cgroup: relocate cgroup_[try]get/put()
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
052c3f3a
TH
431static void cgroup_get(struct cgroup *cgrp)
432{
433 WARN_ON_ONCE(cgroup_is_dead(cgrp));
434 css_get(&cgrp->self);
435}
436
437static bool cgroup_tryget(struct cgroup *cgrp)
438{
439 return css_tryget(&cgrp->self);
440}
441
442static void cgroup_put(struct cgroup *cgrp)
443{
444 css_put(&cgrp->self);
445}
446
b4168640 447struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 448{
2bd59d48 449 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 450 struct cftype *cft = of_cft(of);
2bd59d48
TH
451
452 /*
453 * This is open and unprotected implementation of cgroup_css().
454 * seq_css() is only called from a kernfs file operation which has
455 * an active reference on the file. Because all the subsystem
456 * files are drained before a css is disassociated with a cgroup,
457 * the matching css from the cgroup's subsys table is guaranteed to
458 * be and stay valid until the enclosing operation is complete.
459 */
460 if (cft->ss)
461 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
462 else
9d800df1 463 return &cgrp->self;
59f5296b 464}
b4168640 465EXPORT_SYMBOL_GPL(of_css);
59f5296b 466
78574cf9
LZ
467/**
468 * cgroup_is_descendant - test ancestry
469 * @cgrp: the cgroup to be tested
470 * @ancestor: possible ancestor of @cgrp
471 *
472 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
473 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
474 * and @ancestor are accessible.
475 */
476bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
477{
478 while (cgrp) {
479 if (cgrp == ancestor)
480 return true;
d51f39b0 481 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
482 }
483 return false;
484}
ddbcc7e8 485
e9685a03 486static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 487{
bd89aabc 488 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
489}
490
1c6727af
TH
491/**
492 * for_each_css - iterate all css's of a cgroup
493 * @css: the iteration cursor
494 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
495 * @cgrp: the target cgroup to iterate css's of
496 *
aec3dfcb 497 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
498 */
499#define for_each_css(css, ssid, cgrp) \
500 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
501 if (!((css) = rcu_dereference_check( \
502 (cgrp)->subsys[(ssid)], \
503 lockdep_is_held(&cgroup_mutex)))) { } \
504 else
505
aec3dfcb
TH
506/**
507 * for_each_e_css - iterate all effective css's of a cgroup
508 * @css: the iteration cursor
509 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
510 * @cgrp: the target cgroup to iterate css's of
511 *
512 * Should be called under cgroup_[tree_]mutex.
513 */
514#define for_each_e_css(css, ssid, cgrp) \
515 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
516 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 ; \
518 else
519
30159ec7 520/**
3ed80a62 521 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 522 * @ss: the iteration cursor
780cd8b3 523 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 524 */
780cd8b3 525#define for_each_subsys(ss, ssid) \
3ed80a62
TH
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
527 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 528
cb4a3167
AS
529/**
530 * for_each_subsys_which - filter for_each_subsys with a bitmask
531 * @ss: the iteration cursor
532 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
533 * @ss_maskp: a pointer to the bitmask
534 *
535 * The block will only run for cases where the ssid-th bit (1 << ssid) of
536 * mask is set to 1.
537 */
538#define for_each_subsys_which(ss, ssid, ss_maskp) \
539 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 540 (ssid) = 0; \
cb4a3167
AS
541 else \
542 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
543 if (((ss) = cgroup_subsys[ssid]) && false) \
544 break; \
545 else
546
985ed670
TH
547/* iterate across the hierarchies */
548#define for_each_root(root) \
5549c497 549 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 550
f8f22e53
TH
551/* iterate over child cgrps, lock should be held throughout iteration */
552#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 553 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 554 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
555 cgroup_is_dead(child); })) \
556 ; \
557 else
7ae1bad9 558
81a6a5cd 559static void cgroup_release_agent(struct work_struct *work);
bd89aabc 560static void check_for_release(struct cgroup *cgrp);
81a6a5cd 561
69d0206c
TH
562/*
563 * A cgroup can be associated with multiple css_sets as different tasks may
564 * belong to different cgroups on different hierarchies. In the other
565 * direction, a css_set is naturally associated with multiple cgroups.
566 * This M:N relationship is represented by the following link structure
567 * which exists for each association and allows traversing the associations
568 * from both sides.
569 */
570struct cgrp_cset_link {
571 /* the cgroup and css_set this link associates */
572 struct cgroup *cgrp;
573 struct css_set *cset;
574
575 /* list of cgrp_cset_links anchored at cgrp->cset_links */
576 struct list_head cset_link;
577
578 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
579 struct list_head cgrp_link;
817929ec
PM
580};
581
172a2c06
TH
582/*
583 * The default css_set - used by init and its children prior to any
817929ec
PM
584 * hierarchies being mounted. It contains a pointer to the root state
585 * for each subsystem. Also used to anchor the list of css_sets. Not
586 * reference-counted, to improve performance when child cgroups
587 * haven't been created.
588 */
5024ae29 589struct css_set init_css_set = {
172a2c06
TH
590 .refcount = ATOMIC_INIT(1),
591 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
592 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
593 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
594 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
595 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
596};
817929ec 597
172a2c06 598static int css_set_count = 1; /* 1 for init_css_set */
817929ec 599
0de0942d
TH
600/**
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
603 */
604static bool css_set_populated(struct css_set *cset)
605{
606 lockdep_assert_held(&css_set_rwsem);
607
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
609}
610
842b597e
TH
611/**
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
615 *
0de0942d
TH
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
620 *
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
626 */
627static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
628{
629 lockdep_assert_held(&css_set_rwsem);
630
631 do {
632 bool trigger;
633
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
638
639 if (!trigger)
640 break;
641
ad2ed2b3 642 check_for_release(cgrp);
6f60eade
TH
643 cgroup_file_notify(&cgrp->events_file);
644
d51f39b0 645 cgrp = cgroup_parent(cgrp);
842b597e
TH
646 } while (cgrp);
647}
648
0de0942d
TH
649/**
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
653 *
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
656 */
657static void css_set_update_populated(struct css_set *cset, bool populated)
658{
659 struct cgrp_cset_link *link;
660
661 lockdep_assert_held(&css_set_rwsem);
662
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
665}
666
7717f7ba
PM
667/*
668 * hash table for cgroup groups. This improves the performance to find
669 * an existing css_set. This hash doesn't (currently) take into
670 * account cgroups in empty hierarchies.
671 */
472b1053 672#define CSS_SET_HASH_BITS 7
0ac801fe 673static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 674
0ac801fe 675static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 676{
0ac801fe 677 unsigned long key = 0UL;
30159ec7
TH
678 struct cgroup_subsys *ss;
679 int i;
472b1053 680
30159ec7 681 for_each_subsys(ss, i)
0ac801fe
LZ
682 key += (unsigned long)css[i];
683 key = (key >> 16) ^ key;
472b1053 684
0ac801fe 685 return key;
472b1053
LZ
686}
687
a25eb52e 688static void put_css_set_locked(struct css_set *cset)
b4f48b63 689{
69d0206c 690 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
691 struct cgroup_subsys *ss;
692 int ssid;
5abb8855 693
89c5509b
TH
694 lockdep_assert_held(&css_set_rwsem);
695
696 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 697 return;
81a6a5cd 698
2c6ab6d2 699 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
700 for_each_subsys(ss, ssid)
701 list_del(&cset->e_cset_node[ssid]);
5abb8855 702 hash_del(&cset->hlist);
2c6ab6d2
PM
703 css_set_count--;
704
69d0206c 705 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
706 list_del(&link->cset_link);
707 list_del(&link->cgrp_link);
2c6ab6d2 708 kfree(link);
81a6a5cd 709 }
2c6ab6d2 710
5abb8855 711 kfree_rcu(cset, rcu_head);
b4f48b63
PM
712}
713
a25eb52e 714static void put_css_set(struct css_set *cset)
89c5509b
TH
715{
716 /*
717 * Ensure that the refcount doesn't hit zero while any readers
718 * can see it. Similar to atomic_dec_and_lock(), but for an
719 * rwlock
720 */
721 if (atomic_add_unless(&cset->refcount, -1, 1))
722 return;
723
724 down_write(&css_set_rwsem);
a25eb52e 725 put_css_set_locked(cset);
89c5509b
TH
726 up_write(&css_set_rwsem);
727}
728
817929ec
PM
729/*
730 * refcounted get/put for css_set objects
731 */
5abb8855 732static inline void get_css_set(struct css_set *cset)
817929ec 733{
5abb8855 734 atomic_inc(&cset->refcount);
817929ec
PM
735}
736
b326f9d0 737/**
7717f7ba 738 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
739 * @cset: candidate css_set being tested
740 * @old_cset: existing css_set for a task
7717f7ba
PM
741 * @new_cgrp: cgroup that's being entered by the task
742 * @template: desired set of css pointers in css_set (pre-calculated)
743 *
6f4b7e63 744 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
745 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
746 */
5abb8855
TH
747static bool compare_css_sets(struct css_set *cset,
748 struct css_set *old_cset,
7717f7ba
PM
749 struct cgroup *new_cgrp,
750 struct cgroup_subsys_state *template[])
751{
752 struct list_head *l1, *l2;
753
aec3dfcb
TH
754 /*
755 * On the default hierarchy, there can be csets which are
756 * associated with the same set of cgroups but different csses.
757 * Let's first ensure that csses match.
758 */
759 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 760 return false;
7717f7ba
PM
761
762 /*
763 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
764 * different cgroups in hierarchies. As different cgroups may
765 * share the same effective css, this comparison is always
766 * necessary.
7717f7ba 767 */
69d0206c
TH
768 l1 = &cset->cgrp_links;
769 l2 = &old_cset->cgrp_links;
7717f7ba 770 while (1) {
69d0206c 771 struct cgrp_cset_link *link1, *link2;
5abb8855 772 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
773
774 l1 = l1->next;
775 l2 = l2->next;
776 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
777 if (l1 == &cset->cgrp_links) {
778 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
779 break;
780 } else {
69d0206c 781 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
782 }
783 /* Locate the cgroups associated with these links. */
69d0206c
TH
784 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
785 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
786 cgrp1 = link1->cgrp;
787 cgrp2 = link2->cgrp;
7717f7ba 788 /* Hierarchies should be linked in the same order. */
5abb8855 789 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
790
791 /*
792 * If this hierarchy is the hierarchy of the cgroup
793 * that's changing, then we need to check that this
794 * css_set points to the new cgroup; if it's any other
795 * hierarchy, then this css_set should point to the
796 * same cgroup as the old css_set.
797 */
5abb8855
TH
798 if (cgrp1->root == new_cgrp->root) {
799 if (cgrp1 != new_cgrp)
7717f7ba
PM
800 return false;
801 } else {
5abb8855 802 if (cgrp1 != cgrp2)
7717f7ba
PM
803 return false;
804 }
805 }
806 return true;
807}
808
b326f9d0
TH
809/**
810 * find_existing_css_set - init css array and find the matching css_set
811 * @old_cset: the css_set that we're using before the cgroup transition
812 * @cgrp: the cgroup that we're moving into
813 * @template: out param for the new set of csses, should be clear on entry
817929ec 814 */
5abb8855
TH
815static struct css_set *find_existing_css_set(struct css_set *old_cset,
816 struct cgroup *cgrp,
817 struct cgroup_subsys_state *template[])
b4f48b63 818{
3dd06ffa 819 struct cgroup_root *root = cgrp->root;
30159ec7 820 struct cgroup_subsys *ss;
5abb8855 821 struct css_set *cset;
0ac801fe 822 unsigned long key;
b326f9d0 823 int i;
817929ec 824
aae8aab4
BB
825 /*
826 * Build the set of subsystem state objects that we want to see in the
827 * new css_set. while subsystems can change globally, the entries here
828 * won't change, so no need for locking.
829 */
30159ec7 830 for_each_subsys(ss, i) {
f392e51c 831 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
832 /*
833 * @ss is in this hierarchy, so we want the
834 * effective css from @cgrp.
835 */
836 template[i] = cgroup_e_css(cgrp, ss);
817929ec 837 } else {
aec3dfcb
TH
838 /*
839 * @ss is not in this hierarchy, so we don't want
840 * to change the css.
841 */
5abb8855 842 template[i] = old_cset->subsys[i];
817929ec
PM
843 }
844 }
845
0ac801fe 846 key = css_set_hash(template);
5abb8855
TH
847 hash_for_each_possible(css_set_table, cset, hlist, key) {
848 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
849 continue;
850
851 /* This css_set matches what we need */
5abb8855 852 return cset;
472b1053 853 }
817929ec
PM
854
855 /* No existing cgroup group matched */
856 return NULL;
857}
858
69d0206c 859static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 860{
69d0206c 861 struct cgrp_cset_link *link, *tmp_link;
36553434 862
69d0206c
TH
863 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
864 list_del(&link->cset_link);
36553434
LZ
865 kfree(link);
866 }
867}
868
69d0206c
TH
869/**
870 * allocate_cgrp_cset_links - allocate cgrp_cset_links
871 * @count: the number of links to allocate
872 * @tmp_links: list_head the allocated links are put on
873 *
874 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
875 * through ->cset_link. Returns 0 on success or -errno.
817929ec 876 */
69d0206c 877static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 878{
69d0206c 879 struct cgrp_cset_link *link;
817929ec 880 int i;
69d0206c
TH
881
882 INIT_LIST_HEAD(tmp_links);
883
817929ec 884 for (i = 0; i < count; i++) {
f4f4be2b 885 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 886 if (!link) {
69d0206c 887 free_cgrp_cset_links(tmp_links);
817929ec
PM
888 return -ENOMEM;
889 }
69d0206c 890 list_add(&link->cset_link, tmp_links);
817929ec
PM
891 }
892 return 0;
893}
894
c12f65d4
LZ
895/**
896 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 897 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 898 * @cset: the css_set to be linked
c12f65d4
LZ
899 * @cgrp: the destination cgroup
900 */
69d0206c
TH
901static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
902 struct cgroup *cgrp)
c12f65d4 903{
69d0206c 904 struct cgrp_cset_link *link;
c12f65d4 905
69d0206c 906 BUG_ON(list_empty(tmp_links));
6803c006
TH
907
908 if (cgroup_on_dfl(cgrp))
909 cset->dfl_cgrp = cgrp;
910
69d0206c
TH
911 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
912 link->cset = cset;
7717f7ba 913 link->cgrp = cgrp;
842b597e 914
69d0206c 915 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 916
7717f7ba
PM
917 /*
918 * Always add links to the tail of the list so that the list
919 * is sorted by order of hierarchy creation
920 */
69d0206c 921 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
922}
923
b326f9d0
TH
924/**
925 * find_css_set - return a new css_set with one cgroup updated
926 * @old_cset: the baseline css_set
927 * @cgrp: the cgroup to be updated
928 *
929 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
930 * substituted into the appropriate hierarchy.
817929ec 931 */
5abb8855
TH
932static struct css_set *find_css_set(struct css_set *old_cset,
933 struct cgroup *cgrp)
817929ec 934{
b326f9d0 935 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 936 struct css_set *cset;
69d0206c
TH
937 struct list_head tmp_links;
938 struct cgrp_cset_link *link;
2d8f243a 939 struct cgroup_subsys *ss;
0ac801fe 940 unsigned long key;
2d8f243a 941 int ssid;
472b1053 942
b326f9d0
TH
943 lockdep_assert_held(&cgroup_mutex);
944
817929ec
PM
945 /* First see if we already have a cgroup group that matches
946 * the desired set */
96d365e0 947 down_read(&css_set_rwsem);
5abb8855
TH
948 cset = find_existing_css_set(old_cset, cgrp, template);
949 if (cset)
950 get_css_set(cset);
96d365e0 951 up_read(&css_set_rwsem);
817929ec 952
5abb8855
TH
953 if (cset)
954 return cset;
817929ec 955
f4f4be2b 956 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 957 if (!cset)
817929ec
PM
958 return NULL;
959
69d0206c 960 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 961 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 962 kfree(cset);
817929ec
PM
963 return NULL;
964 }
965
5abb8855 966 atomic_set(&cset->refcount, 1);
69d0206c 967 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 968 INIT_LIST_HEAD(&cset->tasks);
c7561128 969 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 970 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 971 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 972 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
973
974 /* Copy the set of subsystem state objects generated in
975 * find_existing_css_set() */
5abb8855 976 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 977
96d365e0 978 down_write(&css_set_rwsem);
817929ec 979 /* Add reference counts and links from the new css_set. */
69d0206c 980 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 981 struct cgroup *c = link->cgrp;
69d0206c 982
7717f7ba
PM
983 if (c->root == cgrp->root)
984 c = cgrp;
69d0206c 985 link_css_set(&tmp_links, cset, c);
7717f7ba 986 }
817929ec 987
69d0206c 988 BUG_ON(!list_empty(&tmp_links));
817929ec 989
817929ec 990 css_set_count++;
472b1053 991
2d8f243a 992 /* Add @cset to the hash table */
5abb8855
TH
993 key = css_set_hash(cset->subsys);
994 hash_add(css_set_table, &cset->hlist, key);
472b1053 995
2d8f243a
TH
996 for_each_subsys(ss, ssid)
997 list_add_tail(&cset->e_cset_node[ssid],
998 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
999
96d365e0 1000 up_write(&css_set_rwsem);
817929ec 1001
5abb8855 1002 return cset;
b4f48b63
PM
1003}
1004
3dd06ffa 1005static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1006{
3dd06ffa 1007 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1008
3dd06ffa 1009 return root_cgrp->root;
2bd59d48
TH
1010}
1011
3dd06ffa 1012static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1013{
1014 int id;
1015
1016 lockdep_assert_held(&cgroup_mutex);
1017
985ed670 1018 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1019 if (id < 0)
1020 return id;
1021
1022 root->hierarchy_id = id;
1023 return 0;
1024}
1025
3dd06ffa 1026static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1027{
1028 lockdep_assert_held(&cgroup_mutex);
1029
1030 if (root->hierarchy_id) {
1031 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1032 root->hierarchy_id = 0;
1033 }
1034}
1035
3dd06ffa 1036static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1037{
1038 if (root) {
d0f702e6 1039 /* hierarchy ID should already have been released */
f2e85d57
TH
1040 WARN_ON_ONCE(root->hierarchy_id);
1041
1042 idr_destroy(&root->cgroup_idr);
1043 kfree(root);
1044 }
1045}
1046
3dd06ffa 1047static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1048{
3dd06ffa 1049 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1050 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1051
2bd59d48 1052 mutex_lock(&cgroup_mutex);
f2e85d57 1053
776f02fa 1054 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1055 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1056
f2e85d57 1057 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1058 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1059
7717f7ba 1060 /*
f2e85d57
TH
1061 * Release all the links from cset_links to this hierarchy's
1062 * root cgroup
7717f7ba 1063 */
96d365e0 1064 down_write(&css_set_rwsem);
f2e85d57
TH
1065
1066 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1067 list_del(&link->cset_link);
1068 list_del(&link->cgrp_link);
1069 kfree(link);
1070 }
96d365e0 1071 up_write(&css_set_rwsem);
f2e85d57
TH
1072
1073 if (!list_empty(&root->root_list)) {
1074 list_del(&root->root_list);
1075 cgroup_root_count--;
1076 }
1077
1078 cgroup_exit_root_id(root);
1079
1080 mutex_unlock(&cgroup_mutex);
f2e85d57 1081
2bd59d48 1082 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1083 cgroup_free_root(root);
1084}
1085
ceb6a081
TH
1086/* look up cgroup associated with given css_set on the specified hierarchy */
1087static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1088 struct cgroup_root *root)
7717f7ba 1089{
7717f7ba
PM
1090 struct cgroup *res = NULL;
1091
96d365e0
TH
1092 lockdep_assert_held(&cgroup_mutex);
1093 lockdep_assert_held(&css_set_rwsem);
1094
5abb8855 1095 if (cset == &init_css_set) {
3dd06ffa 1096 res = &root->cgrp;
7717f7ba 1097 } else {
69d0206c
TH
1098 struct cgrp_cset_link *link;
1099
1100 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1101 struct cgroup *c = link->cgrp;
69d0206c 1102
7717f7ba
PM
1103 if (c->root == root) {
1104 res = c;
1105 break;
1106 }
1107 }
1108 }
96d365e0 1109
7717f7ba
PM
1110 BUG_ON(!res);
1111 return res;
1112}
1113
ddbcc7e8 1114/*
ceb6a081
TH
1115 * Return the cgroup for "task" from the given hierarchy. Must be
1116 * called with cgroup_mutex and css_set_rwsem held.
1117 */
1118static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1119 struct cgroup_root *root)
ceb6a081
TH
1120{
1121 /*
1122 * No need to lock the task - since we hold cgroup_mutex the
1123 * task can't change groups, so the only thing that can happen
1124 * is that it exits and its css is set back to init_css_set.
1125 */
1126 return cset_cgroup_from_root(task_css_set(task), root);
1127}
1128
ddbcc7e8 1129/*
ddbcc7e8
PM
1130 * A task must hold cgroup_mutex to modify cgroups.
1131 *
1132 * Any task can increment and decrement the count field without lock.
1133 * So in general, code holding cgroup_mutex can't rely on the count
1134 * field not changing. However, if the count goes to zero, then only
956db3ca 1135 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1136 * means that no tasks are currently attached, therefore there is no
1137 * way a task attached to that cgroup can fork (the other way to
1138 * increment the count). So code holding cgroup_mutex can safely
1139 * assume that if the count is zero, it will stay zero. Similarly, if
1140 * a task holds cgroup_mutex on a cgroup with zero count, it
1141 * knows that the cgroup won't be removed, as cgroup_rmdir()
1142 * needs that mutex.
