of destruction described in the comment above
4542 * cgroup_destroy_locked().
4543 */
ea15f8cc
TH
4544static void cgroup_offline_fn(struct work_struct *work)
4545{
4546 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4547 struct cgroup *parent = cgrp->parent;
4548 struct dentry *d = cgrp->dentry;
4549 struct cgroup_subsys *ss;
4550
4551 mutex_lock(&cgroup_mutex);
4552
d3daf28d
TH
4553 /*
4554 * css_tryget() is guaranteed to fail now. Tell subsystems to
4555 * initate destruction.
4556 */
1a90dd50 4557 for_each_subsys(cgrp->root, ss)
a31f2d3f 4558 offline_css(ss, cgrp);
ed957793
TH
4559
4560 /*
d3daf28d
TH
4561 * Put the css refs from cgroup_destroy_locked(). Each css holds
4562 * an extra reference to the cgroup's dentry and cgroup removal
4563 * proceeds regardless of css refs. On the last put of each css,
4564 * whenever that may be, the extra dentry ref is put so that dentry
4565 * destruction happens only after all css's are released.
ed957793 4566 */
e9316080
TH
4567 for_each_subsys(cgrp->root, ss)
4568 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4569
999cd8a4 4570 /* delete this cgroup from parent->children */
eb6fd504 4571 list_del_rcu(&cgrp->sibling);
b0ca5a84 4572
ddbcc7e8 4573 dput(d);
ddbcc7e8 4574
bd89aabc 4575 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4576 check_for_release(parent);
4577
ea15f8cc 4578 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4579}
4580
42809dd4
TH
4581static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4582{
4583 int ret;
4584
4585 mutex_lock(&cgroup_mutex);
4586 ret = cgroup_destroy_locked(dentry->d_fsdata);
4587 mutex_unlock(&cgroup_mutex);
4588
4589 return ret;
4590}
4591
8e3f6541
TH
4592static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4593{
4594 INIT_LIST_HEAD(&ss->cftsets);
4595
4596 /*
4597 * base_cftset is embedded in subsys itself, no need to worry about
4598 * deregistration.
4599 */
4600 if (ss->base_cftypes) {
4601 ss->base_cftset.cfts = ss->base_cftypes;
4602 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4603 }
4604}
4605
06a11920 4606static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4607{
ddbcc7e8 4608 struct cgroup_subsys_state *css;
cfe36bde
DC
4609
4610 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4611
648bb56d
TH
4612 mutex_lock(&cgroup_mutex);
4613
8e3f6541
TH
4614 /* init base cftset */
4615 cgroup_init_cftsets(ss);
4616
ddbcc7e8 4617 /* Create the top cgroup state for this subsystem */
33a68ac1 4618 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4619 ss->root = &rootnode;
92fb9748 4620 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4621 /* We don't handle early failures gracefully */
4622 BUG_ON(IS_ERR(css));
4623 init_cgroup_css(css, ss, dummytop);
4624
e8d55fde 4625 /* Update the init_css_set to contain a subsys
817929ec 4626 * pointer to this state - since the subsystem is
e8d55fde
LZ
4627 * newly registered, all tasks and hence the
4628 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4629 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4630
4631 need_forkexit_callback |= ss->fork || ss->exit;
4632
e8d55fde
LZ
4633 /* At system boot, before all subsystems have been
4634 * registered, no tasks have been forked, so we don't
4635 * need to invoke fork callbacks here. */
4636 BUG_ON(!list_empty(&init_task.tasks));
4637
b1929db4 4638 BUG_ON(online_css(ss, dummytop));
a8638030 4639
648bb56d
TH
4640 mutex_unlock(&cgroup_mutex);
4641
e6a1105b
BB
4642 /* this function shouldn't be used with modular subsystems, since they
4643 * need to register a subsys_id, among other things */
4644 BUG_ON(ss->module);
4645}
4646
4647/**
4648 * cgroup_load_subsys: load and register a modular subsystem at runtime
4649 * @ss: the subsystem to load
4650 *
4651 * This function should be called in a modular subsystem's initcall. If the
88393161 4652 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4653 * up for use. If the subsystem is built-in anyway, work is delegated to the
4654 * simpler cgroup_init_subsys.
4655 */
4656int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4657{
e6a1105b 4658 struct cgroup_subsys_state *css;
d19e19de 4659 int i, ret;
b67bfe0d 4660 struct hlist_node *tmp;
5abb8855 4661 struct css_set *cset;
0ac801fe 4662 unsigned long key;
e6a1105b
BB
4663
4664 /* check name and function validity */
4665 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4666 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4667 return -EINVAL;
4668
4669 /*
4670 * we don't support callbacks in modular subsystems. this check is
4671 * before the ss->module check for consistency; a subsystem that could
4672 * be a module should still have no callbacks even if the user isn't
4673 * compiling it as one.
