cgroup: call cgroup_subsys->bind on cgroup subsys initialization
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
a8ddc821
TH
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
5533e011 158/* some controllers are not supported in the default hierarchy */
5de4fa13 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
5533e011 160
ddbcc7e8
PM
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1 169/*
0cb51d71
TH
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
794611a1 175 */
0cb51d71 176static u64 css_serial_nr_next = 1;
794611a1 177
ddbcc7e8 178/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
ddbcc7e8 182 */
8947f9d5 183static int need_forkexit_callback __read_mostly;
ddbcc7e8 184
a14c6874
TH
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
628f7cd4 187
3dd06ffa 188static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 189 unsigned int ss_mask);
42809dd4 190static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
191static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
9d755d33 193static void css_release(struct percpu_ref *ref);
f8f22e53 194static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
42809dd4 197
6fa4918d
TH
198/* IDR wrappers which synchronize using cgroup_idr_lock */
199static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201{
202 int ret;
203
204 idr_preload(gfp_mask);
54504e97 205 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 207 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
208 idr_preload_end();
209 return ret;
210}
211
212static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213{
214 void *ret;
215
54504e97 216 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 217 ret = idr_replace(idr, ptr, id);
54504e97 218 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
219 return ret;
220}
221
222static void cgroup_idr_remove(struct idr *idr, int id)
223{
54504e97 224 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 225 idr_remove(idr, id);
54504e97 226 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
227}
228
d51f39b0
TH
229static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230{
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236}
237
95109b62
TH
238/**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
9d800df1 241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 242 *
ca8bdcaf
TH
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
248 */
249static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 250 struct cgroup_subsys *ss)
95109b62 251{
ca8bdcaf 252 if (ss)
aec25020 253 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 254 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 255 else
9d800df1 256 return &cgrp->self;
95109b62 257}
42809dd4 258
aec3dfcb
TH
259/**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
9d800df1 262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
269static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271{
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
9d800df1 275 return &cgrp->self;
aec3dfcb
TH
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
eeecbd19
TH
280 /*
281 * This function is used while updating css associations and thus
282 * can't test the csses directly. Use ->child_subsys_mask.
283 */
d51f39b0
TH
284 while (cgroup_parent(cgrp) &&
285 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
286 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
287
288 return cgroup_css(cgrp, ss);
95109b62 289}
42809dd4 290
eeecbd19
TH
291/**
292 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
293 * @cgrp: the cgroup of interest
294 * @ss: the subsystem of interest
295 *
296 * Find and get the effective css of @cgrp for @ss. The effective css is
297 * defined as the matching css of the nearest ancestor including self which
298 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
299 * the root css is returned, so this function always returns a valid css.
300 * The returned css must be put using css_put().
301 */
302struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
303 struct cgroup_subsys *ss)
304{
305 struct cgroup_subsys_state *css;
306
307 rcu_read_lock();
308
309 do {
310 css = cgroup_css(cgrp, ss);
311
312 if (css && css_tryget_online(css))
313 goto out_unlock;
314 cgrp = cgroup_parent(cgrp);
315 } while (cgrp);
316
317 css = init_css_set.subsys[ss->id];
318 css_get(css);
319out_unlock:
320 rcu_read_unlock();
321 return css;
322}
323
ddbcc7e8 324/* convenient tests for these bits */
54766d4a 325static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 326{
184faf32 327 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
328}
329
b4168640 330struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 331{
2bd59d48 332 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 333 struct cftype *cft = of_cft(of);
2bd59d48
TH
334
335 /*
336 * This is open and unprotected implementation of cgroup_css().
337 * seq_css() is only called from a kernfs file operation which has
338 * an active reference on the file. Because all the subsystem
339 * files are drained before a css is disassociated with a cgroup,
340 * the matching css from the cgroup's subsys table is guaranteed to
341 * be and stay valid until the enclosing operation is complete.
342 */
343 if (cft->ss)
344 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
345 else
9d800df1 346 return &cgrp->self;
59f5296b 347}
b4168640 348EXPORT_SYMBOL_GPL(of_css);
59f5296b 349
78574cf9
LZ
350/**
351 * cgroup_is_descendant - test ancestry
352 * @cgrp: the cgroup to be tested
353 * @ancestor: possible ancestor of @cgrp
354 *
355 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
356 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
357 * and @ancestor are accessible.
358 */
359bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
360{
361 while (cgrp) {
362 if (cgrp == ancestor)
363 return true;
d51f39b0 364 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
365 }
366 return false;
367}
ddbcc7e8 368
e9685a03 369static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 370{
bd89aabc 371 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
372}
373
1c6727af
TH
374/**
375 * for_each_css - iterate all css's of a cgroup
376 * @css: the iteration cursor
377 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
378 * @cgrp: the target cgroup to iterate css's of
379 *
aec3dfcb 380 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
381 */
382#define for_each_css(css, ssid, cgrp) \
383 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
384 if (!((css) = rcu_dereference_check( \
385 (cgrp)->subsys[(ssid)], \
386 lockdep_is_held(&cgroup_mutex)))) { } \
387 else
388
aec3dfcb
TH
389/**
390 * for_each_e_css - iterate all effective css's of a cgroup
391 * @css: the iteration cursor
392 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
393 * @cgrp: the target cgroup to iterate css's of
394 *
395 * Should be called under cgroup_[tree_]mutex.
396 */
397#define for_each_e_css(css, ssid, cgrp) \
398 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
399 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
400 ; \
401 else
402
30159ec7 403/**
3ed80a62 404 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 405 * @ss: the iteration cursor
780cd8b3 406 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 407 */
780cd8b3 408#define for_each_subsys(ss, ssid) \
3ed80a62
TH
409 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
410 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 411
985ed670
TH
412/* iterate across the hierarchies */
413#define for_each_root(root) \
5549c497 414 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 415
f8f22e53
TH
416/* iterate over child cgrps, lock should be held throughout iteration */
417#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 418 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 419 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
420 cgroup_is_dead(child); })) \
421 ; \
422 else
7ae1bad9 423
81a6a5cd 424static void cgroup_release_agent(struct work_struct *work);
bd89aabc 425static void check_for_release(struct cgroup *cgrp);
81a6a5cd 426
69d0206c
TH
427/*
428 * A cgroup can be associated with multiple css_sets as different tasks may
429 * belong to different cgroups on different hierarchies. In the other
430 * direction, a css_set is naturally associated with multiple cgroups.
431 * This M:N relationship is represented by the following link structure
432 * which exists for each association and allows traversing the associations
433 * from both sides.
434 */
435struct cgrp_cset_link {
436 /* the cgroup and css_set this link associates */
437 struct cgroup *cgrp;
438 struct css_set *cset;
439
440 /* list of cgrp_cset_links anchored at cgrp->cset_links */
441 struct list_head cset_link;
442
443 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
444 struct list_head cgrp_link;
817929ec
PM
445};
446
172a2c06
TH
447/*
448 * The default css_set - used by init and its children prior to any
817929ec
PM
449 * hierarchies being mounted. It contains a pointer to the root state
450 * for each subsystem. Also used to anchor the list of css_sets. Not
451 * reference-counted, to improve performance when child cgroups
452 * haven't been created.
453 */
5024ae29 454struct css_set init_css_set = {
172a2c06
TH
455 .refcount = ATOMIC_INIT(1),
456 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
457 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
458 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
459 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
460 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
461};
817929ec 462
172a2c06 463static int css_set_count = 1; /* 1 for init_css_set */
817929ec 464
842b597e
TH
465/**
466 * cgroup_update_populated - updated populated count of a cgroup
467 * @cgrp: the target cgroup
468 * @populated: inc or dec populated count
469 *
470 * @cgrp is either getting the first task (css_set) or losing the last.
471 * Update @cgrp->populated_cnt accordingly. The count is propagated
472 * towards root so that a given cgroup's populated_cnt is zero iff the
473 * cgroup and all its descendants are empty.
474 *
475 * @cgrp's interface file "cgroup.populated" is zero if
476 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
477 * changes from or to zero, userland is notified that the content of the
478 * interface file has changed. This can be used to detect when @cgrp and
479 * its descendants become populated or empty.
480 */
481static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
482{
483 lockdep_assert_held(&css_set_rwsem);
484
485 do {
486 bool trigger;
487
488 if (populated)
489 trigger = !cgrp->populated_cnt++;
490 else
491 trigger = !--cgrp->populated_cnt;
492
493 if (!trigger)
494 break;
495
496 if (cgrp->populated_kn)
497 kernfs_notify(cgrp->populated_kn);
d51f39b0 498 cgrp = cgroup_parent(cgrp);
842b597e
TH
499 } while (cgrp);
500}
501
7717f7ba
PM
502/*
503 * hash table for cgroup groups. This improves the performance to find
504 * an existing css_set. This hash doesn't (currently) take into
505 * account cgroups in empty hierarchies.
506 */
472b1053 507#define CSS_SET_HASH_BITS 7
0ac801fe 508static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 509
0ac801fe 510static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 511{
0ac801fe 512 unsigned long key = 0UL;
30159ec7
TH
513 struct cgroup_subsys *ss;
514 int i;
472b1053 515
30159ec7 516 for_each_subsys(ss, i)
0ac801fe
LZ
517 key += (unsigned long)css[i];
518 key = (key >> 16) ^ key;
472b1053 519
0ac801fe 520 return key;
472b1053
LZ
521}
522
a25eb52e 523static void put_css_set_locked(struct css_set *cset)
b4f48b63 524{
69d0206c 525 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
526 struct cgroup_subsys *ss;
527 int ssid;
5abb8855 528
89c5509b
TH
529 lockdep_assert_held(&css_set_rwsem);
530
531 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 532 return;
81a6a5cd 533
2c6ab6d2 534 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
535 for_each_subsys(ss, ssid)
536 list_del(&cset->e_cset_node[ssid]);
5abb8855 537 hash_del(&cset->hlist);
2c6ab6d2
PM
538 css_set_count--;
539
69d0206c 540 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 541 struct cgroup *cgrp = link->cgrp;
5abb8855 542
69d0206c
TH
543 list_del(&link->cset_link);
544 list_del(&link->cgrp_link);
71b5707e 545
96d365e0 546 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
547 if (list_empty(&cgrp->cset_links)) {
548 cgroup_update_populated(cgrp, false);
a25eb52e 549 check_for_release(cgrp);
81a6a5cd 550 }
2c6ab6d2
PM
551
552 kfree(link);
81a6a5cd 553 }
2c6ab6d2 554
5abb8855 555 kfree_rcu(cset, rcu_head);
b4f48b63
PM
556}
557
a25eb52e 558static void put_css_set(struct css_set *cset)
89c5509b
TH
559{
560 /*
561 * Ensure that the refcount doesn't hit zero while any readers
562 * can see it. Similar to atomic_dec_and_lock(), but for an
563 * rwlock
564 */
565 if (atomic_add_unless(&cset->refcount, -1, 1))
566 return;
567
568 down_write(&css_set_rwsem);
a25eb52e 569 put_css_set_locked(cset);
89c5509b
TH
570 up_write(&css_set_rwsem);
571}
572
817929ec
PM
573/*
574 * refcounted get/put for css_set objects
575 */
5abb8855 576static inline void get_css_set(struct css_set *cset)
817929ec 577{
5abb8855 578 atomic_inc(&cset->refcount);
817929ec
PM
579}
580
b326f9d0 581/**
7717f7ba 582 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
583 * @cset: candidate css_set being tested
584 * @old_cset: existing css_set for a task
7717f7ba
PM
585 * @new_cgrp: cgroup that's being entered by the task
586 * @template: desired set of css pointers in css_set (pre-calculated)
587 *
6f4b7e63 588 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
589 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
590 */
5abb8855
TH
591static bool compare_css_sets(struct css_set *cset,
592 struct css_set *old_cset,
7717f7ba
PM
593 struct cgroup *new_cgrp,
594 struct cgroup_subsys_state *template[])
595{
596 struct list_head *l1, *l2;
597
aec3dfcb
TH
598 /*
599 * On the default hierarchy, there can be csets which are
600 * associated with the same set of cgroups but different csses.
601 * Let's first ensure that csses match.
602 */
603 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 604 return false;
7717f7ba
PM
605
606 /*
607 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
608 * different cgroups in hierarchies. As different cgroups may
609 * share the same effective css, this comparison is always
610 * necessary.
7717f7ba 611 */
69d0206c
TH
612 l1 = &cset->cgrp_links;
613 l2 = &old_cset->cgrp_links;
7717f7ba 614 while (1) {
69d0206c 615 struct cgrp_cset_link *link1, *link2;
5abb8855 616 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
617
618 l1 = l1->next;
619 l2 = l2->next;
620 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
621 if (l1 == &cset->cgrp_links) {
622 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
623 break;
624 } else {
69d0206c 625 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
626 }
627 /* Locate the cgroups associated with these links. */
69d0206c
TH
628 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
629 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
630 cgrp1 = link1->cgrp;
631 cgrp2 = link2->cgrp;
7717f7ba 632 /* Hierarchies should be linked in the same order. */
5abb8855 633 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
634
635 /*
636 * If this hierarchy is the hierarchy of the cgroup
637 * that's changing, then we need to check that this
638 * css_set points to the new cgroup; if it's any other
639 * hierarchy, then this css_set should point to the
640 * same cgroup as the old css_set.
641 */
5abb8855
TH
642 if (cgrp1->root == new_cgrp->root) {
643 if (cgrp1 != new_cgrp)
7717f7ba
PM
644 return false;
645 } else {
5abb8855 646 if (cgrp1 != cgrp2)
7717f7ba
PM
647 return false;
648 }
649 }
650 return true;
651}
652
b326f9d0
TH
653/**
654 * find_existing_css_set - init css array and find the matching css_set
655 * @old_cset: the css_set that we're using before the cgroup transition
656 * @cgrp: the cgroup that we're moving into
657 * @template: out param for the new set of csses, should be clear on entry
817929ec 658 */
5abb8855
TH
659static struct css_set *find_existing_css_set(struct css_set *old_cset,
660 struct cgroup *cgrp,
661 struct cgroup_subsys_state *template[])
b4f48b63 662{
3dd06ffa 663 struct cgroup_root *root = cgrp->root;
30159ec7 664 struct cgroup_subsys *ss;
5abb8855 665 struct css_set *cset;
0ac801fe 666 unsigned long key;
b326f9d0 667 int i;
817929ec 668
aae8aab4
BB
669 /*
670 * Build the set of subsystem state objects that we want to see in the
671 * new css_set. while subsystems can change globally, the entries here
672 * won't change, so no need for locking.
673 */
30159ec7 674 for_each_subsys(ss, i) {
f392e51c 675 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
676 /*
677 * @ss is in this hierarchy, so we want the
678 * effective css from @cgrp.
679 */
680 template[i] = cgroup_e_css(cgrp, ss);
817929ec 681 } else {
aec3dfcb
TH
682 /*
683 * @ss is not in this hierarchy, so we don't want
684 * to change the css.
685 */
5abb8855 686 template[i] = old_cset->subsys[i];
817929ec
PM
687 }
688 }
689
0ac801fe 690 key = css_set_hash(template);
5abb8855
TH
691 hash_for_each_possible(css_set_table, cset, hlist, key) {
692 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
693 continue;
694
695 /* This css_set matches what we need */
5abb8855 696 return cset;
472b1053 697 }
817929ec
PM
698
699 /* No existing cgroup group matched */
700 return NULL;
701}
702
69d0206c 703static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 704{
69d0206c 705 struct cgrp_cset_link *link, *tmp_link;
36553434 706
69d0206c
TH
707 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
708 list_del(&link->cset_link);
36553434
LZ
709 kfree(link);
710 }
711}
712
69d0206c
TH
713/**
714 * allocate_cgrp_cset_links - allocate cgrp_cset_links
715 * @count: the number of links to allocate
716 * @tmp_links: list_head the allocated links are put on
717 *
718 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
719 * through ->cset_link. Returns 0 on success or -errno.
817929ec 720 */
69d0206c 721static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 722{
69d0206c 723 struct cgrp_cset_link *link;
817929ec 724 int i;
69d0206c
TH
725
726 INIT_LIST_HEAD(tmp_links);
727
817929ec 728 for (i = 0; i < count; i++) {
f4f4be2b 729 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 730 if (!link) {
69d0206c 731 free_cgrp_cset_links(tmp_links);
817929ec
PM
732 return -ENOMEM;
733 }
69d0206c 734 list_add(&link->cset_link, tmp_links);
817929ec
PM
735 }
736 return 0;
737}
738
c12f65d4
LZ
739/**
740 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 741 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 742 * @cset: the css_set to be linked
c12f65d4
LZ
743 * @cgrp: the destination cgroup
744 */
69d0206c
TH
745static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
746 struct cgroup *cgrp)
c12f65d4 747{
69d0206c 748 struct cgrp_cset_link *link;
c12f65d4 749
69d0206c 750 BUG_ON(list_empty(tmp_links));
6803c006
TH
751
752 if (cgroup_on_dfl(cgrp))
753 cset->dfl_cgrp = cgrp;
754
69d0206c
TH
755 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
756 link->cset = cset;
7717f7ba 757 link->cgrp = cgrp;
842b597e
TH
758
759 if (list_empty(&cgrp->cset_links))
760 cgroup_update_populated(cgrp, true);
69d0206c 761 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 762
7717f7ba
PM
763 /*
764 * Always add links to the tail of the list so that the list
765 * is sorted by order of hierarchy creation
766 */
69d0206c 767 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
768}
769
b326f9d0
TH
770/**
771 * find_css_set - return a new css_set with one cgroup updated
772 * @old_cset: the baseline css_set
773 * @cgrp: the cgroup to be updated
774 *
775 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
776 * substituted into the appropriate hierarchy.
817929ec 777 */
5abb8855
TH
778static struct css_set *find_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp)
817929ec 780{
b326f9d0 781 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 782 struct css_set *cset;
69d0206c
TH
783 struct list_head tmp_links;
784 struct cgrp_cset_link *link;
2d8f243a 785 struct cgroup_subsys *ss;
0ac801fe 786 unsigned long key;
2d8f243a 787 int ssid;
472b1053 788
b326f9d0
TH
789 lockdep_assert_held(&cgroup_mutex);
790
817929ec
PM
791 /* First see if we already have a cgroup group that matches
792 * the desired set */
96d365e0 793 down_read(&css_set_rwsem);
5abb8855
TH
794 cset = find_existing_css_set(old_cset, cgrp, template);
795 if (cset)
796 get_css_set(cset);
96d365e0 797 up_read(&css_set_rwsem);
817929ec 798
5abb8855
TH
799 if (cset)
800 return cset;
817929ec 801
f4f4be2b 802 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 803 if (!cset)
817929ec
PM
804 return NULL;
805
69d0206c 806 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 807 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 808 kfree(cset);
817929ec
PM
809 return NULL;
810 }
811
5abb8855 812 atomic_set(&cset->refcount, 1);
69d0206c 813 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 814 INIT_LIST_HEAD(&cset->tasks);
c7561128 815 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 816 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 817 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 818 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
819
820 /* Copy the set of subsystem state objects generated in
821 * find_existing_css_set() */
5abb8855 822 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 823
96d365e0 824 down_write(&css_set_rwsem);
817929ec 825 /* Add reference counts and links from the new css_set. */
69d0206c 826 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 827 struct cgroup *c = link->cgrp;
69d0206c 828
7717f7ba
PM
829 if (c->root == cgrp->root)
830 c = cgrp;
69d0206c 831 link_css_set(&tmp_links, cset, c);
7717f7ba 832 }
817929ec 833
69d0206c 834 BUG_ON(!list_empty(&tmp_links));
817929ec 835
817929ec 836 css_set_count++;
472b1053 837
2d8f243a 838 /* Add @cset to the hash table */
5abb8855
TH
839 key = css_set_hash(cset->subsys);
840 hash_add(css_set_table, &cset->hlist, key);
472b1053 841
2d8f243a
TH
842 for_each_subsys(ss, ssid)
843 list_add_tail(&cset->e_cset_node[ssid],
844 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
845
96d365e0 846 up_write(&css_set_rwsem);
817929ec 847
5abb8855 848 return cset;
b4f48b63
PM
849}
850
3dd06ffa 851static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 852{
3dd06ffa 853 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 854
3dd06ffa 855 return root_cgrp->root;
2bd59d48
TH
856}
857
3dd06ffa 858static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
859{
860 int id;
861
862 lockdep_assert_held(&cgroup_mutex);
863
985ed670 864 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
865 if (id < 0)
866 return id;
867
868 root->hierarchy_id = id;
869 return 0;
870}
871
3dd06ffa 872static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
873{
874 lockdep_assert_held(&cgroup_mutex);
875
876 if (root->hierarchy_id) {
877 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
878 root->hierarchy_id = 0;
879 }
880}
881
3dd06ffa 882static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
883{
884 if (root) {
885 /* hierarhcy ID shoulid already have been released */
886 WARN_ON_ONCE(root->hierarchy_id);
887
888 idr_destroy(&root->cgroup_idr);
889 kfree(root);
890 }
891}
892
3dd06ffa 893static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 894{
3dd06ffa 895 struct cgroup *cgrp = &root->cgrp;
f2e85d57 896 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 897
2bd59d48 898 mutex_lock(&cgroup_mutex);
f2e85d57 899
776f02fa 900 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 901 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 902
f2e85d57 903 /* Rebind all subsystems back to the default hierarchy */
f392e51c 904 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 905
7717f7ba 906 /*
f2e85d57
TH
907 * Release all the links from cset_links to this hierarchy's
908 * root cgroup
7717f7ba 909 */
96d365e0 910 down_write(&css_set_rwsem);
f2e85d57
TH
911
912 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
913 list_del(&link->cset_link);
914 list_del(&link->cgrp_link);
915 kfree(link);
916 }
96d365e0 917 up_write(&css_set_rwsem);
f2e85d57
TH
918
919 if (!list_empty(&root->root_list)) {
920 list_del(&root->root_list);
921 cgroup_root_count--;
922 }
923
924 cgroup_exit_root_id(root);
925
926 mutex_unlock(&cgroup_mutex);
f2e85d57 927
2bd59d48 928 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
929 cgroup_free_root(root);
930}
931
ceb6a081
TH
932/* look up cgroup associated with given css_set on the specified hierarchy */
933static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 934 struct cgroup_root *root)
7717f7ba 935{
7717f7ba
PM
936 struct cgroup *res = NULL;
937
96d365e0
TH
938 lockdep_assert_held(&cgroup_mutex);
939 lockdep_assert_held(&css_set_rwsem);
940
5abb8855 941 if (cset == &init_css_set) {
3dd06ffa 942 res = &root->cgrp;
7717f7ba 943 } else {
69d0206c
TH
944 struct cgrp_cset_link *link;
945
946 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 947 struct cgroup *c = link->cgrp;
69d0206c 948
7717f7ba
PM
949 if (c->root == root) {
950 res = c;
951 break;
952 }
953 }
954 }
96d365e0 955
7717f7ba
PM
956 BUG_ON(!res);
957 return res;
958}
959
ddbcc7e8 960/*
ceb6a081
TH
961 * Return the cgroup for "task" from the given hierarchy. Must be
962 * called with cgroup_mutex and css_set_rwsem held.
