cgroup: remove CGRP_RELEASABLE flag
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
a8ddc821
TH
152/*
153 * Set by the boot param of the same name and makes subsystems with NULL
154 * ->dfl_files to use ->legacy_files on the default hierarchy.
155 */
156static bool cgroup_legacy_files_on_dfl;
157
5533e011 158/* some controllers are not supported in the default hierarchy */
5de4fa13 159static unsigned int cgrp_dfl_root_inhibit_ss_mask;
5533e011 160
ddbcc7e8
PM
161/* The list of hierarchy roots */
162
9871bf95
TH
163static LIST_HEAD(cgroup_roots);
164static int cgroup_root_count;
ddbcc7e8 165
3417ae1f 166/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 167static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 168
794611a1 169/*
0cb51d71
TH
170 * Assign a monotonically increasing serial number to csses. It guarantees
171 * cgroups with bigger numbers are newer than those with smaller numbers.
172 * Also, as csses are always appended to the parent's ->children list, it
173 * guarantees that sibling csses are always sorted in the ascending serial
174 * number order on the list. Protected by cgroup_mutex.
794611a1 175 */
0cb51d71 176static u64 css_serial_nr_next = 1;
794611a1 177
ddbcc7e8 178/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
179 * check for fork/exit handlers to call. This avoids us having to do
180 * extra work in the fork/exit path if none of the subsystems need to
181 * be called.
ddbcc7e8 182 */
8947f9d5 183static int need_forkexit_callback __read_mostly;
ddbcc7e8 184
a14c6874
TH
185static struct cftype cgroup_dfl_base_files[];
186static struct cftype cgroup_legacy_base_files[];
628f7cd4 187
3dd06ffa 188static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 189 unsigned int ss_mask);
42809dd4 190static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
191static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
192 bool visible);
9d755d33 193static void css_release(struct percpu_ref *ref);
f8f22e53 194static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
195static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
196 bool is_add);
42809dd4 197
6fa4918d
TH
198/* IDR wrappers which synchronize using cgroup_idr_lock */
199static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
200 gfp_t gfp_mask)
201{
202 int ret;
203
204 idr_preload(gfp_mask);
54504e97 205 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 206 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 207 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
208 idr_preload_end();
209 return ret;
210}
211
212static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
213{
214 void *ret;
215
54504e97 216 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 217 ret = idr_replace(idr, ptr, id);
54504e97 218 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
219 return ret;
220}
221
222static void cgroup_idr_remove(struct idr *idr, int id)
223{
54504e97 224 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 225 idr_remove(idr, id);
54504e97 226 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
227}
228
d51f39b0
TH
229static struct cgroup *cgroup_parent(struct cgroup *cgrp)
230{
231 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
232
233 if (parent_css)
234 return container_of(parent_css, struct cgroup, self);
235 return NULL;
236}
237
95109b62
TH
238/**
239 * cgroup_css - obtain a cgroup's css for the specified subsystem
240 * @cgrp: the cgroup of interest
9d800df1 241 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 242 *
ca8bdcaf
TH
243 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
244 * function must be called either under cgroup_mutex or rcu_read_lock() and
245 * the caller is responsible for pinning the returned css if it wants to
246 * keep accessing it outside the said locks. This function may return
247 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
248 */
249static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 250 struct cgroup_subsys *ss)
95109b62 251{
ca8bdcaf 252 if (ss)
aec25020 253 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 254 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 255 else
9d800df1 256 return &cgrp->self;
95109b62 257}
42809dd4 258
aec3dfcb
TH
259/**
260 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
261 * @cgrp: the cgroup of interest
9d800df1 262 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
263 *
264 * Similar to cgroup_css() but returns the effctive css, which is defined
265 * as the matching css of the nearest ancestor including self which has @ss
266 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
267 * function is guaranteed to return non-NULL css.
268 */
269static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
270 struct cgroup_subsys *ss)
271{
272 lockdep_assert_held(&cgroup_mutex);
273
274 if (!ss)
9d800df1 275 return &cgrp->self;
aec3dfcb
TH
276
277 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
278 return NULL;
279
d51f39b0
TH
280 while (cgroup_parent(cgrp) &&
281 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
282 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
283
284 return cgroup_css(cgrp, ss);
95109b62 285}
42809dd4 286
ddbcc7e8 287/* convenient tests for these bits */
54766d4a 288static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 289{
184faf32 290 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
291}
292
b4168640 293struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 294{
2bd59d48 295 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 296 struct cftype *cft = of_cft(of);
2bd59d48
TH
297
298 /*
299 * This is open and unprotected implementation of cgroup_css().
300 * seq_css() is only called from a kernfs file operation which has
301 * an active reference on the file. Because all the subsystem
302 * files are drained before a css is disassociated with a cgroup,
303 * the matching css from the cgroup's subsys table is guaranteed to
304 * be and stay valid until the enclosing operation is complete.
305 */
306 if (cft->ss)
307 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
308 else
9d800df1 309 return &cgrp->self;
59f5296b 310}
b4168640 311EXPORT_SYMBOL_GPL(of_css);
59f5296b 312
78574cf9
LZ
313/**
314 * cgroup_is_descendant - test ancestry
315 * @cgrp: the cgroup to be tested
316 * @ancestor: possible ancestor of @cgrp
317 *
318 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
319 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
320 * and @ancestor are accessible.
321 */
322bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
323{
324 while (cgrp) {
325 if (cgrp == ancestor)
326 return true;
d51f39b0 327 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
328 }
329 return false;
330}
ddbcc7e8 331
e9685a03 332static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 333{
bd89aabc 334 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
335}
336
1c6727af
TH
337/**
338 * for_each_css - iterate all css's of a cgroup
339 * @css: the iteration cursor
340 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
341 * @cgrp: the target cgroup to iterate css's of
342 *
aec3dfcb 343 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
344 */
345#define for_each_css(css, ssid, cgrp) \
346 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
347 if (!((css) = rcu_dereference_check( \
348 (cgrp)->subsys[(ssid)], \
349 lockdep_is_held(&cgroup_mutex)))) { } \
350 else
351
aec3dfcb
TH
352/**
353 * for_each_e_css - iterate all effective css's of a cgroup
354 * @css: the iteration cursor
355 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
356 * @cgrp: the target cgroup to iterate css's of
357 *
358 * Should be called under cgroup_[tree_]mutex.
359 */
360#define for_each_e_css(css, ssid, cgrp) \
361 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
362 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
363 ; \
364 else
365
30159ec7 366/**
3ed80a62 367 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 368 * @ss: the iteration cursor
780cd8b3 369 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 370 */
780cd8b3 371#define for_each_subsys(ss, ssid) \
3ed80a62
TH
372 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
373 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 374
985ed670
TH
375/* iterate across the hierarchies */
376#define for_each_root(root) \
5549c497 377 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 378
f8f22e53
TH
379/* iterate over child cgrps, lock should be held throughout iteration */
380#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 381 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 382 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
383 cgroup_is_dead(child); })) \
384 ; \
385 else
7ae1bad9 386
81a6a5cd 387static void cgroup_release_agent(struct work_struct *work);
bd89aabc 388static void check_for_release(struct cgroup *cgrp);
81a6a5cd 389
69d0206c
TH
390/*
391 * A cgroup can be associated with multiple css_sets as different tasks may
392 * belong to different cgroups on different hierarchies. In the other
393 * direction, a css_set is naturally associated with multiple cgroups.
394 * This M:N relationship is represented by the following link structure
395 * which exists for each association and allows traversing the associations
396 * from both sides.
397 */
398struct cgrp_cset_link {
399 /* the cgroup and css_set this link associates */
400 struct cgroup *cgrp;
401 struct css_set *cset;
402
403 /* list of cgrp_cset_links anchored at cgrp->cset_links */
404 struct list_head cset_link;
405
406 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
407 struct list_head cgrp_link;
817929ec
PM
408};
409
172a2c06
TH
410/*
411 * The default css_set - used by init and its children prior to any
817929ec
PM
412 * hierarchies being mounted. It contains a pointer to the root state
413 * for each subsystem. Also used to anchor the list of css_sets. Not
414 * reference-counted, to improve performance when child cgroups
415 * haven't been created.
416 */
5024ae29 417struct css_set init_css_set = {
172a2c06
TH
418 .refcount = ATOMIC_INIT(1),
419 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
420 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
421 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
422 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
423 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
424};
817929ec 425
172a2c06 426static int css_set_count = 1; /* 1 for init_css_set */
817929ec 427
842b597e
TH
428/**
429 * cgroup_update_populated - updated populated count of a cgroup
430 * @cgrp: the target cgroup
431 * @populated: inc or dec populated count
432 *
433 * @cgrp is either getting the first task (css_set) or losing the last.
434 * Update @cgrp->populated_cnt accordingly. The count is propagated
435 * towards root so that a given cgroup's populated_cnt is zero iff the
436 * cgroup and all its descendants are empty.
437 *
438 * @cgrp's interface file "cgroup.populated" is zero if
439 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
440 * changes from or to zero, userland is notified that the content of the
441 * interface file has changed. This can be used to detect when @cgrp and
442 * its descendants become populated or empty.
443 */
444static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
445{
446 lockdep_assert_held(&css_set_rwsem);
447
448 do {
449 bool trigger;
450
451 if (populated)
452 trigger = !cgrp->populated_cnt++;
453 else
454 trigger = !--cgrp->populated_cnt;
455
456 if (!trigger)
457 break;
458
459 if (cgrp->populated_kn)
460 kernfs_notify(cgrp->populated_kn);
d51f39b0 461 cgrp = cgroup_parent(cgrp);
842b597e
TH
462 } while (cgrp);
463}
464
7717f7ba
PM
465/*
466 * hash table for cgroup groups. This improves the performance to find
467 * an existing css_set. This hash doesn't (currently) take into
468 * account cgroups in empty hierarchies.
469 */
472b1053 470#define CSS_SET_HASH_BITS 7
0ac801fe 471static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 472
0ac801fe 473static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 474{
0ac801fe 475 unsigned long key = 0UL;
30159ec7
TH
476 struct cgroup_subsys *ss;
477 int i;
472b1053 478
30159ec7 479 for_each_subsys(ss, i)
0ac801fe
LZ
480 key += (unsigned long)css[i];
481 key = (key >> 16) ^ key;
472b1053 482
0ac801fe 483 return key;
472b1053
LZ
484}
485
a25eb52e 486static void put_css_set_locked(struct css_set *cset)
b4f48b63 487{
69d0206c 488 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
489 struct cgroup_subsys *ss;
490 int ssid;
5abb8855 491
89c5509b
TH
492 lockdep_assert_held(&css_set_rwsem);
493
494 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 495 return;
81a6a5cd 496
2c6ab6d2 497 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
498 for_each_subsys(ss, ssid)
499 list_del(&cset->e_cset_node[ssid]);
5abb8855 500 hash_del(&cset->hlist);
2c6ab6d2
PM
501 css_set_count--;
502
69d0206c 503 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 504 struct cgroup *cgrp = link->cgrp;
5abb8855 505
69d0206c
TH
506 list_del(&link->cset_link);
507 list_del(&link->cgrp_link);
71b5707e 508
96d365e0 509 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
510 if (list_empty(&cgrp->cset_links)) {
511 cgroup_update_populated(cgrp, false);
a25eb52e 512 check_for_release(cgrp);
81a6a5cd 513 }
2c6ab6d2
PM
514
515 kfree(link);
81a6a5cd 516 }
2c6ab6d2 517
5abb8855 518 kfree_rcu(cset, rcu_head);
b4f48b63
PM
519}
520
a25eb52e 521static void put_css_set(struct css_set *cset)
89c5509b
TH
522{
523 /*
524 * Ensure that the refcount doesn't hit zero while any readers
525 * can see it. Similar to atomic_dec_and_lock(), but for an
526 * rwlock
527 */
528 if (atomic_add_unless(&cset->refcount, -1, 1))
529 return;
530
531 down_write(&css_set_rwsem);
a25eb52e 532 put_css_set_locked(cset);
89c5509b
TH
533 up_write(&css_set_rwsem);
534}
535
817929ec
PM
536/*
537 * refcounted get/put for css_set objects
538 */
5abb8855 539static inline void get_css_set(struct css_set *cset)
817929ec 540{
5abb8855 541 atomic_inc(&cset->refcount);
817929ec
PM
542}
543
b326f9d0 544/**
7717f7ba 545 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
546 * @cset: candidate css_set being tested
547 * @old_cset: existing css_set for a task
7717f7ba
PM
548 * @new_cgrp: cgroup that's being entered by the task
549 * @template: desired set of css pointers in css_set (pre-calculated)
550 *
6f4b7e63 551 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
552 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
553 */
5abb8855
TH
554static bool compare_css_sets(struct css_set *cset,
555 struct css_set *old_cset,
7717f7ba
PM
556 struct cgroup *new_cgrp,
557 struct cgroup_subsys_state *template[])
558{
559 struct list_head *l1, *l2;
560
aec3dfcb
TH
561 /*
562 * On the default hierarchy, there can be csets which are
563 * associated with the same set of cgroups but different csses.
564 * Let's first ensure that csses match.
565 */
566 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 567 return false;
7717f7ba
PM
568
569 /*
570 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
571 * different cgroups in hierarchies. As different cgroups may
572 * share the same effective css, this comparison is always
573 * necessary.
7717f7ba 574 */
69d0206c
TH
575 l1 = &cset->cgrp_links;
576 l2 = &old_cset->cgrp_links;
7717f7ba 577 while (1) {
69d0206c 578 struct cgrp_cset_link *link1, *link2;
5abb8855 579 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
580
581 l1 = l1->next;
582 l2 = l2->next;
583 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
584 if (l1 == &cset->cgrp_links) {
585 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
586 break;
587 } else {
69d0206c 588 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
589 }
590 /* Locate the cgroups associated with these links. */
69d0206c
TH
591 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
592 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
593 cgrp1 = link1->cgrp;
594 cgrp2 = link2->cgrp;
7717f7ba 595 /* Hierarchies should be linked in the same order. */
5abb8855 596 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
597
598 /*
599 * If this hierarchy is the hierarchy of the cgroup
600 * that's changing, then we need to check that this
601 * css_set points to the new cgroup; if it's any other
602 * hierarchy, then this css_set should point to the
603 * same cgroup as the old css_set.
604 */
5abb8855
TH
605 if (cgrp1->root == new_cgrp->root) {
606 if (cgrp1 != new_cgrp)
7717f7ba
PM
607 return false;
608 } else {
5abb8855 609 if (cgrp1 != cgrp2)
7717f7ba
PM
610 return false;
611 }
612 }
613 return true;
614}
615
b326f9d0
TH
616/**
617 * find_existing_css_set - init css array and find the matching css_set
618 * @old_cset: the css_set that we're using before the cgroup transition
619 * @cgrp: the cgroup that we're moving into
620 * @template: out param for the new set of csses, should be clear on entry
817929ec 621 */
5abb8855
TH
622static struct css_set *find_existing_css_set(struct css_set *old_cset,
623 struct cgroup *cgrp,
624 struct cgroup_subsys_state *template[])
b4f48b63 625{
3dd06ffa 626 struct cgroup_root *root = cgrp->root;
30159ec7 627 struct cgroup_subsys *ss;
5abb8855 628 struct css_set *cset;
0ac801fe 629 unsigned long key;
b326f9d0 630 int i;
817929ec 631
aae8aab4
BB
632 /*
633 * Build the set of subsystem state objects that we want to see in the
634 * new css_set. while subsystems can change globally, the entries here
635 * won't change, so no need for locking.
636 */
30159ec7 637 for_each_subsys(ss, i) {
f392e51c 638 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
639 /*
640 * @ss is in this hierarchy, so we want the
641 * effective css from @cgrp.
642 */
643 template[i] = cgroup_e_css(cgrp, ss);
817929ec 644 } else {
aec3dfcb
TH
645 /*
646 * @ss is not in this hierarchy, so we don't want
647 * to change the css.
648 */
5abb8855 649 template[i] = old_cset->subsys[i];
817929ec
PM
650 }
651 }
652
0ac801fe 653 key = css_set_hash(template);
5abb8855
TH
654 hash_for_each_possible(css_set_table, cset, hlist, key) {
655 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
656 continue;
657
658 /* This css_set matches what we need */
5abb8855 659 return cset;
472b1053 660 }
817929ec
PM
661
662 /* No existing cgroup group matched */
663 return NULL;
664}
665
69d0206c 666static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 667{
69d0206c 668 struct cgrp_cset_link *link, *tmp_link;
36553434 669
69d0206c
TH
670 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
671 list_del(&link->cset_link);
36553434
LZ
672 kfree(link);
673 }
674}
675
69d0206c
TH
676/**
677 * allocate_cgrp_cset_links - allocate cgrp_cset_links
678 * @count: the number of links to allocate
679 * @tmp_links: list_head the allocated links are put on
680 *
681 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
682 * through ->cset_link. Returns 0 on success or -errno.
