cgroup: replace error handling in cgroup_init() with WARN_ON()s
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
1ed13287
TH
106struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
8353da1f 108#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
8353da1f 111 "cgroup_mutex or RCU read lock required");
780cd8b3 112
e5fca243
TH
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
b1a21367
TH
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
3ed80a62 127/* generate an array of cgroup subsystem pointers */
073219e9 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 129static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
130#include <linux/cgroup_subsys.h>
131};
073219e9
TH
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9 139#undef SUBSYS
ddbcc7e8 140
49d1dc4b
TH
141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142#define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147#include <linux/cgroup_subsys.h>
148#undef SUBSYS
149
150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151static struct static_key_true *cgroup_subsys_enabled_key[] = {
152#include <linux/cgroup_subsys.h>
153};
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
ddbcc7e8 162/*
3dd06ffa 163 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
ddbcc7e8 166 */
a2dd4247 167struct cgroup_root cgrp_dfl_root;
d0ec4230 168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 169
a2dd4247
TH
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_root_visible;
ddbcc7e8 175
a8ddc821
TH
176/*
177 * Set by the boot param of the same name and makes subsystems with NULL
178 * ->dfl_files to use ->legacy_files on the default hierarchy.
179 */
180static bool cgroup_legacy_files_on_dfl;
181
5533e011 182/* some controllers are not supported in the default hierarchy */
8ab456ac 183static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 184
ddbcc7e8
PM
185/* The list of hierarchy roots */
186
9871bf95
TH
187static LIST_HEAD(cgroup_roots);
188static int cgroup_root_count;
ddbcc7e8 189
3417ae1f 190/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 191static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 192
794611a1 193/*
0cb51d71
TH
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
794611a1 199 */
0cb51d71 200static u64 css_serial_nr_next = 1;
794611a1 201
cb4a3167
AS
202/*
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 206 */
cb4a3167
AS
207static unsigned long have_fork_callback __read_mostly;
208static unsigned long have_exit_callback __read_mostly;
afcf6c8b 209static unsigned long have_free_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
ed27b9f7 219static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 220static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
221static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
9d755d33 223static void css_release(struct percpu_ref *ref);
f8f22e53 224static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
225static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 227 bool is_add);
42809dd4 228
fc5ed1e9
TH
229/**
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
232 *
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
236 */
237static bool cgroup_ssid_enabled(int ssid)
238{
239 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
240}
241
9e10a130
TH
242/**
243 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
244 * @cgrp: the cgroup of interest
245 *
246 * The default hierarchy is the v2 interface of cgroup and this function
247 * can be used to test whether a cgroup is on the default hierarchy for
248 * cases where a subsystem should behave differnetly depending on the
249 * interface version.
250 *
251 * The set of behaviors which change on the default hierarchy are still
252 * being determined and the mount option is prefixed with __DEVEL__.
253 *
254 * List of changed behaviors:
255 *
256 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
257 * and "name" are disallowed.
258 *
259 * - When mounting an existing superblock, mount options should match.
260 *
261 * - Remount is disallowed.
262 *
263 * - rename(2) is disallowed.
264 *
265 * - "tasks" is removed. Everything should be at process granularity. Use
266 * "cgroup.procs" instead.
267 *
268 * - "cgroup.procs" is not sorted. pids will be unique unless they got
269 * recycled inbetween reads.
270 *
271 * - "release_agent" and "notify_on_release" are removed. Replacement
272 * notification mechanism will be implemented.
273 *
274 * - "cgroup.clone_children" is removed.
275 *
276 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
277 * and its descendants contain no task; otherwise, 1. The file also
278 * generates kernfs notification which can be monitored through poll and
279 * [di]notify when the value of the file changes.
280 *
281 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
282 * take masks of ancestors with non-empty cpus/mems, instead of being
283 * moved to an ancestor.
284 *
285 * - cpuset: a task can be moved into an empty cpuset, and again it takes
286 * masks of ancestors.
287 *
288 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
289 * is not created.
290 *
291 * - blkcg: blk-throttle becomes properly hierarchical.
292 *
293 * - debug: disallowed on the default hierarchy.
294 */
295static bool cgroup_on_dfl(const struct cgroup *cgrp)
296{
297 return cgrp->root == &cgrp_dfl_root;
298}
299
6fa4918d
TH
300/* IDR wrappers which synchronize using cgroup_idr_lock */
301static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
302 gfp_t gfp_mask)
303{
304 int ret;
305
306 idr_preload(gfp_mask);
54504e97 307 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 308 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 309 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
310 idr_preload_end();
311 return ret;
312}
313
314static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315{
316 void *ret;
317
54504e97 318 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 319 ret = idr_replace(idr, ptr, id);
54504e97 320 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
321 return ret;
322}
323
324static void cgroup_idr_remove(struct idr *idr, int id)
325{
54504e97 326 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 327 idr_remove(idr, id);
54504e97 328 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
329}
330
d51f39b0
TH
331static struct cgroup *cgroup_parent(struct cgroup *cgrp)
332{
333 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
334
335 if (parent_css)
336 return container_of(parent_css, struct cgroup, self);
337 return NULL;
338}
339
95109b62
TH
340/**
341 * cgroup_css - obtain a cgroup's css for the specified subsystem
342 * @cgrp: the cgroup of interest
9d800df1 343 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 344 *
ca8bdcaf
TH
345 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
346 * function must be called either under cgroup_mutex or rcu_read_lock() and
347 * the caller is responsible for pinning the returned css if it wants to
348 * keep accessing it outside the said locks. This function may return
349 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
350 */
351static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 352 struct cgroup_subsys *ss)
95109b62 353{
ca8bdcaf 354 if (ss)
aec25020 355 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 356 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 357 else
9d800df1 358 return &cgrp->self;
95109b62 359}
42809dd4 360
aec3dfcb
TH
361/**
362 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
363 * @cgrp: the cgroup of interest
9d800df1 364 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 365 *
d0f702e6 366 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
367 * as the matching css of the nearest ancestor including self which has @ss
368 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
369 * function is guaranteed to return non-NULL css.
370 */
371static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
372 struct cgroup_subsys *ss)
373{
374 lockdep_assert_held(&cgroup_mutex);
375
376 if (!ss)
9d800df1 377 return &cgrp->self;
aec3dfcb
TH
378
379 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
380 return NULL;
381
eeecbd19
TH
382 /*
383 * This function is used while updating css associations and thus
384 * can't test the csses directly. Use ->child_subsys_mask.
385 */
d51f39b0
TH
386 while (cgroup_parent(cgrp) &&
387 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
388 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
389
390 return cgroup_css(cgrp, ss);
95109b62 391}
42809dd4 392
eeecbd19
TH
393/**
394 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
395 * @cgrp: the cgroup of interest
396 * @ss: the subsystem of interest
397 *
398 * Find and get the effective css of @cgrp for @ss. The effective css is
399 * defined as the matching css of the nearest ancestor including self which
400 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
401 * the root css is returned, so this function always returns a valid css.
402 * The returned css must be put using css_put().
403 */
404struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
405 struct cgroup_subsys *ss)
406{
407 struct cgroup_subsys_state *css;
408
409 rcu_read_lock();
410
411 do {
412 css = cgroup_css(cgrp, ss);
413
414 if (css && css_tryget_online(css))
415 goto out_unlock;
416 cgrp = cgroup_parent(cgrp);
417 } while (cgrp);
418
419 css = init_css_set.subsys[ss->id];
420 css_get(css);
421out_unlock:
422 rcu_read_unlock();
423 return css;
424}
425
ddbcc7e8 426/* convenient tests for these bits */
54766d4a 427static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 428{
184faf32 429 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
430}
431
052c3f3a
TH
432static void cgroup_get(struct cgroup *cgrp)
433{
434 WARN_ON_ONCE(cgroup_is_dead(cgrp));
435 css_get(&cgrp->self);
436}
437
438static bool cgroup_tryget(struct cgroup *cgrp)
439{
440 return css_tryget(&cgrp->self);
441}
442
443static void cgroup_put(struct cgroup *cgrp)
444{
445 css_put(&cgrp->self);
446}
447
b4168640 448struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 449{
2bd59d48 450 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 451 struct cftype *cft = of_cft(of);
2bd59d48
TH
452
453 /*
454 * This is open and unprotected implementation of cgroup_css().
455 * seq_css() is only called from a kernfs file operation which has
456 * an active reference on the file. Because all the subsystem
457 * files are drained before a css is disassociated with a cgroup,
458 * the matching css from the cgroup's subsys table is guaranteed to
459 * be and stay valid until the enclosing operation is complete.
460 */
461 if (cft->ss)
462 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
463 else
9d800df1 464 return &cgrp->self;
59f5296b 465}
b4168640 466EXPORT_SYMBOL_GPL(of_css);
59f5296b 467
78574cf9
LZ
468/**
469 * cgroup_is_descendant - test ancestry
470 * @cgrp: the cgroup to be tested
471 * @ancestor: possible ancestor of @cgrp
472 *
473 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
474 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
475 * and @ancestor are accessible.
476 */
477bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
478{
479 while (cgrp) {
480 if (cgrp == ancestor)
481 return true;
d51f39b0 482 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
483 }
484 return false;
485}
ddbcc7e8 486
e9685a03 487static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 488{
bd89aabc 489 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
490}
491
1c6727af
TH
492/**
493 * for_each_css - iterate all css's of a cgroup
494 * @css: the iteration cursor
495 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
496 * @cgrp: the target cgroup to iterate css's of
497 *
aec3dfcb 498 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
499 */
500#define for_each_css(css, ssid, cgrp) \
501 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
502 if (!((css) = rcu_dereference_check( \
503 (cgrp)->subsys[(ssid)], \
504 lockdep_is_held(&cgroup_mutex)))) { } \
505 else
506
aec3dfcb
TH
507/**
508 * for_each_e_css - iterate all effective css's of a cgroup
509 * @css: the iteration cursor
510 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
511 * @cgrp: the target cgroup to iterate css's of
512 *
513 * Should be called under cgroup_[tree_]mutex.
514 */
515#define for_each_e_css(css, ssid, cgrp) \
516 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
517 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
518 ; \
519 else
520
30159ec7 521/**
3ed80a62 522 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 523 * @ss: the iteration cursor
780cd8b3 524 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 525 */
780cd8b3 526#define for_each_subsys(ss, ssid) \
3ed80a62
TH
527 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
528 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 529
cb4a3167
AS
530/**
531 * for_each_subsys_which - filter for_each_subsys with a bitmask
532 * @ss: the iteration cursor
533 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
534 * @ss_maskp: a pointer to the bitmask
535 *
536 * The block will only run for cases where the ssid-th bit (1 << ssid) of
537 * mask is set to 1.
538 */
539#define for_each_subsys_which(ss, ssid, ss_maskp) \
540 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 541 (ssid) = 0; \
cb4a3167
AS
542 else \
543 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
544 if (((ss) = cgroup_subsys[ssid]) && false) \
545 break; \
546 else
547
985ed670
TH
548/* iterate across the hierarchies */
549#define for_each_root(root) \
5549c497 550 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 551
f8f22e53
TH
552/* iterate over child cgrps, lock should be held throughout iteration */
553#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 554 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 555 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
556 cgroup_is_dead(child); })) \
557 ; \
558 else
7ae1bad9 559
81a6a5cd 560static void cgroup_release_agent(struct work_struct *work);
bd89aabc 561static void check_for_release(struct cgroup *cgrp);
81a6a5cd 562
69d0206c
TH
563/*
564 * A cgroup can be associated with multiple css_sets as different tasks may
565 * belong to different cgroups on different hierarchies. In the other
566 * direction, a css_set is naturally associated with multiple cgroups.
567 * This M:N relationship is represented by the following link structure
568 * which exists for each association and allows traversing the associations
569 * from both sides.
570 */
571struct cgrp_cset_link {
572 /* the cgroup and css_set this link associates */
573 struct cgroup *cgrp;
574 struct css_set *cset;
575
576 /* list of cgrp_cset_links anchored at cgrp->cset_links */
577 struct list_head cset_link;
578
579 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
580 struct list_head cgrp_link;
817929ec
PM
581};
582
172a2c06
TH
583/*
584 * The default css_set - used by init and its children prior to any
817929ec
PM
585 * hierarchies being mounted. It contains a pointer to the root state
586 * for each subsystem. Also used to anchor the list of css_sets. Not
587 * reference-counted, to improve performance when child cgroups
588 * haven't been created.
589 */
5024ae29 590struct css_set init_css_set = {
172a2c06
TH
591 .refcount = ATOMIC_INIT(1),
592 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
593 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
594 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
595 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
596 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 597 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 598};
817929ec 599
172a2c06 600static int css_set_count = 1; /* 1 for init_css_set */
817929ec 601
0de0942d
TH
602/**
603 * css_set_populated - does a css_set contain any tasks?
604 * @cset: target css_set
605 */
606static bool css_set_populated(struct css_set *cset)
607{
f0d9a5f1 608 lockdep_assert_held(&css_set_lock);
0de0942d
TH
609
610 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
611}
612
842b597e
TH
613/**
614 * cgroup_update_populated - updated populated count of a cgroup
615 * @cgrp: the target cgroup
616 * @populated: inc or dec populated count
617 *
0de0942d
TH
618 * One of the css_sets associated with @cgrp is either getting its first
619 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
620 * count is propagated towards root so that a given cgroup's populated_cnt
621 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
622 *
623 * @cgrp's interface file "cgroup.populated" is zero if
624 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
625 * changes from or to zero, userland is notified that the content of the
626 * interface file has changed. This can be used to detect when @cgrp and
627 * its descendants become populated or empty.
628 */
629static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
630{
f0d9a5f1 631 lockdep_assert_held(&css_set_lock);
842b597e
TH
632
633 do {
634 bool trigger;
635
636 if (populated)
637 trigger = !cgrp->populated_cnt++;
638 else
639 trigger = !--cgrp->populated_cnt;
640
641 if (!trigger)
642 break;
643
ad2ed2b3 644 check_for_release(cgrp);
6f60eade
TH
645 cgroup_file_notify(&cgrp->events_file);
646
d51f39b0 647 cgrp = cgroup_parent(cgrp);
842b597e
TH
648 } while (cgrp);
649}
650
0de0942d
TH
651/**
652 * css_set_update_populated - update populated state of a css_set
653 * @cset: target css_set
654 * @populated: whether @cset is populated or depopulated
655 *
656 * @cset is either getting the first task or losing the last. Update the
657 * ->populated_cnt of all associated cgroups accordingly.
658 */
659static void css_set_update_populated(struct css_set *cset, bool populated)
660{
661 struct cgrp_cset_link *link;
662
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
0de0942d
TH
664
665 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
666 cgroup_update_populated(link->cgrp, populated);
667}
668
f6d7d049
TH
669/**
670 * css_set_move_task - move a task from one css_set to another
671 * @task: task being moved
672 * @from_cset: css_set @task currently belongs to (may be NULL)
673 * @to_cset: new css_set @task is being moved to (may be NULL)
674 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
675 *
676 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
677 * css_set, @from_cset can be NULL. If @task is being disassociated
678 * instead of moved, @to_cset can be NULL.
679 *
ed27b9f7
TH
680 * This function automatically handles populated_cnt updates and
681 * css_task_iter adjustments but the caller is responsible for managing
682 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
683 */
684static void css_set_move_task(struct task_struct *task,
685 struct css_set *from_cset, struct css_set *to_cset,
686 bool use_mg_tasks)
687{
f0d9a5f1 688 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
689
690 if (from_cset) {
ed27b9f7
TH
691 struct css_task_iter *it, *pos;
692
f6d7d049 693 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
694
695 /*
696 * @task is leaving, advance task iterators which are
697 * pointing to it so that they can resume at the next
698 * position. Advancing an iterator might remove it from
699 * the list, use safe walk. See css_task_iter_advance*()
700 * for details.
701 */
702 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
703 iters_node)
704 if (it->task_pos == &task->cg_list)
705 css_task_iter_advance(it);
706
f6d7d049
TH
707 list_del_init(&task->cg_list);
708 if (!css_set_populated(from_cset))
709 css_set_update_populated(from_cset, false);
710 } else {
711 WARN_ON_ONCE(!list_empty(&task->cg_list));
712 }
713
714 if (to_cset) {
715 /*
716 * We are synchronized through cgroup_threadgroup_rwsem
717 * against PF_EXITING setting such that we can't race
718 * against cgroup_exit() changing the css_set to
719 * init_css_set and dropping the old one.
720 */
721 WARN_ON_ONCE(task->flags & PF_EXITING);
722
723 if (!css_set_populated(to_cset))
724 css_set_update_populated(to_cset, true);
725 rcu_assign_pointer(task->cgroups, to_cset);
726 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
727 &to_cset->tasks);
728 }
729}
730
7717f7ba
PM
731/*
732 * hash table for cgroup groups. This improves the performance to find
733 * an existing css_set. This hash doesn't (currently) take into
734 * account cgroups in empty hierarchies.
735 */
472b1053 736#define CSS_SET_HASH_BITS 7
0ac801fe 737static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 738
0ac801fe 739static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 740{
0ac801fe 741 unsigned long key = 0UL;
30159ec7
TH
742 struct cgroup_subsys *ss;
743 int i;
472b1053 744
30159ec7 745 for_each_subsys(ss, i)
0ac801fe
LZ
746 key += (unsigned long)css[i];
747 key = (key >> 16) ^ key;
472b1053 748
0ac801fe 749 return key;
472b1053
LZ
750}
751
a25eb52e 752static void put_css_set_locked(struct css_set *cset)
b4f48b63 753{
69d0206c 754 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
755 struct cgroup_subsys *ss;
756 int ssid;
5abb8855 757
f0d9a5f1 758 lockdep_assert_held(&css_set_lock);
89c5509b
TH
759
760 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 761 return;
81a6a5cd 762
2c6ab6d2 763 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
764 for_each_subsys(ss, ssid)
765 list_del(&cset->e_cset_node[ssid]);
5abb8855 766 hash_del(&cset->hlist);
2c6ab6d2
PM
767 css_set_count--;
768
69d0206c 769 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
770 list_del(&link->cset_link);
771 list_del(&link->cgrp_link);
2ceb231b
TH
772 if (cgroup_parent(link->cgrp))
773 cgroup_put(link->cgrp);
2c6ab6d2 774 kfree(link);
81a6a5cd 775 }
2c6ab6d2 776
5abb8855 777 kfree_rcu(cset, rcu_head);
b4f48b63
PM
778}
779
a25eb52e 780static void put_css_set(struct css_set *cset)
89c5509b
TH
781{
782 /*
783 * Ensure that the refcount doesn't hit zero while any readers
784 * can see it. Similar to atomic_dec_and_lock(), but for an
785 * rwlock
786 */
787 if (atomic_add_unless(&cset->refcount, -1, 1))
788 return;
789
f0d9a5f1 790 spin_lock_bh(&css_set_lock);
a25eb52e 791 put_css_set_locked(cset);
f0d9a5f1 792 spin_unlock_bh(&css_set_lock);
89c5509b
TH
793}
794
817929ec
PM
795/*
796 * refcounted get/put for css_set objects
797 */
5abb8855 798static inline void get_css_set(struct css_set *cset)
817929ec 799{
5abb8855 800 atomic_inc(&cset->refcount);
817929ec
PM
801}
802
b326f9d0 803/**
7717f7ba 804 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
805 * @cset: candidate css_set being tested
806 * @old_cset: existing css_set for a task
7717f7ba
PM
807 * @new_cgrp: cgroup that's being entered by the task
808 * @template: desired set of css pointers in css_set (pre-calculated)
809 *
6f4b7e63 810 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
811 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
812 */
5abb8855
TH
813static bool compare_css_sets(struct css_set *cset,
814 struct css_set *old_cset,
7717f7ba
PM
815 struct cgroup *new_cgrp,
816 struct cgroup_subsys_state *template[])
817{
818 struct list_head *l1, *l2;
819
aec3dfcb
TH
820 /*
821 * On the default hierarchy, there can be csets which are
822 * associated with the same set of cgroups but different csses.
823 * Let's first ensure that csses match.
824 */
825 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 826 return false;
7717f7ba
PM
827
828 /*
829 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
830 * different cgroups in hierarchies. As different cgroups may
831 * share the same effective css, this comparison is always
832 * necessary.
7717f7ba 833 */
69d0206c
TH
834 l1 = &cset->cgrp_links;
835 l2 = &old_cset->cgrp_links;
7717f7ba 836 while (1) {
69d0206c 837 struct cgrp_cset_link *link1, *link2;
5abb8855 838 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
839
840 l1 = l1->next;
841 l2 = l2->next;
842 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
843 if (l1 == &cset->cgrp_links) {
844 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
845 break;
846 } else {
69d0206c 847 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
848 }
849 /* Locate the cgroups associated with these links. */
69d0206c
TH
850 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
851 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
852 cgrp1 = link1->cgrp;
853 cgrp2 = link2->cgrp;
7717f7ba 854 /* Hierarchies should be linked in the same order. */
5abb8855 855 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
856
857 /*
858 * If this hierarchy is the hierarchy of the cgroup
859 * that's changing, then we need to check that this
860 * css_set points to the new cgroup; if it's any other
861 * hierarchy, then this css_set should point to the
862 * same cgroup as the old css_set.
863 */
5abb8855
TH
864 if (cgrp1->root == new_cgrp->root) {
865 if (cgrp1 != new_cgrp)
7717f7ba
PM
866 return false;
867 } else {
5abb8855 868 if (cgrp1 != cgrp2)
7717f7ba
PM
869 return false;
870 }
871 }
872 return true;
873}
874
b326f9d0
TH
875/**
876 * find_existing_css_set - init css array and find the matching css_set
877 * @old_cset: the css_set that we're using before the cgroup transition
878 * @cgrp: the cgroup that we're moving into
879 * @template: out param for the new set of csses, should be clear on entry
817929ec 880 */
5abb8855
TH
881static struct css_set *find_existing_css_set(struct css_set *old_cset,
882 struct cgroup *cgrp,
883 struct cgroup_subsys_state *template[])
b4f48b63 884{
3dd06ffa 885 struct cgroup_root *root = cgrp->root;
30159ec7 886 struct cgroup_subsys *ss;
5abb8855 887 struct css_set *cset;
0ac801fe 888 unsigned long key;
b326f9d0 889 int i;
817929ec 890
aae8aab4
BB
891 /*
892 * Build the set of subsystem state objects that we want to see in the
893 * new css_set. while subsystems can change globally, the entries here
894 * won't change, so no need for locking.
895 */
30159ec7 896 for_each_subsys(ss, i) {
f392e51c 897 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
898 /*
899 * @ss is in this hierarchy, so we want the
900 * effective css from @cgrp.
901 */
902 template[i] = cgroup_e_css(cgrp, ss);
817929ec 903 } else {
aec3dfcb
TH
904 /*
905 * @ss is not in this hierarchy, so we don't want
906 * to change the css.
907 */
5abb8855 908 template[i] = old_cset->subsys[i];
817929ec
PM
909 }
910 }
911
0ac801fe 912 key = css_set_hash(template);
5abb8855
TH
913 hash_for_each_possible(css_set_table, cset, hlist, key) {
914 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
915 continue;
916
917 /* This css_set matches what we need */
5abb8855 918 return cset;
472b1053 919 }
817929ec
PM
920
921 /* No existing cgroup group matched */
922 return NULL;
923}
924
69d0206c 925static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 926{
69d0206c 927 struct cgrp_cset_link *link, *tmp_link;
36553434 928
69d0206c
TH
929 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
930 list_del(&link->cset_link);
36553434
LZ
931 kfree(link);
932 }
933}
934
69d0206c
TH
935/**
936 * allocate_cgrp_cset_links - allocate cgrp_cset_links
937 * @count: the number of links to allocate
938 * @tmp_links: list_head the allocated links are put on
939 *
940 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
941 * through ->cset_link. Returns 0 on success or -errno.
