cgroup: make serial_nr_cursor available throughout cgroup.c
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
817929ec 43#include <linux/backing-dev.h>
ddbcc7e8
PM
44#include <linux/seq_file.h>
45#include <linux/slab.h>
46#include <linux/magic.h>
47#include <linux/spinlock.h>
48#include <linux/string.h>
bbcb81d0 49#include <linux/sort.h>
81a6a5cd 50#include <linux/kmod.h>
e6a1105b 51#include <linux/module.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
3f8206d4 55#include <linux/namei.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
59#include <linux/eventfd.h>
60#include <linux/poll.h>
081aa458 61#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 62#include <linux/kthread.h>
846c7bb0 63
60063497 64#include <linux/atomic.h>
ddbcc7e8 65
e25e2cbb
TH
66/*
67 * cgroup_mutex is the master lock. Any modification to cgroup or its
68 * hierarchy must be performed while holding it.
69 *
70 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
71 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
72 * release_agent_path and so on. Modifying requires both cgroup_mutex and
73 * cgroup_root_mutex. Readers can acquire either of the two. This is to
74 * break the following locking order cycle.
75 *
76 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
77 * B. namespace_sem -> cgroup_mutex
78 *
79 * B happens only through cgroup_show_options() and using cgroup_root_mutex
80 * breaks it.
81 */
2219449a
TH
82#ifdef CONFIG_PROVE_RCU
83DEFINE_MUTEX(cgroup_mutex);
84EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
85#else
81a6a5cd 86static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
87#endif
88
e25e2cbb 89static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 90
aae8aab4
BB
91/*
92 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 93 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
94 * registered after that. The mutable section of this array is protected by
95 * cgroup_mutex.
96 */
80f4c877 97#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 98#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 99static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
100#include <linux/cgroup_subsys.h>
101};
102
ddbcc7e8
PM
103/*
104 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
105 * subsystems that are otherwise unattached - it never has more than a
106 * single cgroup, and all tasks are part of that cgroup.
107 */
108static struct cgroupfs_root rootnode;
109
05ef1d7c
TH
110/*
111 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
112 */
113struct cfent {
114 struct list_head node;
115 struct dentry *dentry;
116 struct cftype *type;
712317ad
LZ
117
118 /* file xattrs */
119 struct simple_xattrs xattrs;
05ef1d7c
TH
120};
121
38460b48
KH
122/*
123 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
124 * cgroup_subsys->use_id != 0.
125 */
126#define CSS_ID_MAX (65535)
127struct css_id {
128 /*
129 * The css to which this ID points. This pointer is set to valid value
130 * after cgroup is populated. If cgroup is removed, this will be NULL.
131 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
132 * is called after synchronize_rcu(). But for safe use, css_tryget()
133 * should be used for avoiding race.
38460b48 134 */
2c392b8c 135 struct cgroup_subsys_state __rcu *css;
38460b48
KH
136 /*
137 * ID of this css.
138 */
139 unsigned short id;
140 /*
141 * Depth in hierarchy which this ID belongs to.
142 */
143 unsigned short depth;
144 /*
145 * ID is freed by RCU. (and lookup routine is RCU safe.)
146 */
147 struct rcu_head rcu_head;
148 /*
149 * Hierarchy of CSS ID belongs to.
150 */
151 unsigned short stack[0]; /* Array of Length (depth+1) */
152};
153
0dea1168 154/*
25985edc 155 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
156 */
157struct cgroup_event {
158 /*
159 * Cgroup which the event belongs to.
160 */
161 struct cgroup *cgrp;
162 /*
163 * Control file which the event associated.
164 */
165 struct cftype *cft;
166 /*
167 * eventfd to signal userspace about the event.
168 */
169 struct eventfd_ctx *eventfd;
170 /*
171 * Each of these stored in a list by the cgroup.
172 */
173 struct list_head list;
174 /*
175 * All fields below needed to unregister event when
176 * userspace closes eventfd.
177 */
178 poll_table pt;
179 wait_queue_head_t *wqh;
180 wait_queue_t wait;
181 struct work_struct remove;
182};
38460b48 183
ddbcc7e8
PM
184/* The list of hierarchy roots */
185
186static LIST_HEAD(roots);
817929ec 187static int root_count;
ddbcc7e8 188
54e7b4eb
TH
189/*
190 * Hierarchy ID allocation and mapping. It follows the same exclusion
191 * rules as other root ops - both cgroup_mutex and cgroup_root_mutex for
192 * writes, either for reads.
193 */
1a574231 194static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 195
ddbcc7e8
PM
196/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
197#define dummytop (&rootnode.top_cgroup)
198
65dff759
LZ
199static struct cgroup_name root_cgroup_name = { .name = "/" };
200
794611a1
LZ
201/*
202 * Assign a monotonically increasing serial number to cgroups. It
203 * guarantees cgroups with bigger numbers are newer than those with smaller
204 * numbers. Also, as cgroups are always appended to the parent's
205 * ->children list, it guarantees that sibling cgroups are always sorted in
206 * the ascending serial number order on the list.
207 */
208static atomic64_t cgroup_serial_nr_cursor = ATOMIC64_INIT(0);
209
ddbcc7e8 210/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
211 * check for fork/exit handlers to call. This avoids us having to do
212 * extra work in the fork/exit path if none of the subsystems need to
213 * be called.
ddbcc7e8 214 */
8947f9d5 215static int need_forkexit_callback __read_mostly;
ddbcc7e8 216
ea15f8cc 217static void cgroup_offline_fn(struct work_struct *work);
42809dd4 218static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
219static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
220 struct cftype cfts[], bool is_add);
42809dd4 221
ddbcc7e8 222/* convenient tests for these bits */
54766d4a 223static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 224{
54766d4a 225 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
226}
227
78574cf9
LZ
228/**
229 * cgroup_is_descendant - test ancestry
230 * @cgrp: the cgroup to be tested
231 * @ancestor: possible ancestor of @cgrp
232 *
233 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
234 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
235 * and @ancestor are accessible.
236 */
237bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
238{
239 while (cgrp) {
240 if (cgrp == ancestor)
241 return true;
242 cgrp = cgrp->parent;
243 }
244 return false;
245}
246EXPORT_SYMBOL_GPL(cgroup_is_descendant);
ddbcc7e8 247
e9685a03 248static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
249{
250 const int bits =
bd89aabc
PM
251 (1 << CGRP_RELEASABLE) |
252 (1 << CGRP_NOTIFY_ON_RELEASE);
253 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
254}
255
e9685a03 256static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 257{
bd89aabc 258 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
259}
260
ddbcc7e8
PM
261/*
262 * for_each_subsys() allows you to iterate on each subsystem attached to
263 * an active hierarchy
264 */
265#define for_each_subsys(_root, _ss) \
266list_for_each_entry(_ss, &_root->subsys_list, sibling)
267
e5f6a860
LZ
268/* for_each_active_root() allows you to iterate across the active hierarchies */
269#define for_each_active_root(_root) \
ddbcc7e8
PM
270list_for_each_entry(_root, &roots, root_list)
271
f6ea9372
TH
272static inline struct cgroup *__d_cgrp(struct dentry *dentry)
273{
274 return dentry->d_fsdata;
275}
276
05ef1d7c 277static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
278{
279 return dentry->d_fsdata;
280}
281
05ef1d7c
TH
282static inline struct cftype *__d_cft(struct dentry *dentry)
283{
284 return __d_cfe(dentry)->type;
285}
286
7ae1bad9
TH
287/**
288 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
289 * @cgrp: the cgroup to be checked for liveness
290 *
47cfcd09
TH
291 * On success, returns true; the mutex should be later unlocked. On
292 * failure returns false with no lock held.
7ae1bad9 293 */
b9777cf8 294static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
295{
296 mutex_lock(&cgroup_mutex);
54766d4a 297 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
298 mutex_unlock(&cgroup_mutex);
299 return false;
300 }
301 return true;
302}
7ae1bad9 303
81a6a5cd
PM
304/* the list of cgroups eligible for automatic release. Protected by
305 * release_list_lock */
306static LIST_HEAD(release_list);
cdcc136f 307static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
308static void cgroup_release_agent(struct work_struct *work);
309static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 310static void check_for_release(struct cgroup *cgrp);
81a6a5cd 311
69d0206c
TH
312/*
313 * A cgroup can be associated with multiple css_sets as different tasks may
314 * belong to different cgroups on different hierarchies. In the other
315 * direction, a css_set is naturally associated with multiple cgroups.
316 * This M:N relationship is represented by the following link structure
317 * which exists for each association and allows traversing the associations
318 * from both sides.
319 */
320struct cgrp_cset_link {
321 /* the cgroup and css_set this link associates */
322 struct cgroup *cgrp;
323 struct css_set *cset;
324
325 /* list of cgrp_cset_links anchored at cgrp->cset_links */
326 struct list_head cset_link;
327
328 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
329 struct list_head cgrp_link;
817929ec
PM
330};
331
332/* The default css_set - used by init and its children prior to any
333 * hierarchies being mounted. It contains a pointer to the root state
334 * for each subsystem. Also used to anchor the list of css_sets. Not
335 * reference-counted, to improve performance when child cgroups
336 * haven't been created.
337 */
338
339static struct css_set init_css_set;
69d0206c 340static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 341
e6a1105b
BB
342static int cgroup_init_idr(struct cgroup_subsys *ss,
343 struct cgroup_subsys_state *css);
38460b48 344
817929ec
PM
345/* css_set_lock protects the list of css_set objects, and the
346 * chain of tasks off each css_set. Nests outside task->alloc_lock
347 * due to cgroup_iter_start() */
348static DEFINE_RWLOCK(css_set_lock);
349static int css_set_count;
350
7717f7ba
PM
351/*
352 * hash table for cgroup groups. This improves the performance to find
353 * an existing css_set. This hash doesn't (currently) take into
354 * account cgroups in empty hierarchies.
355 */
472b1053 356#define CSS_SET_HASH_BITS 7
0ac801fe 357static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 358
0ac801fe 359static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
360{
361 int i;
0ac801fe 362 unsigned long key = 0UL;
472b1053
LZ
363
364 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
365 key += (unsigned long)css[i];
366 key = (key >> 16) ^ key;
472b1053 367
0ac801fe 368 return key;
472b1053
LZ
369}
370
817929ec
PM
371/* We don't maintain the lists running through each css_set to its
372 * task until after the first call to cgroup_iter_start(). This
373 * reduces the fork()/exit() overhead for people who have cgroups
374 * compiled into their kernel but not actually in use */
8947f9d5 375static int use_task_css_set_links __read_mostly;
817929ec 376
5abb8855 377static void __put_css_set(struct css_set *cset, int taskexit)
b4f48b63 378{
69d0206c 379 struct cgrp_cset_link *link, *tmp_link;
5abb8855 380
146aa1bd
LJ
381 /*
382 * Ensure that the refcount doesn't hit zero while any readers
383 * can see it. Similar to atomic_dec_and_lock(), but for an
384 * rwlock
385 */
5abb8855 386 if (atomic_add_unless(&cset->refcount, -1, 1))
146aa1bd
LJ
387 return;
388 write_lock(&css_set_lock);
5abb8855 389 if (!atomic_dec_and_test(&cset->refcount)) {
146aa1bd
LJ
390 write_unlock(&css_set_lock);
391 return;
392 }
81a6a5cd 393
2c6ab6d2 394 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 395 hash_del(&cset->hlist);
2c6ab6d2
PM
396 css_set_count--;
397
69d0206c 398 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 399 struct cgroup *cgrp = link->cgrp;
5abb8855 400
69d0206c
TH
401 list_del(&link->cset_link);
402 list_del(&link->cgrp_link);
71b5707e 403
ddd69148 404 /* @cgrp can't go away while we're holding css_set_lock */
6f3d828f 405 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 406 if (taskexit)
bd89aabc
PM
407 set_bit(CGRP_RELEASABLE, &cgrp->flags);
408 check_for_release(cgrp);
81a6a5cd 409 }
2c6ab6d2
PM
410
411 kfree(link);
81a6a5cd 412 }
2c6ab6d2
PM
413
414 write_unlock(&css_set_lock);
5abb8855 415 kfree_rcu(cset, rcu_head);
b4f48b63
PM
416}
417
817929ec
PM
418/*
419 * refcounted get/put for css_set objects
420 */
5abb8855 421static inline void get_css_set(struct css_set *cset)
817929ec 422{
5abb8855 423 atomic_inc(&cset->refcount);
817929ec
PM
424}
425
5abb8855 426static inline void put_css_set(struct css_set *cset)
817929ec 427{
5abb8855 428 __put_css_set(cset, 0);
817929ec
PM
429}
430
5abb8855 431static inline void put_css_set_taskexit(struct css_set *cset)
81a6a5cd 432{
5abb8855 433 __put_css_set(cset, 1);
81a6a5cd
PM
434}
435
7717f7ba
PM
436/*
437 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
438 * @cset: candidate css_set being tested
439 * @old_cset: existing css_set for a task
7717f7ba
PM
440 * @new_cgrp: cgroup that's being entered by the task
441 * @template: desired set of css pointers in css_set (pre-calculated)
442 *
443 * Returns true if "cg" matches "old_cg" except for the hierarchy
444 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
445 */
5abb8855
TH
446static bool compare_css_sets(struct css_set *cset,
447 struct css_set *old_cset,
7717f7ba
PM
448 struct cgroup *new_cgrp,
449 struct cgroup_subsys_state *template[])
450{
451 struct list_head *l1, *l2;
452
5abb8855 453 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
454 /* Not all subsystems matched */
455 return false;
456 }
457
458 /*
459 * Compare cgroup pointers in order to distinguish between
460 * different cgroups in heirarchies with no subsystems. We
461 * could get by with just this check alone (and skip the
462 * memcmp above) but on most setups the memcmp check will
463 * avoid the need for this more expensive check on almost all
464 * candidates.
465 */
466
69d0206c
TH
467 l1 = &cset->cgrp_links;
468 l2 = &old_cset->cgrp_links;
7717f7ba 469 while (1) {
69d0206c 470 struct cgrp_cset_link *link1, *link2;
5abb8855 471 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
472
473 l1 = l1->next;
474 l2 = l2->next;
475 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
476 if (l1 == &cset->cgrp_links) {
477 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
478 break;
479 } else {
69d0206c 480 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
481 }
482 /* Locate the cgroups associated with these links. */
69d0206c
TH
483 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
484 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
485 cgrp1 = link1->cgrp;
486 cgrp2 = link2->cgrp;
7717f7ba 487 /* Hierarchies should be linked in the same order. */
5abb8855 488 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
489
490 /*
491 * If this hierarchy is the hierarchy of the cgroup
492 * that's changing, then we need to check that this
493 * css_set points to the new cgroup; if it's any other
494 * hierarchy, then this css_set should point to the
495 * same cgroup as the old css_set.
496 */
5abb8855
TH
497 if (cgrp1->root == new_cgrp->root) {
498 if (cgrp1 != new_cgrp)
7717f7ba
PM
499 return false;
500 } else {
5abb8855 501 if (cgrp1 != cgrp2)
7717f7ba
PM
502 return false;
503 }
504 }
505 return true;
506}
507
817929ec
PM
508/*
509 * find_existing_css_set() is a helper for
510 * find_css_set(), and checks to see whether an existing
472b1053 511 * css_set is suitable.
817929ec
PM
512 *
513 * oldcg: the cgroup group that we're using before the cgroup
514 * transition
515 *
bd89aabc 516 * cgrp: the cgroup that we're moving into
817929ec
PM
517 *
518 * template: location in which to build the desired set of subsystem
519 * state objects for the new cgroup group
520 */
5abb8855
TH
521static struct css_set *find_existing_css_set(struct css_set *old_cset,
522 struct cgroup *cgrp,
523 struct cgroup_subsys_state *template[])
b4f48b63
PM
524{
525 int i;
bd89aabc 526 struct cgroupfs_root *root = cgrp->root;
5abb8855 527 struct css_set *cset;
0ac801fe 528 unsigned long key;
817929ec 529
aae8aab4
BB
530 /*
531 * Build the set of subsystem state objects that we want to see in the
532 * new css_set. while subsystems can change globally, the entries here
533 * won't change, so no need for locking.
534 */
817929ec 535 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 536 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
537 /* Subsystem is in this hierarchy. So we want
538 * the subsystem state from the new
539 * cgroup */
bd89aabc 540 template[i] = cgrp->subsys[i];
817929ec
PM
541 } else {
542 /* Subsystem is not in this hierarchy, so we
543 * don't want to change the subsystem state */
5abb8855 544 template[i] = old_cset->subsys[i];
817929ec
PM
545 }
546 }
547
0ac801fe 548 key = css_set_hash(template);
5abb8855
TH
549 hash_for_each_possible(css_set_table, cset, hlist, key) {
550 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
551 continue;
552
553 /* This css_set matches what we need */
5abb8855 554 return cset;
472b1053 555 }
817929ec
PM
556
557 /* No existing cgroup group matched */
558 return NULL;
559}
560
69d0206c 561static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 562{
69d0206c 563 struct cgrp_cset_link *link, *tmp_link;
36553434 564
69d0206c
TH
565 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
566 list_del(&link->cset_link);
36553434
LZ
567 kfree(link);
568 }
569}
570
69d0206c
TH
571/**
572 * allocate_cgrp_cset_links - allocate cgrp_cset_links
573 * @count: the number of links to allocate
574 * @tmp_links: list_head the allocated links are put on
575 *
576 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
577 * through ->cset_link. Returns 0 on success or -errno.
817929ec 578 */
69d0206c 579static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 580{
69d0206c 581 struct cgrp_cset_link *link;
817929ec 582 int i;
69d0206c
TH
583
584 INIT_LIST_HEAD(tmp_links);
585
817929ec 586 for (i = 0; i < count; i++) {
f4f4be2b 587 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 588 if (!link) {
69d0206c 589 free_cgrp_cset_links(tmp_links);
817929ec
PM
590 return -ENOMEM;
591 }
69d0206c 592 list_add(&link->cset_link, tmp_links);
817929ec
PM
593 }
594 return 0;
595}
596
c12f65d4
LZ
597/**
598 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 599 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 600 * @cset: the css_set to be linked
c12f65d4
LZ
601 * @cgrp: the destination cgroup
602 */
69d0206c
TH
603static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
604 struct cgroup *cgrp)
c12f65d4 605{
69d0206c 606 struct cgrp_cset_link *link;
c12f65d4 607
69d0206c
TH
608 BUG_ON(list_empty(tmp_links));
609 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
610 link->cset = cset;
7717f7ba 611 link->cgrp = cgrp;
69d0206c 612 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
613 /*
614 * Always add links to the tail of the list so that the list
615 * is sorted by order of hierarchy creation
616 */
69d0206c 617 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
618}
619
817929ec
PM
620/*
621 * find_css_set() takes an existing cgroup group and a
622 * cgroup object, and returns a css_set object that's
623 * equivalent to the old group, but with the given cgroup
624 * substituted into the appropriate hierarchy. Must be called with
625 * cgroup_mutex held
626 */
5abb8855
TH
627static struct css_set *find_css_set(struct css_set *old_cset,
628 struct cgroup *cgrp)
817929ec 629{
5abb8855 630 struct css_set *cset;
817929ec 631 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
69d0206c
TH
632 struct list_head tmp_links;
633 struct cgrp_cset_link *link;
0ac801fe 634 unsigned long key;
472b1053 635
817929ec
PM
636 /* First see if we already have a cgroup group that matches
637 * the desired set */
7e9abd89 638 read_lock(&css_set_lock);
5abb8855
TH
639 cset = find_existing_css_set(old_cset, cgrp, template);
640 if (cset)
641 get_css_set(cset);
7e9abd89 642 read_unlock(&css_set_lock);
817929ec 643
5abb8855
TH
644 if (cset)
645 return cset;
817929ec 646
f4f4be2b 647 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 648 if (!cset)
817929ec
PM
649 return NULL;
650
69d0206c
TH
651 /* Allocate all the cgrp_cset_link objects that we'll need */
652 if (allocate_cgrp_cset_links(root_count, &tmp_links) < 0) {
5abb8855 653 kfree(cset);
817929ec
PM
654 return NULL;
655 }
656
5abb8855 657 atomic_set(&cset->refcount, 1);
69d0206c 658 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
659 INIT_LIST_HEAD(&cset->tasks);
660 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
661
662 /* Copy the set of subsystem state objects generated in
663 * find_existing_css_set() */
5abb8855 664 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec
PM
665
666 write_lock(&css_set_lock);
667 /* Add reference counts and links from the new css_set. */
69d0206c 668 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 669 struct cgroup *c = link->cgrp;
69d0206c 670
7717f7ba
PM
671 if (c->root == cgrp->root)
672 c = cgrp;
69d0206c 673 link_css_set(&tmp_links, cset, c);
7717f7ba 674 }
817929ec 675
69d0206c 676 BUG_ON(!list_empty(&tmp_links));
817929ec 677
817929ec 678 css_set_count++;
472b1053
LZ
679
680 /* Add this cgroup group to the hash table */
5abb8855
TH
681 key = css_set_hash(cset->subsys);
682 hash_add(css_set_table, &cset->hlist, key);
472b1053 683
817929ec
PM
684 write_unlock(&css_set_lock);
685
5abb8855 686 return cset;
b4f48b63
PM
687}
688
7717f7ba
PM
689/*
690 * Return the cgroup for "task" from the given hierarchy. Must be
691 * called with cgroup_mutex held.
692 */
693static struct cgroup *task_cgroup_from_root(struct task_struct *task,
694 struct cgroupfs_root *root)
695{
5abb8855 696 struct css_set *cset;
7717f7ba
PM
697 struct cgroup *res = NULL;
698
699 BUG_ON(!mutex_is_locked(&cgroup_mutex));
700 read_lock(&css_set_lock);
701 /*
702 * No need to lock the task - since we hold cgroup_mutex the
703 * task can't change groups, so the only thing that can happen
704 * is that it exits and its css is set back to init_css_set.
705 */
5abb8855
TH
706 cset = task->cgroups;
707 if (cset == &init_css_set) {
7717f7ba
PM
708 res = &root->top_cgroup;
709 } else {
69d0206c
TH
710 struct cgrp_cset_link *link;
711
712 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 713 struct cgroup *c = link->cgrp;
69d0206c 714
7717f7ba
PM
715 if (c->root == root) {
716 res = c;
717 break;
718 }
719 }
720 }
721 read_unlock(&css_set_lock);
722 BUG_ON(!res);
723 return res;
724}
725
ddbcc7e8
PM
726/*
727 * There is one global cgroup mutex. We also require taking
728 * task_lock() when dereferencing a task's cgroup subsys pointers.
729 * See "The task_lock() exception", at the end of this comment.
730 *
731 * A task must hold cgroup_mutex to modify cgroups.
732 *
733 * Any task can increment and decrement the count field without lock.
734 * So in general, code holding cgroup_mutex can't rely on the count
735 * field not changing. However, if the count goes to zero, then only
956db3ca 736 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
737 * means that no tasks are currently attached, therefore there is no
738 * way a task attached to that cgroup can fork (the other way to
739 * increment the count). So code holding cgroup_mutex can safely
740 * assume that if the count is zero, it will stay zero. Similarly, if
741 * a task holds cgroup_mutex on a cgroup with zero count, it
742 * knows that the cgroup won't be removed, as cgroup_rmdir()
743 * needs that mutex.