1143 *
ddbcc7e8
PM
1144 * A cgroup can only be deleted if both its 'count' of using tasks
1145 * is zero, and its list of 'children' cgroups is empty. Since all
1146 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1147 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1148 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1149 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1150 *
1151 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1152 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1153 */
1154
2bd59d48 1155static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1156static const struct file_operations proc_cgroupstats_operations;
a424316c 1157
8d7e6fb0
TH
1158static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1159 char *buf)
ddbcc7e8 1160{
3e1d2eed
TH
1161 struct cgroup_subsys *ss = cft->ss;
1162
8d7e6fb0
TH
1163 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1164 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1165 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1166 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1167 cft->name);
8d7e6fb0
TH
1168 else
1169 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1170 return buf;
ddbcc7e8
PM
1171}
1172
f2e85d57
TH
1173/**
1174 * cgroup_file_mode - deduce file mode of a control file
1175 * @cft: the control file in question
1176 *
7dbdb199 1177 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1178 */
1179static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1180{
f2e85d57 1181 umode_t mode = 0;
65dff759 1182
f2e85d57
TH
1183 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1184 mode |= S_IRUGO;
1185
7dbdb199
TH
1186 if (cft->write_u64 || cft->write_s64 || cft->write) {
1187 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1188 mode |= S_IWUGO;
1189 else
1190 mode |= S_IWUSR;
1191 }
f2e85d57
TH
1192
1193 return mode;
65dff759
LZ
1194}
1195
af0ba678 1196/**
0f060deb 1197 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1198 * @cgrp: the target cgroup
0f060deb 1199 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1200 *
1201 * On the default hierarchy, a subsystem may request other subsystems to be
1202 * enabled together through its ->depends_on mask. In such cases, more
1203 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1204 *
0f060deb
TH
1205 * This function calculates which subsystems need to be enabled if
1206 * @subtree_control is to be applied to @cgrp. The returned mask is always
1207 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1208 */
8ab456ac
AS
1209static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1210 unsigned long subtree_control)
667c2491 1211{
af0ba678 1212 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1213 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1214 struct cgroup_subsys *ss;
1215 int ssid;
1216
1217 lockdep_assert_held(&cgroup_mutex);
1218
0f060deb
TH
1219 if (!cgroup_on_dfl(cgrp))
1220 return cur_ss_mask;
af0ba678
TH
1221
1222 while (true) {
8ab456ac 1223 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1224
a966a4ed
AS
1225 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1226 new_ss_mask |= ss->depends_on;
af0ba678
TH
1227
1228 /*
1229 * Mask out subsystems which aren't available. This can
1230 * happen only if some depended-upon subsystems were bound
1231 * to non-default hierarchies.
1232 */
1233 if (parent)
1234 new_ss_mask &= parent->child_subsys_mask;
1235 else
1236 new_ss_mask &= cgrp->root->subsys_mask;
1237
1238 if (new_ss_mask == cur_ss_mask)
1239 break;
1240 cur_ss_mask = new_ss_mask;
1241 }
1242
0f060deb
TH
1243 return cur_ss_mask;
1244}
1245
1246/**
1247 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1248 * @cgrp: the target cgroup
1249 *
1250 * Update @cgrp->child_subsys_mask according to the current
1251 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1252 */
1253static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1254{
1255 cgrp->child_subsys_mask =
1256 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1257}
1258
a9746d8d
TH
1259/**
1260 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1261 * @kn: the kernfs_node being serviced
1262 *
1263 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1264 * the method finishes if locking succeeded. Note that once this function
1265 * returns the cgroup returned by cgroup_kn_lock_live() may become
1266 * inaccessible any time. If the caller intends to continue to access the
1267 * cgroup, it should pin it before invoking this function.
1268 */
1269static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1270{
a9746d8d
TH
1271 struct cgroup *cgrp;
1272
1273 if (kernfs_type(kn) == KERNFS_DIR)
1274 cgrp = kn->priv;
1275 else
1276 cgrp = kn->parent->priv;
1277
1278 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1279
1280 kernfs_unbreak_active_protection(kn);
1281 cgroup_put(cgrp);
ddbcc7e8
PM
1282}
1283
a9746d8d
TH
1284/**
1285 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1286 * @kn: the kernfs_node being serviced
1287 *
1288 * This helper is to be used by a cgroup kernfs method currently servicing
1289 * @kn. It breaks the active protection, performs cgroup locking and
1290 * verifies that the associated cgroup is alive. Returns the cgroup if
1291 * alive; otherwise, %NULL. A successful return should be undone by a
1292 * matching cgroup_kn_unlock() invocation.
1293 *
1294 * Any cgroup kernfs method implementation which requires locking the
1295 * associated cgroup should use this helper. It avoids nesting cgroup
1296 * locking under kernfs active protection and allows all kernfs operations
1297 * including self-removal.
1298 */
1299static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1300{
a9746d8d
TH
1301 struct cgroup *cgrp;
1302
1303 if (kernfs_type(kn) == KERNFS_DIR)
1304 cgrp = kn->priv;
1305 else
1306 cgrp = kn->parent->priv;
05ef1d7c 1307
2739d3cc 1308 /*
01f6474c 1309 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1310 * active_ref. cgroup liveliness check alone provides enough
1311 * protection against removal. Ensure @cgrp stays accessible and
1312 * break the active_ref protection.
2739d3cc 1313 */
aa32362f
LZ
1314 if (!cgroup_tryget(cgrp))
1315 return NULL;
a9746d8d
TH
1316 kernfs_break_active_protection(kn);
1317
2bd59d48 1318 mutex_lock(&cgroup_mutex);
05ef1d7c 1319
a9746d8d
TH
1320 if (!cgroup_is_dead(cgrp))
1321 return cgrp;
1322
1323 cgroup_kn_unlock(kn);
1324 return NULL;
ddbcc7e8 1325}
05ef1d7c 1326
2739d3cc 1327static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1328{
2bd59d48 1329 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1330
01f6474c 1331 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1332 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1333}
1334
13af07df 1335/**
4df8dc90
TH
1336 * css_clear_dir - remove subsys files in a cgroup directory
1337 * @css: taget css
1338 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1339 */
4df8dc90
TH
1340static void css_clear_dir(struct cgroup_subsys_state *css,
1341 struct cgroup *cgrp_override)
05ef1d7c 1342{
4df8dc90
TH
1343 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1344 struct cftype *cfts;
05ef1d7c 1345
4df8dc90
TH
1346 list_for_each_entry(cfts, &css->ss->cfts, node)
1347 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1348}
1349
ccdca218 1350/**
4df8dc90
TH
1351 * css_populate_dir - create subsys files in a cgroup directory
1352 * @css: target css
1353 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1354 *
1355 * On failure, no file is added.
1356 */
4df8dc90
TH
1357static int css_populate_dir(struct cgroup_subsys_state *css,
1358 struct cgroup *cgrp_override)
ccdca218 1359{
4df8dc90
TH
1360 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1361 struct cftype *cfts, *failed_cfts;
1362 int ret;
ccdca218 1363
4df8dc90
TH
1364 if (!css->ss) {
1365 if (cgroup_on_dfl(cgrp))
1366 cfts = cgroup_dfl_base_files;
1367 else
1368 cfts = cgroup_legacy_base_files;
ccdca218 1369
4df8dc90
TH
1370 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1371 }
ccdca218 1372
4df8dc90
TH
1373 list_for_each_entry(cfts, &css->ss->cfts, node) {
1374 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1375 if (ret < 0) {
1376 failed_cfts = cfts;
1377 goto err;
ccdca218
TH
1378 }
1379 }
1380 return 0;
1381err:
4df8dc90
TH
1382 list_for_each_entry(cfts, &css->ss->cfts, node) {
1383 if (cfts == failed_cfts)
1384 break;
1385 cgroup_addrm_files(css, cgrp, cfts, false);
1386 }
ccdca218
TH
1387 return ret;
1388}
1389
8ab456ac
AS
1390static int rebind_subsystems(struct cgroup_root *dst_root,
1391 unsigned long ss_mask)
ddbcc7e8 1392{
1ada4838 1393 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1394 struct cgroup_subsys *ss;
8ab456ac 1395 unsigned long tmp_ss_mask;
2d8f243a 1396 int ssid, i, ret;
ddbcc7e8 1397
ace2bee8 1398 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1399
a966a4ed 1400 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1401 /* if @ss has non-root csses attached to it, can't move */
1402 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1403 return -EBUSY;
1d5be6b2 1404
5df36032 1405 /* can't move between two non-dummy roots either */
7fd8c565 1406 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1407 return -EBUSY;
ddbcc7e8
PM
1408 }
1409
5533e011
TH
1410 /* skip creating root files on dfl_root for inhibited subsystems */
1411 tmp_ss_mask = ss_mask;
1412 if (dst_root == &cgrp_dfl_root)
1413 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1414
4df8dc90
TH
1415 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1416 struct cgroup *scgrp = &ss->root->cgrp;
1417 int tssid;
1418
1419 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1420 if (!ret)
1421 continue;
ddbcc7e8 1422
a2dd4247
TH
1423 /*
1424 * Rebinding back to the default root is not allowed to
1425 * fail. Using both default and non-default roots should
1426 * be rare. Moving subsystems back and forth even more so.
1427 * Just warn about it and continue.
1428 */
4df8dc90
TH
1429 if (dst_root == &cgrp_dfl_root) {
1430 if (cgrp_dfl_root_visible) {
1431 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1432 ret, ss_mask);
1433 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1434 }
1435 continue;
a2dd4247 1436 }
4df8dc90
TH
1437
1438 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1439 if (tssid == ssid)
1440 break;
1441 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1442 }
1443 return ret;
5df36032 1444 }
3126121f
TH
1445
1446 /*
1447 * Nothing can fail from this point on. Remove files for the
1448 * removed subsystems and rebind each subsystem.
1449 */
a966a4ed 1450 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1451 struct cgroup_root *src_root = ss->root;
1452 struct cgroup *scgrp = &src_root->cgrp;
1453 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1454 struct css_set *cset;
a8a648c4 1455
1ada4838 1456 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1457
4df8dc90
TH
1458 css_clear_dir(css, NULL);
1459
1ada4838
TH
1460 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1461 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1462 ss->root = dst_root;
1ada4838 1463 css->cgroup = dcgrp;
73e80ed8 1464
2d8f243a
TH
1465 down_write(&css_set_rwsem);
1466 hash_for_each(css_set_table, i, cset, hlist)
1467 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1468 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1469 up_write(&css_set_rwsem);
1470
f392e51c 1471 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1472 scgrp->subtree_control &= ~(1 << ssid);
1473 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1474
bd53d617 1475 /* default hierarchy doesn't enable controllers by default */
f392e51c 1476 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1477 if (dst_root == &cgrp_dfl_root) {
1478 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1479 } else {
1ada4838
TH
1480 dcgrp->subtree_control |= 1 << ssid;
1481 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1482 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1483 }
a8a648c4 1484
5df36032
TH
1485 if (ss->bind)
1486 ss->bind(css);
ddbcc7e8 1487 }
ddbcc7e8 1488
1ada4838 1489 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1490 return 0;
1491}
1492
2bd59d48
TH
1493static int cgroup_show_options(struct seq_file *seq,
1494 struct kernfs_root *kf_root)
ddbcc7e8 1495{
3dd06ffa 1496 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1497 struct cgroup_subsys *ss;
b85d2040 1498 int ssid;
ddbcc7e8 1499
d98817d4
TH
1500 if (root != &cgrp_dfl_root)
1501 for_each_subsys(ss, ssid)
1502 if (root->subsys_mask & (1 << ssid))
61e57c0c 1503 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1504 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1505 seq_puts(seq, ",noprefix");
93438629 1506 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1507 seq_puts(seq, ",xattr");
69e943b7
TH
1508
1509 spin_lock(&release_agent_path_lock);
81a6a5cd 1510 if (strlen(root->release_agent_path))
a068acf2
KC
1511 seq_show_option(seq, "release_agent",
1512 root->release_agent_path);
69e943b7
TH
1513 spin_unlock(&release_agent_path_lock);
1514
3dd06ffa 1515 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1516 seq_puts(seq, ",clone_children");
c6d57f33 1517 if (strlen(root->name))
a068acf2 1518 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1519 return 0;
1520}
1521
1522struct cgroup_sb_opts {
8ab456ac 1523 unsigned long subsys_mask;
69dfa00c 1524 unsigned int flags;
81a6a5cd 1525 char *release_agent;
2260e7fc 1526 bool cpuset_clone_children;
c6d57f33 1527 char *name;
2c6ab6d2
PM
1528 /* User explicitly requested empty subsystem */
1529 bool none;
ddbcc7e8
PM
1530};
1531
cf5d5941 1532static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1533{
32a8cf23
DL
1534 char *token, *o = data;
1535 bool all_ss = false, one_ss = false;
8ab456ac 1536 unsigned long mask = -1UL;
30159ec7 1537 struct cgroup_subsys *ss;
7b9a6ba5 1538 int nr_opts = 0;
30159ec7 1539 int i;
f9ab5b5b
LZ
1540
1541#ifdef CONFIG_CPUSETS
69dfa00c 1542 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1543#endif
ddbcc7e8 1544
c6d57f33 1545 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1546
1547 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1548 nr_opts++;
1549
ddbcc7e8
PM
1550 if (!*token)
1551 return -EINVAL;
32a8cf23 1552 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1553 /* Explicitly have no subsystems */
1554 opts->none = true;
32a8cf23
DL
1555 continue;
1556 }
1557 if (!strcmp(token, "all")) {
1558 /* Mutually exclusive option 'all' + subsystem name */
1559 if (one_ss)
1560 return -EINVAL;
1561 all_ss = true;
1562 continue;
1563 }
873fe09e
TH
1564 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1565 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1566 continue;
1567 }
32a8cf23 1568 if (!strcmp(token, "noprefix")) {
93438629 1569 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1570 continue;
1571 }
1572 if (!strcmp(token, "clone_children")) {
2260e7fc 1573 opts->cpuset_clone_children = true;
32a8cf23
DL
1574 continue;
1575 }
03b1cde6 1576 if (!strcmp(token, "xattr")) {
93438629 1577 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1578 continue;
1579 }
32a8cf23 1580 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1581 /* Specifying two release agents is forbidden */
1582 if (opts->release_agent)
1583 return -EINVAL;
c6d57f33 1584 opts->release_agent =
e400c285 1585 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1586 if (!opts->release_agent)
1587 return -ENOMEM;
32a8cf23
DL
1588 continue;
1589 }
1590 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1591 const char *name = token + 5;
1592 /* Can't specify an empty name */
1593 if (!strlen(name))
1594 return -EINVAL;
1595 /* Must match [\w.-]+ */
1596 for (i = 0; i < strlen(name); i++) {
1597 char c = name[i];
1598 if (isalnum(c))
1599 continue;
1600 if ((c == '.') || (c == '-') || (c == '_'))
1601 continue;
1602 return -EINVAL;
1603 }
1604 /* Specifying two names is forbidden */
1605 if (opts->name)
1606 return -EINVAL;
1607 opts->name = kstrndup(name,
e400c285 1608 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1609 GFP_KERNEL);
1610 if (!opts->name)
1611 return -ENOMEM;
32a8cf23
DL
1612
1613 continue;
1614 }
1615
30159ec7 1616 for_each_subsys(ss, i) {
3e1d2eed 1617 if (strcmp(token, ss->legacy_name))
32a8cf23 1618 continue;
fc5ed1e9 1619 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1620 continue;
1621
1622 /* Mutually exclusive option 'all' + subsystem name */
1623 if (all_ss)
1624 return -EINVAL;
69dfa00c 1625 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1626 one_ss = true;
1627
1628 break;
1629 }
1630 if (i == CGROUP_SUBSYS_COUNT)
1631 return -ENOENT;
1632 }
1633
873fe09e 1634 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1635 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1636 if (nr_opts != 1) {
1637 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1638 return -EINVAL;
1639 }
7b9a6ba5 1640 return 0;
873fe09e
TH
1641 }
1642
7b9a6ba5
TH
1643 /*
1644 * If the 'all' option was specified select all the subsystems,
1645 * otherwise if 'none', 'name=' and a subsystem name options were
1646 * not specified, let's default to 'all'
1647 */
1648 if (all_ss || (!one_ss && !opts->none && !opts->name))
1649 for_each_subsys(ss, i)
fc5ed1e9 1650 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1651 opts->subsys_mask |= (1 << i);
1652
1653 /*
1654 * We either have to specify by name or by subsystems. (So all
1655 * empty hierarchies must have a name).
1656 */
1657 if (!opts->subsys_mask && !opts->name)
1658 return -EINVAL;
1659
f9ab5b5b
LZ
1660 /*
1661 * Option noprefix was introduced just for backward compatibility
1662 * with the old cpuset, so we allow noprefix only if mounting just
1663 * the cpuset subsystem.
1664 */
93438629 1665 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1666 return -EINVAL;
1667
2c6ab6d2 1668 /* Can't specify "none" and some subsystems */
a1a71b45 1669 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1670 return -EINVAL;
1671
ddbcc7e8
PM
1672 return 0;
1673}
1674
2bd59d48 1675static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1676{
1677 int ret = 0;
3dd06ffa 1678 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1679 struct cgroup_sb_opts opts;
8ab456ac 1680 unsigned long added_mask, removed_mask;
ddbcc7e8 1681
aa6ec29b
TH
1682 if (root == &cgrp_dfl_root) {
1683 pr_err("remount is not allowed\n");
873fe09e
TH
1684 return -EINVAL;
1685 }
1686
ddbcc7e8
PM
1687 mutex_lock(&cgroup_mutex);
1688
1689 /* See what subsystems are wanted */
1690 ret = parse_cgroupfs_options(data, &opts);
1691 if (ret)
1692 goto out_unlock;
1693
f392e51c 1694 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1695 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1696 task_tgid_nr(current), current->comm);
8b5a5a9d 1697
f392e51c
TH
1698 added_mask = opts.subsys_mask & ~root->subsys_mask;
1699 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1700
cf5d5941 1701 /* Don't allow flags or name to change at remount */
7450e90b 1702 if ((opts.flags ^ root->flags) ||
cf5d5941 1703 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1704 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1705 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1706 ret = -EINVAL;
1707 goto out_unlock;
1708 }
1709
f172e67c 1710 /* remounting is not allowed for populated hierarchies */
d5c419b6 1711 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1712 ret = -EBUSY;
0670e08b 1713 goto out_unlock;
cf5d5941 1714 }
ddbcc7e8 1715
5df36032 1716 ret = rebind_subsystems(root, added_mask);
3126121f 1717 if (ret)
0670e08b 1718 goto out_unlock;
ddbcc7e8 1719
3dd06ffa 1720 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1721
69e943b7
TH
1722 if (opts.release_agent) {
1723 spin_lock(&release_agent_path_lock);
81a6a5cd 1724 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1725 spin_unlock(&release_agent_path_lock);
1726 }
ddbcc7e8 1727 out_unlock:
66bdc9cf 1728 kfree(opts.release_agent);
c6d57f33 1729 kfree(opts.name);
ddbcc7e8 1730 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1731 return ret;
1732}
1733
afeb0f9f
TH
1734/*
1735 * To reduce the fork() overhead for systems that are not actually using
1736 * their cgroups capability, we don't maintain the lists running through
1737 * each css_set to its tasks until we see the list actually used - in other
1738 * words after the first mount.
1739 */
1740static bool use_task_css_set_links __read_mostly;
1741
1742static void cgroup_enable_task_cg_lists(void)
1743{
1744 struct task_struct *p, *g;
1745
96d365e0 1746 down_write(&css_set_rwsem);
afeb0f9f
TH
1747
1748 if (use_task_css_set_links)
1749 goto out_unlock;
1750
1751 use_task_css_set_links = true;
1752
1753 /*
1754 * We need tasklist_lock because RCU is not safe against
1755 * while_each_thread(). Besides, a forking task that has passed
1756 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1757 * is not guaranteed to have its child immediately visible in the
1758 * tasklist if we walk through it with RCU.
1759 */
1760 read_lock(&tasklist_lock);
1761 do_each_thread(g, p) {
afeb0f9f
TH
1762 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1763 task_css_set(p) != &init_css_set);
1764
1765 /*
1766 * We should check if the process is exiting, otherwise
1767 * it will race with cgroup_exit() in that the list
1768 * entry won't be deleted though the process has exited.
f153ad11
TH
1769 * Do it while holding siglock so that we don't end up
1770 * racing against cgroup_exit().
afeb0f9f 1771 */
f153ad11 1772 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1773 if (!(p->flags & PF_EXITING)) {
1774 struct css_set *cset = task_css_set(p);
1775
0de0942d
TH
1776 if (!css_set_populated(cset))
1777 css_set_update_populated(cset, true);
eaf797ab
TH
1778 list_add(&p->cg_list, &cset->tasks);
1779 get_css_set(cset);
1780 }
f153ad11 1781 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1782 } while_each_thread(g, p);
1783 read_unlock(&tasklist_lock);
1784out_unlock:
96d365e0 1785 up_write(&css_set_rwsem);
afeb0f9f 1786}
ddbcc7e8 1787
cc31edce
PM
1788static void init_cgroup_housekeeping(struct cgroup *cgrp)
1789{
2d8f243a
TH
1790 struct cgroup_subsys *ss;
1791 int ssid;
1792
d5c419b6
TH
1793 INIT_LIST_HEAD(&cgrp->self.sibling);
1794 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1795 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1796 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1797 INIT_LIST_HEAD(&cgrp->pidlists);
1798 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1799 cgrp->self.cgroup = cgrp;
184faf32 1800 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1801
1802 for_each_subsys(ss, ssid)
1803 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1804
1805 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1806 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1807}
c6d57f33 1808
3dd06ffa 1809static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1810 struct cgroup_sb_opts *opts)
ddbcc7e8 1811{
3dd06ffa 1812 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1813
ddbcc7e8 1814 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1815 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1816 cgrp->root = root;
cc31edce 1817 init_cgroup_housekeeping(cgrp);
4e96ee8e 1818 idr_init(&root->cgroup_idr);
c6d57f33 1819
c6d57f33
PM
1820 root->flags = opts->flags;
1821 if (opts->release_agent)
1822 strcpy(root->release_agent_path, opts->release_agent);
1823 if (opts->name)
1824 strcpy(root->name, opts->name);
2260e7fc 1825 if (opts->cpuset_clone_children)
3dd06ffa 1826 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1827}
1828
8ab456ac 1829static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1830{
d427dfeb 1831 LIST_HEAD(tmp_links);
3dd06ffa 1832 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1833 struct css_set *cset;
d427dfeb 1834 int i, ret;
2c6ab6d2 1835
d427dfeb 1836 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1837
cf780b7d 1838 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1839 if (ret < 0)
2bd59d48 1840 goto out;
d427dfeb 1841 root_cgrp->id = ret;
c6d57f33 1842
2aad2a86
TH
1843 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1844 GFP_KERNEL);
9d755d33
TH
1845 if (ret)
1846 goto out;
1847
d427dfeb 1848 /*
96d365e0 1849 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1850 * but that's OK - it can only be increased by someone holding
1851 * cgroup_lock, and that's us. The worst that can happen is that we
1852 * have some link structures left over
1853 */
1854 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1855 if (ret)
9d755d33 1856 goto cancel_ref;
ddbcc7e8 1857
985ed670 1858 ret = cgroup_init_root_id(root);
ddbcc7e8 1859 if (ret)
9d755d33 1860 goto cancel_ref;
ddbcc7e8 1861
2bd59d48
TH
1862 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1863 KERNFS_ROOT_CREATE_DEACTIVATED,
1864 root_cgrp);
1865 if (IS_ERR(root->kf_root)) {
1866 ret = PTR_ERR(root->kf_root);
1867 goto exit_root_id;
1868 }
1869 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1870
4df8dc90 1871 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1872 if (ret)
2bd59d48 1873 goto destroy_root;
ddbcc7e8 1874
5df36032 1875 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1876 if (ret)
2bd59d48 1877 goto destroy_root;
ddbcc7e8 1878
d427dfeb
TH
1879 /*
1880 * There must be no failure case after here, since rebinding takes
1881 * care of subsystems' refcounts, which are explicitly dropped in
1882 * the failure exit path.