817929ec 942 */
69d0206c 943static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 944{
69d0206c 945 struct cgrp_cset_link *link;
817929ec 946 int i;
69d0206c
TH
947
948 INIT_LIST_HEAD(tmp_links);
949
817929ec 950 for (i = 0; i < count; i++) {
f4f4be2b 951 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 952 if (!link) {
69d0206c 953 free_cgrp_cset_links(tmp_links);
817929ec
PM
954 return -ENOMEM;
955 }
69d0206c 956 list_add(&link->cset_link, tmp_links);
817929ec
PM
957 }
958 return 0;
959}
960
c12f65d4
LZ
961/**
962 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 963 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 964 * @cset: the css_set to be linked
c12f65d4
LZ
965 * @cgrp: the destination cgroup
966 */
69d0206c
TH
967static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
968 struct cgroup *cgrp)
c12f65d4 969{
69d0206c 970 struct cgrp_cset_link *link;
c12f65d4 971
69d0206c 972 BUG_ON(list_empty(tmp_links));
6803c006
TH
973
974 if (cgroup_on_dfl(cgrp))
975 cset->dfl_cgrp = cgrp;
976
69d0206c
TH
977 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
978 link->cset = cset;
7717f7ba 979 link->cgrp = cgrp;
842b597e 980
7717f7ba 981 /*
389b9c1b
TH
982 * Always add links to the tail of the lists so that the lists are
983 * in choronological order.
7717f7ba 984 */
389b9c1b 985 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 986 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
987
988 if (cgroup_parent(cgrp))
989 cgroup_get(cgrp);
c12f65d4
LZ
990}
991
b326f9d0
TH
992/**
993 * find_css_set - return a new css_set with one cgroup updated
994 * @old_cset: the baseline css_set
995 * @cgrp: the cgroup to be updated
996 *
997 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
998 * substituted into the appropriate hierarchy.
817929ec 999 */
5abb8855
TH
1000static struct css_set *find_css_set(struct css_set *old_cset,
1001 struct cgroup *cgrp)
817929ec 1002{
b326f9d0 1003 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1004 struct css_set *cset;
69d0206c
TH
1005 struct list_head tmp_links;
1006 struct cgrp_cset_link *link;
2d8f243a 1007 struct cgroup_subsys *ss;
0ac801fe 1008 unsigned long key;
2d8f243a 1009 int ssid;
472b1053 1010
b326f9d0
TH
1011 lockdep_assert_held(&cgroup_mutex);
1012
817929ec
PM
1013 /* First see if we already have a cgroup group that matches
1014 * the desired set */
f0d9a5f1 1015 spin_lock_bh(&css_set_lock);
5abb8855
TH
1016 cset = find_existing_css_set(old_cset, cgrp, template);
1017 if (cset)
1018 get_css_set(cset);
f0d9a5f1 1019 spin_unlock_bh(&css_set_lock);
817929ec 1020
5abb8855
TH
1021 if (cset)
1022 return cset;
817929ec 1023
f4f4be2b 1024 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1025 if (!cset)
817929ec
PM
1026 return NULL;
1027
69d0206c 1028 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1029 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1030 kfree(cset);
817929ec
PM
1031 return NULL;
1032 }
1033
5abb8855 1034 atomic_set(&cset->refcount, 1);
69d0206c 1035 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1036 INIT_LIST_HEAD(&cset->tasks);
c7561128 1037 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1038 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1039 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1040 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1041 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1042
1043 /* Copy the set of subsystem state objects generated in
1044 * find_existing_css_set() */
5abb8855 1045 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1046
f0d9a5f1 1047 spin_lock_bh(&css_set_lock);
817929ec 1048 /* Add reference counts and links from the new css_set. */
69d0206c 1049 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1050 struct cgroup *c = link->cgrp;
69d0206c 1051
7717f7ba
PM
1052 if (c->root == cgrp->root)
1053 c = cgrp;
69d0206c 1054 link_css_set(&tmp_links, cset, c);
7717f7ba 1055 }
817929ec 1056
69d0206c 1057 BUG_ON(!list_empty(&tmp_links));
817929ec 1058
817929ec 1059 css_set_count++;
472b1053 1060
2d8f243a 1061 /* Add @cset to the hash table */
5abb8855
TH
1062 key = css_set_hash(cset->subsys);
1063 hash_add(css_set_table, &cset->hlist, key);
472b1053 1064
2d8f243a
TH
1065 for_each_subsys(ss, ssid)
1066 list_add_tail(&cset->e_cset_node[ssid],
1067 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1068
f0d9a5f1 1069 spin_unlock_bh(&css_set_lock);
817929ec 1070
5abb8855 1071 return cset;
b4f48b63
PM
1072}
1073
3dd06ffa 1074static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1075{
3dd06ffa 1076 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1077
3dd06ffa 1078 return root_cgrp->root;
2bd59d48
TH
1079}
1080
3dd06ffa 1081static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1082{
1083 int id;
1084
1085 lockdep_assert_held(&cgroup_mutex);
1086
985ed670 1087 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1088 if (id < 0)
1089 return id;
1090
1091 root->hierarchy_id = id;
1092 return 0;
1093}
1094
3dd06ffa 1095static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1096{
1097 lockdep_assert_held(&cgroup_mutex);
1098
1099 if (root->hierarchy_id) {
1100 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1101 root->hierarchy_id = 0;
1102 }
1103}
1104
3dd06ffa 1105static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1106{
1107 if (root) {
d0f702e6 1108 /* hierarchy ID should already have been released */
f2e85d57
TH
1109 WARN_ON_ONCE(root->hierarchy_id);
1110
1111 idr_destroy(&root->cgroup_idr);
1112 kfree(root);
1113 }
1114}
1115
3dd06ffa 1116static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1117{
3dd06ffa 1118 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1119 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1120
2bd59d48 1121 mutex_lock(&cgroup_mutex);
f2e85d57 1122
776f02fa 1123 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1124 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1125
f2e85d57 1126 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1127 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1128
7717f7ba 1129 /*
f2e85d57
TH
1130 * Release all the links from cset_links to this hierarchy's
1131 * root cgroup
7717f7ba 1132 */
f0d9a5f1 1133 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1134
1135 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1136 list_del(&link->cset_link);
1137 list_del(&link->cgrp_link);
1138 kfree(link);
1139 }
f0d9a5f1
TH
1140
1141 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1142
1143 if (!list_empty(&root->root_list)) {
1144 list_del(&root->root_list);
1145 cgroup_root_count--;
1146 }
1147
1148 cgroup_exit_root_id(root);
1149
1150 mutex_unlock(&cgroup_mutex);
f2e85d57 1151
2bd59d48 1152 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1153 cgroup_free_root(root);
1154}
1155
ceb6a081
TH
1156/* look up cgroup associated with given css_set on the specified hierarchy */
1157static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1158 struct cgroup_root *root)
7717f7ba 1159{
7717f7ba
PM
1160 struct cgroup *res = NULL;
1161
96d365e0 1162 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1163 lockdep_assert_held(&css_set_lock);
96d365e0 1164
5abb8855 1165 if (cset == &init_css_set) {
3dd06ffa 1166 res = &root->cgrp;
7717f7ba 1167 } else {
69d0206c
TH
1168 struct cgrp_cset_link *link;
1169
1170 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1171 struct cgroup *c = link->cgrp;
69d0206c 1172
7717f7ba
PM
1173 if (c->root == root) {
1174 res = c;
1175 break;
1176 }
1177 }
1178 }
96d365e0 1179
7717f7ba
PM
1180 BUG_ON(!res);
1181 return res;
1182}
1183
ddbcc7e8 1184/*
ceb6a081 1185 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1186 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1187 */
1188static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1189 struct cgroup_root *root)
ceb6a081
TH
1190{
1191 /*
1192 * No need to lock the task - since we hold cgroup_mutex the
1193 * task can't change groups, so the only thing that can happen
1194 * is that it exits and its css is set back to init_css_set.
1195 */
1196 return cset_cgroup_from_root(task_css_set(task), root);
1197}
1198
ddbcc7e8 1199/*
ddbcc7e8
PM
1200 * A task must hold cgroup_mutex to modify cgroups.
1201 *
1202 * Any task can increment and decrement the count field without lock.
1203 * So in general, code holding cgroup_mutex can't rely on the count
1204 * field not changing. However, if the count goes to zero, then only
956db3ca 1205 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1206 * means that no tasks are currently attached, therefore there is no
1207 * way a task attached to that cgroup can fork (the other way to
1208 * increment the count). So code holding cgroup_mutex can safely
1209 * assume that if the count is zero, it will stay zero. Similarly, if
1210 * a task holds cgroup_mutex on a cgroup with zero count, it
1211 * knows that the cgroup won't be removed, as cgroup_rmdir()
1212 * needs that mutex.
1213 *
ddbcc7e8
PM
1214 * A cgroup can only be deleted if both its 'count' of using tasks
1215 * is zero, and its list of 'children' cgroups is empty. Since all
1216 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1217 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1218 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1219 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1220 *
1221 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1222 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1223 */
1224
2bd59d48 1225static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1226static const struct file_operations proc_cgroupstats_operations;
a424316c 1227
8d7e6fb0
TH
1228static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1229 char *buf)
ddbcc7e8 1230{
3e1d2eed
TH
1231 struct cgroup_subsys *ss = cft->ss;
1232
8d7e6fb0
TH
1233 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1234 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1235 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1236 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1237 cft->name);
8d7e6fb0
TH
1238 else
1239 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1240 return buf;
ddbcc7e8
PM
1241}
1242
f2e85d57
TH
1243/**
1244 * cgroup_file_mode - deduce file mode of a control file
1245 * @cft: the control file in question
1246 *
7dbdb199 1247 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1248 */
1249static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1250{
f2e85d57 1251 umode_t mode = 0;
65dff759 1252
f2e85d57
TH
1253 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1254 mode |= S_IRUGO;
1255
7dbdb199
TH
1256 if (cft->write_u64 || cft->write_s64 || cft->write) {
1257 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1258 mode |= S_IWUGO;
1259 else
1260 mode |= S_IWUSR;
1261 }
f2e85d57
TH
1262
1263 return mode;
65dff759
LZ
1264}
1265
af0ba678 1266/**
0f060deb 1267 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1268 * @cgrp: the target cgroup
0f060deb 1269 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1270 *
1271 * On the default hierarchy, a subsystem may request other subsystems to be
1272 * enabled together through its ->depends_on mask. In such cases, more
1273 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1274 *
0f060deb
TH
1275 * This function calculates which subsystems need to be enabled if
1276 * @subtree_control is to be applied to @cgrp. The returned mask is always
1277 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1278 */
8ab456ac
AS
1279static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1280 unsigned long subtree_control)
667c2491 1281{
af0ba678 1282 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1283 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1284 struct cgroup_subsys *ss;
1285 int ssid;
1286
1287 lockdep_assert_held(&cgroup_mutex);
1288
0f060deb
TH
1289 if (!cgroup_on_dfl(cgrp))
1290 return cur_ss_mask;
af0ba678
TH
1291
1292 while (true) {
8ab456ac 1293 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1294
a966a4ed
AS
1295 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1296 new_ss_mask |= ss->depends_on;
af0ba678
TH
1297
1298 /*
1299 * Mask out subsystems which aren't available. This can
1300 * happen only if some depended-upon subsystems were bound
1301 * to non-default hierarchies.
1302 */
1303 if (parent)
1304 new_ss_mask &= parent->child_subsys_mask;
1305 else
1306 new_ss_mask &= cgrp->root->subsys_mask;
1307
1308 if (new_ss_mask == cur_ss_mask)
1309 break;
1310 cur_ss_mask = new_ss_mask;
1311 }
1312
0f060deb
TH
1313 return cur_ss_mask;
1314}
1315
1316/**
1317 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1318 * @cgrp: the target cgroup
1319 *
1320 * Update @cgrp->child_subsys_mask according to the current
1321 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1322 */
1323static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1324{
1325 cgrp->child_subsys_mask =
1326 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1327}
1328
a9746d8d
TH
1329/**
1330 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1331 * @kn: the kernfs_node being serviced
1332 *
1333 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1334 * the method finishes if locking succeeded. Note that once this function
1335 * returns the cgroup returned by cgroup_kn_lock_live() may become
1336 * inaccessible any time. If the caller intends to continue to access the
1337 * cgroup, it should pin it before invoking this function.
1338 */
1339static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1340{
a9746d8d
TH
1341 struct cgroup *cgrp;
1342
1343 if (kernfs_type(kn) == KERNFS_DIR)
1344 cgrp = kn->priv;
1345 else
1346 cgrp = kn->parent->priv;
1347
1348 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1349
1350 kernfs_unbreak_active_protection(kn);
1351 cgroup_put(cgrp);
ddbcc7e8
PM
1352}
1353
a9746d8d
TH
1354/**
1355 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1356 * @kn: the kernfs_node being serviced
1357 *
1358 * This helper is to be used by a cgroup kernfs method currently servicing
1359 * @kn. It breaks the active protection, performs cgroup locking and
1360 * verifies that the associated cgroup is alive. Returns the cgroup if
1361 * alive; otherwise, %NULL. A successful return should be undone by a
1362 * matching cgroup_kn_unlock() invocation.
1363 *
1364 * Any cgroup kernfs method implementation which requires locking the
1365 * associated cgroup should use this helper. It avoids nesting cgroup
1366 * locking under kernfs active protection and allows all kernfs operations
1367 * including self-removal.
1368 */
1369static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1370{
a9746d8d
TH
1371 struct cgroup *cgrp;
1372
1373 if (kernfs_type(kn) == KERNFS_DIR)
1374 cgrp = kn->priv;
1375 else
1376 cgrp = kn->parent->priv;
05ef1d7c 1377
2739d3cc 1378 /*
01f6474c 1379 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1380 * active_ref. cgroup liveliness check alone provides enough
1381 * protection against removal. Ensure @cgrp stays accessible and
1382 * break the active_ref protection.
2739d3cc 1383 */
aa32362f
LZ
1384 if (!cgroup_tryget(cgrp))
1385 return NULL;
a9746d8d
TH
1386 kernfs_break_active_protection(kn);
1387
2bd59d48 1388 mutex_lock(&cgroup_mutex);
05ef1d7c 1389
a9746d8d
TH
1390 if (!cgroup_is_dead(cgrp))
1391 return cgrp;
1392
1393 cgroup_kn_unlock(kn);
1394 return NULL;
ddbcc7e8 1395}
05ef1d7c 1396
2739d3cc 1397static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1398{
2bd59d48 1399 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1400
01f6474c 1401 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1402 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1403}
1404
13af07df 1405/**
4df8dc90
TH
1406 * css_clear_dir - remove subsys files in a cgroup directory
1407 * @css: taget css
1408 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1409 */
4df8dc90
TH
1410static void css_clear_dir(struct cgroup_subsys_state *css,
1411 struct cgroup *cgrp_override)
05ef1d7c 1412{
4df8dc90
TH
1413 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1414 struct cftype *cfts;
05ef1d7c 1415
4df8dc90
TH
1416 list_for_each_entry(cfts, &css->ss->cfts, node)
1417 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1418}
1419
ccdca218 1420/**
4df8dc90
TH
1421 * css_populate_dir - create subsys files in a cgroup directory
1422 * @css: target css
1423 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1424 *
1425 * On failure, no file is added.
1426 */
4df8dc90
TH
1427static int css_populate_dir(struct cgroup_subsys_state *css,
1428 struct cgroup *cgrp_override)
ccdca218 1429{
4df8dc90
TH
1430 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1431 struct cftype *cfts, *failed_cfts;
1432 int ret;
ccdca218 1433
4df8dc90
TH
1434 if (!css->ss) {
1435 if (cgroup_on_dfl(cgrp))
1436 cfts = cgroup_dfl_base_files;
1437 else
1438 cfts = cgroup_legacy_base_files;
ccdca218 1439
4df8dc90
TH
1440 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1441 }
ccdca218 1442
4df8dc90
TH
1443 list_for_each_entry(cfts, &css->ss->cfts, node) {
1444 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1445 if (ret < 0) {
1446 failed_cfts = cfts;
1447 goto err;
ccdca218
TH
1448 }
1449 }
1450 return 0;
1451err:
4df8dc90
TH
1452 list_for_each_entry(cfts, &css->ss->cfts, node) {
1453 if (cfts == failed_cfts)
1454 break;
1455 cgroup_addrm_files(css, cgrp, cfts, false);
1456 }
ccdca218
TH
1457 return ret;
1458}
1459
8ab456ac
AS
1460static int rebind_subsystems(struct cgroup_root *dst_root,
1461 unsigned long ss_mask)
ddbcc7e8 1462{
1ada4838 1463 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1464 struct cgroup_subsys *ss;
8ab456ac 1465 unsigned long tmp_ss_mask;
2d8f243a 1466 int ssid, i, ret;
ddbcc7e8 1467
ace2bee8 1468 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1469
a966a4ed 1470 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1471 /* if @ss has non-root csses attached to it, can't move */
1472 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1473 return -EBUSY;
1d5be6b2 1474
5df36032 1475 /* can't move between two non-dummy roots either */
7fd8c565 1476 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1477 return -EBUSY;
ddbcc7e8
PM
1478 }
1479
5533e011
TH
1480 /* skip creating root files on dfl_root for inhibited subsystems */
1481 tmp_ss_mask = ss_mask;
1482 if (dst_root == &cgrp_dfl_root)
1483 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1484
4df8dc90
TH
1485 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1486 struct cgroup *scgrp = &ss->root->cgrp;
1487 int tssid;
1488
1489 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1490 if (!ret)
1491 continue;
ddbcc7e8 1492
a2dd4247
TH
1493 /*
1494 * Rebinding back to the default root is not allowed to
1495 * fail. Using both default and non-default roots should
1496 * be rare. Moving subsystems back and forth even more so.
1497 * Just warn about it and continue.
1498 */
4df8dc90
TH
1499 if (dst_root == &cgrp_dfl_root) {
1500 if (cgrp_dfl_root_visible) {
1501 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1502 ret, ss_mask);
1503 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1504 }
1505 continue;
a2dd4247 1506 }
4df8dc90
TH
1507
1508 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1509 if (tssid == ssid)
1510 break;
1511 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1512 }
1513 return ret;
5df36032 1514 }
3126121f
TH
1515
1516 /*
1517 * Nothing can fail from this point on. Remove files for the
1518 * removed subsystems and rebind each subsystem.
1519 */
a966a4ed 1520 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1521 struct cgroup_root *src_root = ss->root;
1522 struct cgroup *scgrp = &src_root->cgrp;
1523 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1524 struct css_set *cset;
a8a648c4 1525
1ada4838 1526 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1527
4df8dc90
TH
1528 css_clear_dir(css, NULL);
1529
1ada4838
TH
1530 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1531 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1532 ss->root = dst_root;
1ada4838 1533 css->cgroup = dcgrp;
73e80ed8 1534
f0d9a5f1 1535 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1536 hash_for_each(css_set_table, i, cset, hlist)
1537 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1538 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1539 spin_unlock_bh(&css_set_lock);
2d8f243a 1540
f392e51c 1541 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1542 scgrp->subtree_control &= ~(1 << ssid);
1543 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1544
bd53d617 1545 /* default hierarchy doesn't enable controllers by default */
f392e51c 1546 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1547 if (dst_root == &cgrp_dfl_root) {
1548 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1549 } else {
1ada4838
TH
1550 dcgrp->subtree_control |= 1 << ssid;
1551 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1552 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1553 }
a8a648c4 1554
5df36032
TH
1555 if (ss->bind)
1556 ss->bind(css);
ddbcc7e8 1557 }
ddbcc7e8 1558
1ada4838 1559 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1560 return 0;
1561}
1562
2bd59d48
TH
1563static int cgroup_show_options(struct seq_file *seq,
1564 struct kernfs_root *kf_root)
ddbcc7e8 1565{
3dd06ffa 1566 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1567 struct cgroup_subsys *ss;
b85d2040 1568 int ssid;
ddbcc7e8 1569
d98817d4
TH
1570 if (root != &cgrp_dfl_root)
1571 for_each_subsys(ss, ssid)
1572 if (root->subsys_mask & (1 << ssid))
61e57c0c 1573 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1574 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1575 seq_puts(seq, ",noprefix");
93438629 1576 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1577 seq_puts(seq, ",xattr");
69e943b7
TH
1578
1579 spin_lock(&release_agent_path_lock);
81a6a5cd 1580 if (strlen(root->release_agent_path))
a068acf2
KC
1581 seq_show_option(seq, "release_agent",
1582 root->release_agent_path);
69e943b7
TH
1583 spin_unlock(&release_agent_path_lock);
1584
3dd06ffa 1585 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1586 seq_puts(seq, ",clone_children");
c6d57f33 1587 if (strlen(root->name))
a068acf2 1588 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1589 return 0;
1590}
1591
1592struct cgroup_sb_opts {
8ab456ac 1593 unsigned long subsys_mask;
69dfa00c 1594 unsigned int flags;
81a6a5cd 1595 char *release_agent;
2260e7fc 1596 bool cpuset_clone_children;
c6d57f33 1597 char *name;
2c6ab6d2
PM
1598 /* User explicitly requested empty subsystem */
1599 bool none;
ddbcc7e8
PM
1600};
1601
cf5d5941 1602static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1603{
32a8cf23
DL
1604 char *token, *o = data;
1605 bool all_ss = false, one_ss = false;
8ab456ac 1606 unsigned long mask = -1UL;
30159ec7 1607 struct cgroup_subsys *ss;
7b9a6ba5 1608 int nr_opts = 0;
30159ec7 1609 int i;
f9ab5b5b
LZ
1610
1611#ifdef CONFIG_CPUSETS
69dfa00c 1612 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1613#endif
ddbcc7e8 1614
c6d57f33 1615 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1616
1617 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1618 nr_opts++;
1619
ddbcc7e8
PM
1620 if (!*token)
1621 return -EINVAL;
32a8cf23 1622 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1623 /* Explicitly have no subsystems */
1624 opts->none = true;
32a8cf23
DL
1625 continue;
1626 }
1627 if (!strcmp(token, "all")) {
1628 /* Mutually exclusive option 'all' + subsystem name */
1629 if (one_ss)
1630 return -EINVAL;
1631 all_ss = true;
1632 continue;
1633 }
873fe09e
TH
1634 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1635 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1636 continue;
1637 }
32a8cf23 1638 if (!strcmp(token, "noprefix")) {
93438629 1639 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1640 continue;
1641 }
1642 if (!strcmp(token, "clone_children")) {
2260e7fc 1643 opts->cpuset_clone_children = true;
32a8cf23
DL
1644 continue;
1645 }
03b1cde6 1646 if (!strcmp(token, "xattr")) {
93438629 1647 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1648 continue;
1649 }
32a8cf23 1650 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1651 /* Specifying two release agents is forbidden */
1652 if (opts->release_agent)
1653 return -EINVAL;
c6d57f33 1654 opts->release_agent =
e400c285 1655 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1656 if (!opts->release_agent)
1657 return -ENOMEM;
32a8cf23
DL
1658 continue;
1659 }
1660 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1661 const char *name = token + 5;
1662 /* Can't specify an empty name */
1663 if (!strlen(name))
1664 return -EINVAL;
1665 /* Must match [\w.-]+ */
1666 for (i = 0; i < strlen(name); i++) {
1667 char c = name[i];
1668 if (isalnum(c))
1669 continue;
1670 if ((c == '.') || (c == '-') || (c == '_'))
1671 continue;
1672 return -EINVAL;
1673 }
1674 /* Specifying two names is forbidden */
1675 if (opts->name)
1676 return -EINVAL;
1677 opts->name = kstrndup(name,
e400c285 1678 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1679 GFP_KERNEL);
1680 if (!opts->name)
1681 return -ENOMEM;
32a8cf23
DL
1682
1683 continue;
1684 }
1685
30159ec7 1686 for_each_subsys(ss, i) {
3e1d2eed 1687 if (strcmp(token, ss->legacy_name))
32a8cf23 1688 continue;
fc5ed1e9 1689 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1690 continue;
1691
1692 /* Mutually exclusive option 'all' + subsystem name */
1693 if (all_ss)
1694 return -EINVAL;
69dfa00c 1695 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1696 one_ss = true;
1697
1698 break;
1699 }
1700 if (i == CGROUP_SUBSYS_COUNT)
1701 return -ENOENT;
1702 }
1703
873fe09e 1704 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1705 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1706 if (nr_opts != 1) {
1707 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1708 return -EINVAL;
1709 }
7b9a6ba5 1710 return 0;
873fe09e
TH
1711 }
1712
7b9a6ba5
TH
1713 /*
1714 * If the 'all' option was specified select all the subsystems,
1715 * otherwise if 'none', 'name=' and a subsystem name options were
1716 * not specified, let's default to 'all'
1717 */
1718 if (all_ss || (!one_ss && !opts->none && !opts->name))
1719 for_each_subsys(ss, i)
fc5ed1e9 1720 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1721 opts->subsys_mask |= (1 << i);
1722
1723 /*
1724 * We either have to specify by name or by subsystems. (So all
1725 * empty hierarchies must have a name).