963 */
964static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 965 struct cgroup_root *root)
ceb6a081
TH
966{
967 /*
968 * No need to lock the task - since we hold cgroup_mutex the
969 * task can't change groups, so the only thing that can happen
970 * is that it exits and its css is set back to init_css_set.
971 */
972 return cset_cgroup_from_root(task_css_set(task), root);
973}
974
ddbcc7e8 975/*
ddbcc7e8
PM
976 * A task must hold cgroup_mutex to modify cgroups.
977 *
978 * Any task can increment and decrement the count field without lock.
979 * So in general, code holding cgroup_mutex can't rely on the count
980 * field not changing. However, if the count goes to zero, then only
956db3ca 981 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
982 * means that no tasks are currently attached, therefore there is no
983 * way a task attached to that cgroup can fork (the other way to
984 * increment the count). So code holding cgroup_mutex can safely
985 * assume that if the count is zero, it will stay zero. Similarly, if
986 * a task holds cgroup_mutex on a cgroup with zero count, it
987 * knows that the cgroup won't be removed, as cgroup_rmdir()
988 * needs that mutex.
989 *
ddbcc7e8
PM
990 * A cgroup can only be deleted if both its 'count' of using tasks
991 * is zero, and its list of 'children' cgroups is empty. Since all
992 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 993 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 994 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 995 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
996 *
997 * P.S. One more locking exception. RCU is used to guard the
956db3ca 998 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
999 */
1000
69dfa00c 1001static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 1002static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1003static const struct file_operations proc_cgroupstats_operations;
a424316c 1004
8d7e6fb0
TH
1005static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1006 char *buf)
ddbcc7e8 1007{
8d7e6fb0
TH
1008 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1009 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1010 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1011 cft->ss->name, cft->name);
1012 else
1013 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1014 return buf;
ddbcc7e8
PM
1015}
1016
f2e85d57
TH
1017/**
1018 * cgroup_file_mode - deduce file mode of a control file
1019 * @cft: the control file in question
1020 *
1021 * returns cft->mode if ->mode is not 0
1022 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1023 * returns S_IRUGO if it has only a read handler
1024 * returns S_IWUSR if it has only a write hander
1025 */
1026static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1027{
f2e85d57 1028 umode_t mode = 0;
65dff759 1029
f2e85d57
TH
1030 if (cft->mode)
1031 return cft->mode;
1032
1033 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1034 mode |= S_IRUGO;
1035
6770c64e 1036 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1037 mode |= S_IWUSR;
1038
1039 return mode;
65dff759
LZ
1040}
1041
59f5296b 1042static void cgroup_get(struct cgroup *cgrp)
be445626 1043{
2bd59d48 1044 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1045 css_get(&cgrp->self);
be445626
LZ
1046}
1047
aa32362f
LZ
1048static bool cgroup_tryget(struct cgroup *cgrp)
1049{
1050 return css_tryget(&cgrp->self);
1051}
1052
59f5296b 1053static void cgroup_put(struct cgroup *cgrp)
be445626 1054{
9d755d33 1055 css_put(&cgrp->self);
be445626
LZ
1056}
1057
af0ba678 1058/**
0f060deb 1059 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1060 * @cgrp: the target cgroup
0f060deb 1061 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1062 *
1063 * On the default hierarchy, a subsystem may request other subsystems to be
1064 * enabled together through its ->depends_on mask. In such cases, more
1065 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1066 *
0f060deb
TH
1067 * This function calculates which subsystems need to be enabled if
1068 * @subtree_control is to be applied to @cgrp. The returned mask is always
1069 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1070 */
0f060deb
TH
1071static unsigned int cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1072 unsigned int subtree_control)
667c2491 1073{
af0ba678 1074 struct cgroup *parent = cgroup_parent(cgrp);
0f060deb 1075 unsigned int cur_ss_mask = subtree_control;
af0ba678
TH
1076 struct cgroup_subsys *ss;
1077 int ssid;
1078
1079 lockdep_assert_held(&cgroup_mutex);
1080
0f060deb
TH
1081 if (!cgroup_on_dfl(cgrp))
1082 return cur_ss_mask;
af0ba678
TH
1083
1084 while (true) {
1085 unsigned int new_ss_mask = cur_ss_mask;
1086
1087 for_each_subsys(ss, ssid)
1088 if (cur_ss_mask & (1 << ssid))
1089 new_ss_mask |= ss->depends_on;
1090
1091 /*
1092 * Mask out subsystems which aren't available. This can
1093 * happen only if some depended-upon subsystems were bound
1094 * to non-default hierarchies.
1095 */
1096 if (parent)
1097 new_ss_mask &= parent->child_subsys_mask;
1098 else
1099 new_ss_mask &= cgrp->root->subsys_mask;
1100
1101 if (new_ss_mask == cur_ss_mask)
1102 break;
1103 cur_ss_mask = new_ss_mask;
1104 }
1105
0f060deb
TH
1106 return cur_ss_mask;
1107}
1108
1109/**
1110 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1111 * @cgrp: the target cgroup
1112 *
1113 * Update @cgrp->child_subsys_mask according to the current
1114 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1115 */
1116static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1117{
1118 cgrp->child_subsys_mask =
1119 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1120}
1121
a9746d8d
TH
1122/**
1123 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1124 * @kn: the kernfs_node being serviced
1125 *
1126 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1127 * the method finishes if locking succeeded. Note that once this function
1128 * returns the cgroup returned by cgroup_kn_lock_live() may become
1129 * inaccessible any time. If the caller intends to continue to access the
1130 * cgroup, it should pin it before invoking this function.
1131 */
1132static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1133{
a9746d8d
TH
1134 struct cgroup *cgrp;
1135
1136 if (kernfs_type(kn) == KERNFS_DIR)
1137 cgrp = kn->priv;
1138 else
1139 cgrp = kn->parent->priv;
1140
1141 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1142
1143 kernfs_unbreak_active_protection(kn);
1144 cgroup_put(cgrp);
ddbcc7e8
PM
1145}
1146
a9746d8d
TH
1147/**
1148 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1149 * @kn: the kernfs_node being serviced
1150 *
1151 * This helper is to be used by a cgroup kernfs method currently servicing
1152 * @kn. It breaks the active protection, performs cgroup locking and
1153 * verifies that the associated cgroup is alive. Returns the cgroup if
1154 * alive; otherwise, %NULL. A successful return should be undone by a
1155 * matching cgroup_kn_unlock() invocation.
1156 *
1157 * Any cgroup kernfs method implementation which requires locking the
1158 * associated cgroup should use this helper. It avoids nesting cgroup
1159 * locking under kernfs active protection and allows all kernfs operations
1160 * including self-removal.
1161 */
1162static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1163{
a9746d8d
TH
1164 struct cgroup *cgrp;
1165
1166 if (kernfs_type(kn) == KERNFS_DIR)
1167 cgrp = kn->priv;
1168 else
1169 cgrp = kn->parent->priv;
05ef1d7c 1170
2739d3cc 1171 /*
01f6474c 1172 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1173 * active_ref. cgroup liveliness check alone provides enough
1174 * protection against removal. Ensure @cgrp stays accessible and
1175 * break the active_ref protection.
2739d3cc 1176 */
aa32362f
LZ
1177 if (!cgroup_tryget(cgrp))
1178 return NULL;
a9746d8d
TH
1179 kernfs_break_active_protection(kn);
1180
2bd59d48 1181 mutex_lock(&cgroup_mutex);
05ef1d7c 1182
a9746d8d
TH
1183 if (!cgroup_is_dead(cgrp))
1184 return cgrp;
1185
1186 cgroup_kn_unlock(kn);
1187 return NULL;
ddbcc7e8 1188}
05ef1d7c 1189
2739d3cc 1190static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1191{
2bd59d48 1192 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1193
01f6474c 1194 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1195 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1196}
1197
13af07df 1198/**
628f7cd4 1199 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1200 * @cgrp: target cgroup
13af07df
AR
1201 * @subsys_mask: mask of the subsystem ids whose files should be removed
1202 */
69dfa00c 1203static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1204{
13af07df 1205 struct cgroup_subsys *ss;
b420ba7d 1206 int i;
05ef1d7c 1207
b420ba7d 1208 for_each_subsys(ss, i) {
0adb0704 1209 struct cftype *cfts;
b420ba7d 1210
69dfa00c 1211 if (!(subsys_mask & (1 << i)))
13af07df 1212 continue;
0adb0704
TH
1213 list_for_each_entry(cfts, &ss->cfts, node)
1214 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1215 }
ddbcc7e8
PM
1216}
1217
69dfa00c 1218static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1219{
30159ec7 1220 struct cgroup_subsys *ss;
5533e011 1221 unsigned int tmp_ss_mask;
2d8f243a 1222 int ssid, i, ret;
ddbcc7e8 1223
ace2bee8 1224 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1225
5df36032
TH
1226 for_each_subsys(ss, ssid) {
1227 if (!(ss_mask & (1 << ssid)))
1228 continue;
aae8aab4 1229
7fd8c565
TH
1230 /* if @ss has non-root csses attached to it, can't move */
1231 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1232 return -EBUSY;
1d5be6b2 1233
5df36032 1234 /* can't move between two non-dummy roots either */
7fd8c565 1235 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1236 return -EBUSY;
ddbcc7e8
PM
1237 }
1238
5533e011
TH
1239 /* skip creating root files on dfl_root for inhibited subsystems */
1240 tmp_ss_mask = ss_mask;
1241 if (dst_root == &cgrp_dfl_root)
1242 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1243
1244 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1245 if (ret) {
1246 if (dst_root != &cgrp_dfl_root)
5df36032 1247 return ret;
ddbcc7e8 1248
a2dd4247
TH
1249 /*
1250 * Rebinding back to the default root is not allowed to
1251 * fail. Using both default and non-default roots should
1252 * be rare. Moving subsystems back and forth even more so.
1253 * Just warn about it and continue.
1254 */
1255 if (cgrp_dfl_root_visible) {
69dfa00c 1256 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1257 ret, ss_mask);
ed3d261b 1258 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1259 }
5df36032 1260 }
3126121f
TH
1261
1262 /*
1263 * Nothing can fail from this point on. Remove files for the
1264 * removed subsystems and rebind each subsystem.
1265 */
5df36032 1266 for_each_subsys(ss, ssid)
a2dd4247 1267 if (ss_mask & (1 << ssid))
3dd06ffa 1268 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1269
5df36032 1270 for_each_subsys(ss, ssid) {
3dd06ffa 1271 struct cgroup_root *src_root;
5df36032 1272 struct cgroup_subsys_state *css;
2d8f243a 1273 struct css_set *cset;
a8a648c4 1274
5df36032
TH
1275 if (!(ss_mask & (1 << ssid)))
1276 continue;
a8a648c4 1277
5df36032 1278 src_root = ss->root;
3dd06ffa 1279 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1280
3dd06ffa 1281 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1282
3dd06ffa
TH
1283 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1284 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1285 ss->root = dst_root;
3dd06ffa 1286 css->cgroup = &dst_root->cgrp;
73e80ed8 1287
2d8f243a
TH
1288 down_write(&css_set_rwsem);
1289 hash_for_each(css_set_table, i, cset, hlist)
1290 list_move_tail(&cset->e_cset_node[ss->id],
1291 &dst_root->cgrp.e_csets[ss->id]);
1292 up_write(&css_set_rwsem);
1293
f392e51c 1294 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1295 src_root->cgrp.subtree_control &= ~(1 << ssid);
1296 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1297
bd53d617 1298 /* default hierarchy doesn't enable controllers by default */
f392e51c 1299 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1300 if (dst_root != &cgrp_dfl_root) {
1301 dst_root->cgrp.subtree_control |= 1 << ssid;
1302 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1303 }
a8a648c4 1304
5df36032
TH
1305 if (ss->bind)
1306 ss->bind(css);
ddbcc7e8 1307 }
ddbcc7e8 1308
a2dd4247 1309 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1310 return 0;
1311}
1312
2bd59d48
TH
1313static int cgroup_show_options(struct seq_file *seq,
1314 struct kernfs_root *kf_root)
ddbcc7e8 1315{
3dd06ffa 1316 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1317 struct cgroup_subsys *ss;
b85d2040 1318 int ssid;
ddbcc7e8 1319
b85d2040 1320 for_each_subsys(ss, ssid)
f392e51c 1321 if (root->subsys_mask & (1 << ssid))
b85d2040 1322 seq_printf(seq, ",%s", ss->name);
93438629 1323 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1324 seq_puts(seq, ",noprefix");
93438629 1325 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1326 seq_puts(seq, ",xattr");
69e943b7
TH
1327
1328 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1329 if (strlen(root->release_agent_path))
1330 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1331 spin_unlock(&release_agent_path_lock);
1332
3dd06ffa 1333 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1334 seq_puts(seq, ",clone_children");
c6d57f33
PM
1335 if (strlen(root->name))
1336 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1337 return 0;
1338}
1339
1340struct cgroup_sb_opts {
69dfa00c
TH
1341 unsigned int subsys_mask;
1342 unsigned int flags;
81a6a5cd 1343 char *release_agent;
2260e7fc 1344 bool cpuset_clone_children;
c6d57f33 1345 char *name;
2c6ab6d2
PM
1346 /* User explicitly requested empty subsystem */
1347 bool none;
ddbcc7e8
PM
1348};
1349
cf5d5941 1350static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1351{
32a8cf23
DL
1352 char *token, *o = data;
1353 bool all_ss = false, one_ss = false;
69dfa00c 1354 unsigned int mask = -1U;
30159ec7 1355 struct cgroup_subsys *ss;
7b9a6ba5 1356 int nr_opts = 0;
30159ec7 1357 int i;
f9ab5b5b
LZ
1358
1359#ifdef CONFIG_CPUSETS
69dfa00c 1360 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1361#endif
ddbcc7e8 1362
c6d57f33 1363 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1364
1365 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1366 nr_opts++;
1367
ddbcc7e8
PM
1368 if (!*token)
1369 return -EINVAL;
32a8cf23 1370 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1371 /* Explicitly have no subsystems */
1372 opts->none = true;
32a8cf23
DL
1373 continue;
1374 }
1375 if (!strcmp(token, "all")) {
1376 /* Mutually exclusive option 'all' + subsystem name */
1377 if (one_ss)
1378 return -EINVAL;
1379 all_ss = true;
1380 continue;
1381 }
873fe09e
TH
1382 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1383 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1384 continue;
1385 }
32a8cf23 1386 if (!strcmp(token, "noprefix")) {
93438629 1387 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1388 continue;
1389 }
1390 if (!strcmp(token, "clone_children")) {
2260e7fc 1391 opts->cpuset_clone_children = true;
32a8cf23
DL
1392 continue;
1393 }
03b1cde6 1394 if (!strcmp(token, "xattr")) {
93438629 1395 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1396 continue;
1397 }
32a8cf23 1398 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1399 /* Specifying two release agents is forbidden */
1400 if (opts->release_agent)
1401 return -EINVAL;
c6d57f33 1402 opts->release_agent =
e400c285 1403 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1404 if (!opts->release_agent)
1405 return -ENOMEM;
32a8cf23
DL
1406 continue;
1407 }
1408 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1409 const char *name = token + 5;
1410 /* Can't specify an empty name */
1411 if (!strlen(name))
1412 return -EINVAL;
1413 /* Must match [\w.-]+ */
1414 for (i = 0; i < strlen(name); i++) {
1415 char c = name[i];
1416 if (isalnum(c))
1417 continue;
1418 if ((c == '.') || (c == '-') || (c == '_'))
1419 continue;
1420 return -EINVAL;
1421 }
1422 /* Specifying two names is forbidden */
1423 if (opts->name)
1424 return -EINVAL;
1425 opts->name = kstrndup(name,
e400c285 1426 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1427 GFP_KERNEL);
1428 if (!opts->name)
1429 return -ENOMEM;
32a8cf23
DL
1430
1431 continue;
1432 }
1433
30159ec7 1434 for_each_subsys(ss, i) {
32a8cf23
DL
1435 if (strcmp(token, ss->name))
1436 continue;
1437 if (ss->disabled)
1438 continue;
1439
1440 /* Mutually exclusive option 'all' + subsystem name */
1441 if (all_ss)
1442 return -EINVAL;
69dfa00c 1443 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1444 one_ss = true;
1445
1446 break;
1447 }
1448 if (i == CGROUP_SUBSYS_COUNT)
1449 return -ENOENT;
1450 }
1451
873fe09e 1452 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1453 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1454 if (nr_opts != 1) {
1455 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1456 return -EINVAL;
1457 }
7b9a6ba5 1458 return 0;
873fe09e
TH
1459 }
1460
7b9a6ba5
TH
1461 /*
1462 * If the 'all' option was specified select all the subsystems,
1463 * otherwise if 'none', 'name=' and a subsystem name options were
1464 * not specified, let's default to 'all'
1465 */
1466 if (all_ss || (!one_ss && !opts->none && !opts->name))
1467 for_each_subsys(ss, i)
1468 if (!ss->disabled)
1469 opts->subsys_mask |= (1 << i);
1470
1471 /*
1472 * We either have to specify by name or by subsystems. (So all
1473 * empty hierarchies must have a name).
1474 */
1475 if (!opts->subsys_mask && !opts->name)
1476 return -EINVAL;
1477
f9ab5b5b
LZ
1478 /*
1479 * Option noprefix was introduced just for backward compatibility
1480 * with the old cpuset, so we allow noprefix only if mounting just
1481 * the cpuset subsystem.
1482 */
93438629 1483 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1484 return -EINVAL;
1485
2c6ab6d2 1486 /* Can't specify "none" and some subsystems */
a1a71b45 1487 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1488 return -EINVAL;
1489
ddbcc7e8
PM
1490 return 0;
1491}
1492
2bd59d48 1493static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1494{
1495 int ret = 0;
3dd06ffa 1496 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1497 struct cgroup_sb_opts opts;
69dfa00c 1498 unsigned int added_mask, removed_mask;
ddbcc7e8 1499
aa6ec29b
TH
1500 if (root == &cgrp_dfl_root) {
1501 pr_err("remount is not allowed\n");
873fe09e
TH
1502 return -EINVAL;
1503 }
1504
ddbcc7e8
PM
1505 mutex_lock(&cgroup_mutex);
1506
1507 /* See what subsystems are wanted */
1508 ret = parse_cgroupfs_options(data, &opts);
1509 if (ret)
1510 goto out_unlock;
1511
f392e51c 1512 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1513 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1514 task_tgid_nr(current), current->comm);
8b5a5a9d 1515
f392e51c
TH
1516 added_mask = opts.subsys_mask & ~root->subsys_mask;
1517 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1518
cf5d5941 1519 /* Don't allow flags or name to change at remount */
7450e90b 1520 if ((opts.flags ^ root->flags) ||
cf5d5941 1521 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1522 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1523 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1524 ret = -EINVAL;
1525 goto out_unlock;
1526 }
1527
f172e67c 1528 /* remounting is not allowed for populated hierarchies */
d5c419b6 1529 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1530 ret = -EBUSY;
0670e08b 1531 goto out_unlock;
cf5d5941 1532 }
ddbcc7e8 1533
5df36032 1534 ret = rebind_subsystems(root, added_mask);
3126121f 1535 if (ret)
0670e08b 1536 goto out_unlock;
ddbcc7e8 1537
3dd06ffa 1538 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1539
69e943b7
TH
1540 if (opts.release_agent) {
1541 spin_lock(&release_agent_path_lock);
81a6a5cd 1542 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1543 spin_unlock(&release_agent_path_lock);
1544 }
ddbcc7e8 1545 out_unlock:
66bdc9cf 1546 kfree(opts.release_agent);
c6d57f33 1547 kfree(opts.name);
ddbcc7e8 1548 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1549 return ret;
1550}
1551
afeb0f9f
TH
1552/*
1553 * To reduce the fork() overhead for systems that are not actually using
1554 * their cgroups capability, we don't maintain the lists running through
1555 * each css_set to its tasks until we see the list actually used - in other
1556 * words after the first mount.
1557 */
1558static bool use_task_css_set_links __read_mostly;
1559
1560static void cgroup_enable_task_cg_lists(void)
1561{
1562 struct task_struct *p, *g;
1563
96d365e0 1564 down_write(&css_set_rwsem);
afeb0f9f
TH
1565
1566 if (use_task_css_set_links)
1567 goto out_unlock;
1568
1569 use_task_css_set_links = true;
1570
1571 /*
1572 * We need tasklist_lock because RCU is not safe against
1573 * while_each_thread(). Besides, a forking task that has passed
1574 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1575 * is not guaranteed to have its child immediately visible in the
1576 * tasklist if we walk through it with RCU.
