cgroup: restructure file creation / removal handling
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
b4168640 431struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 432{
2bd59d48 433 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 434 struct cftype *cft = of_cft(of);
2bd59d48
TH
435
436 /*
437 * This is open and unprotected implementation of cgroup_css().
438 * seq_css() is only called from a kernfs file operation which has
439 * an active reference on the file. Because all the subsystem
440 * files are drained before a css is disassociated with a cgroup,
441 * the matching css from the cgroup's subsys table is guaranteed to
442 * be and stay valid until the enclosing operation is complete.
443 */
444 if (cft->ss)
445 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
446 else
9d800df1 447 return &cgrp->self;
59f5296b 448}
b4168640 449EXPORT_SYMBOL_GPL(of_css);
59f5296b 450
78574cf9
LZ
451/**
452 * cgroup_is_descendant - test ancestry
453 * @cgrp: the cgroup to be tested
454 * @ancestor: possible ancestor of @cgrp
455 *
456 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
457 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
458 * and @ancestor are accessible.
459 */
460bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
461{
462 while (cgrp) {
463 if (cgrp == ancestor)
464 return true;
d51f39b0 465 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
466 }
467 return false;
468}
ddbcc7e8 469
e9685a03 470static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 471{
bd89aabc 472 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
473}
474
1c6727af
TH
475/**
476 * for_each_css - iterate all css's of a cgroup
477 * @css: the iteration cursor
478 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
479 * @cgrp: the target cgroup to iterate css's of
480 *
aec3dfcb 481 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
482 */
483#define for_each_css(css, ssid, cgrp) \
484 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
485 if (!((css) = rcu_dereference_check( \
486 (cgrp)->subsys[(ssid)], \
487 lockdep_is_held(&cgroup_mutex)))) { } \
488 else
489
aec3dfcb
TH
490/**
491 * for_each_e_css - iterate all effective css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
496 * Should be called under cgroup_[tree_]mutex.
497 */
498#define for_each_e_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
501 ; \
502 else
503
30159ec7 504/**
3ed80a62 505 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 506 * @ss: the iteration cursor
780cd8b3 507 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 508 */
780cd8b3 509#define for_each_subsys(ss, ssid) \
3ed80a62
TH
510 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
511 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 512
cb4a3167
AS
513/**
514 * for_each_subsys_which - filter for_each_subsys with a bitmask
515 * @ss: the iteration cursor
516 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
517 * @ss_maskp: a pointer to the bitmask
518 *
519 * The block will only run for cases where the ssid-th bit (1 << ssid) of
520 * mask is set to 1.
521 */
522#define for_each_subsys_which(ss, ssid, ss_maskp) \
523 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 524 (ssid) = 0; \
cb4a3167
AS
525 else \
526 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
527 if (((ss) = cgroup_subsys[ssid]) && false) \
528 break; \
529 else
530
985ed670
TH
531/* iterate across the hierarchies */
532#define for_each_root(root) \
5549c497 533 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 534
f8f22e53
TH
535/* iterate over child cgrps, lock should be held throughout iteration */
536#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 537 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 538 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
539 cgroup_is_dead(child); })) \
540 ; \
541 else
7ae1bad9 542
81a6a5cd 543static void cgroup_release_agent(struct work_struct *work);
bd89aabc 544static void check_for_release(struct cgroup *cgrp);
81a6a5cd 545
69d0206c
TH
546/*
547 * A cgroup can be associated with multiple css_sets as different tasks may
548 * belong to different cgroups on different hierarchies. In the other
549 * direction, a css_set is naturally associated with multiple cgroups.
550 * This M:N relationship is represented by the following link structure
551 * which exists for each association and allows traversing the associations
552 * from both sides.
553 */
554struct cgrp_cset_link {
555 /* the cgroup and css_set this link associates */
556 struct cgroup *cgrp;
557 struct css_set *cset;
558
559 /* list of cgrp_cset_links anchored at cgrp->cset_links */
560 struct list_head cset_link;
561
562 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
563 struct list_head cgrp_link;
817929ec
PM
564};
565
172a2c06
TH
566/*
567 * The default css_set - used by init and its children prior to any
817929ec
PM
568 * hierarchies being mounted. It contains a pointer to the root state
569 * for each subsystem. Also used to anchor the list of css_sets. Not
570 * reference-counted, to improve performance when child cgroups
571 * haven't been created.
572 */
5024ae29 573struct css_set init_css_set = {
172a2c06
TH
574 .refcount = ATOMIC_INIT(1),
575 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
576 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
577 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
578 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
579 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
580};
817929ec 581
172a2c06 582static int css_set_count = 1; /* 1 for init_css_set */
817929ec 583
842b597e
TH
584/**
585 * cgroup_update_populated - updated populated count of a cgroup
586 * @cgrp: the target cgroup
587 * @populated: inc or dec populated count
588 *
589 * @cgrp is either getting the first task (css_set) or losing the last.
590 * Update @cgrp->populated_cnt accordingly. The count is propagated
591 * towards root so that a given cgroup's populated_cnt is zero iff the
592 * cgroup and all its descendants are empty.
593 *
594 * @cgrp's interface file "cgroup.populated" is zero if
595 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
596 * changes from or to zero, userland is notified that the content of the
597 * interface file has changed. This can be used to detect when @cgrp and
598 * its descendants become populated or empty.
599 */
600static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
601{
602 lockdep_assert_held(&css_set_rwsem);
603
604 do {
605 bool trigger;
606
607 if (populated)
608 trigger = !cgrp->populated_cnt++;
609 else
610 trigger = !--cgrp->populated_cnt;
611
612 if (!trigger)
613 break;
614
4a07c222
TH
615 if (cgrp->events_kn)
616 kernfs_notify(cgrp->events_kn);
d51f39b0 617 cgrp = cgroup_parent(cgrp);
842b597e
TH
618 } while (cgrp);
619}
620
7717f7ba
PM
621/*
622 * hash table for cgroup groups. This improves the performance to find
623 * an existing css_set. This hash doesn't (currently) take into
624 * account cgroups in empty hierarchies.
625 */
472b1053 626#define CSS_SET_HASH_BITS 7
0ac801fe 627static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 628
0ac801fe 629static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 630{
0ac801fe 631 unsigned long key = 0UL;
30159ec7
TH
632 struct cgroup_subsys *ss;
633 int i;
472b1053 634
30159ec7 635 for_each_subsys(ss, i)
0ac801fe
LZ
636 key += (unsigned long)css[i];
637 key = (key >> 16) ^ key;
472b1053 638
0ac801fe 639 return key;
472b1053
LZ
640}
641
a25eb52e 642static void put_css_set_locked(struct css_set *cset)
b4f48b63 643{
69d0206c 644 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
645 struct cgroup_subsys *ss;
646 int ssid;
5abb8855 647
89c5509b
TH
648 lockdep_assert_held(&css_set_rwsem);
649
650 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 651 return;
81a6a5cd 652
2c6ab6d2 653 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
654 for_each_subsys(ss, ssid)
655 list_del(&cset->e_cset_node[ssid]);
5abb8855 656 hash_del(&cset->hlist);
2c6ab6d2
PM
657 css_set_count--;
658
69d0206c 659 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 660 struct cgroup *cgrp = link->cgrp;
5abb8855 661
69d0206c
TH
662 list_del(&link->cset_link);
663 list_del(&link->cgrp_link);
71b5707e 664
96d365e0 665 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
666 if (list_empty(&cgrp->cset_links)) {
667 cgroup_update_populated(cgrp, false);
a25eb52e 668 check_for_release(cgrp);
81a6a5cd 669 }
2c6ab6d2
PM
670
671 kfree(link);
81a6a5cd 672 }
2c6ab6d2 673
5abb8855 674 kfree_rcu(cset, rcu_head);
b4f48b63
PM
675}
676
a25eb52e 677static void put_css_set(struct css_set *cset)
89c5509b
TH
678{
679 /*
680 * Ensure that the refcount doesn't hit zero while any readers
681 * can see it. Similar to atomic_dec_and_lock(), but for an
682 * rwlock
683 */
684 if (atomic_add_unless(&cset->refcount, -1, 1))
685 return;
686
687 down_write(&css_set_rwsem);
a25eb52e 688 put_css_set_locked(cset);
89c5509b
TH
689 up_write(&css_set_rwsem);
690}
691
817929ec
PM
692/*
693 * refcounted get/put for css_set objects
694 */
5abb8855 695static inline void get_css_set(struct css_set *cset)
817929ec 696{
5abb8855 697 atomic_inc(&cset->refcount);
817929ec
PM
698}
699
b326f9d0 700/**
7717f7ba 701 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
702 * @cset: candidate css_set being tested
703 * @old_cset: existing css_set for a task
7717f7ba
PM
704 * @new_cgrp: cgroup that's being entered by the task
705 * @template: desired set of css pointers in css_set (pre-calculated)
706 *
6f4b7e63 707 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
708 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
709 */
5abb8855
TH
710static bool compare_css_sets(struct css_set *cset,
711 struct css_set *old_cset,
7717f7ba
PM
712 struct cgroup *new_cgrp,
713 struct cgroup_subsys_state *template[])
714{
715 struct list_head *l1, *l2;
716
aec3dfcb
TH
717 /*
718 * On the default hierarchy, there can be csets which are
719 * associated with the same set of cgroups but different csses.
720 * Let's first ensure that csses match.
721 */
722 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 723 return false;
7717f7ba
PM
724
725 /*
726 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
727 * different cgroups in hierarchies. As different cgroups may
728 * share the same effective css, this comparison is always
729 * necessary.
7717f7ba 730 */
69d0206c
TH
731 l1 = &cset->cgrp_links;
732 l2 = &old_cset->cgrp_links;
7717f7ba 733 while (1) {
69d0206c 734 struct cgrp_cset_link *link1, *link2;
5abb8855 735 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
736
737 l1 = l1->next;
738 l2 = l2->next;
739 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
740 if (l1 == &cset->cgrp_links) {
741 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
742 break;
743 } else {
69d0206c 744 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
745 }
746 /* Locate the cgroups associated with these links. */
69d0206c
TH
747 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
748 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
749 cgrp1 = link1->cgrp;
750 cgrp2 = link2->cgrp;
7717f7ba 751 /* Hierarchies should be linked in the same order. */
5abb8855 752 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
753
754 /*
755 * If this hierarchy is the hierarchy of the cgroup
756 * that's changing, then we need to check that this
757 * css_set points to the new cgroup; if it's any other
758 * hierarchy, then this css_set should point to the
759 * same cgroup as the old css_set.
760 */
5abb8855
TH
761 if (cgrp1->root == new_cgrp->root) {
762 if (cgrp1 != new_cgrp)
7717f7ba
PM
763 return false;
764 } else {
5abb8855 765 if (cgrp1 != cgrp2)
7717f7ba
PM
766 return false;
767 }
768 }
769 return true;
770}
771
b326f9d0
TH
772/**
773 * find_existing_css_set - init css array and find the matching css_set
774 * @old_cset: the css_set that we're using before the cgroup transition
775 * @cgrp: the cgroup that we're moving into
776 * @template: out param for the new set of csses, should be clear on entry
817929ec 777 */
5abb8855
TH
778static struct css_set *find_existing_css_set(struct css_set *old_cset,
779 struct cgroup *cgrp,
780 struct cgroup_subsys_state *template[])
b4f48b63 781{
3dd06ffa 782 struct cgroup_root *root = cgrp->root;
30159ec7 783 struct cgroup_subsys *ss;
5abb8855 784 struct css_set *cset;
0ac801fe 785 unsigned long key;
b326f9d0 786 int i;
817929ec 787
aae8aab4
BB
788 /*
789 * Build the set of subsystem state objects that we want to see in the
790 * new css_set. while subsystems can change globally, the entries here
791 * won't change, so no need for locking.
792 */
30159ec7 793 for_each_subsys(ss, i) {
f392e51c 794 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
795 /*
796 * @ss is in this hierarchy, so we want the
797 * effective css from @cgrp.
798 */
799 template[i] = cgroup_e_css(cgrp, ss);
817929ec 800 } else {
aec3dfcb
TH
801 /*
802 * @ss is not in this hierarchy, so we don't want
803 * to change the css.
804 */
5abb8855 805 template[i] = old_cset->subsys[i];
817929ec
PM
806 }
807 }
808
0ac801fe 809 key = css_set_hash(template);
5abb8855
TH
810 hash_for_each_possible(css_set_table, cset, hlist, key) {
811 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
812 continue;
813
814 /* This css_set matches what we need */
5abb8855 815 return cset;
472b1053 816 }
817929ec
PM
817
818 /* No existing cgroup group matched */
819 return NULL;
820}
821
69d0206c 822static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 823{
69d0206c 824 struct cgrp_cset_link *link, *tmp_link;
36553434 825
69d0206c
TH
826 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
827 list_del(&link->cset_link);
36553434
LZ
828 kfree(link);
829 }
830}
831
69d0206c
TH
832/**
833 * allocate_cgrp_cset_links - allocate cgrp_cset_links
834 * @count: the number of links to allocate
835 * @tmp_links: list_head the allocated links are put on
836 *
837 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
838 * through ->cset_link. Returns 0 on success or -errno.
817929ec 839 */
69d0206c 840static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 841{
69d0206c 842 struct cgrp_cset_link *link;
817929ec 843 int i;
69d0206c
TH
844
845 INIT_LIST_HEAD(tmp_links);
846
817929ec 847 for (i = 0; i < count; i++) {
f4f4be2b 848 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 849 if (!link) {
69d0206c 850 free_cgrp_cset_links(tmp_links);
817929ec
PM
851 return -ENOMEM;
852 }
69d0206c 853 list_add(&link->cset_link, tmp_links);
817929ec
PM
854 }
855 return 0;
856}
857
c12f65d4
LZ
858/**
859 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 860 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 861 * @cset: the css_set to be linked
c12f65d4
LZ
862 * @cgrp: the destination cgroup
863 */
69d0206c
TH
864static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
865 struct cgroup *cgrp)
c12f65d4 866{
69d0206c 867 struct cgrp_cset_link *link;
c12f65d4 868
69d0206c 869 BUG_ON(list_empty(tmp_links));
6803c006
TH
870
871 if (cgroup_on_dfl(cgrp))
872 cset->dfl_cgrp = cgrp;
873
69d0206c
TH
874 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
875 link->cset = cset;
7717f7ba 876 link->cgrp = cgrp;
842b597e
TH
877
878 if (list_empty(&cgrp->cset_links))
879 cgroup_update_populated(cgrp, true);
69d0206c 880 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 881
7717f7ba
PM
882 /*
883 * Always add links to the tail of the list so that the list
884 * is sorted by order of hierarchy creation
885 */
69d0206c 886 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
887}
888
b326f9d0
TH
889/**
890 * find_css_set - return a new css_set with one cgroup updated
891 * @old_cset: the baseline css_set
892 * @cgrp: the cgroup to be updated
893 *
894 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
895 * substituted into the appropriate hierarchy.
817929ec 896 */
5abb8855
TH
897static struct css_set *find_css_set(struct css_set *old_cset,
898 struct cgroup *cgrp)
817929ec 899{
b326f9d0 900 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 901 struct css_set *cset;
69d0206c
TH
902 struct list_head tmp_links;
903 struct cgrp_cset_link *link;
2d8f243a 904 struct cgroup_subsys *ss;
0ac801fe 905 unsigned long key;
2d8f243a 906 int ssid;
472b1053 907
b326f9d0
TH
908 lockdep_assert_held(&cgroup_mutex);
909
817929ec
PM
910 /* First see if we already have a cgroup group that matches
911 * the desired set */
96d365e0 912 down_read(&css_set_rwsem);
5abb8855
TH
913 cset = find_existing_css_set(old_cset, cgrp, template);
914 if (cset)
915 get_css_set(cset);
96d365e0 916 up_read(&css_set_rwsem);
817929ec 917
5abb8855
TH
918 if (cset)
919 return cset;
817929ec 920
f4f4be2b 921 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 922 if (!cset)
817929ec
PM
923 return NULL;
924
69d0206c 925 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 926 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 927 kfree(cset);
817929ec
PM
928 return NULL;
929 }
930
5abb8855 931 atomic_set(&cset->refcount, 1);
69d0206c 932 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 933 INIT_LIST_HEAD(&cset->tasks);
c7561128 934 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 935 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 936 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 937 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
938
939 /* Copy the set of subsystem state objects generated in
940 * find_existing_css_set() */
5abb8855 941 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 942
96d365e0 943 down_write(&css_set_rwsem);
817929ec 944 /* Add reference counts and links from the new css_set. */
69d0206c 945 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 946 struct cgroup *c = link->cgrp;
69d0206c 947
7717f7ba
PM
948 if (c->root == cgrp->root)
949 c = cgrp;
69d0206c 950 link_css_set(&tmp_links, cset, c);
7717f7ba 951 }
817929ec 952
69d0206c 953 BUG_ON(!list_empty(&tmp_links));
817929ec 954
817929ec 955 css_set_count++;
472b1053 956
2d8f243a 957 /* Add @cset to the hash table */
5abb8855
TH
958 key = css_set_hash(cset->subsys);
959 hash_add(css_set_table, &cset->hlist, key);
472b1053 960
2d8f243a
TH
961 for_each_subsys(ss, ssid)
962 list_add_tail(&cset->e_cset_node[ssid],
963 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
964
96d365e0 965 up_write(&css_set_rwsem);
817929ec 966
5abb8855 967 return cset;
b4f48b63
PM
968}
969
3dd06ffa 970static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 971{
3dd06ffa 972 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 973
3dd06ffa 974 return root_cgrp->root;
2bd59d48
TH
975}
976
3dd06ffa 977static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
978{
979 int id;
980
981 lockdep_assert_held(&cgroup_mutex);
982
985ed670 983 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
984 if (id < 0)
985 return id;
986
987 root->hierarchy_id = id;
988 return 0;
989}
990
3dd06ffa 991static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
992{
993 lockdep_assert_held(&cgroup_mutex);
994
995 if (root->hierarchy_id) {
996 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
997 root->hierarchy_id = 0;
998 }
999}
1000
3dd06ffa 1001static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1002{
1003 if (root) {
d0f702e6 1004 /* hierarchy ID should already have been released */
f2e85d57
TH
1005 WARN_ON_ONCE(root->hierarchy_id);
1006
1007 idr_destroy(&root->cgroup_idr);
1008 kfree(root);
1009 }
1010}
1011
3dd06ffa 1012static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1013{
3dd06ffa 1014 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1015 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1016
2bd59d48 1017 mutex_lock(&cgroup_mutex);
f2e85d57 1018
776f02fa 1019 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1020 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1021
f2e85d57 1022 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1023 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1024
7717f7ba 1025 /*
f2e85d57
TH
1026 * Release all the links from cset_links to this hierarchy's
1027 * root cgroup
7717f7ba 1028 */
96d365e0 1029 down_write(&css_set_rwsem);
f2e85d57
TH
1030
1031 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1032 list_del(&link->cset_link);
1033 list_del(&link->cgrp_link);
1034 kfree(link);
1035 }
96d365e0 1036 up_write(&css_set_rwsem);
f2e85d57
TH
1037
1038 if (!list_empty(&root->root_list)) {
1039 list_del(&root->root_list);
1040 cgroup_root_count--;
1041 }
1042
1043 cgroup_exit_root_id(root);
1044
1045 mutex_unlock(&cgroup_mutex);
f2e85d57 1046
2bd59d48 1047 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1048 cgroup_free_root(root);
1049}
1050
ceb6a081
TH
1051/* look up cgroup associated with given css_set on the specified hierarchy */
1052static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1053 struct cgroup_root *root)
7717f7ba 1054{
7717f7ba
PM
1055 struct cgroup *res = NULL;
1056
96d365e0
TH
1057 lockdep_assert_held(&cgroup_mutex);
1058 lockdep_assert_held(&css_set_rwsem);
1059
5abb8855 1060 if (cset == &init_css_set) {
3dd06ffa 1061 res = &root->cgrp;
7717f7ba 1062 } else {
69d0206c
TH
1063 struct cgrp_cset_link *link;
1064
1065 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1066 struct cgroup *c = link->cgrp;
69d0206c 1067
7717f7ba
PM
1068 if (c->root == root) {
1069 res = c;
1070 break;
1071 }
1072 }
1073 }
96d365e0 1074
7717f7ba
PM
1075 BUG_ON(!res);
1076 return res;
1077}
1078
ddbcc7e8 1079/*
ceb6a081
TH
1080 * Return the cgroup for "task" from the given hierarchy. Must be
1081 * called with cgroup_mutex and css_set_rwsem held.
1082 */
1083static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1084 struct cgroup_root *root)
ceb6a081
TH
1085{
1086 /*
1087 * No need to lock the task - since we hold cgroup_mutex the
1088 * task can't change groups, so the only thing that can happen
1089 * is that it exits and its css is set back to init_css_set.
1090 */
1091 return cset_cgroup_from_root(task_css_set(task), root);
1092}
1093
ddbcc7e8 1094/*
ddbcc7e8
PM
1095 * A task must hold cgroup_mutex to modify cgroups.
1096 *
1097 * Any task can increment and decrement the count field without lock.
1098 * So in general, code holding cgroup_mutex can't rely on the count
1099 * field not changing. However, if the count goes to zero, then only
956db3ca 1100 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1101 * means that no tasks are currently attached, therefore there is no
1102 * way a task attached to that cgroup can fork (the other way to
1103 * increment the count). So code holding cgroup_mutex can safely
1104 * assume that if the count is zero, it will stay zero. Similarly, if
1105 * a task holds cgroup_mutex on a cgroup with zero count, it
1106 * knows that the cgroup won't be removed, as cgroup_rmdir()
1107 * needs that mutex.