4674 */
4675 if (ss->fork || ss->exit)
4676 return -EINVAL;
4677
4678 /*
4679 * an optionally modular subsystem is built-in: we want to do nothing,
4680 * since cgroup_init_subsys will have already taken care of it.
4681 */
4682 if (ss->module == NULL) {
be45c900 4683 /* a sanity check */
e6a1105b
BB
4684 BUG_ON(subsys[ss->subsys_id] != ss);
4685 return 0;
4686 }
4687
8e3f6541
TH
4688 /* init base cftset */
4689 cgroup_init_cftsets(ss);
4690
e6a1105b 4691 mutex_lock(&cgroup_mutex);
8a8e04df 4692 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4693
4694 /*
92fb9748
TH
4695 * no ss->css_alloc seems to need anything important in the ss
4696 * struct, so this can happen first (i.e. before the rootnode
4697 * attachment).
e6a1105b 4698 */
92fb9748 4699 css = ss->css_alloc(dummytop);
e6a1105b
BB
4700 if (IS_ERR(css)) {
4701 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4702 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4703 mutex_unlock(&cgroup_mutex);
4704 return PTR_ERR(css);
4705 }
4706
4707 list_add(&ss->sibling, &rootnode.subsys_list);
4708 ss->root = &rootnode;
4709
4710 /* our new subsystem will be attached to the dummy hierarchy. */
4711 init_cgroup_css(css, ss, dummytop);
4712 /* init_idr must be after init_cgroup_css because it sets css->id. */
4713 if (ss->use_id) {
d19e19de
TH
4714 ret = cgroup_init_idr(ss, css);
4715 if (ret)
4716 goto err_unload;
e6a1105b
BB
4717 }
4718
4719 /*
4720 * Now we need to entangle the css into the existing css_sets. unlike
4721 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4722 * will need a new pointer to it; done by iterating the css_set_table.
4723 * furthermore, modifying the existing css_sets will corrupt the hash
4724 * table state, so each changed css_set will need its hash recomputed.
4725 * this is all done under the css_set_lock.
4726 */
4727 write_lock(&css_set_lock);
5abb8855 4728 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4729 /* skip entries that we already rehashed */
5abb8855 4730 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4731 continue;
4732 /* remove existing entry */
5abb8855 4733 hash_del(&cset->hlist);
0ac801fe 4734 /* set new value */
5abb8855 4735 cset->subsys[ss->subsys_id] = css;
0ac801fe 4736 /* recompute hash and restore entry */
5abb8855
TH
4737 key = css_set_hash(cset->subsys);
4738 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4739 }
4740 write_unlock(&css_set_lock);
4741
b1929db4
TH
4742 ret = online_css(ss, dummytop);
4743 if (ret)
4744 goto err_unload;
a8638030 4745
e6a1105b
BB
4746 /* success! */
4747 mutex_unlock(&cgroup_mutex);
4748 return 0;
d19e19de
TH
4749
4750err_unload:
4751 mutex_unlock(&cgroup_mutex);
4752 /* @ss can't be mounted here as try_module_get() would fail */
4753 cgroup_unload_subsys(ss);
4754 return ret;
ddbcc7e8 4755}
e6a1105b 4756EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4757
cf5d5941
BB
4758/**
4759 * cgroup_unload_subsys: unload a modular subsystem
4760 * @ss: the subsystem to unload
4761 *
4762 * This function should be called in a modular subsystem's exitcall. When this
4763 * function is invoked, the refcount on the subsystem's module will be 0, so
4764 * the subsystem will not be attached to any hierarchy.
4765 */
4766void cgroup_unload_subsys(struct cgroup_subsys *ss)
4767{
69d0206c 4768 struct cgrp_cset_link *link;
cf5d5941
BB
4769
4770 BUG_ON(ss->module == NULL);
4771
4772 /*
4773 * we shouldn't be called if the subsystem is in use, and the use of
4774 * try_module_get in parse_cgroupfs_options should ensure that it
4775 * doesn't start being used while we're killing it off.
4776 */
4777 BUG_ON(ss->root != &rootnode);
4778
4779 mutex_lock(&cgroup_mutex);
02ae7486 4780
a31f2d3f 4781 offline_css(ss, dummytop);
02ae7486 4782
c897ff68 4783 if (ss->use_id)
02ae7486 4784 idr_destroy(&ss->idr);
02ae7486 4785
cf5d5941 4786 /* deassign the subsys_id */
cf5d5941
BB
4787 subsys[ss->subsys_id] = NULL;
4788
4789 /* remove subsystem from rootnode's list of subsystems */
8d258797 4790 list_del_init(&ss->sibling);
cf5d5941
BB
4791
4792 /*
4793 * disentangle the css from all css_sets attached to the dummytop. as
4794 * in loading, we need to pay our respects to the hashtable gods.