1577 */
1578 read_lock(&tasklist_lock);
1579 do_each_thread(g, p) {
afeb0f9f
TH
1580 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1581 task_css_set(p) != &init_css_set);
1582
1583 /*
1584 * We should check if the process is exiting, otherwise
1585 * it will race with cgroup_exit() in that the list
1586 * entry won't be deleted though the process has exited.
f153ad11
TH
1587 * Do it while holding siglock so that we don't end up
1588 * racing against cgroup_exit().
afeb0f9f 1589 */
f153ad11 1590 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1591 if (!(p->flags & PF_EXITING)) {
1592 struct css_set *cset = task_css_set(p);
1593
1594 list_add(&p->cg_list, &cset->tasks);
1595 get_css_set(cset);
1596 }
f153ad11 1597 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1598 } while_each_thread(g, p);
1599 read_unlock(&tasklist_lock);
1600out_unlock:
96d365e0 1601 up_write(&css_set_rwsem);
afeb0f9f 1602}
ddbcc7e8 1603
cc31edce
PM
1604static void init_cgroup_housekeeping(struct cgroup *cgrp)
1605{
2d8f243a
TH
1606 struct cgroup_subsys *ss;
1607 int ssid;
1608
d5c419b6
TH
1609 INIT_LIST_HEAD(&cgrp->self.sibling);
1610 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1611 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1612 INIT_LIST_HEAD(&cgrp->pidlists);
1613 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1614 cgrp->self.cgroup = cgrp;
184faf32 1615 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1616
1617 for_each_subsys(ss, ssid)
1618 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1619
1620 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1621 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1622}
c6d57f33 1623
3dd06ffa 1624static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1625 struct cgroup_sb_opts *opts)
ddbcc7e8 1626{
3dd06ffa 1627 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1628
ddbcc7e8 1629 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1630 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1631 cgrp->root = root;
cc31edce 1632 init_cgroup_housekeeping(cgrp);
4e96ee8e 1633 idr_init(&root->cgroup_idr);
c6d57f33 1634
c6d57f33
PM
1635 root->flags = opts->flags;
1636 if (opts->release_agent)
1637 strcpy(root->release_agent_path, opts->release_agent);
1638 if (opts->name)
1639 strcpy(root->name, opts->name);
2260e7fc 1640 if (opts->cpuset_clone_children)
3dd06ffa 1641 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1642}
1643
69dfa00c 1644static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1645{
d427dfeb 1646 LIST_HEAD(tmp_links);
3dd06ffa 1647 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1648 struct cftype *base_files;
d427dfeb 1649 struct css_set *cset;
d427dfeb 1650 int i, ret;
2c6ab6d2 1651
d427dfeb 1652 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1653
6fa4918d 1654 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1655 if (ret < 0)
2bd59d48 1656 goto out;
d427dfeb 1657 root_cgrp->id = ret;
c6d57f33 1658
2aad2a86
TH
1659 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1660 GFP_KERNEL);
9d755d33
TH
1661 if (ret)
1662 goto out;
1663
d427dfeb 1664 /*
96d365e0 1665 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1666 * but that's OK - it can only be increased by someone holding
1667 * cgroup_lock, and that's us. The worst that can happen is that we
1668 * have some link structures left over
1669 */
1670 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1671 if (ret)
9d755d33 1672 goto cancel_ref;
ddbcc7e8 1673
985ed670 1674 ret = cgroup_init_root_id(root);
ddbcc7e8 1675 if (ret)
9d755d33 1676 goto cancel_ref;
ddbcc7e8 1677
2bd59d48
TH
1678 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1679 KERNFS_ROOT_CREATE_DEACTIVATED,
1680 root_cgrp);
1681 if (IS_ERR(root->kf_root)) {
1682 ret = PTR_ERR(root->kf_root);
1683 goto exit_root_id;
1684 }
1685 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1686
a14c6874
TH
1687 if (root == &cgrp_dfl_root)
1688 base_files = cgroup_dfl_base_files;
1689 else
1690 base_files = cgroup_legacy_base_files;
1691
1692 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1693 if (ret)
2bd59d48 1694 goto destroy_root;
ddbcc7e8 1695
5df36032 1696 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1697 if (ret)
2bd59d48 1698 goto destroy_root;
ddbcc7e8 1699
d427dfeb
TH
1700 /*
1701 * There must be no failure case after here, since rebinding takes
1702 * care of subsystems' refcounts, which are explicitly dropped in
1703 * the failure exit path.
1704 */
1705 list_add(&root->root_list, &cgroup_roots);
1706 cgroup_root_count++;
0df6a63f 1707
d427dfeb 1708 /*
3dd06ffa 1709 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1710 * objects.
1711 */
96d365e0 1712 down_write(&css_set_rwsem);
d427dfeb
TH
1713 hash_for_each(css_set_table, i, cset, hlist)
1714 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1715 up_write(&css_set_rwsem);
ddbcc7e8 1716
d5c419b6 1717 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1718 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1719
2bd59d48 1720 kernfs_activate(root_cgrp->kn);
d427dfeb 1721 ret = 0;
2bd59d48 1722 goto out;
d427dfeb 1723
2bd59d48
TH
1724destroy_root:
1725 kernfs_destroy_root(root->kf_root);
1726 root->kf_root = NULL;
1727exit_root_id:
d427dfeb 1728 cgroup_exit_root_id(root);
9d755d33 1729cancel_ref:
9a1049da 1730 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1731out:
d427dfeb
TH
1732 free_cgrp_cset_links(&tmp_links);
1733 return ret;
ddbcc7e8
PM
1734}
1735
f7e83571 1736static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1737 int flags, const char *unused_dev_name,
f7e83571 1738 void *data)
ddbcc7e8 1739{
3a32bd72 1740 struct super_block *pinned_sb = NULL;
970317aa 1741 struct cgroup_subsys *ss;
3dd06ffa 1742 struct cgroup_root *root;
ddbcc7e8 1743 struct cgroup_sb_opts opts;
2bd59d48 1744 struct dentry *dentry;
8e30e2b8 1745 int ret;
970317aa 1746 int i;
c6b3d5bc 1747 bool new_sb;
ddbcc7e8 1748
56fde9e0
TH
1749 /*
1750 * The first time anyone tries to mount a cgroup, enable the list
1751 * linking each css_set to its tasks and fix up all existing tasks.
1752 */
1753 if (!use_task_css_set_links)
1754 cgroup_enable_task_cg_lists();
e37a06f1 1755
aae8aab4 1756 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1757
1758 /* First find the desired set of subsystems */
ddbcc7e8 1759 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1760 if (ret)
8e30e2b8 1761 goto out_unlock;
a015edd2 1762
2bd59d48 1763 /* look for a matching existing root */
7b9a6ba5 1764 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1765 cgrp_dfl_root_visible = true;
1766 root = &cgrp_dfl_root;
1767 cgroup_get(&root->cgrp);
1768 ret = 0;
1769 goto out_unlock;
ddbcc7e8
PM
1770 }
1771
970317aa
LZ
1772 /*
1773 * Destruction of cgroup root is asynchronous, so subsystems may
1774 * still be dying after the previous unmount. Let's drain the
1775 * dying subsystems. We just need to ensure that the ones
1776 * unmounted previously finish dying and don't care about new ones
1777 * starting. Testing ref liveliness is good enough.
1778 */
1779 for_each_subsys(ss, i) {
1780 if (!(opts.subsys_mask & (1 << i)) ||
1781 ss->root == &cgrp_dfl_root)
1782 continue;
1783
1784 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1785 mutex_unlock(&cgroup_mutex);
1786 msleep(10);
1787 ret = restart_syscall();
1788 goto out_free;
1789 }
1790 cgroup_put(&ss->root->cgrp);
1791 }
1792
985ed670 1793 for_each_root(root) {
2bd59d48 1794 bool name_match = false;
3126121f 1795
3dd06ffa 1796 if (root == &cgrp_dfl_root)
985ed670 1797 continue;
3126121f 1798
cf5d5941 1799 /*
2bd59d48
TH
1800 * If we asked for a name then it must match. Also, if
1801 * name matches but sybsys_mask doesn't, we should fail.
1802 * Remember whether name matched.
cf5d5941 1803 */
2bd59d48
TH
1804 if (opts.name) {
1805 if (strcmp(opts.name, root->name))
1806 continue;
1807 name_match = true;
1808 }
ddbcc7e8 1809
c6d57f33 1810 /*
2bd59d48
TH
1811 * If we asked for subsystems (or explicitly for no
1812 * subsystems) then they must match.
c6d57f33 1813 */
2bd59d48 1814 if ((opts.subsys_mask || opts.none) &&
f392e51c 1815 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1816 if (!name_match)
1817 continue;
1818 ret = -EBUSY;
1819 goto out_unlock;
1820 }
873fe09e 1821
7b9a6ba5
TH
1822 if (root->flags ^ opts.flags)
1823 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1824
776f02fa 1825 /*
3a32bd72
LZ
1826 * We want to reuse @root whose lifetime is governed by its
1827 * ->cgrp. Let's check whether @root is alive and keep it
1828 * that way. As cgroup_kill_sb() can happen anytime, we
1829 * want to block it by pinning the sb so that @root doesn't
1830 * get killed before mount is complete.
1831 *
1832 * With the sb pinned, tryget_live can reliably indicate
1833 * whether @root can be reused. If it's being killed,
1834 * drain it. We can use wait_queue for the wait but this
1835 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1836 */
3a32bd72
LZ
1837 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1838 if (IS_ERR(pinned_sb) ||
1839 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1840 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1841 if (!IS_ERR_OR_NULL(pinned_sb))
1842 deactivate_super(pinned_sb);
776f02fa 1843 msleep(10);
a015edd2
TH
1844 ret = restart_syscall();
1845 goto out_free;
776f02fa 1846 }
ddbcc7e8 1847
776f02fa 1848 ret = 0;
2bd59d48 1849 goto out_unlock;
ddbcc7e8 1850 }
ddbcc7e8 1851
817929ec 1852 /*
172a2c06
TH
1853 * No such thing, create a new one. name= matching without subsys
1854 * specification is allowed for already existing hierarchies but we
1855 * can't create new one without subsys specification.
817929ec 1856 */
172a2c06
TH
1857 if (!opts.subsys_mask && !opts.none) {
1858 ret = -EINVAL;
1859 goto out_unlock;
817929ec 1860 }
817929ec 1861
172a2c06
TH
1862 root = kzalloc(sizeof(*root), GFP_KERNEL);
1863 if (!root) {
1864 ret = -ENOMEM;
2bd59d48 1865 goto out_unlock;
839ec545 1866 }
e5f6a860 1867
172a2c06
TH
1868 init_cgroup_root(root, &opts);
1869
35585573 1870 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1871 if (ret)
1872 cgroup_free_root(root);
fa3ca07e 1873
8e30e2b8 1874out_unlock:
ddbcc7e8 1875 mutex_unlock(&cgroup_mutex);
a015edd2 1876out_free:
c6d57f33
PM
1877 kfree(opts.release_agent);
1878 kfree(opts.name);
03b1cde6 1879
2bd59d48 1880 if (ret)
8e30e2b8 1881 return ERR_PTR(ret);
2bd59d48 1882
c9482a5b
JZ
1883 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1884 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1885 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1886 cgroup_put(&root->cgrp);
3a32bd72
LZ
1887
1888 /*
1889 * If @pinned_sb, we're reusing an existing root and holding an
1890 * extra ref on its sb. Mount is complete. Put the extra ref.
1891 */
1892 if (pinned_sb) {
1893 WARN_ON(new_sb);
1894 deactivate_super(pinned_sb);
1895 }
1896
2bd59d48
TH
1897 return dentry;
1898}
1899
1900static void cgroup_kill_sb(struct super_block *sb)
1901{
1902 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1903 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1904
9d755d33
TH
1905 /*
1906 * If @root doesn't have any mounts or children, start killing it.
1907 * This prevents new mounts by disabling percpu_ref_tryget_live().
1908 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1909 *
1910 * And don't kill the default root.
9d755d33 1911 */
3c606d35 1912 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 1913 root == &cgrp_dfl_root)
9d755d33
TH
1914 cgroup_put(&root->cgrp);
1915 else
1916 percpu_ref_kill(&root->cgrp.self.refcnt);
1917
2bd59d48 1918 kernfs_kill_sb(sb);
ddbcc7e8
PM
1919}
1920
1921static struct file_system_type cgroup_fs_type = {
1922 .name = "cgroup",
f7e83571 1923 .mount = cgroup_mount,
ddbcc7e8
PM
1924 .kill_sb = cgroup_kill_sb,
1925};
1926
676db4af
GK
1927static struct kobject *cgroup_kobj;
1928
857a2beb 1929/**
913ffdb5 1930 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1931 * @task: target task
857a2beb
TH
1932 * @buf: the buffer to write the path into
1933 * @buflen: the length of the buffer
1934 *
913ffdb5
TH
1935 * Determine @task's cgroup on the first (the one with the lowest non-zero
1936 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1937 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1938 * cgroup controller callbacks.
1939 *
e61734c5 1940 * Return value is the same as kernfs_path().
857a2beb 1941 */
e61734c5 1942char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1943{
3dd06ffa 1944 struct cgroup_root *root;
913ffdb5 1945 struct cgroup *cgrp;
e61734c5
TH
1946 int hierarchy_id = 1;
1947 char *path = NULL;
857a2beb
TH
1948
1949 mutex_lock(&cgroup_mutex);
96d365e0 1950 down_read(&css_set_rwsem);
857a2beb 1951
913ffdb5
TH
1952 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1953
857a2beb
TH
1954 if (root) {
1955 cgrp = task_cgroup_from_root(task, root);
e61734c5 1956 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1957 } else {
1958 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1959 if (strlcpy(buf, "/", buflen) < buflen)
1960 path = buf;
857a2beb
TH
1961 }
1962
96d365e0 1963 up_read(&css_set_rwsem);
857a2beb 1964 mutex_unlock(&cgroup_mutex);
e61734c5 1965 return path;
857a2beb 1966}
913ffdb5 1967EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1968
b3dc094e 1969/* used to track tasks and other necessary states during migration */
2f7ee569 1970struct cgroup_taskset {
b3dc094e
TH
1971 /* the src and dst cset list running through cset->mg_node */
1972 struct list_head src_csets;
1973 struct list_head dst_csets;
1974
1975 /*
1976 * Fields for cgroup_taskset_*() iteration.
1977 *
1978 * Before migration is committed, the target migration tasks are on
1979 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1980 * the csets on ->dst_csets. ->csets point to either ->src_csets
1981 * or ->dst_csets depending on whether migration is committed.
1982 *
1983 * ->cur_csets and ->cur_task point to the current task position
1984 * during iteration.
1985 */
1986 struct list_head *csets;
1987 struct css_set *cur_cset;
1988 struct task_struct *cur_task;
2f7ee569
TH
1989};
1990
1991/**
1992 * cgroup_taskset_first - reset taskset and return the first task
1993 * @tset: taskset of interest
1994 *
1995 * @tset iteration is initialized and the first task is returned.
1996 */
1997struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1998{
b3dc094e
TH
1999 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2000 tset->cur_task = NULL;
2001
2002 return cgroup_taskset_next(tset);
2f7ee569 2003}
2f7ee569
TH
2004
2005/**
2006 * cgroup_taskset_next - iterate to the next task in taskset
2007 * @tset: taskset of interest
2008 *
2009 * Return the next task in @tset. Iteration must have been initialized
2010 * with cgroup_taskset_first().
2011 */
2012struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2013{
b3dc094e
TH
2014 struct css_set *cset = tset->cur_cset;
2015 struct task_struct *task = tset->cur_task;
2f7ee569 2016
b3dc094e
TH
2017 while (&cset->mg_node != tset->csets) {
2018 if (!task)
2019 task = list_first_entry(&cset->mg_tasks,
2020 struct task_struct, cg_list);
2021 else
2022 task = list_next_entry(task, cg_list);
2f7ee569 2023
b3dc094e
TH
2024 if (&task->cg_list != &cset->mg_tasks) {
2025 tset->cur_cset = cset;
2026 tset->cur_task = task;
2027 return task;
2028 }
2f7ee569 2029
b3dc094e
TH
2030 cset = list_next_entry(cset, mg_node);
2031 task = NULL;
2032 }
2f7ee569 2033
b3dc094e 2034 return NULL;
2f7ee569 2035}
2f7ee569 2036
cb0f1fe9 2037/**
74a1166d 2038 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2039 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2040 * @tsk: the task being migrated
2041 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2042 *
cb0f1fe9 2043 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2044 */
5abb8855
TH
2045static void cgroup_task_migrate(struct cgroup *old_cgrp,
2046 struct task_struct *tsk,
2047 struct css_set *new_cset)
74a1166d 2048{
5abb8855 2049 struct css_set *old_cset;
74a1166d 2050
cb0f1fe9
TH
2051 lockdep_assert_held(&cgroup_mutex);
2052 lockdep_assert_held(&css_set_rwsem);
2053
74a1166d 2054 /*
026085ef
MSB
2055 * We are synchronized through threadgroup_lock() against PF_EXITING
2056 * setting such that we can't race against cgroup_exit() changing the
2057 * css_set to init_css_set and dropping the old one.
74a1166d 2058 */
c84cdf75 2059 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2060 old_cset = task_css_set(tsk);
74a1166d 2061
b3dc094e 2062 get_css_set(new_cset);
5abb8855 2063 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2064
1b9aba49
TH
2065 /*
2066 * Use move_tail so that cgroup_taskset_first() still returns the
2067 * leader after migration. This works because cgroup_migrate()
2068 * ensures that the dst_cset of the leader is the first on the
2069 * tset's dst_csets list.
2070 */
2071 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2072
2073 /*
5abb8855
TH
2074 * We just gained a reference on old_cset by taking it from the
2075 * task. As trading it for new_cset is protected by cgroup_mutex,
2076 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2077 */
a25eb52e 2078 put_css_set_locked(old_cset);
74a1166d
BB
2079}
2080
a043e3b2 2081/**
1958d2d5
TH
2082 * cgroup_migrate_finish - cleanup after attach
2083 * @preloaded_csets: list of preloaded css_sets
74a1166d 2084 *
1958d2d5
TH
2085 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2086 * those functions for details.
74a1166d 2087 */
1958d2d5 2088static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2089{
1958d2d5 2090 struct css_set *cset, *tmp_cset;
74a1166d 2091
1958d2d5
TH
2092 lockdep_assert_held(&cgroup_mutex);
2093
2094 down_write(&css_set_rwsem);
2095 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2096 cset->mg_src_cgrp = NULL;
2097 cset->mg_dst_cset = NULL;
2098 list_del_init(&cset->mg_preload_node);
a25eb52e 2099 put_css_set_locked(cset);
1958d2d5
TH
2100 }
2101 up_write(&css_set_rwsem);
2102}
2103
2104/**
2105 * cgroup_migrate_add_src - add a migration source css_set
2106 * @src_cset: the source css_set to add
2107 * @dst_cgrp: the destination cgroup
2108 * @preloaded_csets: list of preloaded css_sets
2109 *
2110 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2111 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2112 * up by cgroup_migrate_finish().
2113 *
2114 * This function may be called without holding threadgroup_lock even if the
2115 * target is a process. Threads may be created and destroyed but as long
2116 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2117 * the preloaded css_sets are guaranteed to cover all migrations.
2118 */
2119static void cgroup_migrate_add_src(struct css_set *src_cset,
2120 struct cgroup *dst_cgrp,
2121 struct list_head *preloaded_csets)
2122{
2123 struct cgroup *src_cgrp;
2124
2125 lockdep_assert_held(&cgroup_mutex);
2126 lockdep_assert_held(&css_set_rwsem);
2127
2128 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2129
1958d2d5
TH
2130 if (!list_empty(&src_cset->mg_preload_node))
2131 return;
2132
2133 WARN_ON(src_cset->mg_src_cgrp);
2134 WARN_ON(!list_empty(&src_cset->mg_tasks));
2135 WARN_ON(!list_empty(&src_cset->mg_node));
2136
2137 src_cset->mg_src_cgrp = src_cgrp;
2138 get_css_set(src_cset);
2139 list_add(&src_cset->mg_preload_node, preloaded_csets);
2140}
2141
2142/**
2143 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2144 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2145 * @preloaded_csets: list of preloaded source css_sets
2146 *
2147 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2148 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2149 * pins all destination css_sets, links each to its source, and append them
2150 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2151 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2152 *
2153 * This function must be called after cgroup_migrate_add_src() has been
2154 * called on each migration source css_set. After migration is performed
2155 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2156 * @preloaded_csets.
2157 */
2158static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2159 struct list_head *preloaded_csets)
2160{
2161 LIST_HEAD(csets);
f817de98 2162 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2163
2164 lockdep_assert_held(&cgroup_mutex);
2165
f8f22e53
TH
2166 /*
2167 * Except for the root, child_subsys_mask must be zero for a cgroup
2168 * with tasks so that child cgroups don't compete against tasks.
2169 */
d51f39b0 2170 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2171 dst_cgrp->child_subsys_mask)
2172 return -EBUSY;
2173
1958d2d5 2174 /* look up the dst cset for each src cset and link it to src */
f817de98 2175 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2176 struct css_set *dst_cset;
2177
f817de98
TH
2178 dst_cset = find_css_set(src_cset,
2179 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2180 if (!dst_cset)
2181 goto err;
2182
2183 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2184
2185 /*
2186 * If src cset equals dst, it's noop. Drop the src.
2187 * cgroup_migrate() will skip the cset too. Note that we
2188 * can't handle src == dst as some nodes are used by both.
2189 */
2190 if (src_cset == dst_cset) {
2191 src_cset->mg_src_cgrp = NULL;
2192 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2193 put_css_set(src_cset);
2194 put_css_set(dst_cset);
f817de98
TH
2195 continue;
2196 }
2197
1958d2d5
TH
2198 src_cset->mg_dst_cset = dst_cset;
2199
2200 if (list_empty(&dst_cset->mg_preload_node))
2201 list_add(&dst_cset->mg_preload_node, &csets);
2202 else
a25eb52e 2203 put_css_set(dst_cset);
1958d2d5
TH
2204 }
2205
f817de98 2206 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2207 return 0;
2208err:
2209 cgroup_migrate_finish(&csets);
2210 return -ENOMEM;
2211}
2212
2213/**
2214 * cgroup_migrate - migrate a process or task to a cgroup
2215 * @cgrp: the destination cgroup
2216 * @leader: the leader of the process or the task to migrate
2217 * @threadgroup: whether @leader points to the whole process or a single task
2218 *
2219 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2220 * process, the caller must be holding threadgroup_lock of @leader. The
2221 * caller is also responsible for invoking cgroup_migrate_add_src() and
2222 * cgroup_migrate_prepare_dst() on the targets before invoking this
2223 * function and following up with cgroup_migrate_finish().
2224 *
2225 * As long as a controller's ->can_attach() doesn't fail, this function is
2226 * guaranteed to succeed. This means that, excluding ->can_attach()
2227 * failure, when migrating multiple targets, the success or failure can be
2228 * decided for all targets by invoking group_migrate_prepare_dst() before
2229 * actually starting migrating.
2230 */
2231static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2232 bool threadgroup)
74a1166d 2233{
b3dc094e
TH
2234 struct cgroup_taskset tset = {
2235 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2236 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2237 .csets = &tset.src_csets,
2238 };
1c6727af 2239 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2240 struct css_set *cset, *tmp_cset;
2241 struct task_struct *task, *tmp_task;
2242 int i, ret;
74a1166d 2243
fb5d2b4c
MSB
2244 /*
2245 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2246 * already PF_EXITING could be freed from underneath us unless we
2247 * take an rcu_read_lock.