817929ec 683 */
69d0206c 684static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 685{
69d0206c 686 struct cgrp_cset_link *link;
817929ec 687 int i;
69d0206c
TH
688
689 INIT_LIST_HEAD(tmp_links);
690
817929ec 691 for (i = 0; i < count; i++) {
f4f4be2b 692 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 693 if (!link) {
69d0206c 694 free_cgrp_cset_links(tmp_links);
817929ec
PM
695 return -ENOMEM;
696 }
69d0206c 697 list_add(&link->cset_link, tmp_links);
817929ec
PM
698 }
699 return 0;
700}
701
c12f65d4
LZ
702/**
703 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 704 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 705 * @cset: the css_set to be linked
c12f65d4
LZ
706 * @cgrp: the destination cgroup
707 */
69d0206c
TH
708static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
709 struct cgroup *cgrp)
c12f65d4 710{
69d0206c 711 struct cgrp_cset_link *link;
c12f65d4 712
69d0206c 713 BUG_ON(list_empty(tmp_links));
6803c006
TH
714
715 if (cgroup_on_dfl(cgrp))
716 cset->dfl_cgrp = cgrp;
717
69d0206c
TH
718 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
719 link->cset = cset;
7717f7ba 720 link->cgrp = cgrp;
842b597e
TH
721
722 if (list_empty(&cgrp->cset_links))
723 cgroup_update_populated(cgrp, true);
69d0206c 724 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 725
7717f7ba
PM
726 /*
727 * Always add links to the tail of the list so that the list
728 * is sorted by order of hierarchy creation
729 */
69d0206c 730 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
731}
732
b326f9d0
TH
733/**
734 * find_css_set - return a new css_set with one cgroup updated
735 * @old_cset: the baseline css_set
736 * @cgrp: the cgroup to be updated
737 *
738 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
739 * substituted into the appropriate hierarchy.
817929ec 740 */
5abb8855
TH
741static struct css_set *find_css_set(struct css_set *old_cset,
742 struct cgroup *cgrp)
817929ec 743{
b326f9d0 744 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 745 struct css_set *cset;
69d0206c
TH
746 struct list_head tmp_links;
747 struct cgrp_cset_link *link;
2d8f243a 748 struct cgroup_subsys *ss;
0ac801fe 749 unsigned long key;
2d8f243a 750 int ssid;
472b1053 751
b326f9d0
TH
752 lockdep_assert_held(&cgroup_mutex);
753
817929ec
PM
754 /* First see if we already have a cgroup group that matches
755 * the desired set */
96d365e0 756 down_read(&css_set_rwsem);
5abb8855
TH
757 cset = find_existing_css_set(old_cset, cgrp, template);
758 if (cset)
759 get_css_set(cset);
96d365e0 760 up_read(&css_set_rwsem);
817929ec 761
5abb8855
TH
762 if (cset)
763 return cset;
817929ec 764
f4f4be2b 765 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 766 if (!cset)
817929ec
PM
767 return NULL;
768
69d0206c 769 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 770 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 771 kfree(cset);
817929ec
PM
772 return NULL;
773 }
774
5abb8855 775 atomic_set(&cset->refcount, 1);
69d0206c 776 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 777 INIT_LIST_HEAD(&cset->tasks);
c7561128 778 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 779 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 780 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 781 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
782
783 /* Copy the set of subsystem state objects generated in
784 * find_existing_css_set() */
5abb8855 785 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 786
96d365e0 787 down_write(&css_set_rwsem);
817929ec 788 /* Add reference counts and links from the new css_set. */
69d0206c 789 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 790 struct cgroup *c = link->cgrp;
69d0206c 791
7717f7ba
PM
792 if (c->root == cgrp->root)
793 c = cgrp;
69d0206c 794 link_css_set(&tmp_links, cset, c);
7717f7ba 795 }
817929ec 796
69d0206c 797 BUG_ON(!list_empty(&tmp_links));
817929ec 798
817929ec 799 css_set_count++;
472b1053 800
2d8f243a 801 /* Add @cset to the hash table */
5abb8855
TH
802 key = css_set_hash(cset->subsys);
803 hash_add(css_set_table, &cset->hlist, key);
472b1053 804
2d8f243a
TH
805 for_each_subsys(ss, ssid)
806 list_add_tail(&cset->e_cset_node[ssid],
807 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
808
96d365e0 809 up_write(&css_set_rwsem);
817929ec 810
5abb8855 811 return cset;
b4f48b63
PM
812}
813
3dd06ffa 814static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 815{
3dd06ffa 816 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 817
3dd06ffa 818 return root_cgrp->root;
2bd59d48
TH
819}
820
3dd06ffa 821static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
822{
823 int id;
824
825 lockdep_assert_held(&cgroup_mutex);
826
985ed670 827 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
828 if (id < 0)
829 return id;
830
831 root->hierarchy_id = id;
832 return 0;
833}
834
3dd06ffa 835static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
836{
837 lockdep_assert_held(&cgroup_mutex);
838
839 if (root->hierarchy_id) {
840 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
841 root->hierarchy_id = 0;
842 }
843}
844
3dd06ffa 845static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
846{
847 if (root) {
848 /* hierarhcy ID shoulid already have been released */
849 WARN_ON_ONCE(root->hierarchy_id);
850
851 idr_destroy(&root->cgroup_idr);
852 kfree(root);
853 }
854}
855
3dd06ffa 856static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 857{
3dd06ffa 858 struct cgroup *cgrp = &root->cgrp;
f2e85d57 859 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 860
2bd59d48 861 mutex_lock(&cgroup_mutex);
f2e85d57 862
776f02fa 863 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 864 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 865
f2e85d57 866 /* Rebind all subsystems back to the default hierarchy */
f392e51c 867 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 868
7717f7ba 869 /*
f2e85d57
TH
870 * Release all the links from cset_links to this hierarchy's
871 * root cgroup
7717f7ba 872 */
96d365e0 873 down_write(&css_set_rwsem);
f2e85d57
TH
874
875 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
876 list_del(&link->cset_link);
877 list_del(&link->cgrp_link);
878 kfree(link);
879 }
96d365e0 880 up_write(&css_set_rwsem);
f2e85d57
TH
881
882 if (!list_empty(&root->root_list)) {
883 list_del(&root->root_list);
884 cgroup_root_count--;
885 }
886
887 cgroup_exit_root_id(root);
888
889 mutex_unlock(&cgroup_mutex);
f2e85d57 890
2bd59d48 891 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
892 cgroup_free_root(root);
893}
894
ceb6a081
TH
895/* look up cgroup associated with given css_set on the specified hierarchy */
896static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 897 struct cgroup_root *root)
7717f7ba 898{
7717f7ba
PM
899 struct cgroup *res = NULL;
900
96d365e0
TH
901 lockdep_assert_held(&cgroup_mutex);
902 lockdep_assert_held(&css_set_rwsem);
903
5abb8855 904 if (cset == &init_css_set) {
3dd06ffa 905 res = &root->cgrp;
7717f7ba 906 } else {
69d0206c
TH
907 struct cgrp_cset_link *link;
908
909 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 910 struct cgroup *c = link->cgrp;
69d0206c 911
7717f7ba
PM
912 if (c->root == root) {
913 res = c;
914 break;
915 }
916 }
917 }
96d365e0 918
7717f7ba
PM
919 BUG_ON(!res);
920 return res;
921}
922
ddbcc7e8 923/*
ceb6a081
TH
924 * Return the cgroup for "task" from the given hierarchy. Must be
925 * called with cgroup_mutex and css_set_rwsem held.
926 */
927static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 928 struct cgroup_root *root)
ceb6a081
TH
929{
930 /*
931 * No need to lock the task - since we hold cgroup_mutex the
932 * task can't change groups, so the only thing that can happen
933 * is that it exits and its css is set back to init_css_set.
934 */
935 return cset_cgroup_from_root(task_css_set(task), root);
936}
937
ddbcc7e8 938/*
ddbcc7e8
PM
939 * A task must hold cgroup_mutex to modify cgroups.
940 *
941 * Any task can increment and decrement the count field without lock.
942 * So in general, code holding cgroup_mutex can't rely on the count
943 * field not changing. However, if the count goes to zero, then only
956db3ca 944 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
945 * means that no tasks are currently attached, therefore there is no
946 * way a task attached to that cgroup can fork (the other way to
947 * increment the count). So code holding cgroup_mutex can safely
948 * assume that if the count is zero, it will stay zero. Similarly, if
949 * a task holds cgroup_mutex on a cgroup with zero count, it
950 * knows that the cgroup won't be removed, as cgroup_rmdir()
951 * needs that mutex.
952 *
ddbcc7e8
PM
953 * A cgroup can only be deleted if both its 'count' of using tasks
954 * is zero, and its list of 'children' cgroups is empty. Since all
955 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 956 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 957 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 958 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
959 *
960 * P.S. One more locking exception. RCU is used to guard the
956db3ca 961 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
962 */
963
69dfa00c 964static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 965static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 966static const struct file_operations proc_cgroupstats_operations;
a424316c 967
8d7e6fb0
TH
968static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
969 char *buf)
ddbcc7e8 970{
8d7e6fb0
TH
971 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
972 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
973 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
974 cft->ss->name, cft->name);
975 else
976 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
977 return buf;
ddbcc7e8
PM
978}
979
f2e85d57
TH
980/**
981 * cgroup_file_mode - deduce file mode of a control file
982 * @cft: the control file in question
983 *
984 * returns cft->mode if ->mode is not 0
985 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
986 * returns S_IRUGO if it has only a read handler
987 * returns S_IWUSR if it has only a write hander
988 */
989static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 990{
f2e85d57 991 umode_t mode = 0;
65dff759 992
f2e85d57
TH
993 if (cft->mode)
994 return cft->mode;
995
996 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
997 mode |= S_IRUGO;
998
6770c64e 999 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1000 mode |= S_IWUSR;
1001
1002 return mode;
65dff759
LZ
1003}
1004
59f5296b 1005static void cgroup_get(struct cgroup *cgrp)
be445626 1006{
2bd59d48 1007 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1008 css_get(&cgrp->self);
be445626
LZ
1009}
1010
aa32362f
LZ
1011static bool cgroup_tryget(struct cgroup *cgrp)
1012{
1013 return css_tryget(&cgrp->self);
1014}
1015
59f5296b 1016static void cgroup_put(struct cgroup *cgrp)
be445626 1017{
9d755d33 1018 css_put(&cgrp->self);
be445626
LZ
1019}
1020
af0ba678
TH
1021/**
1022 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1023 * @cgrp: the target cgroup
1024 *
1025 * On the default hierarchy, a subsystem may request other subsystems to be
1026 * enabled together through its ->depends_on mask. In such cases, more
1027 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1028 *
1029 * This function determines which subsystems need to be enabled given the
1030 * current @cgrp->subtree_control and records it in
1031 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1032 * @cgrp->subtree_control and follows the usual hierarchy rules.
1033 */
667c2491
TH
1034static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1035{
af0ba678
TH
1036 struct cgroup *parent = cgroup_parent(cgrp);
1037 unsigned int cur_ss_mask = cgrp->subtree_control;
1038 struct cgroup_subsys *ss;
1039 int ssid;
1040
1041 lockdep_assert_held(&cgroup_mutex);
1042
1043 if (!cgroup_on_dfl(cgrp)) {
1044 cgrp->child_subsys_mask = cur_ss_mask;
1045 return;
1046 }
1047
1048 while (true) {
1049 unsigned int new_ss_mask = cur_ss_mask;
1050
1051 for_each_subsys(ss, ssid)
1052 if (cur_ss_mask & (1 << ssid))
1053 new_ss_mask |= ss->depends_on;
1054
1055 /*
1056 * Mask out subsystems which aren't available. This can
1057 * happen only if some depended-upon subsystems were bound
1058 * to non-default hierarchies.
1059 */
1060 if (parent)
1061 new_ss_mask &= parent->child_subsys_mask;
1062 else
1063 new_ss_mask &= cgrp->root->subsys_mask;
1064
1065 if (new_ss_mask == cur_ss_mask)
1066 break;
1067 cur_ss_mask = new_ss_mask;
1068 }
1069
1070 cgrp->child_subsys_mask = cur_ss_mask;
667c2491
TH
1071}
1072
a9746d8d
TH
1073/**
1074 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1075 * @kn: the kernfs_node being serviced
1076 *
1077 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1078 * the method finishes if locking succeeded. Note that once this function
1079 * returns the cgroup returned by cgroup_kn_lock_live() may become
1080 * inaccessible any time. If the caller intends to continue to access the
1081 * cgroup, it should pin it before invoking this function.
1082 */
1083static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1084{
a9746d8d
TH
1085 struct cgroup *cgrp;
1086
1087 if (kernfs_type(kn) == KERNFS_DIR)
1088 cgrp = kn->priv;
1089 else
1090 cgrp = kn->parent->priv;
1091
1092 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1093
1094 kernfs_unbreak_active_protection(kn);
1095 cgroup_put(cgrp);
ddbcc7e8
PM
1096}
1097
a9746d8d
TH
1098/**
1099 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1100 * @kn: the kernfs_node being serviced
1101 *
1102 * This helper is to be used by a cgroup kernfs method currently servicing
1103 * @kn. It breaks the active protection, performs cgroup locking and
1104 * verifies that the associated cgroup is alive. Returns the cgroup if
1105 * alive; otherwise, %NULL. A successful return should be undone by a
1106 * matching cgroup_kn_unlock() invocation.
1107 *
1108 * Any cgroup kernfs method implementation which requires locking the
1109 * associated cgroup should use this helper. It avoids nesting cgroup
1110 * locking under kernfs active protection and allows all kernfs operations
1111 * including self-removal.
1112 */
1113static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1114{
a9746d8d
TH
1115 struct cgroup *cgrp;
1116
1117 if (kernfs_type(kn) == KERNFS_DIR)
1118 cgrp = kn->priv;
1119 else
1120 cgrp = kn->parent->priv;
05ef1d7c 1121
2739d3cc 1122 /*
01f6474c 1123 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1124 * active_ref. cgroup liveliness check alone provides enough
1125 * protection against removal. Ensure @cgrp stays accessible and
1126 * break the active_ref protection.
2739d3cc 1127 */
aa32362f
LZ
1128 if (!cgroup_tryget(cgrp))
1129 return NULL;
a9746d8d
TH
1130 kernfs_break_active_protection(kn);
1131
2bd59d48 1132 mutex_lock(&cgroup_mutex);
05ef1d7c 1133
a9746d8d
TH
1134 if (!cgroup_is_dead(cgrp))
1135 return cgrp;
1136
1137 cgroup_kn_unlock(kn);
1138 return NULL;
ddbcc7e8 1139}
05ef1d7c 1140
2739d3cc 1141static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1142{
2bd59d48 1143 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1144
01f6474c 1145 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1146 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1147}
1148
13af07df 1149/**
628f7cd4 1150 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1151 * @cgrp: target cgroup
13af07df
AR
1152 * @subsys_mask: mask of the subsystem ids whose files should be removed
1153 */
69dfa00c 1154static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1155{
13af07df 1156 struct cgroup_subsys *ss;
b420ba7d 1157 int i;
05ef1d7c 1158
b420ba7d 1159 for_each_subsys(ss, i) {
0adb0704 1160 struct cftype *cfts;
b420ba7d 1161
69dfa00c 1162 if (!(subsys_mask & (1 << i)))
13af07df 1163 continue;
0adb0704
TH
1164 list_for_each_entry(cfts, &ss->cfts, node)
1165 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1166 }
ddbcc7e8
PM
1167}
1168
69dfa00c 1169static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1170{
30159ec7 1171 struct cgroup_subsys *ss;
5533e011 1172 unsigned int tmp_ss_mask;
2d8f243a 1173 int ssid, i, ret;
ddbcc7e8 1174
ace2bee8 1175 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1176
5df36032
TH
1177 for_each_subsys(ss, ssid) {
1178 if (!(ss_mask & (1 << ssid)))
1179 continue;
aae8aab4 1180
7fd8c565
TH
1181 /* if @ss has non-root csses attached to it, can't move */
1182 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1183 return -EBUSY;
1d5be6b2 1184
5df36032 1185 /* can't move between two non-dummy roots either */
7fd8c565 1186 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1187 return -EBUSY;
ddbcc7e8
PM
1188 }
1189
5533e011
TH
1190 /* skip creating root files on dfl_root for inhibited subsystems */
1191 tmp_ss_mask = ss_mask;
1192 if (dst_root == &cgrp_dfl_root)
1193 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1194
1195 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1196 if (ret) {
1197 if (dst_root != &cgrp_dfl_root)
5df36032 1198 return ret;
ddbcc7e8 1199
a2dd4247
TH
1200 /*
1201 * Rebinding back to the default root is not allowed to
1202 * fail. Using both default and non-default roots should
1203 * be rare. Moving subsystems back and forth even more so.