1883 */
1884 list_add(&root->root_list, &cgroup_roots);
1885 cgroup_root_count++;
0df6a63f 1886
d427dfeb 1887 /*
3dd06ffa 1888 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1889 * objects.
1890 */
96d365e0 1891 down_write(&css_set_rwsem);
0de0942d 1892 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1893 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1894 if (css_set_populated(cset))
1895 cgroup_update_populated(root_cgrp, true);
1896 }
96d365e0 1897 up_write(&css_set_rwsem);
ddbcc7e8 1898
d5c419b6 1899 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1900 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1901
2bd59d48 1902 kernfs_activate(root_cgrp->kn);
d427dfeb 1903 ret = 0;
2bd59d48 1904 goto out;
d427dfeb 1905
2bd59d48
TH
1906destroy_root:
1907 kernfs_destroy_root(root->kf_root);
1908 root->kf_root = NULL;
1909exit_root_id:
d427dfeb 1910 cgroup_exit_root_id(root);
9d755d33 1911cancel_ref:
9a1049da 1912 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1913out:
d427dfeb
TH
1914 free_cgrp_cset_links(&tmp_links);
1915 return ret;
ddbcc7e8
PM
1916}
1917
f7e83571 1918static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1919 int flags, const char *unused_dev_name,
f7e83571 1920 void *data)
ddbcc7e8 1921{
3a32bd72 1922 struct super_block *pinned_sb = NULL;
970317aa 1923 struct cgroup_subsys *ss;
3dd06ffa 1924 struct cgroup_root *root;
ddbcc7e8 1925 struct cgroup_sb_opts opts;
2bd59d48 1926 struct dentry *dentry;
8e30e2b8 1927 int ret;
970317aa 1928 int i;
c6b3d5bc 1929 bool new_sb;
ddbcc7e8 1930
56fde9e0
TH
1931 /*
1932 * The first time anyone tries to mount a cgroup, enable the list
1933 * linking each css_set to its tasks and fix up all existing tasks.
1934 */
1935 if (!use_task_css_set_links)
1936 cgroup_enable_task_cg_lists();
e37a06f1 1937
aae8aab4 1938 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1939
1940 /* First find the desired set of subsystems */
ddbcc7e8 1941 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1942 if (ret)
8e30e2b8 1943 goto out_unlock;
a015edd2 1944
2bd59d48 1945 /* look for a matching existing root */
7b9a6ba5 1946 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1947 cgrp_dfl_root_visible = true;
1948 root = &cgrp_dfl_root;
1949 cgroup_get(&root->cgrp);
1950 ret = 0;
1951 goto out_unlock;
ddbcc7e8
PM
1952 }
1953
970317aa
LZ
1954 /*
1955 * Destruction of cgroup root is asynchronous, so subsystems may
1956 * still be dying after the previous unmount. Let's drain the
1957 * dying subsystems. We just need to ensure that the ones
1958 * unmounted previously finish dying and don't care about new ones
1959 * starting. Testing ref liveliness is good enough.
1960 */
1961 for_each_subsys(ss, i) {
1962 if (!(opts.subsys_mask & (1 << i)) ||
1963 ss->root == &cgrp_dfl_root)
1964 continue;
1965
1966 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1967 mutex_unlock(&cgroup_mutex);
1968 msleep(10);
1969 ret = restart_syscall();
1970 goto out_free;
1971 }
1972 cgroup_put(&ss->root->cgrp);
1973 }
1974
985ed670 1975 for_each_root(root) {
2bd59d48 1976 bool name_match = false;
3126121f 1977
3dd06ffa 1978 if (root == &cgrp_dfl_root)
985ed670 1979 continue;
3126121f 1980
cf5d5941 1981 /*
2bd59d48
TH
1982 * If we asked for a name then it must match. Also, if
1983 * name matches but sybsys_mask doesn't, we should fail.
1984 * Remember whether name matched.
cf5d5941 1985 */
2bd59d48
TH
1986 if (opts.name) {
1987 if (strcmp(opts.name, root->name))
1988 continue;
1989 name_match = true;
1990 }
ddbcc7e8 1991
c6d57f33 1992 /*
2bd59d48
TH
1993 * If we asked for subsystems (or explicitly for no
1994 * subsystems) then they must match.
c6d57f33 1995 */
2bd59d48 1996 if ((opts.subsys_mask || opts.none) &&
f392e51c 1997 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1998 if (!name_match)
1999 continue;
2000 ret = -EBUSY;
2001 goto out_unlock;
2002 }
873fe09e 2003
7b9a6ba5
TH
2004 if (root->flags ^ opts.flags)
2005 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2006
776f02fa 2007 /*
3a32bd72
LZ
2008 * We want to reuse @root whose lifetime is governed by its
2009 * ->cgrp. Let's check whether @root is alive and keep it
2010 * that way. As cgroup_kill_sb() can happen anytime, we
2011 * want to block it by pinning the sb so that @root doesn't
2012 * get killed before mount is complete.
2013 *
2014 * With the sb pinned, tryget_live can reliably indicate
2015 * whether @root can be reused. If it's being killed,
2016 * drain it. We can use wait_queue for the wait but this
2017 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2018 */
3a32bd72
LZ
2019 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2020 if (IS_ERR(pinned_sb) ||
2021 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2022 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2023 if (!IS_ERR_OR_NULL(pinned_sb))
2024 deactivate_super(pinned_sb);
776f02fa 2025 msleep(10);
a015edd2
TH
2026 ret = restart_syscall();
2027 goto out_free;
776f02fa 2028 }
ddbcc7e8 2029
776f02fa 2030 ret = 0;
2bd59d48 2031 goto out_unlock;
ddbcc7e8 2032 }
ddbcc7e8 2033
817929ec 2034 /*
172a2c06
TH
2035 * No such thing, create a new one. name= matching without subsys
2036 * specification is allowed for already existing hierarchies but we
2037 * can't create new one without subsys specification.
817929ec 2038 */
172a2c06
TH
2039 if (!opts.subsys_mask && !opts.none) {
2040 ret = -EINVAL;
2041 goto out_unlock;
817929ec 2042 }
817929ec 2043
172a2c06
TH
2044 root = kzalloc(sizeof(*root), GFP_KERNEL);
2045 if (!root) {
2046 ret = -ENOMEM;
2bd59d48 2047 goto out_unlock;
839ec545 2048 }
e5f6a860 2049
172a2c06
TH
2050 init_cgroup_root(root, &opts);
2051
35585573 2052 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2053 if (ret)
2054 cgroup_free_root(root);
fa3ca07e 2055
8e30e2b8 2056out_unlock:
ddbcc7e8 2057 mutex_unlock(&cgroup_mutex);
a015edd2 2058out_free:
c6d57f33
PM
2059 kfree(opts.release_agent);
2060 kfree(opts.name);
03b1cde6 2061
2bd59d48 2062 if (ret)
8e30e2b8 2063 return ERR_PTR(ret);
2bd59d48 2064
c9482a5b
JZ
2065 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2066 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2067 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2068 cgroup_put(&root->cgrp);
3a32bd72
LZ
2069
2070 /*
2071 * If @pinned_sb, we're reusing an existing root and holding an
2072 * extra ref on its sb. Mount is complete. Put the extra ref.
2073 */
2074 if (pinned_sb) {
2075 WARN_ON(new_sb);
2076 deactivate_super(pinned_sb);
2077 }
2078
2bd59d48
TH
2079 return dentry;
2080}
2081
2082static void cgroup_kill_sb(struct super_block *sb)
2083{
2084 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2085 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2086
9d755d33
TH
2087 /*
2088 * If @root doesn't have any mounts or children, start killing it.
2089 * This prevents new mounts by disabling percpu_ref_tryget_live().
2090 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2091 *
2092 * And don't kill the default root.
9d755d33 2093 */
3c606d35 2094 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2095 root == &cgrp_dfl_root)
9d755d33
TH
2096 cgroup_put(&root->cgrp);
2097 else
2098 percpu_ref_kill(&root->cgrp.self.refcnt);
2099
2bd59d48 2100 kernfs_kill_sb(sb);
ddbcc7e8
PM
2101}
2102
2103static struct file_system_type cgroup_fs_type = {
2104 .name = "cgroup",
f7e83571 2105 .mount = cgroup_mount,
ddbcc7e8
PM
2106 .kill_sb = cgroup_kill_sb,
2107};
2108
857a2beb 2109/**
913ffdb5 2110 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2111 * @task: target task
857a2beb
TH
2112 * @buf: the buffer to write the path into
2113 * @buflen: the length of the buffer
2114 *
913ffdb5
TH
2115 * Determine @task's cgroup on the first (the one with the lowest non-zero
2116 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2117 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2118 * cgroup controller callbacks.
2119 *
e61734c5 2120 * Return value is the same as kernfs_path().
857a2beb 2121 */
e61734c5 2122char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2123{
3dd06ffa 2124 struct cgroup_root *root;
913ffdb5 2125 struct cgroup *cgrp;
e61734c5
TH
2126 int hierarchy_id = 1;
2127 char *path = NULL;
857a2beb
TH
2128
2129 mutex_lock(&cgroup_mutex);
96d365e0 2130 down_read(&css_set_rwsem);
857a2beb 2131
913ffdb5
TH
2132 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2133
857a2beb
TH
2134 if (root) {
2135 cgrp = task_cgroup_from_root(task, root);
e61734c5 2136 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2137 } else {
2138 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2139 if (strlcpy(buf, "/", buflen) < buflen)
2140 path = buf;
857a2beb
TH
2141 }
2142
96d365e0 2143 up_read(&css_set_rwsem);
857a2beb 2144 mutex_unlock(&cgroup_mutex);
e61734c5 2145 return path;
857a2beb 2146}
913ffdb5 2147EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2148
b3dc094e 2149/* used to track tasks and other necessary states during migration */
2f7ee569 2150struct cgroup_taskset {
b3dc094e
TH
2151 /* the src and dst cset list running through cset->mg_node */
2152 struct list_head src_csets;
2153 struct list_head dst_csets;
2154
2155 /*
2156 * Fields for cgroup_taskset_*() iteration.
2157 *
2158 * Before migration is committed, the target migration tasks are on
2159 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2160 * the csets on ->dst_csets. ->csets point to either ->src_csets
2161 * or ->dst_csets depending on whether migration is committed.
2162 *
2163 * ->cur_csets and ->cur_task point to the current task position
2164 * during iteration.
2165 */
2166 struct list_head *csets;
2167 struct css_set *cur_cset;
2168 struct task_struct *cur_task;
2f7ee569
TH
2169};
2170
adaae5dc
TH
2171#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2172 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2173 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2174 .csets = &tset.src_csets, \
2175}
2176
2177/**
2178 * cgroup_taskset_add - try to add a migration target task to a taskset
2179 * @task: target task
2180 * @tset: target taskset
2181 *
2182 * Add @task, which is a migration target, to @tset. This function becomes
2183 * noop if @task doesn't need to be migrated. @task's css_set should have
2184 * been added as a migration source and @task->cg_list will be moved from
2185 * the css_set's tasks list to mg_tasks one.
2186 */
2187static void cgroup_taskset_add(struct task_struct *task,
2188 struct cgroup_taskset *tset)
2189{
2190 struct css_set *cset;
2191
2192 lockdep_assert_held(&css_set_rwsem);
2193
2194 /* @task either already exited or can't exit until the end */
2195 if (task->flags & PF_EXITING)
2196 return;
2197
2198 /* leave @task alone if post_fork() hasn't linked it yet */
2199 if (list_empty(&task->cg_list))
2200 return;
2201
2202 cset = task_css_set(task);
2203 if (!cset->mg_src_cgrp)
2204 return;
2205
2206 list_move_tail(&task->cg_list, &cset->mg_tasks);
2207 if (list_empty(&cset->mg_node))
2208 list_add_tail(&cset->mg_node, &tset->src_csets);
2209 if (list_empty(&cset->mg_dst_cset->mg_node))
2210 list_move_tail(&cset->mg_dst_cset->mg_node,
2211 &tset->dst_csets);
2212}
2213
2f7ee569
TH
2214/**
2215 * cgroup_taskset_first - reset taskset and return the first task
2216 * @tset: taskset of interest
2217 *
2218 * @tset iteration is initialized and the first task is returned.
2219 */
2220struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2221{
b3dc094e
TH
2222 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2223 tset->cur_task = NULL;
2224
2225 return cgroup_taskset_next(tset);
2f7ee569 2226}
2f7ee569
TH
2227
2228/**
2229 * cgroup_taskset_next - iterate to the next task in taskset
2230 * @tset: taskset of interest
2231 *
2232 * Return the next task in @tset. Iteration must have been initialized
2233 * with cgroup_taskset_first().
2234 */
2235struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2236{
b3dc094e
TH
2237 struct css_set *cset = tset->cur_cset;
2238 struct task_struct *task = tset->cur_task;
2f7ee569 2239
b3dc094e
TH
2240 while (&cset->mg_node != tset->csets) {
2241 if (!task)
2242 task = list_first_entry(&cset->mg_tasks,
2243 struct task_struct, cg_list);
2244 else
2245 task = list_next_entry(task, cg_list);
2f7ee569 2246
b3dc094e
TH
2247 if (&task->cg_list != &cset->mg_tasks) {
2248 tset->cur_cset = cset;
2249 tset->cur_task = task;
2250 return task;
2251 }
2f7ee569 2252
b3dc094e
TH
2253 cset = list_next_entry(cset, mg_node);
2254 task = NULL;
2255 }
2f7ee569 2256
b3dc094e 2257 return NULL;
2f7ee569 2258}
2f7ee569 2259
cb0f1fe9 2260/**
74a1166d 2261 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
2262 * @tsk: the task being migrated
2263 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2264 *
cb0f1fe9 2265 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2266 */
b309e5b7 2267static void cgroup_task_migrate(struct task_struct *tsk,
5abb8855 2268 struct css_set *new_cset)
74a1166d 2269{
5abb8855 2270 struct css_set *old_cset;
74a1166d 2271
cb0f1fe9
TH
2272 lockdep_assert_held(&cgroup_mutex);
2273 lockdep_assert_held(&css_set_rwsem);
2274
74a1166d 2275 /*
1ed13287
TH
2276 * We are synchronized through cgroup_threadgroup_rwsem against
2277 * PF_EXITING setting such that we can't race against cgroup_exit()
2278 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2279 */
c84cdf75 2280 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2281 old_cset = task_css_set(tsk);
74a1166d 2282
0de0942d
TH
2283 if (!css_set_populated(new_cset))
2284 css_set_update_populated(new_cset, true);
2285
b3dc094e 2286 get_css_set(new_cset);
5abb8855 2287 rcu_assign_pointer(tsk->cgroups, new_cset);
1b9aba49 2288 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d 2289
0de0942d
TH
2290 if (!css_set_populated(old_cset))
2291 css_set_update_populated(old_cset, false);
2292
74a1166d 2293 /*
5abb8855
TH
2294 * We just gained a reference on old_cset by taking it from the
2295 * task. As trading it for new_cset is protected by cgroup_mutex,
2296 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2297 */
a25eb52e 2298 put_css_set_locked(old_cset);
74a1166d
BB
2299}
2300
adaae5dc
TH
2301/**
2302 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2303 * @tset: taget taskset
2304 * @dst_cgrp: destination cgroup
2305 *
2306 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2307 * ->can_attach callbacks fails and guarantees that either all or none of
2308 * the tasks in @tset are migrated. @tset is consumed regardless of
2309 * success.
2310 */
2311static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2312 struct cgroup *dst_cgrp)
2313{
2314 struct cgroup_subsys_state *css, *failed_css = NULL;
2315 struct task_struct *task, *tmp_task;
2316 struct css_set *cset, *tmp_cset;
2317 int i, ret;
2318
2319 /* methods shouldn't be called if no task is actually migrating */
2320 if (list_empty(&tset->src_csets))
2321 return 0;
2322
2323 /* check that we can legitimately attach to the cgroup */
2324 for_each_e_css(css, i, dst_cgrp) {
2325 if (css->ss->can_attach) {
2326 ret = css->ss->can_attach(css, tset);
2327 if (ret) {
2328 failed_css = css;
2329 goto out_cancel_attach;
2330 }
2331 }
2332 }
2333
2334 /*
2335 * Now that we're guaranteed success, proceed to move all tasks to
2336 * the new cgroup. There are no failure cases after here, so this
2337 * is the commit point.
2338 */
2339 down_write(&css_set_rwsem);
2340 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2341 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
b309e5b7 2342 cgroup_task_migrate(task, cset->mg_dst_cset);
adaae5dc
TH
2343 }
2344 up_write(&css_set_rwsem);
2345
2346 /*
2347 * Migration is committed, all target tasks are now on dst_csets.
2348 * Nothing is sensitive to fork() after this point. Notify
2349 * controllers that migration is complete.
2350 */
2351 tset->csets = &tset->dst_csets;
2352
2353 for_each_e_css(css, i, dst_cgrp)
2354 if (css->ss->attach)
2355 css->ss->attach(css, tset);
2356
2357 ret = 0;
2358 goto out_release_tset;
2359
2360out_cancel_attach:
2361 for_each_e_css(css, i, dst_cgrp) {
2362 if (css == failed_css)
2363 break;
2364 if (css->ss->cancel_attach)
2365 css->ss->cancel_attach(css, tset);
2366 }
2367out_release_tset:
2368 down_write(&css_set_rwsem);
2369 list_splice_init(&tset->dst_csets, &tset->src_csets);
2370 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2371 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2372 list_del_init(&cset->mg_node);
2373 }
2374 up_write(&css_set_rwsem);
2375 return ret;
2376}
2377
a043e3b2 2378/**
1958d2d5
TH
2379 * cgroup_migrate_finish - cleanup after attach
2380 * @preloaded_csets: list of preloaded css_sets
74a1166d 2381 *
1958d2d5
TH
2382 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2383 * those functions for details.
74a1166d 2384 */
1958d2d5 2385static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2386{
1958d2d5 2387 struct css_set *cset, *tmp_cset;
74a1166d 2388
1958d2d5
TH
2389 lockdep_assert_held(&cgroup_mutex);
2390
2391 down_write(&css_set_rwsem);
2392 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2393 cset->mg_src_cgrp = NULL;
2394 cset->mg_dst_cset = NULL;
2395 list_del_init(&cset->mg_preload_node);
a25eb52e 2396 put_css_set_locked(cset);
1958d2d5
TH
2397 }
2398 up_write(&css_set_rwsem);
2399}
2400
2401/**
2402 * cgroup_migrate_add_src - add a migration source css_set
2403 * @src_cset: the source css_set to add
2404 * @dst_cgrp: the destination cgroup
2405 * @preloaded_csets: list of preloaded css_sets
2406 *
2407 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2408 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2409 * up by cgroup_migrate_finish().
2410 *
1ed13287
TH
2411 * This function may be called without holding cgroup_threadgroup_rwsem
2412 * even if the target is a process. Threads may be created and destroyed
2413 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2414 * into play and the preloaded css_sets are guaranteed to cover all
2415 * migrations.
1958d2d5
TH
2416 */
2417static void cgroup_migrate_add_src(struct css_set *src_cset,
2418 struct cgroup *dst_cgrp,
2419 struct list_head *preloaded_csets)
2420{
2421 struct cgroup *src_cgrp;
2422
2423 lockdep_assert_held(&cgroup_mutex);
2424 lockdep_assert_held(&css_set_rwsem);
2425
2426 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2427
1958d2d5
TH
2428 if (!list_empty(&src_cset->mg_preload_node))
2429 return;
2430
2431 WARN_ON(src_cset->mg_src_cgrp);
2432 WARN_ON(!list_empty(&src_cset->mg_tasks));
2433 WARN_ON(!list_empty(&src_cset->mg_node));
2434
2435 src_cset->mg_src_cgrp = src_cgrp;
2436 get_css_set(src_cset);
2437 list_add(&src_cset->mg_preload_node, preloaded_csets);
2438}
2439
2440/**
2441 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2442 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2443 * @preloaded_csets: list of preloaded source css_sets
2444 *
2445 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2446 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2447 * pins all destination css_sets, links each to its source, and append them
2448 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2449 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2450 *
2451 * This function must be called after cgroup_migrate_add_src() has been
2452 * called on each migration source css_set. After migration is performed
2453 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2454 * @preloaded_csets.
2455 */
2456static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2457 struct list_head *preloaded_csets)
2458{
2459 LIST_HEAD(csets);
f817de98 2460 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2461
2462 lockdep_assert_held(&cgroup_mutex);
2463
f8f22e53
TH
2464 /*
2465 * Except for the root, child_subsys_mask must be zero for a cgroup
2466 * with tasks so that child cgroups don't compete against tasks.
2467 */
d51f39b0 2468 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2469 dst_cgrp->child_subsys_mask)
2470 return -EBUSY;
2471
1958d2d5 2472 /* look up the dst cset for each src cset and link it to src */
f817de98 2473 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2474 struct css_set *dst_cset;
2475
f817de98
TH
2476 dst_cset = find_css_set(src_cset,
2477 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2478 if (!dst_cset)
2479 goto err;
2480
2481 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2482
2483 /*
2484 * If src cset equals dst, it's noop. Drop the src.