2248 */
b3dc094e 2249 down_write(&css_set_rwsem);
fb5d2b4c 2250 rcu_read_lock();
9db8de37 2251 task = leader;
74a1166d 2252 do {
9db8de37
TH
2253 /* @task either already exited or can't exit until the end */
2254 if (task->flags & PF_EXITING)
ea84753c 2255 goto next;
134d3373 2256
eaf797ab
TH
2257 /* leave @task alone if post_fork() hasn't linked it yet */
2258 if (list_empty(&task->cg_list))
ea84753c 2259 goto next;
cd3d0952 2260
b3dc094e 2261 cset = task_css_set(task);
1958d2d5 2262 if (!cset->mg_src_cgrp)
ea84753c 2263 goto next;
b3dc094e 2264
61d1d219 2265 /*
1b9aba49
TH
2266 * cgroup_taskset_first() must always return the leader.
2267 * Take care to avoid disturbing the ordering.
61d1d219 2268 */
1b9aba49
TH
2269 list_move_tail(&task->cg_list, &cset->mg_tasks);
2270 if (list_empty(&cset->mg_node))
2271 list_add_tail(&cset->mg_node, &tset.src_csets);
2272 if (list_empty(&cset->mg_dst_cset->mg_node))
2273 list_move_tail(&cset->mg_dst_cset->mg_node,
2274 &tset.dst_csets);
ea84753c 2275 next:
081aa458
LZ
2276 if (!threadgroup)
2277 break;
9db8de37 2278 } while_each_thread(leader, task);
fb5d2b4c 2279 rcu_read_unlock();
b3dc094e 2280 up_write(&css_set_rwsem);
74a1166d 2281
134d3373 2282 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2283 if (list_empty(&tset.src_csets))
2284 return 0;
134d3373 2285
1958d2d5 2286 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2287 for_each_e_css(css, i, cgrp) {
1c6727af 2288 if (css->ss->can_attach) {
9db8de37
TH
2289 ret = css->ss->can_attach(css, &tset);
2290 if (ret) {
1c6727af 2291 failed_css = css;
74a1166d
BB
2292 goto out_cancel_attach;
2293 }
2294 }
74a1166d
BB
2295 }
2296
2297 /*
1958d2d5
TH
2298 * Now that we're guaranteed success, proceed to move all tasks to
2299 * the new cgroup. There are no failure cases after here, so this
2300 * is the commit point.
74a1166d 2301 */
cb0f1fe9 2302 down_write(&css_set_rwsem);
b3dc094e
TH
2303 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2304 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2305 cgroup_task_migrate(cset->mg_src_cgrp, task,
2306 cset->mg_dst_cset);
74a1166d 2307 }
cb0f1fe9 2308 up_write(&css_set_rwsem);
74a1166d
BB
2309
2310 /*
1958d2d5
TH
2311 * Migration is committed, all target tasks are now on dst_csets.
2312 * Nothing is sensitive to fork() after this point. Notify
2313 * controllers that migration is complete.
74a1166d 2314 */
1958d2d5 2315 tset.csets = &tset.dst_csets;
74a1166d 2316
aec3dfcb 2317 for_each_e_css(css, i, cgrp)
1c6727af
TH
2318 if (css->ss->attach)
2319 css->ss->attach(css, &tset);
74a1166d 2320
9db8de37 2321 ret = 0;
b3dc094e
TH
2322 goto out_release_tset;
2323
74a1166d 2324out_cancel_attach:
aec3dfcb 2325 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2326 if (css == failed_css)
2327 break;
2328 if (css->ss->cancel_attach)
2329 css->ss->cancel_attach(css, &tset);
74a1166d 2330 }
b3dc094e
TH
2331out_release_tset:
2332 down_write(&css_set_rwsem);
2333 list_splice_init(&tset.dst_csets, &tset.src_csets);
2334 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2335 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2336 list_del_init(&cset->mg_node);
b3dc094e
TH
2337 }
2338 up_write(&css_set_rwsem);
9db8de37 2339 return ret;
74a1166d
BB
2340}
2341
1958d2d5
TH
2342/**
2343 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2344 * @dst_cgrp: the cgroup to attach to
2345 * @leader: the task or the leader of the threadgroup to be attached
2346 * @threadgroup: attach the whole threadgroup?
2347 *
0e1d768f 2348 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2349 */
2350static int cgroup_attach_task(struct cgroup *dst_cgrp,
2351 struct task_struct *leader, bool threadgroup)
2352{
2353 LIST_HEAD(preloaded_csets);
2354 struct task_struct *task;
2355 int ret;
2356
2357 /* look up all src csets */
2358 down_read(&css_set_rwsem);
2359 rcu_read_lock();
2360 task = leader;
2361 do {
2362 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2363 &preloaded_csets);
2364 if (!threadgroup)
2365 break;
2366 } while_each_thread(leader, task);
2367 rcu_read_unlock();
2368 up_read(&css_set_rwsem);
2369
2370 /* prepare dst csets and commit */
2371 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2372 if (!ret)
2373 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2374
2375 cgroup_migrate_finish(&preloaded_csets);
2376 return ret;
74a1166d
BB
2377}
2378
2379/*
2380 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2381 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2382 * cgroup_mutex and threadgroup.
bbcb81d0 2383 */
acbef755
TH
2384static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2385 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2386{
bbcb81d0 2387 struct task_struct *tsk;
c69e8d9c 2388 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2389 struct cgroup *cgrp;
acbef755 2390 pid_t pid;
bbcb81d0
PM
2391 int ret;
2392
acbef755
TH
2393 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2394 return -EINVAL;
2395
e76ecaee
TH
2396 cgrp = cgroup_kn_lock_live(of->kn);
2397 if (!cgrp)
74a1166d
BB
2398 return -ENODEV;
2399
b78949eb
MSB
2400retry_find_task:
2401 rcu_read_lock();
bbcb81d0 2402 if (pid) {
73507f33 2403 tsk = find_task_by_vpid(pid);
74a1166d
BB
2404 if (!tsk) {
2405 rcu_read_unlock();
dd4b0a46 2406 ret = -ESRCH;
b78949eb 2407 goto out_unlock_cgroup;
bbcb81d0 2408 }
74a1166d
BB
2409 /*
2410 * even if we're attaching all tasks in the thread group, we
2411 * only need to check permissions on one of them.
2412 */
c69e8d9c 2413 tcred = __task_cred(tsk);
14a590c3
EB
2414 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2415 !uid_eq(cred->euid, tcred->uid) &&
2416 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2417 rcu_read_unlock();
b78949eb
MSB
2418 ret = -EACCES;
2419 goto out_unlock_cgroup;
bbcb81d0 2420 }
b78949eb
MSB
2421 } else
2422 tsk = current;
cd3d0952
TH
2423
2424 if (threadgroup)
b78949eb 2425 tsk = tsk->group_leader;
c4c27fbd
MG
2426
2427 /*
14a40ffc 2428 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2429 * trapped in a cpuset, or RT worker may be born in a cgroup
2430 * with no rt_runtime allocated. Just say no.
2431 */
14a40ffc 2432 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2433 ret = -EINVAL;
2434 rcu_read_unlock();
2435 goto out_unlock_cgroup;
2436 }
2437
b78949eb
MSB
2438 get_task_struct(tsk);
2439 rcu_read_unlock();
2440
2441 threadgroup_lock(tsk);
2442 if (threadgroup) {
2443 if (!thread_group_leader(tsk)) {
2444 /*
2445 * a race with de_thread from another thread's exec()
2446 * may strip us of our leadership, if this happens,
2447 * there is no choice but to throw this task away and
2448 * try again; this is
2449 * "double-double-toil-and-trouble-check locking".
2450 */
2451 threadgroup_unlock(tsk);
2452 put_task_struct(tsk);
2453 goto retry_find_task;
2454 }
081aa458
LZ
2455 }
2456
2457 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2458
cd3d0952
TH
2459 threadgroup_unlock(tsk);
2460
bbcb81d0 2461 put_task_struct(tsk);
b78949eb 2462out_unlock_cgroup:
e76ecaee 2463 cgroup_kn_unlock(of->kn);
acbef755 2464 return ret ?: nbytes;
bbcb81d0
PM
2465}
2466
7ae1bad9
TH
2467/**
2468 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2469 * @from: attach to all cgroups of a given task
2470 * @tsk: the task to be attached
2471 */
2472int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2473{
3dd06ffa 2474 struct cgroup_root *root;
7ae1bad9
TH
2475 int retval = 0;
2476
47cfcd09 2477 mutex_lock(&cgroup_mutex);
985ed670 2478 for_each_root(root) {
96d365e0
TH
2479 struct cgroup *from_cgrp;
2480
3dd06ffa 2481 if (root == &cgrp_dfl_root)
985ed670
TH
2482 continue;
2483
96d365e0
TH
2484 down_read(&css_set_rwsem);
2485 from_cgrp = task_cgroup_from_root(from, root);
2486 up_read(&css_set_rwsem);
7ae1bad9 2487
6f4b7e63 2488 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2489 if (retval)
2490 break;
2491 }
47cfcd09 2492 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2493
2494 return retval;
2495}
2496EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2497
acbef755
TH
2498static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2499 char *buf, size_t nbytes, loff_t off)
74a1166d 2500{
acbef755 2501 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2502}
2503
acbef755
TH
2504static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2505 char *buf, size_t nbytes, loff_t off)
af351026 2506{
acbef755 2507 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2508}
2509
451af504
TH
2510static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2511 char *buf, size_t nbytes, loff_t off)
e788e066 2512{
e76ecaee 2513 struct cgroup *cgrp;
5f469907 2514
e76ecaee 2515 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2516
e76ecaee
TH
2517 cgrp = cgroup_kn_lock_live(of->kn);
2518 if (!cgrp)
e788e066 2519 return -ENODEV;
69e943b7 2520 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2521 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2522 sizeof(cgrp->root->release_agent_path));
69e943b7 2523 spin_unlock(&release_agent_path_lock);
e76ecaee 2524 cgroup_kn_unlock(of->kn);
451af504 2525 return nbytes;
e788e066
PM
2526}
2527
2da8ca82 2528static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2529{
2da8ca82 2530 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2531
46cfeb04 2532 spin_lock(&release_agent_path_lock);
e788e066 2533 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2534 spin_unlock(&release_agent_path_lock);
e788e066 2535 seq_putc(seq, '\n');
e788e066
PM
2536 return 0;
2537}
2538
2da8ca82 2539static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2540{
c1d5d42e 2541 seq_puts(seq, "0\n");
e788e066
PM
2542 return 0;
2543}
2544
f8f22e53 2545static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2546{
f8f22e53
TH
2547 struct cgroup_subsys *ss;
2548 bool printed = false;
2549 int ssid;
a742c59d 2550
f8f22e53
TH
2551 for_each_subsys(ss, ssid) {
2552 if (ss_mask & (1 << ssid)) {
2553 if (printed)
2554 seq_putc(seq, ' ');
2555 seq_printf(seq, "%s", ss->name);
2556 printed = true;
2557 }
e73d2c61 2558 }
f8f22e53
TH
2559 if (printed)
2560 seq_putc(seq, '\n');
355e0c48
PM
2561}
2562
f8f22e53
TH
2563/* show controllers which are currently attached to the default hierarchy */
2564static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2565{
f8f22e53
TH
2566 struct cgroup *cgrp = seq_css(seq)->cgroup;
2567
5533e011
TH
2568 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2569 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2570 return 0;
db3b1497
PM
2571}
2572
f8f22e53
TH
2573/* show controllers which are enabled from the parent */
2574static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2575{
f8f22e53
TH
2576 struct cgroup *cgrp = seq_css(seq)->cgroup;
2577
667c2491 2578 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2579 return 0;
ddbcc7e8
PM
2580}
2581
f8f22e53
TH
2582/* show controllers which are enabled for a given cgroup's children */
2583static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2584{
f8f22e53
TH
2585 struct cgroup *cgrp = seq_css(seq)->cgroup;
2586
667c2491 2587 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2588 return 0;
2589}
2590
2591/**
2592 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2593 * @cgrp: root of the subtree to update csses for
2594 *
2595 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2596 * css associations need to be updated accordingly. This function looks up
2597 * all css_sets which are attached to the subtree, creates the matching
2598 * updated css_sets and migrates the tasks to the new ones.
2599 */
2600static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2601{
2602 LIST_HEAD(preloaded_csets);
2603 struct cgroup_subsys_state *css;
2604 struct css_set *src_cset;
2605 int ret;
2606
f8f22e53
TH
2607 lockdep_assert_held(&cgroup_mutex);
2608
2609 /* look up all csses currently attached to @cgrp's subtree */
2610 down_read(&css_set_rwsem);
2611 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2612 struct cgrp_cset_link *link;
2613
2614 /* self is not affected by child_subsys_mask change */
2615 if (css->cgroup == cgrp)
2616 continue;
2617
2618 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2619 cgroup_migrate_add_src(link->cset, cgrp,
2620 &preloaded_csets);
2621 }
2622 up_read(&css_set_rwsem);
2623
2624 /* NULL dst indicates self on default hierarchy */
2625 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2626 if (ret)
2627 goto out_finish;
2628
2629 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2630 struct task_struct *last_task = NULL, *task;
2631
2632 /* src_csets precede dst_csets, break on the first dst_cset */
2633 if (!src_cset->mg_src_cgrp)
2634 break;
2635
2636 /*
2637 * All tasks in src_cset need to be migrated to the
2638 * matching dst_cset. Empty it process by process. We
2639 * walk tasks but migrate processes. The leader might even
2640 * belong to a different cset but such src_cset would also
2641 * be among the target src_csets because the default
2642 * hierarchy enforces per-process membership.
2643 */
2644 while (true) {
2645 down_read(&css_set_rwsem);
2646 task = list_first_entry_or_null(&src_cset->tasks,
2647 struct task_struct, cg_list);
2648 if (task) {
2649 task = task->group_leader;
2650 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2651 get_task_struct(task);
2652 }
2653 up_read(&css_set_rwsem);
2654
2655 if (!task)
2656 break;
2657
2658 /* guard against possible infinite loop */
2659 if (WARN(last_task == task,
2660 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2661 goto out_finish;
2662 last_task = task;
2663
2664 threadgroup_lock(task);
2665 /* raced against de_thread() from another thread? */
2666 if (!thread_group_leader(task)) {
2667 threadgroup_unlock(task);
2668 put_task_struct(task);
2669 continue;
2670 }
2671
2672 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2673
2674 threadgroup_unlock(task);
2675 put_task_struct(task);
2676
2677 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2678 goto out_finish;
2679 }
2680 }
2681
2682out_finish:
2683 cgroup_migrate_finish(&preloaded_csets);
2684 return ret;
2685}
2686
2687/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2688static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2689 char *buf, size_t nbytes,
2690 loff_t off)
f8f22e53 2691{
7d331fa9 2692 unsigned int enable = 0, disable = 0;
755bf5ee 2693 unsigned int css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2694 struct cgroup *cgrp, *child;
f8f22e53 2695 struct cgroup_subsys *ss;
451af504 2696 char *tok;
f8f22e53
TH
2697 int ssid, ret;
2698
2699 /*
d37167ab
TH
2700 * Parse input - space separated list of subsystem names prefixed
2701 * with either + or -.
f8f22e53 2702 */
451af504
TH
2703 buf = strstrip(buf);
2704 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2705 if (tok[0] == '\0')
2706 continue;
f8f22e53 2707 for_each_subsys(ss, ssid) {
5533e011
TH
2708 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2709 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2710 continue;
2711
2712 if (*tok == '+') {
7d331fa9
TH
2713 enable |= 1 << ssid;
2714 disable &= ~(1 << ssid);
f8f22e53 2715 } else if (*tok == '-') {
7d331fa9
TH
2716 disable |= 1 << ssid;
2717 enable &= ~(1 << ssid);
f8f22e53
TH
2718 } else {
2719 return -EINVAL;
2720 }
2721 break;
2722 }
2723 if (ssid == CGROUP_SUBSYS_COUNT)
2724 return -EINVAL;
2725 }
2726
a9746d8d
TH
2727 cgrp = cgroup_kn_lock_live(of->kn);
2728 if (!cgrp)
2729 return -ENODEV;
f8f22e53
TH
2730
2731 for_each_subsys(ss, ssid) {
2732 if (enable & (1 << ssid)) {
667c2491 2733 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2734 enable &= ~(1 << ssid);
2735 continue;
2736 }
2737
c29adf24
TH
2738 /* unavailable or not enabled on the parent? */
2739 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2740 (cgroup_parent(cgrp) &&
667c2491 2741 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2742 ret = -ENOENT;
2743 goto out_unlock;
2744 }
f8f22e53 2745 } else if (disable & (1 << ssid)) {
667c2491 2746 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2747 disable &= ~(1 << ssid);
2748 continue;
2749 }
2750
2751 /* a child has it enabled? */
2752 cgroup_for_each_live_child(child, cgrp) {
667c2491 2753 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2754 ret = -EBUSY;
ddab2b6e 2755 goto out_unlock;
f8f22e53
TH
2756 }
2757 }
2758 }
2759 }
2760
2761 if (!enable && !disable) {
2762 ret = 0;
ddab2b6e 2763 goto out_unlock;
f8f22e53
TH
2764 }
2765
2766 /*
667c2491 2767 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2768 * with tasks so that child cgroups don't compete against tasks.
2769 */
d51f39b0 2770 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2771 ret = -EBUSY;
2772 goto out_unlock;
2773 }
2774
2775 /*
f63070d3
TH
2776 * Update subsys masks and calculate what needs to be done. More
2777 * subsystems than specified may need to be enabled or disabled
2778 * depending on subsystem dependencies.
2779 */
755bf5ee
TH
2780 old_sc = cgrp->subtree_control;
2781 old_ss = cgrp->child_subsys_mask;
2782 new_sc = (old_sc | enable) & ~disable;
2783 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2784
755bf5ee
TH
2785 css_enable = ~old_ss & new_ss;
2786 css_disable = old_ss & ~new_ss;
f63070d3
TH
2787 enable |= css_enable;
2788 disable |= css_disable;
c29adf24 2789
db6e3053
TH
2790 /*
2791 * Because css offlining is asynchronous, userland might try to
2792 * re-enable the same controller while the previous instance is
2793 * still around. In such cases, wait till it's gone using
2794 * offline_waitq.
2795 */
2796 for_each_subsys(ss, ssid) {
2797 if (!(css_enable & (1 << ssid)))
2798 continue;
2799
2800 cgroup_for_each_live_child(child, cgrp) {
2801 DEFINE_WAIT(wait);
2802
2803 if (!cgroup_css(child, ss))
2804 continue;
2805
2806 cgroup_get(child);
2807 prepare_to_wait(&child->offline_waitq, &wait,
2808 TASK_UNINTERRUPTIBLE);
2809 cgroup_kn_unlock(of->kn);
2810 schedule();
2811 finish_wait(&child->offline_waitq, &wait);
2812 cgroup_put(child);
2813
2814 return restart_syscall();
2815 }
2816 }
2817
755bf5ee
TH
2818 cgrp->subtree_control = new_sc;
2819 cgrp->child_subsys_mask = new_ss;
2820
f63070d3
TH
2821 /*
2822 * Create new csses or make the existing ones visible. A css is
2823 * created invisible if it's being implicitly enabled through
2824 * dependency. An invisible css is made visible when the userland
2825 * explicitly enables it.
f8f22e53
TH
2826 */
2827 for_each_subsys(ss, ssid) {
2828 if (!(enable & (1 << ssid)))
2829 continue;
2830
2831 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2832 if (css_enable & (1 << ssid))
2833 ret = create_css(child, ss,
2834 cgrp->subtree_control & (1 << ssid));
2835 else
2836 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2837 if (ret)
2838 goto err_undo_css;
2839 }
2840 }
2841
c29adf24
TH
2842 /*
2843 * At this point, cgroup_e_css() results reflect the new csses
2844 * making the following cgroup_update_dfl_csses() properly update
2845 * css associations of all tasks in the subtree.
2846 */
f8f22e53
TH
2847 ret = cgroup_update_dfl_csses(cgrp);
2848 if (ret)
2849 goto err_undo_css;
2850
f63070d3
TH
2851 /*
2852 * All tasks are migrated out of disabled csses. Kill or hide
2853 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2854 * disabled while other subsystems are still depending on it. The
2855 * css must not actively control resources and be in the vanilla
2856 * state if it's made visible again later. Controllers which may
2857 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2858 */
f8f22e53
TH
2859 for_each_subsys(ss, ssid) {
2860 if (!(disable & (1 << ssid)))
2861 continue;
2862
f63070d3 2863 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2864 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2865
2866 if (css_disable & (1 << ssid)) {
2867 kill_css(css);
2868 } else {
f63070d3 2869 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2870 if (ss->css_reset)
2871 ss->css_reset(css);
2872 }
f63070d3 2873 }
f8f22e53
TH
2874 }
2875
56c807ba
TH
2876 /*
2877 * The effective csses of all the descendants (excluding @cgrp) may
2878 * have changed. Subsystems can optionally subscribe to this event
2879 * by implementing ->css_e_css_changed() which is invoked if any of
2880 * the effective csses seen from the css's cgroup may have changed.
2881 */
2882 for_each_subsys(ss, ssid) {
2883 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2884 struct cgroup_subsys_state *css;
2885
2886 if (!ss->css_e_css_changed || !this_css)
2887 continue;
2888
2889 css_for_each_descendant_pre(css, this_css)
2890 if (css != this_css)
2891 ss->css_e_css_changed(css);
2892 }
2893
f8f22e53
TH
2894 kernfs_activate(cgrp->kn);
2895 ret = 0;
2896out_unlock:
a9746d8d 2897 cgroup_kn_unlock(of->kn);
451af504 2898 return ret ?: nbytes;
f8f22e53
TH
2899
2900err_undo_css:
755bf5ee
TH
2901 cgrp->subtree_control = old_sc;
2902 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2903
2904 for_each_subsys(ss, ssid) {
2905 if (!(enable & (1 << ssid)))
2906 continue;
2907
2908 cgroup_for_each_live_child(child, cgrp) {
2909 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2910
2911 if (!css)
2912 continue;
2913
2914 if (css_enable & (1 << ssid))
f8f22e53 2915 kill_css(css);
f63070d3
TH
2916 else
2917 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2918 }
2919 }
2920 goto out_unlock;
2921}
2922
842b597e
TH
2923static int cgroup_populated_show(struct seq_file *seq, void *v)
2924{
2925 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2926 return 0;
2927}
2928
2bd59d48
TH
2929static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2930 size_t nbytes, loff_t off)
355e0c48 2931{
2bd59d48
TH
2932 struct cgroup *cgrp = of->kn->parent->priv;
2933 struct cftype *cft = of->kn->priv;
2934 struct cgroup_subsys_state *css;
a742c59d 2935 int ret;
355e0c48 2936
b4168640
TH
2937 if (cft->write)
2938 return cft->write(of, buf, nbytes, off);
2939
2bd59d48
TH
2940 /*
2941 * kernfs guarantees that a file isn't deleted with operations in
2942 * flight, which means that the matching css is and stays alive and
2943 * doesn't need to be pinned. The RCU locking is not necessary
2944 * either. It's just for the convenience of using cgroup_css().