1204 * Just warn about it and continue.
1205 */
1206 if (cgrp_dfl_root_visible) {
69dfa00c 1207 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1208 ret, ss_mask);
ed3d261b 1209 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1210 }
5df36032 1211 }
3126121f
TH
1212
1213 /*
1214 * Nothing can fail from this point on. Remove files for the
1215 * removed subsystems and rebind each subsystem.
1216 */
5df36032 1217 for_each_subsys(ss, ssid)
a2dd4247 1218 if (ss_mask & (1 << ssid))
3dd06ffa 1219 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1220
5df36032 1221 for_each_subsys(ss, ssid) {
3dd06ffa 1222 struct cgroup_root *src_root;
5df36032 1223 struct cgroup_subsys_state *css;
2d8f243a 1224 struct css_set *cset;
a8a648c4 1225
5df36032
TH
1226 if (!(ss_mask & (1 << ssid)))
1227 continue;
a8a648c4 1228
5df36032 1229 src_root = ss->root;
3dd06ffa 1230 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1231
3dd06ffa 1232 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1233
3dd06ffa
TH
1234 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1235 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1236 ss->root = dst_root;
3dd06ffa 1237 css->cgroup = &dst_root->cgrp;
73e80ed8 1238
2d8f243a
TH
1239 down_write(&css_set_rwsem);
1240 hash_for_each(css_set_table, i, cset, hlist)
1241 list_move_tail(&cset->e_cset_node[ss->id],
1242 &dst_root->cgrp.e_csets[ss->id]);
1243 up_write(&css_set_rwsem);
1244
f392e51c 1245 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1246 src_root->cgrp.subtree_control &= ~(1 << ssid);
1247 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1248
bd53d617 1249 /* default hierarchy doesn't enable controllers by default */
f392e51c 1250 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1251 if (dst_root != &cgrp_dfl_root) {
1252 dst_root->cgrp.subtree_control |= 1 << ssid;
1253 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1254 }
a8a648c4 1255
5df36032
TH
1256 if (ss->bind)
1257 ss->bind(css);
ddbcc7e8 1258 }
ddbcc7e8 1259
a2dd4247 1260 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1261 return 0;
1262}
1263
2bd59d48
TH
1264static int cgroup_show_options(struct seq_file *seq,
1265 struct kernfs_root *kf_root)
ddbcc7e8 1266{
3dd06ffa 1267 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1268 struct cgroup_subsys *ss;
b85d2040 1269 int ssid;
ddbcc7e8 1270
b85d2040 1271 for_each_subsys(ss, ssid)
f392e51c 1272 if (root->subsys_mask & (1 << ssid))
b85d2040 1273 seq_printf(seq, ",%s", ss->name);
93438629 1274 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1275 seq_puts(seq, ",noprefix");
93438629 1276 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1277 seq_puts(seq, ",xattr");
69e943b7
TH
1278
1279 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1280 if (strlen(root->release_agent_path))
1281 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1282 spin_unlock(&release_agent_path_lock);
1283
3dd06ffa 1284 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1285 seq_puts(seq, ",clone_children");
c6d57f33
PM
1286 if (strlen(root->name))
1287 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1288 return 0;
1289}
1290
1291struct cgroup_sb_opts {
69dfa00c
TH
1292 unsigned int subsys_mask;
1293 unsigned int flags;
81a6a5cd 1294 char *release_agent;
2260e7fc 1295 bool cpuset_clone_children;
c6d57f33 1296 char *name;
2c6ab6d2
PM
1297 /* User explicitly requested empty subsystem */
1298 bool none;
ddbcc7e8
PM
1299};
1300
cf5d5941 1301static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1302{
32a8cf23
DL
1303 char *token, *o = data;
1304 bool all_ss = false, one_ss = false;
69dfa00c 1305 unsigned int mask = -1U;
30159ec7 1306 struct cgroup_subsys *ss;
7b9a6ba5 1307 int nr_opts = 0;
30159ec7 1308 int i;
f9ab5b5b
LZ
1309
1310#ifdef CONFIG_CPUSETS
69dfa00c 1311 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1312#endif
ddbcc7e8 1313
c6d57f33 1314 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1315
1316 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1317 nr_opts++;
1318
ddbcc7e8
PM
1319 if (!*token)
1320 return -EINVAL;
32a8cf23 1321 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1322 /* Explicitly have no subsystems */
1323 opts->none = true;
32a8cf23
DL
1324 continue;
1325 }
1326 if (!strcmp(token, "all")) {
1327 /* Mutually exclusive option 'all' + subsystem name */
1328 if (one_ss)
1329 return -EINVAL;
1330 all_ss = true;
1331 continue;
1332 }
873fe09e
TH
1333 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1334 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1335 continue;
1336 }
32a8cf23 1337 if (!strcmp(token, "noprefix")) {
93438629 1338 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1339 continue;
1340 }
1341 if (!strcmp(token, "clone_children")) {
2260e7fc 1342 opts->cpuset_clone_children = true;
32a8cf23
DL
1343 continue;
1344 }
03b1cde6 1345 if (!strcmp(token, "xattr")) {
93438629 1346 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1347 continue;
1348 }
32a8cf23 1349 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1350 /* Specifying two release agents is forbidden */
1351 if (opts->release_agent)
1352 return -EINVAL;
c6d57f33 1353 opts->release_agent =
e400c285 1354 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1355 if (!opts->release_agent)
1356 return -ENOMEM;
32a8cf23
DL
1357 continue;
1358 }
1359 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1360 const char *name = token + 5;
1361 /* Can't specify an empty name */
1362 if (!strlen(name))
1363 return -EINVAL;
1364 /* Must match [\w.-]+ */
1365 for (i = 0; i < strlen(name); i++) {
1366 char c = name[i];
1367 if (isalnum(c))
1368 continue;
1369 if ((c == '.') || (c == '-') || (c == '_'))
1370 continue;
1371 return -EINVAL;
1372 }
1373 /* Specifying two names is forbidden */
1374 if (opts->name)
1375 return -EINVAL;
1376 opts->name = kstrndup(name,
e400c285 1377 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1378 GFP_KERNEL);
1379 if (!opts->name)
1380 return -ENOMEM;
32a8cf23
DL
1381
1382 continue;
1383 }
1384
30159ec7 1385 for_each_subsys(ss, i) {
32a8cf23
DL
1386 if (strcmp(token, ss->name))
1387 continue;
1388 if (ss->disabled)
1389 continue;
1390
1391 /* Mutually exclusive option 'all' + subsystem name */
1392 if (all_ss)
1393 return -EINVAL;
69dfa00c 1394 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1395 one_ss = true;
1396
1397 break;
1398 }
1399 if (i == CGROUP_SUBSYS_COUNT)
1400 return -ENOENT;
1401 }
1402
873fe09e 1403 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1404 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1405 if (nr_opts != 1) {
1406 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1407 return -EINVAL;
1408 }
7b9a6ba5 1409 return 0;
873fe09e
TH
1410 }
1411
7b9a6ba5
TH
1412 /*
1413 * If the 'all' option was specified select all the subsystems,
1414 * otherwise if 'none', 'name=' and a subsystem name options were
1415 * not specified, let's default to 'all'
1416 */
1417 if (all_ss || (!one_ss && !opts->none && !opts->name))
1418 for_each_subsys(ss, i)
1419 if (!ss->disabled)
1420 opts->subsys_mask |= (1 << i);
1421
1422 /*
1423 * We either have to specify by name or by subsystems. (So all
1424 * empty hierarchies must have a name).
1425 */
1426 if (!opts->subsys_mask && !opts->name)
1427 return -EINVAL;
1428
f9ab5b5b
LZ
1429 /*
1430 * Option noprefix was introduced just for backward compatibility
1431 * with the old cpuset, so we allow noprefix only if mounting just
1432 * the cpuset subsystem.
1433 */
93438629 1434 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1435 return -EINVAL;
1436
2c6ab6d2 1437 /* Can't specify "none" and some subsystems */
a1a71b45 1438 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1439 return -EINVAL;
1440
ddbcc7e8
PM
1441 return 0;
1442}
1443
2bd59d48 1444static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1445{
1446 int ret = 0;
3dd06ffa 1447 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1448 struct cgroup_sb_opts opts;
69dfa00c 1449 unsigned int added_mask, removed_mask;
ddbcc7e8 1450
aa6ec29b
TH
1451 if (root == &cgrp_dfl_root) {
1452 pr_err("remount is not allowed\n");
873fe09e
TH
1453 return -EINVAL;
1454 }
1455
ddbcc7e8
PM
1456 mutex_lock(&cgroup_mutex);
1457
1458 /* See what subsystems are wanted */
1459 ret = parse_cgroupfs_options(data, &opts);
1460 if (ret)
1461 goto out_unlock;
1462
f392e51c 1463 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1464 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1465 task_tgid_nr(current), current->comm);
8b5a5a9d 1466
f392e51c
TH
1467 added_mask = opts.subsys_mask & ~root->subsys_mask;
1468 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1469
cf5d5941 1470 /* Don't allow flags or name to change at remount */
7450e90b 1471 if ((opts.flags ^ root->flags) ||
cf5d5941 1472 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1473 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1474 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1475 ret = -EINVAL;
1476 goto out_unlock;
1477 }
1478
f172e67c 1479 /* remounting is not allowed for populated hierarchies */
d5c419b6 1480 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1481 ret = -EBUSY;
0670e08b 1482 goto out_unlock;
cf5d5941 1483 }
ddbcc7e8 1484
5df36032 1485 ret = rebind_subsystems(root, added_mask);
3126121f 1486 if (ret)
0670e08b 1487 goto out_unlock;
ddbcc7e8 1488
3dd06ffa 1489 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1490
69e943b7
TH
1491 if (opts.release_agent) {
1492 spin_lock(&release_agent_path_lock);
81a6a5cd 1493 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1494 spin_unlock(&release_agent_path_lock);
1495 }
ddbcc7e8 1496 out_unlock:
66bdc9cf 1497 kfree(opts.release_agent);
c6d57f33 1498 kfree(opts.name);
ddbcc7e8 1499 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1500 return ret;
1501}
1502
afeb0f9f
TH
1503/*
1504 * To reduce the fork() overhead for systems that are not actually using
1505 * their cgroups capability, we don't maintain the lists running through
1506 * each css_set to its tasks until we see the list actually used - in other
1507 * words after the first mount.
1508 */
1509static bool use_task_css_set_links __read_mostly;
1510
1511static void cgroup_enable_task_cg_lists(void)
1512{
1513 struct task_struct *p, *g;
1514
96d365e0 1515 down_write(&css_set_rwsem);
afeb0f9f
TH
1516
1517 if (use_task_css_set_links)
1518 goto out_unlock;
1519
1520 use_task_css_set_links = true;
1521
1522 /*
1523 * We need tasklist_lock because RCU is not safe against
1524 * while_each_thread(). Besides, a forking task that has passed
1525 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1526 * is not guaranteed to have its child immediately visible in the
1527 * tasklist if we walk through it with RCU.
1528 */
1529 read_lock(&tasklist_lock);
1530 do_each_thread(g, p) {
afeb0f9f
TH
1531 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1532 task_css_set(p) != &init_css_set);
1533
1534 /*
1535 * We should check if the process is exiting, otherwise
1536 * it will race with cgroup_exit() in that the list
1537 * entry won't be deleted though the process has exited.
f153ad11
TH
1538 * Do it while holding siglock so that we don't end up
1539 * racing against cgroup_exit().
afeb0f9f 1540 */
f153ad11 1541 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1542 if (!(p->flags & PF_EXITING)) {
1543 struct css_set *cset = task_css_set(p);
1544
1545 list_add(&p->cg_list, &cset->tasks);
1546 get_css_set(cset);
1547 }
f153ad11 1548 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1549 } while_each_thread(g, p);
1550 read_unlock(&tasklist_lock);
1551out_unlock:
96d365e0 1552 up_write(&css_set_rwsem);
afeb0f9f 1553}
ddbcc7e8 1554
cc31edce
PM
1555static void init_cgroup_housekeeping(struct cgroup *cgrp)
1556{
2d8f243a
TH
1557 struct cgroup_subsys *ss;
1558 int ssid;
1559
d5c419b6
TH
1560 INIT_LIST_HEAD(&cgrp->self.sibling);
1561 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1562 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1563 INIT_LIST_HEAD(&cgrp->pidlists);
1564 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1565 cgrp->self.cgroup = cgrp;
184faf32 1566 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1567
1568 for_each_subsys(ss, ssid)
1569 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1570
1571 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1572 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1573}
c6d57f33 1574
3dd06ffa 1575static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1576 struct cgroup_sb_opts *opts)
ddbcc7e8 1577{
3dd06ffa 1578 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1579
ddbcc7e8 1580 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1581 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1582 cgrp->root = root;
cc31edce 1583 init_cgroup_housekeeping(cgrp);
4e96ee8e 1584 idr_init(&root->cgroup_idr);
c6d57f33 1585
c6d57f33
PM
1586 root->flags = opts->flags;
1587 if (opts->release_agent)
1588 strcpy(root->release_agent_path, opts->release_agent);
1589 if (opts->name)
1590 strcpy(root->name, opts->name);
2260e7fc 1591 if (opts->cpuset_clone_children)
3dd06ffa 1592 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1593}
1594
69dfa00c 1595static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1596{
d427dfeb 1597 LIST_HEAD(tmp_links);
3dd06ffa 1598 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1599 struct cftype *base_files;
d427dfeb 1600 struct css_set *cset;
d427dfeb 1601 int i, ret;
2c6ab6d2 1602
d427dfeb 1603 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1604
6fa4918d 1605 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1606 if (ret < 0)
2bd59d48 1607 goto out;
d427dfeb 1608 root_cgrp->id = ret;
c6d57f33 1609
9d755d33
TH
1610 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1611 if (ret)
1612 goto out;
1613
d427dfeb 1614 /*
96d365e0 1615 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1616 * but that's OK - it can only be increased by someone holding
1617 * cgroup_lock, and that's us. The worst that can happen is that we
1618 * have some link structures left over
1619 */
1620 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1621 if (ret)
9d755d33 1622 goto cancel_ref;
ddbcc7e8 1623
985ed670 1624 ret = cgroup_init_root_id(root);
ddbcc7e8 1625 if (ret)
9d755d33 1626 goto cancel_ref;
ddbcc7e8 1627
2bd59d48
TH
1628 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1629 KERNFS_ROOT_CREATE_DEACTIVATED,
1630 root_cgrp);
1631 if (IS_ERR(root->kf_root)) {
1632 ret = PTR_ERR(root->kf_root);
1633 goto exit_root_id;
1634 }
1635 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1636
a14c6874
TH
1637 if (root == &cgrp_dfl_root)
1638 base_files = cgroup_dfl_base_files;
1639 else
1640 base_files = cgroup_legacy_base_files;
1641
1642 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1643 if (ret)
2bd59d48 1644 goto destroy_root;
ddbcc7e8 1645
5df36032 1646 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1647 if (ret)
2bd59d48 1648 goto destroy_root;
ddbcc7e8 1649
d427dfeb
TH
1650 /*
1651 * There must be no failure case after here, since rebinding takes
1652 * care of subsystems' refcounts, which are explicitly dropped in
1653 * the failure exit path.
1654 */
1655 list_add(&root->root_list, &cgroup_roots);
1656 cgroup_root_count++;
0df6a63f 1657
d427dfeb 1658 /*
3dd06ffa 1659 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1660 * objects.
1661 */
96d365e0 1662 down_write(&css_set_rwsem);
d427dfeb
TH
1663 hash_for_each(css_set_table, i, cset, hlist)
1664 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1665 up_write(&css_set_rwsem);
ddbcc7e8 1666
d5c419b6 1667 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1668 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1669
2bd59d48 1670 kernfs_activate(root_cgrp->kn);
d427dfeb 1671 ret = 0;
2bd59d48 1672 goto out;
d427dfeb 1673
2bd59d48
TH
1674destroy_root:
1675 kernfs_destroy_root(root->kf_root);
1676 root->kf_root = NULL;
1677exit_root_id:
d427dfeb 1678 cgroup_exit_root_id(root);
9d755d33 1679cancel_ref:
9a1049da 1680 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1681out:
d427dfeb
TH
1682 free_cgrp_cset_links(&tmp_links);
1683 return ret;
ddbcc7e8
PM
1684}
1685
f7e83571 1686static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1687 int flags, const char *unused_dev_name,
f7e83571 1688 void *data)
ddbcc7e8 1689{
3a32bd72 1690 struct super_block *pinned_sb = NULL;
970317aa 1691 struct cgroup_subsys *ss;
3dd06ffa 1692 struct cgroup_root *root;
ddbcc7e8 1693 struct cgroup_sb_opts opts;
2bd59d48 1694 struct dentry *dentry;
8e30e2b8 1695 int ret;
970317aa 1696 int i;
c6b3d5bc 1697 bool new_sb;
ddbcc7e8 1698
56fde9e0
TH
1699 /*
1700 * The first time anyone tries to mount a cgroup, enable the list
1701 * linking each css_set to its tasks and fix up all existing tasks.