744 *
ddbcc7e8
PM
745 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
746 * (usually) take cgroup_mutex. These are the two most performance
747 * critical pieces of code here. The exception occurs on cgroup_exit(),
748 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
749 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
750 * to the release agent with the name of the cgroup (path relative to
751 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
752 *
753 * A cgroup can only be deleted if both its 'count' of using tasks
754 * is zero, and its list of 'children' cgroups is empty. Since all
755 * tasks in the system use _some_ cgroup, and since there is always at
756 * least one task in the system (init, pid == 1), therefore, top_cgroup
757 * always has either children cgroups and/or using tasks. So we don't
758 * need a special hack to ensure that top_cgroup cannot be deleted.
759 *
760 * The task_lock() exception
761 *
762 * The need for this exception arises from the action of
d0b2fdd2 763 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 764 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
765 * several performance critical places that need to reference
766 * task->cgroup without the expense of grabbing a system global
767 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 768 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
769 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
770 * the task_struct routinely used for such matters.
771 *
772 * P.S. One more locking exception. RCU is used to guard the
956db3ca 773 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
774 */
775
ddbcc7e8
PM
776/*
777 * A couple of forward declarations required, due to cyclic reference loop:
778 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
779 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
780 * -> cgroup_mkdir.
781 */
782
18bb1db3 783static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 784static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 785static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
786static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
787 unsigned long subsys_mask);
6e1d5dcc 788static const struct inode_operations cgroup_dir_inode_operations;
828c0950 789static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
790
791static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 792 .name = "cgroup",
e4ad08fe 793 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 794};
ddbcc7e8 795
38460b48
KH
796static int alloc_css_id(struct cgroup_subsys *ss,
797 struct cgroup *parent, struct cgroup *child);
798
a5e7ed32 799static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
800{
801 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
802
803 if (inode) {
85fe4025 804 inode->i_ino = get_next_ino();
ddbcc7e8 805 inode->i_mode = mode;
76aac0e9
DH
806 inode->i_uid = current_fsuid();
807 inode->i_gid = current_fsgid();
ddbcc7e8
PM
808 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
809 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
810 }
811 return inode;
812}
813
65dff759
LZ
814static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
815{
816 struct cgroup_name *name;
817
818 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
819 if (!name)
820 return NULL;
821 strcpy(name->name, dentry->d_name.name);
822 return name;
823}
824
be445626
LZ
825static void cgroup_free_fn(struct work_struct *work)
826{
ea15f8cc 827 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626
LZ
828 struct cgroup_subsys *ss;
829
830 mutex_lock(&cgroup_mutex);
831 /*
832 * Release the subsystem state objects.
833 */
834 for_each_subsys(cgrp->root, ss)
835 ss->css_free(cgrp);
836
837 cgrp->root->number_of_cgroups--;
838 mutex_unlock(&cgroup_mutex);
839
415cf07a
LZ
840 /*
841 * We get a ref to the parent's dentry, and put the ref when
842 * this cgroup is being freed, so it's guaranteed that the
843 * parent won't be destroyed before its children.
844 */
845 dput(cgrp->parent->dentry);
846
cc20e01c
LZ
847 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
848
be445626
LZ
849 /*
850 * Drop the active superblock reference that we took when we
cc20e01c
LZ
851 * created the cgroup. This will free cgrp->root, if we are
852 * holding the last reference to @sb.
be445626
LZ
853 */
854 deactivate_super(cgrp->root->sb);
855
856 /*
857 * if we're getting rid of the cgroup, refcount should ensure
858 * that there are no pidlists left.
859 */
860 BUG_ON(!list_empty(&cgrp->pidlists));
861
862 simple_xattrs_free(&cgrp->xattrs);
863
65dff759 864 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
865 kfree(cgrp);
866}
867
868static void cgroup_free_rcu(struct rcu_head *head)
869{
870 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
871
ea15f8cc
TH
872 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
873 schedule_work(&cgrp->destroy_work);
be445626
LZ
874}
875
ddbcc7e8
PM
876static void cgroup_diput(struct dentry *dentry, struct inode *inode)
877{
878 /* is dentry a directory ? if so, kfree() associated cgroup */
879 if (S_ISDIR(inode->i_mode)) {
bd89aabc 880 struct cgroup *cgrp = dentry->d_fsdata;
be445626 881
54766d4a 882 BUG_ON(!(cgroup_is_dead(cgrp)));
be445626 883 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
884 } else {
885 struct cfent *cfe = __d_cfe(dentry);
886 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
887
888 WARN_ONCE(!list_empty(&cfe->node) &&
889 cgrp != &cgrp->root->top_cgroup,
890 "cfe still linked for %s\n", cfe->type->name);
712317ad 891 simple_xattrs_free(&cfe->xattrs);
05ef1d7c 892 kfree(cfe);
ddbcc7e8
PM
893 }
894 iput(inode);
895}
896
c72a04e3
AV
897static int cgroup_delete(const struct dentry *d)
898{
899 return 1;
900}
901
ddbcc7e8
PM
902static void remove_dir(struct dentry *d)
903{
904 struct dentry *parent = dget(d->d_parent);
905
906 d_delete(d);
907 simple_rmdir(parent->d_inode, d);
908 dput(parent);
909}
910
2739d3cc 911static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
912{
913 struct cfent *cfe;
914
915 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
916 lockdep_assert_held(&cgroup_mutex);
917
2739d3cc
LZ
918 /*
919 * If we're doing cleanup due to failure of cgroup_create(),
920 * the corresponding @cfe may not exist.
921 */
05ef1d7c
TH
922 list_for_each_entry(cfe, &cgrp->files, node) {
923 struct dentry *d = cfe->dentry;
924
925 if (cft && cfe->type != cft)
926 continue;
927
928 dget(d);
929 d_delete(d);
ce27e317 930 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
931 list_del_init(&cfe->node);
932 dput(d);
933
2739d3cc 934 break;
ddbcc7e8 935 }
05ef1d7c
TH
936}
937
13af07df
AR
938/**
939 * cgroup_clear_directory - selective removal of base and subsystem files
940 * @dir: directory containing the files
941 * @base_files: true if the base files should be removed
942 * @subsys_mask: mask of the subsystem ids whose files should be removed
943 */
944static void cgroup_clear_directory(struct dentry *dir, bool base_files,
945 unsigned long subsys_mask)
05ef1d7c
TH
946{
947 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 948 struct cgroup_subsys *ss;
05ef1d7c 949
13af07df
AR
950 for_each_subsys(cgrp->root, ss) {
951 struct cftype_set *set;
952 if (!test_bit(ss->subsys_id, &subsys_mask))
953 continue;
954 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 955 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
956 }
957 if (base_files) {
958 while (!list_empty(&cgrp->files))
959 cgroup_rm_file(cgrp, NULL);
960 }
ddbcc7e8
PM
961}
962
963/*
964 * NOTE : the dentry must have been dget()'ed
965 */
966static void cgroup_d_remove_dir(struct dentry *dentry)
967{
2fd6b7f5 968 struct dentry *parent;
13af07df 969 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 970
a1a71b45 971 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 972
2fd6b7f5
NP
973 parent = dentry->d_parent;
974 spin_lock(&parent->d_lock);
3ec762ad 975 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 976 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
977 spin_unlock(&dentry->d_lock);
978 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
979 remove_dir(dentry);
980}
981
aae8aab4 982/*
cf5d5941
BB
983 * Call with cgroup_mutex held. Drops reference counts on modules, including
984 * any duplicate ones that parse_cgroupfs_options took. If this function
985 * returns an error, no reference counts are touched.
aae8aab4 986 */
ddbcc7e8 987static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 988 unsigned long final_subsys_mask)
ddbcc7e8 989{
a1a71b45 990 unsigned long added_mask, removed_mask;
bd89aabc 991 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
992 int i;
993
aae8aab4 994 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 995 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 996
a1a71b45
AR
997 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
998 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
999 /* Check that any added subsystems are currently free */
1000 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1001 unsigned long bit = 1UL << i;
ddbcc7e8 1002 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1003 if (!(bit & added_mask))
ddbcc7e8 1004 continue;
aae8aab4
BB
1005 /*
1006 * Nobody should tell us to do a subsys that doesn't exist:
1007 * parse_cgroupfs_options should catch that case and refcounts
1008 * ensure that subsystems won't disappear once selected.
1009 */
1010 BUG_ON(ss == NULL);
ddbcc7e8
PM
1011 if (ss->root != &rootnode) {
1012 /* Subsystem isn't free */
1013 return -EBUSY;
1014 }
1015 }
1016
1017 /* Currently we don't handle adding/removing subsystems when
1018 * any child cgroups exist. This is theoretically supportable
1019 * but involves complex error handling, so it's being left until
1020 * later */
307257cf 1021 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1022 return -EBUSY;
1023
1024 /* Process each subsystem */
1025 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1026 struct cgroup_subsys *ss = subsys[i];
1027 unsigned long bit = 1UL << i;
a1a71b45 1028 if (bit & added_mask) {
ddbcc7e8 1029 /* We're binding this subsystem to this hierarchy */
aae8aab4 1030 BUG_ON(ss == NULL);
bd89aabc 1031 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1032 BUG_ON(!dummytop->subsys[i]);
1033 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1034 cgrp->subsys[i] = dummytop->subsys[i];
1035 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1036 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1037 ss->root = root;
ddbcc7e8 1038 if (ss->bind)
761b3ef5 1039 ss->bind(cgrp);
cf5d5941 1040 /* refcount was already taken, and we're keeping it */
a1a71b45 1041 } else if (bit & removed_mask) {
ddbcc7e8 1042 /* We're removing this subsystem */
aae8aab4 1043 BUG_ON(ss == NULL);
bd89aabc
PM
1044 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1045 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
ddbcc7e8 1046 if (ss->bind)
761b3ef5 1047 ss->bind(dummytop);
ddbcc7e8 1048 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1049 cgrp->subsys[i] = NULL;
b2aa30f7 1050 subsys[i]->root = &rootnode;
33a68ac1 1051 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1052 /* subsystem is now free - drop reference on module */
1053 module_put(ss->module);
a1a71b45 1054 } else if (bit & final_subsys_mask) {
ddbcc7e8 1055 /* Subsystem state should already exist */
aae8aab4 1056 BUG_ON(ss == NULL);
bd89aabc 1057 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1058 /*
1059 * a refcount was taken, but we already had one, so
1060 * drop the extra reference.
1061 */
1062 module_put(ss->module);
1063#ifdef CONFIG_MODULE_UNLOAD
1064 BUG_ON(ss->module && !module_refcount(ss->module));
1065#endif
ddbcc7e8
PM
1066 } else {
1067 /* Subsystem state shouldn't exist */
bd89aabc 1068 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1069 }
1070 }
a1a71b45 1071 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1072
1073 return 0;
1074}
1075
34c80b1d 1076static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1077{
34c80b1d 1078 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1079 struct cgroup_subsys *ss;
1080
e25e2cbb 1081 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1082 for_each_subsys(root, ss)
1083 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1084 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1085 seq_puts(seq, ",sane_behavior");
93438629 1086 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1087 seq_puts(seq, ",noprefix");
93438629 1088 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1089 seq_puts(seq, ",xattr");
81a6a5cd
PM
1090 if (strlen(root->release_agent_path))
1091 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1092 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1093 seq_puts(seq, ",clone_children");
c6d57f33
PM
1094 if (strlen(root->name))
1095 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1096 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1097 return 0;
1098}
1099
1100struct cgroup_sb_opts {
a1a71b45 1101 unsigned long subsys_mask;
ddbcc7e8 1102 unsigned long flags;
81a6a5cd 1103 char *release_agent;
2260e7fc 1104 bool cpuset_clone_children;
c6d57f33 1105 char *name;
2c6ab6d2
PM
1106 /* User explicitly requested empty subsystem */
1107 bool none;
c6d57f33
PM
1108
1109 struct cgroupfs_root *new_root;
2c6ab6d2 1110
ddbcc7e8
PM
1111};
1112
aae8aab4
BB
1113/*
1114 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1115 * with cgroup_mutex held to protect the subsys[] array. This function takes
1116 * refcounts on subsystems to be used, unless it returns error, in which case
1117 * no refcounts are taken.
aae8aab4 1118 */
cf5d5941 1119static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1120{
32a8cf23
DL
1121 char *token, *o = data;
1122 bool all_ss = false, one_ss = false;
f9ab5b5b 1123 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1124 int i;
1125 bool module_pin_failed = false;
f9ab5b5b 1126
aae8aab4
BB
1127 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1128
f9ab5b5b
LZ
1129#ifdef CONFIG_CPUSETS
1130 mask = ~(1UL << cpuset_subsys_id);
1131#endif
ddbcc7e8 1132
c6d57f33 1133 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1134
1135 while ((token = strsep(&o, ",")) != NULL) {
1136 if (!*token)
1137 return -EINVAL;
32a8cf23 1138 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1139 /* Explicitly have no subsystems */
1140 opts->none = true;
32a8cf23
DL
1141 continue;
1142 }
1143 if (!strcmp(token, "all")) {
1144 /* Mutually exclusive option 'all' + subsystem name */
1145 if (one_ss)
1146 return -EINVAL;
1147 all_ss = true;
1148 continue;
1149 }
873fe09e
TH
1150 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1151 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1152 continue;
1153 }
32a8cf23 1154 if (!strcmp(token, "noprefix")) {
93438629 1155 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1156 continue;
1157 }
1158 if (!strcmp(token, "clone_children")) {
2260e7fc 1159 opts->cpuset_clone_children = true;
32a8cf23
DL
1160 continue;
1161 }
03b1cde6 1162 if (!strcmp(token, "xattr")) {
93438629 1163 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1164 continue;
1165 }
32a8cf23 1166 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1167 /* Specifying two release agents is forbidden */
1168 if (opts->release_agent)
1169 return -EINVAL;
c6d57f33 1170 opts->release_agent =
e400c285 1171 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1172 if (!opts->release_agent)
1173 return -ENOMEM;
32a8cf23
DL
1174 continue;
1175 }
1176 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1177 const char *name = token + 5;
1178 /* Can't specify an empty name */
1179 if (!strlen(name))
1180 return -EINVAL;
1181 /* Must match [\w.-]+ */
1182 for (i = 0; i < strlen(name); i++) {
1183 char c = name[i];
1184 if (isalnum(c))
1185 continue;
1186 if ((c == '.') || (c == '-') || (c == '_'))
1187 continue;
1188 return -EINVAL;
1189 }
1190 /* Specifying two names is forbidden */
1191 if (opts->name)
1192 return -EINVAL;
1193 opts->name = kstrndup(name,
e400c285 1194 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1195 GFP_KERNEL);
1196 if (!opts->name)
1197 return -ENOMEM;
32a8cf23
DL
1198
1199 continue;
1200 }
1201
1202 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1203 struct cgroup_subsys *ss = subsys[i];
1204 if (ss == NULL)
1205 continue;
1206 if (strcmp(token, ss->name))
1207 continue;
1208 if (ss->disabled)
1209 continue;
1210
1211 /* Mutually exclusive option 'all' + subsystem name */
1212 if (all_ss)
1213 return -EINVAL;
a1a71b45 1214 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1215 one_ss = true;
1216
1217 break;
1218 }
1219 if (i == CGROUP_SUBSYS_COUNT)
1220 return -ENOENT;
1221 }
1222
1223 /*
1224 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1225 * otherwise if 'none', 'name=' and a subsystem name options
1226 * were not specified, let's default to 'all'
32a8cf23 1227 */
0d19ea86 1228 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1229 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1230 struct cgroup_subsys *ss = subsys[i];
1231 if (ss == NULL)
1232 continue;
1233 if (ss->disabled)
1234 continue;
a1a71b45 1235 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1236 }
1237 }
1238
2c6ab6d2
PM
1239 /* Consistency checks */
1240
873fe09e
TH
1241 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1242 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1243
1244 if (opts->flags & CGRP_ROOT_NOPREFIX) {
1245 pr_err("cgroup: sane_behavior: noprefix is not allowed\n");
1246 return -EINVAL;
1247 }
1248
1249 if (opts->cpuset_clone_children) {
1250 pr_err("cgroup: sane_behavior: clone_children is not allowed\n");
1251 return -EINVAL;
1252 }
1253 }
1254
f9ab5b5b
LZ
1255 /*
1256 * Option noprefix was introduced just for backward compatibility
1257 * with the old cpuset, so we allow noprefix only if mounting just
1258 * the cpuset subsystem.
1259 */
93438629 1260 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1261 return -EINVAL;
1262
2c6ab6d2
PM
1263
1264 /* Can't specify "none" and some subsystems */
a1a71b45 1265 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1266 return -EINVAL;
1267
1268 /*
1269 * We either have to specify by name or by subsystems. (So all
1270 * empty hierarchies must have a name).
1271 */
a1a71b45 1272 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1273 return -EINVAL;
1274
cf5d5941
BB
1275 /*
1276 * Grab references on all the modules we'll need, so the subsystems
1277 * don't dance around before rebind_subsystems attaches them. This may
1278 * take duplicate reference counts on a subsystem that's already used,
1279 * but rebind_subsystems handles this case.
1280 */
be45c900 1281 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1282 unsigned long bit = 1UL << i;
1283
a1a71b45 1284 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1285 continue;
1286 if (!try_module_get(subsys[i]->module)) {
1287 module_pin_failed = true;
1288 break;
1289 }
1290 }
1291 if (module_pin_failed) {
1292 /*
1293 * oops, one of the modules was going away. this means that we
1294 * raced with a module_delete call, and to the user this is
1295 * essentially a "subsystem doesn't exist" case.
1296 */
be45c900 1297 for (i--; i >= 0; i--) {
cf5d5941
BB
1298 /* drop refcounts only on the ones we took */
1299 unsigned long bit = 1UL << i;
1300
a1a71b45 1301 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1302 continue;
1303 module_put(subsys[i]->module);
1304 }
1305 return -ENOENT;
1306 }
1307
ddbcc7e8
PM
1308 return 0;
1309}
1310
a1a71b45 1311static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1312{
1313 int i;
be45c900 1314 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1315 unsigned long bit = 1UL << i;
1316
a1a71b45 1317 if (!(bit & subsys_mask))
cf5d5941
BB
1318 continue;
1319 module_put(subsys[i]->module);
1320 }
1321}
1322
ddbcc7e8
PM
1323static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1324{
1325 int ret = 0;
1326 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1327 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1328 struct cgroup_sb_opts opts;
a1a71b45 1329 unsigned long added_mask, removed_mask;
ddbcc7e8 1330
873fe09e
TH
1331 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1332 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1333 return -EINVAL;
1334 }
1335
bd89aabc 1336 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1337 mutex_lock(&cgroup_mutex);
e25e2cbb 1338 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1339
1340 /* See what subsystems are wanted */
1341 ret = parse_cgroupfs_options(data, &opts);
1342 if (ret)
1343 goto out_unlock;
1344
a1a71b45 1345 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1346 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1347 task_tgid_nr(current), current->comm);
1348
a1a71b45
AR
1349 added_mask = opts.subsys_mask & ~root->subsys_mask;
1350 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1351
cf5d5941
BB
1352 /* Don't allow flags or name to change at remount */
1353 if (opts.flags != root->flags ||
1354 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1355 ret = -EINVAL;
a1a71b45 1356 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1357 goto out_unlock;
1358 }
1359
7083d037
G
1360 /*
1361 * Clear out the files of subsystems that should be removed, do
1362 * this before rebind_subsystems, since rebind_subsystems may
1363 * change this hierarchy's subsys_list.
1364 */
1365 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1366
a1a71b45 1367 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1368 if (ret) {
7083d037
G
1369 /* rebind_subsystems failed, re-populate the removed files */
1370 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1371 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1372 goto out_unlock;
cf5d5941 1373 }
ddbcc7e8 1374
13af07df 1375 /* re-populate subsystem files */
a1a71b45 1376 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1377
81a6a5cd
PM
1378 if (opts.release_agent)
1379 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1380 out_unlock:
66bdc9cf 1381 kfree(opts.release_agent);
c6d57f33 1382 kfree(opts.name);
e25e2cbb 1383 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1384 mutex_unlock(&cgroup_mutex);
bd89aabc 1385 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1386 return ret;
1387}
1388
b87221de 1389static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1390 .statfs = simple_statfs,
1391 .drop_inode = generic_delete_inode,
1392 .show_options = cgroup_show_options,
1393 .remount_fs = cgroup_remount,
1394};
1395
cc31edce
PM
1396static void init_cgroup_housekeeping(struct cgroup *cgrp)
1397{
1398 INIT_LIST_HEAD(&cgrp->sibling);
1399 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1400 INIT_LIST_HEAD(&cgrp->files);
69d0206c 1401 INIT_LIST_HEAD(&cgrp->cset_links);
2243076a 1402 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1403 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1404 INIT_LIST_HEAD(&cgrp->pidlists);
1405 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1406 INIT_LIST_HEAD(&cgrp->event_list);
1407 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1408 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1409}
c6d57f33 1410
ddbcc7e8
PM
1411static void init_cgroup_root(struct cgroupfs_root *root)
1412{
bd89aabc 1413 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1414
ddbcc7e8
PM
1415 INIT_LIST_HEAD(&root->subsys_list);
1416 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1417 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1418 root->number_of_cgroups = 1;
bd89aabc 1419 cgrp->root = root;
65dff759 1420 cgrp->name = &root_cgroup_name;
cc31edce 1421 init_cgroup_housekeeping(cgrp);
fddfb02a 1422 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1423}
1424
fa3ca07e 1425static int cgroup_init_root_id(struct cgroupfs_root *root)
2c6ab6d2 1426{
1a574231 1427 int id;
2c6ab6d2 1428
54e7b4eb
TH
1429 lockdep_assert_held(&cgroup_mutex);
1430 lockdep_assert_held(&cgroup_root_mutex);
1431
1a574231
TH
1432 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 2, 0, GFP_KERNEL);
1433 if (id < 0)
1434 return id;
1435
1436 root->hierarchy_id = id;
fa3ca07e
TH
1437 return 0;
1438}
1439
1440static void cgroup_exit_root_id(struct cgroupfs_root *root)
1441{
54e7b4eb
TH
1442 lockdep_assert_held(&cgroup_mutex);
1443 lockdep_assert_held(&cgroup_root_mutex);
1444
fa3ca07e 1445 if (root->hierarchy_id) {
1a574231 1446 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
fa3ca07e
TH
1447 root->hierarchy_id = 0;
1448 }
2c6ab6d2
PM
1449}
1450
ddbcc7e8
PM
1451static int cgroup_test_super(struct super_block *sb, void *data)
1452{
c6d57f33 1453 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1454 struct cgroupfs_root *root = sb->s_fs_info;
1455
c6d57f33
PM
1456 /* If we asked for a name then it must match */
1457 if (opts->name && strcmp(opts->name, root->name))
1458 return 0;
ddbcc7e8 1459
2c6ab6d2
PM
1460 /*
1461 * If we asked for subsystems (or explicitly for no
1462 * subsystems) then they must match
1463 */
a1a71b45
AR
1464 if ((opts->subsys_mask || opts->none)
1465 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1466 return 0;
1467
1468 return 1;
1469}
1470
c6d57f33
PM
1471static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1472{
1473 struct cgroupfs_root *root;
1474
a1a71b45 1475 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1476 return NULL;
1477
1478 root = kzalloc(sizeof(*root), GFP_KERNEL);
1479 if (!root)
1480 return ERR_PTR(-ENOMEM);
1481
1482 init_cgroup_root(root);
2c6ab6d2 1483
a1a71b45 1484 root->subsys_mask = opts->subsys_mask;
c6d57f33 1485 root->flags = opts->flags;
0a950f65 1486 ida_init(&root->cgroup_ida);
c6d57f33
PM
1487 if (opts->release_agent)
1488 strcpy(root->release_agent_path, opts->release_agent);
1489 if (opts->name)
1490 strcpy(root->name, opts->name);
2260e7fc
TH
1491 if (opts->cpuset_clone_children)
1492 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1493 return root;
1494}
1495
fa3ca07e 1496static void cgroup_free_root(struct cgroupfs_root *root)
2c6ab6d2 1497{
fa3ca07e
TH
1498 if (root) {
1499 /* hierarhcy ID shoulid already have been released */
1500 WARN_ON_ONCE(root->hierarchy_id);
2c6ab6d2 1501
fa3ca07e
TH
1502 ida_destroy(&root->cgroup_ida);
1503 kfree(root);
1504 }
2c6ab6d2
PM
1505}
1506
ddbcc7e8
PM
1507static int cgroup_set_super(struct super_block *sb, void *data)
1508{
1509 int ret;
c6d57f33
PM
1510 struct cgroup_sb_opts *opts = data;
1511
1512 /* If we don't have a new root, we can't set up a new sb */
1513 if (!opts->new_root)
1514 return -EINVAL;
1515
a1a71b45 1516 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1517
1518 ret = set_anon_super(sb, NULL);
1519 if (ret)
1520 return ret;
1521
c6d57f33
PM
1522 sb->s_fs_info = opts->new_root;
1523 opts->new_root->sb = sb;
ddbcc7e8
PM
1524
1525 sb->s_blocksize = PAGE_CACHE_SIZE;
1526 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1527 sb->s_magic = CGROUP_SUPER_MAGIC;
1528 sb->s_op = &cgroup_ops;
1529
1530 return 0;
1531}
1532
1533static int cgroup_get_rootdir(struct super_block *sb)
1534{
0df6a63f
AV
1535 static const struct dentry_operations cgroup_dops = {
1536 .d_iput = cgroup_diput,
c72a04e3 1537 .d_delete = cgroup_delete,
0df6a63f
AV
1538 };
1539
ddbcc7e8
PM
1540 struct inode *inode =
1541 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1542
1543 if (!inode)
1544 return -ENOMEM;
1545
ddbcc7e8
PM
1546 inode->i_fop = &simple_dir_operations;
1547 inode->i_op = &cgroup_dir_inode_operations;
1548 /* directories start off with i_nlink == 2 (for "." entry) */
1549 inc_nlink(inode);
48fde701
AV
1550 sb->s_root = d_make_root(inode);
1551 if (!sb->s_root)
ddbcc7e8 1552 return -ENOMEM;
0df6a63f
AV
1553 /* for everything else we want ->d_op set */
1554 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1555 return 0;
1556}
1557
f7e83571 1558static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1559 int flags, const char *unused_dev_name,
f7e83571 1560 void *data)
ddbcc7e8
PM
1561{
1562 struct cgroup_sb_opts opts;
c6d57f33 1563 struct cgroupfs_root *root;
ddbcc7e8
PM
1564 int ret = 0;
1565 struct super_block *sb;
c6d57f33 1566 struct cgroupfs_root *new_root;
e25e2cbb 1567 struct inode *inode;
ddbcc7e8
PM
1568
1569 /* First find the desired set of subsystems */
aae8aab4 1570 mutex_lock(&cgroup_mutex);
ddbcc7e8 1571 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1572 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1573 if (ret)
1574 goto out_err;
ddbcc7e8 1575
c6d57f33
PM
1576 /*
1577 * Allocate a new cgroup root. We may not need it if we're
1578 * reusing an existing hierarchy.