2945 */
2946 rcu_read_lock();
2947 css = cgroup_css(cgrp, cft->ss);
2948 rcu_read_unlock();
a742c59d 2949
451af504 2950 if (cft->write_u64) {
a742c59d
TH
2951 unsigned long long v;
2952 ret = kstrtoull(buf, 0, &v);
2953 if (!ret)
2954 ret = cft->write_u64(css, cft, v);
2955 } else if (cft->write_s64) {
2956 long long v;
2957 ret = kstrtoll(buf, 0, &v);
2958 if (!ret)
2959 ret = cft->write_s64(css, cft, v);
e73d2c61 2960 } else {
a742c59d 2961 ret = -EINVAL;
e73d2c61 2962 }
2bd59d48 2963
a742c59d 2964 return ret ?: nbytes;
355e0c48
PM
2965}
2966
6612f05b 2967static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2968{
2bd59d48 2969 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2970}
2971
6612f05b 2972static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2973{
2bd59d48 2974 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2975}
2976
6612f05b 2977static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2978{
2bd59d48 2979 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2980}
2981
91796569 2982static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2983{
7da11279
TH
2984 struct cftype *cft = seq_cft(m);
2985 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2986
2da8ca82
TH
2987 if (cft->seq_show)
2988 return cft->seq_show(m, arg);
e73d2c61 2989
f4c753b7 2990 if (cft->read_u64)
896f5199
TH
2991 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2992 else if (cft->read_s64)
2993 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2994 else
2995 return -EINVAL;
2996 return 0;
91796569
PM
2997}
2998
2bd59d48
TH
2999static struct kernfs_ops cgroup_kf_single_ops = {
3000 .atomic_write_len = PAGE_SIZE,
3001 .write = cgroup_file_write,
3002 .seq_show = cgroup_seqfile_show,
91796569
PM
3003};
3004
2bd59d48
TH
3005static struct kernfs_ops cgroup_kf_ops = {
3006 .atomic_write_len = PAGE_SIZE,
3007 .write = cgroup_file_write,
3008 .seq_start = cgroup_seqfile_start,
3009 .seq_next = cgroup_seqfile_next,
3010 .seq_stop = cgroup_seqfile_stop,
3011 .seq_show = cgroup_seqfile_show,
3012};
ddbcc7e8
PM
3013
3014/*
3015 * cgroup_rename - Only allow simple rename of directories in place.
3016 */
2bd59d48
TH
3017static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3018 const char *new_name_str)
ddbcc7e8 3019{
2bd59d48 3020 struct cgroup *cgrp = kn->priv;
65dff759 3021 int ret;
65dff759 3022
2bd59d48 3023 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3024 return -ENOTDIR;
2bd59d48 3025 if (kn->parent != new_parent)
ddbcc7e8 3026 return -EIO;
65dff759 3027
6db8e85c
TH
3028 /*
3029 * This isn't a proper migration and its usefulness is very
aa6ec29b 3030 * limited. Disallow on the default hierarchy.
6db8e85c 3031 */
aa6ec29b 3032 if (cgroup_on_dfl(cgrp))
6db8e85c 3033 return -EPERM;
099fca32 3034
e1b2dc17 3035 /*
8353da1f 3036 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3037 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3038 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3039 */
3040 kernfs_break_active_protection(new_parent);
3041 kernfs_break_active_protection(kn);
099fca32 3042
2bd59d48 3043 mutex_lock(&cgroup_mutex);
099fca32 3044
2bd59d48 3045 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3046
2bd59d48 3047 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3048
3049 kernfs_unbreak_active_protection(kn);
3050 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3051 return ret;
099fca32
LZ
3052}
3053
49957f8e
TH
3054/* set uid and gid of cgroup dirs and files to that of the creator */
3055static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3056{
3057 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3058 .ia_uid = current_fsuid(),
3059 .ia_gid = current_fsgid(), };
3060
3061 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3062 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3063 return 0;
3064
3065 return kernfs_setattr(kn, &iattr);
3066}
3067
2bb566cb 3068static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3069{
8d7e6fb0 3070 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3071 struct kernfs_node *kn;
3072 struct lock_class_key *key = NULL;
49957f8e 3073 int ret;
05ef1d7c 3074
2bd59d48
TH
3075#ifdef CONFIG_DEBUG_LOCK_ALLOC
3076 key = &cft->lockdep_key;
3077#endif
3078 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3079 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3080 NULL, key);
49957f8e
TH
3081 if (IS_ERR(kn))
3082 return PTR_ERR(kn);
3083
3084 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3085 if (ret) {
49957f8e 3086 kernfs_remove(kn);
f8f22e53
TH
3087 return ret;
3088 }
3089
b7fc5ad2 3090 if (cft->seq_show == cgroup_populated_show)
842b597e 3091 cgrp->populated_kn = kn;
f8f22e53 3092 return 0;
ddbcc7e8
PM
3093}
3094
b1f28d31
TH
3095/**
3096 * cgroup_addrm_files - add or remove files to a cgroup directory
3097 * @cgrp: the target cgroup
b1f28d31
TH
3098 * @cfts: array of cftypes to be added
3099 * @is_add: whether to add or remove
3100 *
3101 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3102 * For removals, this function never fails. If addition fails, this
3103 * function doesn't remove files already added. The caller is responsible
3104 * for cleaning up.
b1f28d31 3105 */
2bb566cb
TH
3106static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3107 bool is_add)
ddbcc7e8 3108{
03b1cde6 3109 struct cftype *cft;
b1f28d31
TH
3110 int ret;
3111
01f6474c 3112 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3113
3114 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3115 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3116 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3117 continue;
05ebb6e6 3118 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3119 continue;
d51f39b0 3120 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3121 continue;
d51f39b0 3122 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3123 continue;
3124
2739d3cc 3125 if (is_add) {
2bb566cb 3126 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3127 if (ret) {
ed3d261b
JP
3128 pr_warn("%s: failed to add %s, err=%d\n",
3129 __func__, cft->name, ret);
b1f28d31
TH
3130 return ret;
3131 }
2739d3cc
LZ
3132 } else {
3133 cgroup_rm_file(cgrp, cft);
db0416b6 3134 }
ddbcc7e8 3135 }
b1f28d31 3136 return 0;
ddbcc7e8
PM
3137}
3138
21a2d343 3139static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3140{
3141 LIST_HEAD(pending);
2bb566cb 3142 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3143 struct cgroup *root = &ss->root->cgrp;
492eb21b 3144 struct cgroup_subsys_state *css;
9ccece80 3145 int ret = 0;
8e3f6541 3146
01f6474c 3147 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3148
e8c82d20 3149 /* add/rm files for all cgroups created before */
ca8bdcaf 3150 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3151 struct cgroup *cgrp = css->cgroup;
3152
e8c82d20
LZ
3153 if (cgroup_is_dead(cgrp))
3154 continue;
3155
21a2d343 3156 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3157 if (ret)
3158 break;
8e3f6541 3159 }
21a2d343
TH
3160
3161 if (is_add && !ret)
3162 kernfs_activate(root->kn);
9ccece80 3163 return ret;
8e3f6541
TH
3164}
3165
2da440a2 3166static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3167{
2bb566cb 3168 struct cftype *cft;
8e3f6541 3169
2bd59d48
TH
3170 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3171 /* free copy for custom atomic_write_len, see init_cftypes() */
3172 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3173 kfree(cft->kf_ops);
3174 cft->kf_ops = NULL;
2da440a2 3175 cft->ss = NULL;
a8ddc821
TH
3176
3177 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3178 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3179 }
2da440a2
TH
3180}
3181
2bd59d48 3182static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3183{
3184 struct cftype *cft;
3185
2bd59d48
TH
3186 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3187 struct kernfs_ops *kf_ops;
3188
0adb0704
TH
3189 WARN_ON(cft->ss || cft->kf_ops);
3190
2bd59d48
TH
3191 if (cft->seq_start)
3192 kf_ops = &cgroup_kf_ops;
3193 else
3194 kf_ops = &cgroup_kf_single_ops;
3195
3196 /*
3197 * Ugh... if @cft wants a custom max_write_len, we need to
3198 * make a copy of kf_ops to set its atomic_write_len.
3199 */
3200 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3201 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3202 if (!kf_ops) {
3203 cgroup_exit_cftypes(cfts);
3204 return -ENOMEM;
3205 }
3206 kf_ops->atomic_write_len = cft->max_write_len;
3207 }
8e3f6541 3208
2bd59d48 3209 cft->kf_ops = kf_ops;
2bb566cb 3210 cft->ss = ss;
2bd59d48 3211 }
2bb566cb 3212
2bd59d48 3213 return 0;
2da440a2
TH
3214}
3215
21a2d343
TH
3216static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3217{
01f6474c 3218 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3219
3220 if (!cfts || !cfts[0].ss)
3221 return -ENOENT;
3222
3223 list_del(&cfts->node);
3224 cgroup_apply_cftypes(cfts, false);
3225 cgroup_exit_cftypes(cfts);
3226 return 0;
8e3f6541 3227}
8e3f6541 3228
79578621
TH
3229/**
3230 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3231 * @cfts: zero-length name terminated array of cftypes
3232 *
2bb566cb
TH
3233 * Unregister @cfts. Files described by @cfts are removed from all
3234 * existing cgroups and all future cgroups won't have them either. This
3235 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3236 *
3237 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3238 * registered.
79578621 3239 */
2bb566cb 3240int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3241{
21a2d343 3242 int ret;
79578621 3243
01f6474c 3244 mutex_lock(&cgroup_mutex);
21a2d343 3245 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3246 mutex_unlock(&cgroup_mutex);
21a2d343 3247 return ret;
80b13586
TH
3248}
3249
8e3f6541
TH
3250/**
3251 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3252 * @ss: target cgroup subsystem
3253 * @cfts: zero-length name terminated array of cftypes
3254 *
3255 * Register @cfts to @ss. Files described by @cfts are created for all
3256 * existing cgroups to which @ss is attached and all future cgroups will
3257 * have them too. This function can be called anytime whether @ss is
3258 * attached or not.
3259 *
3260 * Returns 0 on successful registration, -errno on failure. Note that this
3261 * function currently returns 0 as long as @cfts registration is successful
3262 * even if some file creation attempts on existing cgroups fail.
3263 */
2cf669a5 3264static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3265{
9ccece80 3266 int ret;
8e3f6541 3267
c731ae1d
LZ
3268 if (ss->disabled)
3269 return 0;
3270
dc5736ed
LZ
3271 if (!cfts || cfts[0].name[0] == '\0')
3272 return 0;
2bb566cb 3273
2bd59d48
TH
3274 ret = cgroup_init_cftypes(ss, cfts);
3275 if (ret)
3276 return ret;
79578621 3277
01f6474c 3278 mutex_lock(&cgroup_mutex);
21a2d343 3279
0adb0704 3280 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3281 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3282 if (ret)
21a2d343 3283 cgroup_rm_cftypes_locked(cfts);
79578621 3284
01f6474c 3285 mutex_unlock(&cgroup_mutex);
9ccece80 3286 return ret;
79578621
TH
3287}
3288
a8ddc821
TH
3289/**
3290 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3293 *
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the default hierarchy.
3296 */
3297int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298{
3299 struct cftype *cft;
3300
3301 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3302 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3303 return cgroup_add_cftypes(ss, cfts);
3304}
3305
3306/**
3307 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3308 * @ss: target cgroup subsystem
3309 * @cfts: zero-length name terminated array of cftypes
3310 *
3311 * Similar to cgroup_add_cftypes() but the added files are only used for
3312 * the legacy hierarchies.
3313 */
2cf669a5
TH
3314int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3315{
a8ddc821
TH
3316 struct cftype *cft;
3317
fa8137be
VG
3318 /*
3319 * If legacy_flies_on_dfl, we want to show the legacy files on the
3320 * dfl hierarchy but iff the target subsystem hasn't been updated
3321 * for the dfl hierarchy yet.
3322 */
3323 if (!cgroup_legacy_files_on_dfl ||
3324 ss->dfl_cftypes != ss->legacy_cftypes) {
3325 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3326 cft->flags |= __CFTYPE_NOT_ON_DFL;
3327 }
3328
2cf669a5
TH
3329 return cgroup_add_cftypes(ss, cfts);
3330}
3331
a043e3b2
LZ
3332/**
3333 * cgroup_task_count - count the number of tasks in a cgroup.
3334 * @cgrp: the cgroup in question
3335 *
3336 * Return the number of tasks in the cgroup.
3337 */
07bc356e 3338static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3339{
3340 int count = 0;
69d0206c 3341 struct cgrp_cset_link *link;
817929ec 3342
96d365e0 3343 down_read(&css_set_rwsem);
69d0206c
TH
3344 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3345 count += atomic_read(&link->cset->refcount);
96d365e0 3346 up_read(&css_set_rwsem);
bbcb81d0
PM
3347 return count;
3348}
3349
53fa5261 3350/**
492eb21b 3351 * css_next_child - find the next child of a given css
c2931b70
TH
3352 * @pos: the current position (%NULL to initiate traversal)
3353 * @parent: css whose children to walk
53fa5261 3354 *
c2931b70 3355 * This function returns the next child of @parent and should be called
87fb54f1 3356 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3357 * that @parent and @pos are accessible. The next sibling is guaranteed to
3358 * be returned regardless of their states.
3359 *
3360 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3361 * css which finished ->css_online() is guaranteed to be visible in the
3362 * future iterations and will stay visible until the last reference is put.
3363 * A css which hasn't finished ->css_online() or already finished
3364 * ->css_offline() may show up during traversal. It's each subsystem's
3365 * responsibility to synchronize against on/offlining.
53fa5261 3366 */
c2931b70
TH
3367struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3368 struct cgroup_subsys_state *parent)
53fa5261 3369{
c2931b70 3370 struct cgroup_subsys_state *next;
53fa5261 3371
8353da1f 3372 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3373
3374 /*
de3f0341
TH
3375 * @pos could already have been unlinked from the sibling list.
3376 * Once a cgroup is removed, its ->sibling.next is no longer
3377 * updated when its next sibling changes. CSS_RELEASED is set when
3378 * @pos is taken off list, at which time its next pointer is valid,
3379 * and, as releases are serialized, the one pointed to by the next
3380 * pointer is guaranteed to not have started release yet. This
3381 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3382 * critical section, the one pointed to by its next pointer is
3383 * guaranteed to not have finished its RCU grace period even if we
3384 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3385 *
de3f0341
TH
3386 * If @pos has CSS_RELEASED set, its next pointer can't be
3387 * dereferenced; however, as each css is given a monotonically
3388 * increasing unique serial number and always appended to the
3389 * sibling list, the next one can be found by walking the parent's
3390 * children until the first css with higher serial number than
3391 * @pos's. While this path can be slower, it happens iff iteration
3392 * races against release and the race window is very small.
53fa5261 3393 */
3b287a50 3394 if (!pos) {
c2931b70
TH
3395 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3396 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3397 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3398 } else {
c2931b70 3399 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3400 if (next->serial_nr > pos->serial_nr)
3401 break;
53fa5261
TH
3402 }
3403
3b281afb
TH
3404 /*
3405 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3406 * the next sibling.
3b281afb 3407 */
c2931b70
TH
3408 if (&next->sibling != &parent->children)
3409 return next;
3b281afb 3410 return NULL;
53fa5261 3411}
53fa5261 3412
574bd9f7 3413/**
492eb21b 3414 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3415 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3416 * @root: css whose descendants to walk
574bd9f7 3417 *
492eb21b 3418 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3419 * to visit for pre-order traversal of @root's descendants. @root is
3420 * included in the iteration and the first node to be visited.
75501a6d 3421 *
87fb54f1
TH
3422 * While this function requires cgroup_mutex or RCU read locking, it
3423 * doesn't require the whole traversal to be contained in a single critical
3424 * section. This function will return the correct next descendant as long
3425 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3426 *
3427 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3428 * css which finished ->css_online() is guaranteed to be visible in the
3429 * future iterations and will stay visible until the last reference is put.
3430 * A css which hasn't finished ->css_online() or already finished
3431 * ->css_offline() may show up during traversal. It's each subsystem's
3432 * responsibility to synchronize against on/offlining.
574bd9f7 3433 */
492eb21b
TH
3434struct cgroup_subsys_state *
3435css_next_descendant_pre(struct cgroup_subsys_state *pos,
3436 struct cgroup_subsys_state *root)
574bd9f7 3437{
492eb21b 3438 struct cgroup_subsys_state *next;
574bd9f7 3439
8353da1f 3440 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3441
bd8815a6 3442 /* if first iteration, visit @root */
7805d000 3443 if (!pos)
bd8815a6 3444 return root;
574bd9f7
TH
3445
3446 /* visit the first child if exists */
492eb21b 3447 next = css_next_child(NULL, pos);
574bd9f7
TH
3448 if (next)
3449 return next;
3450
3451 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3452 while (pos != root) {
5c9d535b 3453 next = css_next_child(pos, pos->parent);
75501a6d 3454 if (next)
574bd9f7 3455 return next;
5c9d535b 3456 pos = pos->parent;
7805d000 3457 }
574bd9f7
TH
3458
3459 return NULL;
3460}
574bd9f7 3461
12a9d2fe 3462/**
492eb21b
TH
3463 * css_rightmost_descendant - return the rightmost descendant of a css
3464 * @pos: css of interest
12a9d2fe 3465 *
492eb21b
TH
3466 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3467 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3468 * subtree of @pos.
75501a6d 3469 *
87fb54f1
TH
3470 * While this function requires cgroup_mutex or RCU read locking, it
3471 * doesn't require the whole traversal to be contained in a single critical
3472 * section. This function will return the correct rightmost descendant as
3473 * long as @pos is accessible.
12a9d2fe 3474 */
492eb21b
TH
3475struct cgroup_subsys_state *
3476css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3477{
492eb21b 3478 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3479
8353da1f 3480 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3481
3482 do {
3483 last = pos;
3484 /* ->prev isn't RCU safe, walk ->next till the end */
3485 pos = NULL;
492eb21b 3486 css_for_each_child(tmp, last)
12a9d2fe
TH
3487 pos = tmp;
3488 } while (pos);
3489
3490 return last;
3491}
12a9d2fe 3492
492eb21b
TH
3493static struct cgroup_subsys_state *
3494css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3495{
492eb21b 3496 struct cgroup_subsys_state *last;
574bd9f7
TH
3497
3498 do {
3499 last = pos;
492eb21b 3500 pos = css_next_child(NULL, pos);
574bd9f7
TH
3501 } while (pos);
3502
3503 return last;
3504}
3505
3506/**
492eb21b 3507 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3508 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3509 * @root: css whose descendants to walk
574bd9f7 3510 *
492eb21b 3511 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3512 * to visit for post-order traversal of @root's descendants. @root is
3513 * included in the iteration and the last node to be visited.
75501a6d 3514 *
87fb54f1
TH
3515 * While this function requires cgroup_mutex or RCU read locking, it
3516 * doesn't require the whole traversal to be contained in a single critical
3517 * section. This function will return the correct next descendant as long
3518 * as both @pos and @cgroup are accessible and @pos is a descendant of
3519 * @cgroup.
c2931b70
TH
3520 *
3521 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3522 * css which finished ->css_online() is guaranteed to be visible in the
3523 * future iterations and will stay visible until the last reference is put.
3524 * A css which hasn't finished ->css_online() or already finished
3525 * ->css_offline() may show up during traversal. It's each subsystem's
3526 * responsibility to synchronize against on/offlining.
574bd9f7 3527 */
492eb21b
TH
3528struct cgroup_subsys_state *
3529css_next_descendant_post(struct cgroup_subsys_state *pos,
3530 struct cgroup_subsys_state *root)
574bd9f7 3531{
492eb21b 3532 struct cgroup_subsys_state *next;
574bd9f7 3533
8353da1f 3534 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3535
58b79a91
TH
3536 /* if first iteration, visit leftmost descendant which may be @root */
3537 if (!pos)
3538 return css_leftmost_descendant(root);
574bd9f7 3539
bd8815a6
TH
3540 /* if we visited @root, we're done */
3541 if (pos == root)
3542 return NULL;
3543
574bd9f7 3544 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3545 next = css_next_child(pos, pos->parent);
75501a6d 3546 if (next)
492eb21b 3547 return css_leftmost_descendant(next);
574bd9f7
TH
3548
3549 /* no sibling left, visit parent */
5c9d535b 3550 return pos->parent;
574bd9f7 3551}
574bd9f7 3552
f3d46500
TH
3553/**
3554 * css_has_online_children - does a css have online children
3555 * @css: the target css
3556 *
3557 * Returns %true if @css has any online children; otherwise, %false. This
3558 * function can be called from any context but the caller is responsible
3559 * for synchronizing against on/offlining as necessary.