1702 */
1703 if (!use_task_css_set_links)
1704 cgroup_enable_task_cg_lists();
e37a06f1 1705
aae8aab4 1706 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1707
1708 /* First find the desired set of subsystems */
ddbcc7e8 1709 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1710 if (ret)
8e30e2b8 1711 goto out_unlock;
a015edd2 1712
2bd59d48 1713 /* look for a matching existing root */
7b9a6ba5 1714 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1715 cgrp_dfl_root_visible = true;
1716 root = &cgrp_dfl_root;
1717 cgroup_get(&root->cgrp);
1718 ret = 0;
1719 goto out_unlock;
ddbcc7e8
PM
1720 }
1721
970317aa
LZ
1722 /*
1723 * Destruction of cgroup root is asynchronous, so subsystems may
1724 * still be dying after the previous unmount. Let's drain the
1725 * dying subsystems. We just need to ensure that the ones
1726 * unmounted previously finish dying and don't care about new ones
1727 * starting. Testing ref liveliness is good enough.
1728 */
1729 for_each_subsys(ss, i) {
1730 if (!(opts.subsys_mask & (1 << i)) ||
1731 ss->root == &cgrp_dfl_root)
1732 continue;
1733
1734 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1735 mutex_unlock(&cgroup_mutex);
1736 msleep(10);
1737 ret = restart_syscall();
1738 goto out_free;
1739 }
1740 cgroup_put(&ss->root->cgrp);
1741 }
1742
985ed670 1743 for_each_root(root) {
2bd59d48 1744 bool name_match = false;
3126121f 1745
3dd06ffa 1746 if (root == &cgrp_dfl_root)
985ed670 1747 continue;
3126121f 1748
cf5d5941 1749 /*
2bd59d48
TH
1750 * If we asked for a name then it must match. Also, if
1751 * name matches but sybsys_mask doesn't, we should fail.
1752 * Remember whether name matched.
cf5d5941 1753 */
2bd59d48
TH
1754 if (opts.name) {
1755 if (strcmp(opts.name, root->name))
1756 continue;
1757 name_match = true;
1758 }
ddbcc7e8 1759
c6d57f33 1760 /*
2bd59d48
TH
1761 * If we asked for subsystems (or explicitly for no
1762 * subsystems) then they must match.
c6d57f33 1763 */
2bd59d48 1764 if ((opts.subsys_mask || opts.none) &&
f392e51c 1765 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1766 if (!name_match)
1767 continue;
1768 ret = -EBUSY;
1769 goto out_unlock;
1770 }
873fe09e 1771
7b9a6ba5
TH
1772 if (root->flags ^ opts.flags)
1773 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1774
776f02fa 1775 /*
3a32bd72
LZ
1776 * We want to reuse @root whose lifetime is governed by its
1777 * ->cgrp. Let's check whether @root is alive and keep it
1778 * that way. As cgroup_kill_sb() can happen anytime, we
1779 * want to block it by pinning the sb so that @root doesn't
1780 * get killed before mount is complete.
1781 *
1782 * With the sb pinned, tryget_live can reliably indicate
1783 * whether @root can be reused. If it's being killed,
1784 * drain it. We can use wait_queue for the wait but this
1785 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1786 */
3a32bd72
LZ
1787 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1788 if (IS_ERR(pinned_sb) ||
1789 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1790 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1791 if (!IS_ERR_OR_NULL(pinned_sb))
1792 deactivate_super(pinned_sb);
776f02fa 1793 msleep(10);
a015edd2
TH
1794 ret = restart_syscall();
1795 goto out_free;
776f02fa 1796 }
ddbcc7e8 1797
776f02fa 1798 ret = 0;
2bd59d48 1799 goto out_unlock;
ddbcc7e8 1800 }
ddbcc7e8 1801
817929ec 1802 /*
172a2c06
TH
1803 * No such thing, create a new one. name= matching without subsys
1804 * specification is allowed for already existing hierarchies but we
1805 * can't create new one without subsys specification.
817929ec 1806 */
172a2c06
TH
1807 if (!opts.subsys_mask && !opts.none) {
1808 ret = -EINVAL;
1809 goto out_unlock;
817929ec 1810 }
817929ec 1811
172a2c06
TH
1812 root = kzalloc(sizeof(*root), GFP_KERNEL);
1813 if (!root) {
1814 ret = -ENOMEM;
2bd59d48 1815 goto out_unlock;
839ec545 1816 }
e5f6a860 1817
172a2c06
TH
1818 init_cgroup_root(root, &opts);
1819
35585573 1820 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1821 if (ret)
1822 cgroup_free_root(root);
fa3ca07e 1823
8e30e2b8 1824out_unlock:
ddbcc7e8 1825 mutex_unlock(&cgroup_mutex);
a015edd2 1826out_free:
c6d57f33
PM
1827 kfree(opts.release_agent);
1828 kfree(opts.name);
03b1cde6 1829
2bd59d48 1830 if (ret)
8e30e2b8 1831 return ERR_PTR(ret);
2bd59d48 1832
c9482a5b
JZ
1833 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1834 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1835 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1836 cgroup_put(&root->cgrp);
3a32bd72
LZ
1837
1838 /*
1839 * If @pinned_sb, we're reusing an existing root and holding an
1840 * extra ref on its sb. Mount is complete. Put the extra ref.
1841 */
1842 if (pinned_sb) {
1843 WARN_ON(new_sb);
1844 deactivate_super(pinned_sb);
1845 }
1846
2bd59d48
TH
1847 return dentry;
1848}
1849
1850static void cgroup_kill_sb(struct super_block *sb)
1851{
1852 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1853 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1854
9d755d33
TH
1855 /*
1856 * If @root doesn't have any mounts or children, start killing it.
1857 * This prevents new mounts by disabling percpu_ref_tryget_live().
1858 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1859 *
1860 * And don't kill the default root.
9d755d33 1861 */
1f779fb2
LZ
1862 if (css_has_online_children(&root->cgrp.self) ||
1863 root == &cgrp_dfl_root)
9d755d33
TH
1864 cgroup_put(&root->cgrp);
1865 else
1866 percpu_ref_kill(&root->cgrp.self.refcnt);
1867
2bd59d48 1868 kernfs_kill_sb(sb);
ddbcc7e8
PM
1869}
1870
1871static struct file_system_type cgroup_fs_type = {
1872 .name = "cgroup",
f7e83571 1873 .mount = cgroup_mount,
ddbcc7e8
PM
1874 .kill_sb = cgroup_kill_sb,
1875};
1876
676db4af
GK
1877static struct kobject *cgroup_kobj;
1878
857a2beb 1879/**
913ffdb5 1880 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1881 * @task: target task
857a2beb
TH
1882 * @buf: the buffer to write the path into
1883 * @buflen: the length of the buffer
1884 *
913ffdb5
TH
1885 * Determine @task's cgroup on the first (the one with the lowest non-zero
1886 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1887 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1888 * cgroup controller callbacks.
1889 *
e61734c5 1890 * Return value is the same as kernfs_path().
857a2beb 1891 */
e61734c5 1892char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1893{
3dd06ffa 1894 struct cgroup_root *root;
913ffdb5 1895 struct cgroup *cgrp;
e61734c5
TH
1896 int hierarchy_id = 1;
1897 char *path = NULL;
857a2beb
TH
1898
1899 mutex_lock(&cgroup_mutex);
96d365e0 1900 down_read(&css_set_rwsem);
857a2beb 1901
913ffdb5
TH
1902 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1903
857a2beb
TH
1904 if (root) {
1905 cgrp = task_cgroup_from_root(task, root);
e61734c5 1906 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1907 } else {
1908 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1909 if (strlcpy(buf, "/", buflen) < buflen)
1910 path = buf;
857a2beb
TH
1911 }
1912
96d365e0 1913 up_read(&css_set_rwsem);
857a2beb 1914 mutex_unlock(&cgroup_mutex);
e61734c5 1915 return path;
857a2beb 1916}
913ffdb5 1917EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1918
b3dc094e 1919/* used to track tasks and other necessary states during migration */
2f7ee569 1920struct cgroup_taskset {
b3dc094e
TH
1921 /* the src and dst cset list running through cset->mg_node */
1922 struct list_head src_csets;
1923 struct list_head dst_csets;
1924
1925 /*
1926 * Fields for cgroup_taskset_*() iteration.
1927 *
1928 * Before migration is committed, the target migration tasks are on
1929 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1930 * the csets on ->dst_csets. ->csets point to either ->src_csets
1931 * or ->dst_csets depending on whether migration is committed.
1932 *
1933 * ->cur_csets and ->cur_task point to the current task position
1934 * during iteration.
1935 */
1936 struct list_head *csets;
1937 struct css_set *cur_cset;
1938 struct task_struct *cur_task;
2f7ee569
TH
1939};
1940
1941/**
1942 * cgroup_taskset_first - reset taskset and return the first task
1943 * @tset: taskset of interest
1944 *
1945 * @tset iteration is initialized and the first task is returned.
1946 */
1947struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1948{
b3dc094e
TH
1949 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1950 tset->cur_task = NULL;
1951
1952 return cgroup_taskset_next(tset);
2f7ee569 1953}
2f7ee569
TH
1954
1955/**
1956 * cgroup_taskset_next - iterate to the next task in taskset
1957 * @tset: taskset of interest
1958 *
1959 * Return the next task in @tset. Iteration must have been initialized
1960 * with cgroup_taskset_first().
1961 */
1962struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1963{
b3dc094e
TH
1964 struct css_set *cset = tset->cur_cset;
1965 struct task_struct *task = tset->cur_task;
2f7ee569 1966
b3dc094e
TH
1967 while (&cset->mg_node != tset->csets) {
1968 if (!task)
1969 task = list_first_entry(&cset->mg_tasks,
1970 struct task_struct, cg_list);
1971 else
1972 task = list_next_entry(task, cg_list);
2f7ee569 1973
b3dc094e
TH
1974 if (&task->cg_list != &cset->mg_tasks) {
1975 tset->cur_cset = cset;
1976 tset->cur_task = task;
1977 return task;
1978 }
2f7ee569 1979
b3dc094e
TH
1980 cset = list_next_entry(cset, mg_node);
1981 task = NULL;
1982 }
2f7ee569 1983
b3dc094e 1984 return NULL;
2f7ee569 1985}
2f7ee569 1986
cb0f1fe9 1987/**
74a1166d 1988 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1989 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1990 * @tsk: the task being migrated
1991 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1992 *
cb0f1fe9 1993 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1994 */
5abb8855
TH
1995static void cgroup_task_migrate(struct cgroup *old_cgrp,
1996 struct task_struct *tsk,
1997 struct css_set *new_cset)
74a1166d 1998{
5abb8855 1999 struct css_set *old_cset;
74a1166d 2000
cb0f1fe9
TH
2001 lockdep_assert_held(&cgroup_mutex);
2002 lockdep_assert_held(&css_set_rwsem);
2003
74a1166d 2004 /*
026085ef
MSB
2005 * We are synchronized through threadgroup_lock() against PF_EXITING
2006 * setting such that we can't race against cgroup_exit() changing the
2007 * css_set to init_css_set and dropping the old one.
74a1166d 2008 */
c84cdf75 2009 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2010 old_cset = task_css_set(tsk);
74a1166d 2011
b3dc094e 2012 get_css_set(new_cset);
5abb8855 2013 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2014
1b9aba49
TH
2015 /*
2016 * Use move_tail so that cgroup_taskset_first() still returns the
2017 * leader after migration. This works because cgroup_migrate()
2018 * ensures that the dst_cset of the leader is the first on the
2019 * tset's dst_csets list.
2020 */
2021 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2022
2023 /*
5abb8855
TH
2024 * We just gained a reference on old_cset by taking it from the
2025 * task. As trading it for new_cset is protected by cgroup_mutex,
2026 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2027 */
a25eb52e 2028 put_css_set_locked(old_cset);
74a1166d
BB
2029}
2030
a043e3b2 2031/**
1958d2d5
TH
2032 * cgroup_migrate_finish - cleanup after attach
2033 * @preloaded_csets: list of preloaded css_sets
74a1166d 2034 *
1958d2d5
TH
2035 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2036 * those functions for details.
74a1166d 2037 */
1958d2d5 2038static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2039{
1958d2d5 2040 struct css_set *cset, *tmp_cset;
74a1166d 2041
1958d2d5
TH
2042 lockdep_assert_held(&cgroup_mutex);
2043
2044 down_write(&css_set_rwsem);
2045 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2046 cset->mg_src_cgrp = NULL;
2047 cset->mg_dst_cset = NULL;
2048 list_del_init(&cset->mg_preload_node);
a25eb52e 2049 put_css_set_locked(cset);
1958d2d5
TH
2050 }
2051 up_write(&css_set_rwsem);
2052}
2053
2054/**
2055 * cgroup_migrate_add_src - add a migration source css_set
2056 * @src_cset: the source css_set to add
2057 * @dst_cgrp: the destination cgroup
2058 * @preloaded_csets: list of preloaded css_sets
2059 *
2060 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2061 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2062 * up by cgroup_migrate_finish().
2063 *
2064 * This function may be called without holding threadgroup_lock even if the
2065 * target is a process. Threads may be created and destroyed but as long
2066 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2067 * the preloaded css_sets are guaranteed to cover all migrations.
2068 */
2069static void cgroup_migrate_add_src(struct css_set *src_cset,
2070 struct cgroup *dst_cgrp,
2071 struct list_head *preloaded_csets)
2072{
2073 struct cgroup *src_cgrp;
2074
2075 lockdep_assert_held(&cgroup_mutex);
2076 lockdep_assert_held(&css_set_rwsem);
2077
2078 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2079
1958d2d5
TH
2080 if (!list_empty(&src_cset->mg_preload_node))
2081 return;
2082
2083 WARN_ON(src_cset->mg_src_cgrp);
2084 WARN_ON(!list_empty(&src_cset->mg_tasks));
2085 WARN_ON(!list_empty(&src_cset->mg_node));
2086
2087 src_cset->mg_src_cgrp = src_cgrp;
2088 get_css_set(src_cset);
2089 list_add(&src_cset->mg_preload_node, preloaded_csets);
2090}
2091
2092/**
2093 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2094 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2095 * @preloaded_csets: list of preloaded source css_sets
2096 *
2097 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2098 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2099 * pins all destination css_sets, links each to its source, and append them
2100 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2101 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2102 *
2103 * This function must be called after cgroup_migrate_add_src() has been
2104 * called on each migration source css_set. After migration is performed
2105 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2106 * @preloaded_csets.
2107 */
2108static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2109 struct list_head *preloaded_csets)
2110{
2111 LIST_HEAD(csets);
f817de98 2112 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2113
2114 lockdep_assert_held(&cgroup_mutex);
2115
f8f22e53
TH
2116 /*
2117 * Except for the root, child_subsys_mask must be zero for a cgroup
2118 * with tasks so that child cgroups don't compete against tasks.
2119 */
d51f39b0 2120 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2121 dst_cgrp->child_subsys_mask)
2122 return -EBUSY;
2123
1958d2d5 2124 /* look up the dst cset for each src cset and link it to src */
f817de98 2125 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2126 struct css_set *dst_cset;
2127
f817de98
TH
2128 dst_cset = find_css_set(src_cset,
2129 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2130 if (!dst_cset)
2131 goto err;
2132
2133 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2134
2135 /*
2136 * If src cset equals dst, it's noop. Drop the src.
2137 * cgroup_migrate() will skip the cset too. Note that we
2138 * can't handle src == dst as some nodes are used by both.
2139 */
2140 if (src_cset == dst_cset) {
2141 src_cset->mg_src_cgrp = NULL;
2142 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2143 put_css_set(src_cset);
2144 put_css_set(dst_cset);
f817de98
TH
2145 continue;
2146 }
2147
1958d2d5
TH
2148 src_cset->mg_dst_cset = dst_cset;
2149
2150 if (list_empty(&dst_cset->mg_preload_node))
2151 list_add(&dst_cset->mg_preload_node, &csets);
2152 else
a25eb52e 2153 put_css_set(dst_cset);
1958d2d5
TH
2154 }
2155
f817de98 2156 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2157 return 0;
2158err:
2159 cgroup_migrate_finish(&csets);
2160 return -ENOMEM;
2161}
2162
2163/**
2164 * cgroup_migrate - migrate a process or task to a cgroup
2165 * @cgrp: the destination cgroup
2166 * @leader: the leader of the process or the task to migrate
2167 * @threadgroup: whether @leader points to the whole process or a single task
2168 *
2169 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2170 * process, the caller must be holding threadgroup_lock of @leader. The
2171 * caller is also responsible for invoking cgroup_migrate_add_src() and
2172 * cgroup_migrate_prepare_dst() on the targets before invoking this
2173 * function and following up with cgroup_migrate_finish().