1108 *
ddbcc7e8
PM
1109 * A cgroup can only be deleted if both its 'count' of using tasks
1110 * is zero, and its list of 'children' cgroups is empty. Since all
1111 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1112 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1113 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1114 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1115 *
1116 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1117 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1118 */
1119
2bd59d48 1120static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1121static const struct file_operations proc_cgroupstats_operations;
a424316c 1122
8d7e6fb0
TH
1123static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1124 char *buf)
ddbcc7e8 1125{
3e1d2eed
TH
1126 struct cgroup_subsys *ss = cft->ss;
1127
8d7e6fb0
TH
1128 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1129 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1130 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1131 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1132 cft->name);
8d7e6fb0
TH
1133 else
1134 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1135 return buf;
ddbcc7e8
PM
1136}
1137
f2e85d57
TH
1138/**
1139 * cgroup_file_mode - deduce file mode of a control file
1140 * @cft: the control file in question
1141 *
7dbdb199 1142 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1143 */
1144static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1145{
f2e85d57 1146 umode_t mode = 0;
65dff759 1147
f2e85d57
TH
1148 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1149 mode |= S_IRUGO;
1150
7dbdb199
TH
1151 if (cft->write_u64 || cft->write_s64 || cft->write) {
1152 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1153 mode |= S_IWUGO;
1154 else
1155 mode |= S_IWUSR;
1156 }
f2e85d57
TH
1157
1158 return mode;
65dff759
LZ
1159}
1160
59f5296b 1161static void cgroup_get(struct cgroup *cgrp)
be445626 1162{
2bd59d48 1163 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1164 css_get(&cgrp->self);
be445626
LZ
1165}
1166
aa32362f
LZ
1167static bool cgroup_tryget(struct cgroup *cgrp)
1168{
1169 return css_tryget(&cgrp->self);
1170}
1171
59f5296b 1172static void cgroup_put(struct cgroup *cgrp)
be445626 1173{
9d755d33 1174 css_put(&cgrp->self);
be445626
LZ
1175}
1176
af0ba678 1177/**
0f060deb 1178 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1179 * @cgrp: the target cgroup
0f060deb 1180 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1181 *
1182 * On the default hierarchy, a subsystem may request other subsystems to be
1183 * enabled together through its ->depends_on mask. In such cases, more
1184 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1185 *
0f060deb
TH
1186 * This function calculates which subsystems need to be enabled if
1187 * @subtree_control is to be applied to @cgrp. The returned mask is always
1188 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1189 */
8ab456ac
AS
1190static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1191 unsigned long subtree_control)
667c2491 1192{
af0ba678 1193 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1194 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1195 struct cgroup_subsys *ss;
1196 int ssid;
1197
1198 lockdep_assert_held(&cgroup_mutex);
1199
0f060deb
TH
1200 if (!cgroup_on_dfl(cgrp))
1201 return cur_ss_mask;
af0ba678
TH
1202
1203 while (true) {
8ab456ac 1204 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1205
a966a4ed
AS
1206 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1207 new_ss_mask |= ss->depends_on;
af0ba678
TH
1208
1209 /*
1210 * Mask out subsystems which aren't available. This can
1211 * happen only if some depended-upon subsystems were bound
1212 * to non-default hierarchies.
1213 */
1214 if (parent)
1215 new_ss_mask &= parent->child_subsys_mask;
1216 else
1217 new_ss_mask &= cgrp->root->subsys_mask;
1218
1219 if (new_ss_mask == cur_ss_mask)
1220 break;
1221 cur_ss_mask = new_ss_mask;
1222 }
1223
0f060deb
TH
1224 return cur_ss_mask;
1225}
1226
1227/**
1228 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1229 * @cgrp: the target cgroup
1230 *
1231 * Update @cgrp->child_subsys_mask according to the current
1232 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1233 */
1234static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1235{
1236 cgrp->child_subsys_mask =
1237 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1238}
1239
a9746d8d
TH
1240/**
1241 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1242 * @kn: the kernfs_node being serviced
1243 *
1244 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1245 * the method finishes if locking succeeded. Note that once this function
1246 * returns the cgroup returned by cgroup_kn_lock_live() may become
1247 * inaccessible any time. If the caller intends to continue to access the
1248 * cgroup, it should pin it before invoking this function.
1249 */
1250static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1251{
a9746d8d
TH
1252 struct cgroup *cgrp;
1253
1254 if (kernfs_type(kn) == KERNFS_DIR)
1255 cgrp = kn->priv;
1256 else
1257 cgrp = kn->parent->priv;
1258
1259 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1260
1261 kernfs_unbreak_active_protection(kn);
1262 cgroup_put(cgrp);
ddbcc7e8
PM
1263}
1264
a9746d8d
TH
1265/**
1266 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1267 * @kn: the kernfs_node being serviced
1268 *
1269 * This helper is to be used by a cgroup kernfs method currently servicing
1270 * @kn. It breaks the active protection, performs cgroup locking and
1271 * verifies that the associated cgroup is alive. Returns the cgroup if
1272 * alive; otherwise, %NULL. A successful return should be undone by a
1273 * matching cgroup_kn_unlock() invocation.
1274 *
1275 * Any cgroup kernfs method implementation which requires locking the
1276 * associated cgroup should use this helper. It avoids nesting cgroup
1277 * locking under kernfs active protection and allows all kernfs operations
1278 * including self-removal.
1279 */
1280static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1281{
a9746d8d
TH
1282 struct cgroup *cgrp;
1283
1284 if (kernfs_type(kn) == KERNFS_DIR)
1285 cgrp = kn->priv;
1286 else
1287 cgrp = kn->parent->priv;
05ef1d7c 1288
2739d3cc 1289 /*
01f6474c 1290 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1291 * active_ref. cgroup liveliness check alone provides enough
1292 * protection against removal. Ensure @cgrp stays accessible and
1293 * break the active_ref protection.
2739d3cc 1294 */
aa32362f
LZ
1295 if (!cgroup_tryget(cgrp))
1296 return NULL;
a9746d8d
TH
1297 kernfs_break_active_protection(kn);
1298
2bd59d48 1299 mutex_lock(&cgroup_mutex);
05ef1d7c 1300
a9746d8d
TH
1301 if (!cgroup_is_dead(cgrp))
1302 return cgrp;
1303
1304 cgroup_kn_unlock(kn);
1305 return NULL;
ddbcc7e8 1306}
05ef1d7c 1307
2739d3cc 1308static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1309{
2bd59d48 1310 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1311
01f6474c 1312 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1313 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1314}
1315
13af07df 1316/**
4df8dc90
TH
1317 * css_clear_dir - remove subsys files in a cgroup directory
1318 * @css: taget css
1319 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1320 */
4df8dc90
TH
1321static void css_clear_dir(struct cgroup_subsys_state *css,
1322 struct cgroup *cgrp_override)
05ef1d7c 1323{
4df8dc90
TH
1324 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1325 struct cftype *cfts;
05ef1d7c 1326
4df8dc90
TH
1327 list_for_each_entry(cfts, &css->ss->cfts, node)
1328 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1329}
1330
ccdca218 1331/**
4df8dc90
TH
1332 * css_populate_dir - create subsys files in a cgroup directory
1333 * @css: target css
1334 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1335 *
1336 * On failure, no file is added.
1337 */
4df8dc90
TH
1338static int css_populate_dir(struct cgroup_subsys_state *css,
1339 struct cgroup *cgrp_override)
ccdca218 1340{
4df8dc90
TH
1341 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1342 struct cftype *cfts, *failed_cfts;
1343 int ret;
ccdca218 1344
4df8dc90
TH
1345 if (!css->ss) {
1346 if (cgroup_on_dfl(cgrp))
1347 cfts = cgroup_dfl_base_files;
1348 else
1349 cfts = cgroup_legacy_base_files;
ccdca218 1350
4df8dc90
TH
1351 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1352 }
ccdca218 1353
4df8dc90
TH
1354 list_for_each_entry(cfts, &css->ss->cfts, node) {
1355 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1356 if (ret < 0) {
1357 failed_cfts = cfts;
1358 goto err;
ccdca218
TH
1359 }
1360 }
1361 return 0;
1362err:
4df8dc90
TH
1363 list_for_each_entry(cfts, &css->ss->cfts, node) {
1364 if (cfts == failed_cfts)
1365 break;
1366 cgroup_addrm_files(css, cgrp, cfts, false);
1367 }
ccdca218
TH
1368 return ret;
1369}
1370
8ab456ac
AS
1371static int rebind_subsystems(struct cgroup_root *dst_root,
1372 unsigned long ss_mask)
ddbcc7e8 1373{
1ada4838 1374 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1375 struct cgroup_subsys *ss;
8ab456ac 1376 unsigned long tmp_ss_mask;
2d8f243a 1377 int ssid, i, ret;
ddbcc7e8 1378
ace2bee8 1379 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1380
a966a4ed 1381 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1382 /* if @ss has non-root csses attached to it, can't move */
1383 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1384 return -EBUSY;
1d5be6b2 1385
5df36032 1386 /* can't move between two non-dummy roots either */
7fd8c565 1387 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1388 return -EBUSY;
ddbcc7e8
PM
1389 }
1390
5533e011
TH
1391 /* skip creating root files on dfl_root for inhibited subsystems */
1392 tmp_ss_mask = ss_mask;
1393 if (dst_root == &cgrp_dfl_root)
1394 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1395
4df8dc90
TH
1396 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1397 struct cgroup *scgrp = &ss->root->cgrp;
1398 int tssid;
1399
1400 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1401 if (!ret)
1402 continue;
ddbcc7e8 1403
a2dd4247
TH
1404 /*
1405 * Rebinding back to the default root is not allowed to
1406 * fail. Using both default and non-default roots should
1407 * be rare. Moving subsystems back and forth even more so.
1408 * Just warn about it and continue.
1409 */
4df8dc90
TH
1410 if (dst_root == &cgrp_dfl_root) {
1411 if (cgrp_dfl_root_visible) {
1412 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1413 ret, ss_mask);
1414 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1415 }
1416 continue;
a2dd4247 1417 }
4df8dc90
TH
1418
1419 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1420 if (tssid == ssid)
1421 break;
1422 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1423 }
1424 return ret;
5df36032 1425 }
3126121f
TH
1426
1427 /*
1428 * Nothing can fail from this point on. Remove files for the
1429 * removed subsystems and rebind each subsystem.
1430 */
a966a4ed 1431 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1432 struct cgroup_root *src_root = ss->root;
1433 struct cgroup *scgrp = &src_root->cgrp;
1434 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1435 struct css_set *cset;
a8a648c4 1436
1ada4838 1437 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1438
4df8dc90
TH
1439 css_clear_dir(css, NULL);
1440
1ada4838
TH
1441 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1442 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1443 ss->root = dst_root;
1ada4838 1444 css->cgroup = dcgrp;
73e80ed8 1445
2d8f243a
TH
1446 down_write(&css_set_rwsem);
1447 hash_for_each(css_set_table, i, cset, hlist)
1448 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1449 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1450 up_write(&css_set_rwsem);
1451
f392e51c 1452 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1453 scgrp->subtree_control &= ~(1 << ssid);
1454 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1455
bd53d617 1456 /* default hierarchy doesn't enable controllers by default */
f392e51c 1457 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1458 if (dst_root == &cgrp_dfl_root) {
1459 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1460 } else {
1ada4838
TH
1461 dcgrp->subtree_control |= 1 << ssid;
1462 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1463 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1464 }
a8a648c4 1465
5df36032
TH
1466 if (ss->bind)
1467 ss->bind(css);
ddbcc7e8 1468 }
ddbcc7e8 1469
1ada4838 1470 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1471 return 0;
1472}
1473
2bd59d48
TH
1474static int cgroup_show_options(struct seq_file *seq,
1475 struct kernfs_root *kf_root)
ddbcc7e8 1476{
3dd06ffa 1477 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1478 struct cgroup_subsys *ss;
b85d2040 1479 int ssid;
ddbcc7e8 1480
d98817d4
TH
1481 if (root != &cgrp_dfl_root)
1482 for_each_subsys(ss, ssid)
1483 if (root->subsys_mask & (1 << ssid))
61e57c0c 1484 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1485 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1486 seq_puts(seq, ",noprefix");
93438629 1487 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1488 seq_puts(seq, ",xattr");
69e943b7
TH
1489
1490 spin_lock(&release_agent_path_lock);
81a6a5cd 1491 if (strlen(root->release_agent_path))
a068acf2
KC
1492 seq_show_option(seq, "release_agent",
1493 root->release_agent_path);
69e943b7
TH
1494 spin_unlock(&release_agent_path_lock);
1495
3dd06ffa 1496 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1497 seq_puts(seq, ",clone_children");
c6d57f33 1498 if (strlen(root->name))
a068acf2 1499 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1500 return 0;
1501}
1502
1503struct cgroup_sb_opts {
8ab456ac 1504 unsigned long subsys_mask;
69dfa00c 1505 unsigned int flags;
81a6a5cd 1506 char *release_agent;
2260e7fc 1507 bool cpuset_clone_children;
c6d57f33 1508 char *name;
2c6ab6d2
PM
1509 /* User explicitly requested empty subsystem */
1510 bool none;
ddbcc7e8
PM
1511};
1512
cf5d5941 1513static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1514{
32a8cf23
DL
1515 char *token, *o = data;
1516 bool all_ss = false, one_ss = false;
8ab456ac 1517 unsigned long mask = -1UL;
30159ec7 1518 struct cgroup_subsys *ss;
7b9a6ba5 1519 int nr_opts = 0;
30159ec7 1520 int i;
f9ab5b5b
LZ
1521
1522#ifdef CONFIG_CPUSETS
69dfa00c 1523 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1524#endif
ddbcc7e8 1525
c6d57f33 1526 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1527
1528 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1529 nr_opts++;
1530
ddbcc7e8
PM
1531 if (!*token)
1532 return -EINVAL;
32a8cf23 1533 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1534 /* Explicitly have no subsystems */
1535 opts->none = true;
32a8cf23
DL
1536 continue;
1537 }
1538 if (!strcmp(token, "all")) {
1539 /* Mutually exclusive option 'all' + subsystem name */
1540 if (one_ss)
1541 return -EINVAL;
1542 all_ss = true;
1543 continue;
1544 }
873fe09e
TH
1545 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1546 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1547 continue;
1548 }
32a8cf23 1549 if (!strcmp(token, "noprefix")) {
93438629 1550 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1551 continue;
1552 }
1553 if (!strcmp(token, "clone_children")) {
2260e7fc 1554 opts->cpuset_clone_children = true;
32a8cf23
DL
1555 continue;
1556 }
03b1cde6 1557 if (!strcmp(token, "xattr")) {
93438629 1558 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1559 continue;
1560 }
32a8cf23 1561 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1562 /* Specifying two release agents is forbidden */
1563 if (opts->release_agent)
1564 return -EINVAL;
c6d57f33 1565 opts->release_agent =
e400c285 1566 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1567 if (!opts->release_agent)
1568 return -ENOMEM;
32a8cf23
DL
1569 continue;
1570 }
1571 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1572 const char *name = token + 5;
1573 /* Can't specify an empty name */
1574 if (!strlen(name))
1575 return -EINVAL;
1576 /* Must match [\w.-]+ */
1577 for (i = 0; i < strlen(name); i++) {
1578 char c = name[i];
1579 if (isalnum(c))
1580 continue;
1581 if ((c == '.') || (c == '-') || (c == '_'))
1582 continue;
1583 return -EINVAL;
1584 }
1585 /* Specifying two names is forbidden */
1586 if (opts->name)
1587 return -EINVAL;
1588 opts->name = kstrndup(name,
e400c285 1589 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1590 GFP_KERNEL);
1591 if (!opts->name)
1592 return -ENOMEM;
32a8cf23
DL
1593
1594 continue;
1595 }
1596
30159ec7 1597 for_each_subsys(ss, i) {
3e1d2eed 1598 if (strcmp(token, ss->legacy_name))
32a8cf23 1599 continue;
fc5ed1e9 1600 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1601 continue;
1602
1603 /* Mutually exclusive option 'all' + subsystem name */
1604 if (all_ss)
1605 return -EINVAL;
69dfa00c 1606 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1607 one_ss = true;
1608
1609 break;
1610 }
1611 if (i == CGROUP_SUBSYS_COUNT)
1612 return -ENOENT;
1613 }
1614
873fe09e 1615 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1616 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1617 if (nr_opts != 1) {
1618 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1619 return -EINVAL;
1620 }
7b9a6ba5 1621 return 0;
873fe09e
TH
1622 }
1623
7b9a6ba5
TH
1624 /*
1625 * If the 'all' option was specified select all the subsystems,
1626 * otherwise if 'none', 'name=' and a subsystem name options were
1627 * not specified, let's default to 'all'
1628 */
1629 if (all_ss || (!one_ss && !opts->none && !opts->name))
1630 for_each_subsys(ss, i)
fc5ed1e9 1631 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1632 opts->subsys_mask |= (1 << i);
1633
1634 /*
1635 * We either have to specify by name or by subsystems. (So all
1636 * empty hierarchies must have a name).
1637 */
1638 if (!opts->subsys_mask && !opts->name)
1639 return -EINVAL;
1640
f9ab5b5b
LZ
1641 /*
1642 * Option noprefix was introduced just for backward compatibility
1643 * with the old cpuset, so we allow noprefix only if mounting just
1644 * the cpuset subsystem.
1645 */
93438629 1646 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1647 return -EINVAL;
1648
2c6ab6d2 1649 /* Can't specify "none" and some subsystems */
a1a71b45 1650 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1651 return -EINVAL;
1652
ddbcc7e8
PM
1653 return 0;
1654}
1655
2bd59d48 1656static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1657{
1658 int ret = 0;
3dd06ffa 1659 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1660 struct cgroup_sb_opts opts;
8ab456ac 1661 unsigned long added_mask, removed_mask;
ddbcc7e8 1662
aa6ec29b
TH
1663 if (root == &cgrp_dfl_root) {
1664 pr_err("remount is not allowed\n");
873fe09e
TH
1665 return -EINVAL;
1666 }
1667
ddbcc7e8
PM
1668 mutex_lock(&cgroup_mutex);
1669
1670 /* See what subsystems are wanted */
1671 ret = parse_cgroupfs_options(data, &opts);
1672 if (ret)
1673 goto out_unlock;
1674
f392e51c 1675 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1676 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1677 task_tgid_nr(current), current->comm);
8b5a5a9d 1678
f392e51c
TH
1679 added_mask = opts.subsys_mask & ~root->subsys_mask;
1680 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1681
cf5d5941 1682 /* Don't allow flags or name to change at remount */
7450e90b 1683 if ((opts.flags ^ root->flags) ||
cf5d5941 1684 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1685 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1686 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1687 ret = -EINVAL;
1688 goto out_unlock;
1689 }
1690
f172e67c 1691 /* remounting is not allowed for populated hierarchies */
d5c419b6 1692 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1693 ret = -EBUSY;
0670e08b 1694 goto out_unlock;
cf5d5941 1695 }
ddbcc7e8 1696
5df36032 1697 ret = rebind_subsystems(root, added_mask);
3126121f 1698 if (ret)
0670e08b 1699 goto out_unlock;
ddbcc7e8 1700
3dd06ffa 1701 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1702
69e943b7
TH
1703 if (opts.release_agent) {
1704 spin_lock(&release_agent_path_lock);
81a6a5cd 1705 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1706 spin_unlock(&release_agent_path_lock);
1707 }
ddbcc7e8 1708 out_unlock:
66bdc9cf 1709 kfree(opts.release_agent);
c6d57f33 1710 kfree(opts.name);
ddbcc7e8 1711 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1712 return ret;
1713}
1714
afeb0f9f
TH
1715/*
1716 * To reduce the fork() overhead for systems that are not actually using
1717 * their cgroups capability, we don't maintain the lists running through
1718 * each css_set to its tasks until we see the list actually used - in other
1719 * words after the first mount.
1720 */
1721static bool use_task_css_set_links __read_mostly;
1722
1723static void cgroup_enable_task_cg_lists(void)
1724{
1725 struct task_struct *p, *g;
1726
96d365e0 1727 down_write(&css_set_rwsem);
afeb0f9f
TH
1728
1729 if (use_task_css_set_links)
1730 goto out_unlock;
1731
1732 use_task_css_set_links = true;
1733
1734 /*
1735 * We need tasklist_lock because RCU is not safe against
1736 * while_each_thread(). Besides, a forking task that has passed
1737 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1738 * is not guaranteed to have its child immediately visible in the
1739 * tasklist if we walk through it with RCU.
1740 */
1741 read_lock(&tasklist_lock);
1742 do_each_thread(g, p) {
afeb0f9f
TH
1743 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1744 task_css_set(p) != &init_css_set);
1745
1746 /*
1747 * We should check if the process is exiting, otherwise
1748 * it will race with cgroup_exit() in that the list
1749 * entry won't be deleted though the process has exited.
f153ad11
TH
1750 * Do it while holding siglock so that we don't end up
1751 * racing against cgroup_exit().
afeb0f9f 1752 */
f153ad11 1753 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1754 if (!(p->flags & PF_EXITING)) {
1755 struct css_set *cset = task_css_set(p);
1756
1757 list_add(&p->cg_list, &cset->tasks);
1758 get_css_set(cset);
1759 }
f153ad11 1760 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1761 } while_each_thread(g, p);
1762 read_unlock(&tasklist_lock);
1763out_unlock:
96d365e0 1764 up_write(&css_set_rwsem);
afeb0f9f 1765}
ddbcc7e8 1766
cc31edce
PM
1767static void init_cgroup_housekeeping(struct cgroup *cgrp)
1768{
2d8f243a
TH
1769 struct cgroup_subsys *ss;
1770 int ssid;
1771
d5c419b6
TH
1772 INIT_LIST_HEAD(&cgrp->self.sibling);
1773 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1774 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1775 INIT_LIST_HEAD(&cgrp->pidlists);
1776 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1777 cgrp->self.cgroup = cgrp;
184faf32 1778 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1779
1780 for_each_subsys(ss, ssid)
1781 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1782
1783 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1784 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1785}
c6d57f33 1786
3dd06ffa 1787static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1788 struct cgroup_sb_opts *opts)
ddbcc7e8 1789{
3dd06ffa 1790 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1791
ddbcc7e8 1792 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1793 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1794 cgrp->root = root;
cc31edce 1795 init_cgroup_housekeeping(cgrp);
4e96ee8e 1796 idr_init(&root->cgroup_idr);
c6d57f33 1797
c6d57f33
PM
1798 root->flags = opts->flags;
1799 if (opts->release_agent)
1800 strcpy(root->release_agent_path, opts->release_agent);
1801 if (opts->name)
1802 strcpy(root->name, opts->name);
2260e7fc 1803 if (opts->cpuset_clone_children)
3dd06ffa 1804 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1805}
1806
8ab456ac 1807static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1808{
d427dfeb 1809 LIST_HEAD(tmp_links);
3dd06ffa 1810 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1811 struct css_set *cset;
d427dfeb 1812 int i, ret;
2c6ab6d2 1813
d427dfeb 1814 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1815
cf780b7d 1816 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1817 if (ret < 0)
2bd59d48 1818 goto out;
d427dfeb 1819 root_cgrp->id = ret;
c6d57f33 1820
2aad2a86
TH
1821 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1822 GFP_KERNEL);
9d755d33
TH
1823 if (ret)
1824 goto out;
1825
d427dfeb 1826 /*
96d365e0 1827 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1828 * but that's OK - it can only be increased by someone holding
1829 * cgroup_lock, and that's us. The worst that can happen is that we
1830 * have some link structures left over
1831 */
1832 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1833 if (ret)
9d755d33 1834 goto cancel_ref;
ddbcc7e8 1835
985ed670 1836 ret = cgroup_init_root_id(root);
ddbcc7e8 1837 if (ret)
9d755d33 1838 goto cancel_ref;
ddbcc7e8 1839
2bd59d48
TH
1840 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1841 KERNFS_ROOT_CREATE_DEACTIVATED,
1842 root_cgrp);
1843 if (IS_ERR(root->kf_root)) {
1844 ret = PTR_ERR(root->kf_root);
1845 goto exit_root_id;
1846 }
1847 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1848
4df8dc90 1849 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1850 if (ret)
2bd59d48 1851 goto destroy_root;
ddbcc7e8 1852
5df36032 1853 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1854 if (ret)
2bd59d48 1855 goto destroy_root;
ddbcc7e8 1856
d427dfeb
TH
1857 /*
1858 * There must be no failure case after here, since rebinding takes
1859 * care of subsystems' refcounts, which are explicitly dropped in
1860 * the failure exit path.