4795 */
4796 write_lock(&css_set_lock);
69d0206c
TH
4797 list_for_each_entry(link, &dummytop->cset_links, cset_link) {
4798 struct css_set *cset = link->cset;
0ac801fe 4799 unsigned long key;
cf5d5941 4800
5abb8855
TH
4801 hash_del(&cset->hlist);
4802 cset->subsys[ss->subsys_id] = NULL;
4803 key = css_set_hash(cset->subsys);
4804 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4805 }
4806 write_unlock(&css_set_lock);
4807
4808 /*
92fb9748
TH
4809 * remove subsystem's css from the dummytop and free it - need to
4810 * free before marking as null because ss->css_free needs the
4811 * cgrp->subsys pointer to find their state. note that this also
4812 * takes care of freeing the css_id.
cf5d5941 4813 */
92fb9748 4814 ss->css_free(dummytop);
cf5d5941
BB
4815 dummytop->subsys[ss->subsys_id] = NULL;
4816
4817 mutex_unlock(&cgroup_mutex);
4818}
4819EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4820
ddbcc7e8 4821/**
a043e3b2
LZ
4822 * cgroup_init_early - cgroup initialization at system boot
4823 *
4824 * Initialize cgroups at system boot, and initialize any
4825 * subsystems that request early init.
ddbcc7e8
PM
4826 */
4827int __init cgroup_init_early(void)
4828{
4829 int i;
146aa1bd 4830 atomic_set(&init_css_set.refcount, 1);
69d0206c 4831 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4832 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4833 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4834 css_set_count = 1;
ddbcc7e8 4835 init_cgroup_root(&rootnode);
817929ec
PM
4836 root_count = 1;
4837 init_task.cgroups = &init_css_set;
4838
69d0206c
TH
4839 init_cgrp_cset_link.cset = &init_css_set;
4840 init_cgrp_cset_link.cgrp = dummytop;
4841 list_add(&init_cgrp_cset_link.cset_link, &rootnode.top_cgroup.cset_links);
4842 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4843
be45c900 4844 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4845 struct cgroup_subsys *ss = subsys[i];
4846
be45c900
DW
4847 /* at bootup time, we don't worry about modular subsystems */
4848 if (!ss || ss->module)
4849 continue;
4850
ddbcc7e8
PM
4851 BUG_ON(!ss->name);
4852 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4853 BUG_ON(!ss->css_alloc);
4854 BUG_ON(!ss->css_free);
ddbcc7e8 4855 if (ss->subsys_id != i) {
cfe36bde 4856 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4857 ss->name, ss->subsys_id);
4858 BUG();
4859 }
4860
4861 if (ss->early_init)
4862 cgroup_init_subsys(ss);
4863 }
4864 return 0;
4865}
4866
4867/**
a043e3b2
LZ
4868 * cgroup_init - cgroup initialization
4869 *
4870 * Register cgroup filesystem and /proc file, and initialize
4871 * any subsystems that didn't request early init.
ddbcc7e8
PM
4872 */
4873int __init cgroup_init(void)
4874{
4875 int err;
4876 int i;
0ac801fe 4877 unsigned long key;
a424316c
PM
4878
4879 err = bdi_init(&cgroup_backing_dev_info);
4880 if (err)
4881 return err;
ddbcc7e8 4882
be45c900 4883 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4884 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4885
4886 /* at bootup time, we don't worry about modular subsystems */
4887 if (!ss || ss->module)
4888 continue;
ddbcc7e8
PM
4889 if (!ss->early_init)
4890 cgroup_init_subsys(ss);
38460b48 4891 if (ss->use_id)
e6a1105b 4892 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4893 }
4894
472b1053 4895 /* Add init_css_set to the hash table */
0ac801fe
LZ
4896 key = css_set_hash(init_css_set.subsys);
4897 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4898
4899 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4900 mutex_lock(&cgroup_mutex);
4901 mutex_lock(&cgroup_root_mutex);
4902
fa3ca07e 4903 BUG_ON(cgroup_init_root_id(&rootnode));
676db4af 4904
54e7b4eb
TH
4905 mutex_unlock(&cgroup_root_mutex);
4906 mutex_unlock(&cgroup_mutex);
4907
676db4af
GK
4908 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4909 if (!cgroup_kobj) {
4910 err = -ENOMEM;
4911 goto out;
4912 }
4913
ddbcc7e8 4914 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4915 if (err < 0) {
4916 kobject_put(cgroup_kobj);
ddbcc7e8 4917 goto out;
676db4af 4918 }
ddbcc7e8 4919
46ae220b 4920 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4921
ddbcc7e8 4922out:
a424316c
PM
4923 if (err)
4924 bdi_destroy(&cgroup_backing_dev_info);
4925
ddbcc7e8
PM
4926 return err;
4927}
b4f48b63 4928
a424316c
PM
4929/*
4930 * proc_cgroup_show()
4931 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4932 * - Used for /proc/<pid>/cgroup.