3560 */
3561bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3562{
f3d46500
TH
3563 struct cgroup_subsys_state *child;
3564 bool ret = false;
cbc125ef
TH
3565
3566 rcu_read_lock();
f3d46500 3567 css_for_each_child(child, css) {
99bae5f9 3568 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3569 ret = true;
3570 break;
cbc125ef
TH
3571 }
3572 }
3573 rcu_read_unlock();
f3d46500 3574 return ret;
574bd9f7 3575}
574bd9f7 3576
0942eeee 3577/**
72ec7029 3578 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3579 * @it: the iterator to advance
3580 *
3581 * Advance @it to the next css_set to walk.
d515876e 3582 */
72ec7029 3583static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3584{
0f0a2b4f 3585 struct list_head *l = it->cset_pos;
d515876e
TH
3586 struct cgrp_cset_link *link;
3587 struct css_set *cset;
3588
3589 /* Advance to the next non-empty css_set */
3590 do {
3591 l = l->next;
0f0a2b4f
TH
3592 if (l == it->cset_head) {
3593 it->cset_pos = NULL;
d515876e
TH
3594 return;
3595 }
3ebb2b6e
TH
3596
3597 if (it->ss) {
3598 cset = container_of(l, struct css_set,
3599 e_cset_node[it->ss->id]);
3600 } else {
3601 link = list_entry(l, struct cgrp_cset_link, cset_link);
3602 cset = link->cset;
3603 }
c7561128
TH
3604 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3605
0f0a2b4f 3606 it->cset_pos = l;
c7561128
TH
3607
3608 if (!list_empty(&cset->tasks))
0f0a2b4f 3609 it->task_pos = cset->tasks.next;
c7561128 3610 else
0f0a2b4f
TH
3611 it->task_pos = cset->mg_tasks.next;
3612
3613 it->tasks_head = &cset->tasks;
3614 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3615}
3616
0942eeee 3617/**
72ec7029
TH
3618 * css_task_iter_start - initiate task iteration
3619 * @css: the css to walk tasks of
0942eeee
TH
3620 * @it: the task iterator to use
3621 *
72ec7029
TH
3622 * Initiate iteration through the tasks of @css. The caller can call
3623 * css_task_iter_next() to walk through the tasks until the function
3624 * returns NULL. On completion of iteration, css_task_iter_end() must be
3625 * called.
0942eeee
TH
3626 *
3627 * Note that this function acquires a lock which is released when the
3628 * iteration finishes. The caller can't sleep while iteration is in
3629 * progress.
3630 */
72ec7029
TH
3631void css_task_iter_start(struct cgroup_subsys_state *css,
3632 struct css_task_iter *it)
96d365e0 3633 __acquires(css_set_rwsem)
817929ec 3634{
56fde9e0
TH
3635 /* no one should try to iterate before mounting cgroups */
3636 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3637
96d365e0 3638 down_read(&css_set_rwsem);
c59cd3d8 3639
3ebb2b6e
TH
3640 it->ss = css->ss;
3641
3642 if (it->ss)
3643 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3644 else
3645 it->cset_pos = &css->cgroup->cset_links;
3646
0f0a2b4f 3647 it->cset_head = it->cset_pos;
c59cd3d8 3648
72ec7029 3649 css_advance_task_iter(it);
817929ec
PM
3650}
3651
0942eeee 3652/**
72ec7029 3653 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3654 * @it: the task iterator being iterated
3655 *
3656 * The "next" function for task iteration. @it should have been
72ec7029
TH
3657 * initialized via css_task_iter_start(). Returns NULL when the iteration
3658 * reaches the end.
0942eeee 3659 */
72ec7029 3660struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3661{
3662 struct task_struct *res;
0f0a2b4f 3663 struct list_head *l = it->task_pos;
817929ec
PM
3664
3665 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3666 if (!it->cset_pos)
817929ec
PM
3667 return NULL;
3668 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3669
3670 /*
3671 * Advance iterator to find next entry. cset->tasks is consumed
3672 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3673 * next cset.
3674 */
817929ec 3675 l = l->next;
c7561128 3676
0f0a2b4f
TH
3677 if (l == it->tasks_head)
3678 l = it->mg_tasks_head->next;
c7561128 3679
0f0a2b4f 3680 if (l == it->mg_tasks_head)
72ec7029 3681 css_advance_task_iter(it);
c7561128 3682 else
0f0a2b4f 3683 it->task_pos = l;
c7561128 3684
817929ec
PM
3685 return res;
3686}
3687
0942eeee 3688/**
72ec7029 3689 * css_task_iter_end - finish task iteration
0942eeee
TH
3690 * @it: the task iterator to finish
3691 *
72ec7029 3692 * Finish task iteration started by css_task_iter_start().
0942eeee 3693 */
72ec7029 3694void css_task_iter_end(struct css_task_iter *it)
96d365e0 3695 __releases(css_set_rwsem)
31a7df01 3696{
96d365e0 3697 up_read(&css_set_rwsem);
31a7df01
CW
3698}
3699
3700/**
8cc99345
TH
3701 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3702 * @to: cgroup to which the tasks will be moved
3703 * @from: cgroup in which the tasks currently reside
31a7df01 3704 *
eaf797ab
TH
3705 * Locking rules between cgroup_post_fork() and the migration path
3706 * guarantee that, if a task is forking while being migrated, the new child
3707 * is guaranteed to be either visible in the source cgroup after the
3708 * parent's migration is complete or put into the target cgroup. No task
3709 * can slip out of migration through forking.
31a7df01 3710 */
8cc99345 3711int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3712{
952aaa12
TH
3713 LIST_HEAD(preloaded_csets);
3714 struct cgrp_cset_link *link;
72ec7029 3715 struct css_task_iter it;
e406d1cf 3716 struct task_struct *task;
952aaa12 3717 int ret;
31a7df01 3718
952aaa12 3719 mutex_lock(&cgroup_mutex);
31a7df01 3720
952aaa12
TH
3721 /* all tasks in @from are being moved, all csets are source */
3722 down_read(&css_set_rwsem);
3723 list_for_each_entry(link, &from->cset_links, cset_link)
3724 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3725 up_read(&css_set_rwsem);
31a7df01 3726
952aaa12
TH
3727 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3728 if (ret)
3729 goto out_err;
8cc99345 3730
952aaa12
TH
3731 /*
3732 * Migrate tasks one-by-one until @form is empty. This fails iff
3733 * ->can_attach() fails.
3734 */
e406d1cf 3735 do {
9d800df1 3736 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3737 task = css_task_iter_next(&it);
3738 if (task)
3739 get_task_struct(task);
3740 css_task_iter_end(&it);
3741
3742 if (task) {
952aaa12 3743 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3744 put_task_struct(task);
3745 }
3746 } while (task && !ret);
952aaa12
TH
3747out_err:
3748 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3749 mutex_unlock(&cgroup_mutex);
e406d1cf 3750 return ret;
8cc99345
TH
3751}
3752
bbcb81d0 3753/*
102a775e 3754 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3755 *
3756 * Reading this file can return large amounts of data if a cgroup has
3757 * *lots* of attached tasks. So it may need several calls to read(),
3758 * but we cannot guarantee that the information we produce is correct
3759 * unless we produce it entirely atomically.
3760 *
bbcb81d0 3761 */
bbcb81d0 3762
24528255
LZ
3763/* which pidlist file are we talking about? */
3764enum cgroup_filetype {
3765 CGROUP_FILE_PROCS,
3766 CGROUP_FILE_TASKS,
3767};
3768
3769/*
3770 * A pidlist is a list of pids that virtually represents the contents of one
3771 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3772 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3773 * to the cgroup.
3774 */
3775struct cgroup_pidlist {
3776 /*
3777 * used to find which pidlist is wanted. doesn't change as long as
3778 * this particular list stays in the list.
3779 */
3780 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3781 /* array of xids */
3782 pid_t *list;
3783 /* how many elements the above list has */
3784 int length;
24528255
LZ
3785 /* each of these stored in a list by its cgroup */
3786 struct list_head links;
3787 /* pointer to the cgroup we belong to, for list removal purposes */
3788 struct cgroup *owner;
b1a21367
TH
3789 /* for delayed destruction */
3790 struct delayed_work destroy_dwork;
24528255
LZ
3791};
3792
d1d9fd33
BB
3793/*
3794 * The following two functions "fix" the issue where there are more pids
3795 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3796 * TODO: replace with a kernel-wide solution to this problem
3797 */
3798#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3799static void *pidlist_allocate(int count)
3800{
3801 if (PIDLIST_TOO_LARGE(count))
3802 return vmalloc(count * sizeof(pid_t));
3803 else
3804 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3805}
b1a21367 3806
d1d9fd33
BB
3807static void pidlist_free(void *p)
3808{
3809 if (is_vmalloc_addr(p))
3810 vfree(p);
3811 else
3812 kfree(p);
3813}
d1d9fd33 3814
b1a21367
TH
3815/*
3816 * Used to destroy all pidlists lingering waiting for destroy timer. None
3817 * should be left afterwards.
3818 */
3819static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3820{
3821 struct cgroup_pidlist *l, *tmp_l;
3822
3823 mutex_lock(&cgrp->pidlist_mutex);
3824 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3825 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3826 mutex_unlock(&cgrp->pidlist_mutex);
3827
3828 flush_workqueue(cgroup_pidlist_destroy_wq);
3829 BUG_ON(!list_empty(&cgrp->pidlists));
3830}
3831
3832static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3833{
3834 struct delayed_work *dwork = to_delayed_work(work);
3835 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3836 destroy_dwork);
3837 struct cgroup_pidlist *tofree = NULL;
3838
3839 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3840
3841 /*
04502365
TH
3842 * Destroy iff we didn't get queued again. The state won't change
3843 * as destroy_dwork can only be queued while locked.
b1a21367 3844 */
04502365 3845 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3846 list_del(&l->links);
3847 pidlist_free(l->list);
3848 put_pid_ns(l->key.ns);
3849 tofree = l;
3850 }
3851
b1a21367
TH
3852 mutex_unlock(&l->owner->pidlist_mutex);
3853 kfree(tofree);
3854}
3855
bbcb81d0 3856/*
102a775e 3857 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3858 * Returns the number of unique elements.
bbcb81d0 3859 */
6ee211ad 3860static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3861{
102a775e 3862 int src, dest = 1;
102a775e
BB
3863
3864 /*
3865 * we presume the 0th element is unique, so i starts at 1. trivial
3866 * edge cases first; no work needs to be done for either
3867 */
3868 if (length == 0 || length == 1)
3869 return length;
3870 /* src and dest walk down the list; dest counts unique elements */
3871 for (src = 1; src < length; src++) {
3872 /* find next unique element */
3873 while (list[src] == list[src-1]) {
3874 src++;
3875 if (src == length)
3876 goto after;
3877 }
3878 /* dest always points to where the next unique element goes */
3879 list[dest] = list[src];
3880 dest++;
3881 }
3882after:
102a775e
BB
3883 return dest;
3884}
3885
afb2bc14
TH
3886/*
3887 * The two pid files - task and cgroup.procs - guaranteed that the result
3888 * is sorted, which forced this whole pidlist fiasco. As pid order is
3889 * different per namespace, each namespace needs differently sorted list,
3890 * making it impossible to use, for example, single rbtree of member tasks
3891 * sorted by task pointer. As pidlists can be fairly large, allocating one
3892 * per open file is dangerous, so cgroup had to implement shared pool of
3893 * pidlists keyed by cgroup and namespace.
3894 *
3895 * All this extra complexity was caused by the original implementation
3896 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3897 * want to do away with it. Explicitly scramble sort order if on the
3898 * default hierarchy so that no such expectation exists in the new
3899 * interface.
afb2bc14
TH
3900 *
3901 * Scrambling is done by swapping every two consecutive bits, which is
3902 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3903 */
3904static pid_t pid_fry(pid_t pid)
3905{
3906 unsigned a = pid & 0x55555555;
3907 unsigned b = pid & 0xAAAAAAAA;
3908
3909 return (a << 1) | (b >> 1);
3910}
3911
3912static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3913{
aa6ec29b 3914 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3915 return pid_fry(pid);
3916 else
3917 return pid;
3918}
3919
102a775e
BB
3920static int cmppid(const void *a, const void *b)
3921{
3922 return *(pid_t *)a - *(pid_t *)b;
3923}
3924
afb2bc14
TH
3925static int fried_cmppid(const void *a, const void *b)
3926{
3927 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3928}
3929
e6b81710
TH
3930static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3931 enum cgroup_filetype type)
3932{
3933 struct cgroup_pidlist *l;
3934 /* don't need task_nsproxy() if we're looking at ourself */
3935 struct pid_namespace *ns = task_active_pid_ns(current);
3936
3937 lockdep_assert_held(&cgrp->pidlist_mutex);
3938
3939 list_for_each_entry(l, &cgrp->pidlists, links)
3940 if (l->key.type == type && l->key.ns == ns)
3941 return l;
3942 return NULL;
3943}
3944
72a8cb30
BB
3945/*
3946 * find the appropriate pidlist for our purpose (given procs vs tasks)
3947 * returns with the lock on that pidlist already held, and takes care
3948 * of the use count, or returns NULL with no locks held if we're out of
3949 * memory.
3950 */
e6b81710
TH
3951static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3952 enum cgroup_filetype type)
72a8cb30
BB
3953{
3954 struct cgroup_pidlist *l;
b70cc5fd 3955
e6b81710
TH
3956 lockdep_assert_held(&cgrp->pidlist_mutex);
3957
3958 l = cgroup_pidlist_find(cgrp, type);
3959 if (l)
3960 return l;
3961
72a8cb30 3962 /* entry not found; create a new one */
f4f4be2b 3963 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3964 if (!l)
72a8cb30 3965 return l;
e6b81710 3966
b1a21367 3967 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3968 l->key.type = type;
e6b81710
TH
3969 /* don't need task_nsproxy() if we're looking at ourself */
3970 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3971 l->owner = cgrp;
3972 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3973 return l;
3974}
3975
102a775e
BB
3976/*
3977 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3978 */
72a8cb30
BB
3979static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3980 struct cgroup_pidlist **lp)
102a775e
BB
3981{
3982 pid_t *array;
3983 int length;
3984 int pid, n = 0; /* used for populating the array */
72ec7029 3985 struct css_task_iter it;
817929ec 3986 struct task_struct *tsk;
102a775e
BB
3987 struct cgroup_pidlist *l;
3988
4bac00d1
TH
3989 lockdep_assert_held(&cgrp->pidlist_mutex);
3990
102a775e
BB
3991 /*
3992 * If cgroup gets more users after we read count, we won't have
3993 * enough space - tough. This race is indistinguishable to the
3994 * caller from the case that the additional cgroup users didn't
3995 * show up until sometime later on.
3996 */
3997 length = cgroup_task_count(cgrp);
d1d9fd33 3998 array = pidlist_allocate(length);
102a775e
BB
3999 if (!array)
4000 return -ENOMEM;
4001 /* now, populate the array */
9d800df1 4002 css_task_iter_start(&cgrp->self, &it);
72ec7029 4003 while ((tsk = css_task_iter_next(&it))) {
102a775e 4004 if (unlikely(n == length))
817929ec 4005 break;
102a775e 4006 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4007 if (type == CGROUP_FILE_PROCS)
4008 pid = task_tgid_vnr(tsk);
4009 else
4010 pid = task_pid_vnr(tsk);
102a775e
BB
4011 if (pid > 0) /* make sure to only use valid results */
4012 array[n++] = pid;
817929ec 4013 }
72ec7029 4014 css_task_iter_end(&it);
102a775e
BB
4015 length = n;
4016 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4017 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4018 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4019 else
4020 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4021 if (type == CGROUP_FILE_PROCS)
6ee211ad 4022 length = pidlist_uniq(array, length);
e6b81710 4023
e6b81710 4024 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4025 if (!l) {
d1d9fd33 4026 pidlist_free(array);
72a8cb30 4027 return -ENOMEM;
102a775e 4028 }
e6b81710
TH
4029
4030 /* store array, freeing old if necessary */
d1d9fd33 4031 pidlist_free(l->list);
102a775e
BB
4032 l->list = array;
4033 l->length = length;
72a8cb30 4034 *lp = l;
102a775e 4035 return 0;
bbcb81d0
PM
4036}
4037
846c7bb0 4038/**
a043e3b2 4039 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4040 * @stats: cgroupstats to fill information into
4041 * @dentry: A dentry entry belonging to the cgroup for which stats have
4042 * been requested.
a043e3b2
LZ
4043 *
4044 * Build and fill cgroupstats so that taskstats can export it to user
4045 * space.
846c7bb0
BS
4046 */
4047int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4048{
2bd59d48 4049 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4050 struct cgroup *cgrp;
72ec7029 4051 struct css_task_iter it;
846c7bb0 4052 struct task_struct *tsk;
33d283be 4053
2bd59d48
TH
4054 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4055 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4056 kernfs_type(kn) != KERNFS_DIR)
4057 return -EINVAL;
4058
bad34660
LZ
4059 mutex_lock(&cgroup_mutex);
4060
846c7bb0 4061 /*
2bd59d48 4062 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4063 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4064 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4065 */
2bd59d48
TH
4066 rcu_read_lock();
4067 cgrp = rcu_dereference(kn->priv);
bad34660 4068 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4069 rcu_read_unlock();
bad34660 4070 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4071 return -ENOENT;
4072 }
bad34660 4073 rcu_read_unlock();
846c7bb0 4074
9d800df1 4075 css_task_iter_start(&cgrp->self, &it);
72ec7029 4076 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4077 switch (tsk->state) {
4078 case TASK_RUNNING:
4079 stats->nr_running++;
4080 break;
4081 case TASK_INTERRUPTIBLE:
4082 stats->nr_sleeping++;
4083 break;
4084 case TASK_UNINTERRUPTIBLE:
4085 stats->nr_uninterruptible++;
4086 break;
4087 case TASK_STOPPED:
4088 stats->nr_stopped++;
4089 break;
4090 default:
4091 if (delayacct_is_task_waiting_on_io(tsk))
4092 stats->nr_io_wait++;
4093 break;
4094 }
4095 }
72ec7029 4096 css_task_iter_end(&it);
846c7bb0 4097
bad34660 4098 mutex_unlock(&cgroup_mutex);
2bd59d48 4099 return 0;
846c7bb0
BS
4100}
4101
8f3ff208 4102
bbcb81d0 4103/*
102a775e 4104 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4105 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4106 * in the cgroup->l->list array.
bbcb81d0 4107 */
cc31edce 4108
102a775e 4109static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4110{
cc31edce
PM
4111 /*
4112 * Initially we receive a position value that corresponds to
4113 * one more than the last pid shown (or 0 on the first call or
4114 * after a seek to the start). Use a binary-search to find the
4115 * next pid to display, if any
4116 */
2bd59d48 4117 struct kernfs_open_file *of = s->private;
7da11279 4118 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4119 struct cgroup_pidlist *l;
7da11279 4120 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4121 int index = 0, pid = *pos;
4bac00d1
TH
4122 int *iter, ret;
4123
4124 mutex_lock(&cgrp->pidlist_mutex);
4125
4126 /*
5d22444f 4127 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4128 * after open. If the matching pidlist is around, we can use that.
5d22444f 4129 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4130 * could already have been destroyed.
4131 */
5d22444f
TH
4132 if (of->priv)
4133 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4134
4135 /*
4136 * Either this is the first start() after open or the matching
4137 * pidlist has been destroyed inbetween. Create a new one.
4138 */
5d22444f
TH
4139 if (!of->priv) {
4140 ret = pidlist_array_load(cgrp, type,
4141 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4142 if (ret)
4143 return ERR_PTR(ret);
4144 }
5d22444f 4145 l = of->priv;
cc31edce 4146
cc31edce 4147 if (pid) {
102a775e 4148 int end = l->length;
20777766 4149
cc31edce
PM
4150 while (index < end) {
4151 int mid = (index + end) / 2;
afb2bc14 4152 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4153 index = mid;
4154 break;
afb2bc14 4155 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4156 index = mid + 1;
4157 else
4158 end = mid;
4159 }
4160 }
4161 /* If we're off the end of the array, we're done */
102a775e 4162 if (index >= l->length)
cc31edce
PM
4163 return NULL;
4164 /* Update the abstract position to be the actual pid that we found */
102a775e 4165 iter = l->list + index;
afb2bc14 4166 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4167 return iter;
4168}
4169
102a775e 4170static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4171{
2bd59d48 4172 struct kernfs_open_file *of = s->private;
5d22444f 4173 struct cgroup_pidlist *l = of->priv;
62236858 4174
5d22444f
TH
4175 if (l)
4176 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4177 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4178 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4179}
4180
102a775e 4181static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4182{
2bd59d48 4183 struct kernfs_open_file *of = s->private;
5d22444f 4184 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4185 pid_t *p = v;
4186 pid_t *end = l->list + l->length;
cc31edce
PM
4187 /*
4188 * Advance to the next pid in the array. If this goes off the
4189 * end, we're done
4190 */
4191 p++;
4192 if (p >= end) {
4193 return NULL;
4194 } else {
7da11279 4195 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4196 return p;
4197 }
4198}
4199
102a775e 4200static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4201{
4202 return seq_printf(s, "%d\n", *(int *)v);
4203}
bbcb81d0 4204
182446d0
TH
4205static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4206 struct cftype *cft)
81a6a5cd 4207{
182446d0 4208 return notify_on_release(css->cgroup);
81a6a5cd
PM
4209}
4210
182446d0
TH
4211static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4212 struct cftype *cft, u64 val)
6379c106 4213{
6379c106 4214 if (val)
182446d0 4215 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4216 else
182446d0 4217 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4218 return 0;
4219}
4220
182446d0
TH
4221static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4222 struct cftype *cft)
97978e6d 4223{
182446d0 4224 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4225}
4226
182446d0
TH
4227static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4228 struct cftype *cft, u64 val)
97978e6d
DL
4229{
4230 if (val)
182446d0 4231 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4232 else
182446d0 4233 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4234 return 0;
4235}
4236
a14c6874
TH
4237/* cgroup core interface files for the default hierarchy */
4238static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4239 {
d5c56ced 4240 .name = "cgroup.procs",
6612f05b
TH
4241 .seq_start = cgroup_pidlist_start,
4242 .seq_next = cgroup_pidlist_next,
4243 .seq_stop = cgroup_pidlist_stop,
4244 .seq_show = cgroup_pidlist_show,
5d22444f 4245 .private = CGROUP_FILE_PROCS,
acbef755 4246 .write = cgroup_procs_write,
74a1166d 4247 .mode = S_IRUGO | S_IWUSR,
102a775e 4248 },
f8f22e53
TH
4249 {
4250 .name = "cgroup.controllers",
a14c6874 4251 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4252 .seq_show = cgroup_root_controllers_show,
4253 },
4254 {
4255 .name = "cgroup.controllers",
a14c6874 4256 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4257 .seq_show = cgroup_controllers_show,
4258 },
4259 {
4260 .name = "cgroup.subtree_control",
f8f22e53 4261 .seq_show = cgroup_subtree_control_show,
451af504 4262 .write = cgroup_subtree_control_write,
f8f22e53 4263 },
842b597e
TH
4264 {
4265 .name = "cgroup.populated",
a14c6874 4266 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4267 .seq_show = cgroup_populated_show,
4268 },
a14c6874
TH
4269 { } /* terminate */
4270};
d5c56ced 4271
a14c6874
TH
4272/* cgroup core interface files for the legacy hierarchies */
4273static struct cftype cgroup_legacy_base_files[] = {
4274 {
4275 .name = "cgroup.procs",
4276 .seq_start = cgroup_pidlist_start,
4277 .seq_next = cgroup_pidlist_next,
4278 .seq_stop = cgroup_pidlist_stop,
4279 .seq_show = cgroup_pidlist_show,
4280 .private = CGROUP_FILE_PROCS,
4281 .write = cgroup_procs_write,
4282 .mode = S_IRUGO | S_IWUSR,
4283 },
4284 {
4285 .name = "cgroup.clone_children",
4286 .read_u64 = cgroup_clone_children_read,
4287 .write_u64 = cgroup_clone_children_write,
4288 },
4289 {
4290 .name = "cgroup.sane_behavior",
4291 .flags = CFTYPE_ONLY_ON_ROOT,
4292 .seq_show = cgroup_sane_behavior_show,
4293 },
d5c56ced
TH
4294 {
4295 .name = "tasks",
6612f05b
TH
4296 .seq_start = cgroup_pidlist_start,
4297 .seq_next = cgroup_pidlist_next,
4298 .seq_stop = cgroup_pidlist_stop,
4299 .seq_show = cgroup_pidlist_show,
5d22444f 4300 .private = CGROUP_FILE_TASKS,
acbef755 4301 .write = cgroup_tasks_write,
d5c56ced
TH
4302 .mode = S_IRUGO | S_IWUSR,
4303 },
4304 {
4305 .name = "notify_on_release",
d5c56ced
TH
4306 .read_u64 = cgroup_read_notify_on_release,
4307 .write_u64 = cgroup_write_notify_on_release,
4308 },
6e6ff25b
TH
4309 {
4310 .name = "release_agent",
a14c6874 4311 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4312 .seq_show = cgroup_release_agent_show,
451af504 4313 .write = cgroup_release_agent_write,
5f469907 4314 .max_write_len = PATH_MAX - 1,
6e6ff25b 4315 },
db0416b6 4316 { } /* terminate */
bbcb81d0
PM
4317};
4318
13af07df 4319/**
628f7cd4 4320 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4321 * @cgrp: target cgroup
13af07df 4322 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4323 *
4324 * On failure, no file is added.