1579 */
1580 new_root = cgroup_root_from_opts(&opts);
1581 if (IS_ERR(new_root)) {
1582 ret = PTR_ERR(new_root);
cf5d5941 1583 goto drop_modules;
81a6a5cd 1584 }
c6d57f33 1585 opts.new_root = new_root;
ddbcc7e8 1586
c6d57f33 1587 /* Locate an existing or new sb for this hierarchy */
9249e17f 1588 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1589 if (IS_ERR(sb)) {
c6d57f33 1590 ret = PTR_ERR(sb);
fa3ca07e 1591 cgroup_free_root(opts.new_root);
cf5d5941 1592 goto drop_modules;
ddbcc7e8
PM
1593 }
1594
c6d57f33
PM
1595 root = sb->s_fs_info;
1596 BUG_ON(!root);
1597 if (root == opts.new_root) {
1598 /* We used the new root structure, so this is a new hierarchy */
69d0206c 1599 struct list_head tmp_links;
c12f65d4 1600 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1601 struct cgroupfs_root *existing_root;
2ce9738b 1602 const struct cred *cred;
28fd5dfc 1603 int i;
5abb8855 1604 struct css_set *cset;
ddbcc7e8
PM
1605
1606 BUG_ON(sb->s_root != NULL);
1607
1608 ret = cgroup_get_rootdir(sb);
1609 if (ret)
1610 goto drop_new_super;
817929ec 1611 inode = sb->s_root->d_inode;
ddbcc7e8 1612
817929ec 1613 mutex_lock(&inode->i_mutex);
ddbcc7e8 1614 mutex_lock(&cgroup_mutex);
e25e2cbb 1615 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1616
e25e2cbb
TH
1617 /* Check for name clashes with existing mounts */
1618 ret = -EBUSY;
1619 if (strlen(root->name))
1620 for_each_active_root(existing_root)
1621 if (!strcmp(existing_root->name, root->name))
1622 goto unlock_drop;
c6d57f33 1623
817929ec
PM
1624 /*
1625 * We're accessing css_set_count without locking
1626 * css_set_lock here, but that's OK - it can only be
1627 * increased by someone holding cgroup_lock, and
1628 * that's us. The worst that can happen is that we
1629 * have some link structures left over
1630 */
69d0206c 1631 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
e25e2cbb
TH
1632 if (ret)
1633 goto unlock_drop;
817929ec 1634
fa3ca07e
TH
1635 ret = cgroup_init_root_id(root);
1636 if (ret)
1637 goto unlock_drop;
1638
a1a71b45 1639 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1640 if (ret == -EBUSY) {
69d0206c 1641 free_cgrp_cset_links(&tmp_links);
e25e2cbb 1642 goto unlock_drop;
ddbcc7e8 1643 }
cf5d5941
BB
1644 /*
1645 * There must be no failure case after here, since rebinding
1646 * takes care of subsystems' refcounts, which are explicitly
1647 * dropped in the failure exit path.
1648 */
ddbcc7e8
PM
1649
1650 /* EBUSY should be the only error here */
1651 BUG_ON(ret);
1652
1653 list_add(&root->root_list, &roots);
817929ec 1654 root_count++;
ddbcc7e8 1655
c12f65d4 1656 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1657 root->top_cgroup.dentry = sb->s_root;
1658
817929ec
PM
1659 /* Link the top cgroup in this hierarchy into all
1660 * the css_set objects */
1661 write_lock(&css_set_lock);
5abb8855 1662 hash_for_each(css_set_table, i, cset, hlist)
69d0206c 1663 link_css_set(&tmp_links, cset, root_cgrp);
817929ec
PM
1664 write_unlock(&css_set_lock);
1665
69d0206c 1666 free_cgrp_cset_links(&tmp_links);
817929ec 1667
c12f65d4 1668 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1669 BUG_ON(root->number_of_cgroups != 1);
1670
2ce9738b 1671 cred = override_creds(&init_cred);
a1a71b45 1672 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1673 revert_creds(cred);
e25e2cbb 1674 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1675 mutex_unlock(&cgroup_mutex);
34f77a90 1676 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1677 } else {
1678 /*
1679 * We re-used an existing hierarchy - the new root (if
1680 * any) is not needed
1681 */
fa3ca07e 1682 cgroup_free_root(opts.new_root);
873fe09e 1683
2a0ff3fb
JL
1684 if (root->flags != opts.flags) {
1685 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1686 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1687 ret = -EINVAL;
1688 goto drop_new_super;
1689 } else {
1690 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1691 }
873fe09e
TH
1692 }
1693
cf5d5941 1694 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1695 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1696 }
1697
c6d57f33
PM
1698 kfree(opts.release_agent);
1699 kfree(opts.name);
f7e83571 1700 return dget(sb->s_root);
ddbcc7e8 1701
e25e2cbb 1702 unlock_drop:
fa3ca07e 1703 cgroup_exit_root_id(root);
e25e2cbb
TH
1704 mutex_unlock(&cgroup_root_mutex);
1705 mutex_unlock(&cgroup_mutex);
1706 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1707 drop_new_super:
6f5bbff9 1708 deactivate_locked_super(sb);
cf5d5941 1709 drop_modules:
a1a71b45 1710 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1711 out_err:
1712 kfree(opts.release_agent);
1713 kfree(opts.name);
f7e83571 1714 return ERR_PTR(ret);
ddbcc7e8
PM
1715}
1716
1717static void cgroup_kill_sb(struct super_block *sb) {
1718 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1719 struct cgroup *cgrp = &root->top_cgroup;
69d0206c 1720 struct cgrp_cset_link *link, *tmp_link;
ddbcc7e8
PM
1721 int ret;
1722
1723 BUG_ON(!root);
1724
1725 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1726 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1727
1728 mutex_lock(&cgroup_mutex);
e25e2cbb 1729 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1730
1731 /* Rebind all subsystems back to the default hierarchy */
1732 ret = rebind_subsystems(root, 0);
1733 /* Shouldn't be able to fail ... */
1734 BUG_ON(ret);
1735
817929ec 1736 /*
69d0206c 1737 * Release all the links from cset_links to this hierarchy's
817929ec
PM
1738 * root cgroup
1739 */
1740 write_lock(&css_set_lock);
71cbb949 1741
69d0206c
TH
1742 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1743 list_del(&link->cset_link);
1744 list_del(&link->cgrp_link);
817929ec
PM
1745 kfree(link);
1746 }
1747 write_unlock(&css_set_lock);
1748
839ec545
PM
1749 if (!list_empty(&root->root_list)) {
1750 list_del(&root->root_list);
1751 root_count--;
1752 }
e5f6a860 1753
fa3ca07e
TH
1754 cgroup_exit_root_id(root);
1755
e25e2cbb 1756 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1757 mutex_unlock(&cgroup_mutex);
1758
03b1cde6
AR
1759 simple_xattrs_free(&cgrp->xattrs);
1760
ddbcc7e8 1761 kill_litter_super(sb);
fa3ca07e 1762 cgroup_free_root(root);
ddbcc7e8
PM
1763}
1764
1765static struct file_system_type cgroup_fs_type = {
1766 .name = "cgroup",
f7e83571 1767 .mount = cgroup_mount,
ddbcc7e8
PM
1768 .kill_sb = cgroup_kill_sb,
1769};
1770
676db4af
GK
1771static struct kobject *cgroup_kobj;
1772
a043e3b2
LZ
1773/**
1774 * cgroup_path - generate the path of a cgroup
1775 * @cgrp: the cgroup in question
1776 * @buf: the buffer to write the path into
1777 * @buflen: the length of the buffer
1778 *
65dff759
LZ
1779 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1780 *
1781 * We can't generate cgroup path using dentry->d_name, as accessing
1782 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1783 * inode's i_mutex, while on the other hand cgroup_path() can be called
1784 * with some irq-safe spinlocks held.
ddbcc7e8 1785 */
bd89aabc 1786int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1787{
65dff759 1788 int ret = -ENAMETOOLONG;
ddbcc7e8 1789 char *start;
febfcef6 1790
da1f296f
TH
1791 if (!cgrp->parent) {
1792 if (strlcpy(buf, "/", buflen) >= buflen)
1793 return -ENAMETOOLONG;
ddbcc7e8
PM
1794 return 0;
1795 }
1796
316eb661 1797 start = buf + buflen - 1;
316eb661 1798 *start = '\0';
9a9686b6 1799
65dff759 1800 rcu_read_lock();
da1f296f 1801 do {
65dff759
LZ
1802 const char *name = cgroup_name(cgrp);
1803 int len;
1804
1805 len = strlen(name);
ddbcc7e8 1806 if ((start -= len) < buf)
65dff759
LZ
1807 goto out;
1808 memcpy(start, name, len);
9a9686b6 1809
ddbcc7e8 1810 if (--start < buf)
65dff759 1811 goto out;
ddbcc7e8 1812 *start = '/';
65dff759
LZ
1813
1814 cgrp = cgrp->parent;
da1f296f 1815 } while (cgrp->parent);
65dff759 1816 ret = 0;
ddbcc7e8 1817 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1818out:
1819 rcu_read_unlock();
1820 return ret;
ddbcc7e8 1821}
67523c48 1822EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1823
857a2beb
TH
1824/**
1825 * task_cgroup_path_from_hierarchy - cgroup path of a task on a hierarchy
1826 * @task: target task
1827 * @hierarchy_id: the hierarchy to look up @task's cgroup from
1828 * @buf: the buffer to write the path into
1829 * @buflen: the length of the buffer
1830 *
1831 * Determine @task's cgroup on the hierarchy specified by @hierarchy_id and
1832 * copy its path into @buf. This function grabs cgroup_mutex and shouldn't
1833 * be used inside locks used by cgroup controller callbacks.
1834 */
1835int task_cgroup_path_from_hierarchy(struct task_struct *task, int hierarchy_id,
1836 char *buf, size_t buflen)
1837{
1838 struct cgroupfs_root *root;
1839 struct cgroup *cgrp = NULL;
1840 int ret = -ENOENT;
1841
1842 mutex_lock(&cgroup_mutex);
1843
1844 root = idr_find(&cgroup_hierarchy_idr, hierarchy_id);
1845 if (root) {
1846 cgrp = task_cgroup_from_root(task, root);
1847 ret = cgroup_path(cgrp, buf, buflen);
1848 }
1849
1850 mutex_unlock(&cgroup_mutex);
1851
1852 return ret;
1853}
1854EXPORT_SYMBOL_GPL(task_cgroup_path_from_hierarchy);
1855
2f7ee569
TH
1856/*
1857 * Control Group taskset
1858 */
134d3373
TH
1859struct task_and_cgroup {
1860 struct task_struct *task;
1861 struct cgroup *cgrp;
61d1d219 1862 struct css_set *cg;
134d3373
TH
1863};
1864
2f7ee569
TH
1865struct cgroup_taskset {
1866 struct task_and_cgroup single;
1867 struct flex_array *tc_array;
1868 int tc_array_len;
1869 int idx;
1870 struct cgroup *cur_cgrp;
1871};
1872
1873/**
1874 * cgroup_taskset_first - reset taskset and return the first task
1875 * @tset: taskset of interest
1876 *
1877 * @tset iteration is initialized and the first task is returned.
1878 */
1879struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1880{
1881 if (tset->tc_array) {
1882 tset->idx = 0;
1883 return cgroup_taskset_next(tset);
1884 } else {
1885 tset->cur_cgrp = tset->single.cgrp;
1886 return tset->single.task;
1887 }
1888}
1889EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1890
1891/**
1892 * cgroup_taskset_next - iterate to the next task in taskset
1893 * @tset: taskset of interest
1894 *
1895 * Return the next task in @tset. Iteration must have been initialized
1896 * with cgroup_taskset_first().
1897 */
1898struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1899{
1900 struct task_and_cgroup *tc;
1901
1902 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1903 return NULL;
1904
1905 tc = flex_array_get(tset->tc_array, tset->idx++);
1906 tset->cur_cgrp = tc->cgrp;
1907 return tc->task;
1908}
1909EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1910
1911/**
1912 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1913 * @tset: taskset of interest
1914 *
1915 * Return the cgroup for the current (last returned) task of @tset. This
1916 * function must be preceded by either cgroup_taskset_first() or
1917 * cgroup_taskset_next().
1918 */
1919struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1920{
1921 return tset->cur_cgrp;
1922}
1923EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1924
1925/**
1926 * cgroup_taskset_size - return the number of tasks in taskset
1927 * @tset: taskset of interest
1928 */
1929int cgroup_taskset_size(struct cgroup_taskset *tset)
1930{
1931 return tset->tc_array ? tset->tc_array_len : 1;
1932}
1933EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1934
1935
74a1166d
BB
1936/*
1937 * cgroup_task_migrate - move a task from one cgroup to another.
1938 *
d0b2fdd2 1939 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1940 */
5abb8855
TH
1941static void cgroup_task_migrate(struct cgroup *old_cgrp,
1942 struct task_struct *tsk,
1943 struct css_set *new_cset)
74a1166d 1944{
5abb8855 1945 struct css_set *old_cset;
74a1166d
BB
1946
1947 /*
026085ef
MSB
1948 * We are synchronized through threadgroup_lock() against PF_EXITING
1949 * setting such that we can't race against cgroup_exit() changing the
1950 * css_set to init_css_set and dropping the old one.
74a1166d 1951 */
c84cdf75 1952 WARN_ON_ONCE(tsk->flags & PF_EXITING);
5abb8855 1953 old_cset = tsk->cgroups;
74a1166d 1954
74a1166d 1955 task_lock(tsk);
5abb8855 1956 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1957 task_unlock(tsk);
1958
1959 /* Update the css_set linked lists if we're using them */
1960 write_lock(&css_set_lock);
1961 if (!list_empty(&tsk->cg_list))
5abb8855 1962 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1963 write_unlock(&css_set_lock);
1964
1965 /*
5abb8855
TH
1966 * We just gained a reference on old_cset by taking it from the
1967 * task. As trading it for new_cset is protected by cgroup_mutex,
1968 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1969 */
5abb8855
TH
1970 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
1971 put_css_set(old_cset);
74a1166d
BB
1972}
1973
a043e3b2 1974/**
081aa458 1975 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1976 * @cgrp: the cgroup to attach to
081aa458
LZ
1977 * @tsk: the task or the leader of the threadgroup to be attached
1978 * @threadgroup: attach the whole threadgroup?
74a1166d 1979 *
257058ae 1980 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1981 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1982 */
47cfcd09
TH
1983static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1984 bool threadgroup)
74a1166d
BB
1985{
1986 int retval, i, group_size;
1987 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1988 struct cgroupfs_root *root = cgrp->root;
1989 /* threadgroup list cursor and array */
081aa458 1990 struct task_struct *leader = tsk;
134d3373 1991 struct task_and_cgroup *tc;
d846687d 1992 struct flex_array *group;
2f7ee569 1993 struct cgroup_taskset tset = { };
74a1166d
BB
1994
1995 /*
1996 * step 0: in order to do expensive, possibly blocking operations for
1997 * every thread, we cannot iterate the thread group list, since it needs
1998 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1999 * group - group_rwsem prevents new threads from appearing, and if
2000 * threads exit, this will just be an over-estimate.
74a1166d 2001 */
081aa458
LZ
2002 if (threadgroup)
2003 group_size = get_nr_threads(tsk);
2004 else
2005 group_size = 1;
d846687d 2006 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 2007 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
2008 if (!group)
2009 return -ENOMEM;
d846687d 2010 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2011 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2012 if (retval)
2013 goto out_free_group_list;
74a1166d 2014
74a1166d 2015 i = 0;
fb5d2b4c
MSB
2016 /*
2017 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2018 * already PF_EXITING could be freed from underneath us unless we
2019 * take an rcu_read_lock.
2020 */
2021 rcu_read_lock();
74a1166d 2022 do {
134d3373
TH
2023 struct task_and_cgroup ent;
2024
cd3d0952
TH
2025 /* @tsk either already exited or can't exit until the end */
2026 if (tsk->flags & PF_EXITING)
2027 continue;
2028
74a1166d
BB
2029 /* as per above, nr_threads may decrease, but not increase. */
2030 BUG_ON(i >= group_size);
134d3373
TH
2031 ent.task = tsk;
2032 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2033 /* nothing to do if this task is already in the cgroup */
2034 if (ent.cgrp == cgrp)
2035 continue;
61d1d219
MSB
2036 /*
2037 * saying GFP_ATOMIC has no effect here because we did prealloc
2038 * earlier, but it's good form to communicate our expectations.
2039 */
134d3373 2040 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2041 BUG_ON(retval != 0);
74a1166d 2042 i++;
081aa458
LZ
2043
2044 if (!threadgroup)
2045 break;
74a1166d 2046 } while_each_thread(leader, tsk);
fb5d2b4c 2047 rcu_read_unlock();
74a1166d
BB
2048 /* remember the number of threads in the array for later. */
2049 group_size = i;
2f7ee569
TH
2050 tset.tc_array = group;
2051 tset.tc_array_len = group_size;
74a1166d 2052
134d3373
TH
2053 /* methods shouldn't be called if no task is actually migrating */
2054 retval = 0;
892a2b90 2055 if (!group_size)
b07ef774 2056 goto out_free_group_list;
134d3373 2057
74a1166d
BB
2058 /*
2059 * step 1: check that we can legitimately attach to the cgroup.
2060 */
2061 for_each_subsys(root, ss) {
2062 if (ss->can_attach) {
761b3ef5 2063 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2064 if (retval) {
2065 failed_ss = ss;
2066 goto out_cancel_attach;
2067 }
2068 }
74a1166d
BB
2069 }
2070
2071 /*
2072 * step 2: make sure css_sets exist for all threads to be migrated.
2073 * we use find_css_set, which allocates a new one if necessary.
2074 */
74a1166d 2075 for (i = 0; i < group_size; i++) {
134d3373 2076 tc = flex_array_get(group, i);
61d1d219
MSB
2077 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2078 if (!tc->cg) {
2079 retval = -ENOMEM;
2080 goto out_put_css_set_refs;
74a1166d
BB
2081 }
2082 }
2083
2084 /*
494c167c
TH
2085 * step 3: now that we're guaranteed success wrt the css_sets,
2086 * proceed to move all tasks to the new cgroup. There are no
2087 * failure cases after here, so this is the commit point.
74a1166d 2088 */
74a1166d 2089 for (i = 0; i < group_size; i++) {
134d3373 2090 tc = flex_array_get(group, i);
1e2ccd1c 2091 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2092 }
2093 /* nothing is sensitive to fork() after this point. */
2094
2095 /*
494c167c 2096 * step 4: do subsystem attach callbacks.
74a1166d
BB
2097 */
2098 for_each_subsys(root, ss) {
2099 if (ss->attach)
761b3ef5 2100 ss->attach(cgrp, &tset);
74a1166d
BB
2101 }
2102
2103 /*
2104 * step 5: success! and cleanup
2105 */
74a1166d 2106 retval = 0;
61d1d219
MSB
2107out_put_css_set_refs:
2108 if (retval) {
2109 for (i = 0; i < group_size; i++) {
2110 tc = flex_array_get(group, i);
2111 if (!tc->cg)
2112 break;
2113 put_css_set(tc->cg);
2114 }
74a1166d
BB
2115 }
2116out_cancel_attach:
74a1166d
BB
2117 if (retval) {
2118 for_each_subsys(root, ss) {
494c167c 2119 if (ss == failed_ss)
74a1166d 2120 break;
74a1166d 2121 if (ss->cancel_attach)
761b3ef5 2122 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2123 }
2124 }
74a1166d 2125out_free_group_list:
d846687d 2126 flex_array_free(group);
74a1166d
BB
2127 return retval;
2128}
2129
2130/*
2131 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2132 * function to attach either it or all tasks in its threadgroup. Will lock
2133 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2134 */
74a1166d 2135static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2136{
bbcb81d0 2137 struct task_struct *tsk;
c69e8d9c 2138 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2139 int ret;
2140
74a1166d
BB
2141 if (!cgroup_lock_live_group(cgrp))
2142 return -ENODEV;
2143
b78949eb
MSB
2144retry_find_task:
2145 rcu_read_lock();
bbcb81d0 2146 if (pid) {
73507f33 2147 tsk = find_task_by_vpid(pid);
74a1166d
BB
2148 if (!tsk) {
2149 rcu_read_unlock();
b78949eb
MSB
2150 ret= -ESRCH;
2151 goto out_unlock_cgroup;
bbcb81d0 2152 }
74a1166d
BB
2153 /*
2154 * even if we're attaching all tasks in the thread group, we
2155 * only need to check permissions on one of them.