2485 * cgroup_migrate() will skip the cset too. Note that we
2486 * can't handle src == dst as some nodes are used by both.
2487 */
2488 if (src_cset == dst_cset) {
2489 src_cset->mg_src_cgrp = NULL;
2490 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2491 put_css_set(src_cset);
2492 put_css_set(dst_cset);
f817de98
TH
2493 continue;
2494 }
2495
1958d2d5
TH
2496 src_cset->mg_dst_cset = dst_cset;
2497
2498 if (list_empty(&dst_cset->mg_preload_node))
2499 list_add(&dst_cset->mg_preload_node, &csets);
2500 else
a25eb52e 2501 put_css_set(dst_cset);
1958d2d5
TH
2502 }
2503
f817de98 2504 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2505 return 0;
2506err:
2507 cgroup_migrate_finish(&csets);
2508 return -ENOMEM;
2509}
2510
2511/**
2512 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2513 * @leader: the leader of the process or the task to migrate
2514 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2515 * @cgrp: the destination cgroup
1958d2d5
TH
2516 *
2517 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2518 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2519 * caller is also responsible for invoking cgroup_migrate_add_src() and
2520 * cgroup_migrate_prepare_dst() on the targets before invoking this
2521 * function and following up with cgroup_migrate_finish().
2522 *
2523 * As long as a controller's ->can_attach() doesn't fail, this function is
2524 * guaranteed to succeed. This means that, excluding ->can_attach()
2525 * failure, when migrating multiple targets, the success or failure can be
2526 * decided for all targets by invoking group_migrate_prepare_dst() before
2527 * actually starting migrating.
2528 */
9af2ec45
TH
2529static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2530 struct cgroup *cgrp)
74a1166d 2531{
adaae5dc
TH
2532 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2533 struct task_struct *task;
74a1166d 2534
fb5d2b4c
MSB
2535 /*
2536 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2537 * already PF_EXITING could be freed from underneath us unless we
2538 * take an rcu_read_lock.
2539 */
b3dc094e 2540 down_write(&css_set_rwsem);
fb5d2b4c 2541 rcu_read_lock();
9db8de37 2542 task = leader;
74a1166d 2543 do {
adaae5dc 2544 cgroup_taskset_add(task, &tset);
081aa458
LZ
2545 if (!threadgroup)
2546 break;
9db8de37 2547 } while_each_thread(leader, task);
fb5d2b4c 2548 rcu_read_unlock();
b3dc094e 2549 up_write(&css_set_rwsem);
74a1166d 2550
adaae5dc 2551 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2552}
2553
1958d2d5
TH
2554/**
2555 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2556 * @dst_cgrp: the cgroup to attach to
2557 * @leader: the task or the leader of the threadgroup to be attached
2558 * @threadgroup: attach the whole threadgroup?
2559 *
1ed13287 2560 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2561 */
2562static int cgroup_attach_task(struct cgroup *dst_cgrp,
2563 struct task_struct *leader, bool threadgroup)
2564{
2565 LIST_HEAD(preloaded_csets);
2566 struct task_struct *task;
2567 int ret;
2568
2569 /* look up all src csets */
2570 down_read(&css_set_rwsem);
2571 rcu_read_lock();
2572 task = leader;
2573 do {
2574 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2575 &preloaded_csets);
2576 if (!threadgroup)
2577 break;
2578 } while_each_thread(leader, task);
2579 rcu_read_unlock();
2580 up_read(&css_set_rwsem);
2581
2582 /* prepare dst csets and commit */
2583 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2584 if (!ret)
9af2ec45 2585 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2586
2587 cgroup_migrate_finish(&preloaded_csets);
2588 return ret;
74a1166d
BB
2589}
2590
187fe840
TH
2591static int cgroup_procs_write_permission(struct task_struct *task,
2592 struct cgroup *dst_cgrp,
2593 struct kernfs_open_file *of)
dedf22e9
TH
2594{
2595 const struct cred *cred = current_cred();
2596 const struct cred *tcred = get_task_cred(task);
2597 int ret = 0;
2598
2599 /*
2600 * even if we're attaching all tasks in the thread group, we only
2601 * need to check permissions on one of them.
2602 */
2603 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2604 !uid_eq(cred->euid, tcred->uid) &&
2605 !uid_eq(cred->euid, tcred->suid))
2606 ret = -EACCES;
2607
187fe840
TH
2608 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2609 struct super_block *sb = of->file->f_path.dentry->d_sb;
2610 struct cgroup *cgrp;
2611 struct inode *inode;
2612
2613 down_read(&css_set_rwsem);
2614 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2615 up_read(&css_set_rwsem);
2616
2617 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2618 cgrp = cgroup_parent(cgrp);
2619
2620 ret = -ENOMEM;
6f60eade 2621 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2622 if (inode) {
2623 ret = inode_permission(inode, MAY_WRITE);
2624 iput(inode);
2625 }
2626 }
2627
dedf22e9
TH
2628 put_cred(tcred);
2629 return ret;
2630}
2631
74a1166d
BB
2632/*
2633 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2634 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2635 * cgroup_mutex and threadgroup.
bbcb81d0 2636 */
acbef755
TH
2637static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2638 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2639{
bbcb81d0 2640 struct task_struct *tsk;
e76ecaee 2641 struct cgroup *cgrp;
acbef755 2642 pid_t pid;
bbcb81d0
PM
2643 int ret;
2644
acbef755
TH
2645 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2646 return -EINVAL;
2647
e76ecaee
TH
2648 cgrp = cgroup_kn_lock_live(of->kn);
2649 if (!cgrp)
74a1166d
BB
2650 return -ENODEV;
2651
3014dde7 2652 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2653 rcu_read_lock();
bbcb81d0 2654 if (pid) {
73507f33 2655 tsk = find_task_by_vpid(pid);
74a1166d 2656 if (!tsk) {
dd4b0a46 2657 ret = -ESRCH;
3014dde7 2658 goto out_unlock_rcu;
bbcb81d0 2659 }
dedf22e9 2660 } else {
b78949eb 2661 tsk = current;
dedf22e9 2662 }
cd3d0952
TH
2663
2664 if (threadgroup)
b78949eb 2665 tsk = tsk->group_leader;
c4c27fbd
MG
2666
2667 /*
14a40ffc 2668 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2669 * trapped in a cpuset, or RT worker may be born in a cgroup
2670 * with no rt_runtime allocated. Just say no.
2671 */
14a40ffc 2672 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2673 ret = -EINVAL;
3014dde7 2674 goto out_unlock_rcu;
c4c27fbd
MG
2675 }
2676
b78949eb
MSB
2677 get_task_struct(tsk);
2678 rcu_read_unlock();
2679
187fe840 2680 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2681 if (!ret)
2682 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2683
f9f9e7b7 2684 put_task_struct(tsk);
3014dde7
TH
2685 goto out_unlock_threadgroup;
2686
2687out_unlock_rcu:
2688 rcu_read_unlock();
2689out_unlock_threadgroup:
2690 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2691 cgroup_kn_unlock(of->kn);
acbef755 2692 return ret ?: nbytes;
bbcb81d0
PM
2693}
2694
7ae1bad9
TH
2695/**
2696 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2697 * @from: attach to all cgroups of a given task
2698 * @tsk: the task to be attached
2699 */
2700int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2701{
3dd06ffa 2702 struct cgroup_root *root;
7ae1bad9
TH
2703 int retval = 0;
2704
47cfcd09 2705 mutex_lock(&cgroup_mutex);
985ed670 2706 for_each_root(root) {
96d365e0
TH
2707 struct cgroup *from_cgrp;
2708
3dd06ffa 2709 if (root == &cgrp_dfl_root)
985ed670
TH
2710 continue;
2711
96d365e0
TH
2712 down_read(&css_set_rwsem);
2713 from_cgrp = task_cgroup_from_root(from, root);
2714 up_read(&css_set_rwsem);
7ae1bad9 2715
6f4b7e63 2716 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2717 if (retval)
2718 break;
2719 }
47cfcd09 2720 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2721
2722 return retval;
2723}
2724EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2725
acbef755
TH
2726static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2727 char *buf, size_t nbytes, loff_t off)
74a1166d 2728{
acbef755 2729 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2730}
2731
acbef755
TH
2732static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2733 char *buf, size_t nbytes, loff_t off)
af351026 2734{
acbef755 2735 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2736}
2737
451af504
TH
2738static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes, loff_t off)
e788e066 2740{
e76ecaee 2741 struct cgroup *cgrp;
5f469907 2742
e76ecaee 2743 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2744
e76ecaee
TH
2745 cgrp = cgroup_kn_lock_live(of->kn);
2746 if (!cgrp)
e788e066 2747 return -ENODEV;
69e943b7 2748 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2749 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2750 sizeof(cgrp->root->release_agent_path));
69e943b7 2751 spin_unlock(&release_agent_path_lock);
e76ecaee 2752 cgroup_kn_unlock(of->kn);
451af504 2753 return nbytes;
e788e066
PM
2754}
2755
2da8ca82 2756static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2757{
2da8ca82 2758 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2759
46cfeb04 2760 spin_lock(&release_agent_path_lock);
e788e066 2761 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2762 spin_unlock(&release_agent_path_lock);
e788e066 2763 seq_putc(seq, '\n');
e788e066
PM
2764 return 0;
2765}
2766
2da8ca82 2767static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2768{
c1d5d42e 2769 seq_puts(seq, "0\n");
e788e066
PM
2770 return 0;
2771}
2772
8ab456ac 2773static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2774{
f8f22e53
TH
2775 struct cgroup_subsys *ss;
2776 bool printed = false;
2777 int ssid;
a742c59d 2778
a966a4ed
AS
2779 for_each_subsys_which(ss, ssid, &ss_mask) {
2780 if (printed)
2781 seq_putc(seq, ' ');
2782 seq_printf(seq, "%s", ss->name);
2783 printed = true;
e73d2c61 2784 }
f8f22e53
TH
2785 if (printed)
2786 seq_putc(seq, '\n');
355e0c48
PM
2787}
2788
f8f22e53
TH
2789/* show controllers which are currently attached to the default hierarchy */
2790static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2791{
f8f22e53
TH
2792 struct cgroup *cgrp = seq_css(seq)->cgroup;
2793
5533e011
TH
2794 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2795 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2796 return 0;
db3b1497
PM
2797}
2798
f8f22e53
TH
2799/* show controllers which are enabled from the parent */
2800static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2801{
f8f22e53
TH
2802 struct cgroup *cgrp = seq_css(seq)->cgroup;
2803
667c2491 2804 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2805 return 0;
ddbcc7e8
PM
2806}
2807
f8f22e53
TH
2808/* show controllers which are enabled for a given cgroup's children */
2809static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2810{
f8f22e53
TH
2811 struct cgroup *cgrp = seq_css(seq)->cgroup;
2812
667c2491 2813 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2814 return 0;
2815}
2816
2817/**
2818 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2819 * @cgrp: root of the subtree to update csses for
2820 *
2821 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2822 * css associations need to be updated accordingly. This function looks up
2823 * all css_sets which are attached to the subtree, creates the matching
2824 * updated css_sets and migrates the tasks to the new ones.
2825 */
2826static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2827{
2828 LIST_HEAD(preloaded_csets);
10265075 2829 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2830 struct cgroup_subsys_state *css;
2831 struct css_set *src_cset;
2832 int ret;
2833
f8f22e53
TH
2834 lockdep_assert_held(&cgroup_mutex);
2835
3014dde7
TH
2836 percpu_down_write(&cgroup_threadgroup_rwsem);
2837
f8f22e53
TH
2838 /* look up all csses currently attached to @cgrp's subtree */
2839 down_read(&css_set_rwsem);
2840 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2841 struct cgrp_cset_link *link;
2842
2843 /* self is not affected by child_subsys_mask change */
2844 if (css->cgroup == cgrp)
2845 continue;
2846
2847 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2848 cgroup_migrate_add_src(link->cset, cgrp,
2849 &preloaded_csets);
2850 }
2851 up_read(&css_set_rwsem);
2852
2853 /* NULL dst indicates self on default hierarchy */
2854 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2855 if (ret)
2856 goto out_finish;
2857
10265075 2858 down_write(&css_set_rwsem);
f8f22e53 2859 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2860 struct task_struct *task, *ntask;
f8f22e53
TH
2861
2862 /* src_csets precede dst_csets, break on the first dst_cset */
2863 if (!src_cset->mg_src_cgrp)
2864 break;
2865
10265075
TH
2866 /* all tasks in src_csets need to be migrated */
2867 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2868 cgroup_taskset_add(task, &tset);
f8f22e53 2869 }
10265075 2870 up_write(&css_set_rwsem);
f8f22e53 2871
10265075 2872 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2873out_finish:
2874 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2875 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2876 return ret;
2877}
2878
2879/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2880static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2881 char *buf, size_t nbytes,
2882 loff_t off)
f8f22e53 2883{
8ab456ac
AS
2884 unsigned long enable = 0, disable = 0;
2885 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2886 struct cgroup *cgrp, *child;
f8f22e53 2887 struct cgroup_subsys *ss;
451af504 2888 char *tok;
f8f22e53
TH
2889 int ssid, ret;
2890
2891 /*
d37167ab
TH
2892 * Parse input - space separated list of subsystem names prefixed
2893 * with either + or -.
f8f22e53 2894 */
451af504
TH
2895 buf = strstrip(buf);
2896 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2897 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2898
d37167ab
TH
2899 if (tok[0] == '\0')
2900 continue;
a966a4ed 2901 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2902 if (!cgroup_ssid_enabled(ssid) ||
2903 strcmp(tok + 1, ss->name))
f8f22e53
TH
2904 continue;
2905
2906 if (*tok == '+') {
7d331fa9
TH
2907 enable |= 1 << ssid;
2908 disable &= ~(1 << ssid);
f8f22e53 2909 } else if (*tok == '-') {
7d331fa9
TH
2910 disable |= 1 << ssid;
2911 enable &= ~(1 << ssid);
f8f22e53
TH
2912 } else {
2913 return -EINVAL;
2914 }
2915 break;
2916 }
2917 if (ssid == CGROUP_SUBSYS_COUNT)
2918 return -EINVAL;
2919 }
2920
a9746d8d
TH
2921 cgrp = cgroup_kn_lock_live(of->kn);
2922 if (!cgrp)
2923 return -ENODEV;
f8f22e53
TH
2924
2925 for_each_subsys(ss, ssid) {
2926 if (enable & (1 << ssid)) {
667c2491 2927 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2928 enable &= ~(1 << ssid);
2929 continue;
2930 }
2931
c29adf24
TH
2932 /* unavailable or not enabled on the parent? */
2933 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2934 (cgroup_parent(cgrp) &&
667c2491 2935 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2936 ret = -ENOENT;
2937 goto out_unlock;
2938 }
f8f22e53 2939 } else if (disable & (1 << ssid)) {
667c2491 2940 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2941 disable &= ~(1 << ssid);
2942 continue;
2943 }
2944
2945 /* a child has it enabled? */
2946 cgroup_for_each_live_child(child, cgrp) {
667c2491 2947 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2948 ret = -EBUSY;
ddab2b6e 2949 goto out_unlock;
f8f22e53
TH
2950 }
2951 }
2952 }
2953 }
2954
2955 if (!enable && !disable) {
2956 ret = 0;
ddab2b6e 2957 goto out_unlock;
f8f22e53
TH
2958 }
2959
2960 /*
667c2491 2961 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2962 * with tasks so that child cgroups don't compete against tasks.
2963 */
d51f39b0 2964 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2965 ret = -EBUSY;
2966 goto out_unlock;
2967 }
2968
2969 /*
f63070d3
TH
2970 * Update subsys masks and calculate what needs to be done. More
2971 * subsystems than specified may need to be enabled or disabled
2972 * depending on subsystem dependencies.
2973 */
755bf5ee
TH
2974 old_sc = cgrp->subtree_control;
2975 old_ss = cgrp->child_subsys_mask;
2976 new_sc = (old_sc | enable) & ~disable;
2977 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2978
755bf5ee
TH
2979 css_enable = ~old_ss & new_ss;
2980 css_disable = old_ss & ~new_ss;
f63070d3
TH
2981 enable |= css_enable;
2982 disable |= css_disable;
c29adf24 2983
db6e3053
TH
2984 /*
2985 * Because css offlining is asynchronous, userland might try to
2986 * re-enable the same controller while the previous instance is
2987 * still around. In such cases, wait till it's gone using
2988 * offline_waitq.
2989 */
a966a4ed 2990 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2991 cgroup_for_each_live_child(child, cgrp) {
2992 DEFINE_WAIT(wait);
2993
2994 if (!cgroup_css(child, ss))
2995 continue;
2996
2997 cgroup_get(child);
2998 prepare_to_wait(&child->offline_waitq, &wait,
2999 TASK_UNINTERRUPTIBLE);
3000 cgroup_kn_unlock(of->kn);
3001 schedule();
3002 finish_wait(&child->offline_waitq, &wait);
3003 cgroup_put(child);
3004
3005 return restart_syscall();
3006 }
3007 }
3008
755bf5ee
TH
3009 cgrp->subtree_control = new_sc;
3010 cgrp->child_subsys_mask = new_ss;
3011
f63070d3
TH
3012 /*
3013 * Create new csses or make the existing ones visible. A css is
3014 * created invisible if it's being implicitly enabled through
3015 * dependency. An invisible css is made visible when the userland
3016 * explicitly enables it.
f8f22e53
TH
3017 */
3018 for_each_subsys(ss, ssid) {
3019 if (!(enable & (1 << ssid)))
3020 continue;
3021
3022 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3023 if (css_enable & (1 << ssid))
3024 ret = create_css(child, ss,
3025 cgrp->subtree_control & (1 << ssid));
3026 else
4df8dc90
TH
3027 ret = css_populate_dir(cgroup_css(child, ss),
3028 NULL);
f8f22e53
TH
3029 if (ret)
3030 goto err_undo_css;
3031 }
3032 }
3033
c29adf24
TH
3034 /*
3035 * At this point, cgroup_e_css() results reflect the new csses
3036 * making the following cgroup_update_dfl_csses() properly update
3037 * css associations of all tasks in the subtree.
3038 */
f8f22e53
TH
3039 ret = cgroup_update_dfl_csses(cgrp);
3040 if (ret)
3041 goto err_undo_css;
3042
f63070d3
TH
3043 /*
3044 * All tasks are migrated out of disabled csses. Kill or hide
3045 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3046 * disabled while other subsystems are still depending on it. The
3047 * css must not actively control resources and be in the vanilla
3048 * state if it's made visible again later. Controllers which may
3049 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3050 */
f8f22e53
TH
3051 for_each_subsys(ss, ssid) {
3052 if (!(disable & (1 << ssid)))
3053 continue;
3054
f63070d3 3055 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3056 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3057
3058 if (css_disable & (1 << ssid)) {
3059 kill_css(css);
3060 } else {
4df8dc90 3061 css_clear_dir(css, NULL);
b4536f0c
TH
3062 if (ss->css_reset)
3063 ss->css_reset(css);
3064 }
f63070d3 3065 }
f8f22e53
TH
3066 }
3067
56c807ba
TH
3068 /*
3069 * The effective csses of all the descendants (excluding @cgrp) may
3070 * have changed. Subsystems can optionally subscribe to this event
3071 * by implementing ->css_e_css_changed() which is invoked if any of
3072 * the effective csses seen from the css's cgroup may have changed.
3073 */
3074 for_each_subsys(ss, ssid) {
3075 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3076 struct cgroup_subsys_state *css;
3077
3078 if (!ss->css_e_css_changed || !this_css)
3079 continue;
3080
3081 css_for_each_descendant_pre(css, this_css)
3082 if (css != this_css)
3083 ss->css_e_css_changed(css);
3084 }
3085
f8f22e53
TH
3086 kernfs_activate(cgrp->kn);
3087 ret = 0;
3088out_unlock:
a9746d8d 3089 cgroup_kn_unlock(of->kn);
451af504 3090 return ret ?: nbytes;
f8f22e53
TH
3091
3092err_undo_css:
755bf5ee
TH
3093 cgrp->subtree_control = old_sc;
3094 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3095
3096 for_each_subsys(ss, ssid) {
3097 if (!(enable & (1 << ssid)))
3098 continue;
3099
3100 cgroup_for_each_live_child(child, cgrp) {
3101 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3102
3103 if (!css)
3104 continue;
3105
3106 if (css_enable & (1 << ssid))
f8f22e53 3107 kill_css(css);
f63070d3 3108 else
4df8dc90 3109 css_clear_dir(css, NULL);
f8f22e53
TH
3110 }
3111 }
3112 goto out_unlock;
3113}
3114
4a07c222 3115static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3116{
4a07c222 3117 seq_printf(seq, "populated %d\n",
27bd4dbb 3118 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3119 return 0;
3120}
3121
2bd59d48
TH
3122static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3123 size_t nbytes, loff_t off)
355e0c48 3124{
2bd59d48
TH
3125 struct cgroup *cgrp = of->kn->parent->priv;
3126 struct cftype *cft = of->kn->priv;
3127 struct cgroup_subsys_state *css;
a742c59d 3128 int ret;
355e0c48 3129
b4168640
TH
3130 if (cft->write)
3131 return cft->write(of, buf, nbytes, off);
3132
2bd59d48
TH
3133 /*
3134 * kernfs guarantees that a file isn't deleted with operations in
3135 * flight, which means that the matching css is and stays alive and
3136 * doesn't need to be pinned. The RCU locking is not necessary
3137 * either. It's just for the convenience of using cgroup_css().