1861 */
1862 list_add(&root->root_list, &cgroup_roots);
1863 cgroup_root_count++;
0df6a63f 1864
d427dfeb 1865 /*
3dd06ffa 1866 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1867 * objects.
1868 */
96d365e0 1869 down_write(&css_set_rwsem);
d427dfeb
TH
1870 hash_for_each(css_set_table, i, cset, hlist)
1871 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1872 up_write(&css_set_rwsem);
ddbcc7e8 1873
d5c419b6 1874 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1875 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1876
2bd59d48 1877 kernfs_activate(root_cgrp->kn);
d427dfeb 1878 ret = 0;
2bd59d48 1879 goto out;
d427dfeb 1880
2bd59d48
TH
1881destroy_root:
1882 kernfs_destroy_root(root->kf_root);
1883 root->kf_root = NULL;
1884exit_root_id:
d427dfeb 1885 cgroup_exit_root_id(root);
9d755d33 1886cancel_ref:
9a1049da 1887 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1888out:
d427dfeb
TH
1889 free_cgrp_cset_links(&tmp_links);
1890 return ret;
ddbcc7e8
PM
1891}
1892
f7e83571 1893static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1894 int flags, const char *unused_dev_name,
f7e83571 1895 void *data)
ddbcc7e8 1896{
3a32bd72 1897 struct super_block *pinned_sb = NULL;
970317aa 1898 struct cgroup_subsys *ss;
3dd06ffa 1899 struct cgroup_root *root;
ddbcc7e8 1900 struct cgroup_sb_opts opts;
2bd59d48 1901 struct dentry *dentry;
8e30e2b8 1902 int ret;
970317aa 1903 int i;
c6b3d5bc 1904 bool new_sb;
ddbcc7e8 1905
56fde9e0
TH
1906 /*
1907 * The first time anyone tries to mount a cgroup, enable the list
1908 * linking each css_set to its tasks and fix up all existing tasks.
1909 */
1910 if (!use_task_css_set_links)
1911 cgroup_enable_task_cg_lists();
e37a06f1 1912
aae8aab4 1913 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1914
1915 /* First find the desired set of subsystems */
ddbcc7e8 1916 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1917 if (ret)
8e30e2b8 1918 goto out_unlock;
a015edd2 1919
2bd59d48 1920 /* look for a matching existing root */
7b9a6ba5 1921 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1922 cgrp_dfl_root_visible = true;
1923 root = &cgrp_dfl_root;
1924 cgroup_get(&root->cgrp);
1925 ret = 0;
1926 goto out_unlock;
ddbcc7e8
PM
1927 }
1928
970317aa
LZ
1929 /*
1930 * Destruction of cgroup root is asynchronous, so subsystems may
1931 * still be dying after the previous unmount. Let's drain the
1932 * dying subsystems. We just need to ensure that the ones
1933 * unmounted previously finish dying and don't care about new ones
1934 * starting. Testing ref liveliness is good enough.
1935 */
1936 for_each_subsys(ss, i) {
1937 if (!(opts.subsys_mask & (1 << i)) ||
1938 ss->root == &cgrp_dfl_root)
1939 continue;
1940
1941 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1942 mutex_unlock(&cgroup_mutex);
1943 msleep(10);
1944 ret = restart_syscall();
1945 goto out_free;
1946 }
1947 cgroup_put(&ss->root->cgrp);
1948 }
1949
985ed670 1950 for_each_root(root) {
2bd59d48 1951 bool name_match = false;
3126121f 1952
3dd06ffa 1953 if (root == &cgrp_dfl_root)
985ed670 1954 continue;
3126121f 1955
cf5d5941 1956 /*
2bd59d48
TH
1957 * If we asked for a name then it must match. Also, if
1958 * name matches but sybsys_mask doesn't, we should fail.
1959 * Remember whether name matched.
cf5d5941 1960 */
2bd59d48
TH
1961 if (opts.name) {
1962 if (strcmp(opts.name, root->name))
1963 continue;
1964 name_match = true;
1965 }
ddbcc7e8 1966
c6d57f33 1967 /*
2bd59d48
TH
1968 * If we asked for subsystems (or explicitly for no
1969 * subsystems) then they must match.
c6d57f33 1970 */
2bd59d48 1971 if ((opts.subsys_mask || opts.none) &&
f392e51c 1972 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1973 if (!name_match)
1974 continue;
1975 ret = -EBUSY;
1976 goto out_unlock;
1977 }
873fe09e 1978
7b9a6ba5
TH
1979 if (root->flags ^ opts.flags)
1980 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1981
776f02fa 1982 /*
3a32bd72
LZ
1983 * We want to reuse @root whose lifetime is governed by its
1984 * ->cgrp. Let's check whether @root is alive and keep it
1985 * that way. As cgroup_kill_sb() can happen anytime, we
1986 * want to block it by pinning the sb so that @root doesn't
1987 * get killed before mount is complete.
1988 *
1989 * With the sb pinned, tryget_live can reliably indicate
1990 * whether @root can be reused. If it's being killed,
1991 * drain it. We can use wait_queue for the wait but this
1992 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1993 */
3a32bd72
LZ
1994 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1995 if (IS_ERR(pinned_sb) ||
1996 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1997 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1998 if (!IS_ERR_OR_NULL(pinned_sb))
1999 deactivate_super(pinned_sb);
776f02fa 2000 msleep(10);
a015edd2
TH
2001 ret = restart_syscall();
2002 goto out_free;
776f02fa 2003 }
ddbcc7e8 2004
776f02fa 2005 ret = 0;
2bd59d48 2006 goto out_unlock;
ddbcc7e8 2007 }
ddbcc7e8 2008
817929ec 2009 /*
172a2c06
TH
2010 * No such thing, create a new one. name= matching without subsys
2011 * specification is allowed for already existing hierarchies but we
2012 * can't create new one without subsys specification.
817929ec 2013 */
172a2c06
TH
2014 if (!opts.subsys_mask && !opts.none) {
2015 ret = -EINVAL;
2016 goto out_unlock;
817929ec 2017 }
817929ec 2018
172a2c06
TH
2019 root = kzalloc(sizeof(*root), GFP_KERNEL);
2020 if (!root) {
2021 ret = -ENOMEM;
2bd59d48 2022 goto out_unlock;
839ec545 2023 }
e5f6a860 2024
172a2c06
TH
2025 init_cgroup_root(root, &opts);
2026
35585573 2027 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2028 if (ret)
2029 cgroup_free_root(root);
fa3ca07e 2030
8e30e2b8 2031out_unlock:
ddbcc7e8 2032 mutex_unlock(&cgroup_mutex);
a015edd2 2033out_free:
c6d57f33
PM
2034 kfree(opts.release_agent);
2035 kfree(opts.name);
03b1cde6 2036
2bd59d48 2037 if (ret)
8e30e2b8 2038 return ERR_PTR(ret);
2bd59d48 2039
c9482a5b
JZ
2040 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2041 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2042 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2043 cgroup_put(&root->cgrp);
3a32bd72
LZ
2044
2045 /*
2046 * If @pinned_sb, we're reusing an existing root and holding an
2047 * extra ref on its sb. Mount is complete. Put the extra ref.
2048 */
2049 if (pinned_sb) {
2050 WARN_ON(new_sb);
2051 deactivate_super(pinned_sb);
2052 }
2053
2bd59d48
TH
2054 return dentry;
2055}
2056
2057static void cgroup_kill_sb(struct super_block *sb)
2058{
2059 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2060 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2061
9d755d33
TH
2062 /*
2063 * If @root doesn't have any mounts or children, start killing it.
2064 * This prevents new mounts by disabling percpu_ref_tryget_live().
2065 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2066 *
2067 * And don't kill the default root.
9d755d33 2068 */
3c606d35 2069 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2070 root == &cgrp_dfl_root)
9d755d33
TH
2071 cgroup_put(&root->cgrp);
2072 else
2073 percpu_ref_kill(&root->cgrp.self.refcnt);
2074
2bd59d48 2075 kernfs_kill_sb(sb);
ddbcc7e8
PM
2076}
2077
2078static struct file_system_type cgroup_fs_type = {
2079 .name = "cgroup",
f7e83571 2080 .mount = cgroup_mount,
ddbcc7e8
PM
2081 .kill_sb = cgroup_kill_sb,
2082};
2083
857a2beb 2084/**
913ffdb5 2085 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2086 * @task: target task
857a2beb
TH
2087 * @buf: the buffer to write the path into
2088 * @buflen: the length of the buffer
2089 *
913ffdb5
TH
2090 * Determine @task's cgroup on the first (the one with the lowest non-zero
2091 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2092 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2093 * cgroup controller callbacks.
2094 *
e61734c5 2095 * Return value is the same as kernfs_path().
857a2beb 2096 */
e61734c5 2097char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2098{
3dd06ffa 2099 struct cgroup_root *root;
913ffdb5 2100 struct cgroup *cgrp;
e61734c5
TH
2101 int hierarchy_id = 1;
2102 char *path = NULL;
857a2beb
TH
2103
2104 mutex_lock(&cgroup_mutex);
96d365e0 2105 down_read(&css_set_rwsem);
857a2beb 2106
913ffdb5
TH
2107 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2108
857a2beb
TH
2109 if (root) {
2110 cgrp = task_cgroup_from_root(task, root);
e61734c5 2111 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2112 } else {
2113 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2114 if (strlcpy(buf, "/", buflen) < buflen)
2115 path = buf;
857a2beb
TH
2116 }
2117
96d365e0 2118 up_read(&css_set_rwsem);
857a2beb 2119 mutex_unlock(&cgroup_mutex);
e61734c5 2120 return path;
857a2beb 2121}
913ffdb5 2122EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2123
b3dc094e 2124/* used to track tasks and other necessary states during migration */
2f7ee569 2125struct cgroup_taskset {
b3dc094e
TH
2126 /* the src and dst cset list running through cset->mg_node */
2127 struct list_head src_csets;
2128 struct list_head dst_csets;
2129
2130 /*
2131 * Fields for cgroup_taskset_*() iteration.
2132 *
2133 * Before migration is committed, the target migration tasks are on
2134 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2135 * the csets on ->dst_csets. ->csets point to either ->src_csets
2136 * or ->dst_csets depending on whether migration is committed.
2137 *
2138 * ->cur_csets and ->cur_task point to the current task position
2139 * during iteration.
2140 */
2141 struct list_head *csets;
2142 struct css_set *cur_cset;
2143 struct task_struct *cur_task;
2f7ee569
TH
2144};
2145
2146/**
2147 * cgroup_taskset_first - reset taskset and return the first task
2148 * @tset: taskset of interest
2149 *
2150 * @tset iteration is initialized and the first task is returned.
2151 */
2152struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2153{
b3dc094e
TH
2154 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2155 tset->cur_task = NULL;
2156
2157 return cgroup_taskset_next(tset);
2f7ee569 2158}
2f7ee569
TH
2159
2160/**
2161 * cgroup_taskset_next - iterate to the next task in taskset
2162 * @tset: taskset of interest
2163 *
2164 * Return the next task in @tset. Iteration must have been initialized
2165 * with cgroup_taskset_first().
2166 */
2167struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2168{
b3dc094e
TH
2169 struct css_set *cset = tset->cur_cset;
2170 struct task_struct *task = tset->cur_task;
2f7ee569 2171
b3dc094e
TH
2172 while (&cset->mg_node != tset->csets) {
2173 if (!task)
2174 task = list_first_entry(&cset->mg_tasks,
2175 struct task_struct, cg_list);
2176 else
2177 task = list_next_entry(task, cg_list);
2f7ee569 2178
b3dc094e
TH
2179 if (&task->cg_list != &cset->mg_tasks) {
2180 tset->cur_cset = cset;
2181 tset->cur_task = task;
2182 return task;
2183 }
2f7ee569 2184
b3dc094e
TH
2185 cset = list_next_entry(cset, mg_node);
2186 task = NULL;
2187 }
2f7ee569 2188
b3dc094e 2189 return NULL;
2f7ee569 2190}
2f7ee569 2191
cb0f1fe9 2192/**
74a1166d 2193 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2194 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2195 * @tsk: the task being migrated
2196 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2197 *
cb0f1fe9 2198 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2199 */
5abb8855
TH
2200static void cgroup_task_migrate(struct cgroup *old_cgrp,
2201 struct task_struct *tsk,
2202 struct css_set *new_cset)
74a1166d 2203{
5abb8855 2204 struct css_set *old_cset;
74a1166d 2205
cb0f1fe9
TH
2206 lockdep_assert_held(&cgroup_mutex);
2207 lockdep_assert_held(&css_set_rwsem);
2208
74a1166d 2209 /*
1ed13287
TH
2210 * We are synchronized through cgroup_threadgroup_rwsem against
2211 * PF_EXITING setting such that we can't race against cgroup_exit()
2212 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2213 */
c84cdf75 2214 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2215 old_cset = task_css_set(tsk);
74a1166d 2216
b3dc094e 2217 get_css_set(new_cset);
5abb8855 2218 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2219
1b9aba49
TH
2220 /*
2221 * Use move_tail so that cgroup_taskset_first() still returns the
2222 * leader after migration. This works because cgroup_migrate()
2223 * ensures that the dst_cset of the leader is the first on the
2224 * tset's dst_csets list.
2225 */
2226 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2227
2228 /*
5abb8855
TH
2229 * We just gained a reference on old_cset by taking it from the
2230 * task. As trading it for new_cset is protected by cgroup_mutex,
2231 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2232 */
a25eb52e 2233 put_css_set_locked(old_cset);
74a1166d
BB
2234}
2235
a043e3b2 2236/**
1958d2d5
TH
2237 * cgroup_migrate_finish - cleanup after attach
2238 * @preloaded_csets: list of preloaded css_sets
74a1166d 2239 *
1958d2d5
TH
2240 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2241 * those functions for details.
74a1166d 2242 */
1958d2d5 2243static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2244{
1958d2d5 2245 struct css_set *cset, *tmp_cset;
74a1166d 2246
1958d2d5
TH
2247 lockdep_assert_held(&cgroup_mutex);
2248
2249 down_write(&css_set_rwsem);
2250 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2251 cset->mg_src_cgrp = NULL;
2252 cset->mg_dst_cset = NULL;
2253 list_del_init(&cset->mg_preload_node);
a25eb52e 2254 put_css_set_locked(cset);
1958d2d5
TH
2255 }
2256 up_write(&css_set_rwsem);
2257}
2258
2259/**
2260 * cgroup_migrate_add_src - add a migration source css_set
2261 * @src_cset: the source css_set to add
2262 * @dst_cgrp: the destination cgroup
2263 * @preloaded_csets: list of preloaded css_sets
2264 *
2265 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2266 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2267 * up by cgroup_migrate_finish().
2268 *
1ed13287
TH
2269 * This function may be called without holding cgroup_threadgroup_rwsem
2270 * even if the target is a process. Threads may be created and destroyed
2271 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2272 * into play and the preloaded css_sets are guaranteed to cover all
2273 * migrations.
1958d2d5
TH
2274 */
2275static void cgroup_migrate_add_src(struct css_set *src_cset,
2276 struct cgroup *dst_cgrp,
2277 struct list_head *preloaded_csets)
2278{
2279 struct cgroup *src_cgrp;
2280
2281 lockdep_assert_held(&cgroup_mutex);
2282 lockdep_assert_held(&css_set_rwsem);
2283
2284 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2285
1958d2d5
TH
2286 if (!list_empty(&src_cset->mg_preload_node))
2287 return;
2288
2289 WARN_ON(src_cset->mg_src_cgrp);
2290 WARN_ON(!list_empty(&src_cset->mg_tasks));
2291 WARN_ON(!list_empty(&src_cset->mg_node));
2292
2293 src_cset->mg_src_cgrp = src_cgrp;
2294 get_css_set(src_cset);
2295 list_add(&src_cset->mg_preload_node, preloaded_csets);
2296}
2297
2298/**
2299 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2300 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2301 * @preloaded_csets: list of preloaded source css_sets
2302 *
2303 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2304 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2305 * pins all destination css_sets, links each to its source, and append them
2306 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2307 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2308 *
2309 * This function must be called after cgroup_migrate_add_src() has been
2310 * called on each migration source css_set. After migration is performed
2311 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2312 * @preloaded_csets.
2313 */
2314static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2315 struct list_head *preloaded_csets)
2316{
2317 LIST_HEAD(csets);
f817de98 2318 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2319
2320 lockdep_assert_held(&cgroup_mutex);
2321
f8f22e53
TH
2322 /*
2323 * Except for the root, child_subsys_mask must be zero for a cgroup
2324 * with tasks so that child cgroups don't compete against tasks.
2325 */
d51f39b0 2326 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2327 dst_cgrp->child_subsys_mask)
2328 return -EBUSY;
2329
1958d2d5 2330 /* look up the dst cset for each src cset and link it to src */
f817de98 2331 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2332 struct css_set *dst_cset;
2333
f817de98
TH
2334 dst_cset = find_css_set(src_cset,
2335 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2336 if (!dst_cset)
2337 goto err;
2338
2339 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2340
2341 /*
2342 * If src cset equals dst, it's noop. Drop the src.
2343 * cgroup_migrate() will skip the cset too. Note that we
2344 * can't handle src == dst as some nodes are used by both.
2345 */
2346 if (src_cset == dst_cset) {
2347 src_cset->mg_src_cgrp = NULL;
2348 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2349 put_css_set(src_cset);
2350 put_css_set(dst_cset);
f817de98
TH
2351 continue;
2352 }
2353
1958d2d5
TH
2354 src_cset->mg_dst_cset = dst_cset;
2355
2356 if (list_empty(&dst_cset->mg_preload_node))
2357 list_add(&dst_cset->mg_preload_node, &csets);
2358 else
a25eb52e 2359 put_css_set(dst_cset);
1958d2d5
TH
2360 }
2361
f817de98 2362 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2363 return 0;
2364err:
2365 cgroup_migrate_finish(&csets);
2366 return -ENOMEM;
2367}
2368
2369/**
2370 * cgroup_migrate - migrate a process or task to a cgroup
2371 * @cgrp: the destination cgroup
2372 * @leader: the leader of the process or the task to migrate
2373 * @threadgroup: whether @leader points to the whole process or a single task
2374 *
2375 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2376 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2377 * caller is also responsible for invoking cgroup_migrate_add_src() and
2378 * cgroup_migrate_prepare_dst() on the targets before invoking this
2379 * function and following up with cgroup_migrate_finish().
2380 *
2381 * As long as a controller's ->can_attach() doesn't fail, this function is
2382 * guaranteed to succeed. This means that, excluding ->can_attach()
2383 * failure, when migrating multiple targets, the success or failure can be
2384 * decided for all targets by invoking group_migrate_prepare_dst() before
2385 * actually starting migrating.
2386 */
2387static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2388 bool threadgroup)
74a1166d 2389{
b3dc094e
TH
2390 struct cgroup_taskset tset = {
2391 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2392 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2393 .csets = &tset.src_csets,
2394 };
1c6727af 2395 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2396 struct css_set *cset, *tmp_cset;
2397 struct task_struct *task, *tmp_task;
2398 int i, ret;
74a1166d 2399
fb5d2b4c
MSB
2400 /*
2401 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2402 * already PF_EXITING could be freed from underneath us unless we
2403 * take an rcu_read_lock.
2404 */
b3dc094e 2405 down_write(&css_set_rwsem);
fb5d2b4c 2406 rcu_read_lock();
9db8de37 2407 task = leader;
74a1166d 2408 do {
9db8de37
TH
2409 /* @task either already exited or can't exit until the end */
2410 if (task->flags & PF_EXITING)
ea84753c 2411 goto next;
134d3373 2412
eaf797ab
TH
2413 /* leave @task alone if post_fork() hasn't linked it yet */
2414 if (list_empty(&task->cg_list))
ea84753c 2415 goto next;
cd3d0952 2416
b3dc094e 2417 cset = task_css_set(task);
1958d2d5 2418 if (!cset->mg_src_cgrp)
ea84753c 2419 goto next;
b3dc094e 2420
61d1d219 2421 /*
1b9aba49
TH
2422 * cgroup_taskset_first() must always return the leader.
2423 * Take care to avoid disturbing the ordering.