1726 */
1727 if (!opts->subsys_mask && !opts->name)
1728 return -EINVAL;
1729
f9ab5b5b
LZ
1730 /*
1731 * Option noprefix was introduced just for backward compatibility
1732 * with the old cpuset, so we allow noprefix only if mounting just
1733 * the cpuset subsystem.
1734 */
93438629 1735 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1736 return -EINVAL;
1737
2c6ab6d2 1738 /* Can't specify "none" and some subsystems */
a1a71b45 1739 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1740 return -EINVAL;
1741
ddbcc7e8
PM
1742 return 0;
1743}
1744
2bd59d48 1745static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1746{
1747 int ret = 0;
3dd06ffa 1748 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1749 struct cgroup_sb_opts opts;
8ab456ac 1750 unsigned long added_mask, removed_mask;
ddbcc7e8 1751
aa6ec29b
TH
1752 if (root == &cgrp_dfl_root) {
1753 pr_err("remount is not allowed\n");
873fe09e
TH
1754 return -EINVAL;
1755 }
1756
ddbcc7e8
PM
1757 mutex_lock(&cgroup_mutex);
1758
1759 /* See what subsystems are wanted */
1760 ret = parse_cgroupfs_options(data, &opts);
1761 if (ret)
1762 goto out_unlock;
1763
f392e51c 1764 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1765 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1766 task_tgid_nr(current), current->comm);
8b5a5a9d 1767
f392e51c
TH
1768 added_mask = opts.subsys_mask & ~root->subsys_mask;
1769 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1770
cf5d5941 1771 /* Don't allow flags or name to change at remount */
7450e90b 1772 if ((opts.flags ^ root->flags) ||
cf5d5941 1773 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1774 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1775 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1776 ret = -EINVAL;
1777 goto out_unlock;
1778 }
1779
f172e67c 1780 /* remounting is not allowed for populated hierarchies */
d5c419b6 1781 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1782 ret = -EBUSY;
0670e08b 1783 goto out_unlock;
cf5d5941 1784 }
ddbcc7e8 1785
5df36032 1786 ret = rebind_subsystems(root, added_mask);
3126121f 1787 if (ret)
0670e08b 1788 goto out_unlock;
ddbcc7e8 1789
3dd06ffa 1790 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1791
69e943b7
TH
1792 if (opts.release_agent) {
1793 spin_lock(&release_agent_path_lock);
81a6a5cd 1794 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1795 spin_unlock(&release_agent_path_lock);
1796 }
ddbcc7e8 1797 out_unlock:
66bdc9cf 1798 kfree(opts.release_agent);
c6d57f33 1799 kfree(opts.name);
ddbcc7e8 1800 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1801 return ret;
1802}
1803
afeb0f9f
TH
1804/*
1805 * To reduce the fork() overhead for systems that are not actually using
1806 * their cgroups capability, we don't maintain the lists running through
1807 * each css_set to its tasks until we see the list actually used - in other
1808 * words after the first mount.
1809 */
1810static bool use_task_css_set_links __read_mostly;
1811
1812static void cgroup_enable_task_cg_lists(void)
1813{
1814 struct task_struct *p, *g;
1815
f0d9a5f1 1816 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1817
1818 if (use_task_css_set_links)
1819 goto out_unlock;
1820
1821 use_task_css_set_links = true;
1822
1823 /*
1824 * We need tasklist_lock because RCU is not safe against
1825 * while_each_thread(). Besides, a forking task that has passed
1826 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1827 * is not guaranteed to have its child immediately visible in the
1828 * tasklist if we walk through it with RCU.
1829 */
1830 read_lock(&tasklist_lock);
1831 do_each_thread(g, p) {
afeb0f9f
TH
1832 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1833 task_css_set(p) != &init_css_set);
1834
1835 /*
1836 * We should check if the process is exiting, otherwise
1837 * it will race with cgroup_exit() in that the list
1838 * entry won't be deleted though the process has exited.
f153ad11
TH
1839 * Do it while holding siglock so that we don't end up
1840 * racing against cgroup_exit().
afeb0f9f 1841 */
f153ad11 1842 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1843 if (!(p->flags & PF_EXITING)) {
1844 struct css_set *cset = task_css_set(p);
1845
0de0942d
TH
1846 if (!css_set_populated(cset))
1847 css_set_update_populated(cset, true);
389b9c1b 1848 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1849 get_css_set(cset);
1850 }
f153ad11 1851 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1852 } while_each_thread(g, p);
1853 read_unlock(&tasklist_lock);
1854out_unlock:
f0d9a5f1 1855 spin_unlock_bh(&css_set_lock);
afeb0f9f 1856}
ddbcc7e8 1857
cc31edce
PM
1858static void init_cgroup_housekeeping(struct cgroup *cgrp)
1859{
2d8f243a
TH
1860 struct cgroup_subsys *ss;
1861 int ssid;
1862
d5c419b6
TH
1863 INIT_LIST_HEAD(&cgrp->self.sibling);
1864 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1865 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1866 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1867 INIT_LIST_HEAD(&cgrp->pidlists);
1868 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1869 cgrp->self.cgroup = cgrp;
184faf32 1870 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1871
1872 for_each_subsys(ss, ssid)
1873 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1874
1875 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1876 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1877}
c6d57f33 1878
3dd06ffa 1879static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1880 struct cgroup_sb_opts *opts)
ddbcc7e8 1881{
3dd06ffa 1882 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1883
ddbcc7e8 1884 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1885 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1886 cgrp->root = root;
cc31edce 1887 init_cgroup_housekeeping(cgrp);
4e96ee8e 1888 idr_init(&root->cgroup_idr);
c6d57f33 1889
c6d57f33
PM
1890 root->flags = opts->flags;
1891 if (opts->release_agent)
1892 strcpy(root->release_agent_path, opts->release_agent);
1893 if (opts->name)
1894 strcpy(root->name, opts->name);
2260e7fc 1895 if (opts->cpuset_clone_children)
3dd06ffa 1896 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1897}
1898
8ab456ac 1899static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1900{
d427dfeb 1901 LIST_HEAD(tmp_links);
3dd06ffa 1902 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1903 struct css_set *cset;
d427dfeb 1904 int i, ret;
2c6ab6d2 1905
d427dfeb 1906 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1907
cf780b7d 1908 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1909 if (ret < 0)
2bd59d48 1910 goto out;
d427dfeb 1911 root_cgrp->id = ret;
c6d57f33 1912
2aad2a86
TH
1913 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1914 GFP_KERNEL);
9d755d33
TH
1915 if (ret)
1916 goto out;
1917
d427dfeb 1918 /*
f0d9a5f1 1919 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1920 * but that's OK - it can only be increased by someone holding
1921 * cgroup_lock, and that's us. The worst that can happen is that we
1922 * have some link structures left over
1923 */
1924 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1925 if (ret)
9d755d33 1926 goto cancel_ref;
ddbcc7e8 1927
985ed670 1928 ret = cgroup_init_root_id(root);
ddbcc7e8 1929 if (ret)
9d755d33 1930 goto cancel_ref;
ddbcc7e8 1931
2bd59d48
TH
1932 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1933 KERNFS_ROOT_CREATE_DEACTIVATED,
1934 root_cgrp);
1935 if (IS_ERR(root->kf_root)) {
1936 ret = PTR_ERR(root->kf_root);
1937 goto exit_root_id;
1938 }
1939 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1940
4df8dc90 1941 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1942 if (ret)
2bd59d48 1943 goto destroy_root;
ddbcc7e8 1944
5df36032 1945 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1946 if (ret)
2bd59d48 1947 goto destroy_root;
ddbcc7e8 1948
d427dfeb
TH
1949 /*
1950 * There must be no failure case after here, since rebinding takes
1951 * care of subsystems' refcounts, which are explicitly dropped in
1952 * the failure exit path.
1953 */
1954 list_add(&root->root_list, &cgroup_roots);
1955 cgroup_root_count++;
0df6a63f 1956
d427dfeb 1957 /*
3dd06ffa 1958 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1959 * objects.
1960 */
f0d9a5f1 1961 spin_lock_bh(&css_set_lock);
0de0942d 1962 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1963 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1964 if (css_set_populated(cset))
1965 cgroup_update_populated(root_cgrp, true);
1966 }
f0d9a5f1 1967 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1968
d5c419b6 1969 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1970 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1971
2bd59d48 1972 kernfs_activate(root_cgrp->kn);
d427dfeb 1973 ret = 0;
2bd59d48 1974 goto out;
d427dfeb 1975
2bd59d48
TH
1976destroy_root:
1977 kernfs_destroy_root(root->kf_root);
1978 root->kf_root = NULL;
1979exit_root_id:
d427dfeb 1980 cgroup_exit_root_id(root);
9d755d33 1981cancel_ref:
9a1049da 1982 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1983out:
d427dfeb
TH
1984 free_cgrp_cset_links(&tmp_links);
1985 return ret;
ddbcc7e8
PM
1986}
1987
f7e83571 1988static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1989 int flags, const char *unused_dev_name,
f7e83571 1990 void *data)
ddbcc7e8 1991{
3a32bd72 1992 struct super_block *pinned_sb = NULL;
970317aa 1993 struct cgroup_subsys *ss;
3dd06ffa 1994 struct cgroup_root *root;
ddbcc7e8 1995 struct cgroup_sb_opts opts;
2bd59d48 1996 struct dentry *dentry;
8e30e2b8 1997 int ret;
970317aa 1998 int i;
c6b3d5bc 1999 bool new_sb;
ddbcc7e8 2000
56fde9e0
TH
2001 /*
2002 * The first time anyone tries to mount a cgroup, enable the list
2003 * linking each css_set to its tasks and fix up all existing tasks.
2004 */
2005 if (!use_task_css_set_links)
2006 cgroup_enable_task_cg_lists();
e37a06f1 2007
aae8aab4 2008 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2009
2010 /* First find the desired set of subsystems */
ddbcc7e8 2011 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2012 if (ret)
8e30e2b8 2013 goto out_unlock;
a015edd2 2014
2bd59d48 2015 /* look for a matching existing root */
7b9a6ba5 2016 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
2017 cgrp_dfl_root_visible = true;
2018 root = &cgrp_dfl_root;
2019 cgroup_get(&root->cgrp);
2020 ret = 0;
2021 goto out_unlock;
ddbcc7e8
PM
2022 }
2023
970317aa
LZ
2024 /*
2025 * Destruction of cgroup root is asynchronous, so subsystems may
2026 * still be dying after the previous unmount. Let's drain the
2027 * dying subsystems. We just need to ensure that the ones
2028 * unmounted previously finish dying and don't care about new ones
2029 * starting. Testing ref liveliness is good enough.
2030 */
2031 for_each_subsys(ss, i) {
2032 if (!(opts.subsys_mask & (1 << i)) ||
2033 ss->root == &cgrp_dfl_root)
2034 continue;
2035
2036 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2037 mutex_unlock(&cgroup_mutex);
2038 msleep(10);
2039 ret = restart_syscall();
2040 goto out_free;
2041 }
2042 cgroup_put(&ss->root->cgrp);
2043 }
2044
985ed670 2045 for_each_root(root) {
2bd59d48 2046 bool name_match = false;
3126121f 2047
3dd06ffa 2048 if (root == &cgrp_dfl_root)
985ed670 2049 continue;
3126121f 2050
cf5d5941 2051 /*
2bd59d48
TH
2052 * If we asked for a name then it must match. Also, if
2053 * name matches but sybsys_mask doesn't, we should fail.
2054 * Remember whether name matched.
cf5d5941 2055 */
2bd59d48
TH
2056 if (opts.name) {
2057 if (strcmp(opts.name, root->name))
2058 continue;
2059 name_match = true;
2060 }
ddbcc7e8 2061
c6d57f33 2062 /*
2bd59d48
TH
2063 * If we asked for subsystems (or explicitly for no
2064 * subsystems) then they must match.
c6d57f33 2065 */
2bd59d48 2066 if ((opts.subsys_mask || opts.none) &&
f392e51c 2067 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2068 if (!name_match)
2069 continue;
2070 ret = -EBUSY;
2071 goto out_unlock;
2072 }
873fe09e 2073
7b9a6ba5
TH
2074 if (root->flags ^ opts.flags)
2075 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2076
776f02fa 2077 /*
3a32bd72
LZ
2078 * We want to reuse @root whose lifetime is governed by its
2079 * ->cgrp. Let's check whether @root is alive and keep it
2080 * that way. As cgroup_kill_sb() can happen anytime, we
2081 * want to block it by pinning the sb so that @root doesn't
2082 * get killed before mount is complete.
2083 *
2084 * With the sb pinned, tryget_live can reliably indicate
2085 * whether @root can be reused. If it's being killed,
2086 * drain it. We can use wait_queue for the wait but this
2087 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2088 */
3a32bd72
LZ
2089 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2090 if (IS_ERR(pinned_sb) ||
2091 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2092 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2093 if (!IS_ERR_OR_NULL(pinned_sb))
2094 deactivate_super(pinned_sb);
776f02fa 2095 msleep(10);
a015edd2
TH
2096 ret = restart_syscall();
2097 goto out_free;
776f02fa 2098 }
ddbcc7e8 2099
776f02fa 2100 ret = 0;
2bd59d48 2101 goto out_unlock;
ddbcc7e8 2102 }
ddbcc7e8 2103
817929ec 2104 /*
172a2c06
TH
2105 * No such thing, create a new one. name= matching without subsys
2106 * specification is allowed for already existing hierarchies but we
2107 * can't create new one without subsys specification.
817929ec 2108 */
172a2c06
TH
2109 if (!opts.subsys_mask && !opts.none) {
2110 ret = -EINVAL;
2111 goto out_unlock;
817929ec 2112 }
817929ec 2113
172a2c06
TH
2114 root = kzalloc(sizeof(*root), GFP_KERNEL);
2115 if (!root) {
2116 ret = -ENOMEM;
2bd59d48 2117 goto out_unlock;
839ec545 2118 }
e5f6a860 2119
172a2c06
TH
2120 init_cgroup_root(root, &opts);
2121
35585573 2122 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2123 if (ret)
2124 cgroup_free_root(root);
fa3ca07e 2125
8e30e2b8 2126out_unlock:
ddbcc7e8 2127 mutex_unlock(&cgroup_mutex);
a015edd2 2128out_free:
c6d57f33
PM
2129 kfree(opts.release_agent);
2130 kfree(opts.name);
03b1cde6 2131
2bd59d48 2132 if (ret)
8e30e2b8 2133 return ERR_PTR(ret);
2bd59d48 2134
c9482a5b
JZ
2135 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2136 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2137 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2138 cgroup_put(&root->cgrp);
3a32bd72
LZ
2139
2140 /*
2141 * If @pinned_sb, we're reusing an existing root and holding an
2142 * extra ref on its sb. Mount is complete. Put the extra ref.
2143 */
2144 if (pinned_sb) {
2145 WARN_ON(new_sb);
2146 deactivate_super(pinned_sb);
2147 }
2148
2bd59d48
TH
2149 return dentry;
2150}
2151
2152static void cgroup_kill_sb(struct super_block *sb)
2153{
2154 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2155 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2156
9d755d33
TH
2157 /*
2158 * If @root doesn't have any mounts or children, start killing it.
2159 * This prevents new mounts by disabling percpu_ref_tryget_live().
2160 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2161 *
2162 * And don't kill the default root.
9d755d33 2163 */
3c606d35 2164 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2165 root == &cgrp_dfl_root)
9d755d33
TH
2166 cgroup_put(&root->cgrp);
2167 else
2168 percpu_ref_kill(&root->cgrp.self.refcnt);
2169
2bd59d48 2170 kernfs_kill_sb(sb);
ddbcc7e8
PM
2171}
2172
2173static struct file_system_type cgroup_fs_type = {
2174 .name = "cgroup",
f7e83571 2175 .mount = cgroup_mount,
ddbcc7e8
PM
2176 .kill_sb = cgroup_kill_sb,
2177};
2178
857a2beb 2179/**
913ffdb5 2180 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2181 * @task: target task
857a2beb
TH
2182 * @buf: the buffer to write the path into
2183 * @buflen: the length of the buffer
2184 *
913ffdb5
TH
2185 * Determine @task's cgroup on the first (the one with the lowest non-zero
2186 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2187 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2188 * cgroup controller callbacks.
2189 *
e61734c5 2190 * Return value is the same as kernfs_path().
857a2beb 2191 */
e61734c5 2192char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2193{
3dd06ffa 2194 struct cgroup_root *root;
913ffdb5 2195 struct cgroup *cgrp;
e61734c5
TH
2196 int hierarchy_id = 1;
2197 char *path = NULL;
857a2beb
TH
2198
2199 mutex_lock(&cgroup_mutex);
f0d9a5f1 2200 spin_lock_bh(&css_set_lock);
857a2beb 2201
913ffdb5
TH
2202 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2203
857a2beb
TH
2204 if (root) {
2205 cgrp = task_cgroup_from_root(task, root);
e61734c5 2206 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2207 } else {
2208 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2209 if (strlcpy(buf, "/", buflen) < buflen)
2210 path = buf;
857a2beb
TH
2211 }
2212
f0d9a5f1 2213 spin_unlock_bh(&css_set_lock);
857a2beb 2214 mutex_unlock(&cgroup_mutex);
e61734c5 2215 return path;
857a2beb 2216}
913ffdb5 2217EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2218
b3dc094e 2219/* used to track tasks and other necessary states during migration */
2f7ee569 2220struct cgroup_taskset {
b3dc094e
TH
2221 /* the src and dst cset list running through cset->mg_node */
2222 struct list_head src_csets;
2223 struct list_head dst_csets;
2224
2225 /*
2226 * Fields for cgroup_taskset_*() iteration.
2227 *
2228 * Before migration is committed, the target migration tasks are on
2229 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2230 * the csets on ->dst_csets. ->csets point to either ->src_csets
2231 * or ->dst_csets depending on whether migration is committed.
2232 *
2233 * ->cur_csets and ->cur_task point to the current task position
2234 * during iteration.
2235 */
2236 struct list_head *csets;
2237 struct css_set *cur_cset;
2238 struct task_struct *cur_task;
2f7ee569
TH
2239};
2240
adaae5dc
TH
2241#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2242 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2243 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2244 .csets = &tset.src_csets, \
2245}
2246
2247/**
2248 * cgroup_taskset_add - try to add a migration target task to a taskset
2249 * @task: target task
2250 * @tset: target taskset
2251 *
2252 * Add @task, which is a migration target, to @tset. This function becomes
2253 * noop if @task doesn't need to be migrated. @task's css_set should have
2254 * been added as a migration source and @task->cg_list will be moved from
2255 * the css_set's tasks list to mg_tasks one.
2256 */
2257static void cgroup_taskset_add(struct task_struct *task,
2258 struct cgroup_taskset *tset)
2259{
2260 struct css_set *cset;
2261
f0d9a5f1 2262 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2263
2264 /* @task either already exited or can't exit until the end */
2265 if (task->flags & PF_EXITING)
2266 return;
2267
2268 /* leave @task alone if post_fork() hasn't linked it yet */
2269 if (list_empty(&task->cg_list))
2270 return;
2271
2272 cset = task_css_set(task);
2273 if (!cset->mg_src_cgrp)
2274 return;
2275
2276 list_move_tail(&task->cg_list, &cset->mg_tasks);
2277 if (list_empty(&cset->mg_node))
2278 list_add_tail(&cset->mg_node, &tset->src_csets);
2279 if (list_empty(&cset->mg_dst_cset->mg_node))
2280 list_move_tail(&cset->mg_dst_cset->mg_node,
2281 &tset->dst_csets);
2282}
2283
2f7ee569
TH
2284/**
2285 * cgroup_taskset_first - reset taskset and return the first task
2286 * @tset: taskset of interest
2287 *
2288 * @tset iteration is initialized and the first task is returned.
2289 */
2290struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2291{
b3dc094e
TH
2292 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2293 tset->cur_task = NULL;
2294
2295 return cgroup_taskset_next(tset);
2f7ee569 2296}
2f7ee569
TH
2297
2298/**
2299 * cgroup_taskset_next - iterate to the next task in taskset
2300 * @tset: taskset of interest
2301 *
2302 * Return the next task in @tset. Iteration must have been initialized
2303 * with cgroup_taskset_first().
2304 */
2305struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2306{
b3dc094e
TH
2307 struct css_set *cset = tset->cur_cset;
2308 struct task_struct *task = tset->cur_task;
2f7ee569 2309
b3dc094e
TH
2310 while (&cset->mg_node != tset->csets) {
2311 if (!task)
2312 task = list_first_entry(&cset->mg_tasks,
2313 struct task_struct, cg_list);
2314 else
2315 task = list_next_entry(task, cg_list);
2f7ee569 2316
b3dc094e
TH
2317 if (&task->cg_list != &cset->mg_tasks) {
2318 tset->cur_cset = cset;
2319 tset->cur_task = task;
2320 return task;
2321 }
2f7ee569 2322
b3dc094e
TH
2323 cset = list_next_entry(cset, mg_node);
2324 task = NULL;
2325 }
2f7ee569 2326
b3dc094e 2327 return NULL;
2f7ee569 2328}
2f7ee569 2329
adaae5dc
TH
2330/**
2331 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2332 * @tset: taget taskset
2333 * @dst_cgrp: destination cgroup
2334 *
2335 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2336 * ->can_attach callbacks fails and guarantees that either all or none of
2337 * the tasks in @tset are migrated. @tset is consumed regardless of
2338 * success.
2339 */
2340static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2341 struct cgroup *dst_cgrp)
2342{
2343 struct cgroup_subsys_state *css, *failed_css = NULL;
2344 struct task_struct *task, *tmp_task;
2345 struct css_set *cset, *tmp_cset;
2346 int i, ret;
2347
2348 /* methods shouldn't be called if no task is actually migrating */
2349 if (list_empty(&tset->src_csets))
2350 return 0;
2351
2352 /* check that we can legitimately attach to the cgroup */
2353 for_each_e_css(css, i, dst_cgrp) {
2354 if (css->ss->can_attach) {
2355 ret = css->ss->can_attach(css, tset);
2356 if (ret) {
2357 failed_css = css;
2358 goto out_cancel_attach;
2359 }
2360 }
2361 }
2362
2363 /*
2364 * Now that we're guaranteed success, proceed to move all tasks to
2365 * the new cgroup. There are no failure cases after here, so this
2366 * is the commit point.