2156 */
c69e8d9c 2157 tcred = __task_cred(tsk);
14a590c3
EB
2158 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2159 !uid_eq(cred->euid, tcred->uid) &&
2160 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2161 rcu_read_unlock();
b78949eb
MSB
2162 ret = -EACCES;
2163 goto out_unlock_cgroup;
bbcb81d0 2164 }
b78949eb
MSB
2165 } else
2166 tsk = current;
cd3d0952
TH
2167
2168 if (threadgroup)
b78949eb 2169 tsk = tsk->group_leader;
c4c27fbd
MG
2170
2171 /*
14a40ffc 2172 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2173 * trapped in a cpuset, or RT worker may be born in a cgroup
2174 * with no rt_runtime allocated. Just say no.
2175 */
14a40ffc 2176 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2177 ret = -EINVAL;
2178 rcu_read_unlock();
2179 goto out_unlock_cgroup;
2180 }
2181
b78949eb
MSB
2182 get_task_struct(tsk);
2183 rcu_read_unlock();
2184
2185 threadgroup_lock(tsk);
2186 if (threadgroup) {
2187 if (!thread_group_leader(tsk)) {
2188 /*
2189 * a race with de_thread from another thread's exec()
2190 * may strip us of our leadership, if this happens,
2191 * there is no choice but to throw this task away and
2192 * try again; this is
2193 * "double-double-toil-and-trouble-check locking".
2194 */
2195 threadgroup_unlock(tsk);
2196 put_task_struct(tsk);
2197 goto retry_find_task;
2198 }
081aa458
LZ
2199 }
2200
2201 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2202
cd3d0952
TH
2203 threadgroup_unlock(tsk);
2204
bbcb81d0 2205 put_task_struct(tsk);
b78949eb 2206out_unlock_cgroup:
47cfcd09 2207 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2208 return ret;
2209}
2210
7ae1bad9
TH
2211/**
2212 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2213 * @from: attach to all cgroups of a given task
2214 * @tsk: the task to be attached
2215 */
2216int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2217{
2218 struct cgroupfs_root *root;
2219 int retval = 0;
2220
47cfcd09 2221 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2222 for_each_active_root(root) {
2223 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2224
2225 retval = cgroup_attach_task(from_cg, tsk, false);
2226 if (retval)
2227 break;
2228 }
47cfcd09 2229 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2230
2231 return retval;
2232}
2233EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2234
af351026 2235static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2236{
2237 return attach_task_by_pid(cgrp, pid, false);
2238}
2239
2240static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2241{
b78949eb 2242 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2243}
2244
e788e066
PM
2245static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2246 const char *buffer)
2247{
2248 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2249 if (strlen(buffer) >= PATH_MAX)
2250 return -EINVAL;
e788e066
PM
2251 if (!cgroup_lock_live_group(cgrp))
2252 return -ENODEV;
e25e2cbb 2253 mutex_lock(&cgroup_root_mutex);
e788e066 2254 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2255 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2256 mutex_unlock(&cgroup_mutex);
e788e066
PM
2257 return 0;
2258}
2259
2260static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2261 struct seq_file *seq)
2262{
2263 if (!cgroup_lock_live_group(cgrp))
2264 return -ENODEV;
2265 seq_puts(seq, cgrp->root->release_agent_path);
2266 seq_putc(seq, '\n');
47cfcd09 2267 mutex_unlock(&cgroup_mutex);
e788e066
PM
2268 return 0;
2269}
2270
873fe09e
TH
2271static int cgroup_sane_behavior_show(struct cgroup *cgrp, struct cftype *cft,
2272 struct seq_file *seq)
2273{
2274 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2275 return 0;
2276}
2277
84eea842
PM
2278/* A buffer size big enough for numbers or short strings */
2279#define CGROUP_LOCAL_BUFFER_SIZE 64
2280
e73d2c61 2281static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2282 struct file *file,
2283 const char __user *userbuf,
2284 size_t nbytes, loff_t *unused_ppos)
355e0c48 2285{
84eea842 2286 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2287 int retval = 0;
355e0c48
PM
2288 char *end;
2289
2290 if (!nbytes)
2291 return -EINVAL;
2292 if (nbytes >= sizeof(buffer))
2293 return -E2BIG;
2294 if (copy_from_user(buffer, userbuf, nbytes))
2295 return -EFAULT;
2296
2297 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2298 if (cft->write_u64) {
478988d3 2299 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2300 if (*end)
2301 return -EINVAL;
2302 retval = cft->write_u64(cgrp, cft, val);
2303 } else {
478988d3 2304 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2305 if (*end)
2306 return -EINVAL;
2307 retval = cft->write_s64(cgrp, cft, val);
2308 }
355e0c48
PM
2309 if (!retval)
2310 retval = nbytes;
2311 return retval;
2312}
2313
db3b1497
PM
2314static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2315 struct file *file,
2316 const char __user *userbuf,
2317 size_t nbytes, loff_t *unused_ppos)
2318{
84eea842 2319 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2320 int retval = 0;
2321 size_t max_bytes = cft->max_write_len;
2322 char *buffer = local_buffer;
2323
2324 if (!max_bytes)
2325 max_bytes = sizeof(local_buffer) - 1;
2326 if (nbytes >= max_bytes)
2327 return -E2BIG;
2328 /* Allocate a dynamic buffer if we need one */
2329 if (nbytes >= sizeof(local_buffer)) {
2330 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2331 if (buffer == NULL)
2332 return -ENOMEM;
2333 }
5a3eb9f6
LZ
2334 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2335 retval = -EFAULT;
2336 goto out;
2337 }
db3b1497
PM
2338
2339 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2340 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2341 if (!retval)
2342 retval = nbytes;
5a3eb9f6 2343out:
db3b1497
PM
2344 if (buffer != local_buffer)
2345 kfree(buffer);
2346 return retval;
2347}
2348
ddbcc7e8
PM
2349static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2350 size_t nbytes, loff_t *ppos)
2351{
2352 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2353 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2354
54766d4a 2355 if (cgroup_is_dead(cgrp))
ddbcc7e8 2356 return -ENODEV;
355e0c48 2357 if (cft->write)
bd89aabc 2358 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2359 if (cft->write_u64 || cft->write_s64)
2360 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2361 if (cft->write_string)
2362 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2363 if (cft->trigger) {
2364 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2365 return ret ? ret : nbytes;
2366 }
355e0c48 2367 return -EINVAL;
ddbcc7e8
PM
2368}
2369
f4c753b7
PM
2370static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2371 struct file *file,
2372 char __user *buf, size_t nbytes,
2373 loff_t *ppos)
ddbcc7e8 2374{
84eea842 2375 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2376 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2377 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2378
2379 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2380}
2381
e73d2c61
PM
2382static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2383 struct file *file,
2384 char __user *buf, size_t nbytes,
2385 loff_t *ppos)
2386{
84eea842 2387 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2388 s64 val = cft->read_s64(cgrp, cft);
2389 int len = sprintf(tmp, "%lld\n", (long long) val);
2390
2391 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2392}
2393
ddbcc7e8
PM
2394static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2395 size_t nbytes, loff_t *ppos)
2396{
2397 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2398 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2399
54766d4a 2400 if (cgroup_is_dead(cgrp))
ddbcc7e8
PM
2401 return -ENODEV;
2402
2403 if (cft->read)
bd89aabc 2404 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2405 if (cft->read_u64)
2406 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2407 if (cft->read_s64)
2408 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2409 return -EINVAL;
2410}
2411
91796569
PM
2412/*
2413 * seqfile ops/methods for returning structured data. Currently just
2414 * supports string->u64 maps, but can be extended in future.
2415 */
2416
2417struct cgroup_seqfile_state {
2418 struct cftype *cft;
2419 struct cgroup *cgroup;
2420};
2421
2422static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2423{
2424 struct seq_file *sf = cb->state;
2425 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2426}
2427
2428static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2429{
2430 struct cgroup_seqfile_state *state = m->private;
2431 struct cftype *cft = state->cft;
29486df3
SH
2432 if (cft->read_map) {
2433 struct cgroup_map_cb cb = {
2434 .fill = cgroup_map_add,
2435 .state = m,
2436 };
2437 return cft->read_map(state->cgroup, cft, &cb);
2438 }
2439 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2440}
2441
96930a63 2442static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2443{
2444 struct seq_file *seq = file->private_data;
2445 kfree(seq->private);
2446 return single_release(inode, file);
2447}
2448
828c0950 2449static const struct file_operations cgroup_seqfile_operations = {
91796569 2450 .read = seq_read,
e788e066 2451 .write = cgroup_file_write,
91796569
PM
2452 .llseek = seq_lseek,
2453 .release = cgroup_seqfile_release,
2454};
2455
ddbcc7e8
PM
2456static int cgroup_file_open(struct inode *inode, struct file *file)
2457{
2458 int err;
2459 struct cftype *cft;
2460
2461 err = generic_file_open(inode, file);
2462 if (err)
2463 return err;
ddbcc7e8 2464 cft = __d_cft(file->f_dentry);
75139b82 2465
29486df3 2466 if (cft->read_map || cft->read_seq_string) {
f4f4be2b
TH
2467 struct cgroup_seqfile_state *state;
2468
2469 state = kzalloc(sizeof(*state), GFP_USER);
91796569
PM
2470 if (!state)
2471 return -ENOMEM;
f4f4be2b 2472
91796569
PM
2473 state->cft = cft;
2474 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2475 file->f_op = &cgroup_seqfile_operations;
2476 err = single_open(file, cgroup_seqfile_show, state);
2477 if (err < 0)
2478 kfree(state);
2479 } else if (cft->open)
ddbcc7e8
PM
2480 err = cft->open(inode, file);
2481 else
2482 err = 0;
2483
2484 return err;
2485}
2486
2487static int cgroup_file_release(struct inode *inode, struct file *file)
2488{
2489 struct cftype *cft = __d_cft(file->f_dentry);
2490 if (cft->release)
2491 return cft->release(inode, file);
2492 return 0;
2493}
2494
2495/*
2496 * cgroup_rename - Only allow simple rename of directories in place.
2497 */
2498static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2499 struct inode *new_dir, struct dentry *new_dentry)
2500{
65dff759
LZ
2501 int ret;
2502 struct cgroup_name *name, *old_name;
2503 struct cgroup *cgrp;
2504
2505 /*
2506 * It's convinient to use parent dir's i_mutex to protected
2507 * cgrp->name.
2508 */
2509 lockdep_assert_held(&old_dir->i_mutex);
2510
ddbcc7e8
PM
2511 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2512 return -ENOTDIR;
2513 if (new_dentry->d_inode)
2514 return -EEXIST;
2515 if (old_dir != new_dir)
2516 return -EIO;
65dff759
LZ
2517
2518 cgrp = __d_cgrp(old_dentry);
2519
6db8e85c
TH
2520 /*
2521 * This isn't a proper migration and its usefulness is very
2522 * limited. Disallow if sane_behavior.
2523 */
2524 if (cgroup_sane_behavior(cgrp))
2525 return -EPERM;
2526
65dff759
LZ
2527 name = cgroup_alloc_name(new_dentry);
2528 if (!name)
2529 return -ENOMEM;
2530
2531 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2532 if (ret) {
2533 kfree(name);
2534 return ret;
2535 }
2536
2537 old_name = cgrp->name;
2538 rcu_assign_pointer(cgrp->name, name);
2539
2540 kfree_rcu(old_name, rcu_head);
2541 return 0;
ddbcc7e8
PM
2542}
2543
03b1cde6
AR
2544static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2545{
2546 if (S_ISDIR(dentry->d_inode->i_mode))
2547 return &__d_cgrp(dentry)->xattrs;
2548 else
712317ad 2549 return &__d_cfe(dentry)->xattrs;
03b1cde6
AR
2550}
2551
2552static inline int xattr_enabled(struct dentry *dentry)
2553{
2554 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
93438629 2555 return root->flags & CGRP_ROOT_XATTR;
03b1cde6
AR
2556}
2557
2558static bool is_valid_xattr(const char *name)
2559{
2560 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2561 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2562 return true;
2563 return false;
2564}
2565
2566static int cgroup_setxattr(struct dentry *dentry, const char *name,
2567 const void *val, size_t size, int flags)
2568{
2569 if (!xattr_enabled(dentry))
2570 return -EOPNOTSUPP;
2571 if (!is_valid_xattr(name))
2572 return -EINVAL;
2573 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2574}
2575
2576static int cgroup_removexattr(struct dentry *dentry, const char *name)
2577{
2578 if (!xattr_enabled(dentry))
2579 return -EOPNOTSUPP;
2580 if (!is_valid_xattr(name))
2581 return -EINVAL;
2582 return simple_xattr_remove(__d_xattrs(dentry), name);
2583}
2584
2585static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2586 void *buf, size_t size)
2587{
2588 if (!xattr_enabled(dentry))
2589 return -EOPNOTSUPP;
2590 if (!is_valid_xattr(name))
2591 return -EINVAL;
2592 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2593}
2594
2595static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2596{
2597 if (!xattr_enabled(dentry))
2598 return -EOPNOTSUPP;
2599 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2600}
2601
828c0950 2602static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2603 .read = cgroup_file_read,
2604 .write = cgroup_file_write,
2605 .llseek = generic_file_llseek,
2606 .open = cgroup_file_open,
2607 .release = cgroup_file_release,
2608};
2609
03b1cde6
AR
2610static const struct inode_operations cgroup_file_inode_operations = {
2611 .setxattr = cgroup_setxattr,
2612 .getxattr = cgroup_getxattr,
2613 .listxattr = cgroup_listxattr,
2614 .removexattr = cgroup_removexattr,
2615};
2616
6e1d5dcc 2617static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2618 .lookup = cgroup_lookup,
ddbcc7e8
PM
2619 .mkdir = cgroup_mkdir,
2620 .rmdir = cgroup_rmdir,
2621 .rename = cgroup_rename,
03b1cde6
AR
2622 .setxattr = cgroup_setxattr,
2623 .getxattr = cgroup_getxattr,
2624 .listxattr = cgroup_listxattr,
2625 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2626};
2627
00cd8dd3 2628static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2629{
2630 if (dentry->d_name.len > NAME_MAX)
2631 return ERR_PTR(-ENAMETOOLONG);
2632 d_add(dentry, NULL);
2633 return NULL;
2634}
2635
0dea1168
KS
2636/*
2637 * Check if a file is a control file
2638 */
2639static inline struct cftype *__file_cft(struct file *file)
2640{
496ad9aa 2641 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2642 return ERR_PTR(-EINVAL);
2643 return __d_cft(file->f_dentry);
2644}
2645
a5e7ed32 2646static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2647 struct super_block *sb)
2648{
ddbcc7e8
PM
2649 struct inode *inode;
2650
2651 if (!dentry)
2652 return -ENOENT;
2653 if (dentry->d_inode)
2654 return -EEXIST;
2655
2656 inode = cgroup_new_inode(mode, sb);
2657 if (!inode)
2658 return -ENOMEM;
2659
2660 if (S_ISDIR(mode)) {
2661 inode->i_op = &cgroup_dir_inode_operations;
2662 inode->i_fop = &simple_dir_operations;
2663
2664 /* start off with i_nlink == 2 (for "." entry) */
2665 inc_nlink(inode);
28fd6f30 2666 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2667
b8a2df6a
TH
2668 /*
2669 * Control reaches here with cgroup_mutex held.
2670 * @inode->i_mutex should nest outside cgroup_mutex but we
2671 * want to populate it immediately without releasing
2672 * cgroup_mutex. As @inode isn't visible to anyone else
2673 * yet, trylock will always succeed without affecting
2674 * lockdep checks.
2675 */
2676 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2677 } else if (S_ISREG(mode)) {
2678 inode->i_size = 0;
2679 inode->i_fop = &cgroup_file_operations;
03b1cde6 2680 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2681 }
ddbcc7e8
PM
2682 d_instantiate(dentry, inode);
2683 dget(dentry); /* Extra count - pin the dentry in core */
2684 return 0;
2685}
2686
099fca32
LZ
2687/**
2688 * cgroup_file_mode - deduce file mode of a control file
2689 * @cft: the control file in question
2690 *
2691 * returns cft->mode if ->mode is not 0
2692 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2693 * returns S_IRUGO if it has only a read handler
2694 * returns S_IWUSR if it has only a write hander
2695 */
a5e7ed32 2696static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2697{
a5e7ed32 2698 umode_t mode = 0;
099fca32
LZ
2699
2700 if (cft->mode)
2701 return cft->mode;
2702
2703 if (cft->read || cft->read_u64 || cft->read_s64 ||
2704 cft->read_map || cft->read_seq_string)
2705 mode |= S_IRUGO;
2706
2707 if (cft->write || cft->write_u64 || cft->write_s64 ||
2708 cft->write_string || cft->trigger)
2709 mode |= S_IWUSR;
2710
2711 return mode;
2712}
2713
db0416b6 2714static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2715 struct cftype *cft)
ddbcc7e8 2716{
bd89aabc 2717 struct dentry *dir = cgrp->dentry;
05ef1d7c 2718 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2719 struct dentry *dentry;
05ef1d7c 2720 struct cfent *cfe;
ddbcc7e8 2721 int error;
a5e7ed32 2722 umode_t mode;
ddbcc7e8 2723 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2724
93438629 2725 if (subsys && !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) {
ddbcc7e8
PM
2726 strcpy(name, subsys->name);
2727 strcat(name, ".");
2728 }
2729 strcat(name, cft->name);
05ef1d7c 2730
ddbcc7e8 2731 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2732
2733 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2734 if (!cfe)
2735 return -ENOMEM;
2736
ddbcc7e8 2737 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2738 if (IS_ERR(dentry)) {
ddbcc7e8 2739 error = PTR_ERR(dentry);
05ef1d7c
TH
2740 goto out;
2741 }
2742
d6cbf35d
LZ
2743 cfe->type = (void *)cft;
2744 cfe->dentry = dentry;
2745 dentry->d_fsdata = cfe;
2746 simple_xattrs_init(&cfe->xattrs);
2747
05ef1d7c
TH
2748 mode = cgroup_file_mode(cft);
2749 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2750 if (!error) {
05ef1d7c
TH
2751 list_add_tail(&cfe->node, &parent->files);
2752 cfe = NULL;
2753 }
2754 dput(dentry);
2755out:
2756 kfree(cfe);
ddbcc7e8
PM
2757 return error;
2758}
2759
79578621 2760static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2761 struct cftype cfts[], bool is_add)
ddbcc7e8 2762{
03b1cde6 2763 struct cftype *cft;
db0416b6
TH
2764 int err, ret = 0;
2765
2766 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2767 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2768 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2769 continue;
f33fddc2
G
2770 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2771 continue;
2772 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2773 continue;
2774
2739d3cc 2775 if (is_add) {
79578621 2776 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2777 if (err)
2778 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2779 cft->name, err);
db0416b6 2780 ret = err;
2739d3cc
LZ
2781 } else {
2782 cgroup_rm_file(cgrp, cft);
db0416b6 2783 }
ddbcc7e8 2784 }
db0416b6 2785 return ret;
ddbcc7e8
PM
2786}
2787
8e3f6541
TH
2788static DEFINE_MUTEX(cgroup_cft_mutex);
2789
2790static void cgroup_cfts_prepare(void)
2791 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2792{
2793 /*
2794 * Thanks to the entanglement with vfs inode locking, we can't walk
2795 * the existing cgroups under cgroup_mutex and create files.
2796 * Instead, we increment reference on all cgroups and build list of
2797 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2798 * exclusive access to the field.
2799 */
2800 mutex_lock(&cgroup_cft_mutex);
2801 mutex_lock(&cgroup_mutex);
2802}
2803
2804static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2805 struct cftype *cfts, bool is_add)
8e3f6541
TH
2806 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2807{
2808 LIST_HEAD(pending);
2809 struct cgroup *cgrp, *n;
084457f2 2810 struct super_block *sb = ss->root->sb;
8e3f6541
TH
2811
2812 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
084457f2
LZ
2813 if (cfts && ss->root != &rootnode &&
2814 atomic_inc_not_zero(sb->s_active)) {
8e3f6541
TH
2815 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2816 dget(cgrp->dentry);
2817 list_add_tail(&cgrp->cft_q_node, &pending);
2818 }
084457f2
LZ
2819 } else {
2820 sb = NULL;
8e3f6541
TH
2821 }
2822
2823 mutex_unlock(&cgroup_mutex);
2824
2825 /*
2826 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2827 * files for all cgroups which were created before.
2828 */
2829 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2830 struct inode *inode = cgrp->dentry->d_inode;
2831
2832 mutex_lock(&inode->i_mutex);
2833 mutex_lock(&cgroup_mutex);
54766d4a 2834 if (!cgroup_is_dead(cgrp))
79578621 2835 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2836 mutex_unlock(&cgroup_mutex);
2837 mutex_unlock(&inode->i_mutex);
2838
2839 list_del_init(&cgrp->cft_q_node);
2840 dput(cgrp->dentry);
2841 }
2842
084457f2
LZ
2843 if (sb)
2844 deactivate_super(sb);
2845
8e3f6541
TH
2846 mutex_unlock(&cgroup_cft_mutex);
2847}
2848
2849/**
2850 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2851 * @ss: target cgroup subsystem
2852 * @cfts: zero-length name terminated array of cftypes
2853 *
2854 * Register @cfts to @ss. Files described by @cfts are created for all
2855 * existing cgroups to which @ss is attached and all future cgroups will
2856 * have them too. This function can be called anytime whether @ss is
2857 * attached or not.
2858 *
2859 * Returns 0 on successful registration, -errno on failure. Note that this
2860 * function currently returns 0 as long as @cfts registration is successful
2861 * even if some file creation attempts on existing cgroups fail.
2862 */
03b1cde6 2863int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2864{
2865 struct cftype_set *set;
2866
2867 set = kzalloc(sizeof(*set), GFP_KERNEL);
2868 if (!set)
2869 return -ENOMEM;
2870
2871 cgroup_cfts_prepare();
2872 set->cfts = cfts;
2873 list_add_tail(&set->node, &ss->cftsets);
79578621 2874 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2875
2876 return 0;
2877}
2878EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2879
79578621
TH
2880/**
2881 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2882 * @ss: target cgroup subsystem
2883 * @cfts: zero-length name terminated array of cftypes
2884 *
2885 * Unregister @cfts from @ss. Files described by @cfts are removed from
2886 * all existing cgroups to which @ss is attached and all future cgroups
2887 * won't have them either. This function can be called anytime whether @ss
2888 * is attached or not.
2889 *
2890 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2891 * registered with @ss.
2892 */
03b1cde6 2893int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2894{
2895 struct cftype_set *set;
2896
2897 cgroup_cfts_prepare();
2898
2899 list_for_each_entry(set, &ss->cftsets, node) {
2900 if (set->cfts == cfts) {
f57947d2
LZ
2901 list_del(&set->node);
2902 kfree(set);
79578621
TH
2903 cgroup_cfts_commit(ss, cfts, false);
2904 return 0;
2905 }
2906 }
2907
2908 cgroup_cfts_commit(ss, NULL, false);
2909 return -ENOENT;
2910}
2911
a043e3b2
LZ
2912/**
2913 * cgroup_task_count - count the number of tasks in a cgroup.
2914 * @cgrp: the cgroup in question
2915 *
2916 * Return the number of tasks in the cgroup.