4933 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4934 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4935 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4936 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4937 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4938 * cgroup to top_cgroup.
4939 */
4940
4941/* TODO: Use a proper seq_file iterator */
8d8b97ba 4942int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4943{
4944 struct pid *pid;
4945 struct task_struct *tsk;
4946 char *buf;
4947 int retval;
4948 struct cgroupfs_root *root;
4949
4950 retval = -ENOMEM;
4951 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4952 if (!buf)
4953 goto out;
4954
4955 retval = -ESRCH;
4956 pid = m->private;
4957 tsk = get_pid_task(pid, PIDTYPE_PID);
4958 if (!tsk)
4959 goto out_free;
4960
4961 retval = 0;
4962
4963 mutex_lock(&cgroup_mutex);
4964
e5f6a860 4965 for_each_active_root(root) {
a424316c 4966 struct cgroup_subsys *ss;
bd89aabc 4967 struct cgroup *cgrp;
a424316c
PM
4968 int count = 0;
4969
2c6ab6d2 4970 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4971 for_each_subsys(root, ss)
4972 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4973 if (strlen(root->name))
4974 seq_printf(m, "%sname=%s", count ? "," : "",
4975 root->name);
a424316c 4976 seq_putc(m, ':');
7717f7ba 4977 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4978 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4979 if (retval < 0)
4980 goto out_unlock;
4981 seq_puts(m, buf);
4982 seq_putc(m, '\n');
4983 }
4984
4985out_unlock:
4986 mutex_unlock(&cgroup_mutex);
4987 put_task_struct(tsk);
4988out_free:
4989 kfree(buf);
4990out:
4991 return retval;
4992}
4993
a424316c
PM
4994/* Display information about each subsystem and each hierarchy */
4995static int proc_cgroupstats_show(struct seq_file *m, void *v)
4996{
4997 int i;
a424316c 4998
8bab8dde 4999 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5000 /*
5001 * ideally we don't want subsystems moving around while we do this.
5002 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5003 * subsys/hierarchy state.
5004 */
a424316c 5005 mutex_lock(&cgroup_mutex);
a424316c
PM
5006 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5007 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
5008 if (ss == NULL)
5009 continue;
2c6ab6d2
PM
5010 seq_printf(m, "%s\t%d\t%d\t%d\n",
5011 ss->name, ss->root->hierarchy_id,
8bab8dde 5012 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
5013 }
5014 mutex_unlock(&cgroup_mutex);
5015 return 0;
5016}
5017
5018static int cgroupstats_open(struct inode *inode, struct file *file)
5019{
9dce07f1 5020 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5021}
5022
828c0950 5023static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5024 .open = cgroupstats_open,
5025 .read = seq_read,
5026 .llseek = seq_lseek,
5027 .release = single_release,
5028};
5029
b4f48b63
PM
5030/**
5031 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5032 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5033 *
5034 * Description: A task inherits its parent's cgroup at fork().
5035 *
5036 * A pointer to the shared css_set was automatically copied in
5037 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5038 * it was not made under the protection of RCU or cgroup_mutex, so
5039 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5040 * have already changed current->cgroups, allowing the previously
5041 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5042 *
5043 * At the point that cgroup_fork() is called, 'current' is the parent
5044 * task, and the passed argument 'child' points to the child task.
5045 */
5046void cgroup_fork(struct task_struct *child)
5047{
9bb71308 5048 task_lock(current);
817929ec
PM
5049 child->cgroups = current->cgroups;
5050 get_css_set(child->cgroups);
9bb71308 5051 task_unlock(current);
817929ec 5052 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5053}
5054
817929ec 5055/**
a043e3b2
LZ
5056 * cgroup_post_fork - called on a new task after adding it to the task list
5057 * @child: the task in question
5058 *
5edee61e
TH
5059 * Adds the task to the list running through its css_set if necessary and
5060 * call the subsystem fork() callbacks. Has to be after the task is
5061 * visible on the task list in case we race with the first call to
5062 * cgroup_iter_start() - to guarantee that the new task ends up on its
5063 * list.
a043e3b2 5064 */
817929ec
PM
5065void cgroup_post_fork(struct task_struct *child)
5066{
5edee61e
TH
5067 int i;
5068
3ce3230a
FW
5069 /*
5070 * use_task_css_set_links is set to 1 before we walk the tasklist
5071 * under the tasklist_lock and we read it here after we added the child
5072 * to the tasklist under the tasklist_lock as well. If the child wasn't
5073 * yet in the tasklist when we walked through it from
5074 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5075 * should be visible now due to the paired locking and barriers implied
5076 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5077 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5078 * lock on fork.