2367 */
f0d9a5f1 2368 spin_lock_bh(&css_set_lock);
adaae5dc 2369 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2370 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2371 struct css_set *from_cset = task_css_set(task);
2372 struct css_set *to_cset = cset->mg_dst_cset;
2373
2374 get_css_set(to_cset);
2375 css_set_move_task(task, from_cset, to_cset, true);
2376 put_css_set_locked(from_cset);
2377 }
adaae5dc 2378 }
f0d9a5f1 2379 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2380
2381 /*
2382 * Migration is committed, all target tasks are now on dst_csets.
2383 * Nothing is sensitive to fork() after this point. Notify
2384 * controllers that migration is complete.
2385 */
2386 tset->csets = &tset->dst_csets;
2387
2388 for_each_e_css(css, i, dst_cgrp)
2389 if (css->ss->attach)
2390 css->ss->attach(css, tset);
2391
2392 ret = 0;
2393 goto out_release_tset;
2394
2395out_cancel_attach:
2396 for_each_e_css(css, i, dst_cgrp) {
2397 if (css == failed_css)
2398 break;
2399 if (css->ss->cancel_attach)
2400 css->ss->cancel_attach(css, tset);
2401 }
2402out_release_tset:
f0d9a5f1 2403 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2404 list_splice_init(&tset->dst_csets, &tset->src_csets);
2405 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2406 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2407 list_del_init(&cset->mg_node);
2408 }
f0d9a5f1 2409 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2410 return ret;
2411}
2412
a043e3b2 2413/**
1958d2d5
TH
2414 * cgroup_migrate_finish - cleanup after attach
2415 * @preloaded_csets: list of preloaded css_sets
74a1166d 2416 *
1958d2d5
TH
2417 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2418 * those functions for details.
74a1166d 2419 */
1958d2d5 2420static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2421{
1958d2d5 2422 struct css_set *cset, *tmp_cset;
74a1166d 2423
1958d2d5
TH
2424 lockdep_assert_held(&cgroup_mutex);
2425
f0d9a5f1 2426 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2427 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2428 cset->mg_src_cgrp = NULL;
2429 cset->mg_dst_cset = NULL;
2430 list_del_init(&cset->mg_preload_node);
a25eb52e 2431 put_css_set_locked(cset);
1958d2d5 2432 }
f0d9a5f1 2433 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2434}
2435
2436/**
2437 * cgroup_migrate_add_src - add a migration source css_set
2438 * @src_cset: the source css_set to add
2439 * @dst_cgrp: the destination cgroup
2440 * @preloaded_csets: list of preloaded css_sets
2441 *
2442 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2443 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2444 * up by cgroup_migrate_finish().
2445 *
1ed13287
TH
2446 * This function may be called without holding cgroup_threadgroup_rwsem
2447 * even if the target is a process. Threads may be created and destroyed
2448 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2449 * into play and the preloaded css_sets are guaranteed to cover all
2450 * migrations.
1958d2d5
TH
2451 */
2452static void cgroup_migrate_add_src(struct css_set *src_cset,
2453 struct cgroup *dst_cgrp,
2454 struct list_head *preloaded_csets)
2455{
2456 struct cgroup *src_cgrp;
2457
2458 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2459 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2460
2461 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2462
1958d2d5
TH
2463 if (!list_empty(&src_cset->mg_preload_node))
2464 return;
2465
2466 WARN_ON(src_cset->mg_src_cgrp);
2467 WARN_ON(!list_empty(&src_cset->mg_tasks));
2468 WARN_ON(!list_empty(&src_cset->mg_node));
2469
2470 src_cset->mg_src_cgrp = src_cgrp;
2471 get_css_set(src_cset);
2472 list_add(&src_cset->mg_preload_node, preloaded_csets);
2473}
2474
2475/**
2476 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2477 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2478 * @preloaded_csets: list of preloaded source css_sets
2479 *
2480 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2481 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2482 * pins all destination css_sets, links each to its source, and append them
2483 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2484 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2485 *
2486 * This function must be called after cgroup_migrate_add_src() has been
2487 * called on each migration source css_set. After migration is performed
2488 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2489 * @preloaded_csets.
2490 */
2491static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2492 struct list_head *preloaded_csets)
2493{
2494 LIST_HEAD(csets);
f817de98 2495 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2496
2497 lockdep_assert_held(&cgroup_mutex);
2498
f8f22e53
TH
2499 /*
2500 * Except for the root, child_subsys_mask must be zero for a cgroup
2501 * with tasks so that child cgroups don't compete against tasks.
2502 */
d51f39b0 2503 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2504 dst_cgrp->child_subsys_mask)
2505 return -EBUSY;
2506
1958d2d5 2507 /* look up the dst cset for each src cset and link it to src */
f817de98 2508 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2509 struct css_set *dst_cset;
2510
f817de98
TH
2511 dst_cset = find_css_set(src_cset,
2512 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2513 if (!dst_cset)
2514 goto err;
2515
2516 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2517
2518 /*
2519 * If src cset equals dst, it's noop. Drop the src.
2520 * cgroup_migrate() will skip the cset too. Note that we
2521 * can't handle src == dst as some nodes are used by both.
2522 */
2523 if (src_cset == dst_cset) {
2524 src_cset->mg_src_cgrp = NULL;
2525 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2526 put_css_set(src_cset);
2527 put_css_set(dst_cset);
f817de98
TH
2528 continue;
2529 }
2530
1958d2d5
TH
2531 src_cset->mg_dst_cset = dst_cset;
2532
2533 if (list_empty(&dst_cset->mg_preload_node))
2534 list_add(&dst_cset->mg_preload_node, &csets);
2535 else
a25eb52e 2536 put_css_set(dst_cset);
1958d2d5
TH
2537 }
2538
f817de98 2539 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2540 return 0;
2541err:
2542 cgroup_migrate_finish(&csets);
2543 return -ENOMEM;
2544}
2545
2546/**
2547 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2548 * @leader: the leader of the process or the task to migrate
2549 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2550 * @cgrp: the destination cgroup
1958d2d5
TH
2551 *
2552 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2553 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2554 * caller is also responsible for invoking cgroup_migrate_add_src() and
2555 * cgroup_migrate_prepare_dst() on the targets before invoking this
2556 * function and following up with cgroup_migrate_finish().
2557 *
2558 * As long as a controller's ->can_attach() doesn't fail, this function is
2559 * guaranteed to succeed. This means that, excluding ->can_attach()
2560 * failure, when migrating multiple targets, the success or failure can be
2561 * decided for all targets by invoking group_migrate_prepare_dst() before
2562 * actually starting migrating.
2563 */
9af2ec45
TH
2564static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2565 struct cgroup *cgrp)
74a1166d 2566{
adaae5dc
TH
2567 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2568 struct task_struct *task;
74a1166d 2569
fb5d2b4c
MSB
2570 /*
2571 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2572 * already PF_EXITING could be freed from underneath us unless we
2573 * take an rcu_read_lock.
2574 */
f0d9a5f1 2575 spin_lock_bh(&css_set_lock);
fb5d2b4c 2576 rcu_read_lock();
9db8de37 2577 task = leader;
74a1166d 2578 do {
adaae5dc 2579 cgroup_taskset_add(task, &tset);
081aa458
LZ
2580 if (!threadgroup)
2581 break;
9db8de37 2582 } while_each_thread(leader, task);
fb5d2b4c 2583 rcu_read_unlock();
f0d9a5f1 2584 spin_unlock_bh(&css_set_lock);
74a1166d 2585
adaae5dc 2586 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2587}
2588
1958d2d5
TH
2589/**
2590 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2591 * @dst_cgrp: the cgroup to attach to
2592 * @leader: the task or the leader of the threadgroup to be attached
2593 * @threadgroup: attach the whole threadgroup?
2594 *
1ed13287 2595 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2596 */
2597static int cgroup_attach_task(struct cgroup *dst_cgrp,
2598 struct task_struct *leader, bool threadgroup)
2599{
2600 LIST_HEAD(preloaded_csets);
2601 struct task_struct *task;
2602 int ret;
2603
2604 /* look up all src csets */
f0d9a5f1 2605 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2606 rcu_read_lock();
2607 task = leader;
2608 do {
2609 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2610 &preloaded_csets);
2611 if (!threadgroup)
2612 break;
2613 } while_each_thread(leader, task);
2614 rcu_read_unlock();
f0d9a5f1 2615 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2616
2617 /* prepare dst csets and commit */
2618 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2619 if (!ret)
9af2ec45 2620 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2621
2622 cgroup_migrate_finish(&preloaded_csets);
2623 return ret;
74a1166d
BB
2624}
2625
187fe840
TH
2626static int cgroup_procs_write_permission(struct task_struct *task,
2627 struct cgroup *dst_cgrp,
2628 struct kernfs_open_file *of)
dedf22e9
TH
2629{
2630 const struct cred *cred = current_cred();
2631 const struct cred *tcred = get_task_cred(task);
2632 int ret = 0;
2633
2634 /*
2635 * even if we're attaching all tasks in the thread group, we only
2636 * need to check permissions on one of them.
2637 */
2638 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2639 !uid_eq(cred->euid, tcred->uid) &&
2640 !uid_eq(cred->euid, tcred->suid))
2641 ret = -EACCES;
2642
187fe840
TH
2643 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2644 struct super_block *sb = of->file->f_path.dentry->d_sb;
2645 struct cgroup *cgrp;
2646 struct inode *inode;
2647
f0d9a5f1 2648 spin_lock_bh(&css_set_lock);
187fe840 2649 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2650 spin_unlock_bh(&css_set_lock);
187fe840
TH
2651
2652 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2653 cgrp = cgroup_parent(cgrp);
2654
2655 ret = -ENOMEM;
6f60eade 2656 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2657 if (inode) {
2658 ret = inode_permission(inode, MAY_WRITE);
2659 iput(inode);
2660 }
2661 }
2662
dedf22e9
TH
2663 put_cred(tcred);
2664 return ret;
2665}
2666
74a1166d
BB
2667/*
2668 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2669 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2670 * cgroup_mutex and threadgroup.
bbcb81d0 2671 */
acbef755
TH
2672static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2673 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2674{
bbcb81d0 2675 struct task_struct *tsk;
e76ecaee 2676 struct cgroup *cgrp;
acbef755 2677 pid_t pid;
bbcb81d0
PM
2678 int ret;
2679
acbef755
TH
2680 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2681 return -EINVAL;
2682
e76ecaee
TH
2683 cgrp = cgroup_kn_lock_live(of->kn);
2684 if (!cgrp)
74a1166d
BB
2685 return -ENODEV;
2686
3014dde7 2687 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2688 rcu_read_lock();
bbcb81d0 2689 if (pid) {
73507f33 2690 tsk = find_task_by_vpid(pid);
74a1166d 2691 if (!tsk) {
dd4b0a46 2692 ret = -ESRCH;
3014dde7 2693 goto out_unlock_rcu;
bbcb81d0 2694 }
dedf22e9 2695 } else {
b78949eb 2696 tsk = current;
dedf22e9 2697 }
cd3d0952
TH
2698
2699 if (threadgroup)
b78949eb 2700 tsk = tsk->group_leader;
c4c27fbd
MG
2701
2702 /*
14a40ffc 2703 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2704 * trapped in a cpuset, or RT worker may be born in a cgroup
2705 * with no rt_runtime allocated. Just say no.
2706 */
14a40ffc 2707 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2708 ret = -EINVAL;
3014dde7 2709 goto out_unlock_rcu;
c4c27fbd
MG
2710 }
2711
b78949eb
MSB
2712 get_task_struct(tsk);
2713 rcu_read_unlock();
2714
187fe840 2715 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2716 if (!ret)
2717 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2718
f9f9e7b7 2719 put_task_struct(tsk);
3014dde7
TH
2720 goto out_unlock_threadgroup;
2721
2722out_unlock_rcu:
2723 rcu_read_unlock();
2724out_unlock_threadgroup:
2725 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2726 cgroup_kn_unlock(of->kn);
acbef755 2727 return ret ?: nbytes;
bbcb81d0
PM
2728}
2729
7ae1bad9
TH
2730/**
2731 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2732 * @from: attach to all cgroups of a given task
2733 * @tsk: the task to be attached
2734 */
2735int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2736{
3dd06ffa 2737 struct cgroup_root *root;
7ae1bad9
TH
2738 int retval = 0;
2739
47cfcd09 2740 mutex_lock(&cgroup_mutex);
985ed670 2741 for_each_root(root) {
96d365e0
TH
2742 struct cgroup *from_cgrp;
2743
3dd06ffa 2744 if (root == &cgrp_dfl_root)
985ed670
TH
2745 continue;
2746
f0d9a5f1 2747 spin_lock_bh(&css_set_lock);
96d365e0 2748 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2749 spin_unlock_bh(&css_set_lock);
7ae1bad9 2750
6f4b7e63 2751 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2752 if (retval)
2753 break;
2754 }
47cfcd09 2755 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2756
2757 return retval;
2758}
2759EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2760
acbef755
TH
2761static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2762 char *buf, size_t nbytes, loff_t off)
74a1166d 2763{
acbef755 2764 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2765}
2766
acbef755
TH
2767static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2768 char *buf, size_t nbytes, loff_t off)
af351026 2769{
acbef755 2770 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2771}
2772
451af504
TH
2773static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2774 char *buf, size_t nbytes, loff_t off)
e788e066 2775{
e76ecaee 2776 struct cgroup *cgrp;
5f469907 2777
e76ecaee 2778 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2779
e76ecaee
TH
2780 cgrp = cgroup_kn_lock_live(of->kn);
2781 if (!cgrp)
e788e066 2782 return -ENODEV;
69e943b7 2783 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2784 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2785 sizeof(cgrp->root->release_agent_path));
69e943b7 2786 spin_unlock(&release_agent_path_lock);
e76ecaee 2787 cgroup_kn_unlock(of->kn);
451af504 2788 return nbytes;
e788e066
PM
2789}
2790
2da8ca82 2791static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2792{
2da8ca82 2793 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2794
46cfeb04 2795 spin_lock(&release_agent_path_lock);
e788e066 2796 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2797 spin_unlock(&release_agent_path_lock);
e788e066 2798 seq_putc(seq, '\n');
e788e066
PM
2799 return 0;
2800}
2801
2da8ca82 2802static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2803{
c1d5d42e 2804 seq_puts(seq, "0\n");
e788e066
PM
2805 return 0;
2806}
2807
8ab456ac 2808static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2809{
f8f22e53
TH
2810 struct cgroup_subsys *ss;
2811 bool printed = false;
2812 int ssid;
a742c59d 2813
a966a4ed
AS
2814 for_each_subsys_which(ss, ssid, &ss_mask) {
2815 if (printed)
2816 seq_putc(seq, ' ');
2817 seq_printf(seq, "%s", ss->name);
2818 printed = true;
e73d2c61 2819 }
f8f22e53
TH
2820 if (printed)
2821 seq_putc(seq, '\n');
355e0c48
PM
2822}
2823
f8f22e53
TH
2824/* show controllers which are currently attached to the default hierarchy */
2825static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2826{
f8f22e53
TH
2827 struct cgroup *cgrp = seq_css(seq)->cgroup;
2828
5533e011
TH
2829 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2830 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2831 return 0;
db3b1497
PM
2832}
2833
f8f22e53
TH
2834/* show controllers which are enabled from the parent */
2835static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2836{
f8f22e53
TH
2837 struct cgroup *cgrp = seq_css(seq)->cgroup;
2838
667c2491 2839 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2840 return 0;
ddbcc7e8
PM
2841}
2842
f8f22e53
TH
2843/* show controllers which are enabled for a given cgroup's children */
2844static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2845{
f8f22e53
TH
2846 struct cgroup *cgrp = seq_css(seq)->cgroup;
2847
667c2491 2848 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2849 return 0;
2850}
2851
2852/**
2853 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2854 * @cgrp: root of the subtree to update csses for
2855 *
2856 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2857 * css associations need to be updated accordingly. This function looks up
2858 * all css_sets which are attached to the subtree, creates the matching
2859 * updated css_sets and migrates the tasks to the new ones.
2860 */
2861static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2862{
2863 LIST_HEAD(preloaded_csets);
10265075 2864 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2865 struct cgroup_subsys_state *css;
2866 struct css_set *src_cset;
2867 int ret;
2868
f8f22e53
TH
2869 lockdep_assert_held(&cgroup_mutex);
2870
3014dde7
TH
2871 percpu_down_write(&cgroup_threadgroup_rwsem);
2872
f8f22e53 2873 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2874 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2875 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2876 struct cgrp_cset_link *link;
2877
2878 /* self is not affected by child_subsys_mask change */
2879 if (css->cgroup == cgrp)
2880 continue;
2881
2882 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2883 cgroup_migrate_add_src(link->cset, cgrp,
2884 &preloaded_csets);
2885 }
f0d9a5f1 2886 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2887
2888 /* NULL dst indicates self on default hierarchy */
2889 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2890 if (ret)
2891 goto out_finish;
2892
f0d9a5f1 2893 spin_lock_bh(&css_set_lock);
f8f22e53 2894 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2895 struct task_struct *task, *ntask;
f8f22e53
TH
2896
2897 /* src_csets precede dst_csets, break on the first dst_cset */
2898 if (!src_cset->mg_src_cgrp)
2899 break;
2900
10265075
TH
2901 /* all tasks in src_csets need to be migrated */
2902 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2903 cgroup_taskset_add(task, &tset);
f8f22e53 2904 }
f0d9a5f1 2905 spin_unlock_bh(&css_set_lock);
f8f22e53 2906
10265075 2907 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2908out_finish:
2909 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2910 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2911 return ret;
2912}
2913
2914/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2915static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2916 char *buf, size_t nbytes,
2917 loff_t off)
f8f22e53 2918{
8ab456ac
AS
2919 unsigned long enable = 0, disable = 0;
2920 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2921 struct cgroup *cgrp, *child;
f8f22e53 2922 struct cgroup_subsys *ss;
451af504 2923 char *tok;
f8f22e53
TH
2924 int ssid, ret;
2925
2926 /*
d37167ab
TH
2927 * Parse input - space separated list of subsystem names prefixed
2928 * with either + or -.
f8f22e53 2929 */
451af504
TH
2930 buf = strstrip(buf);
2931 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2932 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2933
d37167ab
TH
2934 if (tok[0] == '\0')
2935 continue;
a966a4ed 2936 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2937 if (!cgroup_ssid_enabled(ssid) ||
2938 strcmp(tok + 1, ss->name))
f8f22e53
TH
2939 continue;
2940
2941 if (*tok == '+') {
7d331fa9
TH
2942 enable |= 1 << ssid;
2943 disable &= ~(1 << ssid);
f8f22e53 2944 } else if (*tok == '-') {
7d331fa9
TH
2945 disable |= 1 << ssid;
2946 enable &= ~(1 << ssid);
f8f22e53
TH
2947 } else {
2948 return -EINVAL;
2949 }
2950 break;
2951 }
2952 if (ssid == CGROUP_SUBSYS_COUNT)
2953 return -EINVAL;
2954 }
2955
a9746d8d
TH
2956 cgrp = cgroup_kn_lock_live(of->kn);
2957 if (!cgrp)
2958 return -ENODEV;
f8f22e53
TH
2959
2960 for_each_subsys(ss, ssid) {
2961 if (enable & (1 << ssid)) {
667c2491 2962 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2963 enable &= ~(1 << ssid);
2964 continue;
2965 }
2966
c29adf24
TH
2967 /* unavailable or not enabled on the parent? */
2968 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2969 (cgroup_parent(cgrp) &&
667c2491 2970 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2971 ret = -ENOENT;
2972 goto out_unlock;
2973 }
f8f22e53 2974 } else if (disable & (1 << ssid)) {
667c2491 2975 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2976 disable &= ~(1 << ssid);
2977 continue;
2978 }
2979
2980 /* a child has it enabled? */
2981 cgroup_for_each_live_child(child, cgrp) {
667c2491 2982 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2983 ret = -EBUSY;
ddab2b6e 2984 goto out_unlock;
f8f22e53
TH
2985 }
2986 }
2987 }
2988 }
2989
2990 if (!enable && !disable) {
2991 ret = 0;
ddab2b6e 2992 goto out_unlock;
f8f22e53
TH
2993 }
2994
2995 /*
667c2491 2996 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2997 * with tasks so that child cgroups don't compete against tasks.
2998 */
d51f39b0 2999 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3000 ret = -EBUSY;
3001 goto out_unlock;
3002 }
3003
3004 /*
f63070d3
TH
3005 * Update subsys masks and calculate what needs to be done. More
3006 * subsystems than specified may need to be enabled or disabled
3007 * depending on subsystem dependencies.
3008 */
755bf5ee
TH
3009 old_sc = cgrp->subtree_control;
3010 old_ss = cgrp->child_subsys_mask;
3011 new_sc = (old_sc | enable) & ~disable;
3012 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3013
755bf5ee
TH
3014 css_enable = ~old_ss & new_ss;
3015 css_disable = old_ss & ~new_ss;
f63070d3
TH
3016 enable |= css_enable;
3017 disable |= css_disable;
c29adf24 3018
db6e3053
TH
3019 /*
3020 * Because css offlining is asynchronous, userland might try to
3021 * re-enable the same controller while the previous instance is
3022 * still around. In such cases, wait till it's gone using
3023 * offline_waitq.
3024 */
a966a4ed 3025 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3026 cgroup_for_each_live_child(child, cgrp) {
3027 DEFINE_WAIT(wait);
3028
3029 if (!cgroup_css(child, ss))
3030 continue;
3031
3032 cgroup_get(child);
3033 prepare_to_wait(&child->offline_waitq, &wait,
3034 TASK_UNINTERRUPTIBLE);
3035 cgroup_kn_unlock(of->kn);
3036 schedule();
3037 finish_wait(&child->offline_waitq, &wait);
3038 cgroup_put(child);
3039
3040 return restart_syscall();
3041 }
3042 }
3043
755bf5ee
TH
3044 cgrp->subtree_control = new_sc;
3045 cgrp->child_subsys_mask = new_ss;
3046
f63070d3
TH
3047 /*
3048 * Create new csses or make the existing ones visible. A css is
3049 * created invisible if it's being implicitly enabled through
3050 * dependency. An invisible css is made visible when the userland
3051 * explicitly enables it.
f8f22e53
TH
3052 */
3053 for_each_subsys(ss, ssid) {
3054 if (!(enable & (1 << ssid)))
3055 continue;
3056
3057 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3058 if (css_enable & (1 << ssid))
3059 ret = create_css(child, ss,
3060 cgrp->subtree_control & (1 << ssid));
3061 else
4df8dc90
TH
3062 ret = css_populate_dir(cgroup_css(child, ss),
3063 NULL);
f8f22e53
TH
3064 if (ret)
3065 goto err_undo_css;
3066 }
3067 }
3068
c29adf24
TH
3069 /*
3070 * At this point, cgroup_e_css() results reflect the new csses
3071 * making the following cgroup_update_dfl_csses() properly update
3072 * css associations of all tasks in the subtree.