2917 */
bd89aabc 2918int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2919{
2920 int count = 0;
69d0206c 2921 struct cgrp_cset_link *link;
817929ec
PM
2922
2923 read_lock(&css_set_lock);
69d0206c
TH
2924 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2925 count += atomic_read(&link->cset->refcount);
817929ec 2926 read_unlock(&css_set_lock);
bbcb81d0
PM
2927 return count;
2928}
2929
817929ec
PM
2930/*
2931 * Advance a list_head iterator. The iterator should be positioned at
2932 * the start of a css_set
2933 */
69d0206c 2934static void cgroup_advance_iter(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec 2935{
69d0206c
TH
2936 struct list_head *l = it->cset_link;
2937 struct cgrp_cset_link *link;
5abb8855 2938 struct css_set *cset;
817929ec
PM
2939
2940 /* Advance to the next non-empty css_set */
2941 do {
2942 l = l->next;
69d0206c
TH
2943 if (l == &cgrp->cset_links) {
2944 it->cset_link = NULL;
817929ec
PM
2945 return;
2946 }
69d0206c
TH
2947 link = list_entry(l, struct cgrp_cset_link, cset_link);
2948 cset = link->cset;
5abb8855 2949 } while (list_empty(&cset->tasks));
69d0206c 2950 it->cset_link = l;
5abb8855 2951 it->task = cset->tasks.next;
817929ec
PM
2952}
2953
31a7df01
CW
2954/*
2955 * To reduce the fork() overhead for systems that are not actually
2956 * using their cgroups capability, we don't maintain the lists running
2957 * through each css_set to its tasks until we see the list actually
2958 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2959 */
3df91fe3 2960static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2961{
2962 struct task_struct *p, *g;
2963 write_lock(&css_set_lock);
2964 use_task_css_set_links = 1;
3ce3230a
FW
2965 /*
2966 * We need tasklist_lock because RCU is not safe against
2967 * while_each_thread(). Besides, a forking task that has passed
2968 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2969 * is not guaranteed to have its child immediately visible in the
2970 * tasklist if we walk through it with RCU.
2971 */
2972 read_lock(&tasklist_lock);
31a7df01
CW
2973 do_each_thread(g, p) {
2974 task_lock(p);
0e04388f
LZ
2975 /*
2976 * We should check if the process is exiting, otherwise
2977 * it will race with cgroup_exit() in that the list
2978 * entry won't be deleted though the process has exited.
2979 */
2980 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2981 list_add(&p->cg_list, &p->cgroups->tasks);
2982 task_unlock(p);
2983 } while_each_thread(g, p);
3ce3230a 2984 read_unlock(&tasklist_lock);
31a7df01
CW
2985 write_unlock(&css_set_lock);
2986}
2987
53fa5261
TH
2988/**
2989 * cgroup_next_sibling - find the next sibling of a given cgroup
2990 * @pos: the current cgroup
2991 *
2992 * This function returns the next sibling of @pos and should be called
2993 * under RCU read lock. The only requirement is that @pos is accessible.
2994 * The next sibling is guaranteed to be returned regardless of @pos's
2995 * state.
2996 */
2997struct cgroup *cgroup_next_sibling(struct cgroup *pos)
2998{
2999 struct cgroup *next;
3000
3001 WARN_ON_ONCE(!rcu_read_lock_held());
3002
3003 /*
3004 * @pos could already have been removed. Once a cgroup is removed,
3005 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
3006 * changes. As CGRP_DEAD assertion is serialized and happens
3007 * before the cgroup is taken off the ->sibling list, if we see it
3008 * unasserted, it's guaranteed that the next sibling hasn't
3009 * finished its grace period even if it's already removed, and thus
3010 * safe to dereference from this RCU critical section. If
3011 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
3012 * to be visible as %true here.
53fa5261 3013 */
54766d4a 3014 if (likely(!cgroup_is_dead(pos))) {
53fa5261
TH
3015 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3016 if (&next->sibling != &pos->parent->children)
3017 return next;
3018 return NULL;
3019 }
3020
3021 /*
3022 * Can't dereference the next pointer. Each cgroup is given a
3023 * monotonically increasing unique serial number and always
3024 * appended to the sibling list, so the next one can be found by
3025 * walking the parent's children until we see a cgroup with higher
3026 * serial number than @pos's.
3027 *
3028 * While this path can be slow, it's taken only when either the
3029 * current cgroup is removed or iteration and removal race.
3030 */
3031 list_for_each_entry_rcu(next, &pos->parent->children, sibling)
3032 if (next->serial_nr > pos->serial_nr)
3033 return next;
3034 return NULL;
3035}
3036EXPORT_SYMBOL_GPL(cgroup_next_sibling);
3037
574bd9f7
TH
3038/**
3039 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
3040 * @pos: the current position (%NULL to initiate traversal)
3041 * @cgroup: cgroup whose descendants to walk
3042 *
3043 * To be used by cgroup_for_each_descendant_pre(). Find the next
3044 * descendant to visit for pre-order traversal of @cgroup's descendants.
75501a6d
TH
3045 *
3046 * While this function requires RCU read locking, it doesn't require the
3047 * whole traversal to be contained in a single RCU critical section. This
3048 * function will return the correct next descendant as long as both @pos
3049 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3050 */
3051struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
3052 struct cgroup *cgroup)
3053{
3054 struct cgroup *next;
3055
3056 WARN_ON_ONCE(!rcu_read_lock_held());
3057
3058 /* if first iteration, pretend we just visited @cgroup */
7805d000 3059 if (!pos)
574bd9f7 3060 pos = cgroup;
574bd9f7
TH
3061
3062 /* visit the first child if exists */
3063 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
3064 if (next)
3065 return next;
3066
3067 /* no child, visit my or the closest ancestor's next sibling */
7805d000 3068 while (pos != cgroup) {
75501a6d
TH
3069 next = cgroup_next_sibling(pos);
3070 if (next)
574bd9f7 3071 return next;
574bd9f7 3072 pos = pos->parent;
7805d000 3073 }
574bd9f7
TH
3074
3075 return NULL;
3076}
3077EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
3078
12a9d2fe
TH
3079/**
3080 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
3081 * @pos: cgroup of interest
3082 *
3083 * Return the rightmost descendant of @pos. If there's no descendant,
3084 * @pos is returned. This can be used during pre-order traversal to skip
3085 * subtree of @pos.
75501a6d
TH
3086 *
3087 * While this function requires RCU read locking, it doesn't require the
3088 * whole traversal to be contained in a single RCU critical section. This
3089 * function will return the correct rightmost descendant as long as @pos is
3090 * accessible.
12a9d2fe
TH
3091 */
3092struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3093{
3094 struct cgroup *last, *tmp;
3095
3096 WARN_ON_ONCE(!rcu_read_lock_held());
3097
3098 do {
3099 last = pos;
3100 /* ->prev isn't RCU safe, walk ->next till the end */
3101 pos = NULL;
3102 list_for_each_entry_rcu(tmp, &last->children, sibling)
3103 pos = tmp;
3104 } while (pos);
3105
3106 return last;
3107}
3108EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3109
574bd9f7
TH
3110static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3111{
3112 struct cgroup *last;
3113
3114 do {
3115 last = pos;
3116 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3117 sibling);
3118 } while (pos);
3119
3120 return last;
3121}
3122
3123/**
3124 * cgroup_next_descendant_post - find the next descendant for post-order walk
3125 * @pos: the current position (%NULL to initiate traversal)
3126 * @cgroup: cgroup whose descendants to walk
3127 *
3128 * To be used by cgroup_for_each_descendant_post(). Find the next
3129 * descendant to visit for post-order traversal of @cgroup's descendants.
75501a6d
TH
3130 *
3131 * While this function requires RCU read locking, it doesn't require the
3132 * whole traversal to be contained in a single RCU critical section. This
3133 * function will return the correct next descendant as long as both @pos
3134 * and @cgroup are accessible and @pos is a descendant of @cgroup.
574bd9f7
TH
3135 */
3136struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3137 struct cgroup *cgroup)
3138{
3139 struct cgroup *next;
3140
3141 WARN_ON_ONCE(!rcu_read_lock_held());
3142
3143 /* if first iteration, visit the leftmost descendant */
3144 if (!pos) {
3145 next = cgroup_leftmost_descendant(cgroup);
3146 return next != cgroup ? next : NULL;
3147 }
3148
3149 /* if there's an unvisited sibling, visit its leftmost descendant */
75501a6d
TH
3150 next = cgroup_next_sibling(pos);
3151 if (next)
574bd9f7
TH
3152 return cgroup_leftmost_descendant(next);
3153
3154 /* no sibling left, visit parent */
3155 next = pos->parent;
3156 return next != cgroup ? next : NULL;
3157}
3158EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3159
bd89aabc 3160void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3161 __acquires(css_set_lock)
817929ec
PM
3162{
3163 /*
3164 * The first time anyone tries to iterate across a cgroup,
3165 * we need to enable the list linking each css_set to its
3166 * tasks, and fix up all existing tasks.
3167 */
31a7df01
CW
3168 if (!use_task_css_set_links)
3169 cgroup_enable_task_cg_lists();
3170
817929ec 3171 read_lock(&css_set_lock);
69d0206c 3172 it->cset_link = &cgrp->cset_links;
bd89aabc 3173 cgroup_advance_iter(cgrp, it);
817929ec
PM
3174}
3175
bd89aabc 3176struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3177 struct cgroup_iter *it)
3178{
3179 struct task_struct *res;
3180 struct list_head *l = it->task;
69d0206c 3181 struct cgrp_cset_link *link;
817929ec
PM
3182
3183 /* If the iterator cg is NULL, we have no tasks */
69d0206c 3184 if (!it->cset_link)
817929ec
PM
3185 return NULL;
3186 res = list_entry(l, struct task_struct, cg_list);
3187 /* Advance iterator to find next entry */
3188 l = l->next;
69d0206c
TH
3189 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
3190 if (l == &link->cset->tasks) {
817929ec
PM
3191 /* We reached the end of this task list - move on to
3192 * the next cg_cgroup_link */
bd89aabc 3193 cgroup_advance_iter(cgrp, it);
817929ec
PM
3194 } else {
3195 it->task = l;
3196 }
3197 return res;
3198}
3199
bd89aabc 3200void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3201 __releases(css_set_lock)
817929ec
PM
3202{
3203 read_unlock(&css_set_lock);
3204}
3205
31a7df01
CW
3206static inline int started_after_time(struct task_struct *t1,
3207 struct timespec *time,
3208 struct task_struct *t2)
3209{
3210 int start_diff = timespec_compare(&t1->start_time, time);
3211 if (start_diff > 0) {
3212 return 1;
3213 } else if (start_diff < 0) {
3214 return 0;
3215 } else {
3216 /*
3217 * Arbitrarily, if two processes started at the same
3218 * time, we'll say that the lower pointer value
3219 * started first. Note that t2 may have exited by now
3220 * so this may not be a valid pointer any longer, but
3221 * that's fine - it still serves to distinguish
3222 * between two tasks started (effectively) simultaneously.
3223 */
3224 return t1 > t2;
3225 }
3226}
3227
3228/*
3229 * This function is a callback from heap_insert() and is used to order
3230 * the heap.
3231 * In this case we order the heap in descending task start time.
3232 */
3233static inline int started_after(void *p1, void *p2)
3234{
3235 struct task_struct *t1 = p1;
3236 struct task_struct *t2 = p2;
3237 return started_after_time(t1, &t2->start_time, t2);
3238}
3239
3240/**
3241 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3242 * @scan: struct cgroup_scanner containing arguments for the scan
3243 *
3244 * Arguments include pointers to callback functions test_task() and
3245 * process_task().
3246 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3247 * and if it returns true, call process_task() for it also.
3248 * The test_task pointer may be NULL, meaning always true (select all tasks).
3249 * Effectively duplicates cgroup_iter_{start,next,end}()
3250 * but does not lock css_set_lock for the call to process_task().
3251 * The struct cgroup_scanner may be embedded in any structure of the caller's
3252 * creation.
3253 * It is guaranteed that process_task() will act on every task that
3254 * is a member of the cgroup for the duration of this call. This
3255 * function may or may not call process_task() for tasks that exit
3256 * or move to a different cgroup during the call, or are forked or
3257 * move into the cgroup during the call.
3258 *
3259 * Note that test_task() may be called with locks held, and may in some
3260 * situations be called multiple times for the same task, so it should
3261 * be cheap.
3262 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3263 * pre-allocated and will be used for heap operations (and its "gt" member will
3264 * be overwritten), else a temporary heap will be used (allocation of which
3265 * may cause this function to fail).
3266 */
3267int cgroup_scan_tasks(struct cgroup_scanner *scan)
3268{
3269 int retval, i;
3270 struct cgroup_iter it;
3271 struct task_struct *p, *dropped;
3272 /* Never dereference latest_task, since it's not refcounted */
3273 struct task_struct *latest_task = NULL;
3274 struct ptr_heap tmp_heap;
3275 struct ptr_heap *heap;
3276 struct timespec latest_time = { 0, 0 };
3277
3278 if (scan->heap) {
3279 /* The caller supplied our heap and pre-allocated its memory */
3280 heap = scan->heap;
3281 heap->gt = &started_after;
3282 } else {
3283 /* We need to allocate our own heap memory */
3284 heap = &tmp_heap;
3285 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3286 if (retval)
3287 /* cannot allocate the heap */
3288 return retval;
3289 }
3290
3291 again:
3292 /*
3293 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3294 * to determine which are of interest, and using the scanner's
3295 * "process_task" callback to process any of them that need an update.
3296 * Since we don't want to hold any locks during the task updates,
3297 * gather tasks to be processed in a heap structure.
3298 * The heap is sorted by descending task start time.
3299 * If the statically-sized heap fills up, we overflow tasks that
3300 * started later, and in future iterations only consider tasks that
3301 * started after the latest task in the previous pass. This
3302 * guarantees forward progress and that we don't miss any tasks.
3303 */
3304 heap->size = 0;
3305 cgroup_iter_start(scan->cg, &it);
3306 while ((p = cgroup_iter_next(scan->cg, &it))) {
3307 /*
3308 * Only affect tasks that qualify per the caller's callback,
3309 * if he provided one
3310 */
3311 if (scan->test_task && !scan->test_task(p, scan))
3312 continue;
3313 /*
3314 * Only process tasks that started after the last task
3315 * we processed
3316 */
3317 if (!started_after_time(p, &latest_time, latest_task))
3318 continue;
3319 dropped = heap_insert(heap, p);
3320 if (dropped == NULL) {
3321 /*
3322 * The new task was inserted; the heap wasn't
3323 * previously full
3324 */
3325 get_task_struct(p);
3326 } else if (dropped != p) {
3327 /*
3328 * The new task was inserted, and pushed out a
3329 * different task
3330 */
3331 get_task_struct(p);
3332 put_task_struct(dropped);
3333 }
3334 /*
3335 * Else the new task was newer than anything already in
3336 * the heap and wasn't inserted
3337 */
3338 }
3339 cgroup_iter_end(scan->cg, &it);
3340
3341 if (heap->size) {
3342 for (i = 0; i < heap->size; i++) {
4fe91d51 3343 struct task_struct *q = heap->ptrs[i];
31a7df01 3344 if (i == 0) {
4fe91d51
PJ
3345 latest_time = q->start_time;
3346 latest_task = q;
31a7df01
CW
3347 }
3348 /* Process the task per the caller's callback */
4fe91d51
PJ
3349 scan->process_task(q, scan);
3350 put_task_struct(q);
31a7df01
CW
3351 }
3352 /*
3353 * If we had to process any tasks at all, scan again
3354 * in case some of them were in the middle of forking
3355 * children that didn't get processed.
3356 * Not the most efficient way to do it, but it avoids
3357 * having to take callback_mutex in the fork path
3358 */
3359 goto again;
3360 }
3361 if (heap == &tmp_heap)
3362 heap_free(&tmp_heap);
3363 return 0;
3364}
3365
8cc99345
TH
3366static void cgroup_transfer_one_task(struct task_struct *task,
3367 struct cgroup_scanner *scan)
3368{
3369 struct cgroup *new_cgroup = scan->data;
3370
47cfcd09 3371 mutex_lock(&cgroup_mutex);
8cc99345 3372 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3373 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3374}
3375
3376/**
3377 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3378 * @to: cgroup to which the tasks will be moved
3379 * @from: cgroup in which the tasks currently reside
3380 */
3381int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3382{
3383 struct cgroup_scanner scan;
3384
3385 scan.cg = from;
3386 scan.test_task = NULL; /* select all tasks in cgroup */
3387 scan.process_task = cgroup_transfer_one_task;
3388 scan.heap = NULL;
3389 scan.data = to;
3390
3391 return cgroup_scan_tasks(&scan);
3392}
3393
bbcb81d0 3394/*
102a775e 3395 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3396 *
3397 * Reading this file can return large amounts of data if a cgroup has
3398 * *lots* of attached tasks. So it may need several calls to read(),
3399 * but we cannot guarantee that the information we produce is correct
3400 * unless we produce it entirely atomically.
3401 *
bbcb81d0 3402 */
bbcb81d0 3403
24528255
LZ
3404/* which pidlist file are we talking about? */
3405enum cgroup_filetype {
3406 CGROUP_FILE_PROCS,
3407 CGROUP_FILE_TASKS,
3408};
3409
3410/*
3411 * A pidlist is a list of pids that virtually represents the contents of one
3412 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3413 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3414 * to the cgroup.
3415 */
3416struct cgroup_pidlist {
3417 /*
3418 * used to find which pidlist is wanted. doesn't change as long as
3419 * this particular list stays in the list.
3420 */
3421 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3422 /* array of xids */
3423 pid_t *list;
3424 /* how many elements the above list has */
3425 int length;
3426 /* how many files are using the current array */
3427 int use_count;
3428 /* each of these stored in a list by its cgroup */
3429 struct list_head links;
3430 /* pointer to the cgroup we belong to, for list removal purposes */
3431 struct cgroup *owner;
3432 /* protects the other fields */
3433 struct rw_semaphore mutex;
3434};
3435
d1d9fd33
BB
3436/*
3437 * The following two functions "fix" the issue where there are more pids
3438 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3439 * TODO: replace with a kernel-wide solution to this problem
3440 */
3441#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3442static void *pidlist_allocate(int count)
3443{
3444 if (PIDLIST_TOO_LARGE(count))
3445 return vmalloc(count * sizeof(pid_t));
3446 else
3447 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3448}
3449static void pidlist_free(void *p)
3450{
3451 if (is_vmalloc_addr(p))
3452 vfree(p);
3453 else
3454 kfree(p);
3455}
d1d9fd33 3456
bbcb81d0 3457/*
102a775e 3458 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3459 * Returns the number of unique elements.
bbcb81d0 3460 */
6ee211ad 3461static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3462{
102a775e 3463 int src, dest = 1;
102a775e
BB
3464
3465 /*
3466 * we presume the 0th element is unique, so i starts at 1. trivial
3467 * edge cases first; no work needs to be done for either
3468 */
3469 if (length == 0 || length == 1)
3470 return length;
3471 /* src and dest walk down the list; dest counts unique elements */
3472 for (src = 1; src < length; src++) {
3473 /* find next unique element */
3474 while (list[src] == list[src-1]) {
3475 src++;
3476 if (src == length)
3477 goto after;
3478 }
3479 /* dest always points to where the next unique element goes */
3480 list[dest] = list[src];
3481 dest++;
3482 }
3483after:
102a775e
BB
3484 return dest;
3485}
3486
3487static int cmppid(const void *a, const void *b)
3488{
3489 return *(pid_t *)a - *(pid_t *)b;
3490}
3491
72a8cb30
BB
3492/*
3493 * find the appropriate pidlist for our purpose (given procs vs tasks)
3494 * returns with the lock on that pidlist already held, and takes care
3495 * of the use count, or returns NULL with no locks held if we're out of
3496 * memory.
3497 */
3498static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3499 enum cgroup_filetype type)
3500{
3501 struct cgroup_pidlist *l;
3502 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3503 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3504
72a8cb30
BB
3505 /*
3506 * We can't drop the pidlist_mutex before taking the l->mutex in case
3507 * the last ref-holder is trying to remove l from the list at the same
3508 * time. Holding the pidlist_mutex precludes somebody taking whichever
3509 * list we find out from under us - compare release_pid_array().
3510 */
3511 mutex_lock(&cgrp->pidlist_mutex);
3512 list_for_each_entry(l, &cgrp->pidlists, links) {
3513 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3514 /* make sure l doesn't vanish out from under us */
3515 down_write(&l->mutex);
3516 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3517 return l;
3518 }
3519 }
3520 /* entry not found; create a new one */
f4f4be2b 3521 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
72a8cb30
BB
3522 if (!l) {
3523 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3524 return l;
3525 }
3526 init_rwsem(&l->mutex);
3527 down_write(&l->mutex);
3528 l->key.type = type;
b70cc5fd 3529 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3530 l->owner = cgrp;
3531 list_add(&l->links, &cgrp->pidlists);
3532 mutex_unlock(&cgrp->pidlist_mutex);
3533 return l;
3534}
3535
102a775e
BB
3536/*
3537 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3538 */
72a8cb30
BB
3539static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3540 struct cgroup_pidlist **lp)
102a775e
BB
3541{
3542 pid_t *array;
3543 int length;
3544 int pid, n = 0; /* used for populating the array */
817929ec
PM
3545 struct cgroup_iter it;
3546 struct task_struct *tsk;
102a775e
BB
3547 struct cgroup_pidlist *l;
3548
3549 /*
3550 * If cgroup gets more users after we read count, we won't have
3551 * enough space - tough. This race is indistinguishable to the
3552 * caller from the case that the additional cgroup users didn't
3553 * show up until sometime later on.
3554 */
3555 length = cgroup_task_count(cgrp);
d1d9fd33 3556 array = pidlist_allocate(length);
102a775e
BB
3557 if (!array)
3558 return -ENOMEM;
3559 /* now, populate the array */
bd89aabc
PM
3560 cgroup_iter_start(cgrp, &it);
3561 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3562 if (unlikely(n == length))
817929ec 3563 break;
102a775e 3564 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3565 if (type == CGROUP_FILE_PROCS)
3566 pid = task_tgid_vnr(tsk);
3567 else
3568 pid = task_pid_vnr(tsk);
102a775e
BB
3569 if (pid > 0) /* make sure to only use valid results */
3570 array[n++] = pid;
817929ec 3571 }
bd89aabc 3572 cgroup_iter_end(cgrp, &it);
102a775e
BB
3573 length = n;
3574 /* now sort & (if procs) strip out duplicates */
3575 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3576 if (type == CGROUP_FILE_PROCS)
6ee211ad 3577 length = pidlist_uniq(array, length);
72a8cb30
BB
3578 l = cgroup_pidlist_find(cgrp, type);
3579 if (!l) {
d1d9fd33 3580 pidlist_free(array);
72a8cb30 3581 return -ENOMEM;
102a775e 3582 }
72a8cb30 3583 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3584 pidlist_free(l->list);
102a775e
BB
3585 l->list = array;
3586 l->length = length;
3587 l->use_count++;
3588 up_write(&l->mutex);
72a8cb30 3589 *lp = l;
102a775e 3590 return 0;
bbcb81d0
PM
3591}
3592
846c7bb0 3593/**
a043e3b2 3594 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3595 * @stats: cgroupstats to fill information into
3596 * @dentry: A dentry entry belonging to the cgroup for which stats have
3597 * been requested.
a043e3b2
LZ
3598 *
3599 * Build and fill cgroupstats so that taskstats can export it to user
3600 * space.