3138 */
3139 rcu_read_lock();
3140 css = cgroup_css(cgrp, cft->ss);
3141 rcu_read_unlock();
a742c59d 3142
451af504 3143 if (cft->write_u64) {
a742c59d
TH
3144 unsigned long long v;
3145 ret = kstrtoull(buf, 0, &v);
3146 if (!ret)
3147 ret = cft->write_u64(css, cft, v);
3148 } else if (cft->write_s64) {
3149 long long v;
3150 ret = kstrtoll(buf, 0, &v);
3151 if (!ret)
3152 ret = cft->write_s64(css, cft, v);
e73d2c61 3153 } else {
a742c59d 3154 ret = -EINVAL;
e73d2c61 3155 }
2bd59d48 3156
a742c59d 3157 return ret ?: nbytes;
355e0c48
PM
3158}
3159
6612f05b 3160static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3161{
2bd59d48 3162 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3163}
3164
6612f05b 3165static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3166{
2bd59d48 3167 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3168}
3169
6612f05b 3170static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3171{
2bd59d48 3172 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3173}
3174
91796569 3175static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3176{
7da11279
TH
3177 struct cftype *cft = seq_cft(m);
3178 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3179
2da8ca82
TH
3180 if (cft->seq_show)
3181 return cft->seq_show(m, arg);
e73d2c61 3182
f4c753b7 3183 if (cft->read_u64)
896f5199
TH
3184 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3185 else if (cft->read_s64)
3186 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3187 else
3188 return -EINVAL;
3189 return 0;
91796569
PM
3190}
3191
2bd59d48
TH
3192static struct kernfs_ops cgroup_kf_single_ops = {
3193 .atomic_write_len = PAGE_SIZE,
3194 .write = cgroup_file_write,
3195 .seq_show = cgroup_seqfile_show,
91796569
PM
3196};
3197
2bd59d48
TH
3198static struct kernfs_ops cgroup_kf_ops = {
3199 .atomic_write_len = PAGE_SIZE,
3200 .write = cgroup_file_write,
3201 .seq_start = cgroup_seqfile_start,
3202 .seq_next = cgroup_seqfile_next,
3203 .seq_stop = cgroup_seqfile_stop,
3204 .seq_show = cgroup_seqfile_show,
3205};
ddbcc7e8
PM
3206
3207/*
3208 * cgroup_rename - Only allow simple rename of directories in place.
3209 */
2bd59d48
TH
3210static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3211 const char *new_name_str)
ddbcc7e8 3212{
2bd59d48 3213 struct cgroup *cgrp = kn->priv;
65dff759 3214 int ret;
65dff759 3215
2bd59d48 3216 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3217 return -ENOTDIR;
2bd59d48 3218 if (kn->parent != new_parent)
ddbcc7e8 3219 return -EIO;
65dff759 3220
6db8e85c
TH
3221 /*
3222 * This isn't a proper migration and its usefulness is very
aa6ec29b 3223 * limited. Disallow on the default hierarchy.
6db8e85c 3224 */
aa6ec29b 3225 if (cgroup_on_dfl(cgrp))
6db8e85c 3226 return -EPERM;
099fca32 3227
e1b2dc17 3228 /*
8353da1f 3229 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3230 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3231 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3232 */
3233 kernfs_break_active_protection(new_parent);
3234 kernfs_break_active_protection(kn);
099fca32 3235
2bd59d48 3236 mutex_lock(&cgroup_mutex);
099fca32 3237
2bd59d48 3238 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3239
2bd59d48 3240 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3241
3242 kernfs_unbreak_active_protection(kn);
3243 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3244 return ret;
099fca32
LZ
3245}
3246
49957f8e
TH
3247/* set uid and gid of cgroup dirs and files to that of the creator */
3248static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3249{
3250 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3251 .ia_uid = current_fsuid(),
3252 .ia_gid = current_fsgid(), };
3253
3254 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3255 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3256 return 0;
3257
3258 return kernfs_setattr(kn, &iattr);
3259}
3260
4df8dc90
TH
3261static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3262 struct cftype *cft)
ddbcc7e8 3263{
8d7e6fb0 3264 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3265 struct kernfs_node *kn;
3266 struct lock_class_key *key = NULL;
49957f8e 3267 int ret;
05ef1d7c 3268
2bd59d48
TH
3269#ifdef CONFIG_DEBUG_LOCK_ALLOC
3270 key = &cft->lockdep_key;
3271#endif
3272 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3273 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3274 NULL, key);
49957f8e
TH
3275 if (IS_ERR(kn))
3276 return PTR_ERR(kn);
3277
3278 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3279 if (ret) {
49957f8e 3280 kernfs_remove(kn);
f8f22e53
TH
3281 return ret;
3282 }
3283
6f60eade
TH
3284 if (cft->file_offset) {
3285 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3286
3287 kernfs_get(kn);
3288 cfile->kn = kn;
3289 list_add(&cfile->node, &css->files);
3290 }
3291
f8f22e53 3292 return 0;
ddbcc7e8
PM
3293}
3294
b1f28d31
TH
3295/**
3296 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3297 * @css: the target css
3298 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3299 * @cfts: array of cftypes to be added
3300 * @is_add: whether to add or remove
3301 *
3302 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3303 * For removals, this function never fails.
b1f28d31 3304 */
4df8dc90
TH
3305static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3306 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3307 bool is_add)
ddbcc7e8 3308{
6732ed85 3309 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3310 int ret;
3311
01f6474c 3312 lockdep_assert_held(&cgroup_mutex);
db0416b6 3313
6732ed85
TH
3314restart:
3315 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3316 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3317 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3318 continue;
05ebb6e6 3319 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3320 continue;
d51f39b0 3321 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3322 continue;
d51f39b0 3323 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3324 continue;
3325
2739d3cc 3326 if (is_add) {
4df8dc90 3327 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3328 if (ret) {
ed3d261b
JP
3329 pr_warn("%s: failed to add %s, err=%d\n",
3330 __func__, cft->name, ret);
6732ed85
TH
3331 cft_end = cft;
3332 is_add = false;
3333 goto restart;
b1f28d31 3334 }
2739d3cc
LZ
3335 } else {
3336 cgroup_rm_file(cgrp, cft);
db0416b6 3337 }
ddbcc7e8 3338 }
b1f28d31 3339 return 0;
ddbcc7e8
PM
3340}
3341
21a2d343 3342static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3343{
3344 LIST_HEAD(pending);
2bb566cb 3345 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3346 struct cgroup *root = &ss->root->cgrp;
492eb21b 3347 struct cgroup_subsys_state *css;
9ccece80 3348 int ret = 0;
8e3f6541 3349
01f6474c 3350 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3351
e8c82d20 3352 /* add/rm files for all cgroups created before */
ca8bdcaf 3353 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3354 struct cgroup *cgrp = css->cgroup;
3355
e8c82d20
LZ
3356 if (cgroup_is_dead(cgrp))
3357 continue;
3358
4df8dc90 3359 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3360 if (ret)
3361 break;
8e3f6541 3362 }
21a2d343
TH
3363
3364 if (is_add && !ret)
3365 kernfs_activate(root->kn);
9ccece80 3366 return ret;
8e3f6541
TH
3367}
3368
2da440a2 3369static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3370{
2bb566cb 3371 struct cftype *cft;
8e3f6541 3372
2bd59d48
TH
3373 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3374 /* free copy for custom atomic_write_len, see init_cftypes() */
3375 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3376 kfree(cft->kf_ops);
3377 cft->kf_ops = NULL;
2da440a2 3378 cft->ss = NULL;
a8ddc821
TH
3379
3380 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3381 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3382 }
2da440a2
TH
3383}
3384
2bd59d48 3385static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3386{
3387 struct cftype *cft;
3388
2bd59d48
TH
3389 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3390 struct kernfs_ops *kf_ops;
3391
0adb0704
TH
3392 WARN_ON(cft->ss || cft->kf_ops);
3393
2bd59d48
TH
3394 if (cft->seq_start)
3395 kf_ops = &cgroup_kf_ops;
3396 else
3397 kf_ops = &cgroup_kf_single_ops;
3398
3399 /*
3400 * Ugh... if @cft wants a custom max_write_len, we need to
3401 * make a copy of kf_ops to set its atomic_write_len.
3402 */
3403 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3404 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3405 if (!kf_ops) {
3406 cgroup_exit_cftypes(cfts);
3407 return -ENOMEM;
3408 }
3409 kf_ops->atomic_write_len = cft->max_write_len;
3410 }
8e3f6541 3411
2bd59d48 3412 cft->kf_ops = kf_ops;
2bb566cb 3413 cft->ss = ss;
2bd59d48 3414 }
2bb566cb 3415
2bd59d48 3416 return 0;
2da440a2
TH
3417}
3418
21a2d343
TH
3419static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3420{
01f6474c 3421 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3422
3423 if (!cfts || !cfts[0].ss)
3424 return -ENOENT;
3425
3426 list_del(&cfts->node);
3427 cgroup_apply_cftypes(cfts, false);
3428 cgroup_exit_cftypes(cfts);
3429 return 0;
8e3f6541 3430}
8e3f6541 3431
79578621
TH
3432/**
3433 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3434 * @cfts: zero-length name terminated array of cftypes
3435 *
2bb566cb
TH
3436 * Unregister @cfts. Files described by @cfts are removed from all
3437 * existing cgroups and all future cgroups won't have them either. This
3438 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3439 *
3440 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3441 * registered.
79578621 3442 */
2bb566cb 3443int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3444{
21a2d343 3445 int ret;
79578621 3446
01f6474c 3447 mutex_lock(&cgroup_mutex);
21a2d343 3448 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3449 mutex_unlock(&cgroup_mutex);
21a2d343 3450 return ret;
80b13586
TH
3451}
3452
8e3f6541
TH
3453/**
3454 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3455 * @ss: target cgroup subsystem
3456 * @cfts: zero-length name terminated array of cftypes
3457 *
3458 * Register @cfts to @ss. Files described by @cfts are created for all
3459 * existing cgroups to which @ss is attached and all future cgroups will
3460 * have them too. This function can be called anytime whether @ss is
3461 * attached or not.
3462 *
3463 * Returns 0 on successful registration, -errno on failure. Note that this
3464 * function currently returns 0 as long as @cfts registration is successful
3465 * even if some file creation attempts on existing cgroups fail.
3466 */
2cf669a5 3467static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3468{
9ccece80 3469 int ret;
8e3f6541 3470
fc5ed1e9 3471 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3472 return 0;
3473
dc5736ed
LZ
3474 if (!cfts || cfts[0].name[0] == '\0')
3475 return 0;
2bb566cb 3476
2bd59d48
TH
3477 ret = cgroup_init_cftypes(ss, cfts);
3478 if (ret)
3479 return ret;
79578621 3480
01f6474c 3481 mutex_lock(&cgroup_mutex);
21a2d343 3482
0adb0704 3483 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3484 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3485 if (ret)
21a2d343 3486 cgroup_rm_cftypes_locked(cfts);
79578621 3487
01f6474c 3488 mutex_unlock(&cgroup_mutex);
9ccece80 3489 return ret;
79578621
TH
3490}
3491
a8ddc821
TH
3492/**
3493 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3494 * @ss: target cgroup subsystem
3495 * @cfts: zero-length name terminated array of cftypes
3496 *
3497 * Similar to cgroup_add_cftypes() but the added files are only used for
3498 * the default hierarchy.
3499 */
3500int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3501{
3502 struct cftype *cft;
3503
3504 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3505 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3506 return cgroup_add_cftypes(ss, cfts);
3507}
3508
3509/**
3510 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3511 * @ss: target cgroup subsystem
3512 * @cfts: zero-length name terminated array of cftypes
3513 *
3514 * Similar to cgroup_add_cftypes() but the added files are only used for
3515 * the legacy hierarchies.
3516 */
2cf669a5
TH
3517int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3518{
a8ddc821
TH
3519 struct cftype *cft;
3520
fa8137be
VG
3521 /*
3522 * If legacy_flies_on_dfl, we want to show the legacy files on the
3523 * dfl hierarchy but iff the target subsystem hasn't been updated
3524 * for the dfl hierarchy yet.
3525 */
3526 if (!cgroup_legacy_files_on_dfl ||
3527 ss->dfl_cftypes != ss->legacy_cftypes) {
3528 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3529 cft->flags |= __CFTYPE_NOT_ON_DFL;
3530 }
3531
2cf669a5
TH
3532 return cgroup_add_cftypes(ss, cfts);
3533}
3534
a043e3b2
LZ
3535/**
3536 * cgroup_task_count - count the number of tasks in a cgroup.
3537 * @cgrp: the cgroup in question
3538 *
3539 * Return the number of tasks in the cgroup.
3540 */
07bc356e 3541static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3542{
3543 int count = 0;
69d0206c 3544 struct cgrp_cset_link *link;
817929ec 3545
96d365e0 3546 down_read(&css_set_rwsem);
69d0206c
TH
3547 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3548 count += atomic_read(&link->cset->refcount);
96d365e0 3549 up_read(&css_set_rwsem);
bbcb81d0
PM
3550 return count;
3551}
3552
53fa5261 3553/**
492eb21b 3554 * css_next_child - find the next child of a given css
c2931b70
TH
3555 * @pos: the current position (%NULL to initiate traversal)
3556 * @parent: css whose children to walk
53fa5261 3557 *
c2931b70 3558 * This function returns the next child of @parent and should be called
87fb54f1 3559 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3560 * that @parent and @pos are accessible. The next sibling is guaranteed to
3561 * be returned regardless of their states.
3562 *
3563 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3564 * css which finished ->css_online() is guaranteed to be visible in the
3565 * future iterations and will stay visible until the last reference is put.
3566 * A css which hasn't finished ->css_online() or already finished
3567 * ->css_offline() may show up during traversal. It's each subsystem's
3568 * responsibility to synchronize against on/offlining.
53fa5261 3569 */
c2931b70
TH
3570struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3571 struct cgroup_subsys_state *parent)
53fa5261 3572{
c2931b70 3573 struct cgroup_subsys_state *next;
53fa5261 3574
8353da1f 3575 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3576
3577 /*
de3f0341
TH
3578 * @pos could already have been unlinked from the sibling list.
3579 * Once a cgroup is removed, its ->sibling.next is no longer
3580 * updated when its next sibling changes. CSS_RELEASED is set when
3581 * @pos is taken off list, at which time its next pointer is valid,
3582 * and, as releases are serialized, the one pointed to by the next
3583 * pointer is guaranteed to not have started release yet. This
3584 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3585 * critical section, the one pointed to by its next pointer is
3586 * guaranteed to not have finished its RCU grace period even if we
3587 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3588 *
de3f0341
TH
3589 * If @pos has CSS_RELEASED set, its next pointer can't be
3590 * dereferenced; however, as each css is given a monotonically
3591 * increasing unique serial number and always appended to the
3592 * sibling list, the next one can be found by walking the parent's
3593 * children until the first css with higher serial number than
3594 * @pos's. While this path can be slower, it happens iff iteration
3595 * races against release and the race window is very small.
53fa5261 3596 */
3b287a50 3597 if (!pos) {
c2931b70
TH
3598 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3599 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3600 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3601 } else {
c2931b70 3602 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3603 if (next->serial_nr > pos->serial_nr)
3604 break;
53fa5261
TH
3605 }
3606
3b281afb
TH
3607 /*
3608 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3609 * the next sibling.
3b281afb 3610 */
c2931b70
TH
3611 if (&next->sibling != &parent->children)
3612 return next;
3b281afb 3613 return NULL;
53fa5261 3614}
53fa5261 3615
574bd9f7 3616/**
492eb21b 3617 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3618 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3619 * @root: css whose descendants to walk
574bd9f7 3620 *
492eb21b 3621 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3622 * to visit for pre-order traversal of @root's descendants. @root is
3623 * included in the iteration and the first node to be visited.
75501a6d 3624 *
87fb54f1
TH
3625 * While this function requires cgroup_mutex or RCU read locking, it
3626 * doesn't require the whole traversal to be contained in a single critical
3627 * section. This function will return the correct next descendant as long
3628 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3629 *
3630 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3631 * css which finished ->css_online() is guaranteed to be visible in the
3632 * future iterations and will stay visible until the last reference is put.
3633 * A css which hasn't finished ->css_online() or already finished
3634 * ->css_offline() may show up during traversal. It's each subsystem's
3635 * responsibility to synchronize against on/offlining.
574bd9f7 3636 */
492eb21b
TH
3637struct cgroup_subsys_state *
3638css_next_descendant_pre(struct cgroup_subsys_state *pos,
3639 struct cgroup_subsys_state *root)
574bd9f7 3640{
492eb21b 3641 struct cgroup_subsys_state *next;
574bd9f7 3642
8353da1f 3643 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3644
bd8815a6 3645 /* if first iteration, visit @root */
7805d000 3646 if (!pos)
bd8815a6 3647 return root;
574bd9f7
TH
3648
3649 /* visit the first child if exists */
492eb21b 3650 next = css_next_child(NULL, pos);
574bd9f7
TH
3651 if (next)
3652 return next;
3653
3654 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3655 while (pos != root) {
5c9d535b 3656 next = css_next_child(pos, pos->parent);
75501a6d 3657 if (next)
574bd9f7 3658 return next;
5c9d535b 3659 pos = pos->parent;
7805d000 3660 }
574bd9f7
TH
3661
3662 return NULL;
3663}
574bd9f7 3664
12a9d2fe 3665/**
492eb21b
TH
3666 * css_rightmost_descendant - return the rightmost descendant of a css
3667 * @pos: css of interest
12a9d2fe 3668 *
492eb21b
TH
3669 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3670 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3671 * subtree of @pos.
75501a6d 3672 *
87fb54f1
TH
3673 * While this function requires cgroup_mutex or RCU read locking, it
3674 * doesn't require the whole traversal to be contained in a single critical
3675 * section. This function will return the correct rightmost descendant as
3676 * long as @pos is accessible.
12a9d2fe 3677 */
492eb21b
TH
3678struct cgroup_subsys_state *
3679css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3680{
492eb21b 3681 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3682
8353da1f 3683 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3684
3685 do {
3686 last = pos;
3687 /* ->prev isn't RCU safe, walk ->next till the end */
3688 pos = NULL;
492eb21b 3689 css_for_each_child(tmp, last)
12a9d2fe
TH
3690 pos = tmp;
3691 } while (pos);
3692
3693 return last;
3694}
12a9d2fe 3695
492eb21b
TH
3696static struct cgroup_subsys_state *
3697css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3698{
492eb21b 3699 struct cgroup_subsys_state *last;
574bd9f7
TH
3700
3701 do {
3702 last = pos;
492eb21b 3703 pos = css_next_child(NULL, pos);
574bd9f7
TH
3704 } while (pos);
3705
3706 return last;
3707}
3708
3709/**
492eb21b 3710 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3711 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3712 * @root: css whose descendants to walk
574bd9f7 3713 *
492eb21b 3714 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3715 * to visit for post-order traversal of @root's descendants. @root is
3716 * included in the iteration and the last node to be visited.
75501a6d 3717 *
87fb54f1
TH
3718 * While this function requires cgroup_mutex or RCU read locking, it
3719 * doesn't require the whole traversal to be contained in a single critical
3720 * section. This function will return the correct next descendant as long
3721 * as both @pos and @cgroup are accessible and @pos is a descendant of
3722 * @cgroup.
c2931b70
TH
3723 *
3724 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3725 * css which finished ->css_online() is guaranteed to be visible in the
3726 * future iterations and will stay visible until the last reference is put.
3727 * A css which hasn't finished ->css_online() or already finished
3728 * ->css_offline() may show up during traversal. It's each subsystem's
3729 * responsibility to synchronize against on/offlining.
574bd9f7 3730 */
492eb21b
TH
3731struct cgroup_subsys_state *
3732css_next_descendant_post(struct cgroup_subsys_state *pos,
3733 struct cgroup_subsys_state *root)
574bd9f7 3734{
492eb21b 3735 struct cgroup_subsys_state *next;
574bd9f7 3736
8353da1f 3737 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3738
58b79a91
TH
3739 /* if first iteration, visit leftmost descendant which may be @root */
3740 if (!pos)
3741 return css_leftmost_descendant(root);
574bd9f7 3742
bd8815a6
TH
3743 /* if we visited @root, we're done */
3744 if (pos == root)
3745 return NULL;
3746
574bd9f7 3747 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3748 next = css_next_child(pos, pos->parent);
75501a6d 3749 if (next)
492eb21b 3750 return css_leftmost_descendant(next);
574bd9f7
TH
3751
3752 /* no sibling left, visit parent */
5c9d535b 3753 return pos->parent;
574bd9f7 3754}
574bd9f7 3755
f3d46500
TH
3756/**
3757 * css_has_online_children - does a css have online children
3758 * @css: the target css
3759 *
3760 * Returns %true if @css has any online children; otherwise, %false. This
3761 * function can be called from any context but the caller is responsible
3762 * for synchronizing against on/offlining as necessary.
3763 */
3764bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3765{
f3d46500
TH
3766 struct cgroup_subsys_state *child;
3767 bool ret = false;
cbc125ef
TH
3768
3769 rcu_read_lock();
f3d46500 3770 css_for_each_child(child, css) {
99bae5f9 3771 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3772 ret = true;
3773 break;
cbc125ef
TH
3774 }
3775 }
3776 rcu_read_unlock();
f3d46500 3777 return ret;
574bd9f7 3778}
574bd9f7 3779
0942eeee 3780/**
72ec7029 3781 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3782 * @it: the iterator to advance
3783 *
3784 * Advance @it to the next css_set to walk.
d515876e 3785 */
72ec7029 3786static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3787{
0f0a2b4f 3788 struct list_head *l = it->cset_pos;
d515876e
TH
3789 struct cgrp_cset_link *link;
3790 struct css_set *cset;
3791
3792 /* Advance to the next non-empty css_set */
3793 do {
3794 l = l->next;
0f0a2b4f
TH
3795 if (l == it->cset_head) {
3796 it->cset_pos = NULL;
d515876e
TH
3797 return;
3798 }
3ebb2b6e
TH
3799
3800 if (it->ss) {
3801 cset = container_of(l, struct css_set,
3802 e_cset_node[it->ss->id]);
3803 } else {
3804 link = list_entry(l, struct cgrp_cset_link, cset_link);
3805 cset = link->cset;
3806 }
0de0942d 3807 } while (!css_set_populated(cset));
c7561128 3808
0f0a2b4f 3809 it->cset_pos = l;
c7561128
TH
3810
3811 if (!list_empty(&cset->tasks))
0f0a2b4f 3812 it->task_pos = cset->tasks.next;
c7561128 3813 else
0f0a2b4f
TH
3814 it->task_pos = cset->mg_tasks.next;
3815
3816 it->tasks_head = &cset->tasks;
3817 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3818}
3819
0942eeee 3820/**
72ec7029
TH
3821 * css_task_iter_start - initiate task iteration
3822 * @css: the css to walk tasks of
0942eeee
TH
3823 * @it: the task iterator to use
3824 *
72ec7029
TH
3825 * Initiate iteration through the tasks of @css. The caller can call
3826 * css_task_iter_next() to walk through the tasks until the function
3827 * returns NULL. On completion of iteration, css_task_iter_end() must be
3828 * called.