5079 */
817929ec
PM
5080 if (use_task_css_set_links) {
5081 write_lock(&css_set_lock);
d8783832
TH
5082 task_lock(child);
5083 if (list_empty(&child->cg_list))
817929ec 5084 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5085 task_unlock(child);
817929ec
PM
5086 write_unlock(&css_set_lock);
5087 }
5edee61e
TH
5088
5089 /*
5090 * Call ss->fork(). This must happen after @child is linked on
5091 * css_set; otherwise, @child might change state between ->fork()
5092 * and addition to css_set.
5093 */
5094 if (need_forkexit_callback) {
7d8e0bf5
LZ
5095 /*
5096 * fork/exit callbacks are supported only for builtin
5097 * subsystems, and the builtin section of the subsys
5098 * array is immutable, so we don't need to lock the
5099 * subsys array here. On the other hand, modular section
5100 * of the array can be freed at module unload, so we
5101 * can't touch that.
5102 */
5103 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
5104 struct cgroup_subsys *ss = subsys[i];
5105
5edee61e
TH
5106 if (ss->fork)
5107 ss->fork(child);
5108 }
5109 }
817929ec 5110}
5edee61e 5111
b4f48b63
PM
5112/**
5113 * cgroup_exit - detach cgroup from exiting task
5114 * @tsk: pointer to task_struct of exiting process
a043e3b2 5115 * @run_callback: run exit callbacks?
b4f48b63
PM
5116 *
5117 * Description: Detach cgroup from @tsk and release it.
5118 *
5119 * Note that cgroups marked notify_on_release force every task in
5120 * them to take the global cgroup_mutex mutex when exiting.
5121 * This could impact scaling on very large systems. Be reluctant to
5122 * use notify_on_release cgroups where very high task exit scaling
5123 * is required on large systems.
5124 *
5125 * the_top_cgroup_hack:
5126 *
5127 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5128 *
5129 * We call cgroup_exit() while the task is still competent to
5130 * handle notify_on_release(), then leave the task attached to the
5131 * root cgroup in each hierarchy for the remainder of its exit.
5132 *
5133 * To do this properly, we would increment the reference count on
5134 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5135 * code we would add a second cgroup function call, to drop that
5136 * reference. This would just create an unnecessary hot spot on
5137 * the top_cgroup reference count, to no avail.
5138 *
5139 * Normally, holding a reference to a cgroup without bumping its
5140 * count is unsafe. The cgroup could go away, or someone could
5141 * attach us to a different cgroup, decrementing the count on
5142 * the first cgroup that we never incremented. But in this case,
5143 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5144 * which wards off any cgroup_attach_task() attempts, or task is a failed
5145 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5146 */
5147void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5148{
5abb8855 5149 struct css_set *cset;
d41d5a01 5150 int i;
817929ec
PM
5151
5152 /*
5153 * Unlink from the css_set task list if necessary.
5154 * Optimistically check cg_list before taking
5155 * css_set_lock
5156 */
5157 if (!list_empty(&tsk->cg_list)) {
5158 write_lock(&css_set_lock);
5159 if (!list_empty(&tsk->cg_list))
8d258797 5160 list_del_init(&tsk->cg_list);
817929ec
PM
5161 write_unlock(&css_set_lock);
5162 }
5163
b4f48b63
PM
5164 /* Reassign the task to the init_css_set. */
5165 task_lock(tsk);
5abb8855 5166 cset = tsk->cgroups;
817929ec 5167 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5168
5169 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5170 /*
5171 * fork/exit callbacks are supported only for builtin
5172 * subsystems, see cgroup_post_fork() for details.
5173 */
5174 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 5175 struct cgroup_subsys *ss = subsys[i];
be45c900 5176
d41d5a01
PZ
5177 if (ss->exit) {
5178 struct cgroup *old_cgrp =
5abb8855 5179 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5180 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 5181 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5182 }
5183 }
5184 }
b4f48b63 5185 task_unlock(tsk);
d41d5a01 5186
5abb8855 5187 put_css_set_taskexit(cset);
b4f48b63 5188}
697f4161 5189
bd89aabc 5190static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5191{
f50daa70 5192 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5193 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5194 /*
5195 * Control Group is currently removeable. If it's not
81a6a5cd 5196 * already queued for a userspace notification, queue
f50daa70
LZ
5197 * it now
5198 */
81a6a5cd 5199 int need_schedule_work = 0;
f50daa70 5200
cdcc136f 5201 raw_spin_lock(&release_list_lock);
54766d4a 5202 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5203 list_empty(&cgrp->release_list)) {
5204 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5205 need_schedule_work = 1;
5206 }
cdcc136f 5207 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5208 if (need_schedule_work)
5209 schedule_work(&release_agent_work);
5210 }
5211}
5212
81a6a5cd
PM
5213/*
5214 * Notify userspace when a cgroup is released, by running the
5215 * configured release agent with the name of the cgroup (path
5216 * relative to the root of cgroup file system) as the argument.