3073 */
f8f22e53
TH
3074 ret = cgroup_update_dfl_csses(cgrp);
3075 if (ret)
3076 goto err_undo_css;
3077
f63070d3
TH
3078 /*
3079 * All tasks are migrated out of disabled csses. Kill or hide
3080 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3081 * disabled while other subsystems are still depending on it. The
3082 * css must not actively control resources and be in the vanilla
3083 * state if it's made visible again later. Controllers which may
3084 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3085 */
f8f22e53
TH
3086 for_each_subsys(ss, ssid) {
3087 if (!(disable & (1 << ssid)))
3088 continue;
3089
f63070d3 3090 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3091 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3092
3093 if (css_disable & (1 << ssid)) {
3094 kill_css(css);
3095 } else {
4df8dc90 3096 css_clear_dir(css, NULL);
b4536f0c
TH
3097 if (ss->css_reset)
3098 ss->css_reset(css);
3099 }
f63070d3 3100 }
f8f22e53
TH
3101 }
3102
56c807ba
TH
3103 /*
3104 * The effective csses of all the descendants (excluding @cgrp) may
3105 * have changed. Subsystems can optionally subscribe to this event
3106 * by implementing ->css_e_css_changed() which is invoked if any of
3107 * the effective csses seen from the css's cgroup may have changed.
3108 */
3109 for_each_subsys(ss, ssid) {
3110 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3111 struct cgroup_subsys_state *css;
3112
3113 if (!ss->css_e_css_changed || !this_css)
3114 continue;
3115
3116 css_for_each_descendant_pre(css, this_css)
3117 if (css != this_css)
3118 ss->css_e_css_changed(css);
3119 }
3120
f8f22e53
TH
3121 kernfs_activate(cgrp->kn);
3122 ret = 0;
3123out_unlock:
a9746d8d 3124 cgroup_kn_unlock(of->kn);
451af504 3125 return ret ?: nbytes;
f8f22e53
TH
3126
3127err_undo_css:
755bf5ee
TH
3128 cgrp->subtree_control = old_sc;
3129 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3130
3131 for_each_subsys(ss, ssid) {
3132 if (!(enable & (1 << ssid)))
3133 continue;
3134
3135 cgroup_for_each_live_child(child, cgrp) {
3136 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3137
3138 if (!css)
3139 continue;
3140
3141 if (css_enable & (1 << ssid))
f8f22e53 3142 kill_css(css);
f63070d3 3143 else
4df8dc90 3144 css_clear_dir(css, NULL);
f8f22e53
TH
3145 }
3146 }
3147 goto out_unlock;
3148}
3149
4a07c222 3150static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3151{
4a07c222 3152 seq_printf(seq, "populated %d\n",
27bd4dbb 3153 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3154 return 0;
3155}
3156
2bd59d48
TH
3157static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3158 size_t nbytes, loff_t off)
355e0c48 3159{
2bd59d48
TH
3160 struct cgroup *cgrp = of->kn->parent->priv;
3161 struct cftype *cft = of->kn->priv;
3162 struct cgroup_subsys_state *css;
a742c59d 3163 int ret;
355e0c48 3164
b4168640
TH
3165 if (cft->write)
3166 return cft->write(of, buf, nbytes, off);
3167
2bd59d48
TH
3168 /*
3169 * kernfs guarantees that a file isn't deleted with operations in
3170 * flight, which means that the matching css is and stays alive and
3171 * doesn't need to be pinned. The RCU locking is not necessary
3172 * either. It's just for the convenience of using cgroup_css().
3173 */
3174 rcu_read_lock();
3175 css = cgroup_css(cgrp, cft->ss);
3176 rcu_read_unlock();
a742c59d 3177
451af504 3178 if (cft->write_u64) {
a742c59d
TH
3179 unsigned long long v;
3180 ret = kstrtoull(buf, 0, &v);
3181 if (!ret)
3182 ret = cft->write_u64(css, cft, v);
3183 } else if (cft->write_s64) {
3184 long long v;
3185 ret = kstrtoll(buf, 0, &v);
3186 if (!ret)
3187 ret = cft->write_s64(css, cft, v);
e73d2c61 3188 } else {
a742c59d 3189 ret = -EINVAL;
e73d2c61 3190 }
2bd59d48 3191
a742c59d 3192 return ret ?: nbytes;
355e0c48
PM
3193}
3194
6612f05b 3195static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3196{
2bd59d48 3197 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3198}
3199
6612f05b 3200static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3201{
2bd59d48 3202 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3203}
3204
6612f05b 3205static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3206{
2bd59d48 3207 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3208}
3209
91796569 3210static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3211{
7da11279
TH
3212 struct cftype *cft = seq_cft(m);
3213 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3214
2da8ca82
TH
3215 if (cft->seq_show)
3216 return cft->seq_show(m, arg);
e73d2c61 3217
f4c753b7 3218 if (cft->read_u64)
896f5199
TH
3219 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3220 else if (cft->read_s64)
3221 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3222 else
3223 return -EINVAL;
3224 return 0;
91796569
PM
3225}
3226
2bd59d48
TH
3227static struct kernfs_ops cgroup_kf_single_ops = {
3228 .atomic_write_len = PAGE_SIZE,
3229 .write = cgroup_file_write,
3230 .seq_show = cgroup_seqfile_show,
91796569
PM
3231};
3232
2bd59d48
TH
3233static struct kernfs_ops cgroup_kf_ops = {
3234 .atomic_write_len = PAGE_SIZE,
3235 .write = cgroup_file_write,
3236 .seq_start = cgroup_seqfile_start,
3237 .seq_next = cgroup_seqfile_next,
3238 .seq_stop = cgroup_seqfile_stop,
3239 .seq_show = cgroup_seqfile_show,
3240};
ddbcc7e8
PM
3241
3242/*
3243 * cgroup_rename - Only allow simple rename of directories in place.
3244 */
2bd59d48
TH
3245static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3246 const char *new_name_str)
ddbcc7e8 3247{
2bd59d48 3248 struct cgroup *cgrp = kn->priv;
65dff759 3249 int ret;
65dff759 3250
2bd59d48 3251 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3252 return -ENOTDIR;
2bd59d48 3253 if (kn->parent != new_parent)
ddbcc7e8 3254 return -EIO;
65dff759 3255
6db8e85c
TH
3256 /*
3257 * This isn't a proper migration and its usefulness is very
aa6ec29b 3258 * limited. Disallow on the default hierarchy.
6db8e85c 3259 */
aa6ec29b 3260 if (cgroup_on_dfl(cgrp))
6db8e85c 3261 return -EPERM;
099fca32 3262
e1b2dc17 3263 /*
8353da1f 3264 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3265 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3266 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3267 */
3268 kernfs_break_active_protection(new_parent);
3269 kernfs_break_active_protection(kn);
099fca32 3270
2bd59d48 3271 mutex_lock(&cgroup_mutex);
099fca32 3272
2bd59d48 3273 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3274
2bd59d48 3275 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3276
3277 kernfs_unbreak_active_protection(kn);
3278 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3279 return ret;
099fca32
LZ
3280}
3281
49957f8e
TH
3282/* set uid and gid of cgroup dirs and files to that of the creator */
3283static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3284{
3285 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3286 .ia_uid = current_fsuid(),
3287 .ia_gid = current_fsgid(), };
3288
3289 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3290 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3291 return 0;
3292
3293 return kernfs_setattr(kn, &iattr);
3294}
3295
4df8dc90
TH
3296static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3297 struct cftype *cft)
ddbcc7e8 3298{
8d7e6fb0 3299 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3300 struct kernfs_node *kn;
3301 struct lock_class_key *key = NULL;
49957f8e 3302 int ret;
05ef1d7c 3303
2bd59d48
TH
3304#ifdef CONFIG_DEBUG_LOCK_ALLOC
3305 key = &cft->lockdep_key;
3306#endif
3307 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3308 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3309 NULL, key);
49957f8e
TH
3310 if (IS_ERR(kn))
3311 return PTR_ERR(kn);
3312
3313 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3314 if (ret) {
49957f8e 3315 kernfs_remove(kn);
f8f22e53
TH
3316 return ret;
3317 }
3318
6f60eade
TH
3319 if (cft->file_offset) {
3320 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3321
3322 kernfs_get(kn);
3323 cfile->kn = kn;
3324 list_add(&cfile->node, &css->files);
3325 }
3326
f8f22e53 3327 return 0;
ddbcc7e8
PM
3328}
3329
b1f28d31
TH
3330/**
3331 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3332 * @css: the target css
3333 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3334 * @cfts: array of cftypes to be added
3335 * @is_add: whether to add or remove
3336 *
3337 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3338 * For removals, this function never fails.
b1f28d31 3339 */
4df8dc90
TH
3340static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3341 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3342 bool is_add)
ddbcc7e8 3343{
6732ed85 3344 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3345 int ret;
3346
01f6474c 3347 lockdep_assert_held(&cgroup_mutex);
db0416b6 3348
6732ed85
TH
3349restart:
3350 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3351 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3352 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3353 continue;
05ebb6e6 3354 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3355 continue;
d51f39b0 3356 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3357 continue;
d51f39b0 3358 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3359 continue;
3360
2739d3cc 3361 if (is_add) {
4df8dc90 3362 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3363 if (ret) {
ed3d261b
JP
3364 pr_warn("%s: failed to add %s, err=%d\n",
3365 __func__, cft->name, ret);
6732ed85
TH
3366 cft_end = cft;
3367 is_add = false;
3368 goto restart;
b1f28d31 3369 }
2739d3cc
LZ
3370 } else {
3371 cgroup_rm_file(cgrp, cft);
db0416b6 3372 }
ddbcc7e8 3373 }
b1f28d31 3374 return 0;
ddbcc7e8
PM
3375}
3376
21a2d343 3377static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3378{
3379 LIST_HEAD(pending);
2bb566cb 3380 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3381 struct cgroup *root = &ss->root->cgrp;
492eb21b 3382 struct cgroup_subsys_state *css;
9ccece80 3383 int ret = 0;
8e3f6541 3384
01f6474c 3385 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3386
e8c82d20 3387 /* add/rm files for all cgroups created before */
ca8bdcaf 3388 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3389 struct cgroup *cgrp = css->cgroup;
3390
e8c82d20
LZ
3391 if (cgroup_is_dead(cgrp))
3392 continue;
3393
4df8dc90 3394 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3395 if (ret)
3396 break;
8e3f6541 3397 }
21a2d343
TH
3398
3399 if (is_add && !ret)
3400 kernfs_activate(root->kn);
9ccece80 3401 return ret;
8e3f6541
TH
3402}
3403
2da440a2 3404static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3405{
2bb566cb 3406 struct cftype *cft;
8e3f6541 3407
2bd59d48
TH
3408 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3409 /* free copy for custom atomic_write_len, see init_cftypes() */
3410 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3411 kfree(cft->kf_ops);
3412 cft->kf_ops = NULL;
2da440a2 3413 cft->ss = NULL;
a8ddc821
TH
3414
3415 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3416 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3417 }
2da440a2
TH
3418}
3419
2bd59d48 3420static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3421{
3422 struct cftype *cft;
3423
2bd59d48
TH
3424 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3425 struct kernfs_ops *kf_ops;
3426
0adb0704
TH
3427 WARN_ON(cft->ss || cft->kf_ops);
3428
2bd59d48
TH
3429 if (cft->seq_start)
3430 kf_ops = &cgroup_kf_ops;
3431 else
3432 kf_ops = &cgroup_kf_single_ops;
3433
3434 /*
3435 * Ugh... if @cft wants a custom max_write_len, we need to
3436 * make a copy of kf_ops to set its atomic_write_len.
3437 */
3438 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3439 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3440 if (!kf_ops) {
3441 cgroup_exit_cftypes(cfts);
3442 return -ENOMEM;
3443 }
3444 kf_ops->atomic_write_len = cft->max_write_len;
3445 }
8e3f6541 3446
2bd59d48 3447 cft->kf_ops = kf_ops;
2bb566cb 3448 cft->ss = ss;
2bd59d48 3449 }
2bb566cb 3450
2bd59d48 3451 return 0;
2da440a2
TH
3452}
3453
21a2d343
TH
3454static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3455{
01f6474c 3456 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3457
3458 if (!cfts || !cfts[0].ss)
3459 return -ENOENT;
3460
3461 list_del(&cfts->node);
3462 cgroup_apply_cftypes(cfts, false);
3463 cgroup_exit_cftypes(cfts);
3464 return 0;
8e3f6541 3465}
8e3f6541 3466
79578621
TH
3467/**
3468 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3469 * @cfts: zero-length name terminated array of cftypes
3470 *
2bb566cb
TH
3471 * Unregister @cfts. Files described by @cfts are removed from all
3472 * existing cgroups and all future cgroups won't have them either. This
3473 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3474 *
3475 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3476 * registered.
79578621 3477 */
2bb566cb 3478int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3479{
21a2d343 3480 int ret;
79578621 3481
01f6474c 3482 mutex_lock(&cgroup_mutex);
21a2d343 3483 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3484 mutex_unlock(&cgroup_mutex);
21a2d343 3485 return ret;
80b13586
TH
3486}
3487
8e3f6541
TH
3488/**
3489 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3490 * @ss: target cgroup subsystem
3491 * @cfts: zero-length name terminated array of cftypes
3492 *
3493 * Register @cfts to @ss. Files described by @cfts are created for all
3494 * existing cgroups to which @ss is attached and all future cgroups will
3495 * have them too. This function can be called anytime whether @ss is
3496 * attached or not.
3497 *
3498 * Returns 0 on successful registration, -errno on failure. Note that this
3499 * function currently returns 0 as long as @cfts registration is successful
3500 * even if some file creation attempts on existing cgroups fail.
3501 */
2cf669a5 3502static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3503{
9ccece80 3504 int ret;
8e3f6541 3505
fc5ed1e9 3506 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3507 return 0;
3508
dc5736ed
LZ
3509 if (!cfts || cfts[0].name[0] == '\0')
3510 return 0;
2bb566cb 3511
2bd59d48
TH
3512 ret = cgroup_init_cftypes(ss, cfts);
3513 if (ret)
3514 return ret;
79578621 3515
01f6474c 3516 mutex_lock(&cgroup_mutex);
21a2d343 3517
0adb0704 3518 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3519 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3520 if (ret)
21a2d343 3521 cgroup_rm_cftypes_locked(cfts);
79578621 3522
01f6474c 3523 mutex_unlock(&cgroup_mutex);
9ccece80 3524 return ret;
79578621
TH
3525}
3526
a8ddc821
TH
3527/**
3528 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3529 * @ss: target cgroup subsystem
3530 * @cfts: zero-length name terminated array of cftypes
3531 *
3532 * Similar to cgroup_add_cftypes() but the added files are only used for
3533 * the default hierarchy.
3534 */
3535int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3536{
3537 struct cftype *cft;
3538
3539 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3540 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3541 return cgroup_add_cftypes(ss, cfts);
3542}
3543
3544/**
3545 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3546 * @ss: target cgroup subsystem
3547 * @cfts: zero-length name terminated array of cftypes
3548 *
3549 * Similar to cgroup_add_cftypes() but the added files are only used for
3550 * the legacy hierarchies.
3551 */
2cf669a5
TH
3552int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3553{
a8ddc821
TH
3554 struct cftype *cft;
3555
fa8137be
VG
3556 /*
3557 * If legacy_flies_on_dfl, we want to show the legacy files on the
3558 * dfl hierarchy but iff the target subsystem hasn't been updated
3559 * for the dfl hierarchy yet.
3560 */
3561 if (!cgroup_legacy_files_on_dfl ||
3562 ss->dfl_cftypes != ss->legacy_cftypes) {
3563 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3564 cft->flags |= __CFTYPE_NOT_ON_DFL;
3565 }
3566
2cf669a5
TH
3567 return cgroup_add_cftypes(ss, cfts);
3568}
3569
a043e3b2
LZ
3570/**
3571 * cgroup_task_count - count the number of tasks in a cgroup.
3572 * @cgrp: the cgroup in question
3573 *
3574 * Return the number of tasks in the cgroup.
3575 */
07bc356e 3576static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3577{
3578 int count = 0;
69d0206c 3579 struct cgrp_cset_link *link;
817929ec 3580
f0d9a5f1 3581 spin_lock_bh(&css_set_lock);
69d0206c
TH
3582 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3583 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3584 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3585 return count;
3586}
3587
53fa5261 3588/**
492eb21b 3589 * css_next_child - find the next child of a given css
c2931b70
TH
3590 * @pos: the current position (%NULL to initiate traversal)
3591 * @parent: css whose children to walk
53fa5261 3592 *
c2931b70 3593 * This function returns the next child of @parent and should be called
87fb54f1 3594 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3595 * that @parent and @pos are accessible. The next sibling is guaranteed to
3596 * be returned regardless of their states.
3597 *
3598 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3599 * css which finished ->css_online() is guaranteed to be visible in the
3600 * future iterations and will stay visible until the last reference is put.
3601 * A css which hasn't finished ->css_online() or already finished
3602 * ->css_offline() may show up during traversal. It's each subsystem's
3603 * responsibility to synchronize against on/offlining.
53fa5261 3604 */
c2931b70
TH
3605struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3606 struct cgroup_subsys_state *parent)
53fa5261 3607{
c2931b70 3608 struct cgroup_subsys_state *next;
53fa5261 3609
8353da1f 3610 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3611
3612 /*
de3f0341
TH
3613 * @pos could already have been unlinked from the sibling list.
3614 * Once a cgroup is removed, its ->sibling.next is no longer
3615 * updated when its next sibling changes. CSS_RELEASED is set when
3616 * @pos is taken off list, at which time its next pointer is valid,
3617 * and, as releases are serialized, the one pointed to by the next
3618 * pointer is guaranteed to not have started release yet. This
3619 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3620 * critical section, the one pointed to by its next pointer is
3621 * guaranteed to not have finished its RCU grace period even if we
3622 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3623 *
de3f0341
TH
3624 * If @pos has CSS_RELEASED set, its next pointer can't be
3625 * dereferenced; however, as each css is given a monotonically
3626 * increasing unique serial number and always appended to the
3627 * sibling list, the next one can be found by walking the parent's
3628 * children until the first css with higher serial number than
3629 * @pos's. While this path can be slower, it happens iff iteration
3630 * races against release and the race window is very small.
53fa5261 3631 */
3b287a50 3632 if (!pos) {
c2931b70
TH
3633 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3634 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3635 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3636 } else {
c2931b70 3637 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3638 if (next->serial_nr > pos->serial_nr)
3639 break;
53fa5261
TH
3640 }
3641
3b281afb
TH
3642 /*
3643 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3644 * the next sibling.
3b281afb 3645 */
c2931b70
TH
3646 if (&next->sibling != &parent->children)
3647 return next;
3b281afb 3648 return NULL;
53fa5261 3649}
53fa5261 3650
574bd9f7 3651/**
492eb21b 3652 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3653 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3654 * @root: css whose descendants to walk
574bd9f7 3655 *
492eb21b 3656 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3657 * to visit for pre-order traversal of @root's descendants. @root is
3658 * included in the iteration and the first node to be visited.
75501a6d 3659 *
87fb54f1
TH
3660 * While this function requires cgroup_mutex or RCU read locking, it
3661 * doesn't require the whole traversal to be contained in a single critical
3662 * section. This function will return the correct next descendant as long
3663 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3664 *
3665 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3666 * css which finished ->css_online() is guaranteed to be visible in the
3667 * future iterations and will stay visible until the last reference is put.
3668 * A css which hasn't finished ->css_online() or already finished
3669 * ->css_offline() may show up during traversal. It's each subsystem's
3670 * responsibility to synchronize against on/offlining.
574bd9f7 3671 */
492eb21b
TH
3672struct cgroup_subsys_state *
3673css_next_descendant_pre(struct cgroup_subsys_state *pos,
3674 struct cgroup_subsys_state *root)
574bd9f7 3675{
492eb21b 3676 struct cgroup_subsys_state *next;
574bd9f7 3677
8353da1f 3678 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3679
bd8815a6 3680 /* if first iteration, visit @root */
7805d000 3681 if (!pos)
bd8815a6 3682 return root;
574bd9f7
TH
3683
3684 /* visit the first child if exists */
492eb21b 3685 next = css_next_child(NULL, pos);
574bd9f7
TH
3686 if (next)
3687 return next;
3688
3689 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3690 while (pos != root) {
5c9d535b 3691 next = css_next_child(pos, pos->parent);
75501a6d 3692 if (next)
574bd9f7 3693 return next;
5c9d535b 3694 pos = pos->parent;
7805d000 3695 }
574bd9f7
TH
3696
3697 return NULL;
3698}
574bd9f7 3699
12a9d2fe 3700/**
492eb21b
TH
3701 * css_rightmost_descendant - return the rightmost descendant of a css
3702 * @pos: css of interest
12a9d2fe 3703 *
492eb21b
TH
3704 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3705 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3706 * subtree of @pos.
75501a6d 3707 *
87fb54f1
TH
3708 * While this function requires cgroup_mutex or RCU read locking, it
3709 * doesn't require the whole traversal to be contained in a single critical
3710 * section. This function will return the correct rightmost descendant as
3711 * long as @pos is accessible.
12a9d2fe 3712 */
492eb21b
TH
3713struct cgroup_subsys_state *
3714css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3715{
492eb21b 3716 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3717
8353da1f 3718 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3719
3720 do {
3721 last = pos;
3722 /* ->prev isn't RCU safe, walk ->next till the end */
3723 pos = NULL;
492eb21b 3724 css_for_each_child(tmp, last)
12a9d2fe
TH
3725 pos = tmp;
3726 } while (pos);
3727
3728 return last;
3729}
12a9d2fe 3730
492eb21b
TH
3731static struct cgroup_subsys_state *
3732css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3733{
492eb21b 3734 struct cgroup_subsys_state *last;
574bd9f7
TH
3735
3736 do {
3737 last = pos;
492eb21b 3738 pos = css_next_child(NULL, pos);
574bd9f7
TH
3739 } while (pos);
3740
3741 return last;
3742}
3743
3744/**
492eb21b 3745 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3746 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3747 * @root: css whose descendants to walk
574bd9f7 3748 *
492eb21b 3749 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3750 * to visit for post-order traversal of @root's descendants. @root is
3751 * included in the iteration and the last node to be visited.
75501a6d 3752 *
87fb54f1
TH
3753 * While this function requires cgroup_mutex or RCU read locking, it
3754 * doesn't require the whole traversal to be contained in a single critical
3755 * section. This function will return the correct next descendant as long
3756 * as both @pos and @cgroup are accessible and @pos is a descendant of
3757 * @cgroup.
c2931b70
TH
3758 *
3759 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3760 * css which finished ->css_online() is guaranteed to be visible in the
3761 * future iterations and will stay visible until the last reference is put.
3762 * A css which hasn't finished ->css_online() or already finished
3763 * ->css_offline() may show up during traversal. It's each subsystem's
3764 * responsibility to synchronize against on/offlining.
574bd9f7 3765 */
492eb21b
TH
3766struct cgroup_subsys_state *
3767css_next_descendant_post(struct cgroup_subsys_state *pos,
3768 struct cgroup_subsys_state *root)
574bd9f7 3769{
492eb21b 3770 struct cgroup_subsys_state *next;
574bd9f7 3771
8353da1f 3772 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3773
58b79a91
TH
3774 /* if first iteration, visit leftmost descendant which may be @root */
3775 if (!pos)
3776 return css_leftmost_descendant(root);
574bd9f7 3777
bd8815a6
TH
3778 /* if we visited @root, we're done */
3779 if (pos == root)
3780 return NULL;
3781
574bd9f7 3782 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3783 next = css_next_child(pos, pos->parent);
75501a6d 3784 if (next)
492eb21b 3785 return css_leftmost_descendant(next);
574bd9f7
TH
3786
3787 /* no sibling left, visit parent */
5c9d535b 3788 return pos->parent;
574bd9f7 3789}
574bd9f7 3790
f3d46500
TH
3791/**
3792 * css_has_online_children - does a css have online children
3793 * @css: the target css
3794 *
3795 * Returns %true if @css has any online children; otherwise, %false. This
3796 * function can be called from any context but the caller is responsible
3797 * for synchronizing against on/offlining as necessary.