61d1d219 2424 */
1b9aba49
TH
2425 list_move_tail(&task->cg_list, &cset->mg_tasks);
2426 if (list_empty(&cset->mg_node))
2427 list_add_tail(&cset->mg_node, &tset.src_csets);
2428 if (list_empty(&cset->mg_dst_cset->mg_node))
2429 list_move_tail(&cset->mg_dst_cset->mg_node,
2430 &tset.dst_csets);
ea84753c 2431 next:
081aa458
LZ
2432 if (!threadgroup)
2433 break;
9db8de37 2434 } while_each_thread(leader, task);
fb5d2b4c 2435 rcu_read_unlock();
b3dc094e 2436 up_write(&css_set_rwsem);
74a1166d 2437
134d3373 2438 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2439 if (list_empty(&tset.src_csets))
2440 return 0;
134d3373 2441
1958d2d5 2442 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2443 for_each_e_css(css, i, cgrp) {
1c6727af 2444 if (css->ss->can_attach) {
9db8de37
TH
2445 ret = css->ss->can_attach(css, &tset);
2446 if (ret) {
1c6727af 2447 failed_css = css;
74a1166d
BB
2448 goto out_cancel_attach;
2449 }
2450 }
74a1166d
BB
2451 }
2452
2453 /*
1958d2d5
TH
2454 * Now that we're guaranteed success, proceed to move all tasks to
2455 * the new cgroup. There are no failure cases after here, so this
2456 * is the commit point.
74a1166d 2457 */
cb0f1fe9 2458 down_write(&css_set_rwsem);
b3dc094e
TH
2459 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2460 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2461 cgroup_task_migrate(cset->mg_src_cgrp, task,
2462 cset->mg_dst_cset);
74a1166d 2463 }
cb0f1fe9 2464 up_write(&css_set_rwsem);
74a1166d
BB
2465
2466 /*
1958d2d5
TH
2467 * Migration is committed, all target tasks are now on dst_csets.
2468 * Nothing is sensitive to fork() after this point. Notify
2469 * controllers that migration is complete.
74a1166d 2470 */
1958d2d5 2471 tset.csets = &tset.dst_csets;
74a1166d 2472
aec3dfcb 2473 for_each_e_css(css, i, cgrp)
1c6727af
TH
2474 if (css->ss->attach)
2475 css->ss->attach(css, &tset);
74a1166d 2476
9db8de37 2477 ret = 0;
b3dc094e
TH
2478 goto out_release_tset;
2479
74a1166d 2480out_cancel_attach:
aec3dfcb 2481 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2482 if (css == failed_css)
2483 break;
2484 if (css->ss->cancel_attach)
2485 css->ss->cancel_attach(css, &tset);
74a1166d 2486 }
b3dc094e
TH
2487out_release_tset:
2488 down_write(&css_set_rwsem);
2489 list_splice_init(&tset.dst_csets, &tset.src_csets);
2490 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2491 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2492 list_del_init(&cset->mg_node);
b3dc094e
TH
2493 }
2494 up_write(&css_set_rwsem);
9db8de37 2495 return ret;
74a1166d
BB
2496}
2497
1958d2d5
TH
2498/**
2499 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2500 * @dst_cgrp: the cgroup to attach to
2501 * @leader: the task or the leader of the threadgroup to be attached
2502 * @threadgroup: attach the whole threadgroup?
2503 *
1ed13287 2504 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2505 */
2506static int cgroup_attach_task(struct cgroup *dst_cgrp,
2507 struct task_struct *leader, bool threadgroup)
2508{
2509 LIST_HEAD(preloaded_csets);
2510 struct task_struct *task;
2511 int ret;
2512
2513 /* look up all src csets */
2514 down_read(&css_set_rwsem);
2515 rcu_read_lock();
2516 task = leader;
2517 do {
2518 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2519 &preloaded_csets);
2520 if (!threadgroup)
2521 break;
2522 } while_each_thread(leader, task);
2523 rcu_read_unlock();
2524 up_read(&css_set_rwsem);
2525
2526 /* prepare dst csets and commit */
2527 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2528 if (!ret)
2529 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2530
2531 cgroup_migrate_finish(&preloaded_csets);
2532 return ret;
74a1166d
BB
2533}
2534
187fe840
TH
2535static int cgroup_procs_write_permission(struct task_struct *task,
2536 struct cgroup *dst_cgrp,
2537 struct kernfs_open_file *of)
dedf22e9
TH
2538{
2539 const struct cred *cred = current_cred();
2540 const struct cred *tcred = get_task_cred(task);
2541 int ret = 0;
2542
2543 /*
2544 * even if we're attaching all tasks in the thread group, we only
2545 * need to check permissions on one of them.
2546 */
2547 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2548 !uid_eq(cred->euid, tcred->uid) &&
2549 !uid_eq(cred->euid, tcred->suid))
2550 ret = -EACCES;
2551
187fe840
TH
2552 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2553 struct super_block *sb = of->file->f_path.dentry->d_sb;
2554 struct cgroup *cgrp;
2555 struct inode *inode;
2556
2557 down_read(&css_set_rwsem);
2558 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2559 up_read(&css_set_rwsem);
2560
2561 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2562 cgrp = cgroup_parent(cgrp);
2563
2564 ret = -ENOMEM;
2565 inode = kernfs_get_inode(sb, cgrp->procs_kn);
2566 if (inode) {
2567 ret = inode_permission(inode, MAY_WRITE);
2568 iput(inode);
2569 }
2570 }
2571
dedf22e9
TH
2572 put_cred(tcred);
2573 return ret;
2574}
2575
74a1166d
BB
2576/*
2577 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2578 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2579 * cgroup_mutex and threadgroup.
bbcb81d0 2580 */
acbef755
TH
2581static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2582 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2583{
bbcb81d0 2584 struct task_struct *tsk;
e76ecaee 2585 struct cgroup *cgrp;
acbef755 2586 pid_t pid;
bbcb81d0
PM
2587 int ret;
2588
acbef755
TH
2589 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2590 return -EINVAL;
2591
e76ecaee
TH
2592 cgrp = cgroup_kn_lock_live(of->kn);
2593 if (!cgrp)
74a1166d
BB
2594 return -ENODEV;
2595
3014dde7 2596 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2597 rcu_read_lock();
bbcb81d0 2598 if (pid) {
73507f33 2599 tsk = find_task_by_vpid(pid);
74a1166d 2600 if (!tsk) {
dd4b0a46 2601 ret = -ESRCH;
3014dde7 2602 goto out_unlock_rcu;
bbcb81d0 2603 }
dedf22e9 2604 } else {
b78949eb 2605 tsk = current;
dedf22e9 2606 }
cd3d0952
TH
2607
2608 if (threadgroup)
b78949eb 2609 tsk = tsk->group_leader;
c4c27fbd
MG
2610
2611 /*
14a40ffc 2612 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2613 * trapped in a cpuset, or RT worker may be born in a cgroup
2614 * with no rt_runtime allocated. Just say no.
2615 */
14a40ffc 2616 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2617 ret = -EINVAL;
3014dde7 2618 goto out_unlock_rcu;
c4c27fbd
MG
2619 }
2620
b78949eb
MSB
2621 get_task_struct(tsk);
2622 rcu_read_unlock();
2623
187fe840 2624 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2625 if (!ret)
2626 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2627
f9f9e7b7 2628 put_task_struct(tsk);
3014dde7
TH
2629 goto out_unlock_threadgroup;
2630
2631out_unlock_rcu:
2632 rcu_read_unlock();
2633out_unlock_threadgroup:
2634 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2635 cgroup_kn_unlock(of->kn);
acbef755 2636 return ret ?: nbytes;
bbcb81d0
PM
2637}
2638
7ae1bad9
TH
2639/**
2640 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2641 * @from: attach to all cgroups of a given task
2642 * @tsk: the task to be attached
2643 */
2644int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2645{
3dd06ffa 2646 struct cgroup_root *root;
7ae1bad9
TH
2647 int retval = 0;
2648
47cfcd09 2649 mutex_lock(&cgroup_mutex);
985ed670 2650 for_each_root(root) {
96d365e0
TH
2651 struct cgroup *from_cgrp;
2652
3dd06ffa 2653 if (root == &cgrp_dfl_root)
985ed670
TH
2654 continue;
2655
96d365e0
TH
2656 down_read(&css_set_rwsem);
2657 from_cgrp = task_cgroup_from_root(from, root);
2658 up_read(&css_set_rwsem);
7ae1bad9 2659
6f4b7e63 2660 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2661 if (retval)
2662 break;
2663 }
47cfcd09 2664 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2665
2666 return retval;
2667}
2668EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2669
acbef755
TH
2670static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes, loff_t off)
74a1166d 2672{
acbef755 2673 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2674}
2675
acbef755
TH
2676static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2677 char *buf, size_t nbytes, loff_t off)
af351026 2678{
acbef755 2679 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2680}
2681
451af504
TH
2682static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2683 char *buf, size_t nbytes, loff_t off)
e788e066 2684{
e76ecaee 2685 struct cgroup *cgrp;
5f469907 2686
e76ecaee 2687 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2688
e76ecaee
TH
2689 cgrp = cgroup_kn_lock_live(of->kn);
2690 if (!cgrp)
e788e066 2691 return -ENODEV;
69e943b7 2692 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2693 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2694 sizeof(cgrp->root->release_agent_path));
69e943b7 2695 spin_unlock(&release_agent_path_lock);
e76ecaee 2696 cgroup_kn_unlock(of->kn);
451af504 2697 return nbytes;
e788e066
PM
2698}
2699
2da8ca82 2700static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2701{
2da8ca82 2702 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2703
46cfeb04 2704 spin_lock(&release_agent_path_lock);
e788e066 2705 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2706 spin_unlock(&release_agent_path_lock);
e788e066 2707 seq_putc(seq, '\n');
e788e066
PM
2708 return 0;
2709}
2710
2da8ca82 2711static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2712{
c1d5d42e 2713 seq_puts(seq, "0\n");
e788e066
PM
2714 return 0;
2715}
2716
8ab456ac 2717static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2718{
f8f22e53
TH
2719 struct cgroup_subsys *ss;
2720 bool printed = false;
2721 int ssid;
a742c59d 2722
a966a4ed
AS
2723 for_each_subsys_which(ss, ssid, &ss_mask) {
2724 if (printed)
2725 seq_putc(seq, ' ');
2726 seq_printf(seq, "%s", ss->name);
2727 printed = true;
e73d2c61 2728 }
f8f22e53
TH
2729 if (printed)
2730 seq_putc(seq, '\n');
355e0c48
PM
2731}
2732
f8f22e53
TH
2733/* show controllers which are currently attached to the default hierarchy */
2734static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2735{
f8f22e53
TH
2736 struct cgroup *cgrp = seq_css(seq)->cgroup;
2737
5533e011
TH
2738 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2739 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2740 return 0;
db3b1497
PM
2741}
2742
f8f22e53
TH
2743/* show controllers which are enabled from the parent */
2744static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2745{
f8f22e53
TH
2746 struct cgroup *cgrp = seq_css(seq)->cgroup;
2747
667c2491 2748 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2749 return 0;
ddbcc7e8
PM
2750}
2751
f8f22e53
TH
2752/* show controllers which are enabled for a given cgroup's children */
2753static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2754{
f8f22e53
TH
2755 struct cgroup *cgrp = seq_css(seq)->cgroup;
2756
667c2491 2757 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2758 return 0;
2759}
2760
2761/**
2762 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2763 * @cgrp: root of the subtree to update csses for
2764 *
2765 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2766 * css associations need to be updated accordingly. This function looks up
2767 * all css_sets which are attached to the subtree, creates the matching
2768 * updated css_sets and migrates the tasks to the new ones.
2769 */
2770static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2771{
2772 LIST_HEAD(preloaded_csets);
2773 struct cgroup_subsys_state *css;
2774 struct css_set *src_cset;
2775 int ret;
2776
f8f22e53
TH
2777 lockdep_assert_held(&cgroup_mutex);
2778
3014dde7
TH
2779 percpu_down_write(&cgroup_threadgroup_rwsem);
2780
f8f22e53
TH
2781 /* look up all csses currently attached to @cgrp's subtree */
2782 down_read(&css_set_rwsem);
2783 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2784 struct cgrp_cset_link *link;
2785
2786 /* self is not affected by child_subsys_mask change */
2787 if (css->cgroup == cgrp)
2788 continue;
2789
2790 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2791 cgroup_migrate_add_src(link->cset, cgrp,
2792 &preloaded_csets);
2793 }
2794 up_read(&css_set_rwsem);
2795
2796 /* NULL dst indicates self on default hierarchy */
2797 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2798 if (ret)
2799 goto out_finish;
2800
2801 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2802 struct task_struct *last_task = NULL, *task;
2803
2804 /* src_csets precede dst_csets, break on the first dst_cset */
2805 if (!src_cset->mg_src_cgrp)
2806 break;
2807
2808 /*
2809 * All tasks in src_cset need to be migrated to the
2810 * matching dst_cset. Empty it process by process. We
2811 * walk tasks but migrate processes. The leader might even
2812 * belong to a different cset but such src_cset would also
2813 * be among the target src_csets because the default
2814 * hierarchy enforces per-process membership.
2815 */
2816 while (true) {
2817 down_read(&css_set_rwsem);
2818 task = list_first_entry_or_null(&src_cset->tasks,
2819 struct task_struct, cg_list);
2820 if (task) {
2821 task = task->group_leader;
2822 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2823 get_task_struct(task);
2824 }
2825 up_read(&css_set_rwsem);
2826
2827 if (!task)
2828 break;
2829
2830 /* guard against possible infinite loop */
2831 if (WARN(last_task == task,
2832 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2833 goto out_finish;
2834 last_task = task;
2835
f8f22e53
TH
2836 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2837
f8f22e53
TH
2838 put_task_struct(task);
2839
2840 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2841 goto out_finish;
2842 }
2843 }
2844
2845out_finish:
2846 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2847 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2848 return ret;
2849}
2850
2851/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2852static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2853 char *buf, size_t nbytes,
2854 loff_t off)
f8f22e53 2855{
8ab456ac
AS
2856 unsigned long enable = 0, disable = 0;
2857 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2858 struct cgroup *cgrp, *child;
f8f22e53 2859 struct cgroup_subsys *ss;
451af504 2860 char *tok;
f8f22e53
TH
2861 int ssid, ret;
2862
2863 /*
d37167ab
TH
2864 * Parse input - space separated list of subsystem names prefixed
2865 * with either + or -.
f8f22e53 2866 */
451af504
TH
2867 buf = strstrip(buf);
2868 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2869 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2870
d37167ab
TH
2871 if (tok[0] == '\0')
2872 continue;
a966a4ed 2873 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2874 if (!cgroup_ssid_enabled(ssid) ||
2875 strcmp(tok + 1, ss->name))
f8f22e53
TH
2876 continue;
2877
2878 if (*tok == '+') {
7d331fa9
TH
2879 enable |= 1 << ssid;
2880 disable &= ~(1 << ssid);
f8f22e53 2881 } else if (*tok == '-') {
7d331fa9
TH
2882 disable |= 1 << ssid;
2883 enable &= ~(1 << ssid);
f8f22e53
TH
2884 } else {
2885 return -EINVAL;
2886 }
2887 break;
2888 }
2889 if (ssid == CGROUP_SUBSYS_COUNT)
2890 return -EINVAL;
2891 }
2892
a9746d8d
TH
2893 cgrp = cgroup_kn_lock_live(of->kn);
2894 if (!cgrp)
2895 return -ENODEV;
f8f22e53
TH
2896
2897 for_each_subsys(ss, ssid) {
2898 if (enable & (1 << ssid)) {
667c2491 2899 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2900 enable &= ~(1 << ssid);
2901 continue;
2902 }
2903
c29adf24
TH
2904 /* unavailable or not enabled on the parent? */
2905 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2906 (cgroup_parent(cgrp) &&
667c2491 2907 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2908 ret = -ENOENT;
2909 goto out_unlock;
2910 }
f8f22e53 2911 } else if (disable & (1 << ssid)) {
667c2491 2912 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2913 disable &= ~(1 << ssid);
2914 continue;
2915 }
2916
2917 /* a child has it enabled? */
2918 cgroup_for_each_live_child(child, cgrp) {
667c2491 2919 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2920 ret = -EBUSY;
ddab2b6e 2921 goto out_unlock;
f8f22e53
TH
2922 }
2923 }
2924 }
2925 }
2926
2927 if (!enable && !disable) {
2928 ret = 0;
ddab2b6e 2929 goto out_unlock;
f8f22e53
TH
2930 }
2931
2932 /*
667c2491 2933 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2934 * with tasks so that child cgroups don't compete against tasks.
2935 */
d51f39b0 2936 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2937 ret = -EBUSY;
2938 goto out_unlock;
2939 }
2940
2941 /*
f63070d3
TH
2942 * Update subsys masks and calculate what needs to be done. More
2943 * subsystems than specified may need to be enabled or disabled
2944 * depending on subsystem dependencies.
2945 */
755bf5ee
TH
2946 old_sc = cgrp->subtree_control;
2947 old_ss = cgrp->child_subsys_mask;
2948 new_sc = (old_sc | enable) & ~disable;
2949 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2950
755bf5ee
TH
2951 css_enable = ~old_ss & new_ss;
2952 css_disable = old_ss & ~new_ss;
f63070d3
TH
2953 enable |= css_enable;
2954 disable |= css_disable;
c29adf24 2955
db6e3053
TH
2956 /*
2957 * Because css offlining is asynchronous, userland might try to
2958 * re-enable the same controller while the previous instance is
2959 * still around. In such cases, wait till it's gone using
2960 * offline_waitq.
2961 */
a966a4ed 2962 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
2963 cgroup_for_each_live_child(child, cgrp) {
2964 DEFINE_WAIT(wait);
2965
2966 if (!cgroup_css(child, ss))
2967 continue;
2968
2969 cgroup_get(child);
2970 prepare_to_wait(&child->offline_waitq, &wait,
2971 TASK_UNINTERRUPTIBLE);
2972 cgroup_kn_unlock(of->kn);
2973 schedule();
2974 finish_wait(&child->offline_waitq, &wait);
2975 cgroup_put(child);
2976
2977 return restart_syscall();
2978 }
2979 }
2980
755bf5ee
TH
2981 cgrp->subtree_control = new_sc;
2982 cgrp->child_subsys_mask = new_ss;
2983
f63070d3
TH
2984 /*
2985 * Create new csses or make the existing ones visible. A css is
2986 * created invisible if it's being implicitly enabled through
2987 * dependency. An invisible css is made visible when the userland
2988 * explicitly enables it.
f8f22e53
TH
2989 */
2990 for_each_subsys(ss, ssid) {
2991 if (!(enable & (1 << ssid)))
2992 continue;
2993
2994 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2995 if (css_enable & (1 << ssid))
2996 ret = create_css(child, ss,
2997 cgrp->subtree_control & (1 << ssid));
2998 else
4df8dc90
TH
2999 ret = css_populate_dir(cgroup_css(child, ss),
3000 NULL);
f8f22e53
TH
3001 if (ret)
3002 goto err_undo_css;
3003 }
3004 }
3005
c29adf24
TH
3006 /*
3007 * At this point, cgroup_e_css() results reflect the new csses
3008 * making the following cgroup_update_dfl_csses() properly update
3009 * css associations of all tasks in the subtree.
3010 */
f8f22e53
TH
3011 ret = cgroup_update_dfl_csses(cgrp);
3012 if (ret)
3013 goto err_undo_css;
3014
f63070d3
TH
3015 /*
3016 * All tasks are migrated out of disabled csses. Kill or hide
3017 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3018 * disabled while other subsystems are still depending on it. The
3019 * css must not actively control resources and be in the vanilla
3020 * state if it's made visible again later. Controllers which may
3021 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3022 */
f8f22e53
TH
3023 for_each_subsys(ss, ssid) {
3024 if (!(disable & (1 << ssid)))
3025 continue;
3026
f63070d3 3027 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3028 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3029
3030 if (css_disable & (1 << ssid)) {
3031 kill_css(css);
3032 } else {
4df8dc90 3033 css_clear_dir(css, NULL);
b4536f0c
TH
3034 if (ss->css_reset)
3035 ss->css_reset(css);
3036 }
f63070d3 3037 }
f8f22e53
TH
3038 }
3039
56c807ba
TH
3040 /*
3041 * The effective csses of all the descendants (excluding @cgrp) may
3042 * have changed. Subsystems can optionally subscribe to this event
3043 * by implementing ->css_e_css_changed() which is invoked if any of
3044 * the effective csses seen from the css's cgroup may have changed.
3045 */
3046 for_each_subsys(ss, ssid) {
3047 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3048 struct cgroup_subsys_state *css;
3049
3050 if (!ss->css_e_css_changed || !this_css)
3051 continue;
3052
3053 css_for_each_descendant_pre(css, this_css)
3054 if (css != this_css)
3055 ss->css_e_css_changed(css);
3056 }
3057
f8f22e53
TH
3058 kernfs_activate(cgrp->kn);
3059 ret = 0;
3060out_unlock:
a9746d8d 3061 cgroup_kn_unlock(of->kn);
451af504 3062 return ret ?: nbytes;
f8f22e53
TH
3063
3064err_undo_css:
755bf5ee
TH
3065 cgrp->subtree_control = old_sc;
3066 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3067
3068 for_each_subsys(ss, ssid) {
3069 if (!(enable & (1 << ssid)))
3070 continue;
3071
3072 cgroup_for_each_live_child(child, cgrp) {
3073 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3074
3075 if (!css)
3076 continue;
3077
3078 if (css_enable & (1 << ssid))
f8f22e53 3079 kill_css(css);
f63070d3 3080 else
4df8dc90 3081 css_clear_dir(css, NULL);
f8f22e53
TH
3082 }
3083 }
3084 goto out_unlock;
3085}
3086
4a07c222 3087static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3088{
4a07c222
TH
3089 seq_printf(seq, "populated %d\n",
3090 (bool)seq_css(seq)->cgroup->populated_cnt);
842b597e
TH
3091 return 0;
3092}
3093
2bd59d48
TH
3094static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3095 size_t nbytes, loff_t off)
355e0c48 3096{
2bd59d48
TH
3097 struct cgroup *cgrp = of->kn->parent->priv;
3098 struct cftype *cft = of->kn->priv;
3099 struct cgroup_subsys_state *css;
a742c59d 3100 int ret;
355e0c48 3101
b4168640
TH
3102 if (cft->write)
3103 return cft->write(of, buf, nbytes, off);
3104
2bd59d48
TH
3105 /*
3106 * kernfs guarantees that a file isn't deleted with operations in
3107 * flight, which means that the matching css is and stays alive and
3108 * doesn't need to be pinned. The RCU locking is not necessary
3109 * either. It's just for the convenience of using cgroup_css().