2174 *
2175 * As long as a controller's ->can_attach() doesn't fail, this function is
2176 * guaranteed to succeed. This means that, excluding ->can_attach()
2177 * failure, when migrating multiple targets, the success or failure can be
2178 * decided for all targets by invoking group_migrate_prepare_dst() before
2179 * actually starting migrating.
2180 */
2181static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2182 bool threadgroup)
74a1166d 2183{
b3dc094e
TH
2184 struct cgroup_taskset tset = {
2185 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2186 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2187 .csets = &tset.src_csets,
2188 };
1c6727af 2189 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2190 struct css_set *cset, *tmp_cset;
2191 struct task_struct *task, *tmp_task;
2192 int i, ret;
74a1166d 2193
fb5d2b4c
MSB
2194 /*
2195 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2196 * already PF_EXITING could be freed from underneath us unless we
2197 * take an rcu_read_lock.
2198 */
b3dc094e 2199 down_write(&css_set_rwsem);
fb5d2b4c 2200 rcu_read_lock();
9db8de37 2201 task = leader;
74a1166d 2202 do {
9db8de37
TH
2203 /* @task either already exited or can't exit until the end */
2204 if (task->flags & PF_EXITING)
ea84753c 2205 goto next;
134d3373 2206
eaf797ab
TH
2207 /* leave @task alone if post_fork() hasn't linked it yet */
2208 if (list_empty(&task->cg_list))
ea84753c 2209 goto next;
cd3d0952 2210
b3dc094e 2211 cset = task_css_set(task);
1958d2d5 2212 if (!cset->mg_src_cgrp)
ea84753c 2213 goto next;
b3dc094e 2214
61d1d219 2215 /*
1b9aba49
TH
2216 * cgroup_taskset_first() must always return the leader.
2217 * Take care to avoid disturbing the ordering.
61d1d219 2218 */
1b9aba49
TH
2219 list_move_tail(&task->cg_list, &cset->mg_tasks);
2220 if (list_empty(&cset->mg_node))
2221 list_add_tail(&cset->mg_node, &tset.src_csets);
2222 if (list_empty(&cset->mg_dst_cset->mg_node))
2223 list_move_tail(&cset->mg_dst_cset->mg_node,
2224 &tset.dst_csets);
ea84753c 2225 next:
081aa458
LZ
2226 if (!threadgroup)
2227 break;
9db8de37 2228 } while_each_thread(leader, task);
fb5d2b4c 2229 rcu_read_unlock();
b3dc094e 2230 up_write(&css_set_rwsem);
74a1166d 2231
134d3373 2232 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2233 if (list_empty(&tset.src_csets))
2234 return 0;
134d3373 2235
1958d2d5 2236 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2237 for_each_e_css(css, i, cgrp) {
1c6727af 2238 if (css->ss->can_attach) {
9db8de37
TH
2239 ret = css->ss->can_attach(css, &tset);
2240 if (ret) {
1c6727af 2241 failed_css = css;
74a1166d
BB
2242 goto out_cancel_attach;
2243 }
2244 }
74a1166d
BB
2245 }
2246
2247 /*
1958d2d5
TH
2248 * Now that we're guaranteed success, proceed to move all tasks to
2249 * the new cgroup. There are no failure cases after here, so this
2250 * is the commit point.
74a1166d 2251 */
cb0f1fe9 2252 down_write(&css_set_rwsem);
b3dc094e
TH
2253 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2254 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2255 cgroup_task_migrate(cset->mg_src_cgrp, task,
2256 cset->mg_dst_cset);
74a1166d 2257 }
cb0f1fe9 2258 up_write(&css_set_rwsem);
74a1166d
BB
2259
2260 /*
1958d2d5
TH
2261 * Migration is committed, all target tasks are now on dst_csets.
2262 * Nothing is sensitive to fork() after this point. Notify
2263 * controllers that migration is complete.
74a1166d 2264 */
1958d2d5 2265 tset.csets = &tset.dst_csets;
74a1166d 2266
aec3dfcb 2267 for_each_e_css(css, i, cgrp)
1c6727af
TH
2268 if (css->ss->attach)
2269 css->ss->attach(css, &tset);
74a1166d 2270
9db8de37 2271 ret = 0;
b3dc094e
TH
2272 goto out_release_tset;
2273
74a1166d 2274out_cancel_attach:
aec3dfcb 2275 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2276 if (css == failed_css)
2277 break;
2278 if (css->ss->cancel_attach)
2279 css->ss->cancel_attach(css, &tset);
74a1166d 2280 }
b3dc094e
TH
2281out_release_tset:
2282 down_write(&css_set_rwsem);
2283 list_splice_init(&tset.dst_csets, &tset.src_csets);
2284 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2285 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2286 list_del_init(&cset->mg_node);
b3dc094e
TH
2287 }
2288 up_write(&css_set_rwsem);
9db8de37 2289 return ret;
74a1166d
BB
2290}
2291
1958d2d5
TH
2292/**
2293 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2294 * @dst_cgrp: the cgroup to attach to
2295 * @leader: the task or the leader of the threadgroup to be attached
2296 * @threadgroup: attach the whole threadgroup?
2297 *
0e1d768f 2298 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2299 */
2300static int cgroup_attach_task(struct cgroup *dst_cgrp,
2301 struct task_struct *leader, bool threadgroup)
2302{
2303 LIST_HEAD(preloaded_csets);
2304 struct task_struct *task;
2305 int ret;
2306
2307 /* look up all src csets */
2308 down_read(&css_set_rwsem);
2309 rcu_read_lock();
2310 task = leader;
2311 do {
2312 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2313 &preloaded_csets);
2314 if (!threadgroup)
2315 break;
2316 } while_each_thread(leader, task);
2317 rcu_read_unlock();
2318 up_read(&css_set_rwsem);
2319
2320 /* prepare dst csets and commit */
2321 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2322 if (!ret)
2323 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2324
2325 cgroup_migrate_finish(&preloaded_csets);
2326 return ret;
74a1166d
BB
2327}
2328
2329/*
2330 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2331 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2332 * cgroup_mutex and threadgroup.
bbcb81d0 2333 */
acbef755
TH
2334static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2335 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2336{
bbcb81d0 2337 struct task_struct *tsk;
c69e8d9c 2338 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2339 struct cgroup *cgrp;
acbef755 2340 pid_t pid;
bbcb81d0
PM
2341 int ret;
2342
acbef755
TH
2343 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2344 return -EINVAL;
2345
e76ecaee
TH
2346 cgrp = cgroup_kn_lock_live(of->kn);
2347 if (!cgrp)
74a1166d
BB
2348 return -ENODEV;
2349
b78949eb
MSB
2350retry_find_task:
2351 rcu_read_lock();
bbcb81d0 2352 if (pid) {
73507f33 2353 tsk = find_task_by_vpid(pid);
74a1166d
BB
2354 if (!tsk) {
2355 rcu_read_unlock();
dd4b0a46 2356 ret = -ESRCH;
b78949eb 2357 goto out_unlock_cgroup;
bbcb81d0 2358 }
74a1166d
BB
2359 /*
2360 * even if we're attaching all tasks in the thread group, we
2361 * only need to check permissions on one of them.
2362 */
c69e8d9c 2363 tcred = __task_cred(tsk);
14a590c3
EB
2364 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2365 !uid_eq(cred->euid, tcred->uid) &&
2366 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2367 rcu_read_unlock();
b78949eb
MSB
2368 ret = -EACCES;
2369 goto out_unlock_cgroup;
bbcb81d0 2370 }
b78949eb
MSB
2371 } else
2372 tsk = current;
cd3d0952
TH
2373
2374 if (threadgroup)
b78949eb 2375 tsk = tsk->group_leader;
c4c27fbd
MG
2376
2377 /*
14a40ffc 2378 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2379 * trapped in a cpuset, or RT worker may be born in a cgroup
2380 * with no rt_runtime allocated. Just say no.
2381 */
14a40ffc 2382 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2383 ret = -EINVAL;
2384 rcu_read_unlock();
2385 goto out_unlock_cgroup;
2386 }
2387
b78949eb
MSB
2388 get_task_struct(tsk);
2389 rcu_read_unlock();
2390
2391 threadgroup_lock(tsk);
2392 if (threadgroup) {
2393 if (!thread_group_leader(tsk)) {
2394 /*
2395 * a race with de_thread from another thread's exec()
2396 * may strip us of our leadership, if this happens,
2397 * there is no choice but to throw this task away and
2398 * try again; this is
2399 * "double-double-toil-and-trouble-check locking".
2400 */
2401 threadgroup_unlock(tsk);
2402 put_task_struct(tsk);
2403 goto retry_find_task;
2404 }
081aa458
LZ
2405 }
2406
2407 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2408
cd3d0952
TH
2409 threadgroup_unlock(tsk);
2410
bbcb81d0 2411 put_task_struct(tsk);
b78949eb 2412out_unlock_cgroup:
e76ecaee 2413 cgroup_kn_unlock(of->kn);
acbef755 2414 return ret ?: nbytes;
bbcb81d0
PM
2415}
2416
7ae1bad9
TH
2417/**
2418 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2419 * @from: attach to all cgroups of a given task
2420 * @tsk: the task to be attached
2421 */
2422int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2423{
3dd06ffa 2424 struct cgroup_root *root;
7ae1bad9
TH
2425 int retval = 0;
2426
47cfcd09 2427 mutex_lock(&cgroup_mutex);
985ed670 2428 for_each_root(root) {
96d365e0
TH
2429 struct cgroup *from_cgrp;
2430
3dd06ffa 2431 if (root == &cgrp_dfl_root)
985ed670
TH
2432 continue;
2433
96d365e0
TH
2434 down_read(&css_set_rwsem);
2435 from_cgrp = task_cgroup_from_root(from, root);
2436 up_read(&css_set_rwsem);
7ae1bad9 2437
6f4b7e63 2438 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2439 if (retval)
2440 break;
2441 }
47cfcd09 2442 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2443
2444 return retval;
2445}
2446EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2447
acbef755
TH
2448static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2449 char *buf, size_t nbytes, loff_t off)
74a1166d 2450{
acbef755 2451 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2452}
2453
acbef755
TH
2454static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2455 char *buf, size_t nbytes, loff_t off)
af351026 2456{
acbef755 2457 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2458}
2459
451af504
TH
2460static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2461 char *buf, size_t nbytes, loff_t off)
e788e066 2462{
e76ecaee 2463 struct cgroup *cgrp;
5f469907 2464
e76ecaee 2465 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2466
e76ecaee
TH
2467 cgrp = cgroup_kn_lock_live(of->kn);
2468 if (!cgrp)
e788e066 2469 return -ENODEV;
69e943b7 2470 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2471 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2472 sizeof(cgrp->root->release_agent_path));
69e943b7 2473 spin_unlock(&release_agent_path_lock);
e76ecaee 2474 cgroup_kn_unlock(of->kn);
451af504 2475 return nbytes;
e788e066
PM
2476}
2477
2da8ca82 2478static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2479{
2da8ca82 2480 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2481
46cfeb04 2482 spin_lock(&release_agent_path_lock);
e788e066 2483 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2484 spin_unlock(&release_agent_path_lock);
e788e066 2485 seq_putc(seq, '\n');
e788e066
PM
2486 return 0;
2487}
2488
2da8ca82 2489static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2490{
c1d5d42e 2491 seq_puts(seq, "0\n");
e788e066
PM
2492 return 0;
2493}
2494
f8f22e53 2495static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2496{
f8f22e53
TH
2497 struct cgroup_subsys *ss;
2498 bool printed = false;
2499 int ssid;
a742c59d 2500
f8f22e53
TH
2501 for_each_subsys(ss, ssid) {
2502 if (ss_mask & (1 << ssid)) {
2503 if (printed)
2504 seq_putc(seq, ' ');
2505 seq_printf(seq, "%s", ss->name);
2506 printed = true;
2507 }
e73d2c61 2508 }
f8f22e53
TH
2509 if (printed)
2510 seq_putc(seq, '\n');
355e0c48
PM
2511}
2512
f8f22e53
TH
2513/* show controllers which are currently attached to the default hierarchy */
2514static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2515{
f8f22e53
TH
2516 struct cgroup *cgrp = seq_css(seq)->cgroup;
2517
5533e011
TH
2518 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2519 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2520 return 0;
db3b1497
PM
2521}
2522
f8f22e53
TH
2523/* show controllers which are enabled from the parent */
2524static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2525{
f8f22e53
TH
2526 struct cgroup *cgrp = seq_css(seq)->cgroup;
2527
667c2491 2528 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2529 return 0;
ddbcc7e8
PM
2530}
2531
f8f22e53
TH
2532/* show controllers which are enabled for a given cgroup's children */
2533static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2534{
f8f22e53
TH
2535 struct cgroup *cgrp = seq_css(seq)->cgroup;
2536
667c2491 2537 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2538 return 0;
2539}
2540
2541/**
2542 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2543 * @cgrp: root of the subtree to update csses for
2544 *
2545 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2546 * css associations need to be updated accordingly. This function looks up
2547 * all css_sets which are attached to the subtree, creates the matching
2548 * updated css_sets and migrates the tasks to the new ones.
2549 */
2550static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2551{
2552 LIST_HEAD(preloaded_csets);
2553 struct cgroup_subsys_state *css;
2554 struct css_set *src_cset;
2555 int ret;
2556
f8f22e53
TH
2557 lockdep_assert_held(&cgroup_mutex);
2558
2559 /* look up all csses currently attached to @cgrp's subtree */
2560 down_read(&css_set_rwsem);
2561 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2562 struct cgrp_cset_link *link;
2563
2564 /* self is not affected by child_subsys_mask change */
2565 if (css->cgroup == cgrp)
2566 continue;
2567
2568 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2569 cgroup_migrate_add_src(link->cset, cgrp,
2570 &preloaded_csets);
2571 }
2572 up_read(&css_set_rwsem);
2573
2574 /* NULL dst indicates self on default hierarchy */
2575 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2576 if (ret)
2577 goto out_finish;
2578
2579 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2580 struct task_struct *last_task = NULL, *task;
2581
2582 /* src_csets precede dst_csets, break on the first dst_cset */
2583 if (!src_cset->mg_src_cgrp)
2584 break;
2585
2586 /*
2587 * All tasks in src_cset need to be migrated to the
2588 * matching dst_cset. Empty it process by process. We
2589 * walk tasks but migrate processes. The leader might even
2590 * belong to a different cset but such src_cset would also
2591 * be among the target src_csets because the default
2592 * hierarchy enforces per-process membership.
2593 */
2594 while (true) {
2595 down_read(&css_set_rwsem);
2596 task = list_first_entry_or_null(&src_cset->tasks,
2597 struct task_struct, cg_list);
2598 if (task) {
2599 task = task->group_leader;
2600 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2601 get_task_struct(task);
2602 }
2603 up_read(&css_set_rwsem);
2604
2605 if (!task)
2606 break;
2607
2608 /* guard against possible infinite loop */
2609 if (WARN(last_task == task,
2610 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2611 goto out_finish;
2612 last_task = task;
2613
2614 threadgroup_lock(task);
2615 /* raced against de_thread() from another thread? */
2616 if (!thread_group_leader(task)) {
2617 threadgroup_unlock(task);
2618 put_task_struct(task);
2619 continue;
2620 }
2621
2622 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2623
2624 threadgroup_unlock(task);
2625 put_task_struct(task);
2626
2627 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2628 goto out_finish;
2629 }
2630 }
2631
2632out_finish:
2633 cgroup_migrate_finish(&preloaded_csets);
2634 return ret;
2635}
2636
2637/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2638static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2639 char *buf, size_t nbytes,
2640 loff_t off)
f8f22e53 2641{
7d331fa9 2642 unsigned int enable = 0, disable = 0;
f63070d3 2643 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
a9746d8d 2644 struct cgroup *cgrp, *child;
f8f22e53 2645 struct cgroup_subsys *ss;
451af504 2646 char *tok;
f8f22e53
TH
2647 int ssid, ret;
2648
2649 /*
d37167ab
TH
2650 * Parse input - space separated list of subsystem names prefixed
2651 * with either + or -.
f8f22e53 2652 */
451af504
TH
2653 buf = strstrip(buf);
2654 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2655 if (tok[0] == '\0')
2656 continue;
f8f22e53 2657 for_each_subsys(ss, ssid) {
5533e011
TH
2658 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2659 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2660 continue;
2661
2662 if (*tok == '+') {
7d331fa9
TH
2663 enable |= 1 << ssid;
2664 disable &= ~(1 << ssid);
f8f22e53 2665 } else if (*tok == '-') {
7d331fa9
TH
2666 disable |= 1 << ssid;
2667 enable &= ~(1 << ssid);
f8f22e53
TH
2668 } else {
2669 return -EINVAL;
2670 }
2671 break;
2672 }
2673 if (ssid == CGROUP_SUBSYS_COUNT)
2674 return -EINVAL;
2675 }
2676
a9746d8d
TH
2677 cgrp = cgroup_kn_lock_live(of->kn);
2678 if (!cgrp)
2679 return -ENODEV;
f8f22e53
TH
2680
2681 for_each_subsys(ss, ssid) {
2682 if (enable & (1 << ssid)) {
667c2491 2683 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2684 enable &= ~(1 << ssid);
2685 continue;
2686 }
2687
c29adf24
TH
2688 /* unavailable or not enabled on the parent? */
2689 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2690 (cgroup_parent(cgrp) &&
667c2491 2691 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2692 ret = -ENOENT;
2693 goto out_unlock;
2694 }
2695
f63070d3
TH
2696 /*
2697 * @ss is already enabled through dependency and
2698 * we'll just make it visible. Skip draining.