3798 */
3799bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3800{
f3d46500
TH
3801 struct cgroup_subsys_state *child;
3802 bool ret = false;
cbc125ef
TH
3803
3804 rcu_read_lock();
f3d46500 3805 css_for_each_child(child, css) {
99bae5f9 3806 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3807 ret = true;
3808 break;
cbc125ef
TH
3809 }
3810 }
3811 rcu_read_unlock();
f3d46500 3812 return ret;
574bd9f7 3813}
574bd9f7 3814
0942eeee 3815/**
ecb9d535 3816 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3817 * @it: the iterator to advance
3818 *
3819 * Advance @it to the next css_set to walk.
d515876e 3820 */
ecb9d535 3821static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3822{
0f0a2b4f 3823 struct list_head *l = it->cset_pos;
d515876e
TH
3824 struct cgrp_cset_link *link;
3825 struct css_set *cset;
3826
f0d9a5f1 3827 lockdep_assert_held(&css_set_lock);
ed27b9f7 3828
d515876e
TH
3829 /* Advance to the next non-empty css_set */
3830 do {
3831 l = l->next;
0f0a2b4f
TH
3832 if (l == it->cset_head) {
3833 it->cset_pos = NULL;
ecb9d535 3834 it->task_pos = NULL;
d515876e
TH
3835 return;
3836 }
3ebb2b6e
TH
3837
3838 if (it->ss) {
3839 cset = container_of(l, struct css_set,
3840 e_cset_node[it->ss->id]);
3841 } else {
3842 link = list_entry(l, struct cgrp_cset_link, cset_link);
3843 cset = link->cset;
3844 }
0de0942d 3845 } while (!css_set_populated(cset));
c7561128 3846
0f0a2b4f 3847 it->cset_pos = l;
c7561128
TH
3848
3849 if (!list_empty(&cset->tasks))
0f0a2b4f 3850 it->task_pos = cset->tasks.next;
c7561128 3851 else
0f0a2b4f
TH
3852 it->task_pos = cset->mg_tasks.next;
3853
3854 it->tasks_head = &cset->tasks;
3855 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3856
3857 /*
3858 * We don't keep css_sets locked across iteration steps and thus
3859 * need to take steps to ensure that iteration can be resumed after
3860 * the lock is re-acquired. Iteration is performed at two levels -
3861 * css_sets and tasks in them.
3862 *
3863 * Once created, a css_set never leaves its cgroup lists, so a
3864 * pinned css_set is guaranteed to stay put and we can resume
3865 * iteration afterwards.
3866 *
3867 * Tasks may leave @cset across iteration steps. This is resolved
3868 * by registering each iterator with the css_set currently being
3869 * walked and making css_set_move_task() advance iterators whose
3870 * next task is leaving.
3871 */
3872 if (it->cur_cset) {
3873 list_del(&it->iters_node);
3874 put_css_set_locked(it->cur_cset);
3875 }
3876 get_css_set(cset);
3877 it->cur_cset = cset;
3878 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3879}
3880
ecb9d535
TH
3881static void css_task_iter_advance(struct css_task_iter *it)
3882{
3883 struct list_head *l = it->task_pos;
3884
f0d9a5f1 3885 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3886 WARN_ON_ONCE(!l);
3887
3888 /*
3889 * Advance iterator to find next entry. cset->tasks is consumed
3890 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3891 * next cset.
3892 */
3893 l = l->next;
3894
3895 if (l == it->tasks_head)
3896 l = it->mg_tasks_head->next;
3897
3898 if (l == it->mg_tasks_head)
3899 css_task_iter_advance_css_set(it);
3900 else
3901 it->task_pos = l;
3902}
3903
0942eeee 3904/**
72ec7029
TH
3905 * css_task_iter_start - initiate task iteration
3906 * @css: the css to walk tasks of
0942eeee
TH
3907 * @it: the task iterator to use
3908 *
72ec7029
TH
3909 * Initiate iteration through the tasks of @css. The caller can call
3910 * css_task_iter_next() to walk through the tasks until the function
3911 * returns NULL. On completion of iteration, css_task_iter_end() must be
3912 * called.
0942eeee 3913 */
72ec7029
TH
3914void css_task_iter_start(struct cgroup_subsys_state *css,
3915 struct css_task_iter *it)
817929ec 3916{
56fde9e0
TH
3917 /* no one should try to iterate before mounting cgroups */
3918 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3919
ed27b9f7
TH
3920 memset(it, 0, sizeof(*it));
3921
f0d9a5f1 3922 spin_lock_bh(&css_set_lock);
c59cd3d8 3923
3ebb2b6e
TH
3924 it->ss = css->ss;
3925
3926 if (it->ss)
3927 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3928 else
3929 it->cset_pos = &css->cgroup->cset_links;
3930
0f0a2b4f 3931 it->cset_head = it->cset_pos;
c59cd3d8 3932
ecb9d535 3933 css_task_iter_advance_css_set(it);
ed27b9f7 3934
f0d9a5f1 3935 spin_unlock_bh(&css_set_lock);
817929ec
PM
3936}
3937
0942eeee 3938/**
72ec7029 3939 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3940 * @it: the task iterator being iterated
3941 *
3942 * The "next" function for task iteration. @it should have been
72ec7029
TH
3943 * initialized via css_task_iter_start(). Returns NULL when the iteration
3944 * reaches the end.
0942eeee 3945 */
72ec7029 3946struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3947{
0f0a2b4f 3948 if (!it->cset_pos)
817929ec 3949 return NULL;
c7561128 3950
ed27b9f7
TH
3951 if (it->cur_task)
3952 put_task_struct(it->cur_task);
3953
f0d9a5f1 3954 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3955
3956 it->cur_task = list_entry(it->task_pos, struct task_struct, cg_list);
3957 get_task_struct(it->cur_task);
3958
ecb9d535 3959 css_task_iter_advance(it);
ed27b9f7 3960
f0d9a5f1 3961 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3962
3963 return it->cur_task;
817929ec
PM
3964}
3965
0942eeee 3966/**
72ec7029 3967 * css_task_iter_end - finish task iteration
0942eeee
TH
3968 * @it: the task iterator to finish
3969 *
72ec7029 3970 * Finish task iteration started by css_task_iter_start().
0942eeee 3971 */
72ec7029 3972void css_task_iter_end(struct css_task_iter *it)
31a7df01 3973{
ed27b9f7 3974 if (it->cur_cset) {
f0d9a5f1 3975 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3976 list_del(&it->iters_node);
3977 put_css_set_locked(it->cur_cset);
f0d9a5f1 3978 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3979 }
3980
3981 if (it->cur_task)
3982 put_task_struct(it->cur_task);
31a7df01
CW
3983}
3984
3985/**
8cc99345
TH
3986 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3987 * @to: cgroup to which the tasks will be moved
3988 * @from: cgroup in which the tasks currently reside
31a7df01 3989 *
eaf797ab
TH
3990 * Locking rules between cgroup_post_fork() and the migration path
3991 * guarantee that, if a task is forking while being migrated, the new child
3992 * is guaranteed to be either visible in the source cgroup after the
3993 * parent's migration is complete or put into the target cgroup. No task
3994 * can slip out of migration through forking.
31a7df01 3995 */
8cc99345 3996int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3997{
952aaa12
TH
3998 LIST_HEAD(preloaded_csets);
3999 struct cgrp_cset_link *link;
72ec7029 4000 struct css_task_iter it;
e406d1cf 4001 struct task_struct *task;
952aaa12 4002 int ret;
31a7df01 4003
952aaa12 4004 mutex_lock(&cgroup_mutex);
31a7df01 4005
952aaa12 4006 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4007 spin_lock_bh(&css_set_lock);
952aaa12
TH
4008 list_for_each_entry(link, &from->cset_links, cset_link)
4009 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4010 spin_unlock_bh(&css_set_lock);
31a7df01 4011
952aaa12
TH
4012 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4013 if (ret)
4014 goto out_err;
8cc99345 4015
952aaa12
TH
4016 /*
4017 * Migrate tasks one-by-one until @form is empty. This fails iff
4018 * ->can_attach() fails.
4019 */
e406d1cf 4020 do {
9d800df1 4021 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4022 task = css_task_iter_next(&it);
4023 if (task)
4024 get_task_struct(task);
4025 css_task_iter_end(&it);
4026
4027 if (task) {
9af2ec45 4028 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4029 put_task_struct(task);
4030 }
4031 } while (task && !ret);
952aaa12
TH
4032out_err:
4033 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4034 mutex_unlock(&cgroup_mutex);
e406d1cf 4035 return ret;
8cc99345
TH
4036}
4037
bbcb81d0 4038/*
102a775e 4039 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4040 *
4041 * Reading this file can return large amounts of data if a cgroup has
4042 * *lots* of attached tasks. So it may need several calls to read(),
4043 * but we cannot guarantee that the information we produce is correct
4044 * unless we produce it entirely atomically.
4045 *
bbcb81d0 4046 */
bbcb81d0 4047
24528255
LZ
4048/* which pidlist file are we talking about? */
4049enum cgroup_filetype {
4050 CGROUP_FILE_PROCS,
4051 CGROUP_FILE_TASKS,
4052};
4053
4054/*
4055 * A pidlist is a list of pids that virtually represents the contents of one
4056 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4057 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4058 * to the cgroup.
4059 */
4060struct cgroup_pidlist {
4061 /*
4062 * used to find which pidlist is wanted. doesn't change as long as
4063 * this particular list stays in the list.
4064 */
4065 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4066 /* array of xids */
4067 pid_t *list;
4068 /* how many elements the above list has */
4069 int length;
24528255
LZ
4070 /* each of these stored in a list by its cgroup */
4071 struct list_head links;
4072 /* pointer to the cgroup we belong to, for list removal purposes */
4073 struct cgroup *owner;
b1a21367
TH
4074 /* for delayed destruction */
4075 struct delayed_work destroy_dwork;
24528255
LZ
4076};
4077
d1d9fd33
BB
4078/*
4079 * The following two functions "fix" the issue where there are more pids
4080 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4081 * TODO: replace with a kernel-wide solution to this problem
4082 */
4083#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4084static void *pidlist_allocate(int count)
4085{
4086 if (PIDLIST_TOO_LARGE(count))
4087 return vmalloc(count * sizeof(pid_t));
4088 else
4089 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4090}
b1a21367 4091
d1d9fd33
BB
4092static void pidlist_free(void *p)
4093{
58794514 4094 kvfree(p);
d1d9fd33 4095}
d1d9fd33 4096
b1a21367
TH
4097/*
4098 * Used to destroy all pidlists lingering waiting for destroy timer. None
4099 * should be left afterwards.
4100 */
4101static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4102{
4103 struct cgroup_pidlist *l, *tmp_l;
4104
4105 mutex_lock(&cgrp->pidlist_mutex);
4106 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4107 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4108 mutex_unlock(&cgrp->pidlist_mutex);
4109
4110 flush_workqueue(cgroup_pidlist_destroy_wq);
4111 BUG_ON(!list_empty(&cgrp->pidlists));
4112}
4113
4114static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4115{
4116 struct delayed_work *dwork = to_delayed_work(work);
4117 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4118 destroy_dwork);
4119 struct cgroup_pidlist *tofree = NULL;
4120
4121 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4122
4123 /*
04502365
TH
4124 * Destroy iff we didn't get queued again. The state won't change
4125 * as destroy_dwork can only be queued while locked.
b1a21367 4126 */
04502365 4127 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4128 list_del(&l->links);
4129 pidlist_free(l->list);
4130 put_pid_ns(l->key.ns);
4131 tofree = l;
4132 }
4133
b1a21367
TH
4134 mutex_unlock(&l->owner->pidlist_mutex);
4135 kfree(tofree);
4136}
4137
bbcb81d0 4138/*
102a775e 4139 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4140 * Returns the number of unique elements.
bbcb81d0 4141 */
6ee211ad 4142static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4143{
102a775e 4144 int src, dest = 1;
102a775e
BB
4145
4146 /*
4147 * we presume the 0th element is unique, so i starts at 1. trivial
4148 * edge cases first; no work needs to be done for either
4149 */
4150 if (length == 0 || length == 1)
4151 return length;
4152 /* src and dest walk down the list; dest counts unique elements */
4153 for (src = 1; src < length; src++) {
4154 /* find next unique element */
4155 while (list[src] == list[src-1]) {
4156 src++;
4157 if (src == length)
4158 goto after;
4159 }
4160 /* dest always points to where the next unique element goes */
4161 list[dest] = list[src];
4162 dest++;
4163 }
4164after:
102a775e
BB
4165 return dest;
4166}
4167
afb2bc14
TH
4168/*
4169 * The two pid files - task and cgroup.procs - guaranteed that the result
4170 * is sorted, which forced this whole pidlist fiasco. As pid order is
4171 * different per namespace, each namespace needs differently sorted list,
4172 * making it impossible to use, for example, single rbtree of member tasks
4173 * sorted by task pointer. As pidlists can be fairly large, allocating one
4174 * per open file is dangerous, so cgroup had to implement shared pool of
4175 * pidlists keyed by cgroup and namespace.
4176 *
4177 * All this extra complexity was caused by the original implementation
4178 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4179 * want to do away with it. Explicitly scramble sort order if on the
4180 * default hierarchy so that no such expectation exists in the new
4181 * interface.
afb2bc14
TH
4182 *
4183 * Scrambling is done by swapping every two consecutive bits, which is
4184 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4185 */
4186static pid_t pid_fry(pid_t pid)
4187{
4188 unsigned a = pid & 0x55555555;
4189 unsigned b = pid & 0xAAAAAAAA;
4190
4191 return (a << 1) | (b >> 1);
4192}
4193
4194static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4195{
aa6ec29b 4196 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4197 return pid_fry(pid);
4198 else
4199 return pid;
4200}
4201
102a775e
BB
4202static int cmppid(const void *a, const void *b)
4203{
4204 return *(pid_t *)a - *(pid_t *)b;
4205}
4206
afb2bc14
TH
4207static int fried_cmppid(const void *a, const void *b)
4208{
4209 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4210}
4211
e6b81710
TH
4212static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4213 enum cgroup_filetype type)
4214{
4215 struct cgroup_pidlist *l;
4216 /* don't need task_nsproxy() if we're looking at ourself */
4217 struct pid_namespace *ns = task_active_pid_ns(current);
4218
4219 lockdep_assert_held(&cgrp->pidlist_mutex);
4220
4221 list_for_each_entry(l, &cgrp->pidlists, links)
4222 if (l->key.type == type && l->key.ns == ns)
4223 return l;
4224 return NULL;
4225}
4226
72a8cb30
BB
4227/*
4228 * find the appropriate pidlist for our purpose (given procs vs tasks)
4229 * returns with the lock on that pidlist already held, and takes care
4230 * of the use count, or returns NULL with no locks held if we're out of
4231 * memory.
4232 */
e6b81710
TH
4233static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4234 enum cgroup_filetype type)
72a8cb30
BB
4235{
4236 struct cgroup_pidlist *l;
b70cc5fd 4237
e6b81710
TH
4238 lockdep_assert_held(&cgrp->pidlist_mutex);
4239
4240 l = cgroup_pidlist_find(cgrp, type);
4241 if (l)
4242 return l;
4243
72a8cb30 4244 /* entry not found; create a new one */
f4f4be2b 4245 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4246 if (!l)
72a8cb30 4247 return l;
e6b81710 4248
b1a21367 4249 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4250 l->key.type = type;
e6b81710
TH
4251 /* don't need task_nsproxy() if we're looking at ourself */
4252 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4253 l->owner = cgrp;
4254 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4255 return l;
4256}
4257
102a775e
BB
4258/*
4259 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4260 */
72a8cb30
BB
4261static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4262 struct cgroup_pidlist **lp)
102a775e
BB
4263{
4264 pid_t *array;
4265 int length;
4266 int pid, n = 0; /* used for populating the array */
72ec7029 4267 struct css_task_iter it;
817929ec 4268 struct task_struct *tsk;
102a775e
BB
4269 struct cgroup_pidlist *l;
4270
4bac00d1
TH
4271 lockdep_assert_held(&cgrp->pidlist_mutex);
4272
102a775e
BB
4273 /*
4274 * If cgroup gets more users after we read count, we won't have
4275 * enough space - tough. This race is indistinguishable to the
4276 * caller from the case that the additional cgroup users didn't
4277 * show up until sometime later on.
4278 */
4279 length = cgroup_task_count(cgrp);
d1d9fd33 4280 array = pidlist_allocate(length);
102a775e
BB
4281 if (!array)
4282 return -ENOMEM;
4283 /* now, populate the array */
9d800df1 4284 css_task_iter_start(&cgrp->self, &it);
72ec7029 4285 while ((tsk = css_task_iter_next(&it))) {
102a775e 4286 if (unlikely(n == length))
817929ec 4287 break;
102a775e 4288 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4289 if (type == CGROUP_FILE_PROCS)
4290 pid = task_tgid_vnr(tsk);
4291 else
4292 pid = task_pid_vnr(tsk);
102a775e
BB
4293 if (pid > 0) /* make sure to only use valid results */
4294 array[n++] = pid;
817929ec 4295 }
72ec7029 4296 css_task_iter_end(&it);
102a775e
BB
4297 length = n;
4298 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4299 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4300 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4301 else
4302 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4303 if (type == CGROUP_FILE_PROCS)
6ee211ad 4304 length = pidlist_uniq(array, length);
e6b81710 4305
e6b81710 4306 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4307 if (!l) {
d1d9fd33 4308 pidlist_free(array);
72a8cb30 4309 return -ENOMEM;
102a775e 4310 }
e6b81710
TH
4311
4312 /* store array, freeing old if necessary */
d1d9fd33 4313 pidlist_free(l->list);
102a775e
BB
4314 l->list = array;
4315 l->length = length;
72a8cb30 4316 *lp = l;
102a775e 4317 return 0;
bbcb81d0
PM
4318}
4319
846c7bb0 4320/**
a043e3b2 4321 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4322 * @stats: cgroupstats to fill information into
4323 * @dentry: A dentry entry belonging to the cgroup for which stats have
4324 * been requested.
a043e3b2
LZ
4325 *
4326 * Build and fill cgroupstats so that taskstats can export it to user
4327 * space.
846c7bb0
BS
4328 */
4329int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4330{
2bd59d48 4331 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4332 struct cgroup *cgrp;
72ec7029 4333 struct css_task_iter it;
846c7bb0 4334 struct task_struct *tsk;
33d283be 4335
2bd59d48
TH
4336 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4337 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4338 kernfs_type(kn) != KERNFS_DIR)
4339 return -EINVAL;
4340
bad34660
LZ
4341 mutex_lock(&cgroup_mutex);
4342
846c7bb0 4343 /*
2bd59d48 4344 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4345 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4346 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4347 */
2bd59d48
TH
4348 rcu_read_lock();
4349 cgrp = rcu_dereference(kn->priv);
bad34660 4350 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4351 rcu_read_unlock();
bad34660 4352 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4353 return -ENOENT;
4354 }
bad34660 4355 rcu_read_unlock();
846c7bb0 4356
9d800df1 4357 css_task_iter_start(&cgrp->self, &it);
72ec7029 4358 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4359 switch (tsk->state) {
4360 case TASK_RUNNING:
4361 stats->nr_running++;
4362 break;
4363 case TASK_INTERRUPTIBLE:
4364 stats->nr_sleeping++;
4365 break;
4366 case TASK_UNINTERRUPTIBLE:
4367 stats->nr_uninterruptible++;
4368 break;
4369 case TASK_STOPPED:
4370 stats->nr_stopped++;
4371 break;
4372 default:
4373 if (delayacct_is_task_waiting_on_io(tsk))
4374 stats->nr_io_wait++;
4375 break;
4376 }
4377 }
72ec7029 4378 css_task_iter_end(&it);
846c7bb0 4379
bad34660 4380 mutex_unlock(&cgroup_mutex);
2bd59d48 4381 return 0;
846c7bb0
BS
4382}
4383
8f3ff208 4384
bbcb81d0 4385/*
102a775e 4386 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4387 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4388 * in the cgroup->l->list array.
bbcb81d0 4389 */
cc31edce 4390
102a775e 4391static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4392{
cc31edce
PM
4393 /*
4394 * Initially we receive a position value that corresponds to
4395 * one more than the last pid shown (or 0 on the first call or
4396 * after a seek to the start). Use a binary-search to find the
4397 * next pid to display, if any
4398 */
2bd59d48 4399 struct kernfs_open_file *of = s->private;
7da11279 4400 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4401 struct cgroup_pidlist *l;
7da11279 4402 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4403 int index = 0, pid = *pos;
4bac00d1
TH
4404 int *iter, ret;
4405
4406 mutex_lock(&cgrp->pidlist_mutex);
4407
4408 /*
5d22444f 4409 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4410 * after open. If the matching pidlist is around, we can use that.
5d22444f 4411 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4412 * could already have been destroyed.
4413 */
5d22444f
TH
4414 if (of->priv)
4415 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4416
4417 /*
4418 * Either this is the first start() after open or the matching
4419 * pidlist has been destroyed inbetween. Create a new one.