0942eeee
TH
3829 *
3830 * Note that this function acquires a lock which is released when the
3831 * iteration finishes. The caller can't sleep while iteration is in
3832 * progress.
3833 */
72ec7029
TH
3834void css_task_iter_start(struct cgroup_subsys_state *css,
3835 struct css_task_iter *it)
96d365e0 3836 __acquires(css_set_rwsem)
817929ec 3837{
56fde9e0
TH
3838 /* no one should try to iterate before mounting cgroups */
3839 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3840
96d365e0 3841 down_read(&css_set_rwsem);
c59cd3d8 3842
3ebb2b6e
TH
3843 it->ss = css->ss;
3844
3845 if (it->ss)
3846 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3847 else
3848 it->cset_pos = &css->cgroup->cset_links;
3849
0f0a2b4f 3850 it->cset_head = it->cset_pos;
c59cd3d8 3851
72ec7029 3852 css_advance_task_iter(it);
817929ec
PM
3853}
3854
0942eeee 3855/**
72ec7029 3856 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3857 * @it: the task iterator being iterated
3858 *
3859 * The "next" function for task iteration. @it should have been
72ec7029
TH
3860 * initialized via css_task_iter_start(). Returns NULL when the iteration
3861 * reaches the end.
0942eeee 3862 */
72ec7029 3863struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3864{
3865 struct task_struct *res;
0f0a2b4f 3866 struct list_head *l = it->task_pos;
817929ec
PM
3867
3868 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3869 if (!it->cset_pos)
817929ec
PM
3870 return NULL;
3871 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3872
3873 /*
3874 * Advance iterator to find next entry. cset->tasks is consumed
3875 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3876 * next cset.
3877 */
817929ec 3878 l = l->next;
c7561128 3879
0f0a2b4f
TH
3880 if (l == it->tasks_head)
3881 l = it->mg_tasks_head->next;
c7561128 3882
0f0a2b4f 3883 if (l == it->mg_tasks_head)
72ec7029 3884 css_advance_task_iter(it);
c7561128 3885 else
0f0a2b4f 3886 it->task_pos = l;
c7561128 3887
817929ec
PM
3888 return res;
3889}
3890
0942eeee 3891/**
72ec7029 3892 * css_task_iter_end - finish task iteration
0942eeee
TH
3893 * @it: the task iterator to finish
3894 *
72ec7029 3895 * Finish task iteration started by css_task_iter_start().
0942eeee 3896 */
72ec7029 3897void css_task_iter_end(struct css_task_iter *it)
96d365e0 3898 __releases(css_set_rwsem)
31a7df01 3899{
96d365e0 3900 up_read(&css_set_rwsem);
31a7df01
CW
3901}
3902
3903/**
8cc99345
TH
3904 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3905 * @to: cgroup to which the tasks will be moved
3906 * @from: cgroup in which the tasks currently reside
31a7df01 3907 *
eaf797ab
TH
3908 * Locking rules between cgroup_post_fork() and the migration path
3909 * guarantee that, if a task is forking while being migrated, the new child
3910 * is guaranteed to be either visible in the source cgroup after the
3911 * parent's migration is complete or put into the target cgroup. No task
3912 * can slip out of migration through forking.
31a7df01 3913 */
8cc99345 3914int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3915{
952aaa12
TH
3916 LIST_HEAD(preloaded_csets);
3917 struct cgrp_cset_link *link;
72ec7029 3918 struct css_task_iter it;
e406d1cf 3919 struct task_struct *task;
952aaa12 3920 int ret;
31a7df01 3921
952aaa12 3922 mutex_lock(&cgroup_mutex);
31a7df01 3923
952aaa12
TH
3924 /* all tasks in @from are being moved, all csets are source */
3925 down_read(&css_set_rwsem);
3926 list_for_each_entry(link, &from->cset_links, cset_link)
3927 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3928 up_read(&css_set_rwsem);
31a7df01 3929
952aaa12
TH
3930 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3931 if (ret)
3932 goto out_err;
8cc99345 3933
952aaa12
TH
3934 /*
3935 * Migrate tasks one-by-one until @form is empty. This fails iff
3936 * ->can_attach() fails.
3937 */
e406d1cf 3938 do {
9d800df1 3939 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3940 task = css_task_iter_next(&it);
3941 if (task)
3942 get_task_struct(task);
3943 css_task_iter_end(&it);
3944
3945 if (task) {
9af2ec45 3946 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3947 put_task_struct(task);
3948 }
3949 } while (task && !ret);
952aaa12
TH
3950out_err:
3951 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3952 mutex_unlock(&cgroup_mutex);
e406d1cf 3953 return ret;
8cc99345
TH
3954}
3955
bbcb81d0 3956/*
102a775e 3957 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3958 *
3959 * Reading this file can return large amounts of data if a cgroup has
3960 * *lots* of attached tasks. So it may need several calls to read(),
3961 * but we cannot guarantee that the information we produce is correct
3962 * unless we produce it entirely atomically.
3963 *
bbcb81d0 3964 */
bbcb81d0 3965
24528255
LZ
3966/* which pidlist file are we talking about? */
3967enum cgroup_filetype {
3968 CGROUP_FILE_PROCS,
3969 CGROUP_FILE_TASKS,
3970};
3971
3972/*
3973 * A pidlist is a list of pids that virtually represents the contents of one
3974 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3975 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3976 * to the cgroup.
3977 */
3978struct cgroup_pidlist {
3979 /*
3980 * used to find which pidlist is wanted. doesn't change as long as
3981 * this particular list stays in the list.
3982 */
3983 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3984 /* array of xids */
3985 pid_t *list;
3986 /* how many elements the above list has */
3987 int length;
24528255
LZ
3988 /* each of these stored in a list by its cgroup */
3989 struct list_head links;
3990 /* pointer to the cgroup we belong to, for list removal purposes */
3991 struct cgroup *owner;
b1a21367
TH
3992 /* for delayed destruction */
3993 struct delayed_work destroy_dwork;
24528255
LZ
3994};
3995
d1d9fd33
BB
3996/*
3997 * The following two functions "fix" the issue where there are more pids
3998 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3999 * TODO: replace with a kernel-wide solution to this problem
4000 */
4001#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4002static void *pidlist_allocate(int count)
4003{
4004 if (PIDLIST_TOO_LARGE(count))
4005 return vmalloc(count * sizeof(pid_t));
4006 else
4007 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4008}
b1a21367 4009
d1d9fd33
BB
4010static void pidlist_free(void *p)
4011{
58794514 4012 kvfree(p);
d1d9fd33 4013}
d1d9fd33 4014
b1a21367
TH
4015/*
4016 * Used to destroy all pidlists lingering waiting for destroy timer. None
4017 * should be left afterwards.
4018 */
4019static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4020{
4021 struct cgroup_pidlist *l, *tmp_l;
4022
4023 mutex_lock(&cgrp->pidlist_mutex);
4024 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4025 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4026 mutex_unlock(&cgrp->pidlist_mutex);
4027
4028 flush_workqueue(cgroup_pidlist_destroy_wq);
4029 BUG_ON(!list_empty(&cgrp->pidlists));
4030}
4031
4032static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4033{
4034 struct delayed_work *dwork = to_delayed_work(work);
4035 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4036 destroy_dwork);
4037 struct cgroup_pidlist *tofree = NULL;
4038
4039 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4040
4041 /*
04502365
TH
4042 * Destroy iff we didn't get queued again. The state won't change
4043 * as destroy_dwork can only be queued while locked.
b1a21367 4044 */
04502365 4045 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4046 list_del(&l->links);
4047 pidlist_free(l->list);
4048 put_pid_ns(l->key.ns);
4049 tofree = l;
4050 }
4051
b1a21367
TH
4052 mutex_unlock(&l->owner->pidlist_mutex);
4053 kfree(tofree);
4054}
4055
bbcb81d0 4056/*
102a775e 4057 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4058 * Returns the number of unique elements.
bbcb81d0 4059 */
6ee211ad 4060static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4061{
102a775e 4062 int src, dest = 1;
102a775e
BB
4063
4064 /*
4065 * we presume the 0th element is unique, so i starts at 1. trivial
4066 * edge cases first; no work needs to be done for either
4067 */
4068 if (length == 0 || length == 1)
4069 return length;
4070 /* src and dest walk down the list; dest counts unique elements */
4071 for (src = 1; src < length; src++) {
4072 /* find next unique element */
4073 while (list[src] == list[src-1]) {
4074 src++;
4075 if (src == length)
4076 goto after;
4077 }
4078 /* dest always points to where the next unique element goes */
4079 list[dest] = list[src];
4080 dest++;
4081 }
4082after:
102a775e
BB
4083 return dest;
4084}
4085
afb2bc14
TH
4086/*
4087 * The two pid files - task and cgroup.procs - guaranteed that the result
4088 * is sorted, which forced this whole pidlist fiasco. As pid order is
4089 * different per namespace, each namespace needs differently sorted list,
4090 * making it impossible to use, for example, single rbtree of member tasks
4091 * sorted by task pointer. As pidlists can be fairly large, allocating one
4092 * per open file is dangerous, so cgroup had to implement shared pool of
4093 * pidlists keyed by cgroup and namespace.
4094 *
4095 * All this extra complexity was caused by the original implementation
4096 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4097 * want to do away with it. Explicitly scramble sort order if on the
4098 * default hierarchy so that no such expectation exists in the new
4099 * interface.
afb2bc14
TH
4100 *
4101 * Scrambling is done by swapping every two consecutive bits, which is
4102 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4103 */
4104static pid_t pid_fry(pid_t pid)
4105{
4106 unsigned a = pid & 0x55555555;
4107 unsigned b = pid & 0xAAAAAAAA;
4108
4109 return (a << 1) | (b >> 1);
4110}
4111
4112static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4113{
aa6ec29b 4114 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4115 return pid_fry(pid);
4116 else
4117 return pid;
4118}
4119
102a775e
BB
4120static int cmppid(const void *a, const void *b)
4121{
4122 return *(pid_t *)a - *(pid_t *)b;
4123}
4124
afb2bc14
TH
4125static int fried_cmppid(const void *a, const void *b)
4126{
4127 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4128}
4129
e6b81710
TH
4130static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4131 enum cgroup_filetype type)
4132{
4133 struct cgroup_pidlist *l;
4134 /* don't need task_nsproxy() if we're looking at ourself */
4135 struct pid_namespace *ns = task_active_pid_ns(current);
4136
4137 lockdep_assert_held(&cgrp->pidlist_mutex);
4138
4139 list_for_each_entry(l, &cgrp->pidlists, links)
4140 if (l->key.type == type && l->key.ns == ns)
4141 return l;
4142 return NULL;
4143}
4144
72a8cb30
BB
4145/*
4146 * find the appropriate pidlist for our purpose (given procs vs tasks)
4147 * returns with the lock on that pidlist already held, and takes care
4148 * of the use count, or returns NULL with no locks held if we're out of
4149 * memory.
4150 */
e6b81710
TH
4151static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4152 enum cgroup_filetype type)
72a8cb30
BB
4153{
4154 struct cgroup_pidlist *l;
b70cc5fd 4155
e6b81710
TH
4156 lockdep_assert_held(&cgrp->pidlist_mutex);
4157
4158 l = cgroup_pidlist_find(cgrp, type);
4159 if (l)
4160 return l;
4161
72a8cb30 4162 /* entry not found; create a new one */
f4f4be2b 4163 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4164 if (!l)
72a8cb30 4165 return l;
e6b81710 4166
b1a21367 4167 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4168 l->key.type = type;
e6b81710
TH
4169 /* don't need task_nsproxy() if we're looking at ourself */
4170 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4171 l->owner = cgrp;
4172 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4173 return l;
4174}
4175
102a775e
BB
4176/*
4177 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4178 */
72a8cb30
BB
4179static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4180 struct cgroup_pidlist **lp)
102a775e
BB
4181{
4182 pid_t *array;
4183 int length;
4184 int pid, n = 0; /* used for populating the array */
72ec7029 4185 struct css_task_iter it;
817929ec 4186 struct task_struct *tsk;
102a775e
BB
4187 struct cgroup_pidlist *l;
4188
4bac00d1
TH
4189 lockdep_assert_held(&cgrp->pidlist_mutex);
4190
102a775e
BB
4191 /*
4192 * If cgroup gets more users after we read count, we won't have
4193 * enough space - tough. This race is indistinguishable to the
4194 * caller from the case that the additional cgroup users didn't
4195 * show up until sometime later on.
4196 */
4197 length = cgroup_task_count(cgrp);
d1d9fd33 4198 array = pidlist_allocate(length);
102a775e
BB
4199 if (!array)
4200 return -ENOMEM;
4201 /* now, populate the array */
9d800df1 4202 css_task_iter_start(&cgrp->self, &it);
72ec7029 4203 while ((tsk = css_task_iter_next(&it))) {
102a775e 4204 if (unlikely(n == length))
817929ec 4205 break;
102a775e 4206 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4207 if (type == CGROUP_FILE_PROCS)
4208 pid = task_tgid_vnr(tsk);
4209 else
4210 pid = task_pid_vnr(tsk);
102a775e
BB
4211 if (pid > 0) /* make sure to only use valid results */
4212 array[n++] = pid;
817929ec 4213 }
72ec7029 4214 css_task_iter_end(&it);
102a775e
BB
4215 length = n;
4216 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4217 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4218 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4219 else
4220 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4221 if (type == CGROUP_FILE_PROCS)
6ee211ad 4222 length = pidlist_uniq(array, length);
e6b81710 4223
e6b81710 4224 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4225 if (!l) {
d1d9fd33 4226 pidlist_free(array);
72a8cb30 4227 return -ENOMEM;
102a775e 4228 }
e6b81710
TH
4229
4230 /* store array, freeing old if necessary */
d1d9fd33 4231 pidlist_free(l->list);
102a775e
BB
4232 l->list = array;
4233 l->length = length;
72a8cb30 4234 *lp = l;
102a775e 4235 return 0;
bbcb81d0
PM
4236}
4237
846c7bb0 4238/**
a043e3b2 4239 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4240 * @stats: cgroupstats to fill information into
4241 * @dentry: A dentry entry belonging to the cgroup for which stats have
4242 * been requested.
a043e3b2
LZ
4243 *
4244 * Build and fill cgroupstats so that taskstats can export it to user
4245 * space.
846c7bb0
BS
4246 */
4247int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4248{
2bd59d48 4249 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4250 struct cgroup *cgrp;
72ec7029 4251 struct css_task_iter it;
846c7bb0 4252 struct task_struct *tsk;
33d283be 4253
2bd59d48
TH
4254 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4255 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4256 kernfs_type(kn) != KERNFS_DIR)
4257 return -EINVAL;
4258
bad34660
LZ
4259 mutex_lock(&cgroup_mutex);
4260
846c7bb0 4261 /*
2bd59d48 4262 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4263 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4264 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4265 */
2bd59d48
TH
4266 rcu_read_lock();
4267 cgrp = rcu_dereference(kn->priv);
bad34660 4268 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4269 rcu_read_unlock();
bad34660 4270 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4271 return -ENOENT;
4272 }
bad34660 4273 rcu_read_unlock();
846c7bb0 4274
9d800df1 4275 css_task_iter_start(&cgrp->self, &it);
72ec7029 4276 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4277 switch (tsk->state) {
4278 case TASK_RUNNING:
4279 stats->nr_running++;
4280 break;
4281 case TASK_INTERRUPTIBLE:
4282 stats->nr_sleeping++;
4283 break;
4284 case TASK_UNINTERRUPTIBLE:
4285 stats->nr_uninterruptible++;
4286 break;
4287 case TASK_STOPPED:
4288 stats->nr_stopped++;
4289 break;
4290 default:
4291 if (delayacct_is_task_waiting_on_io(tsk))
4292 stats->nr_io_wait++;
4293 break;
4294 }
4295 }
72ec7029 4296 css_task_iter_end(&it);
846c7bb0 4297
bad34660 4298 mutex_unlock(&cgroup_mutex);
2bd59d48 4299 return 0;
846c7bb0
BS
4300}
4301
8f3ff208 4302
bbcb81d0 4303/*
102a775e 4304 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4305 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4306 * in the cgroup->l->list array.
bbcb81d0 4307 */
cc31edce 4308
102a775e 4309static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4310{
cc31edce
PM
4311 /*
4312 * Initially we receive a position value that corresponds to
4313 * one more than the last pid shown (or 0 on the first call or
4314 * after a seek to the start). Use a binary-search to find the
4315 * next pid to display, if any
4316 */
2bd59d48 4317 struct kernfs_open_file *of = s->private;
7da11279 4318 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4319 struct cgroup_pidlist *l;
7da11279 4320 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4321 int index = 0, pid = *pos;
4bac00d1
TH
4322 int *iter, ret;
4323
4324 mutex_lock(&cgrp->pidlist_mutex);
4325
4326 /*
5d22444f 4327 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4328 * after open. If the matching pidlist is around, we can use that.
5d22444f 4329 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4330 * could already have been destroyed.
4331 */
5d22444f
TH
4332 if (of->priv)
4333 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4334
4335 /*
4336 * Either this is the first start() after open or the matching
4337 * pidlist has been destroyed inbetween. Create a new one.
4338 */
5d22444f
TH
4339 if (!of->priv) {
4340 ret = pidlist_array_load(cgrp, type,
4341 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4342 if (ret)
4343 return ERR_PTR(ret);
4344 }
5d22444f 4345 l = of->priv;
cc31edce 4346
cc31edce 4347 if (pid) {
102a775e 4348 int end = l->length;
20777766 4349
cc31edce
PM
4350 while (index < end) {
4351 int mid = (index + end) / 2;
afb2bc14 4352 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4353 index = mid;
4354 break;
afb2bc14 4355 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4356 index = mid + 1;
4357 else
4358 end = mid;
4359 }
4360 }
4361 /* If we're off the end of the array, we're done */
102a775e 4362 if (index >= l->length)
cc31edce
PM
4363 return NULL;
4364 /* Update the abstract position to be the actual pid that we found */
102a775e 4365 iter = l->list + index;
afb2bc14 4366 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4367 return iter;
4368}
4369
102a775e 4370static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4371{
2bd59d48 4372 struct kernfs_open_file *of = s->private;
5d22444f 4373 struct cgroup_pidlist *l = of->priv;
62236858 4374
5d22444f
TH
4375 if (l)
4376 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4377 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4378 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4379}
4380
102a775e 4381static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4382{
2bd59d48 4383 struct kernfs_open_file *of = s->private;
5d22444f 4384 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4385 pid_t *p = v;
4386 pid_t *end = l->list + l->length;
cc31edce
PM
4387 /*
4388 * Advance to the next pid in the array. If this goes off the
4389 * end, we're done
4390 */
4391 p++;
4392 if (p >= end) {
4393 return NULL;
4394 } else {
7da11279 4395 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4396 return p;
4397 }
4398}
4399
102a775e 4400static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4401{
94ff212d
JP
4402 seq_printf(s, "%d\n", *(int *)v);
4403
4404 return 0;
cc31edce 4405}
bbcb81d0 4406
182446d0
TH
4407static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4408 struct cftype *cft)
81a6a5cd 4409{
182446d0 4410 return notify_on_release(css->cgroup);
81a6a5cd
PM
4411}
4412
182446d0
TH
4413static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4414 struct cftype *cft, u64 val)
6379c106 4415{
6379c106 4416 if (val)
182446d0 4417 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4418 else
182446d0 4419 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4420 return 0;
4421}
4422
182446d0
TH
4423static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4424 struct cftype *cft)
97978e6d 4425{
182446d0 4426 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4427}
4428
182446d0
TH
4429static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4430 struct cftype *cft, u64 val)
97978e6d
DL
4431{
4432 if (val)
182446d0 4433 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4434 else
182446d0 4435 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4436 return 0;
4437}
4438
a14c6874
TH
4439/* cgroup core interface files for the default hierarchy */
4440static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4441 {
d5c56ced 4442 .name = "cgroup.procs",
6f60eade 4443 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4444 .seq_start = cgroup_pidlist_start,
4445 .seq_next = cgroup_pidlist_next,
4446 .seq_stop = cgroup_pidlist_stop,
4447 .seq_show = cgroup_pidlist_show,
5d22444f 4448 .private = CGROUP_FILE_PROCS,
acbef755 4449 .write = cgroup_procs_write,
102a775e 4450 },
f8f22e53
TH
4451 {
4452 .name = "cgroup.controllers",
a14c6874 4453 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4454 .seq_show = cgroup_root_controllers_show,
4455 },
4456 {
4457 .name = "cgroup.controllers",
a14c6874 4458 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4459 .seq_show = cgroup_controllers_show,
4460 },
4461 {
4462 .name = "cgroup.subtree_control",
f8f22e53 4463 .seq_show = cgroup_subtree_control_show,
451af504 4464 .write = cgroup_subtree_control_write,
f8f22e53 4465 },
842b597e 4466 {
4a07c222 4467 .name = "cgroup.events",
a14c6874 4468 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4469 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4470 .seq_show = cgroup_events_show,
842b597e 4471 },
a14c6874
TH
4472 { } /* terminate */
4473};
d5c56ced 4474
a14c6874
TH
4475/* cgroup core interface files for the legacy hierarchies */
4476static struct cftype cgroup_legacy_base_files[] = {
4477 {
4478 .name = "cgroup.procs",
4479 .seq_start = cgroup_pidlist_start,
4480 .seq_next = cgroup_pidlist_next,
4481 .seq_stop = cgroup_pidlist_stop,
4482 .seq_show = cgroup_pidlist_show,
4483 .private = CGROUP_FILE_PROCS,
4484 .write = cgroup_procs_write,
a14c6874
TH
4485 },
4486 {
4487 .name = "cgroup.clone_children",
4488 .read_u64 = cgroup_clone_children_read,
4489 .write_u64 = cgroup_clone_children_write,
4490 },
4491 {
4492 .name = "cgroup.sane_behavior",
4493 .flags = CFTYPE_ONLY_ON_ROOT,
4494 .seq_show = cgroup_sane_behavior_show,
4495 },
d5c56ced
TH
4496 {
4497 .name = "tasks",
6612f05b
TH
4498 .seq_start = cgroup_pidlist_start,
4499 .seq_next = cgroup_pidlist_next,
4500 .seq_stop = cgroup_pidlist_stop,
4501 .seq_show = cgroup_pidlist_show,
5d22444f 4502 .private = CGROUP_FILE_TASKS,
acbef755 4503 .write = cgroup_tasks_write,
d5c56ced
TH
4504 },
4505 {
4506 .name = "notify_on_release",
d5c56ced
TH
4507 .read_u64 = cgroup_read_notify_on_release,
4508 .write_u64 = cgroup_write_notify_on_release,
4509 },
6e6ff25b
TH
4510 {
4511 .name = "release_agent",
a14c6874 4512 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4513 .seq_show = cgroup_release_agent_show,
451af504 4514 .write = cgroup_release_agent_write,
5f469907 4515 .max_write_len = PATH_MAX - 1,
6e6ff25b 4516 },
db0416b6 4517 { } /* terminate */
bbcb81d0
PM
4518};
4519
0c21ead1
TH
4520/*
4521 * css destruction is four-stage process.