3110 */
3111 rcu_read_lock();
3112 css = cgroup_css(cgrp, cft->ss);
3113 rcu_read_unlock();
a742c59d 3114
451af504 3115 if (cft->write_u64) {
a742c59d
TH
3116 unsigned long long v;
3117 ret = kstrtoull(buf, 0, &v);
3118 if (!ret)
3119 ret = cft->write_u64(css, cft, v);
3120 } else if (cft->write_s64) {
3121 long long v;
3122 ret = kstrtoll(buf, 0, &v);
3123 if (!ret)
3124 ret = cft->write_s64(css, cft, v);
e73d2c61 3125 } else {
a742c59d 3126 ret = -EINVAL;
e73d2c61 3127 }
2bd59d48 3128
a742c59d 3129 return ret ?: nbytes;
355e0c48
PM
3130}
3131
6612f05b 3132static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3133{
2bd59d48 3134 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3135}
3136
6612f05b 3137static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3138{
2bd59d48 3139 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3140}
3141
6612f05b 3142static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3143{
2bd59d48 3144 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3145}
3146
91796569 3147static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3148{
7da11279
TH
3149 struct cftype *cft = seq_cft(m);
3150 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3151
2da8ca82
TH
3152 if (cft->seq_show)
3153 return cft->seq_show(m, arg);
e73d2c61 3154
f4c753b7 3155 if (cft->read_u64)
896f5199
TH
3156 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3157 else if (cft->read_s64)
3158 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3159 else
3160 return -EINVAL;
3161 return 0;
91796569
PM
3162}
3163
2bd59d48
TH
3164static struct kernfs_ops cgroup_kf_single_ops = {
3165 .atomic_write_len = PAGE_SIZE,
3166 .write = cgroup_file_write,
3167 .seq_show = cgroup_seqfile_show,
91796569
PM
3168};
3169
2bd59d48
TH
3170static struct kernfs_ops cgroup_kf_ops = {
3171 .atomic_write_len = PAGE_SIZE,
3172 .write = cgroup_file_write,
3173 .seq_start = cgroup_seqfile_start,
3174 .seq_next = cgroup_seqfile_next,
3175 .seq_stop = cgroup_seqfile_stop,
3176 .seq_show = cgroup_seqfile_show,
3177};
ddbcc7e8
PM
3178
3179/*
3180 * cgroup_rename - Only allow simple rename of directories in place.
3181 */
2bd59d48
TH
3182static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3183 const char *new_name_str)
ddbcc7e8 3184{
2bd59d48 3185 struct cgroup *cgrp = kn->priv;
65dff759 3186 int ret;
65dff759 3187
2bd59d48 3188 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3189 return -ENOTDIR;
2bd59d48 3190 if (kn->parent != new_parent)
ddbcc7e8 3191 return -EIO;
65dff759 3192
6db8e85c
TH
3193 /*
3194 * This isn't a proper migration and its usefulness is very
aa6ec29b 3195 * limited. Disallow on the default hierarchy.
6db8e85c 3196 */
aa6ec29b 3197 if (cgroup_on_dfl(cgrp))
6db8e85c 3198 return -EPERM;
099fca32 3199
e1b2dc17 3200 /*
8353da1f 3201 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3202 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3203 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3204 */
3205 kernfs_break_active_protection(new_parent);
3206 kernfs_break_active_protection(kn);
099fca32 3207
2bd59d48 3208 mutex_lock(&cgroup_mutex);
099fca32 3209
2bd59d48 3210 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3211
2bd59d48 3212 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3213
3214 kernfs_unbreak_active_protection(kn);
3215 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3216 return ret;
099fca32
LZ
3217}
3218
49957f8e
TH
3219/* set uid and gid of cgroup dirs and files to that of the creator */
3220static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3221{
3222 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3223 .ia_uid = current_fsuid(),
3224 .ia_gid = current_fsgid(), };
3225
3226 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3227 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3228 return 0;
3229
3230 return kernfs_setattr(kn, &iattr);
3231}
3232
4df8dc90
TH
3233static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3234 struct cftype *cft)
ddbcc7e8 3235{
8d7e6fb0 3236 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3237 struct kernfs_node *kn;
3238 struct lock_class_key *key = NULL;
49957f8e 3239 int ret;
05ef1d7c 3240
2bd59d48
TH
3241#ifdef CONFIG_DEBUG_LOCK_ALLOC
3242 key = &cft->lockdep_key;
3243#endif
3244 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3245 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3246 NULL, key);
49957f8e
TH
3247 if (IS_ERR(kn))
3248 return PTR_ERR(kn);
3249
3250 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3251 if (ret) {
49957f8e 3252 kernfs_remove(kn);
f8f22e53
TH
3253 return ret;
3254 }
3255
187fe840
TH
3256 if (cft->write == cgroup_procs_write)
3257 cgrp->procs_kn = kn;
4a07c222
TH
3258 else if (cft->seq_show == cgroup_events_show)
3259 cgrp->events_kn = kn;
f8f22e53 3260 return 0;
ddbcc7e8
PM
3261}
3262
b1f28d31
TH
3263/**
3264 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3265 * @css: the target css
3266 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3267 * @cfts: array of cftypes to be added
3268 * @is_add: whether to add or remove
3269 *
3270 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3271 * For removals, this function never fails.
b1f28d31 3272 */
4df8dc90
TH
3273static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3274 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3275 bool is_add)
ddbcc7e8 3276{
6732ed85 3277 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3278 int ret;
3279
01f6474c 3280 lockdep_assert_held(&cgroup_mutex);
db0416b6 3281
6732ed85
TH
3282restart:
3283 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3284 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3285 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3286 continue;
05ebb6e6 3287 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3288 continue;
d51f39b0 3289 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3290 continue;
d51f39b0 3291 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3292 continue;
3293
2739d3cc 3294 if (is_add) {
4df8dc90 3295 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3296 if (ret) {
ed3d261b
JP
3297 pr_warn("%s: failed to add %s, err=%d\n",
3298 __func__, cft->name, ret);
6732ed85
TH
3299 cft_end = cft;
3300 is_add = false;
3301 goto restart;
b1f28d31 3302 }
2739d3cc
LZ
3303 } else {
3304 cgroup_rm_file(cgrp, cft);
db0416b6 3305 }
ddbcc7e8 3306 }
b1f28d31 3307 return 0;
ddbcc7e8
PM
3308}
3309
21a2d343 3310static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3311{
3312 LIST_HEAD(pending);
2bb566cb 3313 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3314 struct cgroup *root = &ss->root->cgrp;
492eb21b 3315 struct cgroup_subsys_state *css;
9ccece80 3316 int ret = 0;
8e3f6541 3317
01f6474c 3318 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3319
e8c82d20 3320 /* add/rm files for all cgroups created before */
ca8bdcaf 3321 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3322 struct cgroup *cgrp = css->cgroup;
3323
e8c82d20
LZ
3324 if (cgroup_is_dead(cgrp))
3325 continue;
3326
4df8dc90 3327 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3328 if (ret)
3329 break;
8e3f6541 3330 }
21a2d343
TH
3331
3332 if (is_add && !ret)
3333 kernfs_activate(root->kn);
9ccece80 3334 return ret;
8e3f6541
TH
3335}
3336
2da440a2 3337static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3338{
2bb566cb 3339 struct cftype *cft;
8e3f6541 3340
2bd59d48
TH
3341 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3342 /* free copy for custom atomic_write_len, see init_cftypes() */
3343 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3344 kfree(cft->kf_ops);
3345 cft->kf_ops = NULL;
2da440a2 3346 cft->ss = NULL;
a8ddc821
TH
3347
3348 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3349 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3350 }
2da440a2
TH
3351}
3352
2bd59d48 3353static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3354{
3355 struct cftype *cft;
3356
2bd59d48
TH
3357 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3358 struct kernfs_ops *kf_ops;
3359
0adb0704
TH
3360 WARN_ON(cft->ss || cft->kf_ops);
3361
2bd59d48
TH
3362 if (cft->seq_start)
3363 kf_ops = &cgroup_kf_ops;
3364 else
3365 kf_ops = &cgroup_kf_single_ops;
3366
3367 /*
3368 * Ugh... if @cft wants a custom max_write_len, we need to
3369 * make a copy of kf_ops to set its atomic_write_len.
3370 */
3371 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3372 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3373 if (!kf_ops) {
3374 cgroup_exit_cftypes(cfts);
3375 return -ENOMEM;
3376 }
3377 kf_ops->atomic_write_len = cft->max_write_len;
3378 }
8e3f6541 3379
2bd59d48 3380 cft->kf_ops = kf_ops;
2bb566cb 3381 cft->ss = ss;
2bd59d48 3382 }
2bb566cb 3383
2bd59d48 3384 return 0;
2da440a2
TH
3385}
3386
21a2d343
TH
3387static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3388{
01f6474c 3389 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3390
3391 if (!cfts || !cfts[0].ss)
3392 return -ENOENT;
3393
3394 list_del(&cfts->node);
3395 cgroup_apply_cftypes(cfts, false);
3396 cgroup_exit_cftypes(cfts);
3397 return 0;
8e3f6541 3398}
8e3f6541 3399
79578621
TH
3400/**
3401 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3402 * @cfts: zero-length name terminated array of cftypes
3403 *
2bb566cb
TH
3404 * Unregister @cfts. Files described by @cfts are removed from all
3405 * existing cgroups and all future cgroups won't have them either. This
3406 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3407 *
3408 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3409 * registered.
79578621 3410 */
2bb566cb 3411int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3412{
21a2d343 3413 int ret;
79578621 3414
01f6474c 3415 mutex_lock(&cgroup_mutex);
21a2d343 3416 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3417 mutex_unlock(&cgroup_mutex);
21a2d343 3418 return ret;
80b13586
TH
3419}
3420
8e3f6541
TH
3421/**
3422 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3423 * @ss: target cgroup subsystem
3424 * @cfts: zero-length name terminated array of cftypes
3425 *
3426 * Register @cfts to @ss. Files described by @cfts are created for all
3427 * existing cgroups to which @ss is attached and all future cgroups will
3428 * have them too. This function can be called anytime whether @ss is
3429 * attached or not.
3430 *
3431 * Returns 0 on successful registration, -errno on failure. Note that this
3432 * function currently returns 0 as long as @cfts registration is successful
3433 * even if some file creation attempts on existing cgroups fail.
3434 */
2cf669a5 3435static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3436{
9ccece80 3437 int ret;
8e3f6541 3438
fc5ed1e9 3439 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3440 return 0;
3441
dc5736ed
LZ
3442 if (!cfts || cfts[0].name[0] == '\0')
3443 return 0;
2bb566cb 3444
2bd59d48
TH
3445 ret = cgroup_init_cftypes(ss, cfts);
3446 if (ret)
3447 return ret;
79578621 3448
01f6474c 3449 mutex_lock(&cgroup_mutex);
21a2d343 3450
0adb0704 3451 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3452 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3453 if (ret)
21a2d343 3454 cgroup_rm_cftypes_locked(cfts);
79578621 3455
01f6474c 3456 mutex_unlock(&cgroup_mutex);
9ccece80 3457 return ret;
79578621
TH
3458}
3459
a8ddc821
TH
3460/**
3461 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3462 * @ss: target cgroup subsystem
3463 * @cfts: zero-length name terminated array of cftypes
3464 *
3465 * Similar to cgroup_add_cftypes() but the added files are only used for
3466 * the default hierarchy.
3467 */
3468int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3469{
3470 struct cftype *cft;
3471
3472 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3473 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3474 return cgroup_add_cftypes(ss, cfts);
3475}
3476
3477/**
3478 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3479 * @ss: target cgroup subsystem
3480 * @cfts: zero-length name terminated array of cftypes
3481 *
3482 * Similar to cgroup_add_cftypes() but the added files are only used for
3483 * the legacy hierarchies.
3484 */
2cf669a5
TH
3485int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3486{
a8ddc821
TH
3487 struct cftype *cft;
3488
fa8137be
VG
3489 /*
3490 * If legacy_flies_on_dfl, we want to show the legacy files on the
3491 * dfl hierarchy but iff the target subsystem hasn't been updated
3492 * for the dfl hierarchy yet.
3493 */
3494 if (!cgroup_legacy_files_on_dfl ||
3495 ss->dfl_cftypes != ss->legacy_cftypes) {
3496 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3497 cft->flags |= __CFTYPE_NOT_ON_DFL;
3498 }
3499
2cf669a5
TH
3500 return cgroup_add_cftypes(ss, cfts);
3501}
3502
a043e3b2
LZ
3503/**
3504 * cgroup_task_count - count the number of tasks in a cgroup.
3505 * @cgrp: the cgroup in question
3506 *
3507 * Return the number of tasks in the cgroup.
3508 */
07bc356e 3509static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3510{
3511 int count = 0;
69d0206c 3512 struct cgrp_cset_link *link;
817929ec 3513
96d365e0 3514 down_read(&css_set_rwsem);
69d0206c
TH
3515 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3516 count += atomic_read(&link->cset->refcount);
96d365e0 3517 up_read(&css_set_rwsem);
bbcb81d0
PM
3518 return count;
3519}
3520
53fa5261 3521/**
492eb21b 3522 * css_next_child - find the next child of a given css
c2931b70
TH
3523 * @pos: the current position (%NULL to initiate traversal)
3524 * @parent: css whose children to walk
53fa5261 3525 *
c2931b70 3526 * This function returns the next child of @parent and should be called
87fb54f1 3527 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3528 * that @parent and @pos are accessible. The next sibling is guaranteed to
3529 * be returned regardless of their states.
3530 *
3531 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3532 * css which finished ->css_online() is guaranteed to be visible in the
3533 * future iterations and will stay visible until the last reference is put.
3534 * A css which hasn't finished ->css_online() or already finished
3535 * ->css_offline() may show up during traversal. It's each subsystem's
3536 * responsibility to synchronize against on/offlining.
53fa5261 3537 */
c2931b70
TH
3538struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3539 struct cgroup_subsys_state *parent)
53fa5261 3540{
c2931b70 3541 struct cgroup_subsys_state *next;
53fa5261 3542
8353da1f 3543 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3544
3545 /*
de3f0341
TH
3546 * @pos could already have been unlinked from the sibling list.
3547 * Once a cgroup is removed, its ->sibling.next is no longer
3548 * updated when its next sibling changes. CSS_RELEASED is set when
3549 * @pos is taken off list, at which time its next pointer is valid,
3550 * and, as releases are serialized, the one pointed to by the next
3551 * pointer is guaranteed to not have started release yet. This
3552 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3553 * critical section, the one pointed to by its next pointer is
3554 * guaranteed to not have finished its RCU grace period even if we
3555 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3556 *
de3f0341
TH
3557 * If @pos has CSS_RELEASED set, its next pointer can't be
3558 * dereferenced; however, as each css is given a monotonically
3559 * increasing unique serial number and always appended to the
3560 * sibling list, the next one can be found by walking the parent's
3561 * children until the first css with higher serial number than
3562 * @pos's. While this path can be slower, it happens iff iteration
3563 * races against release and the race window is very small.
53fa5261 3564 */
3b287a50 3565 if (!pos) {
c2931b70
TH
3566 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3567 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3568 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3569 } else {
c2931b70 3570 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3571 if (next->serial_nr > pos->serial_nr)
3572 break;
53fa5261
TH
3573 }
3574
3b281afb
TH
3575 /*
3576 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3577 * the next sibling.
3b281afb 3578 */
c2931b70
TH
3579 if (&next->sibling != &parent->children)
3580 return next;
3b281afb 3581 return NULL;
53fa5261 3582}
53fa5261 3583
574bd9f7 3584/**
492eb21b 3585 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3586 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3587 * @root: css whose descendants to walk
574bd9f7 3588 *
492eb21b 3589 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3590 * to visit for pre-order traversal of @root's descendants. @root is
3591 * included in the iteration and the first node to be visited.
75501a6d 3592 *
87fb54f1
TH
3593 * While this function requires cgroup_mutex or RCU read locking, it
3594 * doesn't require the whole traversal to be contained in a single critical
3595 * section. This function will return the correct next descendant as long
3596 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3597 *
3598 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3599 * css which finished ->css_online() is guaranteed to be visible in the
3600 * future iterations and will stay visible until the last reference is put.
3601 * A css which hasn't finished ->css_online() or already finished
3602 * ->css_offline() may show up during traversal. It's each subsystem's
3603 * responsibility to synchronize against on/offlining.
574bd9f7 3604 */
492eb21b
TH
3605struct cgroup_subsys_state *
3606css_next_descendant_pre(struct cgroup_subsys_state *pos,
3607 struct cgroup_subsys_state *root)
574bd9f7 3608{
492eb21b 3609 struct cgroup_subsys_state *next;
574bd9f7 3610
8353da1f 3611 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3612
bd8815a6 3613 /* if first iteration, visit @root */
7805d000 3614 if (!pos)
bd8815a6 3615 return root;
574bd9f7
TH
3616
3617 /* visit the first child if exists */
492eb21b 3618 next = css_next_child(NULL, pos);
574bd9f7
TH
3619 if (next)
3620 return next;
3621
3622 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3623 while (pos != root) {
5c9d535b 3624 next = css_next_child(pos, pos->parent);
75501a6d 3625 if (next)
574bd9f7 3626 return next;
5c9d535b 3627 pos = pos->parent;
7805d000 3628 }
574bd9f7
TH
3629
3630 return NULL;
3631}
574bd9f7 3632
12a9d2fe 3633/**
492eb21b
TH
3634 * css_rightmost_descendant - return the rightmost descendant of a css
3635 * @pos: css of interest
12a9d2fe 3636 *
492eb21b
TH
3637 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3638 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3639 * subtree of @pos.
75501a6d 3640 *
87fb54f1
TH
3641 * While this function requires cgroup_mutex or RCU read locking, it
3642 * doesn't require the whole traversal to be contained in a single critical
3643 * section. This function will return the correct rightmost descendant as
3644 * long as @pos is accessible.
12a9d2fe 3645 */
492eb21b
TH
3646struct cgroup_subsys_state *
3647css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3648{
492eb21b 3649 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3650
8353da1f 3651 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3652
3653 do {
3654 last = pos;
3655 /* ->prev isn't RCU safe, walk ->next till the end */
3656 pos = NULL;
492eb21b 3657 css_for_each_child(tmp, last)
12a9d2fe
TH
3658 pos = tmp;
3659 } while (pos);
3660
3661 return last;
3662}
12a9d2fe 3663
492eb21b
TH
3664static struct cgroup_subsys_state *
3665css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3666{
492eb21b 3667 struct cgroup_subsys_state *last;
574bd9f7
TH
3668
3669 do {
3670 last = pos;
492eb21b 3671 pos = css_next_child(NULL, pos);
574bd9f7
TH
3672 } while (pos);
3673
3674 return last;
3675}
3676
3677/**
492eb21b 3678 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3679 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3680 * @root: css whose descendants to walk
574bd9f7 3681 *
492eb21b 3682 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3683 * to visit for post-order traversal of @root's descendants. @root is
3684 * included in the iteration and the last node to be visited.
75501a6d 3685 *
87fb54f1
TH
3686 * While this function requires cgroup_mutex or RCU read locking, it
3687 * doesn't require the whole traversal to be contained in a single critical
3688 * section. This function will return the correct next descendant as long
3689 * as both @pos and @cgroup are accessible and @pos is a descendant of
3690 * @cgroup.
c2931b70
TH
3691 *
3692 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3693 * css which finished ->css_online() is guaranteed to be visible in the
3694 * future iterations and will stay visible until the last reference is put.
3695 * A css which hasn't finished ->css_online() or already finished
3696 * ->css_offline() may show up during traversal. It's each subsystem's
3697 * responsibility to synchronize against on/offlining.
574bd9f7 3698 */
492eb21b
TH
3699struct cgroup_subsys_state *
3700css_next_descendant_post(struct cgroup_subsys_state *pos,
3701 struct cgroup_subsys_state *root)
574bd9f7 3702{
492eb21b 3703 struct cgroup_subsys_state *next;
574bd9f7 3704
8353da1f 3705 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3706
58b79a91
TH
3707 /* if first iteration, visit leftmost descendant which may be @root */
3708 if (!pos)
3709 return css_leftmost_descendant(root);
574bd9f7 3710
bd8815a6
TH
3711 /* if we visited @root, we're done */
3712 if (pos == root)
3713 return NULL;
3714
574bd9f7 3715 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3716 next = css_next_child(pos, pos->parent);
75501a6d 3717 if (next)
492eb21b 3718 return css_leftmost_descendant(next);
574bd9f7
TH
3719
3720 /* no sibling left, visit parent */
5c9d535b 3721 return pos->parent;
574bd9f7 3722}
574bd9f7 3723
f3d46500
TH
3724/**
3725 * css_has_online_children - does a css have online children
3726 * @css: the target css
3727 *
3728 * Returns %true if @css has any online children; otherwise, %false. This
3729 * function can be called from any context but the caller is responsible
3730 * for synchronizing against on/offlining as necessary.
3731 */
3732bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3733{
f3d46500
TH
3734 struct cgroup_subsys_state *child;
3735 bool ret = false;
cbc125ef
TH
3736
3737 rcu_read_lock();
f3d46500 3738 css_for_each_child(child, css) {
99bae5f9 3739 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3740 ret = true;
3741 break;
cbc125ef
TH
3742 }
3743 }
3744 rcu_read_unlock();
f3d46500 3745 return ret;
574bd9f7 3746}
574bd9f7 3747
0942eeee 3748/**
72ec7029 3749 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3750 * @it: the iterator to advance
3751 *
3752 * Advance @it to the next css_set to walk.
d515876e 3753 */
72ec7029 3754static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3755{
0f0a2b4f 3756 struct list_head *l = it->cset_pos;
d515876e
TH
3757 struct cgrp_cset_link *link;
3758 struct css_set *cset;
3759
3760 /* Advance to the next non-empty css_set */
3761 do {
3762 l = l->next;
0f0a2b4f
TH
3763 if (l == it->cset_head) {
3764 it->cset_pos = NULL;
d515876e
TH
3765 return;
3766 }
3ebb2b6e
TH
3767
3768 if (it->ss) {
3769 cset = container_of(l, struct css_set,
3770 e_cset_node[it->ss->id]);
3771 } else {
3772 link = list_entry(l, struct cgrp_cset_link, cset_link);
3773 cset = link->cset;
3774 }
c7561128
TH
3775 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3776
0f0a2b4f 3777 it->cset_pos = l;
c7561128
TH
3778
3779 if (!list_empty(&cset->tasks))
0f0a2b4f 3780 it->task_pos = cset->tasks.next;
c7561128 3781 else
0f0a2b4f
TH
3782 it->task_pos = cset->mg_tasks.next;
3783
3784 it->tasks_head = &cset->tasks;
3785 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3786}
3787
0942eeee 3788/**
72ec7029
TH
3789 * css_task_iter_start - initiate task iteration
3790 * @css: the css to walk tasks of
0942eeee
TH
3791 * @it: the task iterator to use
3792 *
72ec7029
TH
3793 * Initiate iteration through the tasks of @css. The caller can call
3794 * css_task_iter_next() to walk through the tasks until the function
3795 * returns NULL. On completion of iteration, css_task_iter_end() must be
3796 * called.