13af07df 4325 */
69dfa00c 4326static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4327{
ddbcc7e8 4328 struct cgroup_subsys *ss;
b420ba7d 4329 int i, ret = 0;
bbcb81d0 4330
8e3f6541 4331 /* process cftsets of each subsystem */
b420ba7d 4332 for_each_subsys(ss, i) {
0adb0704 4333 struct cftype *cfts;
b420ba7d 4334
69dfa00c 4335 if (!(subsys_mask & (1 << i)))
13af07df 4336 continue;
8e3f6541 4337
0adb0704
TH
4338 list_for_each_entry(cfts, &ss->cfts, node) {
4339 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4340 if (ret < 0)
4341 goto err;
4342 }
ddbcc7e8 4343 }
ddbcc7e8 4344 return 0;
bee55099
TH
4345err:
4346 cgroup_clear_dir(cgrp, subsys_mask);
4347 return ret;
ddbcc7e8
PM
4348}
4349
0c21ead1
TH
4350/*
4351 * css destruction is four-stage process.
4352 *
4353 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4354 * Implemented in kill_css().
4355 *
4356 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4357 * and thus css_tryget_online() is guaranteed to fail, the css can be
4358 * offlined by invoking offline_css(). After offlining, the base ref is
4359 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4360 *
4361 * 3. When the percpu_ref reaches zero, the only possible remaining
4362 * accessors are inside RCU read sections. css_release() schedules the
4363 * RCU callback.
4364 *
4365 * 4. After the grace period, the css can be freed. Implemented in
4366 * css_free_work_fn().
4367 *
4368 * It is actually hairier because both step 2 and 4 require process context
4369 * and thus involve punting to css->destroy_work adding two additional
4370 * steps to the already complex sequence.
4371 */
35ef10da 4372static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4373{
4374 struct cgroup_subsys_state *css =
35ef10da 4375 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4376 struct cgroup_subsys *ss = css->ss;
0c21ead1 4377 struct cgroup *cgrp = css->cgroup;
48ddbe19 4378
9a1049da
TH
4379 percpu_ref_exit(&css->refcnt);
4380
01e58659 4381 if (ss) {
9d755d33 4382 /* css free path */
01e58659
VD
4383 int id = css->id;
4384
9d755d33
TH
4385 if (css->parent)
4386 css_put(css->parent);
0ae78e0b 4387
01e58659
VD
4388 ss->css_free(css);
4389 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4390 cgroup_put(cgrp);
4391 } else {
4392 /* cgroup free path */
4393 atomic_dec(&cgrp->root->nr_cgrps);
4394 cgroup_pidlist_destroy_all(cgrp);
971ff493 4395 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4396
d51f39b0 4397 if (cgroup_parent(cgrp)) {
9d755d33
TH
4398 /*
4399 * We get a ref to the parent, and put the ref when
4400 * this cgroup is being freed, so it's guaranteed
4401 * that the parent won't be destroyed before its
4402 * children.
4403 */
d51f39b0 4404 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4405 kernfs_put(cgrp->kn);
4406 kfree(cgrp);
4407 } else {
4408 /*
4409 * This is root cgroup's refcnt reaching zero,
4410 * which indicates that the root should be
4411 * released.
4412 */
4413 cgroup_destroy_root(cgrp->root);
4414 }
4415 }
48ddbe19
TH
4416}
4417
0c21ead1 4418static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4419{
4420 struct cgroup_subsys_state *css =
0c21ead1 4421 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4422
35ef10da 4423 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4424 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4425}
4426
25e15d83 4427static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4428{
4429 struct cgroup_subsys_state *css =
25e15d83 4430 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4431 struct cgroup_subsys *ss = css->ss;
9d755d33 4432 struct cgroup *cgrp = css->cgroup;
15a4c835 4433
1fed1b2e
TH
4434 mutex_lock(&cgroup_mutex);
4435
de3f0341 4436 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4437 list_del_rcu(&css->sibling);
4438
9d755d33
TH
4439 if (ss) {
4440 /* css release path */
01e58659 4441 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4442 if (ss->css_released)
4443 ss->css_released(css);
9d755d33
TH
4444 } else {
4445 /* cgroup release path */
9d755d33
TH
4446 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4447 cgrp->id = -1;
a4189487
LZ
4448
4449 /*
4450 * There are two control paths which try to determine
4451 * cgroup from dentry without going through kernfs -
4452 * cgroupstats_build() and css_tryget_online_from_dir().
4453 * Those are supported by RCU protecting clearing of
4454 * cgrp->kn->priv backpointer.
4455 */
4456 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4457 }
d3daf28d 4458
1fed1b2e
TH
4459 mutex_unlock(&cgroup_mutex);
4460
0c21ead1 4461 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4462}
4463
d3daf28d
TH
4464static void css_release(struct percpu_ref *ref)
4465{
4466 struct cgroup_subsys_state *css =
4467 container_of(ref, struct cgroup_subsys_state, refcnt);
4468
25e15d83
TH
4469 INIT_WORK(&css->destroy_work, css_release_work_fn);
4470 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4471}
4472
ddfcadab
TH
4473static void init_and_link_css(struct cgroup_subsys_state *css,
4474 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4475{
0cb51d71
TH
4476 lockdep_assert_held(&cgroup_mutex);
4477
ddfcadab
TH
4478 cgroup_get(cgrp);
4479
d5c419b6 4480 memset(css, 0, sizeof(*css));
bd89aabc 4481 css->cgroup = cgrp;
72c97e54 4482 css->ss = ss;
d5c419b6
TH
4483 INIT_LIST_HEAD(&css->sibling);
4484 INIT_LIST_HEAD(&css->children);
0cb51d71 4485 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4486
d51f39b0
TH
4487 if (cgroup_parent(cgrp)) {
4488 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4489 css_get(css->parent);
ddfcadab 4490 }
48ddbe19 4491
ca8bdcaf 4492 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4493}
4494
2a4ac633 4495/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4496static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4497{
623f926b 4498 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4499 int ret = 0;
4500
a31f2d3f
TH
4501 lockdep_assert_held(&cgroup_mutex);
4502
92fb9748 4503 if (ss->css_online)
eb95419b 4504 ret = ss->css_online(css);
ae7f164a 4505 if (!ret) {
eb95419b 4506 css->flags |= CSS_ONLINE;
aec25020 4507 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4508 }
b1929db4 4509 return ret;
a31f2d3f
TH
4510}
4511
2a4ac633 4512/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4513static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4514{
623f926b 4515 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4516
4517 lockdep_assert_held(&cgroup_mutex);
4518
4519 if (!(css->flags & CSS_ONLINE))
4520 return;
4521
d7eeac19 4522 if (ss->css_offline)
eb95419b 4523 ss->css_offline(css);
a31f2d3f 4524
eb95419b 4525 css->flags &= ~CSS_ONLINE;
e3297803 4526 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4527
4528 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4529}
4530
c81c925a
TH
4531/**
4532 * create_css - create a cgroup_subsys_state
4533 * @cgrp: the cgroup new css will be associated with
4534 * @ss: the subsys of new css
f63070d3 4535 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4536 *
4537 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4538 * css is online and installed in @cgrp with all interface files created if
4539 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4540 */
f63070d3
TH
4541static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4542 bool visible)
c81c925a 4543{
d51f39b0 4544 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4545 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4546 struct cgroup_subsys_state *css;
4547 int err;
4548
c81c925a
TH
4549 lockdep_assert_held(&cgroup_mutex);
4550
1fed1b2e 4551 css = ss->css_alloc(parent_css);
c81c925a
TH
4552 if (IS_ERR(css))
4553 return PTR_ERR(css);
4554
ddfcadab 4555 init_and_link_css(css, ss, cgrp);
a2bed820 4556
2aad2a86 4557 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4558 if (err)
3eb59ec6 4559 goto err_free_css;
c81c925a 4560
15a4c835
TH
4561 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4562 if (err < 0)
4563 goto err_free_percpu_ref;
4564 css->id = err;
c81c925a 4565
f63070d3
TH
4566 if (visible) {
4567 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4568 if (err)
4569 goto err_free_id;
4570 }
15a4c835
TH
4571
4572 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4573 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4574 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4575
4576 err = online_css(css);
4577 if (err)
1fed1b2e 4578 goto err_list_del;
94419627 4579
c81c925a 4580 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4581 cgroup_parent(parent)) {
ed3d261b 4582 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4583 current->comm, current->pid, ss->name);
c81c925a 4584 if (!strcmp(ss->name, "memory"))
ed3d261b 4585 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4586 ss->warned_broken_hierarchy = true;
4587 }
4588
4589 return 0;
4590
1fed1b2e
TH
4591err_list_del:
4592 list_del_rcu(&css->sibling);
32d01dc7 4593 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4594err_free_id:
4595 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4596err_free_percpu_ref:
9a1049da 4597 percpu_ref_exit(&css->refcnt);
3eb59ec6 4598err_free_css:
a2bed820 4599 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4600 return err;
4601}
4602
b3bfd983
TH
4603static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4604 umode_t mode)
ddbcc7e8 4605{
a9746d8d
TH
4606 struct cgroup *parent, *cgrp;
4607 struct cgroup_root *root;
ddbcc7e8 4608 struct cgroup_subsys *ss;
2bd59d48 4609 struct kernfs_node *kn;
a14c6874 4610 struct cftype *base_files;
b3bfd983 4611 int ssid, ret;
ddbcc7e8 4612
71b1fb5c
AC
4613 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4614 */
4615 if (strchr(name, '\n'))
4616 return -EINVAL;
4617
a9746d8d
TH
4618 parent = cgroup_kn_lock_live(parent_kn);
4619 if (!parent)
4620 return -ENODEV;
4621 root = parent->root;
ddbcc7e8 4622
0a950f65 4623 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4624 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4625 if (!cgrp) {
4626 ret = -ENOMEM;
4627 goto out_unlock;
0ab02ca8
LZ
4628 }
4629
2aad2a86 4630 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4631 if (ret)
4632 goto out_free_cgrp;
4633
0ab02ca8
LZ
4634 /*
4635 * Temporarily set the pointer to NULL, so idr_find() won't return
4636 * a half-baked cgroup.
4637 */
6fa4918d 4638 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4639 if (cgrp->id < 0) {
ba0f4d76 4640 ret = -ENOMEM;
9d755d33 4641 goto out_cancel_ref;
976c06bc
TH
4642 }
4643
cc31edce 4644 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4645
9d800df1 4646 cgrp->self.parent = &parent->self;
ba0f4d76 4647 cgrp->root = root;
ddbcc7e8 4648
b6abdb0e
LZ
4649 if (notify_on_release(parent))
4650 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4651
2260e7fc
TH
4652 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4653 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4654
2bd59d48 4655 /* create the directory */
e61734c5 4656 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4657 if (IS_ERR(kn)) {
ba0f4d76
TH
4658 ret = PTR_ERR(kn);
4659 goto out_free_id;
2bd59d48
TH
4660 }
4661 cgrp->kn = kn;
ddbcc7e8 4662
4e139afc 4663 /*
6f30558f
TH
4664 * This extra ref will be put in cgroup_free_fn() and guarantees
4665 * that @cgrp->kn is always accessible.
4e139afc 4666 */
6f30558f 4667 kernfs_get(kn);
ddbcc7e8 4668
0cb51d71 4669 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4670
4e139afc 4671 /* allocation complete, commit to creation */
d5c419b6 4672 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4673 atomic_inc(&root->nr_cgrps);
59f5296b 4674 cgroup_get(parent);
415cf07a 4675
0d80255e
TH
4676 /*
4677 * @cgrp is now fully operational. If something fails after this
4678 * point, it'll be released via the normal destruction path.
4679 */
6fa4918d 4680 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4681
ba0f4d76
TH
4682 ret = cgroup_kn_set_ugid(kn);
4683 if (ret)
4684 goto out_destroy;
49957f8e 4685
a14c6874
TH
4686 if (cgroup_on_dfl(cgrp))
4687 base_files = cgroup_dfl_base_files;
4688 else
4689 base_files = cgroup_legacy_base_files;
4690
4691 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4692 if (ret)
4693 goto out_destroy;
628f7cd4 4694
9d403e99 4695 /* let's create and online css's */
b85d2040 4696 for_each_subsys(ss, ssid) {
f392e51c 4697 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4698 ret = create_css(cgrp, ss,
4699 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4700 if (ret)
4701 goto out_destroy;
b85d2040 4702 }
a8638030 4703 }
ddbcc7e8 4704
bd53d617
TH
4705 /*
4706 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4707 * subtree_control from the parent. Each is configured manually.
bd53d617 4708 */
667c2491
TH
4709 if (!cgroup_on_dfl(cgrp)) {
4710 cgrp->subtree_control = parent->subtree_control;
4711 cgroup_refresh_child_subsys_mask(cgrp);
4712 }
2bd59d48 4713
2bd59d48 4714 kernfs_activate(kn);
ddbcc7e8 4715
ba0f4d76
TH
4716 ret = 0;
4717 goto out_unlock;
ddbcc7e8 4718
ba0f4d76 4719out_free_id:
6fa4918d 4720 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4721out_cancel_ref:
9a1049da 4722 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4723out_free_cgrp:
bd89aabc 4724 kfree(cgrp);
ba0f4d76 4725out_unlock:
a9746d8d 4726 cgroup_kn_unlock(parent_kn);
ba0f4d76 4727 return ret;
4b8b47eb 4728
ba0f4d76 4729out_destroy:
4b8b47eb 4730 cgroup_destroy_locked(cgrp);
ba0f4d76 4731 goto out_unlock;
ddbcc7e8
PM
4732}
4733
223dbc38
TH
4734/*
4735 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4736 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4737 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4738 */
4739static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4740{
223dbc38
TH
4741 struct cgroup_subsys_state *css =
4742 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4743
f20104de 4744 mutex_lock(&cgroup_mutex);
09a503ea 4745 offline_css(css);
f20104de 4746 mutex_unlock(&cgroup_mutex);
09a503ea 4747
09a503ea 4748 css_put(css);
d3daf28d
TH
4749}
4750
223dbc38
TH
4751/* css kill confirmation processing requires process context, bounce */
4752static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4753{
4754 struct cgroup_subsys_state *css =
4755 container_of(ref, struct cgroup_subsys_state, refcnt);
4756
223dbc38 4757 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4758 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4759}
4760
f392e51c
TH
4761/**
4762 * kill_css - destroy a css
4763 * @css: css to destroy
4764 *
4765 * This function initiates destruction of @css by removing cgroup interface
4766 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4767 * asynchronously once css_tryget_online() is guaranteed to fail and when
4768 * the reference count reaches zero, @css will be released.
f392e51c
TH
4769 */
4770static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4771{
01f6474c 4772 lockdep_assert_held(&cgroup_mutex);
94419627 4773
2bd59d48
TH
4774 /*
4775 * This must happen before css is disassociated with its cgroup.
4776 * See seq_css() for details.
4777 */
aec25020 4778 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4779
edae0c33
TH
4780 /*
4781 * Killing would put the base ref, but we need to keep it alive
4782 * until after ->css_offline().
4783 */
4784 css_get(css);
4785
4786 /*
4787 * cgroup core guarantees that, by the time ->css_offline() is
4788 * invoked, no new css reference will be given out via
ec903c0c 4789 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4790 * proceed to offlining css's because percpu_ref_kill() doesn't
4791 * guarantee that the ref is seen as killed on all CPUs on return.
4792 *
4793 * Use percpu_ref_kill_and_confirm() to get notifications as each
4794 * css is confirmed to be seen as killed on all CPUs.
4795 */
4796 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4797}
4798
4799/**
4800 * cgroup_destroy_locked - the first stage of cgroup destruction
4801 * @cgrp: cgroup to be destroyed
4802 *
4803 * css's make use of percpu refcnts whose killing latency shouldn't be
4804 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4805 * guarantee that css_tryget_online() won't succeed by the time
4806 * ->css_offline() is invoked. To satisfy all the requirements,
4807 * destruction is implemented in the following two steps.
d3daf28d
TH
4808 *
4809 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4810 * userland visible parts and start killing the percpu refcnts of
4811 * css's. Set up so that the next stage will be kicked off once all
4812 * the percpu refcnts are confirmed to be killed.
4813 *
4814 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4815 * rest of destruction. Once all cgroup references are gone, the
4816 * cgroup is RCU-freed.
4817 *
4818 * This function implements s1. After this step, @cgrp is gone as far as
4819 * the userland is concerned and a new cgroup with the same name may be
4820 * created. As cgroup doesn't care about the names internally, this
4821 * doesn't cause any problem.
4822 */
42809dd4
TH
4823static int cgroup_destroy_locked(struct cgroup *cgrp)
4824 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4825{
2bd59d48 4826 struct cgroup_subsys_state *css;
ddd69148 4827 bool empty;
1c6727af 4828 int ssid;
ddbcc7e8 4829
42809dd4
TH
4830 lockdep_assert_held(&cgroup_mutex);
4831
ddd69148 4832 /*
96d365e0 4833 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4834 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4835 */
96d365e0 4836 down_read(&css_set_rwsem);
bb78a92f 4837 empty = list_empty(&cgrp->cset_links);
96d365e0 4838 up_read(&css_set_rwsem);
ddd69148 4839 if (!empty)
ddbcc7e8 4840 return -EBUSY;
a043e3b2 4841
bb78a92f 4842 /*
d5c419b6
TH
4843 * Make sure there's no live children. We can't test emptiness of
4844 * ->self.children as dead children linger on it while being
4845 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4846 */
f3d46500 4847 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4848 return -EBUSY;
4849
455050d2
TH
4850 /*
4851 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4852 * creation by disabling cgroup_lock_live_group().
455050d2 4853 */
184faf32 4854 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4855
249f3468 4856 /* initiate massacre of all css's */
1c6727af
TH
4857 for_each_css(css, ssid, cgrp)
4858 kill_css(css);
455050d2 4859
455050d2 4860 /*
01f6474c
TH
4861 * Remove @cgrp directory along with the base files. @cgrp has an
4862 * extra ref on its kn.
f20104de 4863 */
01f6474c 4864 kernfs_remove(cgrp->kn);
f20104de 4865
d51f39b0 4866 check_for_release(cgroup_parent(cgrp));
2bd59d48 4867
249f3468 4868 /* put the base reference */
9d755d33 4869 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4870
ea15f8cc
TH
4871 return 0;
4872};
4873
2bd59d48 4874static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4875{
a9746d8d 4876 struct cgroup *cgrp;
2bd59d48 4877 int ret = 0;
42809dd4 4878
a9746d8d
TH
4879 cgrp = cgroup_kn_lock_live(kn);
4880 if (!cgrp)
4881 return 0;
42809dd4 4882
a9746d8d 4883 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4884
a9746d8d 4885 cgroup_kn_unlock(kn);
42809dd4 4886 return ret;
8e3f6541
TH
4887}
4888
2bd59d48
TH
4889static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4890 .remount_fs = cgroup_remount,
4891 .show_options = cgroup_show_options,
4892 .mkdir = cgroup_mkdir,
4893 .rmdir = cgroup_rmdir,
4894 .rename = cgroup_rename,
4895};
4896
15a4c835 4897static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4898{
ddbcc7e8 4899 struct cgroup_subsys_state *css;
cfe36bde
DC
4900
4901 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4902
648bb56d
TH
4903 mutex_lock(&cgroup_mutex);
4904
15a4c835 4905 idr_init(&ss->css_idr);
0adb0704 4906 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4907
3dd06ffa
TH
4908 /* Create the root cgroup state for this subsystem */
4909 ss->root = &cgrp_dfl_root;
4910 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4911 /* We don't handle early failures gracefully */
4912 BUG_ON(IS_ERR(css));
ddfcadab 4913 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4914
4915 /*
4916 * Root csses are never destroyed and we can't initialize
4917 * percpu_ref during early init. Disable refcnting.