4420 */
5d22444f
TH
4421 if (!of->priv) {
4422 ret = pidlist_array_load(cgrp, type,
4423 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4424 if (ret)
4425 return ERR_PTR(ret);
4426 }
5d22444f 4427 l = of->priv;
cc31edce 4428
cc31edce 4429 if (pid) {
102a775e 4430 int end = l->length;
20777766 4431
cc31edce
PM
4432 while (index < end) {
4433 int mid = (index + end) / 2;
afb2bc14 4434 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4435 index = mid;
4436 break;
afb2bc14 4437 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4438 index = mid + 1;
4439 else
4440 end = mid;
4441 }
4442 }
4443 /* If we're off the end of the array, we're done */
102a775e 4444 if (index >= l->length)
cc31edce
PM
4445 return NULL;
4446 /* Update the abstract position to be the actual pid that we found */
102a775e 4447 iter = l->list + index;
afb2bc14 4448 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4449 return iter;
4450}
4451
102a775e 4452static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4453{
2bd59d48 4454 struct kernfs_open_file *of = s->private;
5d22444f 4455 struct cgroup_pidlist *l = of->priv;
62236858 4456
5d22444f
TH
4457 if (l)
4458 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4459 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4460 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4461}
4462
102a775e 4463static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4464{
2bd59d48 4465 struct kernfs_open_file *of = s->private;
5d22444f 4466 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4467 pid_t *p = v;
4468 pid_t *end = l->list + l->length;
cc31edce
PM
4469 /*
4470 * Advance to the next pid in the array. If this goes off the
4471 * end, we're done
4472 */
4473 p++;
4474 if (p >= end) {
4475 return NULL;
4476 } else {
7da11279 4477 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4478 return p;
4479 }
4480}
4481
102a775e 4482static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4483{
94ff212d
JP
4484 seq_printf(s, "%d\n", *(int *)v);
4485
4486 return 0;
cc31edce 4487}
bbcb81d0 4488
182446d0
TH
4489static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4490 struct cftype *cft)
81a6a5cd 4491{
182446d0 4492 return notify_on_release(css->cgroup);
81a6a5cd
PM
4493}
4494
182446d0
TH
4495static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4496 struct cftype *cft, u64 val)
6379c106 4497{
6379c106 4498 if (val)
182446d0 4499 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4500 else
182446d0 4501 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4502 return 0;
4503}
4504
182446d0
TH
4505static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4506 struct cftype *cft)
97978e6d 4507{
182446d0 4508 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4509}
4510
182446d0
TH
4511static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4512 struct cftype *cft, u64 val)
97978e6d
DL
4513{
4514 if (val)
182446d0 4515 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4516 else
182446d0 4517 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4518 return 0;
4519}
4520
a14c6874
TH
4521/* cgroup core interface files for the default hierarchy */
4522static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4523 {
d5c56ced 4524 .name = "cgroup.procs",
6f60eade 4525 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4526 .seq_start = cgroup_pidlist_start,
4527 .seq_next = cgroup_pidlist_next,
4528 .seq_stop = cgroup_pidlist_stop,
4529 .seq_show = cgroup_pidlist_show,
5d22444f 4530 .private = CGROUP_FILE_PROCS,
acbef755 4531 .write = cgroup_procs_write,
102a775e 4532 },
f8f22e53
TH
4533 {
4534 .name = "cgroup.controllers",
a14c6874 4535 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4536 .seq_show = cgroup_root_controllers_show,
4537 },
4538 {
4539 .name = "cgroup.controllers",
a14c6874 4540 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4541 .seq_show = cgroup_controllers_show,
4542 },
4543 {
4544 .name = "cgroup.subtree_control",
f8f22e53 4545 .seq_show = cgroup_subtree_control_show,
451af504 4546 .write = cgroup_subtree_control_write,
f8f22e53 4547 },
842b597e 4548 {
4a07c222 4549 .name = "cgroup.events",
a14c6874 4550 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4551 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4552 .seq_show = cgroup_events_show,
842b597e 4553 },
a14c6874
TH
4554 { } /* terminate */
4555};
d5c56ced 4556
a14c6874
TH
4557/* cgroup core interface files for the legacy hierarchies */
4558static struct cftype cgroup_legacy_base_files[] = {
4559 {
4560 .name = "cgroup.procs",
4561 .seq_start = cgroup_pidlist_start,
4562 .seq_next = cgroup_pidlist_next,
4563 .seq_stop = cgroup_pidlist_stop,
4564 .seq_show = cgroup_pidlist_show,
4565 .private = CGROUP_FILE_PROCS,
4566 .write = cgroup_procs_write,
a14c6874
TH
4567 },
4568 {
4569 .name = "cgroup.clone_children",
4570 .read_u64 = cgroup_clone_children_read,
4571 .write_u64 = cgroup_clone_children_write,
4572 },
4573 {
4574 .name = "cgroup.sane_behavior",
4575 .flags = CFTYPE_ONLY_ON_ROOT,
4576 .seq_show = cgroup_sane_behavior_show,
4577 },
d5c56ced
TH
4578 {
4579 .name = "tasks",
6612f05b
TH
4580 .seq_start = cgroup_pidlist_start,
4581 .seq_next = cgroup_pidlist_next,
4582 .seq_stop = cgroup_pidlist_stop,
4583 .seq_show = cgroup_pidlist_show,
5d22444f 4584 .private = CGROUP_FILE_TASKS,
acbef755 4585 .write = cgroup_tasks_write,
d5c56ced
TH
4586 },
4587 {
4588 .name = "notify_on_release",
d5c56ced
TH
4589 .read_u64 = cgroup_read_notify_on_release,
4590 .write_u64 = cgroup_write_notify_on_release,
4591 },
6e6ff25b
TH
4592 {
4593 .name = "release_agent",
a14c6874 4594 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4595 .seq_show = cgroup_release_agent_show,
451af504 4596 .write = cgroup_release_agent_write,
5f469907 4597 .max_write_len = PATH_MAX - 1,
6e6ff25b 4598 },
db0416b6 4599 { } /* terminate */
bbcb81d0
PM
4600};
4601
0c21ead1
TH
4602/*
4603 * css destruction is four-stage process.
4604 *
4605 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4606 * Implemented in kill_css().
4607 *
4608 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4609 * and thus css_tryget_online() is guaranteed to fail, the css can be
4610 * offlined by invoking offline_css(). After offlining, the base ref is
4611 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4612 *
4613 * 3. When the percpu_ref reaches zero, the only possible remaining
4614 * accessors are inside RCU read sections. css_release() schedules the
4615 * RCU callback.
4616 *
4617 * 4. After the grace period, the css can be freed. Implemented in
4618 * css_free_work_fn().
4619 *
4620 * It is actually hairier because both step 2 and 4 require process context
4621 * and thus involve punting to css->destroy_work adding two additional
4622 * steps to the already complex sequence.
4623 */
35ef10da 4624static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4625{
4626 struct cgroup_subsys_state *css =
35ef10da 4627 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4628 struct cgroup_subsys *ss = css->ss;
0c21ead1 4629 struct cgroup *cgrp = css->cgroup;
6f60eade 4630 struct cgroup_file *cfile;
48ddbe19 4631
9a1049da
TH
4632 percpu_ref_exit(&css->refcnt);
4633
6f60eade
TH
4634 list_for_each_entry(cfile, &css->files, node)
4635 kernfs_put(cfile->kn);
4636
01e58659 4637 if (ss) {
9d755d33 4638 /* css free path */
01e58659
VD
4639 int id = css->id;
4640
9d755d33
TH
4641 if (css->parent)
4642 css_put(css->parent);
0ae78e0b 4643
01e58659
VD
4644 ss->css_free(css);
4645 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4646 cgroup_put(cgrp);
4647 } else {
4648 /* cgroup free path */
4649 atomic_dec(&cgrp->root->nr_cgrps);
4650 cgroup_pidlist_destroy_all(cgrp);
971ff493 4651 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4652
d51f39b0 4653 if (cgroup_parent(cgrp)) {
9d755d33
TH
4654 /*
4655 * We get a ref to the parent, and put the ref when
4656 * this cgroup is being freed, so it's guaranteed
4657 * that the parent won't be destroyed before its
4658 * children.
4659 */
d51f39b0 4660 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4661 kernfs_put(cgrp->kn);
4662 kfree(cgrp);
4663 } else {
4664 /*
4665 * This is root cgroup's refcnt reaching zero,
4666 * which indicates that the root should be
4667 * released.
4668 */
4669 cgroup_destroy_root(cgrp->root);
4670 }
4671 }
48ddbe19
TH
4672}
4673
0c21ead1 4674static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4675{
4676 struct cgroup_subsys_state *css =
0c21ead1 4677 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4678
35ef10da 4679 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4680 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4681}
4682
25e15d83 4683static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4684{
4685 struct cgroup_subsys_state *css =
25e15d83 4686 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4687 struct cgroup_subsys *ss = css->ss;
9d755d33 4688 struct cgroup *cgrp = css->cgroup;
15a4c835 4689
1fed1b2e
TH
4690 mutex_lock(&cgroup_mutex);
4691
de3f0341 4692 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4693 list_del_rcu(&css->sibling);
4694
9d755d33
TH
4695 if (ss) {
4696 /* css release path */
01e58659 4697 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4698 if (ss->css_released)
4699 ss->css_released(css);
9d755d33
TH
4700 } else {
4701 /* cgroup release path */
9d755d33
TH
4702 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4703 cgrp->id = -1;
a4189487
LZ
4704
4705 /*
4706 * There are two control paths which try to determine
4707 * cgroup from dentry without going through kernfs -
4708 * cgroupstats_build() and css_tryget_online_from_dir().
4709 * Those are supported by RCU protecting clearing of
4710 * cgrp->kn->priv backpointer.
4711 */
4712 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4713 }
d3daf28d 4714
1fed1b2e
TH
4715 mutex_unlock(&cgroup_mutex);
4716
0c21ead1 4717 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4718}
4719
d3daf28d
TH
4720static void css_release(struct percpu_ref *ref)
4721{
4722 struct cgroup_subsys_state *css =
4723 container_of(ref, struct cgroup_subsys_state, refcnt);
4724
25e15d83
TH
4725 INIT_WORK(&css->destroy_work, css_release_work_fn);
4726 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4727}
4728
ddfcadab
TH
4729static void init_and_link_css(struct cgroup_subsys_state *css,
4730 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4731{
0cb51d71
TH
4732 lockdep_assert_held(&cgroup_mutex);
4733
ddfcadab
TH
4734 cgroup_get(cgrp);
4735
d5c419b6 4736 memset(css, 0, sizeof(*css));
bd89aabc 4737 css->cgroup = cgrp;
72c97e54 4738 css->ss = ss;
d5c419b6
TH
4739 INIT_LIST_HEAD(&css->sibling);
4740 INIT_LIST_HEAD(&css->children);
6f60eade 4741 INIT_LIST_HEAD(&css->files);
0cb51d71 4742 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4743
d51f39b0
TH
4744 if (cgroup_parent(cgrp)) {
4745 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4746 css_get(css->parent);
ddfcadab 4747 }
48ddbe19 4748
ca8bdcaf 4749 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4750}
4751
2a4ac633 4752/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4753static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4754{
623f926b 4755 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4756 int ret = 0;
4757
a31f2d3f
TH
4758 lockdep_assert_held(&cgroup_mutex);
4759
92fb9748 4760 if (ss->css_online)
eb95419b 4761 ret = ss->css_online(css);
ae7f164a 4762 if (!ret) {
eb95419b 4763 css->flags |= CSS_ONLINE;
aec25020 4764 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4765 }
b1929db4 4766 return ret;
a31f2d3f
TH
4767}
4768
2a4ac633 4769/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4770static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4771{
623f926b 4772 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4773
4774 lockdep_assert_held(&cgroup_mutex);
4775
4776 if (!(css->flags & CSS_ONLINE))
4777 return;
4778
d7eeac19 4779 if (ss->css_offline)
eb95419b 4780 ss->css_offline(css);
a31f2d3f 4781
eb95419b 4782 css->flags &= ~CSS_ONLINE;
e3297803 4783 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4784
4785 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4786}
4787
c81c925a
TH
4788/**
4789 * create_css - create a cgroup_subsys_state
4790 * @cgrp: the cgroup new css will be associated with
4791 * @ss: the subsys of new css
f63070d3 4792 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4793 *
4794 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4795 * css is online and installed in @cgrp with all interface files created if
4796 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4797 */
f63070d3
TH
4798static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4799 bool visible)
c81c925a 4800{
d51f39b0 4801 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4802 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4803 struct cgroup_subsys_state *css;
4804 int err;
4805
c81c925a
TH
4806 lockdep_assert_held(&cgroup_mutex);
4807
1fed1b2e 4808 css = ss->css_alloc(parent_css);
c81c925a
TH
4809 if (IS_ERR(css))
4810 return PTR_ERR(css);
4811
ddfcadab 4812 init_and_link_css(css, ss, cgrp);
a2bed820 4813
2aad2a86 4814 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4815 if (err)
3eb59ec6 4816 goto err_free_css;
c81c925a 4817
cf780b7d 4818 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4819 if (err < 0)
4820 goto err_free_percpu_ref;
4821 css->id = err;
c81c925a 4822
f63070d3 4823 if (visible) {
4df8dc90 4824 err = css_populate_dir(css, NULL);
f63070d3
TH
4825 if (err)
4826 goto err_free_id;
4827 }
15a4c835
TH
4828
4829 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4830 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4831 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4832
4833 err = online_css(css);
4834 if (err)
1fed1b2e 4835 goto err_list_del;
94419627 4836
c81c925a 4837 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4838 cgroup_parent(parent)) {
ed3d261b 4839 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4840 current->comm, current->pid, ss->name);
c81c925a 4841 if (!strcmp(ss->name, "memory"))
ed3d261b 4842 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4843 ss->warned_broken_hierarchy = true;
4844 }
4845
4846 return 0;
4847
1fed1b2e
TH
4848err_list_del:
4849 list_del_rcu(&css->sibling);
4df8dc90 4850 css_clear_dir(css, NULL);
15a4c835
TH
4851err_free_id:
4852 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4853err_free_percpu_ref:
9a1049da 4854 percpu_ref_exit(&css->refcnt);
3eb59ec6 4855err_free_css:
a2bed820 4856 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4857 return err;
4858}
4859
b3bfd983
TH
4860static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4861 umode_t mode)
ddbcc7e8 4862{
a9746d8d
TH
4863 struct cgroup *parent, *cgrp;
4864 struct cgroup_root *root;
ddbcc7e8 4865 struct cgroup_subsys *ss;
2bd59d48 4866 struct kernfs_node *kn;
b3bfd983 4867 int ssid, ret;
ddbcc7e8 4868
71b1fb5c
AC
4869 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4870 */
4871 if (strchr(name, '\n'))
4872 return -EINVAL;
4873
a9746d8d
TH
4874 parent = cgroup_kn_lock_live(parent_kn);
4875 if (!parent)
4876 return -ENODEV;
4877 root = parent->root;
ddbcc7e8 4878
0a950f65 4879 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4880 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4881 if (!cgrp) {
4882 ret = -ENOMEM;
4883 goto out_unlock;
0ab02ca8
LZ
4884 }
4885
2aad2a86 4886 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4887 if (ret)
4888 goto out_free_cgrp;
4889
0ab02ca8
LZ
4890 /*
4891 * Temporarily set the pointer to NULL, so idr_find() won't return
4892 * a half-baked cgroup.
4893 */
cf780b7d 4894 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4895 if (cgrp->id < 0) {
ba0f4d76 4896 ret = -ENOMEM;
9d755d33 4897 goto out_cancel_ref;
976c06bc
TH
4898 }
4899
cc31edce 4900 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4901
9d800df1 4902 cgrp->self.parent = &parent->self;
ba0f4d76 4903 cgrp->root = root;
ddbcc7e8 4904
b6abdb0e
LZ
4905 if (notify_on_release(parent))
4906 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4907
2260e7fc
TH
4908 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4909 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4910
2bd59d48 4911 /* create the directory */
e61734c5 4912 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4913 if (IS_ERR(kn)) {
ba0f4d76
TH
4914 ret = PTR_ERR(kn);
4915 goto out_free_id;
2bd59d48
TH
4916 }
4917 cgrp->kn = kn;
ddbcc7e8 4918
4e139afc 4919 /*
6f30558f
TH
4920 * This extra ref will be put in cgroup_free_fn() and guarantees
4921 * that @cgrp->kn is always accessible.
4e139afc 4922 */
6f30558f 4923 kernfs_get(kn);
ddbcc7e8 4924
0cb51d71 4925 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4926
4e139afc 4927 /* allocation complete, commit to creation */
d5c419b6 4928 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4929 atomic_inc(&root->nr_cgrps);
59f5296b 4930 cgroup_get(parent);
415cf07a 4931
0d80255e
TH
4932 /*
4933 * @cgrp is now fully operational. If something fails after this
4934 * point, it'll be released via the normal destruction path.
4935 */
6fa4918d 4936 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4937
ba0f4d76
TH
4938 ret = cgroup_kn_set_ugid(kn);
4939 if (ret)
4940 goto out_destroy;
49957f8e 4941
4df8dc90 4942 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4943 if (ret)
4944 goto out_destroy;
628f7cd4 4945
9d403e99 4946 /* let's create and online css's */
b85d2040 4947 for_each_subsys(ss, ssid) {
f392e51c 4948 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4949 ret = create_css(cgrp, ss,
4950 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4951 if (ret)
4952 goto out_destroy;
b85d2040 4953 }
a8638030 4954 }
ddbcc7e8 4955
bd53d617
TH
4956 /*
4957 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4958 * subtree_control from the parent. Each is configured manually.
bd53d617 4959 */
667c2491
TH
4960 if (!cgroup_on_dfl(cgrp)) {
4961 cgrp->subtree_control = parent->subtree_control;
4962 cgroup_refresh_child_subsys_mask(cgrp);
4963 }
2bd59d48 4964
2bd59d48 4965 kernfs_activate(kn);
ddbcc7e8 4966
ba0f4d76
TH
4967 ret = 0;
4968 goto out_unlock;
ddbcc7e8 4969
ba0f4d76 4970out_free_id:
6fa4918d 4971 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4972out_cancel_ref:
9a1049da 4973 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4974out_free_cgrp:
bd89aabc 4975 kfree(cgrp);
ba0f4d76 4976out_unlock:
a9746d8d 4977 cgroup_kn_unlock(parent_kn);
ba0f4d76 4978 return ret;
4b8b47eb 4979
ba0f4d76 4980out_destroy:
4b8b47eb 4981 cgroup_destroy_locked(cgrp);
ba0f4d76 4982 goto out_unlock;
ddbcc7e8
PM
4983}
4984
223dbc38
TH
4985/*
4986 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4987 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4988 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4989 */
4990static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4991{
223dbc38
TH
4992 struct cgroup_subsys_state *css =
4993 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4994
f20104de 4995 mutex_lock(&cgroup_mutex);
09a503ea 4996 offline_css(css);
f20104de 4997 mutex_unlock(&cgroup_mutex);
09a503ea 4998
09a503ea 4999 css_put(css);
d3daf28d
TH
5000}
5001
223dbc38
TH
5002/* css kill confirmation processing requires process context, bounce */
5003static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5004{
5005 struct cgroup_subsys_state *css =
5006 container_of(ref, struct cgroup_subsys_state, refcnt);
5007
223dbc38 5008 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 5009 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
5010}
5011
f392e51c
TH
5012/**
5013 * kill_css - destroy a css
5014 * @css: css to destroy
5015 *
5016 * This function initiates destruction of @css by removing cgroup interface
5017 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5018 * asynchronously once css_tryget_online() is guaranteed to fail and when
5019 * the reference count reaches zero, @css will be released.
f392e51c
TH
5020 */
5021static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5022{
01f6474c 5023 lockdep_assert_held(&cgroup_mutex);
94419627 5024
2bd59d48
TH
5025 /*
5026 * This must happen before css is disassociated with its cgroup.
5027 * See seq_css() for details.
5028 */
4df8dc90 5029 css_clear_dir(css, NULL);
3c14f8b4 5030
edae0c33
TH
5031 /*
5032 * Killing would put the base ref, but we need to keep it alive
5033 * until after ->css_offline().
5034 */
5035 css_get(css);
5036
5037 /*
5038 * cgroup core guarantees that, by the time ->css_offline() is
5039 * invoked, no new css reference will be given out via
ec903c0c 5040 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5041 * proceed to offlining css's because percpu_ref_kill() doesn't
5042 * guarantee that the ref is seen as killed on all CPUs on return.
5043 *
5044 * Use percpu_ref_kill_and_confirm() to get notifications as each
5045 * css is confirmed to be seen as killed on all CPUs.
5046 */
5047 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5048}
5049
5050/**
5051 * cgroup_destroy_locked - the first stage of cgroup destruction
5052 * @cgrp: cgroup to be destroyed
5053 *
5054 * css's make use of percpu refcnts whose killing latency shouldn't be
5055 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5056 * guarantee that css_tryget_online() won't succeed by the time
5057 * ->css_offline() is invoked. To satisfy all the requirements,
5058 * destruction is implemented in the following two steps.
d3daf28d
TH
5059 *
5060 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5061 * userland visible parts and start killing the percpu refcnts of
5062 * css's. Set up so that the next stage will be kicked off once all
5063 * the percpu refcnts are confirmed to be killed.
5064 *
5065 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5066 * rest of destruction. Once all cgroup references are gone, the
5067 * cgroup is RCU-freed.
5068 *
5069 * This function implements s1. After this step, @cgrp is gone as far as
5070 * the userland is concerned and a new cgroup with the same name may be
5071 * created. As cgroup doesn't care about the names internally, this
5072 * doesn't cause any problem.
5073 */
42809dd4
TH
5074static int cgroup_destroy_locked(struct cgroup *cgrp)
5075 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5076{
2bd59d48 5077 struct cgroup_subsys_state *css;
1c6727af 5078 int ssid;
ddbcc7e8 5079
42809dd4
TH
5080 lockdep_assert_held(&cgroup_mutex);
5081
91486f61
TH
5082 /*
5083 * Only migration can raise populated from zero and we're already
5084 * holding cgroup_mutex.
5085 */
5086 if (cgroup_is_populated(cgrp))
ddbcc7e8 5087 return -EBUSY;
a043e3b2 5088
bb78a92f 5089 /*
d5c419b6
TH
5090 * Make sure there's no live children. We can't test emptiness of
5091 * ->self.children as dead children linger on it while being
5092 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5093 */
f3d46500 5094 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5095 return -EBUSY;
5096
455050d2
TH
5097 /*
5098 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5099 * creation by disabling cgroup_lock_live_group().
455050d2 5100 */
184faf32 5101 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5102
249f3468 5103 /* initiate massacre of all css's */
1c6727af
TH
5104 for_each_css(css, ssid, cgrp)
5105 kill_css(css);
455050d2 5106
455050d2 5107 /*
01f6474c
TH
5108 * Remove @cgrp directory along with the base files. @cgrp has an
5109 * extra ref on its kn.
f20104de 5110 */
01f6474c 5111 kernfs_remove(cgrp->kn);
f20104de 5112
d51f39b0 5113 check_for_release(cgroup_parent(cgrp));
2bd59d48 5114
249f3468 5115 /* put the base reference */
9d755d33 5116 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5117
ea15f8cc
TH
5118 return 0;
5119};
5120
2bd59d48 5121static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5122{
a9746d8d 5123 struct cgroup *cgrp;
2bd59d48 5124 int ret = 0;
42809dd4 5125
a9746d8d
TH
5126 cgrp = cgroup_kn_lock_live(kn);
5127 if (!cgrp)
5128 return 0;
42809dd4 5129
a9746d8d 5130 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5131
a9746d8d 5132 cgroup_kn_unlock(kn);
42809dd4 5133 return ret;
8e3f6541
TH
5134}
5135
2bd59d48
TH
5136static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5137 .remount_fs = cgroup_remount,
5138 .show_options = cgroup_show_options,
5139 .mkdir = cgroup_mkdir,
5140 .rmdir = cgroup_rmdir,
5141 .rename = cgroup_rename,
5142};
5143
15a4c835 5144static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5145{
ddbcc7e8 5146 struct cgroup_subsys_state *css;
cfe36bde
DC
5147
5148 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5149
648bb56d
TH
5150 mutex_lock(&cgroup_mutex);
5151
15a4c835 5152 idr_init(&ss->css_idr);
0adb0704 5153 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5154
3dd06ffa
TH
5155 /* Create the root cgroup state for this subsystem */
5156 ss->root = &cgrp_dfl_root;
5157 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5158 /* We don't handle early failures gracefully */
5159 BUG_ON(IS_ERR(css));
ddfcadab 5160 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5161
5162 /*
5163 * Root csses are never destroyed and we can't initialize
5164 * percpu_ref during early init. Disable refcnting.