0942eeee
TH
3797 *
3798 * Note that this function acquires a lock which is released when the
3799 * iteration finishes. The caller can't sleep while iteration is in
3800 * progress.
3801 */
72ec7029
TH
3802void css_task_iter_start(struct cgroup_subsys_state *css,
3803 struct css_task_iter *it)
96d365e0 3804 __acquires(css_set_rwsem)
817929ec 3805{
56fde9e0
TH
3806 /* no one should try to iterate before mounting cgroups */
3807 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3808
96d365e0 3809 down_read(&css_set_rwsem);
c59cd3d8 3810
3ebb2b6e
TH
3811 it->ss = css->ss;
3812
3813 if (it->ss)
3814 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3815 else
3816 it->cset_pos = &css->cgroup->cset_links;
3817
0f0a2b4f 3818 it->cset_head = it->cset_pos;
c59cd3d8 3819
72ec7029 3820 css_advance_task_iter(it);
817929ec
PM
3821}
3822
0942eeee 3823/**
72ec7029 3824 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3825 * @it: the task iterator being iterated
3826 *
3827 * The "next" function for task iteration. @it should have been
72ec7029
TH
3828 * initialized via css_task_iter_start(). Returns NULL when the iteration
3829 * reaches the end.
0942eeee 3830 */
72ec7029 3831struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3832{
3833 struct task_struct *res;
0f0a2b4f 3834 struct list_head *l = it->task_pos;
817929ec
PM
3835
3836 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3837 if (!it->cset_pos)
817929ec
PM
3838 return NULL;
3839 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3840
3841 /*
3842 * Advance iterator to find next entry. cset->tasks is consumed
3843 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3844 * next cset.
3845 */
817929ec 3846 l = l->next;
c7561128 3847
0f0a2b4f
TH
3848 if (l == it->tasks_head)
3849 l = it->mg_tasks_head->next;
c7561128 3850
0f0a2b4f 3851 if (l == it->mg_tasks_head)
72ec7029 3852 css_advance_task_iter(it);
c7561128 3853 else
0f0a2b4f 3854 it->task_pos = l;
c7561128 3855
817929ec
PM
3856 return res;
3857}
3858
0942eeee 3859/**
72ec7029 3860 * css_task_iter_end - finish task iteration
0942eeee
TH
3861 * @it: the task iterator to finish
3862 *
72ec7029 3863 * Finish task iteration started by css_task_iter_start().
0942eeee 3864 */
72ec7029 3865void css_task_iter_end(struct css_task_iter *it)
96d365e0 3866 __releases(css_set_rwsem)
31a7df01 3867{
96d365e0 3868 up_read(&css_set_rwsem);
31a7df01
CW
3869}
3870
3871/**
8cc99345
TH
3872 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3873 * @to: cgroup to which the tasks will be moved
3874 * @from: cgroup in which the tasks currently reside
31a7df01 3875 *
eaf797ab
TH
3876 * Locking rules between cgroup_post_fork() and the migration path
3877 * guarantee that, if a task is forking while being migrated, the new child
3878 * is guaranteed to be either visible in the source cgroup after the
3879 * parent's migration is complete or put into the target cgroup. No task
3880 * can slip out of migration through forking.
31a7df01 3881 */
8cc99345 3882int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3883{
952aaa12
TH
3884 LIST_HEAD(preloaded_csets);
3885 struct cgrp_cset_link *link;
72ec7029 3886 struct css_task_iter it;
e406d1cf 3887 struct task_struct *task;
952aaa12 3888 int ret;
31a7df01 3889
952aaa12 3890 mutex_lock(&cgroup_mutex);
31a7df01 3891
952aaa12
TH
3892 /* all tasks in @from are being moved, all csets are source */
3893 down_read(&css_set_rwsem);
3894 list_for_each_entry(link, &from->cset_links, cset_link)
3895 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3896 up_read(&css_set_rwsem);
31a7df01 3897
952aaa12
TH
3898 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3899 if (ret)
3900 goto out_err;
8cc99345 3901
952aaa12
TH
3902 /*
3903 * Migrate tasks one-by-one until @form is empty. This fails iff
3904 * ->can_attach() fails.
3905 */
e406d1cf 3906 do {
9d800df1 3907 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3908 task = css_task_iter_next(&it);
3909 if (task)
3910 get_task_struct(task);
3911 css_task_iter_end(&it);
3912
3913 if (task) {
952aaa12 3914 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3915 put_task_struct(task);
3916 }
3917 } while (task && !ret);
952aaa12
TH
3918out_err:
3919 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3920 mutex_unlock(&cgroup_mutex);
e406d1cf 3921 return ret;
8cc99345
TH
3922}
3923
bbcb81d0 3924/*
102a775e 3925 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3926 *
3927 * Reading this file can return large amounts of data if a cgroup has
3928 * *lots* of attached tasks. So it may need several calls to read(),
3929 * but we cannot guarantee that the information we produce is correct
3930 * unless we produce it entirely atomically.
3931 *
bbcb81d0 3932 */
bbcb81d0 3933
24528255
LZ
3934/* which pidlist file are we talking about? */
3935enum cgroup_filetype {
3936 CGROUP_FILE_PROCS,
3937 CGROUP_FILE_TASKS,
3938};
3939
3940/*
3941 * A pidlist is a list of pids that virtually represents the contents of one
3942 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3943 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3944 * to the cgroup.
3945 */
3946struct cgroup_pidlist {
3947 /*
3948 * used to find which pidlist is wanted. doesn't change as long as
3949 * this particular list stays in the list.
3950 */
3951 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3952 /* array of xids */
3953 pid_t *list;
3954 /* how many elements the above list has */
3955 int length;
24528255
LZ
3956 /* each of these stored in a list by its cgroup */
3957 struct list_head links;
3958 /* pointer to the cgroup we belong to, for list removal purposes */
3959 struct cgroup *owner;
b1a21367
TH
3960 /* for delayed destruction */
3961 struct delayed_work destroy_dwork;
24528255
LZ
3962};
3963
d1d9fd33
BB
3964/*
3965 * The following two functions "fix" the issue where there are more pids
3966 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3967 * TODO: replace with a kernel-wide solution to this problem
3968 */
3969#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3970static void *pidlist_allocate(int count)
3971{
3972 if (PIDLIST_TOO_LARGE(count))
3973 return vmalloc(count * sizeof(pid_t));
3974 else
3975 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3976}
b1a21367 3977
d1d9fd33
BB
3978static void pidlist_free(void *p)
3979{
58794514 3980 kvfree(p);
d1d9fd33 3981}
d1d9fd33 3982
b1a21367
TH
3983/*
3984 * Used to destroy all pidlists lingering waiting for destroy timer. None
3985 * should be left afterwards.
3986 */
3987static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3988{
3989 struct cgroup_pidlist *l, *tmp_l;
3990
3991 mutex_lock(&cgrp->pidlist_mutex);
3992 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3993 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3994 mutex_unlock(&cgrp->pidlist_mutex);
3995
3996 flush_workqueue(cgroup_pidlist_destroy_wq);
3997 BUG_ON(!list_empty(&cgrp->pidlists));
3998}
3999
4000static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4001{
4002 struct delayed_work *dwork = to_delayed_work(work);
4003 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4004 destroy_dwork);
4005 struct cgroup_pidlist *tofree = NULL;
4006
4007 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4008
4009 /*
04502365
TH
4010 * Destroy iff we didn't get queued again. The state won't change
4011 * as destroy_dwork can only be queued while locked.
b1a21367 4012 */
04502365 4013 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4014 list_del(&l->links);
4015 pidlist_free(l->list);
4016 put_pid_ns(l->key.ns);
4017 tofree = l;
4018 }
4019
b1a21367
TH
4020 mutex_unlock(&l->owner->pidlist_mutex);
4021 kfree(tofree);
4022}
4023
bbcb81d0 4024/*
102a775e 4025 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4026 * Returns the number of unique elements.
bbcb81d0 4027 */
6ee211ad 4028static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4029{
102a775e 4030 int src, dest = 1;
102a775e
BB
4031
4032 /*
4033 * we presume the 0th element is unique, so i starts at 1. trivial
4034 * edge cases first; no work needs to be done for either
4035 */
4036 if (length == 0 || length == 1)
4037 return length;
4038 /* src and dest walk down the list; dest counts unique elements */
4039 for (src = 1; src < length; src++) {
4040 /* find next unique element */
4041 while (list[src] == list[src-1]) {
4042 src++;
4043 if (src == length)
4044 goto after;
4045 }
4046 /* dest always points to where the next unique element goes */
4047 list[dest] = list[src];
4048 dest++;
4049 }
4050after:
102a775e
BB
4051 return dest;
4052}
4053
afb2bc14
TH
4054/*
4055 * The two pid files - task and cgroup.procs - guaranteed that the result
4056 * is sorted, which forced this whole pidlist fiasco. As pid order is
4057 * different per namespace, each namespace needs differently sorted list,
4058 * making it impossible to use, for example, single rbtree of member tasks
4059 * sorted by task pointer. As pidlists can be fairly large, allocating one
4060 * per open file is dangerous, so cgroup had to implement shared pool of
4061 * pidlists keyed by cgroup and namespace.
4062 *
4063 * All this extra complexity was caused by the original implementation
4064 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4065 * want to do away with it. Explicitly scramble sort order if on the
4066 * default hierarchy so that no such expectation exists in the new
4067 * interface.
afb2bc14
TH
4068 *
4069 * Scrambling is done by swapping every two consecutive bits, which is
4070 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4071 */
4072static pid_t pid_fry(pid_t pid)
4073{
4074 unsigned a = pid & 0x55555555;
4075 unsigned b = pid & 0xAAAAAAAA;
4076
4077 return (a << 1) | (b >> 1);
4078}
4079
4080static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4081{
aa6ec29b 4082 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4083 return pid_fry(pid);
4084 else
4085 return pid;
4086}
4087
102a775e
BB
4088static int cmppid(const void *a, const void *b)
4089{
4090 return *(pid_t *)a - *(pid_t *)b;
4091}
4092
afb2bc14
TH
4093static int fried_cmppid(const void *a, const void *b)
4094{
4095 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4096}
4097
e6b81710
TH
4098static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4099 enum cgroup_filetype type)
4100{
4101 struct cgroup_pidlist *l;
4102 /* don't need task_nsproxy() if we're looking at ourself */
4103 struct pid_namespace *ns = task_active_pid_ns(current);
4104
4105 lockdep_assert_held(&cgrp->pidlist_mutex);
4106
4107 list_for_each_entry(l, &cgrp->pidlists, links)
4108 if (l->key.type == type && l->key.ns == ns)
4109 return l;
4110 return NULL;
4111}
4112
72a8cb30
BB
4113/*
4114 * find the appropriate pidlist for our purpose (given procs vs tasks)
4115 * returns with the lock on that pidlist already held, and takes care
4116 * of the use count, or returns NULL with no locks held if we're out of
4117 * memory.
4118 */
e6b81710
TH
4119static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4120 enum cgroup_filetype type)
72a8cb30
BB
4121{
4122 struct cgroup_pidlist *l;
b70cc5fd 4123
e6b81710
TH
4124 lockdep_assert_held(&cgrp->pidlist_mutex);
4125
4126 l = cgroup_pidlist_find(cgrp, type);
4127 if (l)
4128 return l;
4129
72a8cb30 4130 /* entry not found; create a new one */
f4f4be2b 4131 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4132 if (!l)
72a8cb30 4133 return l;
e6b81710 4134
b1a21367 4135 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4136 l->key.type = type;
e6b81710
TH
4137 /* don't need task_nsproxy() if we're looking at ourself */
4138 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4139 l->owner = cgrp;
4140 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4141 return l;
4142}
4143
102a775e
BB
4144/*
4145 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4146 */
72a8cb30
BB
4147static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4148 struct cgroup_pidlist **lp)
102a775e
BB
4149{
4150 pid_t *array;
4151 int length;
4152 int pid, n = 0; /* used for populating the array */
72ec7029 4153 struct css_task_iter it;
817929ec 4154 struct task_struct *tsk;
102a775e
BB
4155 struct cgroup_pidlist *l;
4156
4bac00d1
TH
4157 lockdep_assert_held(&cgrp->pidlist_mutex);
4158
102a775e
BB
4159 /*
4160 * If cgroup gets more users after we read count, we won't have
4161 * enough space - tough. This race is indistinguishable to the
4162 * caller from the case that the additional cgroup users didn't
4163 * show up until sometime later on.
4164 */
4165 length = cgroup_task_count(cgrp);
d1d9fd33 4166 array = pidlist_allocate(length);
102a775e
BB
4167 if (!array)
4168 return -ENOMEM;
4169 /* now, populate the array */
9d800df1 4170 css_task_iter_start(&cgrp->self, &it);
72ec7029 4171 while ((tsk = css_task_iter_next(&it))) {
102a775e 4172 if (unlikely(n == length))
817929ec 4173 break;
102a775e 4174 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4175 if (type == CGROUP_FILE_PROCS)
4176 pid = task_tgid_vnr(tsk);
4177 else
4178 pid = task_pid_vnr(tsk);
102a775e
BB
4179 if (pid > 0) /* make sure to only use valid results */
4180 array[n++] = pid;
817929ec 4181 }
72ec7029 4182 css_task_iter_end(&it);
102a775e
BB
4183 length = n;
4184 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4185 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4186 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4187 else
4188 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4189 if (type == CGROUP_FILE_PROCS)
6ee211ad 4190 length = pidlist_uniq(array, length);
e6b81710 4191
e6b81710 4192 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4193 if (!l) {
d1d9fd33 4194 pidlist_free(array);
72a8cb30 4195 return -ENOMEM;
102a775e 4196 }
e6b81710
TH
4197
4198 /* store array, freeing old if necessary */
d1d9fd33 4199 pidlist_free(l->list);
102a775e
BB
4200 l->list = array;
4201 l->length = length;
72a8cb30 4202 *lp = l;
102a775e 4203 return 0;
bbcb81d0
PM
4204}
4205
846c7bb0 4206/**
a043e3b2 4207 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4208 * @stats: cgroupstats to fill information into
4209 * @dentry: A dentry entry belonging to the cgroup for which stats have
4210 * been requested.
a043e3b2
LZ
4211 *
4212 * Build and fill cgroupstats so that taskstats can export it to user
4213 * space.
846c7bb0
BS
4214 */
4215int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4216{
2bd59d48 4217 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4218 struct cgroup *cgrp;
72ec7029 4219 struct css_task_iter it;
846c7bb0 4220 struct task_struct *tsk;
33d283be 4221
2bd59d48
TH
4222 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4223 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4224 kernfs_type(kn) != KERNFS_DIR)
4225 return -EINVAL;
4226
bad34660
LZ
4227 mutex_lock(&cgroup_mutex);
4228
846c7bb0 4229 /*
2bd59d48 4230 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4231 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4232 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4233 */
2bd59d48
TH
4234 rcu_read_lock();
4235 cgrp = rcu_dereference(kn->priv);
bad34660 4236 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4237 rcu_read_unlock();
bad34660 4238 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4239 return -ENOENT;
4240 }
bad34660 4241 rcu_read_unlock();
846c7bb0 4242
9d800df1 4243 css_task_iter_start(&cgrp->self, &it);
72ec7029 4244 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4245 switch (tsk->state) {
4246 case TASK_RUNNING:
4247 stats->nr_running++;
4248 break;
4249 case TASK_INTERRUPTIBLE:
4250 stats->nr_sleeping++;
4251 break;
4252 case TASK_UNINTERRUPTIBLE:
4253 stats->nr_uninterruptible++;
4254 break;
4255 case TASK_STOPPED:
4256 stats->nr_stopped++;
4257 break;
4258 default:
4259 if (delayacct_is_task_waiting_on_io(tsk))
4260 stats->nr_io_wait++;
4261 break;
4262 }
4263 }
72ec7029 4264 css_task_iter_end(&it);
846c7bb0 4265
bad34660 4266 mutex_unlock(&cgroup_mutex);
2bd59d48 4267 return 0;
846c7bb0
BS
4268}
4269
8f3ff208 4270
bbcb81d0 4271/*
102a775e 4272 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4273 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4274 * in the cgroup->l->list array.
bbcb81d0 4275 */
cc31edce 4276
102a775e 4277static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4278{
cc31edce
PM
4279 /*
4280 * Initially we receive a position value that corresponds to
4281 * one more than the last pid shown (or 0 on the first call or
4282 * after a seek to the start). Use a binary-search to find the
4283 * next pid to display, if any
4284 */
2bd59d48 4285 struct kernfs_open_file *of = s->private;
7da11279 4286 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4287 struct cgroup_pidlist *l;
7da11279 4288 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4289 int index = 0, pid = *pos;
4bac00d1
TH
4290 int *iter, ret;
4291
4292 mutex_lock(&cgrp->pidlist_mutex);
4293
4294 /*
5d22444f 4295 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4296 * after open. If the matching pidlist is around, we can use that.
5d22444f 4297 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4298 * could already have been destroyed.
4299 */
5d22444f
TH
4300 if (of->priv)
4301 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4302
4303 /*
4304 * Either this is the first start() after open or the matching
4305 * pidlist has been destroyed inbetween. Create a new one.
4306 */
5d22444f
TH
4307 if (!of->priv) {
4308 ret = pidlist_array_load(cgrp, type,
4309 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4310 if (ret)
4311 return ERR_PTR(ret);
4312 }
5d22444f 4313 l = of->priv;
cc31edce 4314
cc31edce 4315 if (pid) {
102a775e 4316 int end = l->length;
20777766 4317
cc31edce
PM
4318 while (index < end) {
4319 int mid = (index + end) / 2;
afb2bc14 4320 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4321 index = mid;
4322 break;
afb2bc14 4323 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4324 index = mid + 1;
4325 else
4326 end = mid;
4327 }
4328 }
4329 /* If we're off the end of the array, we're done */
102a775e 4330 if (index >= l->length)
cc31edce
PM
4331 return NULL;
4332 /* Update the abstract position to be the actual pid that we found */
102a775e 4333 iter = l->list + index;
afb2bc14 4334 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4335 return iter;
4336}
4337
102a775e 4338static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4339{
2bd59d48 4340 struct kernfs_open_file *of = s->private;
5d22444f 4341 struct cgroup_pidlist *l = of->priv;
62236858 4342
5d22444f
TH
4343 if (l)
4344 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4345 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4346 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4347}
4348
102a775e 4349static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4350{
2bd59d48 4351 struct kernfs_open_file *of = s->private;
5d22444f 4352 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4353 pid_t *p = v;
4354 pid_t *end = l->list + l->length;
cc31edce
PM
4355 /*
4356 * Advance to the next pid in the array. If this goes off the
4357 * end, we're done
4358 */
4359 p++;
4360 if (p >= end) {
4361 return NULL;
4362 } else {
7da11279 4363 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4364 return p;
4365 }
4366}
4367
102a775e 4368static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4369{
94ff212d
JP
4370 seq_printf(s, "%d\n", *(int *)v);
4371
4372 return 0;
cc31edce 4373}
bbcb81d0 4374
182446d0
TH
4375static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4376 struct cftype *cft)
81a6a5cd 4377{
182446d0 4378 return notify_on_release(css->cgroup);
81a6a5cd
PM
4379}
4380
182446d0
TH
4381static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4382 struct cftype *cft, u64 val)
6379c106 4383{
6379c106 4384 if (val)
182446d0 4385 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4386 else
182446d0 4387 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4388 return 0;
4389}
4390
182446d0
TH
4391static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4392 struct cftype *cft)
97978e6d 4393{
182446d0 4394 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4395}
4396
182446d0
TH
4397static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4398 struct cftype *cft, u64 val)
97978e6d
DL
4399{
4400 if (val)
182446d0 4401 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4402 else
182446d0 4403 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4404 return 0;
4405}
4406
a14c6874
TH
4407/* cgroup core interface files for the default hierarchy */
4408static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4409 {
d5c56ced 4410 .name = "cgroup.procs",
6612f05b
TH
4411 .seq_start = cgroup_pidlist_start,
4412 .seq_next = cgroup_pidlist_next,
4413 .seq_stop = cgroup_pidlist_stop,
4414 .seq_show = cgroup_pidlist_show,
5d22444f 4415 .private = CGROUP_FILE_PROCS,
acbef755 4416 .write = cgroup_procs_write,
102a775e 4417 },
f8f22e53
TH
4418 {
4419 .name = "cgroup.controllers",
a14c6874 4420 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4421 .seq_show = cgroup_root_controllers_show,
4422 },
4423 {
4424 .name = "cgroup.controllers",
a14c6874 4425 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4426 .seq_show = cgroup_controllers_show,
4427 },
4428 {
4429 .name = "cgroup.subtree_control",
f8f22e53 4430 .seq_show = cgroup_subtree_control_show,
451af504 4431 .write = cgroup_subtree_control_write,
f8f22e53 4432 },
842b597e 4433 {
4a07c222 4434 .name = "cgroup.events",
a14c6874 4435 .flags = CFTYPE_NOT_ON_ROOT,
4a07c222 4436 .seq_show = cgroup_events_show,
842b597e 4437 },
a14c6874
TH
4438 { } /* terminate */
4439};
d5c56ced 4440
a14c6874
TH
4441/* cgroup core interface files for the legacy hierarchies */
4442static struct cftype cgroup_legacy_base_files[] = {
4443 {
4444 .name = "cgroup.procs",
4445 .seq_start = cgroup_pidlist_start,
4446 .seq_next = cgroup_pidlist_next,
4447 .seq_stop = cgroup_pidlist_stop,
4448 .seq_show = cgroup_pidlist_show,
4449 .private = CGROUP_FILE_PROCS,
4450 .write = cgroup_procs_write,
a14c6874
TH
4451 },
4452 {
4453 .name = "cgroup.clone_children",
4454 .read_u64 = cgroup_clone_children_read,
4455 .write_u64 = cgroup_clone_children_write,
4456 },
4457 {
4458 .name = "cgroup.sane_behavior",
4459 .flags = CFTYPE_ONLY_ON_ROOT,
4460 .seq_show = cgroup_sane_behavior_show,
4461 },
d5c56ced
TH
4462 {
4463 .name = "tasks",
6612f05b
TH
4464 .seq_start = cgroup_pidlist_start,
4465 .seq_next = cgroup_pidlist_next,
4466 .seq_stop = cgroup_pidlist_stop,
4467 .seq_show = cgroup_pidlist_show,
5d22444f 4468 .private = CGROUP_FILE_TASKS,
acbef755 4469 .write = cgroup_tasks_write,
d5c56ced
TH
4470 },
4471 {
4472 .name = "notify_on_release",
d5c56ced
TH
4473 .read_u64 = cgroup_read_notify_on_release,
4474 .write_u64 = cgroup_write_notify_on_release,
4475 },
6e6ff25b
TH
4476 {
4477 .name = "release_agent",
a14c6874 4478 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4479 .seq_show = cgroup_release_agent_show,
451af504 4480 .write = cgroup_release_agent_write,
5f469907 4481 .max_write_len = PATH_MAX - 1,
6e6ff25b 4482 },
db0416b6 4483 { } /* terminate */
bbcb81d0
PM
4484};
4485
0c21ead1
TH
4486/*
4487 * css destruction is four-stage process.