4918 */
4919 css->flags |= CSS_NO_REF;
4920
15a4c835 4921 if (early) {
9395a450 4922 /* allocation can't be done safely during early init */
15a4c835
TH
4923 css->id = 1;
4924 } else {
4925 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4926 BUG_ON(css->id < 0);
4927 }
ddbcc7e8 4928
e8d55fde 4929 /* Update the init_css_set to contain a subsys
817929ec 4930 * pointer to this state - since the subsystem is
e8d55fde 4931 * newly registered, all tasks and hence the
3dd06ffa 4932 * init_css_set is in the subsystem's root cgroup. */
aec25020 4933 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4934
4935 need_forkexit_callback |= ss->fork || ss->exit;
4936
e8d55fde
LZ
4937 /* At system boot, before all subsystems have been
4938 * registered, no tasks have been forked, so we don't
4939 * need to invoke fork callbacks here. */
4940 BUG_ON(!list_empty(&init_task.tasks));
4941
ae7f164a 4942 BUG_ON(online_css(css));
a8638030 4943
cf5d5941
BB
4944 mutex_unlock(&cgroup_mutex);
4945}
cf5d5941 4946
ddbcc7e8 4947/**
a043e3b2
LZ
4948 * cgroup_init_early - cgroup initialization at system boot
4949 *
4950 * Initialize cgroups at system boot, and initialize any
4951 * subsystems that request early init.
ddbcc7e8
PM
4952 */
4953int __init cgroup_init_early(void)
4954{
7b9a6ba5 4955 static struct cgroup_sb_opts __initdata opts;
30159ec7 4956 struct cgroup_subsys *ss;
ddbcc7e8 4957 int i;
30159ec7 4958
3dd06ffa 4959 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4960 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4961
a4ea1cc9 4962 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4963
3ed80a62 4964 for_each_subsys(ss, i) {
aec25020 4965 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4966 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4967 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4968 ss->id, ss->name);
073219e9
TH
4969 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4970 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4971
aec25020 4972 ss->id = i;
073219e9 4973 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4974
4975 if (ss->early_init)
15a4c835 4976 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4977 }
4978 return 0;
4979}
4980
4981/**
a043e3b2
LZ
4982 * cgroup_init - cgroup initialization
4983 *
4984 * Register cgroup filesystem and /proc file, and initialize
4985 * any subsystems that didn't request early init.
ddbcc7e8
PM
4986 */
4987int __init cgroup_init(void)
4988{
30159ec7 4989 struct cgroup_subsys *ss;
0ac801fe 4990 unsigned long key;
172a2c06 4991 int ssid, err;
ddbcc7e8 4992
a14c6874
TH
4993 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4994 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4995
54e7b4eb 4996 mutex_lock(&cgroup_mutex);
54e7b4eb 4997
82fe9b0d
TH
4998 /* Add init_css_set to the hash table */
4999 key = css_set_hash(init_css_set.subsys);
5000 hash_add(css_set_table, &init_css_set.hlist, key);
5001
3dd06ffa 5002 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5003
54e7b4eb
TH
5004 mutex_unlock(&cgroup_mutex);
5005
172a2c06 5006 for_each_subsys(ss, ssid) {
15a4c835
TH
5007 if (ss->early_init) {
5008 struct cgroup_subsys_state *css =
5009 init_css_set.subsys[ss->id];
5010
5011 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5012 GFP_KERNEL);
5013 BUG_ON(css->id < 0);
5014 } else {
5015 cgroup_init_subsys(ss, false);
5016 }
172a2c06 5017
2d8f243a
TH
5018 list_add_tail(&init_css_set.e_cset_node[ssid],
5019 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5020
5021 /*
c731ae1d
LZ
5022 * Setting dfl_root subsys_mask needs to consider the
5023 * disabled flag and cftype registration needs kmalloc,
5024 * both of which aren't available during early_init.
172a2c06 5025 */
a8ddc821
TH
5026 if (ss->disabled)
5027 continue;
5028
5029 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5030
5031 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5032 ss->dfl_cftypes = ss->legacy_cftypes;
5033
5de4fa13
TH
5034 if (!ss->dfl_cftypes)
5035 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5036
a8ddc821
TH
5037 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5038 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5039 } else {
5040 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5041 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5042 }
295458e6
VD
5043
5044 if (ss->bind)
5045 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5046 }
5047
676db4af 5048 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
5049 if (!cgroup_kobj)
5050 return -ENOMEM;
676db4af 5051
ddbcc7e8 5052 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5053 if (err < 0) {
5054 kobject_put(cgroup_kobj);
2bd59d48 5055 return err;
676db4af 5056 }
ddbcc7e8 5057
46ae220b 5058 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5059 return 0;
ddbcc7e8 5060}
b4f48b63 5061
e5fca243
TH
5062static int __init cgroup_wq_init(void)
5063{
5064 /*
5065 * There isn't much point in executing destruction path in
5066 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5067 * Use 1 for @max_active.
e5fca243
TH
5068 *
5069 * We would prefer to do this in cgroup_init() above, but that
5070 * is called before init_workqueues(): so leave this until after.
5071 */
1a11533f 5072 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5073 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5074
5075 /*
5076 * Used to destroy pidlists and separate to serve as flush domain.
5077 * Cap @max_active to 1 too.
5078 */
5079 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5080 0, 1);
5081 BUG_ON(!cgroup_pidlist_destroy_wq);
5082
e5fca243
TH
5083 return 0;
5084}
5085core_initcall(cgroup_wq_init);
5086
a424316c
PM
5087/*
5088 * proc_cgroup_show()
5089 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5090 * - Used for /proc/<pid>/cgroup.
a424316c 5091 */
006f4ac4
ZL
5092int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5093 struct pid *pid, struct task_struct *tsk)
a424316c 5094{
e61734c5 5095 char *buf, *path;
a424316c 5096 int retval;
3dd06ffa 5097 struct cgroup_root *root;
a424316c
PM
5098
5099 retval = -ENOMEM;
e61734c5 5100 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5101 if (!buf)
5102 goto out;
5103
a424316c 5104 mutex_lock(&cgroup_mutex);
96d365e0 5105 down_read(&css_set_rwsem);
a424316c 5106
985ed670 5107 for_each_root(root) {
a424316c 5108 struct cgroup_subsys *ss;
bd89aabc 5109 struct cgroup *cgrp;
b85d2040 5110 int ssid, count = 0;
a424316c 5111
a2dd4247 5112 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5113 continue;
5114
2c6ab6d2 5115 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5116 for_each_subsys(ss, ssid)
f392e51c 5117 if (root->subsys_mask & (1 << ssid))
b85d2040 5118 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5119 if (strlen(root->name))
5120 seq_printf(m, "%sname=%s", count ? "," : "",
5121 root->name);
a424316c 5122 seq_putc(m, ':');
7717f7ba 5123 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5124 path = cgroup_path(cgrp, buf, PATH_MAX);
5125 if (!path) {
5126 retval = -ENAMETOOLONG;
a424316c 5127 goto out_unlock;
e61734c5
TH
5128 }
5129 seq_puts(m, path);
a424316c
PM
5130 seq_putc(m, '\n');
5131 }
5132
006f4ac4 5133 retval = 0;
a424316c 5134out_unlock:
96d365e0 5135 up_read(&css_set_rwsem);
a424316c 5136 mutex_unlock(&cgroup_mutex);
a424316c
PM
5137 kfree(buf);
5138out:
5139 return retval;
5140}
5141
a424316c
PM
5142/* Display information about each subsystem and each hierarchy */
5143static int proc_cgroupstats_show(struct seq_file *m, void *v)
5144{
30159ec7 5145 struct cgroup_subsys *ss;
a424316c 5146 int i;
a424316c 5147
8bab8dde 5148 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5149 /*
5150 * ideally we don't want subsystems moving around while we do this.
5151 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5152 * subsys/hierarchy state.
5153 */
a424316c 5154 mutex_lock(&cgroup_mutex);
30159ec7
TH
5155
5156 for_each_subsys(ss, i)
2c6ab6d2
PM
5157 seq_printf(m, "%s\t%d\t%d\t%d\n",
5158 ss->name, ss->root->hierarchy_id,
3c9c825b 5159 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5160
a424316c
PM
5161 mutex_unlock(&cgroup_mutex);
5162 return 0;
5163}
5164
5165static int cgroupstats_open(struct inode *inode, struct file *file)
5166{
9dce07f1 5167 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5168}
5169
828c0950 5170static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5171 .open = cgroupstats_open,
5172 .read = seq_read,
5173 .llseek = seq_lseek,
5174 .release = single_release,
5175};
5176
b4f48b63 5177/**
eaf797ab 5178 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5179 * @child: pointer to task_struct of forking parent process.
b4f48b63 5180 *
eaf797ab
TH
5181 * A task is associated with the init_css_set until cgroup_post_fork()
5182 * attaches it to the parent's css_set. Empty cg_list indicates that
5183 * @child isn't holding reference to its css_set.
b4f48b63
PM
5184 */
5185void cgroup_fork(struct task_struct *child)
5186{
eaf797ab 5187 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5188 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5189}
5190
817929ec 5191/**
a043e3b2
LZ
5192 * cgroup_post_fork - called on a new task after adding it to the task list
5193 * @child: the task in question
5194 *
5edee61e
TH
5195 * Adds the task to the list running through its css_set if necessary and
5196 * call the subsystem fork() callbacks. Has to be after the task is
5197 * visible on the task list in case we race with the first call to
0942eeee 5198 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5199 * list.
a043e3b2 5200 */
817929ec
PM
5201void cgroup_post_fork(struct task_struct *child)
5202{
30159ec7 5203 struct cgroup_subsys *ss;
5edee61e
TH
5204 int i;
5205
3ce3230a 5206 /*
251f8c03 5207 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5208 * function sets use_task_css_set_links before grabbing
5209 * tasklist_lock and we just went through tasklist_lock to add
5210 * @child, it's guaranteed that either we see the set
5211 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5212 * @child during its iteration.
5213 *
5214 * If we won the race, @child is associated with %current's
5215 * css_set. Grabbing css_set_rwsem guarantees both that the
5216 * association is stable, and, on completion of the parent's
5217 * migration, @child is visible in the source of migration or
5218 * already in the destination cgroup. This guarantee is necessary
5219 * when implementing operations which need to migrate all tasks of
5220 * a cgroup to another.
5221 *
251f8c03 5222 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5223 * will remain in init_css_set. This is safe because all tasks are
5224 * in the init_css_set before cg_links is enabled and there's no
5225 * operation which transfers all tasks out of init_css_set.
3ce3230a 5226 */
817929ec 5227 if (use_task_css_set_links) {
eaf797ab
TH
5228 struct css_set *cset;
5229
96d365e0 5230 down_write(&css_set_rwsem);
0e1d768f 5231 cset = task_css_set(current);
eaf797ab
TH
5232 if (list_empty(&child->cg_list)) {
5233 rcu_assign_pointer(child->cgroups, cset);
5234 list_add(&child->cg_list, &cset->tasks);
5235 get_css_set(cset);
5236 }
96d365e0 5237 up_write(&css_set_rwsem);
817929ec 5238 }
5edee61e
TH
5239
5240 /*
5241 * Call ss->fork(). This must happen after @child is linked on
5242 * css_set; otherwise, @child might change state between ->fork()
5243 * and addition to css_set.
5244 */
5245 if (need_forkexit_callback) {
3ed80a62 5246 for_each_subsys(ss, i)
5edee61e
TH
5247 if (ss->fork)
5248 ss->fork(child);
5edee61e 5249 }
817929ec 5250}
5edee61e 5251
b4f48b63
PM
5252/**
5253 * cgroup_exit - detach cgroup from exiting task
5254 * @tsk: pointer to task_struct of exiting process
5255 *
5256 * Description: Detach cgroup from @tsk and release it.
5257 *
5258 * Note that cgroups marked notify_on_release force every task in
5259 * them to take the global cgroup_mutex mutex when exiting.
5260 * This could impact scaling on very large systems. Be reluctant to
5261 * use notify_on_release cgroups where very high task exit scaling
5262 * is required on large systems.
5263 *
0e1d768f
TH
5264 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5265 * call cgroup_exit() while the task is still competent to handle
5266 * notify_on_release(), then leave the task attached to the root cgroup in
5267 * each hierarchy for the remainder of its exit. No need to bother with
5268 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5269 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5270 */
1ec41830 5271void cgroup_exit(struct task_struct *tsk)
b4f48b63 5272{
30159ec7 5273 struct cgroup_subsys *ss;
5abb8855 5274 struct css_set *cset;
eaf797ab 5275 bool put_cset = false;
d41d5a01 5276 int i;
817929ec
PM
5277
5278 /*
0e1d768f
TH
5279 * Unlink from @tsk from its css_set. As migration path can't race
5280 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5281 */
5282 if (!list_empty(&tsk->cg_list)) {
96d365e0 5283 down_write(&css_set_rwsem);
0e1d768f 5284 list_del_init(&tsk->cg_list);
96d365e0 5285 up_write(&css_set_rwsem);
0e1d768f 5286 put_cset = true;
817929ec
PM
5287 }
5288
b4f48b63 5289 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5290 cset = task_css_set(tsk);
5291 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5292
1ec41830 5293 if (need_forkexit_callback) {
3ed80a62
TH
5294 /* see cgroup_post_fork() for details */
5295 for_each_subsys(ss, i) {
d41d5a01 5296 if (ss->exit) {
eb95419b
TH
5297 struct cgroup_subsys_state *old_css = cset->subsys[i];
5298 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5299
eb95419b 5300 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5301 }
5302 }
5303 }
d41d5a01 5304
eaf797ab 5305 if (put_cset)
a25eb52e 5306 put_css_set(cset);
b4f48b63 5307}
697f4161 5308
bd89aabc 5309static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5310{
a25eb52e 5311 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5312 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5313 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5314}
5315
81a6a5cd
PM
5316/*
5317 * Notify userspace when a cgroup is released, by running the
5318 * configured release agent with the name of the cgroup (path
5319 * relative to the root of cgroup file system) as the argument.
5320 *
5321 * Most likely, this user command will try to rmdir this cgroup.
5322 *
5323 * This races with the possibility that some other task will be
5324 * attached to this cgroup before it is removed, or that some other
5325 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5326 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5327 * unused, and this cgroup will be reprieved from its death sentence,
5328 * to continue to serve a useful existence. Next time it's released,
5329 * we will get notified again, if it still has 'notify_on_release' set.
5330 *
5331 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5332 * means only wait until the task is successfully execve()'d. The
5333 * separate release agent task is forked by call_usermodehelper(),
5334 * then control in this thread returns here, without waiting for the
5335 * release agent task. We don't bother to wait because the caller of
5336 * this routine has no use for the exit status of the release agent
5337 * task, so no sense holding our caller up for that.
81a6a5cd 5338 */
81a6a5cd
PM
5339static void cgroup_release_agent(struct work_struct *work)
5340{
971ff493
ZL
5341 struct cgroup *cgrp =
5342 container_of(work, struct cgroup, release_agent_work);
5343 char *pathbuf = NULL, *agentbuf = NULL, *path;
5344 char *argv[3], *envp[3];
5345
81a6a5cd 5346 mutex_lock(&cgroup_mutex);
971ff493
ZL
5347
5348 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5349 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5350 if (!pathbuf || !agentbuf)
5351 goto out;
5352
5353 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5354 if (!path)
5355 goto out;
5356
5357 argv[0] = agentbuf;
5358 argv[1] = path;
5359 argv[2] = NULL;
5360
5361 /* minimal command environment */
5362 envp[0] = "HOME=/";
5363 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5364 envp[2] = NULL;
5365
81a6a5cd 5366 mutex_unlock(&cgroup_mutex);
971ff493 5367 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5368 goto out_free;
971ff493 5369out:
81a6a5cd 5370 mutex_unlock(&cgroup_mutex);
3e2cd91a 5371out_free:
971ff493
ZL
5372 kfree(agentbuf);
5373 kfree(pathbuf);
81a6a5cd 5374}
8bab8dde
PM
5375
5376static int __init cgroup_disable(char *str)
5377{
30159ec7 5378 struct cgroup_subsys *ss;
8bab8dde 5379 char *token;
30159ec7 5380 int i;
8bab8dde
PM
5381
5382 while ((token = strsep(&str, ",")) != NULL) {
5383 if (!*token)
5384 continue;
be45c900 5385
3ed80a62 5386 for_each_subsys(ss, i) {
8bab8dde
PM
5387 if (!strcmp(token, ss->name)) {
5388 ss->disabled = 1;
5389 printk(KERN_INFO "Disabling %s control group"
5390 " subsystem\n", ss->name);
5391 break;
5392 }
5393 }
5394 }
5395 return 1;
5396}
5397__setup("cgroup_disable=", cgroup_disable);
38460b48 5398
a8ddc821
TH
5399static int __init cgroup_set_legacy_files_on_dfl(char *str)
5400{
5401 printk("cgroup: using legacy files on the default hierarchy\n");
5402 cgroup_legacy_files_on_dfl = true;
5403 return 0;
5404}
5405__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5406
b77d7b60 5407/**
ec903c0c 5408 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5409 * @dentry: directory dentry of interest
5410 * @ss: subsystem of interest
b77d7b60 5411 *
5a17f543
TH
5412 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5413 * to get the corresponding css and return it. If such css doesn't exist
5414 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5415 */
ec903c0c
TH
5416struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5417 struct cgroup_subsys *ss)
e5d1367f 5418{
2bd59d48
TH
5419 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5420 struct cgroup_subsys_state *css = NULL;
e5d1367f 5421 struct cgroup *cgrp;
e5d1367f 5422
35cf0836 5423 /* is @dentry a cgroup dir? */
2bd59d48
TH
5424 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5425 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5426 return ERR_PTR(-EBADF);
5427
5a17f543
TH
5428 rcu_read_lock();
5429
2bd59d48
TH
5430 /*
5431 * This path doesn't originate from kernfs and @kn could already
5432 * have been or be removed at any point. @kn->priv is RCU
a4189487 5433 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5434 */
5435 cgrp = rcu_dereference(kn->priv);
5436 if (cgrp)
5437 css = cgroup_css(cgrp, ss);
5a17f543 5438
ec903c0c 5439 if (!css || !css_tryget_online(css))
5a17f543
TH
5440 css = ERR_PTR(-ENOENT);
5441
5442 rcu_read_unlock();
5443 return css;
e5d1367f 5444}
e5d1367f 5445
1cb650b9
LZ
5446/**
5447 * css_from_id - lookup css by id
5448 * @id: the cgroup id
5449 * @ss: cgroup subsys to be looked into
5450 *
5451 * Returns the css if there's valid one with @id, otherwise returns NULL.
5452 * Should be called under rcu_read_lock().
5453 */
5454struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5455{
6fa4918d 5456 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5457 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5458}
5459
fe693435 5460#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5461static struct cgroup_subsys_state *
5462debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5463{
5464 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5465
5466 if (!css)
5467 return ERR_PTR(-ENOMEM);
5468
5469 return css;
5470}
5471
eb95419b 5472static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5473{
eb95419b 5474 kfree(css);
fe693435
PM
5475}
5476
182446d0
TH
5477static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5478 struct cftype *cft)
fe693435 5479{
182446d0 5480 return cgroup_task_count(css->cgroup);
fe693435
PM
5481}
5482
182446d0
TH
5483static u64 current_css_set_read(struct cgroup_subsys_state *css,
5484 struct cftype *cft)
fe693435
PM
5485{
5486 return (u64)(unsigned long)current->cgroups;
5487}
5488
182446d0 5489static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5490 struct cftype *cft)
fe693435
PM
5491{
5492 u64 count;
5493
5494 rcu_read_lock();
a8ad805c 5495 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5496 rcu_read_unlock();
5497 return count;
5498}
5499
2da8ca82 5500static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5501{
69d0206c 5502 struct cgrp_cset_link *link;
5abb8855 5503 struct css_set *cset;
e61734c5
TH
5504 char *name_buf;
5505
5506 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5507 if (!name_buf)
5508 return -ENOMEM;
7717f7ba 5509
96d365e0 5510 down_read(&css_set_rwsem);
7717f7ba 5511 rcu_read_lock();
5abb8855 5512 cset = rcu_dereference(current->cgroups);
69d0206c 5513 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5514 struct cgroup *c = link->cgrp;
7717f7ba 5515
a2dd4247 5516 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5517 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5518 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5519 }
5520 rcu_read_unlock();
96d365e0 5521 up_read(&css_set_rwsem);
e61734c5 5522 kfree(name_buf);
7717f7ba
PM
5523 return 0;
5524}
5525
5526#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5527static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5528{
2da8ca82 5529 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5530 struct cgrp_cset_link *link;
7717f7ba 5531
96d365e0 5532 down_read(&css_set_rwsem);
182446d0 5533 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5534 struct css_set *cset = link->cset;
7717f7ba
PM
5535 struct task_struct *task;
5536 int count = 0;
c7561128 5537
5abb8855 5538 seq_printf(seq, "css_set %p\n", cset);
c7561128 5539
5abb8855 5540 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5541 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5542 goto overflow;
5543 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5544 }
5545
5546 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5547 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5548 goto overflow;
5549 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5550 }
c7561128
TH
5551 continue;
5552 overflow:
5553 seq_puts(seq, " ...\n");
7717f7ba 5554 }
96d365e0 5555 up_read(&css_set_rwsem);
7717f7ba
PM
5556 return 0;
5557}
5558
182446d0 5559static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5560{
a25eb52e
ZL
5561 return (!cgroup_has_tasks(css->cgroup) &&
5562 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5563}
5564
5565static struct cftype debug_files[] = {
fe693435
PM
5566 {
5567 .name = "taskcount",
5568 .read_u64 = debug_taskcount_read,
5569 },
5570
5571 {
5572 .name = "current_css_set",
5573 .read_u64 = current_css_set_read,
5574 },
5575
5576 {
5577 .name = "current_css_set_refcount",
5578 .read_u64 = current_css_set_refcount_read,
5579 },
5580
7717f7ba
PM
5581 {
5582 .name = "current_css_set_cg_links",
2da8ca82 5583 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5584 },
5585
5586 {
5587 .name = "cgroup_css_links",
2da8ca82 5588 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5589 },
5590
fe693435
PM
5591 {
5592 .name = "releasable",
5593 .read_u64 = releasable_read,
5594 },
fe693435 5595
4baf6e33
TH
5596 { } /* terminate */
5597};
fe693435 5598
073219e9 5599struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5600 .css_alloc = debug_css_alloc,
5601 .css_free = debug_css_free,
5577964e 5602 .legacy_cftypes = debug_files,
fe693435
PM
5603};
5604#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.284419 seconds and 5 git commands to generate.