5217 *
5218 * Most likely, this user command will try to rmdir this cgroup.
5219 *
5220 * This races with the possibility that some other task will be
5221 * attached to this cgroup before it is removed, or that some other
5222 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5223 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5224 * unused, and this cgroup will be reprieved from its death sentence,
5225 * to continue to serve a useful existence. Next time it's released,
5226 * we will get notified again, if it still has 'notify_on_release' set.
5227 *
5228 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5229 * means only wait until the task is successfully execve()'d. The
5230 * separate release agent task is forked by call_usermodehelper(),
5231 * then control in this thread returns here, without waiting for the
5232 * release agent task. We don't bother to wait because the caller of
5233 * this routine has no use for the exit status of the release agent
5234 * task, so no sense holding our caller up for that.
81a6a5cd 5235 */
81a6a5cd
PM
5236static void cgroup_release_agent(struct work_struct *work)
5237{
5238 BUG_ON(work != &release_agent_work);
5239 mutex_lock(&cgroup_mutex);
cdcc136f 5240 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5241 while (!list_empty(&release_list)) {
5242 char *argv[3], *envp[3];
5243 int i;
e788e066 5244 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5245 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5246 struct cgroup,
5247 release_list);
bd89aabc 5248 list_del_init(&cgrp->release_list);
cdcc136f 5249 raw_spin_unlock(&release_list_lock);
81a6a5cd 5250 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5251 if (!pathbuf)
5252 goto continue_free;
5253 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5254 goto continue_free;
5255 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5256 if (!agentbuf)
5257 goto continue_free;
81a6a5cd
PM
5258
5259 i = 0;
e788e066
PM
5260 argv[i++] = agentbuf;
5261 argv[i++] = pathbuf;
81a6a5cd
PM
5262 argv[i] = NULL;
5263
5264 i = 0;
5265 /* minimal command environment */
5266 envp[i++] = "HOME=/";
5267 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5268 envp[i] = NULL;
5269
5270 /* Drop the lock while we invoke the usermode helper,
5271 * since the exec could involve hitting disk and hence
5272 * be a slow process */
5273 mutex_unlock(&cgroup_mutex);
5274 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5275 mutex_lock(&cgroup_mutex);
e788e066
PM
5276 continue_free:
5277 kfree(pathbuf);
5278 kfree(agentbuf);
cdcc136f 5279 raw_spin_lock(&release_list_lock);
81a6a5cd 5280 }
cdcc136f 5281 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5282 mutex_unlock(&cgroup_mutex);
5283}
8bab8dde
PM
5284
5285static int __init cgroup_disable(char *str)
5286{
5287 int i;
5288 char *token;
5289
5290 while ((token = strsep(&str, ",")) != NULL) {
5291 if (!*token)
5292 continue;
be45c900 5293 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5294 struct cgroup_subsys *ss = subsys[i];
5295
be45c900
DW
5296 /*
5297 * cgroup_disable, being at boot time, can't
5298 * know about module subsystems, so we don't
5299 * worry about them.
5300 */
5301 if (!ss || ss->module)
5302 continue;
5303
8bab8dde
PM
5304 if (!strcmp(token, ss->name)) {
5305 ss->disabled = 1;
5306 printk(KERN_INFO "Disabling %s control group"
5307 " subsystem\n", ss->name);
5308 break;
5309 }
5310 }
5311 }
5312 return 1;
5313}
5314__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5315
5316/*
5317 * Functons for CSS ID.
5318 */
5319
54766d4a 5320/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5321unsigned short css_id(struct cgroup_subsys_state *css)
5322{
7f0f1546
KH
5323 struct css_id *cssid;
5324
5325 /*
5326 * This css_id() can return correct value when somone has refcnt
5327 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5328 * it's unchanged until freed.
5329 */
d3daf28d 5330 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5331
5332 if (cssid)
5333 return cssid->id;
5334 return 0;
5335}
67523c48 5336EXPORT_SYMBOL_GPL(css_id);
38460b48 5337
747388d7
KH
5338/**
5339 * css_is_ancestor - test "root" css is an ancestor of "child"
5340 * @child: the css to be tested.
5341 * @root: the css supporsed to be an ancestor of the child.
5342 *
5343 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5344 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5345 * But, considering usual usage, the csses should be valid objects after test.
5346 * Assuming that the caller will do some action to the child if this returns
5347 * returns true, the caller must take "child";s reference count.
5348 * If "child" is valid object and this returns true, "root" is valid, too.