846c7bb0
BS
3601 */
3602int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3603{
3604 int ret = -EINVAL;
bd89aabc 3605 struct cgroup *cgrp;
846c7bb0
BS
3606 struct cgroup_iter it;
3607 struct task_struct *tsk;
33d283be 3608
846c7bb0 3609 /*
33d283be
LZ
3610 * Validate dentry by checking the superblock operations,
3611 * and make sure it's a directory.
846c7bb0 3612 */
33d283be
LZ
3613 if (dentry->d_sb->s_op != &cgroup_ops ||
3614 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3615 goto err;
3616
3617 ret = 0;
bd89aabc 3618 cgrp = dentry->d_fsdata;
846c7bb0 3619
bd89aabc
PM
3620 cgroup_iter_start(cgrp, &it);
3621 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3622 switch (tsk->state) {
3623 case TASK_RUNNING:
3624 stats->nr_running++;
3625 break;
3626 case TASK_INTERRUPTIBLE:
3627 stats->nr_sleeping++;
3628 break;
3629 case TASK_UNINTERRUPTIBLE:
3630 stats->nr_uninterruptible++;
3631 break;
3632 case TASK_STOPPED:
3633 stats->nr_stopped++;
3634 break;
3635 default:
3636 if (delayacct_is_task_waiting_on_io(tsk))
3637 stats->nr_io_wait++;
3638 break;
3639 }
3640 }
bd89aabc 3641 cgroup_iter_end(cgrp, &it);
846c7bb0 3642
846c7bb0
BS
3643err:
3644 return ret;
3645}
3646
8f3ff208 3647
bbcb81d0 3648/*
102a775e 3649 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3650 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3651 * in the cgroup->l->list array.
bbcb81d0 3652 */
cc31edce 3653
102a775e 3654static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3655{
cc31edce
PM
3656 /*
3657 * Initially we receive a position value that corresponds to
3658 * one more than the last pid shown (or 0 on the first call or
3659 * after a seek to the start). Use a binary-search to find the
3660 * next pid to display, if any
3661 */
102a775e 3662 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3663 int index = 0, pid = *pos;
3664 int *iter;
3665
102a775e 3666 down_read(&l->mutex);
cc31edce 3667 if (pid) {
102a775e 3668 int end = l->length;
20777766 3669
cc31edce
PM
3670 while (index < end) {
3671 int mid = (index + end) / 2;
102a775e 3672 if (l->list[mid] == pid) {
cc31edce
PM
3673 index = mid;
3674 break;
102a775e 3675 } else if (l->list[mid] <= pid)
cc31edce
PM
3676 index = mid + 1;
3677 else
3678 end = mid;
3679 }
3680 }
3681 /* If we're off the end of the array, we're done */
102a775e 3682 if (index >= l->length)
cc31edce
PM
3683 return NULL;
3684 /* Update the abstract position to be the actual pid that we found */
102a775e 3685 iter = l->list + index;
cc31edce
PM
3686 *pos = *iter;
3687 return iter;
3688}
3689
102a775e 3690static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3691{
102a775e
BB
3692 struct cgroup_pidlist *l = s->private;
3693 up_read(&l->mutex);
cc31edce
PM
3694}
3695
102a775e 3696static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3697{
102a775e
BB
3698 struct cgroup_pidlist *l = s->private;
3699 pid_t *p = v;
3700 pid_t *end = l->list + l->length;
cc31edce
PM
3701 /*
3702 * Advance to the next pid in the array. If this goes off the
3703 * end, we're done
3704 */
3705 p++;
3706 if (p >= end) {
3707 return NULL;
3708 } else {
3709 *pos = *p;
3710 return p;
3711 }
3712}
3713
102a775e 3714static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3715{
3716 return seq_printf(s, "%d\n", *(int *)v);
3717}
bbcb81d0 3718
102a775e
BB
3719/*
3720 * seq_operations functions for iterating on pidlists through seq_file -
3721 * independent of whether it's tasks or procs
3722 */
3723static const struct seq_operations cgroup_pidlist_seq_operations = {
3724 .start = cgroup_pidlist_start,
3725 .stop = cgroup_pidlist_stop,
3726 .next = cgroup_pidlist_next,
3727 .show = cgroup_pidlist_show,
cc31edce
PM
3728};
3729
102a775e 3730static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3731{
72a8cb30
BB
3732 /*
3733 * the case where we're the last user of this particular pidlist will
3734 * have us remove it from the cgroup's list, which entails taking the
3735 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3736 * pidlist_mutex, we have to take pidlist_mutex first.
3737 */
3738 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3739 down_write(&l->mutex);
3740 BUG_ON(!l->use_count);
3741 if (!--l->use_count) {
72a8cb30
BB
3742 /* we're the last user if refcount is 0; remove and free */
3743 list_del(&l->links);
3744 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3745 pidlist_free(l->list);
72a8cb30
BB
3746 put_pid_ns(l->key.ns);
3747 up_write(&l->mutex);
3748 kfree(l);
3749 return;
cc31edce 3750 }
72a8cb30 3751 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3752 up_write(&l->mutex);
bbcb81d0
PM
3753}
3754
102a775e 3755static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3756{
102a775e 3757 struct cgroup_pidlist *l;
cc31edce
PM
3758 if (!(file->f_mode & FMODE_READ))
3759 return 0;
102a775e
BB
3760 /*
3761 * the seq_file will only be initialized if the file was opened for
3762 * reading; hence we check if it's not null only in that case.
3763 */
3764 l = ((struct seq_file *)file->private_data)->private;
3765 cgroup_release_pid_array(l);
cc31edce
PM
3766 return seq_release(inode, file);
3767}
3768
102a775e 3769static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3770 .read = seq_read,
3771 .llseek = seq_lseek,
3772 .write = cgroup_file_write,
102a775e 3773 .release = cgroup_pidlist_release,
cc31edce
PM
3774};
3775
bbcb81d0 3776/*
102a775e
BB
3777 * The following functions handle opens on a file that displays a pidlist
3778 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3779 * in the cgroup.
bbcb81d0 3780 */
102a775e 3781/* helper function for the two below it */
72a8cb30 3782static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3783{
bd89aabc 3784 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3785 struct cgroup_pidlist *l;
cc31edce 3786 int retval;
bbcb81d0 3787
cc31edce 3788 /* Nothing to do for write-only files */
bbcb81d0
PM
3789 if (!(file->f_mode & FMODE_READ))
3790 return 0;
3791
102a775e 3792 /* have the array populated */
72a8cb30 3793 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3794 if (retval)
3795 return retval;
3796 /* configure file information */
3797 file->f_op = &cgroup_pidlist_operations;
cc31edce 3798
102a775e 3799 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3800 if (retval) {
102a775e 3801 cgroup_release_pid_array(l);
cc31edce 3802 return retval;
bbcb81d0 3803 }
102a775e 3804 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3805 return 0;
3806}
102a775e
BB
3807static int cgroup_tasks_open(struct inode *unused, struct file *file)
3808{
72a8cb30 3809 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3810}
3811static int cgroup_procs_open(struct inode *unused, struct file *file)
3812{
72a8cb30 3813 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3814}
bbcb81d0 3815
bd89aabc 3816static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3817 struct cftype *cft)
3818{
bd89aabc 3819 return notify_on_release(cgrp);
81a6a5cd
PM
3820}
3821
6379c106
PM
3822static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3823 struct cftype *cft,
3824 u64 val)
3825{
3826 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3827 if (val)
3828 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3829 else
3830 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3831 return 0;
3832}
3833
1c8158ee
LZ
3834/*
3835 * When dput() is called asynchronously, if umount has been done and
3836 * then deactivate_super() in cgroup_free_fn() kills the superblock,
3837 * there's a small window that vfs will see the root dentry with non-zero
3838 * refcnt and trigger BUG().
3839 *
3840 * That's why we hold a reference before dput() and drop it right after.
3841 */
3842static void cgroup_dput(struct cgroup *cgrp)
3843{
3844 struct super_block *sb = cgrp->root->sb;
3845
3846 atomic_inc(&sb->s_active);
3847 dput(cgrp->dentry);
3848 deactivate_super(sb);
3849}
3850
0dea1168
KS
3851/*
3852 * Unregister event and free resources.
3853 *
3854 * Gets called from workqueue.
3855 */
3856static void cgroup_event_remove(struct work_struct *work)
3857{
3858 struct cgroup_event *event = container_of(work, struct cgroup_event,
3859 remove);
3860 struct cgroup *cgrp = event->cgrp;
3861
810cbee4
LZ
3862 remove_wait_queue(event->wqh, &event->wait);
3863
0dea1168
KS
3864 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3865
810cbee4
LZ
3866 /* Notify userspace the event is going away. */
3867 eventfd_signal(event->eventfd, 1);
3868
0dea1168 3869 eventfd_ctx_put(event->eventfd);
0dea1168 3870 kfree(event);
1c8158ee 3871 cgroup_dput(cgrp);
0dea1168
KS
3872}
3873
3874/*
3875 * Gets called on POLLHUP on eventfd when user closes it.
3876 *
3877 * Called with wqh->lock held and interrupts disabled.
3878 */
3879static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3880 int sync, void *key)
3881{
3882 struct cgroup_event *event = container_of(wait,
3883 struct cgroup_event, wait);
3884 struct cgroup *cgrp = event->cgrp;
3885 unsigned long flags = (unsigned long)key;
3886
3887 if (flags & POLLHUP) {
0dea1168 3888 /*
810cbee4
LZ
3889 * If the event has been detached at cgroup removal, we
3890 * can simply return knowing the other side will cleanup
3891 * for us.
3892 *
3893 * We can't race against event freeing since the other
3894 * side will require wqh->lock via remove_wait_queue(),
3895 * which we hold.
0dea1168 3896 */
810cbee4
LZ
3897 spin_lock(&cgrp->event_list_lock);
3898 if (!list_empty(&event->list)) {
3899 list_del_init(&event->list);
3900 /*
3901 * We are in atomic context, but cgroup_event_remove()
3902 * may sleep, so we have to call it in workqueue.
3903 */
3904 schedule_work(&event->remove);
3905 }
3906 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3907 }
3908
3909 return 0;
3910}
3911
3912static void cgroup_event_ptable_queue_proc(struct file *file,
3913 wait_queue_head_t *wqh, poll_table *pt)
3914{
3915 struct cgroup_event *event = container_of(pt,
3916 struct cgroup_event, pt);
3917
3918 event->wqh = wqh;
3919 add_wait_queue(wqh, &event->wait);
3920}
3921
3922/*
3923 * Parse input and register new cgroup event handler.
3924 *
3925 * Input must be in format '<event_fd> <control_fd> <args>'.
3926 * Interpretation of args is defined by control file implementation.
3927 */
3928static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3929 const char *buffer)
3930{
3931 struct cgroup_event *event = NULL;
f169007b 3932 struct cgroup *cgrp_cfile;
0dea1168
KS
3933 unsigned int efd, cfd;
3934 struct file *efile = NULL;
3935 struct file *cfile = NULL;
3936 char *endp;
3937 int ret;
3938
3939 efd = simple_strtoul(buffer, &endp, 10);
3940 if (*endp != ' ')
3941 return -EINVAL;
3942 buffer = endp + 1;
3943
3944 cfd = simple_strtoul(buffer, &endp, 10);
3945 if ((*endp != ' ') && (*endp != '\0'))
3946 return -EINVAL;
3947 buffer = endp + 1;
3948
3949 event = kzalloc(sizeof(*event), GFP_KERNEL);
3950 if (!event)
3951 return -ENOMEM;
3952 event->cgrp = cgrp;
3953 INIT_LIST_HEAD(&event->list);
3954 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3955 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3956 INIT_WORK(&event->remove, cgroup_event_remove);
3957
3958 efile = eventfd_fget(efd);
3959 if (IS_ERR(efile)) {
3960 ret = PTR_ERR(efile);
3961 goto fail;
3962 }
3963
3964 event->eventfd = eventfd_ctx_fileget(efile);
3965 if (IS_ERR(event->eventfd)) {
3966 ret = PTR_ERR(event->eventfd);
3967 goto fail;
3968 }
3969
3970 cfile = fget(cfd);
3971 if (!cfile) {
3972 ret = -EBADF;
3973 goto fail;
3974 }
3975
3976 /* the process need read permission on control file */
3bfa784a 3977 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3978 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3979 if (ret < 0)
3980 goto fail;
3981
3982 event->cft = __file_cft(cfile);
3983 if (IS_ERR(event->cft)) {
3984 ret = PTR_ERR(event->cft);
3985 goto fail;
3986 }
3987
f169007b
LZ
3988 /*
3989 * The file to be monitored must be in the same cgroup as
3990 * cgroup.event_control is.
3991 */
3992 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3993 if (cgrp_cfile != cgrp) {
3994 ret = -EINVAL;
3995 goto fail;
3996 }
3997
0dea1168
KS
3998 if (!event->cft->register_event || !event->cft->unregister_event) {
3999 ret = -EINVAL;
4000 goto fail;
4001 }
4002
4003 ret = event->cft->register_event(cgrp, event->cft,
4004 event->eventfd, buffer);
4005 if (ret)
4006 goto fail;
4007
7ef70e48 4008 efile->f_op->poll(efile, &event->pt);
0dea1168 4009
a0a4db54
KS
4010 /*
4011 * Events should be removed after rmdir of cgroup directory, but before
4012 * destroying subsystem state objects. Let's take reference to cgroup
4013 * directory dentry to do that.
4014 */
4015 dget(cgrp->dentry);
4016
0dea1168
KS
4017 spin_lock(&cgrp->event_list_lock);
4018 list_add(&event->list, &cgrp->event_list);
4019 spin_unlock(&cgrp->event_list_lock);
4020
4021 fput(cfile);
4022 fput(efile);
4023
4024 return 0;
4025
4026fail:
4027 if (cfile)
4028 fput(cfile);
4029
4030 if (event && event->eventfd && !IS_ERR(event->eventfd))
4031 eventfd_ctx_put(event->eventfd);
4032
4033 if (!IS_ERR_OR_NULL(efile))
4034 fput(efile);
4035
4036 kfree(event);
4037
4038 return ret;
4039}
4040
97978e6d
DL
4041static u64 cgroup_clone_children_read(struct cgroup *cgrp,
4042 struct cftype *cft)
4043{
2260e7fc 4044 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4045}
4046
4047static int cgroup_clone_children_write(struct cgroup *cgrp,
4048 struct cftype *cft,
4049 u64 val)
4050{
4051 if (val)
2260e7fc 4052 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4053 else
2260e7fc 4054 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
4055 return 0;
4056}
4057
d5c56ced 4058static struct cftype cgroup_base_files[] = {
81a6a5cd 4059 {
d5c56ced 4060 .name = "cgroup.procs",
102a775e 4061 .open = cgroup_procs_open,
74a1166d 4062 .write_u64 = cgroup_procs_write,
102a775e 4063 .release = cgroup_pidlist_release,
74a1166d 4064 .mode = S_IRUGO | S_IWUSR,
102a775e 4065 },
81a6a5cd 4066 {
d5c56ced 4067 .name = "cgroup.event_control",
0dea1168
KS
4068 .write_string = cgroup_write_event_control,
4069 .mode = S_IWUGO,
4070 },
97978e6d
DL
4071 {
4072 .name = "cgroup.clone_children",
873fe09e 4073 .flags = CFTYPE_INSANE,
97978e6d
DL
4074 .read_u64 = cgroup_clone_children_read,
4075 .write_u64 = cgroup_clone_children_write,
4076 },
873fe09e
TH
4077 {
4078 .name = "cgroup.sane_behavior",
4079 .flags = CFTYPE_ONLY_ON_ROOT,
4080 .read_seq_string = cgroup_sane_behavior_show,
4081 },
d5c56ced
TH
4082
4083 /*
4084 * Historical crazy stuff. These don't have "cgroup." prefix and
4085 * don't exist if sane_behavior. If you're depending on these, be
4086 * prepared to be burned.
4087 */
4088 {
4089 .name = "tasks",
4090 .flags = CFTYPE_INSANE, /* use "procs" instead */
4091 .open = cgroup_tasks_open,
4092 .write_u64 = cgroup_tasks_write,
4093 .release = cgroup_pidlist_release,
4094 .mode = S_IRUGO | S_IWUSR,
4095 },
4096 {
4097 .name = "notify_on_release",
4098 .flags = CFTYPE_INSANE,
4099 .read_u64 = cgroup_read_notify_on_release,
4100 .write_u64 = cgroup_write_notify_on_release,
4101 },
6e6ff25b
TH
4102 {
4103 .name = "release_agent",
cc5943a7 4104 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
6e6ff25b
TH
4105 .read_seq_string = cgroup_release_agent_show,
4106 .write_string = cgroup_release_agent_write,
4107 .max_write_len = PATH_MAX,
4108 },
db0416b6 4109 { } /* terminate */
bbcb81d0
PM
4110};
4111
13af07df
AR
4112/**
4113 * cgroup_populate_dir - selectively creation of files in a directory
4114 * @cgrp: target cgroup
4115 * @base_files: true if the base files should be added
4116 * @subsys_mask: mask of the subsystem ids whose files should be added
4117 */
4118static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
4119 unsigned long subsys_mask)
ddbcc7e8
PM
4120{
4121 int err;
4122 struct cgroup_subsys *ss;
4123
13af07df 4124 if (base_files) {
d5c56ced 4125 err = cgroup_addrm_files(cgrp, NULL, cgroup_base_files, true);
13af07df
AR
4126 if (err < 0)
4127 return err;
4128 }
bbcb81d0 4129
8e3f6541 4130 /* process cftsets of each subsystem */
bd89aabc 4131 for_each_subsys(cgrp->root, ss) {
8e3f6541 4132 struct cftype_set *set;
13af07df
AR
4133 if (!test_bit(ss->subsys_id, &subsys_mask))
4134 continue;
8e3f6541 4135
db0416b6 4136 list_for_each_entry(set, &ss->cftsets, node)
79578621 4137 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4138 }
8e3f6541 4139
38460b48
KH
4140 /* This cgroup is ready now */
4141 for_each_subsys(cgrp->root, ss) {
4142 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4143 /*
4144 * Update id->css pointer and make this css visible from
4145 * CSS ID functions. This pointer will be dereferened
4146 * from RCU-read-side without locks.
4147 */
4148 if (css->id)
4149 rcu_assign_pointer(css->id->css, css);
4150 }
ddbcc7e8
PM
4151
4152 return 0;
4153}
4154
48ddbe19
TH
4155static void css_dput_fn(struct work_struct *work)
4156{
4157 struct cgroup_subsys_state *css =
4158 container_of(work, struct cgroup_subsys_state, dput_work);
4159
1c8158ee 4160 cgroup_dput(css->cgroup);
48ddbe19
TH
4161}
4162
d3daf28d
TH
4163static void css_release(struct percpu_ref *ref)
4164{
4165 struct cgroup_subsys_state *css =
4166 container_of(ref, struct cgroup_subsys_state, refcnt);
4167
4168 schedule_work(&css->dput_work);
4169}
4170
ddbcc7e8
PM
4171static void init_cgroup_css(struct cgroup_subsys_state *css,
4172 struct cgroup_subsys *ss,
bd89aabc 4173 struct cgroup *cgrp)
ddbcc7e8 4174{
bd89aabc 4175 css->cgroup = cgrp;
ddbcc7e8 4176 css->flags = 0;
38460b48 4177 css->id = NULL;
bd89aabc 4178 if (cgrp == dummytop)
38b53aba 4179 css->flags |= CSS_ROOT;
bd89aabc
PM
4180 BUG_ON(cgrp->subsys[ss->subsys_id]);
4181 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4182
4183 /*
ed957793
TH
4184 * css holds an extra ref to @cgrp->dentry which is put on the last
4185 * css_put(). dput() requires process context, which css_put() may
4186 * be called without. @css->dput_work will be used to invoke
4187 * dput() asynchronously from css_put().
48ddbe19
TH
4188 */
4189 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4190}
4191
b1929db4
TH
4192/* invoke ->post_create() on a new CSS and mark it online if successful */
4193static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4194{
b1929db4
TH
4195 int ret = 0;
4196
a31f2d3f
TH
4197 lockdep_assert_held(&cgroup_mutex);
4198
92fb9748
TH
4199 if (ss->css_online)
4200 ret = ss->css_online(cgrp);
b1929db4
TH
4201 if (!ret)
4202 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4203 return ret;
a31f2d3f
TH
4204}
4205
4206/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4207static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4208 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4209{
4210 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4211
4212 lockdep_assert_held(&cgroup_mutex);
4213
4214 if (!(css->flags & CSS_ONLINE))
4215 return;
4216
d7eeac19 4217 if (ss->css_offline)
92fb9748 4218 ss->css_offline(cgrp);
a31f2d3f
TH
4219
4220 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4221}
4222
ddbcc7e8 4223/*
a043e3b2
LZ
4224 * cgroup_create - create a cgroup
4225 * @parent: cgroup that will be parent of the new cgroup
4226 * @dentry: dentry of the new cgroup
4227 * @mode: mode to set on new inode
ddbcc7e8 4228 *
a043e3b2 4229 * Must be called with the mutex on the parent inode held
ddbcc7e8 4230 */
ddbcc7e8 4231static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4232 umode_t mode)
ddbcc7e8 4233{
bd89aabc 4234 struct cgroup *cgrp;
65dff759 4235 struct cgroup_name *name;
ddbcc7e8
PM
4236 struct cgroupfs_root *root = parent->root;
4237 int err = 0;
4238 struct cgroup_subsys *ss;
4239 struct super_block *sb = root->sb;
4240
0a950f65 4241 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4242 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4243 if (!cgrp)
ddbcc7e8
PM
4244 return -ENOMEM;
4245
65dff759
LZ
4246 name = cgroup_alloc_name(dentry);
4247 if (!name)
4248 goto err_free_cgrp;
4249 rcu_assign_pointer(cgrp->name, name);
4250
0a950f65
TH
4251 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4252 if (cgrp->id < 0)
65dff759 4253 goto err_free_name;
0a950f65 4254
976c06bc
TH
4255 /*
4256 * Only live parents can have children. Note that the liveliness
4257 * check isn't strictly necessary because cgroup_mkdir() and
4258 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4259 * anyway so that locking is contained inside cgroup proper and we
4260 * don't get nasty surprises if we ever grow another caller.
4261 */
4262 if (!cgroup_lock_live_group(parent)) {
4263 err = -ENODEV;
0a950f65 4264 goto err_free_id;
976c06bc
TH
4265 }
4266
ddbcc7e8
PM
4267 /* Grab a reference on the superblock so the hierarchy doesn't
4268 * get deleted on unmount if there are child cgroups. This
4269 * can be done outside cgroup_mutex, since the sb can't
4270 * disappear while someone has an open control file on the
4271 * fs */
4272 atomic_inc(&sb->s_active);
4273
cc31edce 4274 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4275
fe1c06ca
LZ
4276 dentry->d_fsdata = cgrp;
4277 cgrp->dentry = dentry;
4278
bd89aabc
PM
4279 cgrp->parent = parent;
4280 cgrp->root = parent->root;
ddbcc7e8 4281
b6abdb0e
LZ
4282 if (notify_on_release(parent))
4283 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4284
2260e7fc
TH
4285 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4286 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4287
ddbcc7e8 4288 for_each_subsys(root, ss) {
8c7f6edb 4289 struct cgroup_subsys_state *css;
4528fd05 4290
92fb9748 4291 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4292 if (IS_ERR(css)) {
4293 err = PTR_ERR(css);
4b8b47eb 4294 goto err_free_all;
ddbcc7e8 4295 }
d3daf28d
TH
4296
4297 err = percpu_ref_init(&css->refcnt, css_release);
4298 if (err)
4299 goto err_free_all;
4300
bd89aabc 4301 init_cgroup_css(css, ss, cgrp);
d3daf28d 4302
4528fd05
LZ
4303 if (ss->use_id) {
4304 err = alloc_css_id(ss, parent, cgrp);
4305 if (err)
4b8b47eb 4306 goto err_free_all;
4528fd05 4307 }
ddbcc7e8
PM
4308 }
4309
4e139afc
TH
4310 /*
4311 * Create directory. cgroup_create_file() returns with the new
4312 * directory locked on success so that it can be populated without
4313 * dropping cgroup_mutex.