2699 */
2700 if (cgrp->child_subsys_mask & (1 << ssid))
2701 continue;
2702
f8f22e53
TH
2703 /*
2704 * Because css offlining is asynchronous, userland
2705 * might try to re-enable the same controller while
2706 * the previous instance is still around. In such
2707 * cases, wait till it's gone using offline_waitq.
2708 */
2709 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2710 DEFINE_WAIT(wait);
f8f22e53
TH
2711
2712 if (!cgroup_css(child, ss))
2713 continue;
2714
0cee8b77 2715 cgroup_get(child);
f8f22e53
TH
2716 prepare_to_wait(&child->offline_waitq, &wait,
2717 TASK_UNINTERRUPTIBLE);
a9746d8d 2718 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2719 schedule();
2720 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2721 cgroup_put(child);
7d331fa9 2722
a9746d8d 2723 return restart_syscall();
f8f22e53 2724 }
f8f22e53 2725 } else if (disable & (1 << ssid)) {
667c2491 2726 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2727 disable &= ~(1 << ssid);
2728 continue;
2729 }
2730
2731 /* a child has it enabled? */
2732 cgroup_for_each_live_child(child, cgrp) {
667c2491 2733 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2734 ret = -EBUSY;
ddab2b6e 2735 goto out_unlock;
f8f22e53
TH
2736 }
2737 }
2738 }
2739 }
2740
2741 if (!enable && !disable) {
2742 ret = 0;
ddab2b6e 2743 goto out_unlock;
f8f22e53
TH
2744 }
2745
2746 /*
667c2491 2747 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2748 * with tasks so that child cgroups don't compete against tasks.
2749 */
d51f39b0 2750 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2751 ret = -EBUSY;
2752 goto out_unlock;
2753 }
2754
2755 /*
f63070d3
TH
2756 * Update subsys masks and calculate what needs to be done. More
2757 * subsystems than specified may need to be enabled or disabled
2758 * depending on subsystem dependencies.
2759 */
667c2491
TH
2760 cgrp->subtree_control |= enable;
2761 cgrp->subtree_control &= ~disable;
f63070d3
TH
2762
2763 old_ctrl = cgrp->child_subsys_mask;
667c2491 2764 cgroup_refresh_child_subsys_mask(cgrp);
f63070d3
TH
2765 new_ctrl = cgrp->child_subsys_mask;
2766
2767 css_enable = ~old_ctrl & new_ctrl;
2768 css_disable = old_ctrl & ~new_ctrl;
2769 enable |= css_enable;
2770 disable |= css_disable;
c29adf24 2771
f63070d3
TH
2772 /*
2773 * Create new csses or make the existing ones visible. A css is
2774 * created invisible if it's being implicitly enabled through
2775 * dependency. An invisible css is made visible when the userland
2776 * explicitly enables it.
f8f22e53
TH
2777 */
2778 for_each_subsys(ss, ssid) {
2779 if (!(enable & (1 << ssid)))
2780 continue;
2781
2782 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2783 if (css_enable & (1 << ssid))
2784 ret = create_css(child, ss,
2785 cgrp->subtree_control & (1 << ssid));
2786 else
2787 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2788 if (ret)
2789 goto err_undo_css;
2790 }
2791 }
2792
c29adf24
TH
2793 /*
2794 * At this point, cgroup_e_css() results reflect the new csses
2795 * making the following cgroup_update_dfl_csses() properly update
2796 * css associations of all tasks in the subtree.
2797 */
f8f22e53
TH
2798 ret = cgroup_update_dfl_csses(cgrp);
2799 if (ret)
2800 goto err_undo_css;
2801
f63070d3
TH
2802 /*
2803 * All tasks are migrated out of disabled csses. Kill or hide
2804 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2805 * disabled while other subsystems are still depending on it. The
2806 * css must not actively control resources and be in the vanilla
2807 * state if it's made visible again later. Controllers which may
2808 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2809 */
f8f22e53
TH
2810 for_each_subsys(ss, ssid) {
2811 if (!(disable & (1 << ssid)))
2812 continue;
2813
f63070d3 2814 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2815 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2816
2817 if (css_disable & (1 << ssid)) {
2818 kill_css(css);
2819 } else {
f63070d3 2820 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2821 if (ss->css_reset)
2822 ss->css_reset(css);
2823 }
f63070d3 2824 }
f8f22e53
TH
2825 }
2826
2827 kernfs_activate(cgrp->kn);
2828 ret = 0;
2829out_unlock:
a9746d8d 2830 cgroup_kn_unlock(of->kn);
451af504 2831 return ret ?: nbytes;
f8f22e53
TH
2832
2833err_undo_css:
667c2491
TH
2834 cgrp->subtree_control &= ~enable;
2835 cgrp->subtree_control |= disable;
2836 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2837
2838 for_each_subsys(ss, ssid) {
2839 if (!(enable & (1 << ssid)))
2840 continue;
2841
2842 cgroup_for_each_live_child(child, cgrp) {
2843 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2844
2845 if (!css)
2846 continue;
2847
2848 if (css_enable & (1 << ssid))
f8f22e53 2849 kill_css(css);
f63070d3
TH
2850 else
2851 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2852 }
2853 }
2854 goto out_unlock;
2855}
2856
842b597e
TH
2857static int cgroup_populated_show(struct seq_file *seq, void *v)
2858{
2859 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2860 return 0;
2861}
2862
2bd59d48
TH
2863static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2864 size_t nbytes, loff_t off)
355e0c48 2865{
2bd59d48
TH
2866 struct cgroup *cgrp = of->kn->parent->priv;
2867 struct cftype *cft = of->kn->priv;
2868 struct cgroup_subsys_state *css;
a742c59d 2869 int ret;
355e0c48 2870
b4168640
TH
2871 if (cft->write)
2872 return cft->write(of, buf, nbytes, off);
2873
2bd59d48
TH
2874 /*
2875 * kernfs guarantees that a file isn't deleted with operations in
2876 * flight, which means that the matching css is and stays alive and
2877 * doesn't need to be pinned. The RCU locking is not necessary
2878 * either. It's just for the convenience of using cgroup_css().
2879 */
2880 rcu_read_lock();
2881 css = cgroup_css(cgrp, cft->ss);
2882 rcu_read_unlock();
a742c59d 2883
451af504 2884 if (cft->write_u64) {
a742c59d
TH
2885 unsigned long long v;
2886 ret = kstrtoull(buf, 0, &v);
2887 if (!ret)
2888 ret = cft->write_u64(css, cft, v);
2889 } else if (cft->write_s64) {
2890 long long v;
2891 ret = kstrtoll(buf, 0, &v);
2892 if (!ret)
2893 ret = cft->write_s64(css, cft, v);
e73d2c61 2894 } else {
a742c59d 2895 ret = -EINVAL;
e73d2c61 2896 }
2bd59d48 2897
a742c59d 2898 return ret ?: nbytes;
355e0c48
PM
2899}
2900
6612f05b 2901static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2902{
2bd59d48 2903 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2904}
2905
6612f05b 2906static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2907{
2bd59d48 2908 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2909}
2910
6612f05b 2911static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2912{
2bd59d48 2913 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2914}
2915
91796569 2916static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2917{
7da11279
TH
2918 struct cftype *cft = seq_cft(m);
2919 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2920
2da8ca82
TH
2921 if (cft->seq_show)
2922 return cft->seq_show(m, arg);
e73d2c61 2923
f4c753b7 2924 if (cft->read_u64)
896f5199
TH
2925 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2926 else if (cft->read_s64)
2927 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2928 else
2929 return -EINVAL;
2930 return 0;
91796569
PM
2931}
2932
2bd59d48
TH
2933static struct kernfs_ops cgroup_kf_single_ops = {
2934 .atomic_write_len = PAGE_SIZE,
2935 .write = cgroup_file_write,
2936 .seq_show = cgroup_seqfile_show,
91796569
PM
2937};
2938
2bd59d48
TH
2939static struct kernfs_ops cgroup_kf_ops = {
2940 .atomic_write_len = PAGE_SIZE,
2941 .write = cgroup_file_write,
2942 .seq_start = cgroup_seqfile_start,
2943 .seq_next = cgroup_seqfile_next,
2944 .seq_stop = cgroup_seqfile_stop,
2945 .seq_show = cgroup_seqfile_show,
2946};
ddbcc7e8
PM
2947
2948/*
2949 * cgroup_rename - Only allow simple rename of directories in place.
2950 */
2bd59d48
TH
2951static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2952 const char *new_name_str)
ddbcc7e8 2953{
2bd59d48 2954 struct cgroup *cgrp = kn->priv;
65dff759 2955 int ret;
65dff759 2956
2bd59d48 2957 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2958 return -ENOTDIR;
2bd59d48 2959 if (kn->parent != new_parent)
ddbcc7e8 2960 return -EIO;
65dff759 2961
6db8e85c
TH
2962 /*
2963 * This isn't a proper migration and its usefulness is very
aa6ec29b 2964 * limited. Disallow on the default hierarchy.
6db8e85c 2965 */
aa6ec29b 2966 if (cgroup_on_dfl(cgrp))
6db8e85c 2967 return -EPERM;
099fca32 2968
e1b2dc17 2969 /*
8353da1f 2970 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2971 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2972 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2973 */
2974 kernfs_break_active_protection(new_parent);
2975 kernfs_break_active_protection(kn);
099fca32 2976
2bd59d48 2977 mutex_lock(&cgroup_mutex);
099fca32 2978
2bd59d48 2979 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2980
2bd59d48 2981 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2982
2983 kernfs_unbreak_active_protection(kn);
2984 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2985 return ret;
099fca32
LZ
2986}
2987
49957f8e
TH
2988/* set uid and gid of cgroup dirs and files to that of the creator */
2989static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2990{
2991 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2992 .ia_uid = current_fsuid(),
2993 .ia_gid = current_fsgid(), };
2994
2995 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2996 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2997 return 0;
2998
2999 return kernfs_setattr(kn, &iattr);
3000}
3001
2bb566cb 3002static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3003{
8d7e6fb0 3004 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3005 struct kernfs_node *kn;
3006 struct lock_class_key *key = NULL;
49957f8e 3007 int ret;
05ef1d7c 3008
2bd59d48
TH
3009#ifdef CONFIG_DEBUG_LOCK_ALLOC
3010 key = &cft->lockdep_key;
3011#endif
3012 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3013 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3014 NULL, false, key);
49957f8e
TH
3015 if (IS_ERR(kn))
3016 return PTR_ERR(kn);
3017
3018 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3019 if (ret) {
49957f8e 3020 kernfs_remove(kn);
f8f22e53
TH
3021 return ret;
3022 }
3023
b7fc5ad2 3024 if (cft->seq_show == cgroup_populated_show)
842b597e 3025 cgrp->populated_kn = kn;
f8f22e53 3026 return 0;
ddbcc7e8
PM
3027}
3028
b1f28d31
TH
3029/**
3030 * cgroup_addrm_files - add or remove files to a cgroup directory
3031 * @cgrp: the target cgroup
b1f28d31
TH
3032 * @cfts: array of cftypes to be added
3033 * @is_add: whether to add or remove
3034 *
3035 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3036 * For removals, this function never fails. If addition fails, this
3037 * function doesn't remove files already added. The caller is responsible
3038 * for cleaning up.
b1f28d31 3039 */
2bb566cb
TH
3040static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3041 bool is_add)
ddbcc7e8 3042{
03b1cde6 3043 struct cftype *cft;
b1f28d31
TH
3044 int ret;
3045
01f6474c 3046 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3047
3048 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3049 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3050 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3051 continue;
05ebb6e6 3052 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3053 continue;
d51f39b0 3054 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3055 continue;
d51f39b0 3056 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3057 continue;
3058
2739d3cc 3059 if (is_add) {
2bb566cb 3060 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3061 if (ret) {
ed3d261b
JP
3062 pr_warn("%s: failed to add %s, err=%d\n",
3063 __func__, cft->name, ret);
b1f28d31
TH
3064 return ret;
3065 }
2739d3cc
LZ
3066 } else {
3067 cgroup_rm_file(cgrp, cft);
db0416b6 3068 }
ddbcc7e8 3069 }
b1f28d31 3070 return 0;
ddbcc7e8
PM
3071}
3072
21a2d343 3073static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3074{
3075 LIST_HEAD(pending);
2bb566cb 3076 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3077 struct cgroup *root = &ss->root->cgrp;
492eb21b 3078 struct cgroup_subsys_state *css;
9ccece80 3079 int ret = 0;
8e3f6541 3080
01f6474c 3081 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3082
e8c82d20 3083 /* add/rm files for all cgroups created before */
ca8bdcaf 3084 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3085 struct cgroup *cgrp = css->cgroup;
3086
e8c82d20
LZ
3087 if (cgroup_is_dead(cgrp))
3088 continue;
3089
21a2d343 3090 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3091 if (ret)
3092 break;
8e3f6541 3093 }
21a2d343
TH
3094
3095 if (is_add && !ret)
3096 kernfs_activate(root->kn);
9ccece80 3097 return ret;
8e3f6541
TH
3098}
3099
2da440a2 3100static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3101{
2bb566cb 3102 struct cftype *cft;
8e3f6541 3103
2bd59d48
TH
3104 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3105 /* free copy for custom atomic_write_len, see init_cftypes() */
3106 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3107 kfree(cft->kf_ops);
3108 cft->kf_ops = NULL;
2da440a2 3109 cft->ss = NULL;
a8ddc821
TH
3110
3111 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3112 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3113 }
2da440a2
TH
3114}
3115
2bd59d48 3116static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3117{
3118 struct cftype *cft;
3119
2bd59d48
TH
3120 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3121 struct kernfs_ops *kf_ops;
3122
0adb0704
TH
3123 WARN_ON(cft->ss || cft->kf_ops);
3124
2bd59d48
TH
3125 if (cft->seq_start)
3126 kf_ops = &cgroup_kf_ops;
3127 else
3128 kf_ops = &cgroup_kf_single_ops;
3129
3130 /*
3131 * Ugh... if @cft wants a custom max_write_len, we need to
3132 * make a copy of kf_ops to set its atomic_write_len.
3133 */
3134 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3135 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3136 if (!kf_ops) {
3137 cgroup_exit_cftypes(cfts);
3138 return -ENOMEM;
3139 }
3140 kf_ops->atomic_write_len = cft->max_write_len;
3141 }
8e3f6541 3142
2bd59d48 3143 cft->kf_ops = kf_ops;
2bb566cb 3144 cft->ss = ss;
2bd59d48 3145 }
2bb566cb 3146
2bd59d48 3147 return 0;
2da440a2
TH
3148}
3149
21a2d343
TH
3150static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3151{
01f6474c 3152 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3153
3154 if (!cfts || !cfts[0].ss)
3155 return -ENOENT;
3156
3157 list_del(&cfts->node);
3158 cgroup_apply_cftypes(cfts, false);
3159 cgroup_exit_cftypes(cfts);
3160 return 0;
8e3f6541 3161}
8e3f6541 3162
79578621
TH
3163/**
3164 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3165 * @cfts: zero-length name terminated array of cftypes
3166 *
2bb566cb
TH
3167 * Unregister @cfts. Files described by @cfts are removed from all
3168 * existing cgroups and all future cgroups won't have them either. This
3169 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3170 *
3171 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3172 * registered.
79578621 3173 */
2bb566cb 3174int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3175{
21a2d343 3176 int ret;
79578621 3177
01f6474c 3178 mutex_lock(&cgroup_mutex);
21a2d343 3179 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3180 mutex_unlock(&cgroup_mutex);
21a2d343 3181 return ret;
80b13586
TH
3182}
3183
8e3f6541
TH
3184/**
3185 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3186 * @ss: target cgroup subsystem
3187 * @cfts: zero-length name terminated array of cftypes
3188 *
3189 * Register @cfts to @ss. Files described by @cfts are created for all
3190 * existing cgroups to which @ss is attached and all future cgroups will
3191 * have them too. This function can be called anytime whether @ss is
3192 * attached or not.