5349 */
5350
38460b48 5351bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5352 const struct cgroup_subsys_state *root)
38460b48 5353{
747388d7
KH
5354 struct css_id *child_id;
5355 struct css_id *root_id;
38460b48 5356
747388d7 5357 child_id = rcu_dereference(child->id);
91c63734
JW
5358 if (!child_id)
5359 return false;
747388d7 5360 root_id = rcu_dereference(root->id);
91c63734
JW
5361 if (!root_id)
5362 return false;
5363 if (child_id->depth < root_id->depth)
5364 return false;
5365 if (child_id->stack[root_id->depth] != root_id->id)
5366 return false;
5367 return true;
38460b48
KH
5368}
5369
38460b48
KH
5370void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5371{
5372 struct css_id *id = css->id;
5373 /* When this is called before css_id initialization, id can be NULL */
5374 if (!id)
5375 return;
5376
5377 BUG_ON(!ss->use_id);
5378
5379 rcu_assign_pointer(id->css, NULL);
5380 rcu_assign_pointer(css->id, NULL);
42aee6c4 5381 spin_lock(&ss->id_lock);
38460b48 5382 idr_remove(&ss->idr, id->id);
42aee6c4 5383 spin_unlock(&ss->id_lock);
025cea99 5384 kfree_rcu(id, rcu_head);
38460b48 5385}
67523c48 5386EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5387
5388/*
5389 * This is called by init or create(). Then, calls to this function are
5390 * always serialized (By cgroup_mutex() at create()).
5391 */
5392
5393static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5394{
5395 struct css_id *newid;
d228d9ec 5396 int ret, size;
38460b48
KH
5397
5398 BUG_ON(!ss->use_id);
5399
5400 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5401 newid = kzalloc(size, GFP_KERNEL);
5402 if (!newid)
5403 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5404
5405 idr_preload(GFP_KERNEL);
42aee6c4 5406 spin_lock(&ss->id_lock);
38460b48 5407 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5408 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5409 spin_unlock(&ss->id_lock);
d228d9ec 5410 idr_preload_end();
38460b48
KH
5411
5412 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5413 if (ret < 0)
38460b48 5414 goto err_out;
38460b48 5415
d228d9ec 5416 newid->id = ret;
38460b48
KH
5417 newid->depth = depth;
5418 return newid;
38460b48
KH
5419err_out:
5420 kfree(newid);
d228d9ec 5421 return ERR_PTR(ret);
38460b48
KH
5422
5423}
5424
e6a1105b
BB
5425static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5426 struct cgroup_subsys_state *rootcss)
38460b48
KH
5427{
5428 struct css_id *newid;
38460b48 5429
42aee6c4 5430 spin_lock_init(&ss->id_lock);
38460b48
KH
5431 idr_init(&ss->idr);
5432
38460b48
KH
5433 newid = get_new_cssid(ss, 0);
5434 if (IS_ERR(newid))
5435 return PTR_ERR(newid);
5436
5437 newid->stack[0] = newid->id;
5438 newid->css = rootcss;
5439 rootcss->id = newid;
5440 return 0;
5441}
5442
5443static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5444 struct cgroup *child)
5445{
5446 int subsys_id, i, depth = 0;
5447 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5448 struct css_id *child_id, *parent_id;
38460b48
KH
5449
5450 subsys_id = ss->subsys_id;
5451 parent_css = parent->subsys[subsys_id];
5452 child_css = child->subsys[subsys_id];
38460b48 5453 parent_id = parent_css->id;
94b3dd0f 5454 depth = parent_id->depth + 1;
38460b48
KH
5455
5456 child_id = get_new_cssid(ss, depth);
5457 if (IS_ERR(child_id))
5458 return PTR_ERR(child_id);
5459
5460 for (i = 0; i < depth; i++)
5461 child_id->stack[i] = parent_id->stack[i];
5462 child_id->stack[depth] = child_id->id;
5463 /*
5464 * child_id->css pointer will be set after this cgroup is available
5465 * see cgroup_populate_dir()
5466 */
5467 rcu_assign_pointer(child_css->id, child_id);
5468
5469 return 0;
5470}
5471
5472/**
5473 * css_lookup - lookup css by id
5474 * @ss: cgroup subsys to be looked into.