4488 *
4489 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4490 * Implemented in kill_css().
4491 *
4492 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4493 * and thus css_tryget_online() is guaranteed to fail, the css can be
4494 * offlined by invoking offline_css(). After offlining, the base ref is
4495 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4496 *
4497 * 3. When the percpu_ref reaches zero, the only possible remaining
4498 * accessors are inside RCU read sections. css_release() schedules the
4499 * RCU callback.
4500 *
4501 * 4. After the grace period, the css can be freed. Implemented in
4502 * css_free_work_fn().
4503 *
4504 * It is actually hairier because both step 2 and 4 require process context
4505 * and thus involve punting to css->destroy_work adding two additional
4506 * steps to the already complex sequence.
4507 */
35ef10da 4508static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4509{
4510 struct cgroup_subsys_state *css =
35ef10da 4511 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4512 struct cgroup_subsys *ss = css->ss;
0c21ead1 4513 struct cgroup *cgrp = css->cgroup;
48ddbe19 4514
9a1049da
TH
4515 percpu_ref_exit(&css->refcnt);
4516
01e58659 4517 if (ss) {
9d755d33 4518 /* css free path */
01e58659
VD
4519 int id = css->id;
4520
9d755d33
TH
4521 if (css->parent)
4522 css_put(css->parent);
0ae78e0b 4523
01e58659
VD
4524 ss->css_free(css);
4525 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4526 cgroup_put(cgrp);
4527 } else {
4528 /* cgroup free path */
4529 atomic_dec(&cgrp->root->nr_cgrps);
4530 cgroup_pidlist_destroy_all(cgrp);
971ff493 4531 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4532
d51f39b0 4533 if (cgroup_parent(cgrp)) {
9d755d33
TH
4534 /*
4535 * We get a ref to the parent, and put the ref when
4536 * this cgroup is being freed, so it's guaranteed
4537 * that the parent won't be destroyed before its
4538 * children.
4539 */
d51f39b0 4540 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4541 kernfs_put(cgrp->kn);
4542 kfree(cgrp);
4543 } else {
4544 /*
4545 * This is root cgroup's refcnt reaching zero,
4546 * which indicates that the root should be
4547 * released.
4548 */
4549 cgroup_destroy_root(cgrp->root);
4550 }
4551 }
48ddbe19
TH
4552}
4553
0c21ead1 4554static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4555{
4556 struct cgroup_subsys_state *css =
0c21ead1 4557 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4558
35ef10da 4559 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4560 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4561}
4562
25e15d83 4563static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4564{
4565 struct cgroup_subsys_state *css =
25e15d83 4566 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4567 struct cgroup_subsys *ss = css->ss;
9d755d33 4568 struct cgroup *cgrp = css->cgroup;
15a4c835 4569
1fed1b2e
TH
4570 mutex_lock(&cgroup_mutex);
4571
de3f0341 4572 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4573 list_del_rcu(&css->sibling);
4574
9d755d33
TH
4575 if (ss) {
4576 /* css release path */
01e58659 4577 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4578 if (ss->css_released)
4579 ss->css_released(css);
9d755d33
TH
4580 } else {
4581 /* cgroup release path */
9d755d33
TH
4582 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4583 cgrp->id = -1;
a4189487
LZ
4584
4585 /*
4586 * There are two control paths which try to determine
4587 * cgroup from dentry without going through kernfs -
4588 * cgroupstats_build() and css_tryget_online_from_dir().
4589 * Those are supported by RCU protecting clearing of
4590 * cgrp->kn->priv backpointer.
4591 */
4592 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4593 }
d3daf28d 4594
1fed1b2e
TH
4595 mutex_unlock(&cgroup_mutex);
4596
0c21ead1 4597 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4598}
4599
d3daf28d
TH
4600static void css_release(struct percpu_ref *ref)
4601{
4602 struct cgroup_subsys_state *css =
4603 container_of(ref, struct cgroup_subsys_state, refcnt);
4604
25e15d83
TH
4605 INIT_WORK(&css->destroy_work, css_release_work_fn);
4606 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4607}
4608
ddfcadab
TH
4609static void init_and_link_css(struct cgroup_subsys_state *css,
4610 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4611{
0cb51d71
TH
4612 lockdep_assert_held(&cgroup_mutex);
4613
ddfcadab
TH
4614 cgroup_get(cgrp);
4615
d5c419b6 4616 memset(css, 0, sizeof(*css));
bd89aabc 4617 css->cgroup = cgrp;
72c97e54 4618 css->ss = ss;
d5c419b6
TH
4619 INIT_LIST_HEAD(&css->sibling);
4620 INIT_LIST_HEAD(&css->children);
0cb51d71 4621 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4622
d51f39b0
TH
4623 if (cgroup_parent(cgrp)) {
4624 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4625 css_get(css->parent);
ddfcadab 4626 }
48ddbe19 4627
ca8bdcaf 4628 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4629}
4630
2a4ac633 4631/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4632static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4633{
623f926b 4634 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4635 int ret = 0;
4636
a31f2d3f
TH
4637 lockdep_assert_held(&cgroup_mutex);
4638
92fb9748 4639 if (ss->css_online)
eb95419b 4640 ret = ss->css_online(css);
ae7f164a 4641 if (!ret) {
eb95419b 4642 css->flags |= CSS_ONLINE;
aec25020 4643 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4644 }
b1929db4 4645 return ret;
a31f2d3f
TH
4646}
4647
2a4ac633 4648/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4649static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4650{
623f926b 4651 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4652
4653 lockdep_assert_held(&cgroup_mutex);
4654
4655 if (!(css->flags & CSS_ONLINE))
4656 return;
4657
d7eeac19 4658 if (ss->css_offline)
eb95419b 4659 ss->css_offline(css);
a31f2d3f 4660
eb95419b 4661 css->flags &= ~CSS_ONLINE;
e3297803 4662 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4663
4664 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4665}
4666
c81c925a
TH
4667/**
4668 * create_css - create a cgroup_subsys_state
4669 * @cgrp: the cgroup new css will be associated with
4670 * @ss: the subsys of new css
f63070d3 4671 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4672 *
4673 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4674 * css is online and installed in @cgrp with all interface files created if
4675 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4676 */
f63070d3
TH
4677static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4678 bool visible)
c81c925a 4679{
d51f39b0 4680 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4681 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4682 struct cgroup_subsys_state *css;
4683 int err;
4684
c81c925a
TH
4685 lockdep_assert_held(&cgroup_mutex);
4686
1fed1b2e 4687 css = ss->css_alloc(parent_css);
c81c925a
TH
4688 if (IS_ERR(css))
4689 return PTR_ERR(css);
4690
ddfcadab 4691 init_and_link_css(css, ss, cgrp);
a2bed820 4692
2aad2a86 4693 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4694 if (err)
3eb59ec6 4695 goto err_free_css;
c81c925a 4696
cf780b7d 4697 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4698 if (err < 0)
4699 goto err_free_percpu_ref;
4700 css->id = err;
c81c925a 4701
f63070d3 4702 if (visible) {
4df8dc90 4703 err = css_populate_dir(css, NULL);
f63070d3
TH
4704 if (err)
4705 goto err_free_id;
4706 }
15a4c835
TH
4707
4708 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4709 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4710 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4711
4712 err = online_css(css);
4713 if (err)
1fed1b2e 4714 goto err_list_del;
94419627 4715
c81c925a 4716 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4717 cgroup_parent(parent)) {
ed3d261b 4718 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4719 current->comm, current->pid, ss->name);
c81c925a 4720 if (!strcmp(ss->name, "memory"))
ed3d261b 4721 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4722 ss->warned_broken_hierarchy = true;
4723 }
4724
4725 return 0;
4726
1fed1b2e
TH
4727err_list_del:
4728 list_del_rcu(&css->sibling);
4df8dc90 4729 css_clear_dir(css, NULL);
15a4c835
TH
4730err_free_id:
4731 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4732err_free_percpu_ref:
9a1049da 4733 percpu_ref_exit(&css->refcnt);
3eb59ec6 4734err_free_css:
a2bed820 4735 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4736 return err;
4737}
4738
b3bfd983
TH
4739static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4740 umode_t mode)
ddbcc7e8 4741{
a9746d8d
TH
4742 struct cgroup *parent, *cgrp;
4743 struct cgroup_root *root;
ddbcc7e8 4744 struct cgroup_subsys *ss;
2bd59d48 4745 struct kernfs_node *kn;
b3bfd983 4746 int ssid, ret;
ddbcc7e8 4747
71b1fb5c
AC
4748 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4749 */
4750 if (strchr(name, '\n'))
4751 return -EINVAL;
4752
a9746d8d
TH
4753 parent = cgroup_kn_lock_live(parent_kn);
4754 if (!parent)
4755 return -ENODEV;
4756 root = parent->root;
ddbcc7e8 4757
0a950f65 4758 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4759 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4760 if (!cgrp) {
4761 ret = -ENOMEM;
4762 goto out_unlock;
0ab02ca8
LZ
4763 }
4764
2aad2a86 4765 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4766 if (ret)
4767 goto out_free_cgrp;
4768
0ab02ca8
LZ
4769 /*
4770 * Temporarily set the pointer to NULL, so idr_find() won't return
4771 * a half-baked cgroup.
4772 */
cf780b7d 4773 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4774 if (cgrp->id < 0) {
ba0f4d76 4775 ret = -ENOMEM;
9d755d33 4776 goto out_cancel_ref;
976c06bc
TH
4777 }
4778
cc31edce 4779 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4780
9d800df1 4781 cgrp->self.parent = &parent->self;
ba0f4d76 4782 cgrp->root = root;
ddbcc7e8 4783
b6abdb0e
LZ
4784 if (notify_on_release(parent))
4785 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4786
2260e7fc
TH
4787 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4788 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4789
2bd59d48 4790 /* create the directory */
e61734c5 4791 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4792 if (IS_ERR(kn)) {
ba0f4d76
TH
4793 ret = PTR_ERR(kn);
4794 goto out_free_id;
2bd59d48
TH
4795 }
4796 cgrp->kn = kn;
ddbcc7e8 4797
4e139afc 4798 /*
6f30558f
TH
4799 * This extra ref will be put in cgroup_free_fn() and guarantees
4800 * that @cgrp->kn is always accessible.
4e139afc 4801 */
6f30558f 4802 kernfs_get(kn);
ddbcc7e8 4803
0cb51d71 4804 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4805
4e139afc 4806 /* allocation complete, commit to creation */
d5c419b6 4807 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4808 atomic_inc(&root->nr_cgrps);
59f5296b 4809 cgroup_get(parent);
415cf07a 4810
0d80255e
TH
4811 /*
4812 * @cgrp is now fully operational. If something fails after this
4813 * point, it'll be released via the normal destruction path.
4814 */
6fa4918d 4815 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4816
ba0f4d76
TH
4817 ret = cgroup_kn_set_ugid(kn);
4818 if (ret)
4819 goto out_destroy;
49957f8e 4820
4df8dc90 4821 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4822 if (ret)
4823 goto out_destroy;
628f7cd4 4824
9d403e99 4825 /* let's create and online css's */
b85d2040 4826 for_each_subsys(ss, ssid) {
f392e51c 4827 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4828 ret = create_css(cgrp, ss,
4829 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4830 if (ret)
4831 goto out_destroy;
b85d2040 4832 }
a8638030 4833 }
ddbcc7e8 4834
bd53d617
TH
4835 /*
4836 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4837 * subtree_control from the parent. Each is configured manually.
bd53d617 4838 */
667c2491
TH
4839 if (!cgroup_on_dfl(cgrp)) {
4840 cgrp->subtree_control = parent->subtree_control;
4841 cgroup_refresh_child_subsys_mask(cgrp);
4842 }
2bd59d48 4843
2bd59d48 4844 kernfs_activate(kn);
ddbcc7e8 4845
ba0f4d76
TH
4846 ret = 0;
4847 goto out_unlock;
ddbcc7e8 4848
ba0f4d76 4849out_free_id:
6fa4918d 4850 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4851out_cancel_ref:
9a1049da 4852 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4853out_free_cgrp:
bd89aabc 4854 kfree(cgrp);
ba0f4d76 4855out_unlock:
a9746d8d 4856 cgroup_kn_unlock(parent_kn);
ba0f4d76 4857 return ret;
4b8b47eb 4858
ba0f4d76 4859out_destroy:
4b8b47eb 4860 cgroup_destroy_locked(cgrp);
ba0f4d76 4861 goto out_unlock;
ddbcc7e8
PM
4862}
4863
223dbc38
TH
4864/*
4865 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4866 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4867 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4868 */
4869static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4870{
223dbc38
TH
4871 struct cgroup_subsys_state *css =
4872 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4873
f20104de 4874 mutex_lock(&cgroup_mutex);
09a503ea 4875 offline_css(css);
f20104de 4876 mutex_unlock(&cgroup_mutex);
09a503ea 4877
09a503ea 4878 css_put(css);
d3daf28d
TH
4879}
4880
223dbc38
TH
4881/* css kill confirmation processing requires process context, bounce */
4882static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4883{
4884 struct cgroup_subsys_state *css =
4885 container_of(ref, struct cgroup_subsys_state, refcnt);
4886
223dbc38 4887 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4888 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4889}
4890
f392e51c
TH
4891/**
4892 * kill_css - destroy a css
4893 * @css: css to destroy
4894 *
4895 * This function initiates destruction of @css by removing cgroup interface
4896 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4897 * asynchronously once css_tryget_online() is guaranteed to fail and when
4898 * the reference count reaches zero, @css will be released.
f392e51c
TH
4899 */
4900static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4901{
01f6474c 4902 lockdep_assert_held(&cgroup_mutex);
94419627 4903
2bd59d48
TH
4904 /*
4905 * This must happen before css is disassociated with its cgroup.
4906 * See seq_css() for details.
4907 */
4df8dc90 4908 css_clear_dir(css, NULL);
3c14f8b4 4909
edae0c33
TH
4910 /*
4911 * Killing would put the base ref, but we need to keep it alive
4912 * until after ->css_offline().
4913 */
4914 css_get(css);
4915
4916 /*
4917 * cgroup core guarantees that, by the time ->css_offline() is
4918 * invoked, no new css reference will be given out via
ec903c0c 4919 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4920 * proceed to offlining css's because percpu_ref_kill() doesn't
4921 * guarantee that the ref is seen as killed on all CPUs on return.
4922 *
4923 * Use percpu_ref_kill_and_confirm() to get notifications as each
4924 * css is confirmed to be seen as killed on all CPUs.
4925 */
4926 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4927}
4928
4929/**
4930 * cgroup_destroy_locked - the first stage of cgroup destruction
4931 * @cgrp: cgroup to be destroyed
4932 *
4933 * css's make use of percpu refcnts whose killing latency shouldn't be
4934 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4935 * guarantee that css_tryget_online() won't succeed by the time
4936 * ->css_offline() is invoked. To satisfy all the requirements,
4937 * destruction is implemented in the following two steps.
d3daf28d
TH
4938 *
4939 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4940 * userland visible parts and start killing the percpu refcnts of
4941 * css's. Set up so that the next stage will be kicked off once all
4942 * the percpu refcnts are confirmed to be killed.
4943 *
4944 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4945 * rest of destruction. Once all cgroup references are gone, the
4946 * cgroup is RCU-freed.
4947 *
4948 * This function implements s1. After this step, @cgrp is gone as far as
4949 * the userland is concerned and a new cgroup with the same name may be
4950 * created. As cgroup doesn't care about the names internally, this
4951 * doesn't cause any problem.
4952 */
42809dd4
TH
4953static int cgroup_destroy_locked(struct cgroup *cgrp)
4954 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4955{
2bd59d48 4956 struct cgroup_subsys_state *css;
ddd69148 4957 bool empty;
1c6727af 4958 int ssid;
ddbcc7e8 4959
42809dd4
TH
4960 lockdep_assert_held(&cgroup_mutex);
4961
ddd69148 4962 /*
96d365e0 4963 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4964 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4965 */
96d365e0 4966 down_read(&css_set_rwsem);
bb78a92f 4967 empty = list_empty(&cgrp->cset_links);
96d365e0 4968 up_read(&css_set_rwsem);
ddd69148 4969 if (!empty)
ddbcc7e8 4970 return -EBUSY;
a043e3b2 4971
bb78a92f 4972 /*
d5c419b6
TH
4973 * Make sure there's no live children. We can't test emptiness of
4974 * ->self.children as dead children linger on it while being
4975 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4976 */
f3d46500 4977 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4978 return -EBUSY;
4979
455050d2
TH
4980 /*
4981 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4982 * creation by disabling cgroup_lock_live_group().
455050d2 4983 */
184faf32 4984 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4985
249f3468 4986 /* initiate massacre of all css's */
1c6727af
TH
4987 for_each_css(css, ssid, cgrp)
4988 kill_css(css);
455050d2 4989
455050d2 4990 /*
01f6474c
TH
4991 * Remove @cgrp directory along with the base files. @cgrp has an
4992 * extra ref on its kn.
f20104de 4993 */
01f6474c 4994 kernfs_remove(cgrp->kn);
f20104de 4995
d51f39b0 4996 check_for_release(cgroup_parent(cgrp));
2bd59d48 4997
249f3468 4998 /* put the base reference */
9d755d33 4999 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5000
ea15f8cc
TH
5001 return 0;
5002};
5003
2bd59d48 5004static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5005{
a9746d8d 5006 struct cgroup *cgrp;
2bd59d48 5007 int ret = 0;
42809dd4 5008
a9746d8d
TH
5009 cgrp = cgroup_kn_lock_live(kn);
5010 if (!cgrp)
5011 return 0;
42809dd4 5012
a9746d8d 5013 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5014
a9746d8d 5015 cgroup_kn_unlock(kn);
42809dd4 5016 return ret;
8e3f6541
TH
5017}
5018
2bd59d48
TH
5019static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5020 .remount_fs = cgroup_remount,
5021 .show_options = cgroup_show_options,
5022 .mkdir = cgroup_mkdir,
5023 .rmdir = cgroup_rmdir,
5024 .rename = cgroup_rename,
5025};
5026
15a4c835 5027static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5028{
ddbcc7e8 5029 struct cgroup_subsys_state *css;
cfe36bde
DC
5030
5031 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5032
648bb56d
TH
5033 mutex_lock(&cgroup_mutex);
5034
15a4c835 5035 idr_init(&ss->css_idr);
0adb0704 5036 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5037
3dd06ffa
TH
5038 /* Create the root cgroup state for this subsystem */
5039 ss->root = &cgrp_dfl_root;
5040 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5041 /* We don't handle early failures gracefully */
5042 BUG_ON(IS_ERR(css));
ddfcadab 5043 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5044
5045 /*
5046 * Root csses are never destroyed and we can't initialize
5047 * percpu_ref during early init. Disable refcnting.
5048 */
5049 css->flags |= CSS_NO_REF;
5050
15a4c835 5051 if (early) {
9395a450 5052 /* allocation can't be done safely during early init */
15a4c835
TH
5053 css->id = 1;
5054 } else {
5055 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5056 BUG_ON(css->id < 0);
5057 }
ddbcc7e8 5058
e8d55fde 5059 /* Update the init_css_set to contain a subsys
817929ec 5060 * pointer to this state - since the subsystem is
e8d55fde 5061 * newly registered, all tasks and hence the
3dd06ffa 5062 * init_css_set is in the subsystem's root cgroup. */
aec25020 5063 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5064
cb4a3167
AS
5065 have_fork_callback |= (bool)ss->fork << ss->id;
5066 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5067 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5068
e8d55fde
LZ
5069 /* At system boot, before all subsystems have been
5070 * registered, no tasks have been forked, so we don't
5071 * need to invoke fork callbacks here. */
5072 BUG_ON(!list_empty(&init_task.tasks));
5073
ae7f164a 5074 BUG_ON(online_css(css));
a8638030 5075
cf5d5941
BB
5076 mutex_unlock(&cgroup_mutex);
5077}
cf5d5941 5078
ddbcc7e8 5079/**
a043e3b2
LZ
5080 * cgroup_init_early - cgroup initialization at system boot
5081 *
5082 * Initialize cgroups at system boot, and initialize any
5083 * subsystems that request early init.
ddbcc7e8
PM
5084 */
5085int __init cgroup_init_early(void)
5086{
7b9a6ba5 5087 static struct cgroup_sb_opts __initdata opts;
30159ec7 5088 struct cgroup_subsys *ss;
ddbcc7e8 5089 int i;
30159ec7 5090
3dd06ffa 5091 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5092 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5093
a4ea1cc9 5094 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5095
3ed80a62 5096 for_each_subsys(ss, i) {
aec25020 5097 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5098 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5099 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5100 ss->id, ss->name);
073219e9
TH
5101 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5102 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5103
aec25020 5104 ss->id = i;
073219e9 5105 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5106 if (!ss->legacy_name)
5107 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5108
5109 if (ss->early_init)
15a4c835 5110 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5111 }
5112 return 0;
5113}
5114
5115/**
a043e3b2
LZ
5116 * cgroup_init - cgroup initialization
5117 *
5118 * Register cgroup filesystem and /proc file, and initialize
5119 * any subsystems that didn't request early init.
ddbcc7e8
PM
5120 */
5121int __init cgroup_init(void)
5122{
30159ec7 5123 struct cgroup_subsys *ss;
0ac801fe 5124 unsigned long key;
172a2c06 5125 int ssid, err;
ddbcc7e8 5126
1ed13287 5127 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5128 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5129 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5130
54e7b4eb 5131 mutex_lock(&cgroup_mutex);
54e7b4eb 5132
82fe9b0d
TH
5133 /* Add init_css_set to the hash table */
5134 key = css_set_hash(init_css_set.subsys);
5135 hash_add(css_set_table, &init_css_set.hlist, key);
5136
3dd06ffa 5137 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5138
54e7b4eb
TH
5139 mutex_unlock(&cgroup_mutex);
5140
172a2c06 5141 for_each_subsys(ss, ssid) {
15a4c835
TH
5142 if (ss->early_init) {
5143 struct cgroup_subsys_state *css =
5144 init_css_set.subsys[ss->id];
5145
5146 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5147 GFP_KERNEL);
5148 BUG_ON(css->id < 0);
5149 } else {
5150 cgroup_init_subsys(ss, false);
5151 }
172a2c06 5152
2d8f243a
TH
5153 list_add_tail(&init_css_set.e_cset_node[ssid],
5154 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5155
5156 /*
c731ae1d
LZ
5157 * Setting dfl_root subsys_mask needs to consider the
5158 * disabled flag and cftype registration needs kmalloc,
5159 * both of which aren't available during early_init.