4522 *
4523 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4524 * Implemented in kill_css().
4525 *
4526 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4527 * and thus css_tryget_online() is guaranteed to fail, the css can be
4528 * offlined by invoking offline_css(). After offlining, the base ref is
4529 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4530 *
4531 * 3. When the percpu_ref reaches zero, the only possible remaining
4532 * accessors are inside RCU read sections. css_release() schedules the
4533 * RCU callback.
4534 *
4535 * 4. After the grace period, the css can be freed. Implemented in
4536 * css_free_work_fn().
4537 *
4538 * It is actually hairier because both step 2 and 4 require process context
4539 * and thus involve punting to css->destroy_work adding two additional
4540 * steps to the already complex sequence.
4541 */
35ef10da 4542static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4543{
4544 struct cgroup_subsys_state *css =
35ef10da 4545 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4546 struct cgroup_subsys *ss = css->ss;
0c21ead1 4547 struct cgroup *cgrp = css->cgroup;
6f60eade 4548 struct cgroup_file *cfile;
48ddbe19 4549
9a1049da
TH
4550 percpu_ref_exit(&css->refcnt);
4551
6f60eade
TH
4552 list_for_each_entry(cfile, &css->files, node)
4553 kernfs_put(cfile->kn);
4554
01e58659 4555 if (ss) {
9d755d33 4556 /* css free path */
01e58659
VD
4557 int id = css->id;
4558
9d755d33
TH
4559 if (css->parent)
4560 css_put(css->parent);
0ae78e0b 4561
01e58659
VD
4562 ss->css_free(css);
4563 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4564 cgroup_put(cgrp);
4565 } else {
4566 /* cgroup free path */
4567 atomic_dec(&cgrp->root->nr_cgrps);
4568 cgroup_pidlist_destroy_all(cgrp);
971ff493 4569 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4570
d51f39b0 4571 if (cgroup_parent(cgrp)) {
9d755d33
TH
4572 /*
4573 * We get a ref to the parent, and put the ref when
4574 * this cgroup is being freed, so it's guaranteed
4575 * that the parent won't be destroyed before its
4576 * children.
4577 */
d51f39b0 4578 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4579 kernfs_put(cgrp->kn);
4580 kfree(cgrp);
4581 } else {
4582 /*
4583 * This is root cgroup's refcnt reaching zero,
4584 * which indicates that the root should be
4585 * released.
4586 */
4587 cgroup_destroy_root(cgrp->root);
4588 }
4589 }
48ddbe19
TH
4590}
4591
0c21ead1 4592static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4593{
4594 struct cgroup_subsys_state *css =
0c21ead1 4595 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4596
35ef10da 4597 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4598 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4599}
4600
25e15d83 4601static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4602{
4603 struct cgroup_subsys_state *css =
25e15d83 4604 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4605 struct cgroup_subsys *ss = css->ss;
9d755d33 4606 struct cgroup *cgrp = css->cgroup;
15a4c835 4607
1fed1b2e
TH
4608 mutex_lock(&cgroup_mutex);
4609
de3f0341 4610 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4611 list_del_rcu(&css->sibling);
4612
9d755d33
TH
4613 if (ss) {
4614 /* css release path */
01e58659 4615 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4616 if (ss->css_released)
4617 ss->css_released(css);
9d755d33
TH
4618 } else {
4619 /* cgroup release path */
9d755d33
TH
4620 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4621 cgrp->id = -1;
a4189487
LZ
4622
4623 /*
4624 * There are two control paths which try to determine
4625 * cgroup from dentry without going through kernfs -
4626 * cgroupstats_build() and css_tryget_online_from_dir().
4627 * Those are supported by RCU protecting clearing of
4628 * cgrp->kn->priv backpointer.
4629 */
4630 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4631 }
d3daf28d 4632
1fed1b2e
TH
4633 mutex_unlock(&cgroup_mutex);
4634
0c21ead1 4635 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4636}
4637
d3daf28d
TH
4638static void css_release(struct percpu_ref *ref)
4639{
4640 struct cgroup_subsys_state *css =
4641 container_of(ref, struct cgroup_subsys_state, refcnt);
4642
25e15d83
TH
4643 INIT_WORK(&css->destroy_work, css_release_work_fn);
4644 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4645}
4646
ddfcadab
TH
4647static void init_and_link_css(struct cgroup_subsys_state *css,
4648 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4649{
0cb51d71
TH
4650 lockdep_assert_held(&cgroup_mutex);
4651
ddfcadab
TH
4652 cgroup_get(cgrp);
4653
d5c419b6 4654 memset(css, 0, sizeof(*css));
bd89aabc 4655 css->cgroup = cgrp;
72c97e54 4656 css->ss = ss;
d5c419b6
TH
4657 INIT_LIST_HEAD(&css->sibling);
4658 INIT_LIST_HEAD(&css->children);
6f60eade 4659 INIT_LIST_HEAD(&css->files);
0cb51d71 4660 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4661
d51f39b0
TH
4662 if (cgroup_parent(cgrp)) {
4663 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4664 css_get(css->parent);
ddfcadab 4665 }
48ddbe19 4666
ca8bdcaf 4667 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4668}
4669
2a4ac633 4670/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4671static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4672{
623f926b 4673 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4674 int ret = 0;
4675
a31f2d3f
TH
4676 lockdep_assert_held(&cgroup_mutex);
4677
92fb9748 4678 if (ss->css_online)
eb95419b 4679 ret = ss->css_online(css);
ae7f164a 4680 if (!ret) {
eb95419b 4681 css->flags |= CSS_ONLINE;
aec25020 4682 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4683 }
b1929db4 4684 return ret;
a31f2d3f
TH
4685}
4686
2a4ac633 4687/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4688static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4689{
623f926b 4690 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4691
4692 lockdep_assert_held(&cgroup_mutex);
4693
4694 if (!(css->flags & CSS_ONLINE))
4695 return;
4696
d7eeac19 4697 if (ss->css_offline)
eb95419b 4698 ss->css_offline(css);
a31f2d3f 4699
eb95419b 4700 css->flags &= ~CSS_ONLINE;
e3297803 4701 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4702
4703 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4704}
4705
c81c925a
TH
4706/**
4707 * create_css - create a cgroup_subsys_state
4708 * @cgrp: the cgroup new css will be associated with
4709 * @ss: the subsys of new css
f63070d3 4710 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4711 *
4712 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4713 * css is online and installed in @cgrp with all interface files created if
4714 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4715 */
f63070d3
TH
4716static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4717 bool visible)
c81c925a 4718{
d51f39b0 4719 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4720 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4721 struct cgroup_subsys_state *css;
4722 int err;
4723
c81c925a
TH
4724 lockdep_assert_held(&cgroup_mutex);
4725
1fed1b2e 4726 css = ss->css_alloc(parent_css);
c81c925a
TH
4727 if (IS_ERR(css))
4728 return PTR_ERR(css);
4729
ddfcadab 4730 init_and_link_css(css, ss, cgrp);
a2bed820 4731
2aad2a86 4732 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4733 if (err)
3eb59ec6 4734 goto err_free_css;
c81c925a 4735
cf780b7d 4736 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4737 if (err < 0)
4738 goto err_free_percpu_ref;
4739 css->id = err;
c81c925a 4740
f63070d3 4741 if (visible) {
4df8dc90 4742 err = css_populate_dir(css, NULL);
f63070d3
TH
4743 if (err)
4744 goto err_free_id;
4745 }
15a4c835
TH
4746
4747 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4748 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4749 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4750
4751 err = online_css(css);
4752 if (err)
1fed1b2e 4753 goto err_list_del;
94419627 4754
c81c925a 4755 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4756 cgroup_parent(parent)) {
ed3d261b 4757 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4758 current->comm, current->pid, ss->name);
c81c925a 4759 if (!strcmp(ss->name, "memory"))
ed3d261b 4760 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4761 ss->warned_broken_hierarchy = true;
4762 }
4763
4764 return 0;
4765
1fed1b2e
TH
4766err_list_del:
4767 list_del_rcu(&css->sibling);
4df8dc90 4768 css_clear_dir(css, NULL);
15a4c835
TH
4769err_free_id:
4770 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4771err_free_percpu_ref:
9a1049da 4772 percpu_ref_exit(&css->refcnt);
3eb59ec6 4773err_free_css:
a2bed820 4774 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4775 return err;
4776}
4777
b3bfd983
TH
4778static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4779 umode_t mode)
ddbcc7e8 4780{
a9746d8d
TH
4781 struct cgroup *parent, *cgrp;
4782 struct cgroup_root *root;
ddbcc7e8 4783 struct cgroup_subsys *ss;
2bd59d48 4784 struct kernfs_node *kn;
b3bfd983 4785 int ssid, ret;
ddbcc7e8 4786
71b1fb5c
AC
4787 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4788 */
4789 if (strchr(name, '\n'))
4790 return -EINVAL;
4791
a9746d8d
TH
4792 parent = cgroup_kn_lock_live(parent_kn);
4793 if (!parent)
4794 return -ENODEV;
4795 root = parent->root;
ddbcc7e8 4796
0a950f65 4797 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4798 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4799 if (!cgrp) {
4800 ret = -ENOMEM;
4801 goto out_unlock;
0ab02ca8
LZ
4802 }
4803
2aad2a86 4804 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4805 if (ret)
4806 goto out_free_cgrp;
4807
0ab02ca8
LZ
4808 /*
4809 * Temporarily set the pointer to NULL, so idr_find() won't return
4810 * a half-baked cgroup.
4811 */
cf780b7d 4812 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4813 if (cgrp->id < 0) {
ba0f4d76 4814 ret = -ENOMEM;
9d755d33 4815 goto out_cancel_ref;
976c06bc
TH
4816 }
4817
cc31edce 4818 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4819
9d800df1 4820 cgrp->self.parent = &parent->self;
ba0f4d76 4821 cgrp->root = root;
ddbcc7e8 4822
b6abdb0e
LZ
4823 if (notify_on_release(parent))
4824 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4825
2260e7fc
TH
4826 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4827 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4828
2bd59d48 4829 /* create the directory */
e61734c5 4830 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4831 if (IS_ERR(kn)) {
ba0f4d76
TH
4832 ret = PTR_ERR(kn);
4833 goto out_free_id;
2bd59d48
TH
4834 }
4835 cgrp->kn = kn;
ddbcc7e8 4836
4e139afc 4837 /*
6f30558f
TH
4838 * This extra ref will be put in cgroup_free_fn() and guarantees
4839 * that @cgrp->kn is always accessible.
4e139afc 4840 */
6f30558f 4841 kernfs_get(kn);
ddbcc7e8 4842
0cb51d71 4843 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4844
4e139afc 4845 /* allocation complete, commit to creation */
d5c419b6 4846 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4847 atomic_inc(&root->nr_cgrps);
59f5296b 4848 cgroup_get(parent);
415cf07a 4849
0d80255e
TH
4850 /*
4851 * @cgrp is now fully operational. If something fails after this
4852 * point, it'll be released via the normal destruction path.
4853 */
6fa4918d 4854 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4855
ba0f4d76
TH
4856 ret = cgroup_kn_set_ugid(kn);
4857 if (ret)
4858 goto out_destroy;
49957f8e 4859
4df8dc90 4860 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4861 if (ret)
4862 goto out_destroy;
628f7cd4 4863
9d403e99 4864 /* let's create and online css's */
b85d2040 4865 for_each_subsys(ss, ssid) {
f392e51c 4866 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4867 ret = create_css(cgrp, ss,
4868 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4869 if (ret)
4870 goto out_destroy;
b85d2040 4871 }
a8638030 4872 }
ddbcc7e8 4873
bd53d617
TH
4874 /*
4875 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4876 * subtree_control from the parent. Each is configured manually.
bd53d617 4877 */
667c2491
TH
4878 if (!cgroup_on_dfl(cgrp)) {
4879 cgrp->subtree_control = parent->subtree_control;
4880 cgroup_refresh_child_subsys_mask(cgrp);
4881 }
2bd59d48 4882
2bd59d48 4883 kernfs_activate(kn);
ddbcc7e8 4884
ba0f4d76
TH
4885 ret = 0;
4886 goto out_unlock;
ddbcc7e8 4887
ba0f4d76 4888out_free_id:
6fa4918d 4889 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4890out_cancel_ref:
9a1049da 4891 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4892out_free_cgrp:
bd89aabc 4893 kfree(cgrp);
ba0f4d76 4894out_unlock:
a9746d8d 4895 cgroup_kn_unlock(parent_kn);
ba0f4d76 4896 return ret;
4b8b47eb 4897
ba0f4d76 4898out_destroy:
4b8b47eb 4899 cgroup_destroy_locked(cgrp);
ba0f4d76 4900 goto out_unlock;
ddbcc7e8
PM
4901}
4902
223dbc38
TH
4903/*
4904 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4905 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4906 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4907 */
4908static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4909{
223dbc38
TH
4910 struct cgroup_subsys_state *css =
4911 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4912
f20104de 4913 mutex_lock(&cgroup_mutex);
09a503ea 4914 offline_css(css);
f20104de 4915 mutex_unlock(&cgroup_mutex);
09a503ea 4916
09a503ea 4917 css_put(css);
d3daf28d
TH
4918}
4919
223dbc38
TH
4920/* css kill confirmation processing requires process context, bounce */
4921static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4922{
4923 struct cgroup_subsys_state *css =
4924 container_of(ref, struct cgroup_subsys_state, refcnt);
4925
223dbc38 4926 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4927 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4928}
4929
f392e51c
TH
4930/**
4931 * kill_css - destroy a css
4932 * @css: css to destroy
4933 *
4934 * This function initiates destruction of @css by removing cgroup interface
4935 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4936 * asynchronously once css_tryget_online() is guaranteed to fail and when
4937 * the reference count reaches zero, @css will be released.
f392e51c
TH
4938 */
4939static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4940{
01f6474c 4941 lockdep_assert_held(&cgroup_mutex);
94419627 4942
2bd59d48
TH
4943 /*
4944 * This must happen before css is disassociated with its cgroup.
4945 * See seq_css() for details.
4946 */
4df8dc90 4947 css_clear_dir(css, NULL);
3c14f8b4 4948
edae0c33
TH
4949 /*
4950 * Killing would put the base ref, but we need to keep it alive
4951 * until after ->css_offline().
4952 */
4953 css_get(css);
4954
4955 /*
4956 * cgroup core guarantees that, by the time ->css_offline() is
4957 * invoked, no new css reference will be given out via
ec903c0c 4958 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4959 * proceed to offlining css's because percpu_ref_kill() doesn't
4960 * guarantee that the ref is seen as killed on all CPUs on return.
4961 *
4962 * Use percpu_ref_kill_and_confirm() to get notifications as each
4963 * css is confirmed to be seen as killed on all CPUs.
4964 */
4965 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4966}
4967
4968/**
4969 * cgroup_destroy_locked - the first stage of cgroup destruction
4970 * @cgrp: cgroup to be destroyed
4971 *
4972 * css's make use of percpu refcnts whose killing latency shouldn't be
4973 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4974 * guarantee that css_tryget_online() won't succeed by the time
4975 * ->css_offline() is invoked. To satisfy all the requirements,
4976 * destruction is implemented in the following two steps.
d3daf28d
TH
4977 *
4978 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4979 * userland visible parts and start killing the percpu refcnts of
4980 * css's. Set up so that the next stage will be kicked off once all
4981 * the percpu refcnts are confirmed to be killed.
4982 *
4983 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4984 * rest of destruction. Once all cgroup references are gone, the
4985 * cgroup is RCU-freed.
4986 *
4987 * This function implements s1. After this step, @cgrp is gone as far as
4988 * the userland is concerned and a new cgroup with the same name may be
4989 * created. As cgroup doesn't care about the names internally, this
4990 * doesn't cause any problem.
4991 */
42809dd4
TH
4992static int cgroup_destroy_locked(struct cgroup *cgrp)
4993 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4994{
2bd59d48 4995 struct cgroup_subsys_state *css;
ddd69148 4996 bool empty;
1c6727af 4997 int ssid;
ddbcc7e8 4998
42809dd4
TH
4999 lockdep_assert_held(&cgroup_mutex);
5000
ddd69148 5001 /*
96d365e0 5002 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 5003 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 5004 */
96d365e0 5005 down_read(&css_set_rwsem);
bb78a92f 5006 empty = list_empty(&cgrp->cset_links);
96d365e0 5007 up_read(&css_set_rwsem);
ddd69148 5008 if (!empty)
ddbcc7e8 5009 return -EBUSY;
a043e3b2 5010
bb78a92f 5011 /*
d5c419b6
TH
5012 * Make sure there's no live children. We can't test emptiness of
5013 * ->self.children as dead children linger on it while being
5014 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5015 */
f3d46500 5016 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5017 return -EBUSY;
5018
455050d2
TH
5019 /*
5020 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5021 * creation by disabling cgroup_lock_live_group().
455050d2 5022 */
184faf32 5023 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5024
249f3468 5025 /* initiate massacre of all css's */
1c6727af
TH
5026 for_each_css(css, ssid, cgrp)
5027 kill_css(css);
455050d2 5028
455050d2 5029 /*
01f6474c
TH
5030 * Remove @cgrp directory along with the base files. @cgrp has an
5031 * extra ref on its kn.
f20104de 5032 */
01f6474c 5033 kernfs_remove(cgrp->kn);
f20104de 5034
d51f39b0 5035 check_for_release(cgroup_parent(cgrp));
2bd59d48 5036
249f3468 5037 /* put the base reference */
9d755d33 5038 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5039
ea15f8cc
TH
5040 return 0;
5041};
5042
2bd59d48 5043static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5044{
a9746d8d 5045 struct cgroup *cgrp;
2bd59d48 5046 int ret = 0;
42809dd4 5047
a9746d8d
TH
5048 cgrp = cgroup_kn_lock_live(kn);
5049 if (!cgrp)
5050 return 0;
42809dd4 5051
a9746d8d 5052 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5053
a9746d8d 5054 cgroup_kn_unlock(kn);
42809dd4 5055 return ret;
8e3f6541
TH
5056}
5057
2bd59d48
TH
5058static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5059 .remount_fs = cgroup_remount,
5060 .show_options = cgroup_show_options,
5061 .mkdir = cgroup_mkdir,
5062 .rmdir = cgroup_rmdir,
5063 .rename = cgroup_rename,
5064};
5065
15a4c835 5066static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5067{
ddbcc7e8 5068 struct cgroup_subsys_state *css;
cfe36bde
DC
5069
5070 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5071
648bb56d
TH
5072 mutex_lock(&cgroup_mutex);
5073
15a4c835 5074 idr_init(&ss->css_idr);
0adb0704 5075 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5076
3dd06ffa
TH
5077 /* Create the root cgroup state for this subsystem */
5078 ss->root = &cgrp_dfl_root;
5079 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5080 /* We don't handle early failures gracefully */
5081 BUG_ON(IS_ERR(css));
ddfcadab 5082 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5083
5084 /*
5085 * Root csses are never destroyed and we can't initialize
5086 * percpu_ref during early init. Disable refcnting.
5087 */
5088 css->flags |= CSS_NO_REF;
5089
15a4c835 5090 if (early) {
9395a450 5091 /* allocation can't be done safely during early init */
15a4c835
TH
5092 css->id = 1;
5093 } else {
5094 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5095 BUG_ON(css->id < 0);
5096 }
ddbcc7e8 5097
e8d55fde 5098 /* Update the init_css_set to contain a subsys
817929ec 5099 * pointer to this state - since the subsystem is
e8d55fde 5100 * newly registered, all tasks and hence the
3dd06ffa 5101 * init_css_set is in the subsystem's root cgroup. */
aec25020 5102 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5103
cb4a3167
AS
5104 have_fork_callback |= (bool)ss->fork << ss->id;
5105 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5106 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5107
e8d55fde
LZ
5108 /* At system boot, before all subsystems have been
5109 * registered, no tasks have been forked, so we don't
5110 * need to invoke fork callbacks here. */
5111 BUG_ON(!list_empty(&init_task.tasks));
5112
ae7f164a 5113 BUG_ON(online_css(css));
a8638030 5114
cf5d5941
BB
5115 mutex_unlock(&cgroup_mutex);
5116}
cf5d5941 5117
ddbcc7e8 5118/**
a043e3b2
LZ
5119 * cgroup_init_early - cgroup initialization at system boot
5120 *
5121 * Initialize cgroups at system boot, and initialize any
5122 * subsystems that request early init.
ddbcc7e8
PM
5123 */
5124int __init cgroup_init_early(void)
5125{
7b9a6ba5 5126 static struct cgroup_sb_opts __initdata opts;
30159ec7 5127 struct cgroup_subsys *ss;
ddbcc7e8 5128 int i;
30159ec7 5129
3dd06ffa 5130 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5131 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5132
a4ea1cc9 5133 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5134
3ed80a62 5135 for_each_subsys(ss, i) {
aec25020 5136 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5137 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5138 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5139 ss->id, ss->name);
073219e9
TH
5140 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5141 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5142
aec25020 5143 ss->id = i;
073219e9 5144 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5145 if (!ss->legacy_name)
5146 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5147
5148 if (ss->early_init)
15a4c835 5149 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5150 }
5151 return 0;
5152}
5153
a3e72739
TH
5154static unsigned long cgroup_disable_mask __initdata;
5155
ddbcc7e8 5156/**
a043e3b2
LZ
5157 * cgroup_init - cgroup initialization
5158 *
5159 * Register cgroup filesystem and /proc file, and initialize
5160 * any subsystems that didn't request early init.
ddbcc7e8
PM
5161 */
5162int __init cgroup_init(void)
5163{
30159ec7 5164 struct cgroup_subsys *ss;
0ac801fe 5165 unsigned long key;
172a2c06 5166 int ssid, err;
ddbcc7e8 5167
1ed13287 5168 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5169 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5170 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5171
54e7b4eb 5172 mutex_lock(&cgroup_mutex);
54e7b4eb 5173
82fe9b0d
TH
5174 /* Add init_css_set to the hash table */
5175 key = css_set_hash(init_css_set.subsys);
5176 hash_add(css_set_table, &init_css_set.hlist, key);
5177
3dd06ffa 5178 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5179
54e7b4eb
TH
5180 mutex_unlock(&cgroup_mutex);
5181
172a2c06 5182 for_each_subsys(ss, ssid) {
15a4c835
TH
5183 if (ss->early_init) {
5184 struct cgroup_subsys_state *css =
5185 init_css_set.subsys[ss->id];
5186
5187 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5188 GFP_KERNEL);
5189 BUG_ON(css->id < 0);
5190 } else {
5191 cgroup_init_subsys(ss, false);
5192 }
172a2c06 5193
2d8f243a
TH
5194 list_add_tail(&init_css_set.e_cset_node[ssid],
5195 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5196
5197 /*
c731ae1d
LZ
5198 * Setting dfl_root subsys_mask needs to consider the
5199 * disabled flag and cftype registration needs kmalloc,
5200 * both of which aren't available during early_init.