3193 *
3194 * Returns 0 on successful registration, -errno on failure. Note that this
3195 * function currently returns 0 as long as @cfts registration is successful
3196 * even if some file creation attempts on existing cgroups fail.
3197 */
2cf669a5 3198static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3199{
9ccece80 3200 int ret;
8e3f6541 3201
c731ae1d
LZ
3202 if (ss->disabled)
3203 return 0;
3204
dc5736ed
LZ
3205 if (!cfts || cfts[0].name[0] == '\0')
3206 return 0;
2bb566cb 3207
2bd59d48
TH
3208 ret = cgroup_init_cftypes(ss, cfts);
3209 if (ret)
3210 return ret;
79578621 3211
01f6474c 3212 mutex_lock(&cgroup_mutex);
21a2d343 3213
0adb0704 3214 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3215 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3216 if (ret)
21a2d343 3217 cgroup_rm_cftypes_locked(cfts);
79578621 3218
01f6474c 3219 mutex_unlock(&cgroup_mutex);
9ccece80 3220 return ret;
79578621
TH
3221}
3222
a8ddc821
TH
3223/**
3224 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3225 * @ss: target cgroup subsystem
3226 * @cfts: zero-length name terminated array of cftypes
3227 *
3228 * Similar to cgroup_add_cftypes() but the added files are only used for
3229 * the default hierarchy.
3230 */
3231int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3232{
3233 struct cftype *cft;
3234
3235 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3236 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3237 return cgroup_add_cftypes(ss, cfts);
3238}
3239
3240/**
3241 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3242 * @ss: target cgroup subsystem
3243 * @cfts: zero-length name terminated array of cftypes
3244 *
3245 * Similar to cgroup_add_cftypes() but the added files are only used for
3246 * the legacy hierarchies.
3247 */
2cf669a5
TH
3248int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3249{
a8ddc821
TH
3250 struct cftype *cft;
3251
fa8137be
VG
3252 /*
3253 * If legacy_flies_on_dfl, we want to show the legacy files on the
3254 * dfl hierarchy but iff the target subsystem hasn't been updated
3255 * for the dfl hierarchy yet.
3256 */
3257 if (!cgroup_legacy_files_on_dfl ||
3258 ss->dfl_cftypes != ss->legacy_cftypes) {
3259 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3260 cft->flags |= __CFTYPE_NOT_ON_DFL;
3261 }
3262
2cf669a5
TH
3263 return cgroup_add_cftypes(ss, cfts);
3264}
3265
a043e3b2
LZ
3266/**
3267 * cgroup_task_count - count the number of tasks in a cgroup.
3268 * @cgrp: the cgroup in question
3269 *
3270 * Return the number of tasks in the cgroup.
3271 */
07bc356e 3272static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3273{
3274 int count = 0;
69d0206c 3275 struct cgrp_cset_link *link;
817929ec 3276
96d365e0 3277 down_read(&css_set_rwsem);
69d0206c
TH
3278 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3279 count += atomic_read(&link->cset->refcount);
96d365e0 3280 up_read(&css_set_rwsem);
bbcb81d0
PM
3281 return count;
3282}
3283
53fa5261 3284/**
492eb21b 3285 * css_next_child - find the next child of a given css
c2931b70
TH
3286 * @pos: the current position (%NULL to initiate traversal)
3287 * @parent: css whose children to walk
53fa5261 3288 *
c2931b70 3289 * This function returns the next child of @parent and should be called
87fb54f1 3290 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3291 * that @parent and @pos are accessible. The next sibling is guaranteed to
3292 * be returned regardless of their states.
3293 *
3294 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3295 * css which finished ->css_online() is guaranteed to be visible in the
3296 * future iterations and will stay visible until the last reference is put.
3297 * A css which hasn't finished ->css_online() or already finished
3298 * ->css_offline() may show up during traversal. It's each subsystem's
3299 * responsibility to synchronize against on/offlining.
53fa5261 3300 */
c2931b70
TH
3301struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3302 struct cgroup_subsys_state *parent)
53fa5261 3303{
c2931b70 3304 struct cgroup_subsys_state *next;
53fa5261 3305
8353da1f 3306 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3307
3308 /*
de3f0341
TH
3309 * @pos could already have been unlinked from the sibling list.
3310 * Once a cgroup is removed, its ->sibling.next is no longer
3311 * updated when its next sibling changes. CSS_RELEASED is set when
3312 * @pos is taken off list, at which time its next pointer is valid,
3313 * and, as releases are serialized, the one pointed to by the next
3314 * pointer is guaranteed to not have started release yet. This
3315 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3316 * critical section, the one pointed to by its next pointer is
3317 * guaranteed to not have finished its RCU grace period even if we
3318 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3319 *
de3f0341
TH
3320 * If @pos has CSS_RELEASED set, its next pointer can't be
3321 * dereferenced; however, as each css is given a monotonically
3322 * increasing unique serial number and always appended to the
3323 * sibling list, the next one can be found by walking the parent's
3324 * children until the first css with higher serial number than
3325 * @pos's. While this path can be slower, it happens iff iteration
3326 * races against release and the race window is very small.
53fa5261 3327 */
3b287a50 3328 if (!pos) {
c2931b70
TH
3329 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3330 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3331 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3332 } else {
c2931b70 3333 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3334 if (next->serial_nr > pos->serial_nr)
3335 break;
53fa5261
TH
3336 }
3337
3b281afb
TH
3338 /*
3339 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3340 * the next sibling.
3b281afb 3341 */
c2931b70
TH
3342 if (&next->sibling != &parent->children)
3343 return next;
3b281afb 3344 return NULL;
53fa5261 3345}
53fa5261 3346
574bd9f7 3347/**
492eb21b 3348 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3349 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3350 * @root: css whose descendants to walk
574bd9f7 3351 *
492eb21b 3352 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3353 * to visit for pre-order traversal of @root's descendants. @root is
3354 * included in the iteration and the first node to be visited.
75501a6d 3355 *
87fb54f1
TH
3356 * While this function requires cgroup_mutex or RCU read locking, it
3357 * doesn't require the whole traversal to be contained in a single critical
3358 * section. This function will return the correct next descendant as long
3359 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3360 *
3361 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3362 * css which finished ->css_online() is guaranteed to be visible in the
3363 * future iterations and will stay visible until the last reference is put.
3364 * A css which hasn't finished ->css_online() or already finished
3365 * ->css_offline() may show up during traversal. It's each subsystem's
3366 * responsibility to synchronize against on/offlining.
574bd9f7 3367 */
492eb21b
TH
3368struct cgroup_subsys_state *
3369css_next_descendant_pre(struct cgroup_subsys_state *pos,
3370 struct cgroup_subsys_state *root)
574bd9f7 3371{
492eb21b 3372 struct cgroup_subsys_state *next;
574bd9f7 3373
8353da1f 3374 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3375
bd8815a6 3376 /* if first iteration, visit @root */
7805d000 3377 if (!pos)
bd8815a6 3378 return root;
574bd9f7
TH
3379
3380 /* visit the first child if exists */
492eb21b 3381 next = css_next_child(NULL, pos);
574bd9f7
TH
3382 if (next)
3383 return next;
3384
3385 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3386 while (pos != root) {
5c9d535b 3387 next = css_next_child(pos, pos->parent);
75501a6d 3388 if (next)
574bd9f7 3389 return next;
5c9d535b 3390 pos = pos->parent;
7805d000 3391 }
574bd9f7
TH
3392
3393 return NULL;
3394}
574bd9f7 3395
12a9d2fe 3396/**
492eb21b
TH
3397 * css_rightmost_descendant - return the rightmost descendant of a css
3398 * @pos: css of interest
12a9d2fe 3399 *
492eb21b
TH
3400 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3401 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3402 * subtree of @pos.
75501a6d 3403 *
87fb54f1
TH
3404 * While this function requires cgroup_mutex or RCU read locking, it
3405 * doesn't require the whole traversal to be contained in a single critical
3406 * section. This function will return the correct rightmost descendant as
3407 * long as @pos is accessible.
12a9d2fe 3408 */
492eb21b
TH
3409struct cgroup_subsys_state *
3410css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3411{
492eb21b 3412 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3413
8353da1f 3414 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3415
3416 do {
3417 last = pos;
3418 /* ->prev isn't RCU safe, walk ->next till the end */
3419 pos = NULL;
492eb21b 3420 css_for_each_child(tmp, last)
12a9d2fe
TH
3421 pos = tmp;
3422 } while (pos);
3423
3424 return last;
3425}
12a9d2fe 3426
492eb21b
TH
3427static struct cgroup_subsys_state *
3428css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3429{
492eb21b 3430 struct cgroup_subsys_state *last;
574bd9f7
TH
3431
3432 do {
3433 last = pos;
492eb21b 3434 pos = css_next_child(NULL, pos);
574bd9f7
TH
3435 } while (pos);
3436
3437 return last;
3438}
3439
3440/**
492eb21b 3441 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3442 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3443 * @root: css whose descendants to walk
574bd9f7 3444 *
492eb21b 3445 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3446 * to visit for post-order traversal of @root's descendants. @root is
3447 * included in the iteration and the last node to be visited.
75501a6d 3448 *
87fb54f1
TH
3449 * While this function requires cgroup_mutex or RCU read locking, it
3450 * doesn't require the whole traversal to be contained in a single critical
3451 * section. This function will return the correct next descendant as long
3452 * as both @pos and @cgroup are accessible and @pos is a descendant of
3453 * @cgroup.
c2931b70
TH
3454 *
3455 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3456 * css which finished ->css_online() is guaranteed to be visible in the
3457 * future iterations and will stay visible until the last reference is put.
3458 * A css which hasn't finished ->css_online() or already finished
3459 * ->css_offline() may show up during traversal. It's each subsystem's
3460 * responsibility to synchronize against on/offlining.
574bd9f7 3461 */
492eb21b
TH
3462struct cgroup_subsys_state *
3463css_next_descendant_post(struct cgroup_subsys_state *pos,
3464 struct cgroup_subsys_state *root)
574bd9f7 3465{
492eb21b 3466 struct cgroup_subsys_state *next;
574bd9f7 3467
8353da1f 3468 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3469
58b79a91
TH
3470 /* if first iteration, visit leftmost descendant which may be @root */
3471 if (!pos)
3472 return css_leftmost_descendant(root);
574bd9f7 3473
bd8815a6
TH
3474 /* if we visited @root, we're done */
3475 if (pos == root)
3476 return NULL;
3477
574bd9f7 3478 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3479 next = css_next_child(pos, pos->parent);
75501a6d 3480 if (next)
492eb21b 3481 return css_leftmost_descendant(next);
574bd9f7
TH
3482
3483 /* no sibling left, visit parent */
5c9d535b 3484 return pos->parent;
574bd9f7 3485}
574bd9f7 3486
f3d46500
TH
3487/**
3488 * css_has_online_children - does a css have online children
3489 * @css: the target css
3490 *
3491 * Returns %true if @css has any online children; otherwise, %false. This
3492 * function can be called from any context but the caller is responsible
3493 * for synchronizing against on/offlining as necessary.
3494 */
3495bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3496{
f3d46500
TH
3497 struct cgroup_subsys_state *child;
3498 bool ret = false;
cbc125ef
TH
3499
3500 rcu_read_lock();
f3d46500 3501 css_for_each_child(child, css) {
99bae5f9 3502 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3503 ret = true;
3504 break;
cbc125ef
TH
3505 }
3506 }
3507 rcu_read_unlock();
f3d46500 3508 return ret;
574bd9f7 3509}
574bd9f7 3510
0942eeee 3511/**
72ec7029 3512 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3513 * @it: the iterator to advance
3514 *
3515 * Advance @it to the next css_set to walk.
d515876e 3516 */
72ec7029 3517static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3518{
0f0a2b4f 3519 struct list_head *l = it->cset_pos;
d515876e
TH
3520 struct cgrp_cset_link *link;
3521 struct css_set *cset;
3522
3523 /* Advance to the next non-empty css_set */
3524 do {
3525 l = l->next;
0f0a2b4f
TH
3526 if (l == it->cset_head) {
3527 it->cset_pos = NULL;
d515876e
TH
3528 return;
3529 }
3ebb2b6e
TH
3530
3531 if (it->ss) {
3532 cset = container_of(l, struct css_set,
3533 e_cset_node[it->ss->id]);
3534 } else {
3535 link = list_entry(l, struct cgrp_cset_link, cset_link);
3536 cset = link->cset;
3537 }
c7561128
TH
3538 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3539
0f0a2b4f 3540 it->cset_pos = l;
c7561128
TH
3541
3542 if (!list_empty(&cset->tasks))
0f0a2b4f 3543 it->task_pos = cset->tasks.next;
c7561128 3544 else
0f0a2b4f
TH
3545 it->task_pos = cset->mg_tasks.next;
3546
3547 it->tasks_head = &cset->tasks;
3548 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3549}
3550
0942eeee 3551/**
72ec7029
TH
3552 * css_task_iter_start - initiate task iteration
3553 * @css: the css to walk tasks of
0942eeee
TH
3554 * @it: the task iterator to use
3555 *
72ec7029
TH
3556 * Initiate iteration through the tasks of @css. The caller can call
3557 * css_task_iter_next() to walk through the tasks until the function
3558 * returns NULL. On completion of iteration, css_task_iter_end() must be
3559 * called.
0942eeee
TH
3560 *
3561 * Note that this function acquires a lock which is released when the
3562 * iteration finishes. The caller can't sleep while iteration is in
3563 * progress.
3564 */
72ec7029
TH
3565void css_task_iter_start(struct cgroup_subsys_state *css,
3566 struct css_task_iter *it)
96d365e0 3567 __acquires(css_set_rwsem)
817929ec 3568{
56fde9e0
TH
3569 /* no one should try to iterate before mounting cgroups */
3570 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3571
96d365e0 3572 down_read(&css_set_rwsem);
c59cd3d8 3573
3ebb2b6e
TH
3574 it->ss = css->ss;
3575
3576 if (it->ss)
3577 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3578 else
3579 it->cset_pos = &css->cgroup->cset_links;
3580
0f0a2b4f 3581 it->cset_head = it->cset_pos;
c59cd3d8 3582
72ec7029 3583 css_advance_task_iter(it);
817929ec
PM
3584}
3585
0942eeee 3586/**
72ec7029 3587 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3588 * @it: the task iterator being iterated
3589 *
3590 * The "next" function for task iteration. @it should have been
72ec7029
TH
3591 * initialized via css_task_iter_start(). Returns NULL when the iteration
3592 * reaches the end.
0942eeee 3593 */
72ec7029 3594struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3595{
3596 struct task_struct *res;
0f0a2b4f 3597 struct list_head *l = it->task_pos;
817929ec
PM
3598
3599 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3600 if (!it->cset_pos)
817929ec
PM
3601 return NULL;
3602 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3603
3604 /*
3605 * Advance iterator to find next entry. cset->tasks is consumed
3606 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3607 * next cset.
3608 */
817929ec 3609 l = l->next;
c7561128 3610
0f0a2b4f
TH
3611 if (l == it->tasks_head)
3612 l = it->mg_tasks_head->next;
c7561128 3613
0f0a2b4f 3614 if (l == it->mg_tasks_head)
72ec7029 3615 css_advance_task_iter(it);
c7561128 3616 else
0f0a2b4f 3617 it->task_pos = l;
c7561128 3618
817929ec
PM
3619 return res;
3620}
3621
0942eeee 3622/**
72ec7029 3623 * css_task_iter_end - finish task iteration
0942eeee
TH
3624 * @it: the task iterator to finish
3625 *
72ec7029 3626 * Finish task iteration started by css_task_iter_start().
0942eeee 3627 */
72ec7029 3628void css_task_iter_end(struct css_task_iter *it)
96d365e0 3629 __releases(css_set_rwsem)
31a7df01 3630{
96d365e0 3631 up_read(&css_set_rwsem);
31a7df01
CW
3632}
3633
3634/**
8cc99345
TH
3635 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3636 * @to: cgroup to which the tasks will be moved
3637 * @from: cgroup in which the tasks currently reside
31a7df01 3638 *
eaf797ab
TH
3639 * Locking rules between cgroup_post_fork() and the migration path
3640 * guarantee that, if a task is forking while being migrated, the new child
3641 * is guaranteed to be either visible in the source cgroup after the
3642 * parent's migration is complete or put into the target cgroup. No task
3643 * can slip out of migration through forking.
31a7df01 3644 */
8cc99345 3645int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3646{
952aaa12
TH
3647 LIST_HEAD(preloaded_csets);
3648 struct cgrp_cset_link *link;
72ec7029 3649 struct css_task_iter it;
e406d1cf 3650 struct task_struct *task;
952aaa12 3651 int ret;
31a7df01 3652
952aaa12 3653 mutex_lock(&cgroup_mutex);
31a7df01 3654
952aaa12
TH
3655 /* all tasks in @from are being moved, all csets are source */
3656 down_read(&css_set_rwsem);
3657 list_for_each_entry(link, &from->cset_links, cset_link)
3658 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3659 up_read(&css_set_rwsem);
31a7df01 3660
952aaa12
TH
3661 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3662 if (ret)
3663 goto out_err;
8cc99345 3664
952aaa12
TH
3665 /*
3666 * Migrate tasks one-by-one until @form is empty. This fails iff
3667 * ->can_attach() fails.