5475 * @id: the id
5476 *
5477 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5478 * NULL if not. Should be called under rcu_read_lock()
5479 */
5480struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5481{
5482 struct css_id *cssid = NULL;
5483
5484 BUG_ON(!ss->use_id);
5485 cssid = idr_find(&ss->idr, id);
5486
5487 if (unlikely(!cssid))
5488 return NULL;
5489
5490 return rcu_dereference(cssid->css);
5491}
67523c48 5492EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5493
e5d1367f
SE
5494/*
5495 * get corresponding css from file open on cgroupfs directory
5496 */
5497struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5498{
5499 struct cgroup *cgrp;
5500 struct inode *inode;
5501 struct cgroup_subsys_state *css;
5502
496ad9aa 5503 inode = file_inode(f);
e5d1367f
SE
5504 /* check in cgroup filesystem dir */
5505 if (inode->i_op != &cgroup_dir_inode_operations)
5506 return ERR_PTR(-EBADF);
5507
5508 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5509 return ERR_PTR(-EINVAL);
5510
5511 /* get cgroup */
5512 cgrp = __d_cgrp(f->f_dentry);
5513 css = cgrp->subsys[id];
5514 return css ? css : ERR_PTR(-ENOENT);
5515}
5516
fe693435 5517#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5518static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5519{
5520 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5521
5522 if (!css)
5523 return ERR_PTR(-ENOMEM);
5524
5525 return css;
5526}
5527
92fb9748 5528static void debug_css_free(struct cgroup *cont)
fe693435
PM
5529{
5530 kfree(cont->subsys[debug_subsys_id]);
5531}
5532
fe693435
PM
5533static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5534{
5535 return cgroup_task_count(cont);
5536}
5537
5538static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5539{
5540 return (u64)(unsigned long)current->cgroups;
5541}
5542
5543static u64 current_css_set_refcount_read(struct cgroup *cont,
5544 struct cftype *cft)
5545{
5546 u64 count;
5547
5548 rcu_read_lock();
5549 count = atomic_read(&current->cgroups->refcount);
5550 rcu_read_unlock();
5551 return count;
5552}
5553
7717f7ba
PM
5554static int current_css_set_cg_links_read(struct cgroup *cont,
5555 struct cftype *cft,
5556 struct seq_file *seq)
5557{
69d0206c 5558 struct cgrp_cset_link *link;
5abb8855 5559 struct css_set *cset;
7717f7ba
PM
5560
5561 read_lock(&css_set_lock);
5562 rcu_read_lock();
5abb8855 5563 cset = rcu_dereference(current->cgroups);
69d0206c 5564 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5565 struct cgroup *c = link->cgrp;
5566 const char *name;
5567
5568 if (c->dentry)
5569 name = c->dentry->d_name.name;
5570 else
5571 name = "?";
2c6ab6d2
PM
5572 seq_printf(seq, "Root %d group %s\n",
5573 c->root->hierarchy_id, name);
7717f7ba
PM
5574 }
5575 rcu_read_unlock();
5576 read_unlock(&css_set_lock);
5577 return 0;
5578}
5579
5580#define MAX_TASKS_SHOWN_PER_CSS 25
5581static int cgroup_css_links_read(struct cgroup *cont,
5582 struct cftype *cft,
5583 struct seq_file *seq)
5584{
69d0206c 5585 struct cgrp_cset_link *link;
7717f7ba
PM
5586
5587 read_lock(&css_set_lock);
69d0206c
TH
5588 list_for_each_entry(link, &cont->cset_links, cset_link) {
5589 struct css_set *cset = link->cset;
7717f7ba
PM
5590 struct task_struct *task;
5591 int count = 0;
5abb8855
TH
5592 seq_printf(seq, "css_set %p\n", cset);
5593 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5594 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5595 seq_puts(seq, " ...\n");
5596 break;
5597 } else {
5598 seq_printf(seq, " task %d\n",
5599 task_pid_vnr(task));
5600 }
5601 }
5602 }
5603 read_unlock(&css_set_lock);
5604 return 0;
5605}
5606
fe693435
PM
5607static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5608{
5609 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5610}
5611
5612static struct cftype debug_files[] = {
fe693435
PM
5613 {
5614 .name = "taskcount",
5615 .read_u64 = debug_taskcount_read,
5616 },
5617
5618 {
5619 .name = "current_css_set",
5620 .read_u64 = current_css_set_read,
5621 },
5622
5623 {
5624 .name = "current_css_set_refcount",
5625 .read_u64 = current_css_set_refcount_read,
5626 },
5627
7717f7ba
PM
5628 {
5629 .name = "current_css_set_cg_links",
5630 .read_seq_string = current_css_set_cg_links_read,
5631 },
5632
5633 {
5634 .name = "cgroup_css_links",
5635 .read_seq_string = cgroup_css_links_read,
5636 },
5637
fe693435
PM
5638 {
5639 .name = "releasable",
5640 .read_u64 = releasable_read,
5641 },
fe693435 5642
4baf6e33
TH
5643 { } /* terminate */
5644};
fe693435
PM
5645
5646struct cgroup_subsys debug_subsys = {
5647 .name = "debug",
92fb9748
TH
5648 .css_alloc = debug_css_alloc,
5649 .css_free = debug_css_free,
fe693435 5650 .subsys_id = debug_subsys_id,
4baf6e33 5651 .base_cftypes = debug_files,
fe693435
PM
5652};
5653#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.962291 seconds and 5 git commands to generate.