172a2c06 5201 */
a3e72739
TH
5202 if (cgroup_disable_mask & (1 << ssid)) {
5203 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5204 printk(KERN_INFO "Disabling %s control group subsystem\n",
5205 ss->name);
a8ddc821 5206 continue;
a3e72739 5207 }
a8ddc821
TH
5208
5209 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5210
5211 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5212 ss->dfl_cftypes = ss->legacy_cftypes;
5213
5de4fa13
TH
5214 if (!ss->dfl_cftypes)
5215 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5216
a8ddc821
TH
5217 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5218 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5219 } else {
5220 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5221 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5222 }
295458e6
VD
5223
5224 if (ss->bind)
5225 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5226 }
5227
f9bb4882
EB
5228 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5229 if (err)
5230 return err;
676db4af 5231
ddbcc7e8 5232 err = register_filesystem(&cgroup_fs_type);
676db4af 5233 if (err < 0) {
f9bb4882 5234 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5235 return err;
676db4af 5236 }
ddbcc7e8 5237
46ae220b 5238 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5239 return 0;
ddbcc7e8 5240}
b4f48b63 5241
e5fca243
TH
5242static int __init cgroup_wq_init(void)
5243{
5244 /*
5245 * There isn't much point in executing destruction path in
5246 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5247 * Use 1 for @max_active.
e5fca243
TH
5248 *
5249 * We would prefer to do this in cgroup_init() above, but that
5250 * is called before init_workqueues(): so leave this until after.
5251 */
1a11533f 5252 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5253 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5254
5255 /*
5256 * Used to destroy pidlists and separate to serve as flush domain.
5257 * Cap @max_active to 1 too.
5258 */
5259 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5260 0, 1);
5261 BUG_ON(!cgroup_pidlist_destroy_wq);
5262
e5fca243
TH
5263 return 0;
5264}
5265core_initcall(cgroup_wq_init);
5266
a424316c
PM
5267/*
5268 * proc_cgroup_show()
5269 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5270 * - Used for /proc/<pid>/cgroup.
a424316c 5271 */
006f4ac4
ZL
5272int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5273 struct pid *pid, struct task_struct *tsk)
a424316c 5274{
e61734c5 5275 char *buf, *path;
a424316c 5276 int retval;
3dd06ffa 5277 struct cgroup_root *root;
a424316c
PM
5278
5279 retval = -ENOMEM;
e61734c5 5280 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5281 if (!buf)
5282 goto out;
5283
a424316c 5284 mutex_lock(&cgroup_mutex);
96d365e0 5285 down_read(&css_set_rwsem);
a424316c 5286
985ed670 5287 for_each_root(root) {
a424316c 5288 struct cgroup_subsys *ss;
bd89aabc 5289 struct cgroup *cgrp;
b85d2040 5290 int ssid, count = 0;
a424316c 5291
a2dd4247 5292 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5293 continue;
5294
2c6ab6d2 5295 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5296 if (root != &cgrp_dfl_root)
5297 for_each_subsys(ss, ssid)
5298 if (root->subsys_mask & (1 << ssid))
5299 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5300 ss->legacy_name);
c6d57f33
PM
5301 if (strlen(root->name))
5302 seq_printf(m, "%sname=%s", count ? "," : "",
5303 root->name);
a424316c 5304 seq_putc(m, ':');
7717f7ba 5305 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5306 path = cgroup_path(cgrp, buf, PATH_MAX);
5307 if (!path) {
5308 retval = -ENAMETOOLONG;
a424316c 5309 goto out_unlock;
e61734c5
TH
5310 }
5311 seq_puts(m, path);
a424316c
PM
5312 seq_putc(m, '\n');
5313 }
5314
006f4ac4 5315 retval = 0;
a424316c 5316out_unlock:
96d365e0 5317 up_read(&css_set_rwsem);
a424316c 5318 mutex_unlock(&cgroup_mutex);
a424316c
PM
5319 kfree(buf);
5320out:
5321 return retval;
5322}
5323
a424316c
PM
5324/* Display information about each subsystem and each hierarchy */
5325static int proc_cgroupstats_show(struct seq_file *m, void *v)
5326{
30159ec7 5327 struct cgroup_subsys *ss;
a424316c 5328 int i;
a424316c 5329
8bab8dde 5330 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5331 /*
5332 * ideally we don't want subsystems moving around while we do this.
5333 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5334 * subsys/hierarchy state.
5335 */
a424316c 5336 mutex_lock(&cgroup_mutex);
30159ec7
TH
5337
5338 for_each_subsys(ss, i)
2c6ab6d2 5339 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5340 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5341 atomic_read(&ss->root->nr_cgrps),
5342 cgroup_ssid_enabled(i));
30159ec7 5343
a424316c
PM
5344 mutex_unlock(&cgroup_mutex);
5345 return 0;
5346}
5347
5348static int cgroupstats_open(struct inode *inode, struct file *file)
5349{
9dce07f1 5350 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5351}
5352
828c0950 5353static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5354 .open = cgroupstats_open,
5355 .read = seq_read,
5356 .llseek = seq_lseek,
5357 .release = single_release,
5358};
5359
7e47682e
AS
5360static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5361{
5362 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5363 return &ss_priv[i - CGROUP_CANFORK_START];
5364 return NULL;
5365}
5366
5367static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5368{
5369 void **private = subsys_canfork_priv_p(ss_priv, i);
5370 return private ? *private : NULL;
5371}
5372
b4f48b63 5373/**
eaf797ab 5374 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5375 * @child: pointer to task_struct of forking parent process.
b4f48b63 5376 *
eaf797ab
TH
5377 * A task is associated with the init_css_set until cgroup_post_fork()
5378 * attaches it to the parent's css_set. Empty cg_list indicates that
5379 * @child isn't holding reference to its css_set.
b4f48b63
PM
5380 */
5381void cgroup_fork(struct task_struct *child)
5382{
eaf797ab 5383 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5384 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5385}
5386
7e47682e
AS
5387/**
5388 * cgroup_can_fork - called on a new task before the process is exposed
5389 * @child: the task in question.
5390 *
5391 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5392 * returns an error, the fork aborts with that error code. This allows for
5393 * a cgroup subsystem to conditionally allow or deny new forks.
5394 */
5395int cgroup_can_fork(struct task_struct *child,
5396 void *ss_priv[CGROUP_CANFORK_COUNT])
5397{
5398 struct cgroup_subsys *ss;
5399 int i, j, ret;
5400
5401 for_each_subsys_which(ss, i, &have_canfork_callback) {
5402 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5403 if (ret)
5404 goto out_revert;
5405 }
5406
5407 return 0;
5408
5409out_revert:
5410 for_each_subsys(ss, j) {
5411 if (j >= i)
5412 break;
5413 if (ss->cancel_fork)
5414 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5415 }
5416
5417 return ret;
5418}
5419
5420/**
5421 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5422 * @child: the task in question
5423 *
5424 * This calls the cancel_fork() callbacks if a fork failed *after*
5425 * cgroup_can_fork() succeded.
5426 */
5427void cgroup_cancel_fork(struct task_struct *child,
5428 void *ss_priv[CGROUP_CANFORK_COUNT])
5429{
5430 struct cgroup_subsys *ss;
5431 int i;
5432
5433 for_each_subsys(ss, i)
5434 if (ss->cancel_fork)
5435 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5436}
5437
817929ec 5438/**
a043e3b2
LZ
5439 * cgroup_post_fork - called on a new task after adding it to the task list
5440 * @child: the task in question
5441 *
5edee61e
TH
5442 * Adds the task to the list running through its css_set if necessary and
5443 * call the subsystem fork() callbacks. Has to be after the task is
5444 * visible on the task list in case we race with the first call to
0942eeee 5445 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5446 * list.
a043e3b2 5447 */
7e47682e
AS
5448void cgroup_post_fork(struct task_struct *child,
5449 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5450{
30159ec7 5451 struct cgroup_subsys *ss;
5edee61e
TH
5452 int i;
5453
3ce3230a 5454 /*
251f8c03 5455 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5456 * function sets use_task_css_set_links before grabbing
5457 * tasklist_lock and we just went through tasklist_lock to add
5458 * @child, it's guaranteed that either we see the set
5459 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5460 * @child during its iteration.
5461 *
5462 * If we won the race, @child is associated with %current's
5463 * css_set. Grabbing css_set_rwsem guarantees both that the
5464 * association is stable, and, on completion of the parent's
5465 * migration, @child is visible in the source of migration or
5466 * already in the destination cgroup. This guarantee is necessary
5467 * when implementing operations which need to migrate all tasks of
5468 * a cgroup to another.
5469 *
251f8c03 5470 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5471 * will remain in init_css_set. This is safe because all tasks are
5472 * in the init_css_set before cg_links is enabled and there's no
5473 * operation which transfers all tasks out of init_css_set.
3ce3230a 5474 */
817929ec 5475 if (use_task_css_set_links) {
eaf797ab
TH
5476 struct css_set *cset;
5477
96d365e0 5478 down_write(&css_set_rwsem);
0e1d768f 5479 cset = task_css_set(current);
eaf797ab
TH
5480 if (list_empty(&child->cg_list)) {
5481 rcu_assign_pointer(child->cgroups, cset);
5482 list_add(&child->cg_list, &cset->tasks);
5483 get_css_set(cset);
5484 }
96d365e0 5485 up_write(&css_set_rwsem);
817929ec 5486 }
5edee61e
TH
5487
5488 /*
5489 * Call ss->fork(). This must happen after @child is linked on
5490 * css_set; otherwise, @child might change state between ->fork()
5491 * and addition to css_set.
5492 */
cb4a3167 5493 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5494 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5495}
5edee61e 5496
b4f48b63
PM
5497/**
5498 * cgroup_exit - detach cgroup from exiting task
5499 * @tsk: pointer to task_struct of exiting process
5500 *
5501 * Description: Detach cgroup from @tsk and release it.
5502 *
5503 * Note that cgroups marked notify_on_release force every task in
5504 * them to take the global cgroup_mutex mutex when exiting.
5505 * This could impact scaling on very large systems. Be reluctant to
5506 * use notify_on_release cgroups where very high task exit scaling
5507 * is required on large systems.
5508 *
0e1d768f
TH
5509 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5510 * call cgroup_exit() while the task is still competent to handle
5511 * notify_on_release(), then leave the task attached to the root cgroup in
5512 * each hierarchy for the remainder of its exit. No need to bother with
5513 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5514 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5515 */
1ec41830 5516void cgroup_exit(struct task_struct *tsk)
b4f48b63 5517{
30159ec7 5518 struct cgroup_subsys *ss;
5abb8855 5519 struct css_set *cset;
eaf797ab 5520 bool put_cset = false;
d41d5a01 5521 int i;
817929ec
PM
5522
5523 /*
0e1d768f 5524 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5525 * with us, we can check css_set and cg_list without synchronization.
817929ec 5526 */
0de0942d
TH
5527 cset = task_css_set(tsk);
5528
817929ec 5529 if (!list_empty(&tsk->cg_list)) {
96d365e0 5530 down_write(&css_set_rwsem);
0e1d768f 5531 list_del_init(&tsk->cg_list);
0de0942d
TH
5532 if (!css_set_populated(cset))
5533 css_set_update_populated(cset, false);
96d365e0 5534 up_write(&css_set_rwsem);
0e1d768f 5535 put_cset = true;
817929ec
PM
5536 }
5537
b4f48b63 5538 /* Reassign the task to the init_css_set. */
a8ad805c 5539 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5540
cb4a3167
AS
5541 /* see cgroup_post_fork() for details */
5542 for_each_subsys_which(ss, i, &have_exit_callback) {
5543 struct cgroup_subsys_state *old_css = cset->subsys[i];
5544 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5545
cb4a3167 5546 ss->exit(css, old_css, tsk);
d41d5a01 5547 }
d41d5a01 5548
eaf797ab 5549 if (put_cset)
a25eb52e 5550 put_css_set(cset);
b4f48b63 5551}
697f4161 5552
bd89aabc 5553static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5554{
27bd4dbb 5555 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5556 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5557 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5558}
5559
81a6a5cd
PM
5560/*
5561 * Notify userspace when a cgroup is released, by running the
5562 * configured release agent with the name of the cgroup (path
5563 * relative to the root of cgroup file system) as the argument.
5564 *
5565 * Most likely, this user command will try to rmdir this cgroup.
5566 *
5567 * This races with the possibility that some other task will be
5568 * attached to this cgroup before it is removed, or that some other
5569 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5570 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5571 * unused, and this cgroup will be reprieved from its death sentence,
5572 * to continue to serve a useful existence. Next time it's released,
5573 * we will get notified again, if it still has 'notify_on_release' set.
5574 *
5575 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5576 * means only wait until the task is successfully execve()'d. The
5577 * separate release agent task is forked by call_usermodehelper(),
5578 * then control in this thread returns here, without waiting for the
5579 * release agent task. We don't bother to wait because the caller of
5580 * this routine has no use for the exit status of the release agent
5581 * task, so no sense holding our caller up for that.
81a6a5cd 5582 */
81a6a5cd
PM
5583static void cgroup_release_agent(struct work_struct *work)
5584{
971ff493
ZL
5585 struct cgroup *cgrp =
5586 container_of(work, struct cgroup, release_agent_work);
5587 char *pathbuf = NULL, *agentbuf = NULL, *path;
5588 char *argv[3], *envp[3];
5589
81a6a5cd 5590 mutex_lock(&cgroup_mutex);
971ff493
ZL
5591
5592 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5593 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5594 if (!pathbuf || !agentbuf)
5595 goto out;
5596
5597 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5598 if (!path)
5599 goto out;
5600
5601 argv[0] = agentbuf;
5602 argv[1] = path;
5603 argv[2] = NULL;
5604
5605 /* minimal command environment */
5606 envp[0] = "HOME=/";
5607 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5608 envp[2] = NULL;
5609
81a6a5cd 5610 mutex_unlock(&cgroup_mutex);
971ff493 5611 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5612 goto out_free;
971ff493 5613out:
81a6a5cd 5614 mutex_unlock(&cgroup_mutex);
3e2cd91a 5615out_free:
971ff493
ZL
5616 kfree(agentbuf);
5617 kfree(pathbuf);
81a6a5cd 5618}
8bab8dde
PM
5619
5620static int __init cgroup_disable(char *str)
5621{
30159ec7 5622 struct cgroup_subsys *ss;
8bab8dde 5623 char *token;
30159ec7 5624 int i;
8bab8dde
PM
5625
5626 while ((token = strsep(&str, ",")) != NULL) {
5627 if (!*token)
5628 continue;
be45c900 5629
3ed80a62 5630 for_each_subsys(ss, i) {
3e1d2eed
TH
5631 if (strcmp(token, ss->name) &&
5632 strcmp(token, ss->legacy_name))
5633 continue;
a3e72739 5634 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5635 }
5636 }
5637 return 1;
5638}
5639__setup("cgroup_disable=", cgroup_disable);
38460b48 5640
a8ddc821
TH
5641static int __init cgroup_set_legacy_files_on_dfl(char *str)
5642{
5643 printk("cgroup: using legacy files on the default hierarchy\n");
5644 cgroup_legacy_files_on_dfl = true;
5645 return 0;
5646}
5647__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5648
b77d7b60 5649/**
ec903c0c 5650 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5651 * @dentry: directory dentry of interest
5652 * @ss: subsystem of interest
b77d7b60 5653 *
5a17f543
TH
5654 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5655 * to get the corresponding css and return it. If such css doesn't exist
5656 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5657 */
ec903c0c
TH
5658struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5659 struct cgroup_subsys *ss)
e5d1367f 5660{
2bd59d48
TH
5661 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5662 struct cgroup_subsys_state *css = NULL;
e5d1367f 5663 struct cgroup *cgrp;
e5d1367f 5664
35cf0836 5665 /* is @dentry a cgroup dir? */
2bd59d48
TH
5666 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5667 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5668 return ERR_PTR(-EBADF);
5669
5a17f543
TH
5670 rcu_read_lock();
5671
2bd59d48
TH
5672 /*
5673 * This path doesn't originate from kernfs and @kn could already
5674 * have been or be removed at any point. @kn->priv is RCU
a4189487 5675 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5676 */
5677 cgrp = rcu_dereference(kn->priv);
5678 if (cgrp)
5679 css = cgroup_css(cgrp, ss);
5a17f543 5680
ec903c0c 5681 if (!css || !css_tryget_online(css))
5a17f543
TH
5682 css = ERR_PTR(-ENOENT);
5683
5684 rcu_read_unlock();
5685 return css;
e5d1367f 5686}
e5d1367f 5687
1cb650b9
LZ
5688/**
5689 * css_from_id - lookup css by id
5690 * @id: the cgroup id
5691 * @ss: cgroup subsys to be looked into
5692 *
5693 * Returns the css if there's valid one with @id, otherwise returns NULL.
5694 * Should be called under rcu_read_lock().
5695 */
5696struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5697{
6fa4918d 5698 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5699 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5700}
5701
fe693435 5702#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5703static struct cgroup_subsys_state *
5704debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5705{
5706 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5707
5708 if (!css)
5709 return ERR_PTR(-ENOMEM);
5710
5711 return css;
5712}
5713
eb95419b 5714static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5715{
eb95419b 5716 kfree(css);
fe693435
PM
5717}
5718
182446d0
TH
5719static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5720 struct cftype *cft)
fe693435 5721{
182446d0 5722 return cgroup_task_count(css->cgroup);
fe693435
PM
5723}
5724
182446d0
TH
5725static u64 current_css_set_read(struct cgroup_subsys_state *css,
5726 struct cftype *cft)
fe693435
PM
5727{
5728 return (u64)(unsigned long)current->cgroups;
5729}
5730
182446d0 5731static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5732 struct cftype *cft)
fe693435
PM
5733{
5734 u64 count;
5735
5736 rcu_read_lock();
a8ad805c 5737 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5738 rcu_read_unlock();
5739 return count;
5740}
5741
2da8ca82 5742static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5743{
69d0206c 5744 struct cgrp_cset_link *link;
5abb8855 5745 struct css_set *cset;
e61734c5
TH
5746 char *name_buf;
5747
5748 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5749 if (!name_buf)
5750 return -ENOMEM;
7717f7ba 5751
96d365e0 5752 down_read(&css_set_rwsem);
7717f7ba 5753 rcu_read_lock();
5abb8855 5754 cset = rcu_dereference(current->cgroups);
69d0206c 5755 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5756 struct cgroup *c = link->cgrp;
7717f7ba 5757
a2dd4247 5758 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5759 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5760 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5761 }
5762 rcu_read_unlock();
96d365e0 5763 up_read(&css_set_rwsem);
e61734c5 5764 kfree(name_buf);
7717f7ba
PM
5765 return 0;
5766}
5767
5768#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5769static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5770{
2da8ca82 5771 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5772 struct cgrp_cset_link *link;
7717f7ba 5773
96d365e0 5774 down_read(&css_set_rwsem);
182446d0 5775 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5776 struct css_set *cset = link->cset;
7717f7ba
PM
5777 struct task_struct *task;
5778 int count = 0;
c7561128 5779
5abb8855 5780 seq_printf(seq, "css_set %p\n", cset);
c7561128 5781
5abb8855 5782 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5783 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5784 goto overflow;
5785 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5786 }
5787
5788 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5789 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5790 goto overflow;
5791 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5792 }
c7561128
TH
5793 continue;
5794 overflow:
5795 seq_puts(seq, " ...\n");
7717f7ba 5796 }
96d365e0 5797 up_read(&css_set_rwsem);
7717f7ba
PM
5798 return 0;
5799}
5800
182446d0 5801static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5802{
27bd4dbb 5803 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5804 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5805}
5806
5807static struct cftype debug_files[] = {
fe693435
PM
5808 {
5809 .name = "taskcount",
5810 .read_u64 = debug_taskcount_read,
5811 },
5812
5813 {
5814 .name = "current_css_set",
5815 .read_u64 = current_css_set_read,
5816 },
5817
5818 {
5819 .name = "current_css_set_refcount",
5820 .read_u64 = current_css_set_refcount_read,
5821 },
5822
7717f7ba
PM
5823 {
5824 .name = "current_css_set_cg_links",
2da8ca82 5825 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5826 },
5827
5828 {
5829 .name = "cgroup_css_links",
2da8ca82 5830 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5831 },
5832
fe693435
PM
5833 {
5834 .name = "releasable",
5835 .read_u64 = releasable_read,
5836 },
fe693435 5837
4baf6e33
TH
5838 { } /* terminate */
5839};
fe693435 5840
073219e9 5841struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5842 .css_alloc = debug_css_alloc,
5843 .css_free = debug_css_free,
5577964e 5844 .legacy_cftypes = debug_files,
fe693435
PM
5845};
5846#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.567603 seconds and 5 git commands to generate.