5165 */
5166 css->flags |= CSS_NO_REF;
5167
15a4c835 5168 if (early) {
9395a450 5169 /* allocation can't be done safely during early init */
15a4c835
TH
5170 css->id = 1;
5171 } else {
5172 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5173 BUG_ON(css->id < 0);
5174 }
ddbcc7e8 5175
e8d55fde 5176 /* Update the init_css_set to contain a subsys
817929ec 5177 * pointer to this state - since the subsystem is
e8d55fde 5178 * newly registered, all tasks and hence the
3dd06ffa 5179 * init_css_set is in the subsystem's root cgroup. */
aec25020 5180 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5181
cb4a3167
AS
5182 have_fork_callback |= (bool)ss->fork << ss->id;
5183 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5184 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5185 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5186
e8d55fde
LZ
5187 /* At system boot, before all subsystems have been
5188 * registered, no tasks have been forked, so we don't
5189 * need to invoke fork callbacks here. */
5190 BUG_ON(!list_empty(&init_task.tasks));
5191
ae7f164a 5192 BUG_ON(online_css(css));
a8638030 5193
cf5d5941
BB
5194 mutex_unlock(&cgroup_mutex);
5195}
cf5d5941 5196
ddbcc7e8 5197/**
a043e3b2
LZ
5198 * cgroup_init_early - cgroup initialization at system boot
5199 *
5200 * Initialize cgroups at system boot, and initialize any
5201 * subsystems that request early init.
ddbcc7e8
PM
5202 */
5203int __init cgroup_init_early(void)
5204{
7b9a6ba5 5205 static struct cgroup_sb_opts __initdata opts;
30159ec7 5206 struct cgroup_subsys *ss;
ddbcc7e8 5207 int i;
30159ec7 5208
3dd06ffa 5209 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5210 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5211
a4ea1cc9 5212 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5213
3ed80a62 5214 for_each_subsys(ss, i) {
aec25020 5215 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5216 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5217 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5218 ss->id, ss->name);
073219e9
TH
5219 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5220 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5221
aec25020 5222 ss->id = i;
073219e9 5223 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5224 if (!ss->legacy_name)
5225 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5226
5227 if (ss->early_init)
15a4c835 5228 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5229 }
5230 return 0;
5231}
5232
a3e72739
TH
5233static unsigned long cgroup_disable_mask __initdata;
5234
ddbcc7e8 5235/**
a043e3b2
LZ
5236 * cgroup_init - cgroup initialization
5237 *
5238 * Register cgroup filesystem and /proc file, and initialize
5239 * any subsystems that didn't request early init.
ddbcc7e8
PM
5240 */
5241int __init cgroup_init(void)
5242{
30159ec7 5243 struct cgroup_subsys *ss;
0ac801fe 5244 unsigned long key;
035f4f51 5245 int ssid;
ddbcc7e8 5246
1ed13287 5247 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5248 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5249 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5250
54e7b4eb 5251 mutex_lock(&cgroup_mutex);
54e7b4eb 5252
82fe9b0d
TH
5253 /* Add init_css_set to the hash table */
5254 key = css_set_hash(init_css_set.subsys);
5255 hash_add(css_set_table, &init_css_set.hlist, key);
5256
3dd06ffa 5257 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5258
54e7b4eb
TH
5259 mutex_unlock(&cgroup_mutex);
5260
172a2c06 5261 for_each_subsys(ss, ssid) {
15a4c835
TH
5262 if (ss->early_init) {
5263 struct cgroup_subsys_state *css =
5264 init_css_set.subsys[ss->id];
5265
5266 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5267 GFP_KERNEL);
5268 BUG_ON(css->id < 0);
5269 } else {
5270 cgroup_init_subsys(ss, false);
5271 }
172a2c06 5272
2d8f243a
TH
5273 list_add_tail(&init_css_set.e_cset_node[ssid],
5274 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5275
5276 /*
c731ae1d
LZ
5277 * Setting dfl_root subsys_mask needs to consider the
5278 * disabled flag and cftype registration needs kmalloc,
5279 * both of which aren't available during early_init.
172a2c06 5280 */
a3e72739
TH
5281 if (cgroup_disable_mask & (1 << ssid)) {
5282 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5283 printk(KERN_INFO "Disabling %s control group subsystem\n",
5284 ss->name);
a8ddc821 5285 continue;
a3e72739 5286 }
a8ddc821
TH
5287
5288 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5289
5290 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5291 ss->dfl_cftypes = ss->legacy_cftypes;
5292
5de4fa13
TH
5293 if (!ss->dfl_cftypes)
5294 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5295
a8ddc821
TH
5296 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5297 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5298 } else {
5299 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5300 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5301 }
295458e6
VD
5302
5303 if (ss->bind)
5304 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5305 }
5306
035f4f51
TH
5307 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5308 WARN_ON(register_filesystem(&cgroup_fs_type));
5309 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5310
2bd59d48 5311 return 0;
ddbcc7e8 5312}
b4f48b63 5313
e5fca243
TH
5314static int __init cgroup_wq_init(void)
5315{
5316 /*
5317 * There isn't much point in executing destruction path in
5318 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5319 * Use 1 for @max_active.
e5fca243
TH
5320 *
5321 * We would prefer to do this in cgroup_init() above, but that
5322 * is called before init_workqueues(): so leave this until after.
5323 */
1a11533f 5324 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5325 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5326
5327 /*
5328 * Used to destroy pidlists and separate to serve as flush domain.
5329 * Cap @max_active to 1 too.
5330 */
5331 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5332 0, 1);
5333 BUG_ON(!cgroup_pidlist_destroy_wq);
5334
e5fca243
TH
5335 return 0;
5336}
5337core_initcall(cgroup_wq_init);
5338
a424316c
PM
5339/*
5340 * proc_cgroup_show()
5341 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5342 * - Used for /proc/<pid>/cgroup.
a424316c 5343 */
006f4ac4
ZL
5344int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5345 struct pid *pid, struct task_struct *tsk)
a424316c 5346{
e61734c5 5347 char *buf, *path;
a424316c 5348 int retval;
3dd06ffa 5349 struct cgroup_root *root;
a424316c
PM
5350
5351 retval = -ENOMEM;
e61734c5 5352 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5353 if (!buf)
5354 goto out;
5355
a424316c 5356 mutex_lock(&cgroup_mutex);
f0d9a5f1 5357 spin_lock_bh(&css_set_lock);
a424316c 5358
985ed670 5359 for_each_root(root) {
a424316c 5360 struct cgroup_subsys *ss;
bd89aabc 5361 struct cgroup *cgrp;
b85d2040 5362 int ssid, count = 0;
a424316c 5363
a2dd4247 5364 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5365 continue;
5366
2c6ab6d2 5367 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5368 if (root != &cgrp_dfl_root)
5369 for_each_subsys(ss, ssid)
5370 if (root->subsys_mask & (1 << ssid))
5371 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5372 ss->legacy_name);
c6d57f33
PM
5373 if (strlen(root->name))
5374 seq_printf(m, "%sname=%s", count ? "," : "",
5375 root->name);
a424316c 5376 seq_putc(m, ':');
2e91fa7f 5377
7717f7ba 5378 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5379
5380 /*
5381 * On traditional hierarchies, all zombie tasks show up as
5382 * belonging to the root cgroup. On the default hierarchy,
5383 * while a zombie doesn't show up in "cgroup.procs" and
5384 * thus can't be migrated, its /proc/PID/cgroup keeps
5385 * reporting the cgroup it belonged to before exiting. If
5386 * the cgroup is removed before the zombie is reaped,
5387 * " (deleted)" is appended to the cgroup path.
5388 */
5389 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5390 path = cgroup_path(cgrp, buf, PATH_MAX);
5391 if (!path) {
5392 retval = -ENAMETOOLONG;
5393 goto out_unlock;
5394 }
5395 } else {
5396 path = "/";
e61734c5 5397 }
2e91fa7f 5398
e61734c5 5399 seq_puts(m, path);
2e91fa7f
TH
5400
5401 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5402 seq_puts(m, " (deleted)\n");
5403 else
5404 seq_putc(m, '\n');
a424316c
PM
5405 }
5406
006f4ac4 5407 retval = 0;
a424316c 5408out_unlock:
f0d9a5f1 5409 spin_unlock_bh(&css_set_lock);
a424316c 5410 mutex_unlock(&cgroup_mutex);
a424316c
PM
5411 kfree(buf);
5412out:
5413 return retval;
5414}
5415
a424316c
PM
5416/* Display information about each subsystem and each hierarchy */
5417static int proc_cgroupstats_show(struct seq_file *m, void *v)
5418{
30159ec7 5419 struct cgroup_subsys *ss;
a424316c 5420 int i;
a424316c 5421
8bab8dde 5422 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5423 /*
5424 * ideally we don't want subsystems moving around while we do this.
5425 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5426 * subsys/hierarchy state.
5427 */
a424316c 5428 mutex_lock(&cgroup_mutex);
30159ec7
TH
5429
5430 for_each_subsys(ss, i)
2c6ab6d2 5431 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5432 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5433 atomic_read(&ss->root->nr_cgrps),
5434 cgroup_ssid_enabled(i));
30159ec7 5435
a424316c
PM
5436 mutex_unlock(&cgroup_mutex);
5437 return 0;
5438}
5439
5440static int cgroupstats_open(struct inode *inode, struct file *file)
5441{
9dce07f1 5442 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5443}
5444
828c0950 5445static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5446 .open = cgroupstats_open,
5447 .read = seq_read,
5448 .llseek = seq_lseek,
5449 .release = single_release,
5450};
5451
7e47682e
AS
5452static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5453{
5454 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5455 return &ss_priv[i - CGROUP_CANFORK_START];
5456 return NULL;
5457}
5458
5459static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5460{
5461 void **private = subsys_canfork_priv_p(ss_priv, i);
5462 return private ? *private : NULL;
5463}
5464
b4f48b63 5465/**
eaf797ab 5466 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5467 * @child: pointer to task_struct of forking parent process.
b4f48b63 5468 *
eaf797ab
TH
5469 * A task is associated with the init_css_set until cgroup_post_fork()
5470 * attaches it to the parent's css_set. Empty cg_list indicates that
5471 * @child isn't holding reference to its css_set.
b4f48b63
PM
5472 */
5473void cgroup_fork(struct task_struct *child)
5474{
eaf797ab 5475 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5476 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5477}
5478
7e47682e
AS
5479/**
5480 * cgroup_can_fork - called on a new task before the process is exposed
5481 * @child: the task in question.
5482 *
5483 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5484 * returns an error, the fork aborts with that error code. This allows for
5485 * a cgroup subsystem to conditionally allow or deny new forks.
5486 */
5487int cgroup_can_fork(struct task_struct *child,
5488 void *ss_priv[CGROUP_CANFORK_COUNT])
5489{
5490 struct cgroup_subsys *ss;
5491 int i, j, ret;
5492
5493 for_each_subsys_which(ss, i, &have_canfork_callback) {
5494 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5495 if (ret)
5496 goto out_revert;
5497 }
5498
5499 return 0;
5500
5501out_revert:
5502 for_each_subsys(ss, j) {
5503 if (j >= i)
5504 break;
5505 if (ss->cancel_fork)
5506 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5507 }
5508
5509 return ret;
5510}
5511
5512/**
5513 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5514 * @child: the task in question
5515 *
5516 * This calls the cancel_fork() callbacks if a fork failed *after*
5517 * cgroup_can_fork() succeded.
5518 */
5519void cgroup_cancel_fork(struct task_struct *child,
5520 void *ss_priv[CGROUP_CANFORK_COUNT])
5521{
5522 struct cgroup_subsys *ss;
5523 int i;
5524
5525 for_each_subsys(ss, i)
5526 if (ss->cancel_fork)
5527 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5528}
5529
817929ec 5530/**
a043e3b2
LZ
5531 * cgroup_post_fork - called on a new task after adding it to the task list
5532 * @child: the task in question
5533 *
5edee61e
TH
5534 * Adds the task to the list running through its css_set if necessary and
5535 * call the subsystem fork() callbacks. Has to be after the task is
5536 * visible on the task list in case we race with the first call to
0942eeee 5537 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5538 * list.
a043e3b2 5539 */
7e47682e
AS
5540void cgroup_post_fork(struct task_struct *child,
5541 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5542{
30159ec7 5543 struct cgroup_subsys *ss;
5edee61e
TH
5544 int i;
5545
3ce3230a 5546 /*
251f8c03 5547 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5548 * function sets use_task_css_set_links before grabbing
5549 * tasklist_lock and we just went through tasklist_lock to add
5550 * @child, it's guaranteed that either we see the set
5551 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5552 * @child during its iteration.
5553 *
5554 * If we won the race, @child is associated with %current's
f0d9a5f1 5555 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5556 * association is stable, and, on completion of the parent's
5557 * migration, @child is visible in the source of migration or
5558 * already in the destination cgroup. This guarantee is necessary
5559 * when implementing operations which need to migrate all tasks of
5560 * a cgroup to another.
5561 *
251f8c03 5562 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5563 * will remain in init_css_set. This is safe because all tasks are
5564 * in the init_css_set before cg_links is enabled and there's no
5565 * operation which transfers all tasks out of init_css_set.
3ce3230a 5566 */
817929ec 5567 if (use_task_css_set_links) {
eaf797ab
TH
5568 struct css_set *cset;
5569
f0d9a5f1 5570 spin_lock_bh(&css_set_lock);
0e1d768f 5571 cset = task_css_set(current);
eaf797ab 5572 if (list_empty(&child->cg_list)) {
eaf797ab 5573 get_css_set(cset);
f6d7d049 5574 css_set_move_task(child, NULL, cset, false);
eaf797ab 5575 }
f0d9a5f1 5576 spin_unlock_bh(&css_set_lock);
817929ec 5577 }
5edee61e
TH
5578
5579 /*
5580 * Call ss->fork(). This must happen after @child is linked on
5581 * css_set; otherwise, @child might change state between ->fork()
5582 * and addition to css_set.
5583 */
cb4a3167 5584 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5585 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5586}
5edee61e 5587
b4f48b63
PM
5588/**
5589 * cgroup_exit - detach cgroup from exiting task
5590 * @tsk: pointer to task_struct of exiting process
5591 *
5592 * Description: Detach cgroup from @tsk and release it.
5593 *
5594 * Note that cgroups marked notify_on_release force every task in
5595 * them to take the global cgroup_mutex mutex when exiting.
5596 * This could impact scaling on very large systems. Be reluctant to
5597 * use notify_on_release cgroups where very high task exit scaling
5598 * is required on large systems.
5599 *
0e1d768f
TH
5600 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5601 * call cgroup_exit() while the task is still competent to handle
5602 * notify_on_release(), then leave the task attached to the root cgroup in
5603 * each hierarchy for the remainder of its exit. No need to bother with
5604 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5605 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5606 */
1ec41830 5607void cgroup_exit(struct task_struct *tsk)
b4f48b63 5608{
30159ec7 5609 struct cgroup_subsys *ss;
5abb8855 5610 struct css_set *cset;
d41d5a01 5611 int i;
817929ec
PM
5612
5613 /*
0e1d768f 5614 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5615 * with us, we can check css_set and cg_list without synchronization.
817929ec 5616 */
0de0942d
TH
5617 cset = task_css_set(tsk);
5618
817929ec 5619 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5620 spin_lock_bh(&css_set_lock);
f6d7d049 5621 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5622 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5623 } else {
5624 get_css_set(cset);
817929ec
PM
5625 }
5626
cb4a3167 5627 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5628 for_each_subsys_which(ss, i, &have_exit_callback)
5629 ss->exit(tsk);
5630}
30159ec7 5631
2e91fa7f
TH
5632void cgroup_free(struct task_struct *task)
5633{
5634 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5635 struct cgroup_subsys *ss;
5636 int ssid;
5637
5638 for_each_subsys_which(ss, ssid, &have_free_callback)
5639 ss->free(task);
d41d5a01 5640
2e91fa7f 5641 put_css_set(cset);
b4f48b63 5642}
697f4161 5643
bd89aabc 5644static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5645{
27bd4dbb 5646 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5647 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5648 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5649}
5650
81a6a5cd
PM
5651/*
5652 * Notify userspace when a cgroup is released, by running the
5653 * configured release agent with the name of the cgroup (path
5654 * relative to the root of cgroup file system) as the argument.
5655 *
5656 * Most likely, this user command will try to rmdir this cgroup.
5657 *
5658 * This races with the possibility that some other task will be
5659 * attached to this cgroup before it is removed, or that some other
5660 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5661 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5662 * unused, and this cgroup will be reprieved from its death sentence,
5663 * to continue to serve a useful existence. Next time it's released,
5664 * we will get notified again, if it still has 'notify_on_release' set.
5665 *
5666 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5667 * means only wait until the task is successfully execve()'d. The
5668 * separate release agent task is forked by call_usermodehelper(),
5669 * then control in this thread returns here, without waiting for the
5670 * release agent task. We don't bother to wait because the caller of
5671 * this routine has no use for the exit status of the release agent
5672 * task, so no sense holding our caller up for that.
81a6a5cd 5673 */
81a6a5cd
PM
5674static void cgroup_release_agent(struct work_struct *work)
5675{
971ff493
ZL
5676 struct cgroup *cgrp =
5677 container_of(work, struct cgroup, release_agent_work);
5678 char *pathbuf = NULL, *agentbuf = NULL, *path;
5679 char *argv[3], *envp[3];
5680
81a6a5cd 5681 mutex_lock(&cgroup_mutex);
971ff493
ZL
5682
5683 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5684 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5685 if (!pathbuf || !agentbuf)
5686 goto out;
5687
5688 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5689 if (!path)
5690 goto out;
5691
5692 argv[0] = agentbuf;
5693 argv[1] = path;
5694 argv[2] = NULL;
5695
5696 /* minimal command environment */
5697 envp[0] = "HOME=/";
5698 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5699 envp[2] = NULL;
5700
81a6a5cd 5701 mutex_unlock(&cgroup_mutex);
971ff493 5702 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5703 goto out_free;
971ff493 5704out:
81a6a5cd 5705 mutex_unlock(&cgroup_mutex);
3e2cd91a 5706out_free:
971ff493
ZL
5707 kfree(agentbuf);
5708 kfree(pathbuf);
81a6a5cd 5709}
8bab8dde
PM
5710
5711static int __init cgroup_disable(char *str)
5712{
30159ec7 5713 struct cgroup_subsys *ss;
8bab8dde 5714 char *token;
30159ec7 5715 int i;
8bab8dde
PM
5716
5717 while ((token = strsep(&str, ",")) != NULL) {
5718 if (!*token)
5719 continue;
be45c900 5720
3ed80a62 5721 for_each_subsys(ss, i) {
3e1d2eed
TH
5722 if (strcmp(token, ss->name) &&
5723 strcmp(token, ss->legacy_name))
5724 continue;
a3e72739 5725 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5726 }
5727 }
5728 return 1;
5729}
5730__setup("cgroup_disable=", cgroup_disable);
38460b48 5731
a8ddc821
TH
5732static int __init cgroup_set_legacy_files_on_dfl(char *str)
5733{
5734 printk("cgroup: using legacy files on the default hierarchy\n");
5735 cgroup_legacy_files_on_dfl = true;
5736 return 0;
5737}
5738__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5739
b77d7b60 5740/**
ec903c0c 5741 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5742 * @dentry: directory dentry of interest
5743 * @ss: subsystem of interest
b77d7b60 5744 *
5a17f543
TH
5745 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5746 * to get the corresponding css and return it. If such css doesn't exist
5747 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5748 */
ec903c0c
TH
5749struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5750 struct cgroup_subsys *ss)
e5d1367f 5751{
2bd59d48
TH
5752 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5753 struct cgroup_subsys_state *css = NULL;
e5d1367f 5754 struct cgroup *cgrp;
e5d1367f 5755
35cf0836 5756 /* is @dentry a cgroup dir? */
2bd59d48
TH
5757 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5758 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5759 return ERR_PTR(-EBADF);
5760
5a17f543
TH
5761 rcu_read_lock();
5762
2bd59d48
TH
5763 /*
5764 * This path doesn't originate from kernfs and @kn could already
5765 * have been or be removed at any point. @kn->priv is RCU
a4189487 5766 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5767 */
5768 cgrp = rcu_dereference(kn->priv);
5769 if (cgrp)
5770 css = cgroup_css(cgrp, ss);
5a17f543 5771
ec903c0c 5772 if (!css || !css_tryget_online(css))
5a17f543
TH
5773 css = ERR_PTR(-ENOENT);
5774
5775 rcu_read_unlock();
5776 return css;
e5d1367f 5777}
e5d1367f 5778
1cb650b9
LZ
5779/**
5780 * css_from_id - lookup css by id
5781 * @id: the cgroup id
5782 * @ss: cgroup subsys to be looked into
5783 *
5784 * Returns the css if there's valid one with @id, otherwise returns NULL.
5785 * Should be called under rcu_read_lock().
5786 */
5787struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5788{
6fa4918d 5789 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5790 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5791}
5792
fe693435 5793#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5794static struct cgroup_subsys_state *
5795debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5796{
5797 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5798
5799 if (!css)
5800 return ERR_PTR(-ENOMEM);
5801
5802 return css;
5803}
5804
eb95419b 5805static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5806{
eb95419b 5807 kfree(css);
fe693435
PM
5808}
5809
182446d0
TH
5810static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5811 struct cftype *cft)
fe693435 5812{
182446d0 5813 return cgroup_task_count(css->cgroup);
fe693435
PM
5814}
5815
182446d0
TH
5816static u64 current_css_set_read(struct cgroup_subsys_state *css,
5817 struct cftype *cft)
fe693435
PM
5818{
5819 return (u64)(unsigned long)current->cgroups;
5820}
5821
182446d0 5822static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5823 struct cftype *cft)
fe693435
PM
5824{
5825 u64 count;
5826
5827 rcu_read_lock();
a8ad805c 5828 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5829 rcu_read_unlock();
5830 return count;
5831}
5832
2da8ca82 5833static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5834{
69d0206c 5835 struct cgrp_cset_link *link;
5abb8855 5836 struct css_set *cset;
e61734c5
TH
5837 char *name_buf;
5838
5839 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5840 if (!name_buf)
5841 return -ENOMEM;
7717f7ba 5842
f0d9a5f1 5843 spin_lock_bh(&css_set_lock);
7717f7ba 5844 rcu_read_lock();
5abb8855 5845 cset = rcu_dereference(current->cgroups);
69d0206c 5846 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5847 struct cgroup *c = link->cgrp;
7717f7ba 5848
a2dd4247 5849 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5850 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5851 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5852 }
5853 rcu_read_unlock();
f0d9a5f1 5854 spin_unlock_bh(&css_set_lock);
e61734c5 5855 kfree(name_buf);
7717f7ba
PM
5856 return 0;
5857}
5858
5859#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5860static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5861{
2da8ca82 5862 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5863 struct cgrp_cset_link *link;
7717f7ba 5864
f0d9a5f1 5865 spin_lock_bh(&css_set_lock);
182446d0 5866 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5867 struct css_set *cset = link->cset;
7717f7ba
PM
5868 struct task_struct *task;
5869 int count = 0;
c7561128 5870
5abb8855 5871 seq_printf(seq, "css_set %p\n", cset);
c7561128 5872
5abb8855 5873 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5874 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5875 goto overflow;
5876 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5877 }
5878
5879 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5880 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5881 goto overflow;
5882 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5883 }
c7561128
TH
5884 continue;
5885 overflow:
5886 seq_puts(seq, " ...\n");
7717f7ba 5887 }
f0d9a5f1 5888 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5889 return 0;
5890}
5891
182446d0 5892static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5893{
27bd4dbb 5894 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5895 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5896}
5897
5898static struct cftype debug_files[] = {
fe693435
PM
5899 {
5900 .name = "taskcount",
5901 .read_u64 = debug_taskcount_read,
5902 },
5903
5904 {
5905 .name = "current_css_set",
5906 .read_u64 = current_css_set_read,
5907 },
5908
5909 {
5910 .name = "current_css_set_refcount",
5911 .read_u64 = current_css_set_refcount_read,
5912 },
5913
7717f7ba
PM
5914 {
5915 .name = "current_css_set_cg_links",
2da8ca82 5916 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5917 },
5918
5919 {
5920 .name = "cgroup_css_links",
2da8ca82 5921 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5922 },
5923
fe693435
PM
5924 {
5925 .name = "releasable",
5926 .read_u64 = releasable_read,
5927 },
fe693435 5928
4baf6e33
TH
5929 { } /* terminate */
5930};
fe693435 5931
073219e9 5932struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5933 .css_alloc = debug_css_alloc,
5934 .css_free = debug_css_free,
5577964e 5935 .legacy_cftypes = debug_files,
fe693435
PM
5936};
5937#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.367824 seconds and 5 git commands to generate.