172a2c06 5160 */
fc5ed1e9 5161 if (!cgroup_ssid_enabled(ssid))
a8ddc821
TH
5162 continue;
5163
5164 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5165
5166 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5167 ss->dfl_cftypes = ss->legacy_cftypes;
5168
5de4fa13
TH
5169 if (!ss->dfl_cftypes)
5170 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5171
a8ddc821
TH
5172 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5173 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5174 } else {
5175 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5176 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5177 }
295458e6
VD
5178
5179 if (ss->bind)
5180 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5181 }
5182
f9bb4882
EB
5183 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5184 if (err)
5185 return err;
676db4af 5186
ddbcc7e8 5187 err = register_filesystem(&cgroup_fs_type);
676db4af 5188 if (err < 0) {
f9bb4882 5189 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5190 return err;
676db4af 5191 }
ddbcc7e8 5192
46ae220b 5193 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5194 return 0;
ddbcc7e8 5195}
b4f48b63 5196
e5fca243
TH
5197static int __init cgroup_wq_init(void)
5198{
5199 /*
5200 * There isn't much point in executing destruction path in
5201 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5202 * Use 1 for @max_active.
e5fca243
TH
5203 *
5204 * We would prefer to do this in cgroup_init() above, but that
5205 * is called before init_workqueues(): so leave this until after.
5206 */
1a11533f 5207 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5208 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5209
5210 /*
5211 * Used to destroy pidlists and separate to serve as flush domain.
5212 * Cap @max_active to 1 too.
5213 */
5214 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5215 0, 1);
5216 BUG_ON(!cgroup_pidlist_destroy_wq);
5217
e5fca243
TH
5218 return 0;
5219}
5220core_initcall(cgroup_wq_init);
5221
a424316c
PM
5222/*
5223 * proc_cgroup_show()
5224 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5225 * - Used for /proc/<pid>/cgroup.
a424316c 5226 */
006f4ac4
ZL
5227int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5228 struct pid *pid, struct task_struct *tsk)
a424316c 5229{
e61734c5 5230 char *buf, *path;
a424316c 5231 int retval;
3dd06ffa 5232 struct cgroup_root *root;
a424316c
PM
5233
5234 retval = -ENOMEM;
e61734c5 5235 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5236 if (!buf)
5237 goto out;
5238
a424316c 5239 mutex_lock(&cgroup_mutex);
96d365e0 5240 down_read(&css_set_rwsem);
a424316c 5241
985ed670 5242 for_each_root(root) {
a424316c 5243 struct cgroup_subsys *ss;
bd89aabc 5244 struct cgroup *cgrp;
b85d2040 5245 int ssid, count = 0;
a424316c 5246
a2dd4247 5247 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5248 continue;
5249
2c6ab6d2 5250 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5251 if (root != &cgrp_dfl_root)
5252 for_each_subsys(ss, ssid)
5253 if (root->subsys_mask & (1 << ssid))
5254 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5255 ss->legacy_name);
c6d57f33
PM
5256 if (strlen(root->name))
5257 seq_printf(m, "%sname=%s", count ? "," : "",
5258 root->name);
a424316c 5259 seq_putc(m, ':');
7717f7ba 5260 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5261 path = cgroup_path(cgrp, buf, PATH_MAX);
5262 if (!path) {
5263 retval = -ENAMETOOLONG;
a424316c 5264 goto out_unlock;
e61734c5
TH
5265 }
5266 seq_puts(m, path);
a424316c
PM
5267 seq_putc(m, '\n');
5268 }
5269
006f4ac4 5270 retval = 0;
a424316c 5271out_unlock:
96d365e0 5272 up_read(&css_set_rwsem);
a424316c 5273 mutex_unlock(&cgroup_mutex);
a424316c
PM
5274 kfree(buf);
5275out:
5276 return retval;
5277}
5278
a424316c
PM
5279/* Display information about each subsystem and each hierarchy */
5280static int proc_cgroupstats_show(struct seq_file *m, void *v)
5281{
30159ec7 5282 struct cgroup_subsys *ss;
a424316c 5283 int i;
a424316c 5284
8bab8dde 5285 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5286 /*
5287 * ideally we don't want subsystems moving around while we do this.
5288 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5289 * subsys/hierarchy state.
5290 */
a424316c 5291 mutex_lock(&cgroup_mutex);
30159ec7
TH
5292
5293 for_each_subsys(ss, i)
2c6ab6d2 5294 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5295 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5296 atomic_read(&ss->root->nr_cgrps),
5297 cgroup_ssid_enabled(i));
30159ec7 5298
a424316c
PM
5299 mutex_unlock(&cgroup_mutex);
5300 return 0;
5301}
5302
5303static int cgroupstats_open(struct inode *inode, struct file *file)
5304{
9dce07f1 5305 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5306}
5307
828c0950 5308static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5309 .open = cgroupstats_open,
5310 .read = seq_read,
5311 .llseek = seq_lseek,
5312 .release = single_release,
5313};
5314
7e47682e
AS
5315static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5316{
5317 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5318 return &ss_priv[i - CGROUP_CANFORK_START];
5319 return NULL;
5320}
5321
5322static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5323{
5324 void **private = subsys_canfork_priv_p(ss_priv, i);
5325 return private ? *private : NULL;
5326}
5327
b4f48b63 5328/**
eaf797ab 5329 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5330 * @child: pointer to task_struct of forking parent process.
b4f48b63 5331 *
eaf797ab
TH
5332 * A task is associated with the init_css_set until cgroup_post_fork()
5333 * attaches it to the parent's css_set. Empty cg_list indicates that
5334 * @child isn't holding reference to its css_set.
b4f48b63
PM
5335 */
5336void cgroup_fork(struct task_struct *child)
5337{
eaf797ab 5338 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5339 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5340}
5341
7e47682e
AS
5342/**
5343 * cgroup_can_fork - called on a new task before the process is exposed
5344 * @child: the task in question.
5345 *
5346 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5347 * returns an error, the fork aborts with that error code. This allows for
5348 * a cgroup subsystem to conditionally allow or deny new forks.
5349 */
5350int cgroup_can_fork(struct task_struct *child,
5351 void *ss_priv[CGROUP_CANFORK_COUNT])
5352{
5353 struct cgroup_subsys *ss;
5354 int i, j, ret;
5355
5356 for_each_subsys_which(ss, i, &have_canfork_callback) {
5357 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5358 if (ret)
5359 goto out_revert;
5360 }
5361
5362 return 0;
5363
5364out_revert:
5365 for_each_subsys(ss, j) {
5366 if (j >= i)
5367 break;
5368 if (ss->cancel_fork)
5369 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5370 }
5371
5372 return ret;
5373}
5374
5375/**
5376 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5377 * @child: the task in question
5378 *
5379 * This calls the cancel_fork() callbacks if a fork failed *after*
5380 * cgroup_can_fork() succeded.
5381 */
5382void cgroup_cancel_fork(struct task_struct *child,
5383 void *ss_priv[CGROUP_CANFORK_COUNT])
5384{
5385 struct cgroup_subsys *ss;
5386 int i;
5387
5388 for_each_subsys(ss, i)
5389 if (ss->cancel_fork)
5390 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5391}
5392
817929ec 5393/**
a043e3b2
LZ
5394 * cgroup_post_fork - called on a new task after adding it to the task list
5395 * @child: the task in question
5396 *
5edee61e
TH
5397 * Adds the task to the list running through its css_set if necessary and
5398 * call the subsystem fork() callbacks. Has to be after the task is
5399 * visible on the task list in case we race with the first call to
0942eeee 5400 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5401 * list.
a043e3b2 5402 */
7e47682e
AS
5403void cgroup_post_fork(struct task_struct *child,
5404 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5405{
30159ec7 5406 struct cgroup_subsys *ss;
5edee61e
TH
5407 int i;
5408
3ce3230a 5409 /*
251f8c03 5410 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5411 * function sets use_task_css_set_links before grabbing
5412 * tasklist_lock and we just went through tasklist_lock to add
5413 * @child, it's guaranteed that either we see the set
5414 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5415 * @child during its iteration.
5416 *
5417 * If we won the race, @child is associated with %current's
5418 * css_set. Grabbing css_set_rwsem guarantees both that the
5419 * association is stable, and, on completion of the parent's
5420 * migration, @child is visible in the source of migration or
5421 * already in the destination cgroup. This guarantee is necessary
5422 * when implementing operations which need to migrate all tasks of
5423 * a cgroup to another.
5424 *
251f8c03 5425 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5426 * will remain in init_css_set. This is safe because all tasks are
5427 * in the init_css_set before cg_links is enabled and there's no
5428 * operation which transfers all tasks out of init_css_set.
3ce3230a 5429 */
817929ec 5430 if (use_task_css_set_links) {
eaf797ab
TH
5431 struct css_set *cset;
5432
96d365e0 5433 down_write(&css_set_rwsem);
0e1d768f 5434 cset = task_css_set(current);
eaf797ab
TH
5435 if (list_empty(&child->cg_list)) {
5436 rcu_assign_pointer(child->cgroups, cset);
5437 list_add(&child->cg_list, &cset->tasks);
5438 get_css_set(cset);
5439 }
96d365e0 5440 up_write(&css_set_rwsem);
817929ec 5441 }
5edee61e
TH
5442
5443 /*
5444 * Call ss->fork(). This must happen after @child is linked on
5445 * css_set; otherwise, @child might change state between ->fork()
5446 * and addition to css_set.
5447 */
cb4a3167 5448 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5449 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5450}
5edee61e 5451
b4f48b63
PM
5452/**
5453 * cgroup_exit - detach cgroup from exiting task
5454 * @tsk: pointer to task_struct of exiting process
5455 *
5456 * Description: Detach cgroup from @tsk and release it.
5457 *
5458 * Note that cgroups marked notify_on_release force every task in
5459 * them to take the global cgroup_mutex mutex when exiting.
5460 * This could impact scaling on very large systems. Be reluctant to
5461 * use notify_on_release cgroups where very high task exit scaling
5462 * is required on large systems.
5463 *
0e1d768f
TH
5464 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5465 * call cgroup_exit() while the task is still competent to handle
5466 * notify_on_release(), then leave the task attached to the root cgroup in
5467 * each hierarchy for the remainder of its exit. No need to bother with
5468 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5469 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5470 */
1ec41830 5471void cgroup_exit(struct task_struct *tsk)
b4f48b63 5472{
30159ec7 5473 struct cgroup_subsys *ss;
5abb8855 5474 struct css_set *cset;
eaf797ab 5475 bool put_cset = false;
d41d5a01 5476 int i;
817929ec
PM
5477
5478 /*
0e1d768f
TH
5479 * Unlink from @tsk from its css_set. As migration path can't race
5480 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5481 */
5482 if (!list_empty(&tsk->cg_list)) {
96d365e0 5483 down_write(&css_set_rwsem);
0e1d768f 5484 list_del_init(&tsk->cg_list);
96d365e0 5485 up_write(&css_set_rwsem);
0e1d768f 5486 put_cset = true;
817929ec
PM
5487 }
5488
b4f48b63 5489 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5490 cset = task_css_set(tsk);
5491 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5492
cb4a3167
AS
5493 /* see cgroup_post_fork() for details */
5494 for_each_subsys_which(ss, i, &have_exit_callback) {
5495 struct cgroup_subsys_state *old_css = cset->subsys[i];
5496 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5497
cb4a3167 5498 ss->exit(css, old_css, tsk);
d41d5a01 5499 }
d41d5a01 5500
eaf797ab 5501 if (put_cset)
a25eb52e 5502 put_css_set(cset);
b4f48b63 5503}
697f4161 5504
bd89aabc 5505static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5506{
a25eb52e 5507 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5508 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5509 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5510}
5511
81a6a5cd
PM
5512/*
5513 * Notify userspace when a cgroup is released, by running the
5514 * configured release agent with the name of the cgroup (path
5515 * relative to the root of cgroup file system) as the argument.
5516 *
5517 * Most likely, this user command will try to rmdir this cgroup.
5518 *
5519 * This races with the possibility that some other task will be
5520 * attached to this cgroup before it is removed, or that some other
5521 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5522 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5523 * unused, and this cgroup will be reprieved from its death sentence,
5524 * to continue to serve a useful existence. Next time it's released,
5525 * we will get notified again, if it still has 'notify_on_release' set.
5526 *
5527 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5528 * means only wait until the task is successfully execve()'d. The
5529 * separate release agent task is forked by call_usermodehelper(),
5530 * then control in this thread returns here, without waiting for the
5531 * release agent task. We don't bother to wait because the caller of
5532 * this routine has no use for the exit status of the release agent
5533 * task, so no sense holding our caller up for that.
81a6a5cd 5534 */
81a6a5cd
PM
5535static void cgroup_release_agent(struct work_struct *work)
5536{
971ff493
ZL
5537 struct cgroup *cgrp =
5538 container_of(work, struct cgroup, release_agent_work);
5539 char *pathbuf = NULL, *agentbuf = NULL, *path;
5540 char *argv[3], *envp[3];
5541
81a6a5cd 5542 mutex_lock(&cgroup_mutex);
971ff493
ZL
5543
5544 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5545 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5546 if (!pathbuf || !agentbuf)
5547 goto out;
5548
5549 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5550 if (!path)
5551 goto out;
5552
5553 argv[0] = agentbuf;
5554 argv[1] = path;
5555 argv[2] = NULL;
5556
5557 /* minimal command environment */
5558 envp[0] = "HOME=/";
5559 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5560 envp[2] = NULL;
5561
81a6a5cd 5562 mutex_unlock(&cgroup_mutex);
971ff493 5563 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5564 goto out_free;
971ff493 5565out:
81a6a5cd 5566 mutex_unlock(&cgroup_mutex);
3e2cd91a 5567out_free:
971ff493
ZL
5568 kfree(agentbuf);
5569 kfree(pathbuf);
81a6a5cd 5570}
8bab8dde
PM
5571
5572static int __init cgroup_disable(char *str)
5573{
30159ec7 5574 struct cgroup_subsys *ss;
8bab8dde 5575 char *token;
30159ec7 5576 int i;
8bab8dde
PM
5577
5578 while ((token = strsep(&str, ",")) != NULL) {
5579 if (!*token)
5580 continue;
be45c900 5581
3ed80a62 5582 for_each_subsys(ss, i) {
3e1d2eed
TH
5583 if (strcmp(token, ss->name) &&
5584 strcmp(token, ss->legacy_name))
5585 continue;
5586
49d1dc4b 5587 static_branch_disable(cgroup_subsys_enabled_key[i]);
3e1d2eed
TH
5588 printk(KERN_INFO "Disabling %s control group subsystem\n",
5589 ss->name);
5590 break;
8bab8dde
PM
5591 }
5592 }
5593 return 1;
5594}
5595__setup("cgroup_disable=", cgroup_disable);
38460b48 5596
a8ddc821
TH
5597static int __init cgroup_set_legacy_files_on_dfl(char *str)
5598{
5599 printk("cgroup: using legacy files on the default hierarchy\n");
5600 cgroup_legacy_files_on_dfl = true;
5601 return 0;
5602}
5603__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5604
b77d7b60 5605/**
ec903c0c 5606 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5607 * @dentry: directory dentry of interest
5608 * @ss: subsystem of interest
b77d7b60 5609 *
5a17f543
TH
5610 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5611 * to get the corresponding css and return it. If such css doesn't exist
5612 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5613 */
ec903c0c
TH
5614struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5615 struct cgroup_subsys *ss)
e5d1367f 5616{
2bd59d48
TH
5617 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5618 struct cgroup_subsys_state *css = NULL;
e5d1367f 5619 struct cgroup *cgrp;
e5d1367f 5620
35cf0836 5621 /* is @dentry a cgroup dir? */
2bd59d48
TH
5622 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5623 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5624 return ERR_PTR(-EBADF);
5625
5a17f543
TH
5626 rcu_read_lock();
5627
2bd59d48
TH
5628 /*
5629 * This path doesn't originate from kernfs and @kn could already
5630 * have been or be removed at any point. @kn->priv is RCU
a4189487 5631 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5632 */
5633 cgrp = rcu_dereference(kn->priv);
5634 if (cgrp)
5635 css = cgroup_css(cgrp, ss);
5a17f543 5636
ec903c0c 5637 if (!css || !css_tryget_online(css))
5a17f543
TH
5638 css = ERR_PTR(-ENOENT);
5639
5640 rcu_read_unlock();
5641 return css;
e5d1367f 5642}
e5d1367f 5643
1cb650b9
LZ
5644/**
5645 * css_from_id - lookup css by id
5646 * @id: the cgroup id
5647 * @ss: cgroup subsys to be looked into
5648 *
5649 * Returns the css if there's valid one with @id, otherwise returns NULL.
5650 * Should be called under rcu_read_lock().
5651 */
5652struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5653{
6fa4918d 5654 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5655 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5656}
5657
fe693435 5658#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5659static struct cgroup_subsys_state *
5660debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5661{
5662 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5663
5664 if (!css)
5665 return ERR_PTR(-ENOMEM);
5666
5667 return css;
5668}
5669
eb95419b 5670static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5671{
eb95419b 5672 kfree(css);
fe693435
PM
5673}
5674
182446d0
TH
5675static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5676 struct cftype *cft)
fe693435 5677{
182446d0 5678 return cgroup_task_count(css->cgroup);
fe693435
PM
5679}
5680
182446d0
TH
5681static u64 current_css_set_read(struct cgroup_subsys_state *css,
5682 struct cftype *cft)
fe693435
PM
5683{
5684 return (u64)(unsigned long)current->cgroups;
5685}
5686
182446d0 5687static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5688 struct cftype *cft)
fe693435
PM
5689{
5690 u64 count;
5691
5692 rcu_read_lock();
a8ad805c 5693 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5694 rcu_read_unlock();
5695 return count;
5696}
5697
2da8ca82 5698static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5699{
69d0206c 5700 struct cgrp_cset_link *link;
5abb8855 5701 struct css_set *cset;
e61734c5
TH
5702 char *name_buf;
5703
5704 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5705 if (!name_buf)
5706 return -ENOMEM;
7717f7ba 5707
96d365e0 5708 down_read(&css_set_rwsem);
7717f7ba 5709 rcu_read_lock();
5abb8855 5710 cset = rcu_dereference(current->cgroups);
69d0206c 5711 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5712 struct cgroup *c = link->cgrp;
7717f7ba 5713
a2dd4247 5714 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5715 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5716 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5717 }
5718 rcu_read_unlock();
96d365e0 5719 up_read(&css_set_rwsem);
e61734c5 5720 kfree(name_buf);
7717f7ba
PM
5721 return 0;
5722}
5723
5724#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5725static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5726{
2da8ca82 5727 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5728 struct cgrp_cset_link *link;
7717f7ba 5729
96d365e0 5730 down_read(&css_set_rwsem);
182446d0 5731 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5732 struct css_set *cset = link->cset;
7717f7ba
PM
5733 struct task_struct *task;
5734 int count = 0;
c7561128 5735
5abb8855 5736 seq_printf(seq, "css_set %p\n", cset);
c7561128 5737
5abb8855 5738 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5739 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5740 goto overflow;
5741 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5742 }
5743
5744 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5745 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5746 goto overflow;
5747 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5748 }
c7561128
TH
5749 continue;
5750 overflow:
5751 seq_puts(seq, " ...\n");
7717f7ba 5752 }
96d365e0 5753 up_read(&css_set_rwsem);
7717f7ba
PM
5754 return 0;
5755}
5756
182446d0 5757static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5758{
a25eb52e
ZL
5759 return (!cgroup_has_tasks(css->cgroup) &&
5760 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5761}
5762
5763static struct cftype debug_files[] = {
fe693435
PM
5764 {
5765 .name = "taskcount",
5766 .read_u64 = debug_taskcount_read,
5767 },
5768
5769 {
5770 .name = "current_css_set",
5771 .read_u64 = current_css_set_read,
5772 },
5773
5774 {
5775 .name = "current_css_set_refcount",
5776 .read_u64 = current_css_set_refcount_read,
5777 },
5778
7717f7ba
PM
5779 {
5780 .name = "current_css_set_cg_links",
2da8ca82 5781 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5782 },
5783
5784 {
5785 .name = "cgroup_css_links",
2da8ca82 5786 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5787 },
5788
fe693435
PM
5789 {
5790 .name = "releasable",
5791 .read_u64 = releasable_read,
5792 },
fe693435 5793
4baf6e33
TH
5794 { } /* terminate */
5795};
fe693435 5796
073219e9 5797struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5798 .css_alloc = debug_css_alloc,
5799 .css_free = debug_css_free,
5577964e 5800 .legacy_cftypes = debug_files,
fe693435
PM
5801};
5802#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.558342 seconds and 5 git commands to generate.