4314 */
28fd6f30 4315 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4316 if (err < 0)
4b8b47eb 4317 goto err_free_all;
4e139afc 4318 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4319
794611a1 4320 cgrp->serial_nr = atomic64_inc_return(&cgroup_serial_nr_cursor);
53fa5261 4321
4e139afc 4322 /* allocation complete, commit to creation */
4e139afc
TH
4323 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4324 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4325 root->number_of_cgroups++;
28fd6f30 4326
b1929db4
TH
4327 /* each css holds a ref to the cgroup's dentry */
4328 for_each_subsys(root, ss)
ed957793 4329 dget(dentry);
48ddbe19 4330
415cf07a
LZ
4331 /* hold a ref to the parent's dentry */
4332 dget(parent->dentry);
4333
b1929db4
TH
4334 /* creation succeeded, notify subsystems */
4335 for_each_subsys(root, ss) {
4336 err = online_css(ss, cgrp);
4337 if (err)
4338 goto err_destroy;
1f869e87
GC
4339
4340 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4341 parent->parent) {
4342 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4343 current->comm, current->pid, ss->name);
4344 if (!strcmp(ss->name, "memory"))
4345 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4346 ss->warned_broken_hierarchy = true;
4347 }
a8638030
TH
4348 }
4349
a1a71b45 4350 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4351 if (err)
4352 goto err_destroy;
ddbcc7e8
PM
4353
4354 mutex_unlock(&cgroup_mutex);
bd89aabc 4355 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4356
4357 return 0;
4358
4b8b47eb 4359err_free_all:
ddbcc7e8 4360 for_each_subsys(root, ss) {
d3daf28d
TH
4361 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4362
4363 if (css) {
4364 percpu_ref_cancel_init(&css->refcnt);
92fb9748 4365 ss->css_free(cgrp);
d3daf28d 4366 }
ddbcc7e8 4367 }
ddbcc7e8 4368 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4369 /* Release the reference count that we took on the superblock */
4370 deactivate_super(sb);
0a950f65
TH
4371err_free_id:
4372 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4373err_free_name:
4374 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4375err_free_cgrp:
bd89aabc 4376 kfree(cgrp);
ddbcc7e8 4377 return err;
4b8b47eb
TH
4378
4379err_destroy:
4380 cgroup_destroy_locked(cgrp);
4381 mutex_unlock(&cgroup_mutex);
4382 mutex_unlock(&dentry->d_inode->i_mutex);
4383 return err;
ddbcc7e8
PM
4384}
4385
18bb1db3 4386static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4387{
4388 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4389
4390 /* the vfs holds inode->i_mutex already */
4391 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4392}
4393
d3daf28d
TH
4394static void cgroup_css_killed(struct cgroup *cgrp)
4395{
4396 if (!atomic_dec_and_test(&cgrp->css_kill_cnt))
4397 return;
4398
4399 /* percpu ref's of all css's are killed, kick off the next step */
4400 INIT_WORK(&cgrp->destroy_work, cgroup_offline_fn);
4401 schedule_work(&cgrp->destroy_work);
4402}
4403
4404static void css_ref_killed_fn(struct percpu_ref *ref)
4405{
4406 struct cgroup_subsys_state *css =
4407 container_of(ref, struct cgroup_subsys_state, refcnt);
4408
4409 cgroup_css_killed(css->cgroup);
4410}
4411
4412/**
4413 * cgroup_destroy_locked - the first stage of cgroup destruction
4414 * @cgrp: cgroup to be destroyed
4415 *
4416 * css's make use of percpu refcnts whose killing latency shouldn't be
4417 * exposed to userland and are RCU protected. Also, cgroup core needs to
4418 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
4419 * invoked. To satisfy all the requirements, destruction is implemented in
4420 * the following two steps.
4421 *
4422 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4423 * userland visible parts and start killing the percpu refcnts of
4424 * css's. Set up so that the next stage will be kicked off once all
4425 * the percpu refcnts are confirmed to be killed.
4426 *
4427 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4428 * rest of destruction. Once all cgroup references are gone, the
4429 * cgroup is RCU-freed.
4430 *
4431 * This function implements s1. After this step, @cgrp is gone as far as
4432 * the userland is concerned and a new cgroup with the same name may be
4433 * created. As cgroup doesn't care about the names internally, this
4434 * doesn't cause any problem.
4435 */
42809dd4
TH
4436static int cgroup_destroy_locked(struct cgroup *cgrp)
4437 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4438{
42809dd4 4439 struct dentry *d = cgrp->dentry;
4ab78683 4440 struct cgroup_event *event, *tmp;
ed957793 4441 struct cgroup_subsys *ss;
ddd69148 4442 bool empty;
ddbcc7e8 4443
42809dd4
TH
4444 lockdep_assert_held(&d->d_inode->i_mutex);
4445 lockdep_assert_held(&cgroup_mutex);
4446
ddd69148 4447 /*
6f3d828f
TH
4448 * css_set_lock synchronizes access to ->cset_links and prevents
4449 * @cgrp from being removed while __put_css_set() is in progress.
ddd69148
TH
4450 */
4451 read_lock(&css_set_lock);
6f3d828f 4452 empty = list_empty(&cgrp->cset_links) && list_empty(&cgrp->children);
ddd69148
TH
4453 read_unlock(&css_set_lock);
4454 if (!empty)
ddbcc7e8 4455 return -EBUSY;
a043e3b2 4456
88703267 4457 /*
d3daf28d
TH
4458 * Block new css_tryget() by killing css refcnts. cgroup core
4459 * guarantees that, by the time ->css_offline() is invoked, no new
4460 * css reference will be given out via css_tryget(). We can't
4461 * simply call percpu_ref_kill() and proceed to offlining css's
4462 * because percpu_ref_kill() doesn't guarantee that the ref is seen
4463 * as killed on all CPUs on return.
4464 *
4465 * Use percpu_ref_kill_and_confirm() to get notifications as each
4466 * css is confirmed to be seen as killed on all CPUs. The
4467 * notification callback keeps track of the number of css's to be
4468 * killed and schedules cgroup_offline_fn() to perform the rest of
4469 * destruction once the percpu refs of all css's are confirmed to
4470 * be killed.
88703267 4471 */
d3daf28d 4472 atomic_set(&cgrp->css_kill_cnt, 1);
ed957793
TH
4473 for_each_subsys(cgrp->root, ss) {
4474 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4475
d3daf28d
TH
4476 /*
4477 * Killing would put the base ref, but we need to keep it
4478 * alive until after ->css_offline.
4479 */
4480 percpu_ref_get(&css->refcnt);
4481
4482 atomic_inc(&cgrp->css_kill_cnt);
4483 percpu_ref_kill_and_confirm(&css->refcnt, css_ref_killed_fn);
88703267 4484 }
d3daf28d 4485 cgroup_css_killed(cgrp);
455050d2
TH
4486
4487 /*
4488 * Mark @cgrp dead. This prevents further task migration and child
4489 * creation by disabling cgroup_lock_live_group(). Note that
4490 * CGRP_DEAD assertion is depended upon by cgroup_next_sibling() to
4491 * resume iteration after dropping RCU read lock. See
4492 * cgroup_next_sibling() for details.
4493 */
54766d4a 4494 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 4495
455050d2
TH
4496 /* CGRP_DEAD is set, remove from ->release_list for the last time */
4497 raw_spin_lock(&release_list_lock);
4498 if (!list_empty(&cgrp->release_list))
4499 list_del_init(&cgrp->release_list);
4500 raw_spin_unlock(&release_list_lock);
4501
4502 /*
4503 * Remove @cgrp directory. The removal puts the base ref but we
4504 * aren't quite done with @cgrp yet, so hold onto it.
4505 */
4506 dget(d);
4507 cgroup_d_remove_dir(d);
4508
4509 /*
4510 * Unregister events and notify userspace.
4511 * Notify userspace about cgroup removing only after rmdir of cgroup
4512 * directory to avoid race between userspace and kernelspace.
4513 */
4514 spin_lock(&cgrp->event_list_lock);
4515 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4516 list_del_init(&event->list);
4517 schedule_work(&event->remove);
4518 }
4519 spin_unlock(&cgrp->event_list_lock);
4520
ea15f8cc
TH
4521 return 0;
4522};
4523
d3daf28d
TH
4524/**
4525 * cgroup_offline_fn - the second step of cgroup destruction
4526 * @work: cgroup->destroy_free_work
4527 *
4528 * This function is invoked from a work item for a cgroup which is being
4529 * destroyed after the percpu refcnts of all css's are guaranteed to be
4530 * seen as killed on all CPUs, and performs the rest of destruction. This
4531 * is the second step of destruction described in the comment above
4532 * cgroup_destroy_locked().
4533 */
ea15f8cc
TH
4534static void cgroup_offline_fn(struct work_struct *work)
4535{
4536 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
4537 struct cgroup *parent = cgrp->parent;
4538 struct dentry *d = cgrp->dentry;
4539 struct cgroup_subsys *ss;
4540
4541 mutex_lock(&cgroup_mutex);
4542
d3daf28d
TH
4543 /*
4544 * css_tryget() is guaranteed to fail now. Tell subsystems to
4545 * initate destruction.
4546 */
1a90dd50 4547 for_each_subsys(cgrp->root, ss)
a31f2d3f 4548 offline_css(ss, cgrp);
ed957793
TH
4549
4550 /*
d3daf28d
TH
4551 * Put the css refs from cgroup_destroy_locked(). Each css holds
4552 * an extra reference to the cgroup's dentry and cgroup removal
4553 * proceeds regardless of css refs. On the last put of each css,
4554 * whenever that may be, the extra dentry ref is put so that dentry
4555 * destruction happens only after all css's are released.
ed957793 4556 */
e9316080
TH
4557 for_each_subsys(cgrp->root, ss)
4558 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4559
999cd8a4 4560 /* delete this cgroup from parent->children */
eb6fd504 4561 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4562 list_del_init(&cgrp->allcg_node);
4563
ddbcc7e8 4564 dput(d);
ddbcc7e8 4565
bd89aabc 4566 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4567 check_for_release(parent);
4568
ea15f8cc 4569 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4570}
4571
42809dd4
TH
4572static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4573{
4574 int ret;
4575
4576 mutex_lock(&cgroup_mutex);
4577 ret = cgroup_destroy_locked(dentry->d_fsdata);
4578 mutex_unlock(&cgroup_mutex);
4579
4580 return ret;
4581}
4582
8e3f6541
TH
4583static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4584{
4585 INIT_LIST_HEAD(&ss->cftsets);
4586
4587 /*
4588 * base_cftset is embedded in subsys itself, no need to worry about
4589 * deregistration.
4590 */
4591 if (ss->base_cftypes) {
4592 ss->base_cftset.cfts = ss->base_cftypes;
4593 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4594 }
4595}
4596
06a11920 4597static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4598{
ddbcc7e8 4599 struct cgroup_subsys_state *css;
cfe36bde
DC
4600
4601 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4602
648bb56d
TH
4603 mutex_lock(&cgroup_mutex);
4604
8e3f6541
TH
4605 /* init base cftset */
4606 cgroup_init_cftsets(ss);
4607
ddbcc7e8 4608 /* Create the top cgroup state for this subsystem */
33a68ac1 4609 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4610 ss->root = &rootnode;
92fb9748 4611 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4612 /* We don't handle early failures gracefully */
4613 BUG_ON(IS_ERR(css));
4614 init_cgroup_css(css, ss, dummytop);
4615
e8d55fde 4616 /* Update the init_css_set to contain a subsys
817929ec 4617 * pointer to this state - since the subsystem is
e8d55fde
LZ
4618 * newly registered, all tasks and hence the
4619 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4620 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4621
4622 need_forkexit_callback |= ss->fork || ss->exit;
4623
e8d55fde
LZ
4624 /* At system boot, before all subsystems have been
4625 * registered, no tasks have been forked, so we don't
4626 * need to invoke fork callbacks here. */
4627 BUG_ON(!list_empty(&init_task.tasks));
4628
b1929db4 4629 BUG_ON(online_css(ss, dummytop));
a8638030 4630
648bb56d
TH
4631 mutex_unlock(&cgroup_mutex);
4632
e6a1105b
BB
4633 /* this function shouldn't be used with modular subsystems, since they
4634 * need to register a subsys_id, among other things */
4635 BUG_ON(ss->module);
4636}
4637
4638/**
4639 * cgroup_load_subsys: load and register a modular subsystem at runtime
4640 * @ss: the subsystem to load
4641 *
4642 * This function should be called in a modular subsystem's initcall. If the
88393161 4643 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4644 * up for use. If the subsystem is built-in anyway, work is delegated to the
4645 * simpler cgroup_init_subsys.
4646 */
4647int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4648{
e6a1105b 4649 struct cgroup_subsys_state *css;
d19e19de 4650 int i, ret;
b67bfe0d 4651 struct hlist_node *tmp;
5abb8855 4652 struct css_set *cset;
0ac801fe 4653 unsigned long key;
e6a1105b
BB
4654
4655 /* check name and function validity */
4656 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4657 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4658 return -EINVAL;
4659
4660 /*
4661 * we don't support callbacks in modular subsystems. this check is
4662 * before the ss->module check for consistency; a subsystem that could
4663 * be a module should still have no callbacks even if the user isn't
4664 * compiling it as one.
4665 */
4666 if (ss->fork || ss->exit)
4667 return -EINVAL;
4668
4669 /*
4670 * an optionally modular subsystem is built-in: we want to do nothing,
4671 * since cgroup_init_subsys will have already taken care of it.
4672 */
4673 if (ss->module == NULL) {
be45c900 4674 /* a sanity check */
e6a1105b
BB
4675 BUG_ON(subsys[ss->subsys_id] != ss);
4676 return 0;
4677 }
4678
8e3f6541
TH
4679 /* init base cftset */
4680 cgroup_init_cftsets(ss);
4681
e6a1105b 4682 mutex_lock(&cgroup_mutex);
8a8e04df 4683 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4684
4685 /*
92fb9748
TH
4686 * no ss->css_alloc seems to need anything important in the ss
4687 * struct, so this can happen first (i.e. before the rootnode
4688 * attachment).
e6a1105b 4689 */
92fb9748 4690 css = ss->css_alloc(dummytop);
e6a1105b
BB
4691 if (IS_ERR(css)) {
4692 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4693 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4694 mutex_unlock(&cgroup_mutex);
4695 return PTR_ERR(css);
4696 }
4697
4698 list_add(&ss->sibling, &rootnode.subsys_list);
4699 ss->root = &rootnode;
4700
4701 /* our new subsystem will be attached to the dummy hierarchy. */
4702 init_cgroup_css(css, ss, dummytop);
4703 /* init_idr must be after init_cgroup_css because it sets css->id. */
4704 if (ss->use_id) {
d19e19de
TH
4705 ret = cgroup_init_idr(ss, css);
4706 if (ret)
4707 goto err_unload;
e6a1105b
BB
4708 }
4709
4710 /*
4711 * Now we need to entangle the css into the existing css_sets. unlike
4712 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4713 * will need a new pointer to it; done by iterating the css_set_table.
4714 * furthermore, modifying the existing css_sets will corrupt the hash
4715 * table state, so each changed css_set will need its hash recomputed.
4716 * this is all done under the css_set_lock.
4717 */
4718 write_lock(&css_set_lock);
5abb8855 4719 hash_for_each_safe(css_set_table, i, tmp, cset, hlist) {
0ac801fe 4720 /* skip entries that we already rehashed */
5abb8855 4721 if (cset->subsys[ss->subsys_id])
0ac801fe
LZ
4722 continue;
4723 /* remove existing entry */
5abb8855 4724 hash_del(&cset->hlist);
0ac801fe 4725 /* set new value */
5abb8855 4726 cset->subsys[ss->subsys_id] = css;
0ac801fe 4727 /* recompute hash and restore entry */
5abb8855
TH
4728 key = css_set_hash(cset->subsys);
4729 hash_add(css_set_table, &cset->hlist, key);
e6a1105b
BB
4730 }
4731 write_unlock(&css_set_lock);
4732
b1929db4
TH
4733 ret = online_css(ss, dummytop);
4734 if (ret)
4735 goto err_unload;
a8638030 4736
e6a1105b
BB
4737 /* success! */
4738 mutex_unlock(&cgroup_mutex);
4739 return 0;
d19e19de
TH
4740
4741err_unload:
4742 mutex_unlock(&cgroup_mutex);
4743 /* @ss can't be mounted here as try_module_get() would fail */
4744 cgroup_unload_subsys(ss);
4745 return ret;
ddbcc7e8 4746}
e6a1105b 4747EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4748
cf5d5941
BB
4749/**
4750 * cgroup_unload_subsys: unload a modular subsystem
4751 * @ss: the subsystem to unload
4752 *
4753 * This function should be called in a modular subsystem's exitcall. When this
4754 * function is invoked, the refcount on the subsystem's module will be 0, so
4755 * the subsystem will not be attached to any hierarchy.
4756 */
4757void cgroup_unload_subsys(struct cgroup_subsys *ss)
4758{
69d0206c 4759 struct cgrp_cset_link *link;
cf5d5941
BB
4760
4761 BUG_ON(ss->module == NULL);
4762
4763 /*
4764 * we shouldn't be called if the subsystem is in use, and the use of
4765 * try_module_get in parse_cgroupfs_options should ensure that it
4766 * doesn't start being used while we're killing it off.
4767 */
4768 BUG_ON(ss->root != &rootnode);
4769
4770 mutex_lock(&cgroup_mutex);
02ae7486 4771
a31f2d3f 4772 offline_css(ss, dummytop);
02ae7486 4773
c897ff68 4774 if (ss->use_id)
02ae7486 4775 idr_destroy(&ss->idr);
02ae7486 4776
cf5d5941 4777 /* deassign the subsys_id */
cf5d5941
BB
4778 subsys[ss->subsys_id] = NULL;
4779
4780 /* remove subsystem from rootnode's list of subsystems */
8d258797 4781 list_del_init(&ss->sibling);
cf5d5941
BB
4782
4783 /*
4784 * disentangle the css from all css_sets attached to the dummytop. as
4785 * in loading, we need to pay our respects to the hashtable gods.
4786 */
4787 write_lock(&css_set_lock);
69d0206c
TH
4788 list_for_each_entry(link, &dummytop->cset_links, cset_link) {
4789 struct css_set *cset = link->cset;
0ac801fe 4790 unsigned long key;
cf5d5941 4791
5abb8855
TH
4792 hash_del(&cset->hlist);
4793 cset->subsys[ss->subsys_id] = NULL;
4794 key = css_set_hash(cset->subsys);
4795 hash_add(css_set_table, &cset->hlist, key);
cf5d5941
BB
4796 }
4797 write_unlock(&css_set_lock);
4798
4799 /*
92fb9748
TH
4800 * remove subsystem's css from the dummytop and free it - need to
4801 * free before marking as null because ss->css_free needs the
4802 * cgrp->subsys pointer to find their state. note that this also
4803 * takes care of freeing the css_id.
cf5d5941 4804 */
92fb9748 4805 ss->css_free(dummytop);
cf5d5941
BB
4806 dummytop->subsys[ss->subsys_id] = NULL;
4807
4808 mutex_unlock(&cgroup_mutex);
4809}
4810EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4811
ddbcc7e8 4812/**
a043e3b2
LZ
4813 * cgroup_init_early - cgroup initialization at system boot
4814 *
4815 * Initialize cgroups at system boot, and initialize any
4816 * subsystems that request early init.
ddbcc7e8
PM
4817 */
4818int __init cgroup_init_early(void)
4819{
4820 int i;
146aa1bd 4821 atomic_set(&init_css_set.refcount, 1);
69d0206c 4822 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 4823 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4824 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4825 css_set_count = 1;
ddbcc7e8 4826 init_cgroup_root(&rootnode);
817929ec
PM
4827 root_count = 1;
4828 init_task.cgroups = &init_css_set;
4829
69d0206c
TH
4830 init_cgrp_cset_link.cset = &init_css_set;
4831 init_cgrp_cset_link.cgrp = dummytop;
4832 list_add(&init_cgrp_cset_link.cset_link, &rootnode.top_cgroup.cset_links);
4833 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 4834
be45c900 4835 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4836 struct cgroup_subsys *ss = subsys[i];
4837
be45c900
DW
4838 /* at bootup time, we don't worry about modular subsystems */
4839 if (!ss || ss->module)
4840 continue;
4841
ddbcc7e8
PM
4842 BUG_ON(!ss->name);
4843 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4844 BUG_ON(!ss->css_alloc);
4845 BUG_ON(!ss->css_free);
ddbcc7e8 4846 if (ss->subsys_id != i) {
cfe36bde 4847 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4848 ss->name, ss->subsys_id);
4849 BUG();
4850 }
4851
4852 if (ss->early_init)
4853 cgroup_init_subsys(ss);
4854 }
4855 return 0;
4856}
4857
4858/**
a043e3b2
LZ
4859 * cgroup_init - cgroup initialization
4860 *
4861 * Register cgroup filesystem and /proc file, and initialize
4862 * any subsystems that didn't request early init.
ddbcc7e8
PM
4863 */
4864int __init cgroup_init(void)
4865{
4866 int err;
4867 int i;
0ac801fe 4868 unsigned long key;
a424316c
PM
4869
4870 err = bdi_init(&cgroup_backing_dev_info);
4871 if (err)
4872 return err;
ddbcc7e8 4873
be45c900 4874 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4875 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4876
4877 /* at bootup time, we don't worry about modular subsystems */
4878 if (!ss || ss->module)
4879 continue;
ddbcc7e8
PM
4880 if (!ss->early_init)
4881 cgroup_init_subsys(ss);
38460b48 4882 if (ss->use_id)
e6a1105b 4883 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4884 }
4885
472b1053 4886 /* Add init_css_set to the hash table */
0ac801fe
LZ
4887 key = css_set_hash(init_css_set.subsys);
4888 hash_add(css_set_table, &init_css_set.hlist, key);
fa3ca07e
TH
4889
4890 /* allocate id for the dummy hierarchy */
54e7b4eb
TH
4891 mutex_lock(&cgroup_mutex);
4892 mutex_lock(&cgroup_root_mutex);
4893
fa3ca07e 4894 BUG_ON(cgroup_init_root_id(&rootnode));
676db4af 4895
54e7b4eb
TH
4896 mutex_unlock(&cgroup_root_mutex);
4897 mutex_unlock(&cgroup_mutex);
4898
676db4af
GK
4899 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4900 if (!cgroup_kobj) {
4901 err = -ENOMEM;
4902 goto out;
4903 }
4904
ddbcc7e8 4905 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4906 if (err < 0) {
4907 kobject_put(cgroup_kobj);
ddbcc7e8 4908 goto out;
676db4af 4909 }
ddbcc7e8 4910
46ae220b 4911 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4912
ddbcc7e8 4913out:
a424316c
PM
4914 if (err)
4915 bdi_destroy(&cgroup_backing_dev_info);
4916
ddbcc7e8
PM
4917 return err;
4918}
b4f48b63 4919
a424316c
PM
4920/*
4921 * proc_cgroup_show()
4922 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4923 * - Used for /proc/<pid>/cgroup.
4924 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4925 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4926 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4927 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4928 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4929 * cgroup to top_cgroup.
4930 */
4931
4932/* TODO: Use a proper seq_file iterator */
8d8b97ba 4933int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4934{
4935 struct pid *pid;
4936 struct task_struct *tsk;
4937 char *buf;
4938 int retval;
4939 struct cgroupfs_root *root;
4940
4941 retval = -ENOMEM;
4942 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4943 if (!buf)
4944 goto out;
4945
4946 retval = -ESRCH;
4947 pid = m->private;
4948 tsk = get_pid_task(pid, PIDTYPE_PID);
4949 if (!tsk)
4950 goto out_free;
4951
4952 retval = 0;
4953
4954 mutex_lock(&cgroup_mutex);
4955
e5f6a860 4956 for_each_active_root(root) {
a424316c 4957 struct cgroup_subsys *ss;
bd89aabc 4958 struct cgroup *cgrp;
a424316c
PM
4959 int count = 0;
4960
2c6ab6d2 4961 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4962 for_each_subsys(root, ss)
4963 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4964 if (strlen(root->name))
4965 seq_printf(m, "%sname=%s", count ? "," : "",
4966 root->name);
a424316c 4967 seq_putc(m, ':');
7717f7ba 4968 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4969 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4970 if (retval < 0)
4971 goto out_unlock;
4972 seq_puts(m, buf);
4973 seq_putc(m, '\n');
4974 }
4975
4976out_unlock:
4977 mutex_unlock(&cgroup_mutex);
4978 put_task_struct(tsk);
4979out_free:
4980 kfree(buf);
4981out:
4982 return retval;
4983}
4984
a424316c
PM
4985/* Display information about each subsystem and each hierarchy */
4986static int proc_cgroupstats_show(struct seq_file *m, void *v)
4987{
4988 int i;
a424316c 4989
8bab8dde 4990 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4991 /*
4992 * ideally we don't want subsystems moving around while we do this.
4993 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4994 * subsys/hierarchy state.
4995 */
a424316c 4996 mutex_lock(&cgroup_mutex);
a424316c
PM
4997 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4998 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4999 if (ss == NULL)
5000 continue;
2c6ab6d2
PM
5001 seq_printf(m, "%s\t%d\t%d\t%d\n",
5002 ss->name, ss->root->hierarchy_id,
8bab8dde 5003 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
5004 }
5005 mutex_unlock(&cgroup_mutex);
5006 return 0;
5007}
5008
5009static int cgroupstats_open(struct inode *inode, struct file *file)
5010{
9dce07f1 5011 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5012}
5013
828c0950 5014static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5015 .open = cgroupstats_open,
5016 .read = seq_read,
5017 .llseek = seq_lseek,
5018 .release = single_release,
5019};
5020
b4f48b63
PM
5021/**
5022 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 5023 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
5024 *
5025 * Description: A task inherits its parent's cgroup at fork().
5026 *
5027 * A pointer to the shared css_set was automatically copied in
5028 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
5029 * it was not made under the protection of RCU or cgroup_mutex, so
5030 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
5031 * have already changed current->cgroups, allowing the previously
5032 * referenced cgroup group to be removed and freed.
b4f48b63
PM
5033 *
5034 * At the point that cgroup_fork() is called, 'current' is the parent
5035 * task, and the passed argument 'child' points to the child task.
5036 */
5037void cgroup_fork(struct task_struct *child)
5038{
9bb71308 5039 task_lock(current);
817929ec
PM
5040 child->cgroups = current->cgroups;
5041 get_css_set(child->cgroups);
9bb71308 5042 task_unlock(current);
817929ec 5043 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5044}
5045
817929ec 5046/**
a043e3b2
LZ
5047 * cgroup_post_fork - called on a new task after adding it to the task list
5048 * @child: the task in question
5049 *
5edee61e
TH
5050 * Adds the task to the list running through its css_set if necessary and
5051 * call the subsystem fork() callbacks. Has to be after the task is
5052 * visible on the task list in case we race with the first call to
5053 * cgroup_iter_start() - to guarantee that the new task ends up on its
5054 * list.
a043e3b2 5055 */
817929ec
PM
5056void cgroup_post_fork(struct task_struct *child)
5057{
5edee61e
TH
5058 int i;
5059
3ce3230a
FW
5060 /*
5061 * use_task_css_set_links is set to 1 before we walk the tasklist
5062 * under the tasklist_lock and we read it here after we added the child
5063 * to the tasklist under the tasklist_lock as well. If the child wasn't
5064 * yet in the tasklist when we walked through it from
5065 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
5066 * should be visible now due to the paired locking and barriers implied
5067 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
5068 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
5069 * lock on fork.
5070 */
817929ec
PM
5071 if (use_task_css_set_links) {
5072 write_lock(&css_set_lock);
d8783832
TH
5073 task_lock(child);
5074 if (list_empty(&child->cg_list))
817929ec 5075 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 5076 task_unlock(child);
817929ec
PM
5077 write_unlock(&css_set_lock);
5078 }
5edee61e
TH
5079
5080 /*
5081 * Call ss->fork(). This must happen after @child is linked on
5082 * css_set; otherwise, @child might change state between ->fork()
5083 * and addition to css_set.
5084 */
5085 if (need_forkexit_callback) {
7d8e0bf5
LZ
5086 /*
5087 * fork/exit callbacks are supported only for builtin
5088 * subsystems, and the builtin section of the subsys
5089 * array is immutable, so we don't need to lock the
5090 * subsys array here. On the other hand, modular section
5091 * of the array can be freed at module unload, so we
5092 * can't touch that.
5093 */
5094 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
5095 struct cgroup_subsys *ss = subsys[i];
5096
5edee61e
TH
5097 if (ss->fork)
5098 ss->fork(child);
5099 }
5100 }
817929ec 5101}
5edee61e 5102
b4f48b63
PM
5103/**
5104 * cgroup_exit - detach cgroup from exiting task
5105 * @tsk: pointer to task_struct of exiting process
a043e3b2 5106 * @run_callback: run exit callbacks?
b4f48b63
PM
5107 *
5108 * Description: Detach cgroup from @tsk and release it.
5109 *
5110 * Note that cgroups marked notify_on_release force every task in
5111 * them to take the global cgroup_mutex mutex when exiting.
5112 * This could impact scaling on very large systems. Be reluctant to
5113 * use notify_on_release cgroups where very high task exit scaling
5114 * is required on large systems.
5115 *
5116 * the_top_cgroup_hack:
5117 *
5118 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
5119 *
5120 * We call cgroup_exit() while the task is still competent to
5121 * handle notify_on_release(), then leave the task attached to the
5122 * root cgroup in each hierarchy for the remainder of its exit.
5123 *
5124 * To do this properly, we would increment the reference count on
5125 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
5126 * code we would add a second cgroup function call, to drop that
5127 * reference. This would just create an unnecessary hot spot on
5128 * the top_cgroup reference count, to no avail.
5129 *
5130 * Normally, holding a reference to a cgroup without bumping its
5131 * count is unsafe. The cgroup could go away, or someone could
5132 * attach us to a different cgroup, decrementing the count on
5133 * the first cgroup that we never incremented. But in this case,
5134 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
5135 * which wards off any cgroup_attach_task() attempts, or task is a failed
5136 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
5137 */
5138void cgroup_exit(struct task_struct *tsk, int run_callbacks)
5139{
5abb8855 5140 struct css_set *cset;
d41d5a01 5141 int i;
817929ec
PM
5142
5143 /*
5144 * Unlink from the css_set task list if necessary.
5145 * Optimistically check cg_list before taking
5146 * css_set_lock
5147 */
5148 if (!list_empty(&tsk->cg_list)) {
5149 write_lock(&css_set_lock);
5150 if (!list_empty(&tsk->cg_list))
8d258797 5151 list_del_init(&tsk->cg_list);
817929ec
PM
5152 write_unlock(&css_set_lock);
5153 }
5154
b4f48b63
PM
5155 /* Reassign the task to the init_css_set. */
5156 task_lock(tsk);
5abb8855 5157 cset = tsk->cgroups;
817929ec 5158 tsk->cgroups = &init_css_set;
d41d5a01
PZ
5159
5160 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
5161 /*
5162 * fork/exit callbacks are supported only for builtin
5163 * subsystems, see cgroup_post_fork() for details.
5164 */
5165 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 5166 struct cgroup_subsys *ss = subsys[i];
be45c900 5167
d41d5a01
PZ
5168 if (ss->exit) {
5169 struct cgroup *old_cgrp =
5abb8855 5170 rcu_dereference_raw(cset->subsys[i])->cgroup;
d41d5a01 5171 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 5172 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
5173 }
5174 }
5175 }
b4f48b63 5176 task_unlock(tsk);
d41d5a01 5177
5abb8855 5178 put_css_set_taskexit(cset);
b4f48b63 5179}
697f4161 5180
bd89aabc 5181static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5182{
f50daa70 5183 if (cgroup_is_releasable(cgrp) &&
6f3d828f 5184 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
5185 /*
5186 * Control Group is currently removeable. If it's not
81a6a5cd 5187 * already queued for a userspace notification, queue
f50daa70
LZ
5188 * it now
5189 */
81a6a5cd 5190 int need_schedule_work = 0;
f50daa70 5191
cdcc136f 5192 raw_spin_lock(&release_list_lock);
54766d4a 5193 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5194 list_empty(&cgrp->release_list)) {
5195 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5196 need_schedule_work = 1;
5197 }
cdcc136f 5198 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5199 if (need_schedule_work)
5200 schedule_work(&release_agent_work);
5201 }
5202}
5203
81a6a5cd
PM
5204/*
5205 * Notify userspace when a cgroup is released, by running the
5206 * configured release agent with the name of the cgroup (path
5207 * relative to the root of cgroup file system) as the argument.
5208 *
5209 * Most likely, this user command will try to rmdir this cgroup.
5210 *
5211 * This races with the possibility that some other task will be
5212 * attached to this cgroup before it is removed, or that some other
5213 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5214 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5215 * unused, and this cgroup will be reprieved from its death sentence,
5216 * to continue to serve a useful existence. Next time it's released,
5217 * we will get notified again, if it still has 'notify_on_release' set.
5218 *
5219 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5220 * means only wait until the task is successfully execve()'d. The
5221 * separate release agent task is forked by call_usermodehelper(),
5222 * then control in this thread returns here, without waiting for the
5223 * release agent task. We don't bother to wait because the caller of
5224 * this routine has no use for the exit status of the release agent
5225 * task, so no sense holding our caller up for that.
81a6a5cd 5226 */
81a6a5cd
PM
5227static void cgroup_release_agent(struct work_struct *work)
5228{
5229 BUG_ON(work != &release_agent_work);
5230 mutex_lock(&cgroup_mutex);
cdcc136f 5231 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5232 while (!list_empty(&release_list)) {
5233 char *argv[3], *envp[3];
5234 int i;
e788e066 5235 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5236 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5237 struct cgroup,
5238 release_list);
bd89aabc 5239 list_del_init(&cgrp->release_list);
cdcc136f 5240 raw_spin_unlock(&release_list_lock);
81a6a5cd 5241 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5242 if (!pathbuf)
5243 goto continue_free;
5244 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5245 goto continue_free;
5246 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5247 if (!agentbuf)
5248 goto continue_free;
81a6a5cd
PM
5249
5250 i = 0;
e788e066
PM
5251 argv[i++] = agentbuf;
5252 argv[i++] = pathbuf;
81a6a5cd
PM
5253 argv[i] = NULL;
5254
5255 i = 0;
5256 /* minimal command environment */
5257 envp[i++] = "HOME=/";
5258 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5259 envp[i] = NULL;
5260
5261 /* Drop the lock while we invoke the usermode helper,
5262 * since the exec could involve hitting disk and hence
5263 * be a slow process */
5264 mutex_unlock(&cgroup_mutex);
5265 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5266 mutex_lock(&cgroup_mutex);
e788e066
PM
5267 continue_free:
5268 kfree(pathbuf);
5269 kfree(agentbuf);
cdcc136f 5270 raw_spin_lock(&release_list_lock);
81a6a5cd 5271 }
cdcc136f 5272 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5273 mutex_unlock(&cgroup_mutex);
5274}
8bab8dde
PM
5275
5276static int __init cgroup_disable(char *str)
5277{
5278 int i;
5279 char *token;
5280
5281 while ((token = strsep(&str, ",")) != NULL) {
5282 if (!*token)
5283 continue;
be45c900 5284 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5285 struct cgroup_subsys *ss = subsys[i];
5286
be45c900
DW
5287 /*
5288 * cgroup_disable, being at boot time, can't
5289 * know about module subsystems, so we don't
5290 * worry about them.
5291 */
5292 if (!ss || ss->module)
5293 continue;
5294
8bab8dde
PM
5295 if (!strcmp(token, ss->name)) {
5296 ss->disabled = 1;
5297 printk(KERN_INFO "Disabling %s control group"
5298 " subsystem\n", ss->name);
5299 break;
5300 }
5301 }
5302 }
5303 return 1;
5304}
5305__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5306
5307/*
5308 * Functons for CSS ID.
5309 */
5310
54766d4a 5311/* to get ID other than 0, this should be called when !cgroup_is_dead() */
38460b48
KH
5312unsigned short css_id(struct cgroup_subsys_state *css)
5313{
7f0f1546
KH
5314 struct css_id *cssid;
5315
5316 /*
5317 * This css_id() can return correct value when somone has refcnt
5318 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5319 * it's unchanged until freed.
5320 */
d3daf28d 5321 cssid = rcu_dereference_raw(css->id);
38460b48
KH
5322
5323 if (cssid)
5324 return cssid->id;
5325 return 0;
5326}
67523c48 5327EXPORT_SYMBOL_GPL(css_id);
38460b48 5328
747388d7
KH
5329/**
5330 * css_is_ancestor - test "root" css is an ancestor of "child"
5331 * @child: the css to be tested.
5332 * @root: the css supporsed to be an ancestor of the child.
5333 *
5334 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5335 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5336 * But, considering usual usage, the csses should be valid objects after test.
5337 * Assuming that the caller will do some action to the child if this returns
5338 * returns true, the caller must take "child";s reference count.
5339 * If "child" is valid object and this returns true, "root" is valid, too.
5340 */
5341
38460b48 5342bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5343 const struct cgroup_subsys_state *root)
38460b48 5344{
747388d7
KH
5345 struct css_id *child_id;
5346 struct css_id *root_id;
38460b48 5347
747388d7 5348 child_id = rcu_dereference(child->id);
91c63734
JW
5349 if (!child_id)
5350 return false;
747388d7 5351 root_id = rcu_dereference(root->id);
91c63734
JW
5352 if (!root_id)
5353 return false;
5354 if (child_id->depth < root_id->depth)
5355 return false;
5356 if (child_id->stack[root_id->depth] != root_id->id)
5357 return false;
5358 return true;
38460b48
KH
5359}
5360
38460b48
KH
5361void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5362{
5363 struct css_id *id = css->id;
5364 /* When this is called before css_id initialization, id can be NULL */
5365 if (!id)
5366 return;
5367
5368 BUG_ON(!ss->use_id);
5369
5370 rcu_assign_pointer(id->css, NULL);
5371 rcu_assign_pointer(css->id, NULL);
42aee6c4 5372 spin_lock(&ss->id_lock);
38460b48 5373 idr_remove(&ss->idr, id->id);
42aee6c4 5374 spin_unlock(&ss->id_lock);
025cea99 5375 kfree_rcu(id, rcu_head);
38460b48 5376}
67523c48 5377EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5378
5379/*
5380 * This is called by init or create(). Then, calls to this function are
5381 * always serialized (By cgroup_mutex() at create()).
5382 */
5383
5384static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5385{
5386 struct css_id *newid;
d228d9ec 5387 int ret, size;
38460b48
KH
5388
5389 BUG_ON(!ss->use_id);
5390
5391 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5392 newid = kzalloc(size, GFP_KERNEL);
5393 if (!newid)
5394 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5395
5396 idr_preload(GFP_KERNEL);
42aee6c4 5397 spin_lock(&ss->id_lock);
38460b48 5398 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5399 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5400 spin_unlock(&ss->id_lock);
d228d9ec 5401 idr_preload_end();
38460b48
KH
5402
5403 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5404 if (ret < 0)
38460b48 5405 goto err_out;
38460b48 5406
d228d9ec 5407 newid->id = ret;
38460b48
KH
5408 newid->depth = depth;
5409 return newid;
38460b48
KH
5410err_out:
5411 kfree(newid);
d228d9ec 5412 return ERR_PTR(ret);
38460b48
KH
5413
5414}
5415
e6a1105b
BB
5416static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5417 struct cgroup_subsys_state *rootcss)
38460b48
KH
5418{
5419 struct css_id *newid;
38460b48 5420
42aee6c4 5421 spin_lock_init(&ss->id_lock);
38460b48
KH
5422 idr_init(&ss->idr);
5423
38460b48
KH
5424 newid = get_new_cssid(ss, 0);
5425 if (IS_ERR(newid))
5426 return PTR_ERR(newid);
5427
5428 newid->stack[0] = newid->id;
5429 newid->css = rootcss;
5430 rootcss->id = newid;
5431 return 0;
5432}
5433
5434static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5435 struct cgroup *child)
5436{
5437 int subsys_id, i, depth = 0;
5438 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5439 struct css_id *child_id, *parent_id;
38460b48
KH
5440
5441 subsys_id = ss->subsys_id;
5442 parent_css = parent->subsys[subsys_id];
5443 child_css = child->subsys[subsys_id];
38460b48 5444 parent_id = parent_css->id;
94b3dd0f 5445 depth = parent_id->depth + 1;
38460b48
KH
5446
5447 child_id = get_new_cssid(ss, depth);
5448 if (IS_ERR(child_id))
5449 return PTR_ERR(child_id);
5450
5451 for (i = 0; i < depth; i++)
5452 child_id->stack[i] = parent_id->stack[i];
5453 child_id->stack[depth] = child_id->id;
5454 /*
5455 * child_id->css pointer will be set after this cgroup is available
5456 * see cgroup_populate_dir()
5457 */
5458 rcu_assign_pointer(child_css->id, child_id);
5459
5460 return 0;
5461}
5462
5463/**
5464 * css_lookup - lookup css by id
5465 * @ss: cgroup subsys to be looked into.
5466 * @id: the id
5467 *
5468 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5469 * NULL if not. Should be called under rcu_read_lock()
5470 */
5471struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5472{
5473 struct css_id *cssid = NULL;
5474
5475 BUG_ON(!ss->use_id);
5476 cssid = idr_find(&ss->idr, id);
5477
5478 if (unlikely(!cssid))
5479 return NULL;
5480
5481 return rcu_dereference(cssid->css);
5482}
67523c48 5483EXPORT_SYMBOL_GPL(css_lookup);
38460b48 5484
e5d1367f
SE
5485/*
5486 * get corresponding css from file open on cgroupfs directory
5487 */
5488struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5489{
5490 struct cgroup *cgrp;
5491 struct inode *inode;
5492 struct cgroup_subsys_state *css;
5493
496ad9aa 5494 inode = file_inode(f);
e5d1367f
SE
5495 /* check in cgroup filesystem dir */
5496 if (inode->i_op != &cgroup_dir_inode_operations)
5497 return ERR_PTR(-EBADF);
5498
5499 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5500 return ERR_PTR(-EINVAL);
5501
5502 /* get cgroup */
5503 cgrp = __d_cgrp(f->f_dentry);
5504 css = cgrp->subsys[id];
5505 return css ? css : ERR_PTR(-ENOENT);
5506}
5507
fe693435 5508#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5509static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5510{
5511 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5512
5513 if (!css)
5514 return ERR_PTR(-ENOMEM);
5515
5516 return css;
5517}
5518
92fb9748 5519static void debug_css_free(struct cgroup *cont)
fe693435
PM
5520{
5521 kfree(cont->subsys[debug_subsys_id]);
5522}
5523
fe693435
PM
5524static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5525{
5526 return cgroup_task_count(cont);
5527}
5528
5529static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5530{
5531 return (u64)(unsigned long)current->cgroups;
5532}
5533
5534static u64 current_css_set_refcount_read(struct cgroup *cont,
5535 struct cftype *cft)
5536{
5537 u64 count;
5538
5539 rcu_read_lock();
5540 count = atomic_read(&current->cgroups->refcount);
5541 rcu_read_unlock();
5542 return count;
5543}
5544
7717f7ba
PM
5545static int current_css_set_cg_links_read(struct cgroup *cont,
5546 struct cftype *cft,
5547 struct seq_file *seq)
5548{
69d0206c 5549 struct cgrp_cset_link *link;
5abb8855 5550 struct css_set *cset;
7717f7ba
PM
5551
5552 read_lock(&css_set_lock);
5553 rcu_read_lock();
5abb8855 5554 cset = rcu_dereference(current->cgroups);
69d0206c 5555 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba
PM
5556 struct cgroup *c = link->cgrp;
5557 const char *name;
5558
5559 if (c->dentry)
5560 name = c->dentry->d_name.name;
5561 else
5562 name = "?";
2c6ab6d2
PM
5563 seq_printf(seq, "Root %d group %s\n",
5564 c->root->hierarchy_id, name);
7717f7ba
PM
5565 }
5566 rcu_read_unlock();
5567 read_unlock(&css_set_lock);
5568 return 0;
5569}
5570
5571#define MAX_TASKS_SHOWN_PER_CSS 25
5572static int cgroup_css_links_read(struct cgroup *cont,
5573 struct cftype *cft,
5574 struct seq_file *seq)
5575{
69d0206c 5576 struct cgrp_cset_link *link;
7717f7ba
PM
5577
5578 read_lock(&css_set_lock);
69d0206c
TH
5579 list_for_each_entry(link, &cont->cset_links, cset_link) {
5580 struct css_set *cset = link->cset;
7717f7ba
PM
5581 struct task_struct *task;
5582 int count = 0;
5abb8855
TH
5583 seq_printf(seq, "css_set %p\n", cset);
5584 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
5585 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5586 seq_puts(seq, " ...\n");
5587 break;
5588 } else {
5589 seq_printf(seq, " task %d\n",
5590 task_pid_vnr(task));
5591 }
5592 }
5593 }
5594 read_unlock(&css_set_lock);
5595 return 0;
5596}
5597
fe693435
PM
5598static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5599{
5600 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5601}
5602
5603static struct cftype debug_files[] = {
fe693435
PM
5604 {
5605 .name = "taskcount",
5606 .read_u64 = debug_taskcount_read,
5607 },
5608
5609 {
5610 .name = "current_css_set",
5611 .read_u64 = current_css_set_read,
5612 },
5613
5614 {
5615 .name = "current_css_set_refcount",
5616 .read_u64 = current_css_set_refcount_read,
5617 },
5618
7717f7ba
PM
5619 {
5620 .name = "current_css_set_cg_links",
5621 .read_seq_string = current_css_set_cg_links_read,
5622 },
5623
5624 {
5625 .name = "cgroup_css_links",
5626 .read_seq_string = cgroup_css_links_read,
5627 },
5628
fe693435
PM
5629 {
5630 .name = "releasable",
5631 .read_u64 = releasable_read,
5632 },
fe693435 5633
4baf6e33
TH
5634 { } /* terminate */
5635};
fe693435
PM
5636
5637struct cgroup_subsys debug_subsys = {
5638 .name = "debug",
92fb9748
TH
5639 .css_alloc = debug_css_alloc,
5640 .css_free = debug_css_free,
fe693435 5641 .subsys_id = debug_subsys_id,
4baf6e33 5642 .base_cftypes = debug_files,
fe693435
PM
5643};
5644#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.833106 seconds and 5 git commands to generate.