3668 */
e406d1cf 3669 do {
9d800df1 3670 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3671 task = css_task_iter_next(&it);
3672 if (task)
3673 get_task_struct(task);
3674 css_task_iter_end(&it);
3675
3676 if (task) {
952aaa12 3677 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3678 put_task_struct(task);
3679 }
3680 } while (task && !ret);
952aaa12
TH
3681out_err:
3682 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3683 mutex_unlock(&cgroup_mutex);
e406d1cf 3684 return ret;
8cc99345
TH
3685}
3686
bbcb81d0 3687/*
102a775e 3688 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3689 *
3690 * Reading this file can return large amounts of data if a cgroup has
3691 * *lots* of attached tasks. So it may need several calls to read(),
3692 * but we cannot guarantee that the information we produce is correct
3693 * unless we produce it entirely atomically.
3694 *
bbcb81d0 3695 */
bbcb81d0 3696
24528255
LZ
3697/* which pidlist file are we talking about? */
3698enum cgroup_filetype {
3699 CGROUP_FILE_PROCS,
3700 CGROUP_FILE_TASKS,
3701};
3702
3703/*
3704 * A pidlist is a list of pids that virtually represents the contents of one
3705 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3706 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3707 * to the cgroup.
3708 */
3709struct cgroup_pidlist {
3710 /*
3711 * used to find which pidlist is wanted. doesn't change as long as
3712 * this particular list stays in the list.
3713 */
3714 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3715 /* array of xids */
3716 pid_t *list;
3717 /* how many elements the above list has */
3718 int length;
24528255
LZ
3719 /* each of these stored in a list by its cgroup */
3720 struct list_head links;
3721 /* pointer to the cgroup we belong to, for list removal purposes */
3722 struct cgroup *owner;
b1a21367
TH
3723 /* for delayed destruction */
3724 struct delayed_work destroy_dwork;
24528255
LZ
3725};
3726
d1d9fd33
BB
3727/*
3728 * The following two functions "fix" the issue where there are more pids
3729 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3730 * TODO: replace with a kernel-wide solution to this problem
3731 */
3732#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3733static void *pidlist_allocate(int count)
3734{
3735 if (PIDLIST_TOO_LARGE(count))
3736 return vmalloc(count * sizeof(pid_t));
3737 else
3738 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3739}
b1a21367 3740
d1d9fd33
BB
3741static void pidlist_free(void *p)
3742{
3743 if (is_vmalloc_addr(p))
3744 vfree(p);
3745 else
3746 kfree(p);
3747}
d1d9fd33 3748
b1a21367
TH
3749/*
3750 * Used to destroy all pidlists lingering waiting for destroy timer. None
3751 * should be left afterwards.
3752 */
3753static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3754{
3755 struct cgroup_pidlist *l, *tmp_l;
3756
3757 mutex_lock(&cgrp->pidlist_mutex);
3758 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3759 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3760 mutex_unlock(&cgrp->pidlist_mutex);
3761
3762 flush_workqueue(cgroup_pidlist_destroy_wq);
3763 BUG_ON(!list_empty(&cgrp->pidlists));
3764}
3765
3766static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3767{
3768 struct delayed_work *dwork = to_delayed_work(work);
3769 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3770 destroy_dwork);
3771 struct cgroup_pidlist *tofree = NULL;
3772
3773 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3774
3775 /*
04502365
TH
3776 * Destroy iff we didn't get queued again. The state won't change
3777 * as destroy_dwork can only be queued while locked.
b1a21367 3778 */
04502365 3779 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3780 list_del(&l->links);
3781 pidlist_free(l->list);
3782 put_pid_ns(l->key.ns);
3783 tofree = l;
3784 }
3785
b1a21367
TH
3786 mutex_unlock(&l->owner->pidlist_mutex);
3787 kfree(tofree);
3788}
3789
bbcb81d0 3790/*
102a775e 3791 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3792 * Returns the number of unique elements.
bbcb81d0 3793 */
6ee211ad 3794static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3795{
102a775e 3796 int src, dest = 1;
102a775e
BB
3797
3798 /*
3799 * we presume the 0th element is unique, so i starts at 1. trivial
3800 * edge cases first; no work needs to be done for either
3801 */
3802 if (length == 0 || length == 1)
3803 return length;
3804 /* src and dest walk down the list; dest counts unique elements */
3805 for (src = 1; src < length; src++) {
3806 /* find next unique element */
3807 while (list[src] == list[src-1]) {
3808 src++;
3809 if (src == length)
3810 goto after;
3811 }
3812 /* dest always points to where the next unique element goes */
3813 list[dest] = list[src];
3814 dest++;
3815 }
3816after:
102a775e
BB
3817 return dest;
3818}
3819
afb2bc14
TH
3820/*
3821 * The two pid files - task and cgroup.procs - guaranteed that the result
3822 * is sorted, which forced this whole pidlist fiasco. As pid order is
3823 * different per namespace, each namespace needs differently sorted list,
3824 * making it impossible to use, for example, single rbtree of member tasks
3825 * sorted by task pointer. As pidlists can be fairly large, allocating one
3826 * per open file is dangerous, so cgroup had to implement shared pool of
3827 * pidlists keyed by cgroup and namespace.
3828 *
3829 * All this extra complexity was caused by the original implementation
3830 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3831 * want to do away with it. Explicitly scramble sort order if on the
3832 * default hierarchy so that no such expectation exists in the new
3833 * interface.
afb2bc14
TH
3834 *
3835 * Scrambling is done by swapping every two consecutive bits, which is
3836 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3837 */
3838static pid_t pid_fry(pid_t pid)
3839{
3840 unsigned a = pid & 0x55555555;
3841 unsigned b = pid & 0xAAAAAAAA;
3842
3843 return (a << 1) | (b >> 1);
3844}
3845
3846static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3847{
aa6ec29b 3848 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3849 return pid_fry(pid);
3850 else
3851 return pid;
3852}
3853
102a775e
BB
3854static int cmppid(const void *a, const void *b)
3855{
3856 return *(pid_t *)a - *(pid_t *)b;
3857}
3858
afb2bc14
TH
3859static int fried_cmppid(const void *a, const void *b)
3860{
3861 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3862}
3863
e6b81710
TH
3864static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3865 enum cgroup_filetype type)
3866{
3867 struct cgroup_pidlist *l;
3868 /* don't need task_nsproxy() if we're looking at ourself */
3869 struct pid_namespace *ns = task_active_pid_ns(current);
3870
3871 lockdep_assert_held(&cgrp->pidlist_mutex);
3872
3873 list_for_each_entry(l, &cgrp->pidlists, links)
3874 if (l->key.type == type && l->key.ns == ns)
3875 return l;
3876 return NULL;
3877}
3878
72a8cb30
BB
3879/*
3880 * find the appropriate pidlist for our purpose (given procs vs tasks)
3881 * returns with the lock on that pidlist already held, and takes care
3882 * of the use count, or returns NULL with no locks held if we're out of
3883 * memory.
3884 */
e6b81710
TH
3885static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3886 enum cgroup_filetype type)
72a8cb30
BB
3887{
3888 struct cgroup_pidlist *l;
b70cc5fd 3889
e6b81710
TH
3890 lockdep_assert_held(&cgrp->pidlist_mutex);
3891
3892 l = cgroup_pidlist_find(cgrp, type);
3893 if (l)
3894 return l;
3895
72a8cb30 3896 /* entry not found; create a new one */
f4f4be2b 3897 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3898 if (!l)
72a8cb30 3899 return l;
e6b81710 3900
b1a21367 3901 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3902 l->key.type = type;
e6b81710
TH
3903 /* don't need task_nsproxy() if we're looking at ourself */
3904 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3905 l->owner = cgrp;
3906 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3907 return l;
3908}
3909
102a775e
BB
3910/*
3911 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3912 */
72a8cb30
BB
3913static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3914 struct cgroup_pidlist **lp)
102a775e
BB
3915{
3916 pid_t *array;
3917 int length;
3918 int pid, n = 0; /* used for populating the array */
72ec7029 3919 struct css_task_iter it;
817929ec 3920 struct task_struct *tsk;
102a775e
BB
3921 struct cgroup_pidlist *l;
3922
4bac00d1
TH
3923 lockdep_assert_held(&cgrp->pidlist_mutex);
3924
102a775e
BB
3925 /*
3926 * If cgroup gets more users after we read count, we won't have
3927 * enough space - tough. This race is indistinguishable to the
3928 * caller from the case that the additional cgroup users didn't
3929 * show up until sometime later on.
3930 */
3931 length = cgroup_task_count(cgrp);
d1d9fd33 3932 array = pidlist_allocate(length);
102a775e
BB
3933 if (!array)
3934 return -ENOMEM;
3935 /* now, populate the array */
9d800df1 3936 css_task_iter_start(&cgrp->self, &it);
72ec7029 3937 while ((tsk = css_task_iter_next(&it))) {
102a775e 3938 if (unlikely(n == length))
817929ec 3939 break;
102a775e 3940 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3941 if (type == CGROUP_FILE_PROCS)
3942 pid = task_tgid_vnr(tsk);
3943 else
3944 pid = task_pid_vnr(tsk);
102a775e
BB
3945 if (pid > 0) /* make sure to only use valid results */
3946 array[n++] = pid;
817929ec 3947 }
72ec7029 3948 css_task_iter_end(&it);
102a775e
BB
3949 length = n;
3950 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3951 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3952 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3953 else
3954 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3955 if (type == CGROUP_FILE_PROCS)
6ee211ad 3956 length = pidlist_uniq(array, length);
e6b81710 3957
e6b81710 3958 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3959 if (!l) {
e6b81710 3960 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3961 pidlist_free(array);
72a8cb30 3962 return -ENOMEM;
102a775e 3963 }
e6b81710
TH
3964
3965 /* store array, freeing old if necessary */
d1d9fd33 3966 pidlist_free(l->list);
102a775e
BB
3967 l->list = array;
3968 l->length = length;
72a8cb30 3969 *lp = l;
102a775e 3970 return 0;
bbcb81d0
PM
3971}
3972
846c7bb0 3973/**
a043e3b2 3974 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3975 * @stats: cgroupstats to fill information into
3976 * @dentry: A dentry entry belonging to the cgroup for which stats have
3977 * been requested.
a043e3b2
LZ
3978 *
3979 * Build and fill cgroupstats so that taskstats can export it to user
3980 * space.
846c7bb0
BS
3981 */
3982int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3983{
2bd59d48 3984 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3985 struct cgroup *cgrp;
72ec7029 3986 struct css_task_iter it;
846c7bb0 3987 struct task_struct *tsk;
33d283be 3988
2bd59d48
TH
3989 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3990 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3991 kernfs_type(kn) != KERNFS_DIR)
3992 return -EINVAL;
3993
bad34660
LZ
3994 mutex_lock(&cgroup_mutex);
3995
846c7bb0 3996 /*
2bd59d48 3997 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3998 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3999 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4000 */
2bd59d48
TH
4001 rcu_read_lock();
4002 cgrp = rcu_dereference(kn->priv);
bad34660 4003 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4004 rcu_read_unlock();
bad34660 4005 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4006 return -ENOENT;
4007 }
bad34660 4008 rcu_read_unlock();
846c7bb0 4009
9d800df1 4010 css_task_iter_start(&cgrp->self, &it);
72ec7029 4011 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4012 switch (tsk->state) {
4013 case TASK_RUNNING:
4014 stats->nr_running++;
4015 break;
4016 case TASK_INTERRUPTIBLE:
4017 stats->nr_sleeping++;
4018 break;
4019 case TASK_UNINTERRUPTIBLE:
4020 stats->nr_uninterruptible++;
4021 break;
4022 case TASK_STOPPED:
4023 stats->nr_stopped++;
4024 break;
4025 default:
4026 if (delayacct_is_task_waiting_on_io(tsk))
4027 stats->nr_io_wait++;
4028 break;
4029 }
4030 }
72ec7029 4031 css_task_iter_end(&it);
846c7bb0 4032
bad34660 4033 mutex_unlock(&cgroup_mutex);
2bd59d48 4034 return 0;
846c7bb0
BS
4035}
4036
8f3ff208 4037
bbcb81d0 4038/*
102a775e 4039 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4040 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4041 * in the cgroup->l->list array.
bbcb81d0 4042 */
cc31edce 4043
102a775e 4044static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4045{
cc31edce
PM
4046 /*
4047 * Initially we receive a position value that corresponds to
4048 * one more than the last pid shown (or 0 on the first call or
4049 * after a seek to the start). Use a binary-search to find the
4050 * next pid to display, if any
4051 */
2bd59d48 4052 struct kernfs_open_file *of = s->private;
7da11279 4053 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4054 struct cgroup_pidlist *l;
7da11279 4055 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4056 int index = 0, pid = *pos;
4bac00d1
TH
4057 int *iter, ret;
4058
4059 mutex_lock(&cgrp->pidlist_mutex);
4060
4061 /*
5d22444f 4062 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4063 * after open. If the matching pidlist is around, we can use that.
5d22444f 4064 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4065 * could already have been destroyed.
4066 */
5d22444f
TH
4067 if (of->priv)
4068 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4069
4070 /*
4071 * Either this is the first start() after open or the matching
4072 * pidlist has been destroyed inbetween. Create a new one.
4073 */
5d22444f
TH
4074 if (!of->priv) {
4075 ret = pidlist_array_load(cgrp, type,
4076 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4077 if (ret)
4078 return ERR_PTR(ret);
4079 }
5d22444f 4080 l = of->priv;
cc31edce 4081
cc31edce 4082 if (pid) {
102a775e 4083 int end = l->length;
20777766 4084
cc31edce
PM
4085 while (index < end) {
4086 int mid = (index + end) / 2;
afb2bc14 4087 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4088 index = mid;
4089 break;
afb2bc14 4090 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4091 index = mid + 1;
4092 else
4093 end = mid;
4094 }
4095 }
4096 /* If we're off the end of the array, we're done */
102a775e 4097 if (index >= l->length)
cc31edce
PM
4098 return NULL;
4099 /* Update the abstract position to be the actual pid that we found */
102a775e 4100 iter = l->list + index;
afb2bc14 4101 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4102 return iter;
4103}
4104
102a775e 4105static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4106{
2bd59d48 4107 struct kernfs_open_file *of = s->private;
5d22444f 4108 struct cgroup_pidlist *l = of->priv;
62236858 4109
5d22444f
TH
4110 if (l)
4111 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4112 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4113 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4114}
4115
102a775e 4116static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4117{
2bd59d48 4118 struct kernfs_open_file *of = s->private;
5d22444f 4119 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4120 pid_t *p = v;
4121 pid_t *end = l->list + l->length;
cc31edce
PM
4122 /*
4123 * Advance to the next pid in the array. If this goes off the
4124 * end, we're done
4125 */
4126 p++;
4127 if (p >= end) {
4128 return NULL;
4129 } else {
7da11279 4130 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4131 return p;
4132 }
4133}
4134
102a775e 4135static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4136{
4137 return seq_printf(s, "%d\n", *(int *)v);
4138}
bbcb81d0 4139
182446d0
TH
4140static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4141 struct cftype *cft)
81a6a5cd 4142{
182446d0 4143 return notify_on_release(css->cgroup);
81a6a5cd
PM
4144}
4145
182446d0
TH
4146static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4147 struct cftype *cft, u64 val)
6379c106 4148{
6379c106 4149 if (val)
182446d0 4150 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4151 else
182446d0 4152 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4153 return 0;
4154}
4155
182446d0
TH
4156static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4157 struct cftype *cft)
97978e6d 4158{
182446d0 4159 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4160}
4161
182446d0
TH
4162static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4163 struct cftype *cft, u64 val)
97978e6d
DL
4164{
4165 if (val)
182446d0 4166 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4167 else
182446d0 4168 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4169 return 0;
4170}
4171
a14c6874
TH
4172/* cgroup core interface files for the default hierarchy */
4173static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4174 {
d5c56ced 4175 .name = "cgroup.procs",
6612f05b
TH
4176 .seq_start = cgroup_pidlist_start,
4177 .seq_next = cgroup_pidlist_next,
4178 .seq_stop = cgroup_pidlist_stop,
4179 .seq_show = cgroup_pidlist_show,
5d22444f 4180 .private = CGROUP_FILE_PROCS,
acbef755 4181 .write = cgroup_procs_write,
74a1166d 4182 .mode = S_IRUGO | S_IWUSR,
102a775e 4183 },
f8f22e53
TH
4184 {
4185 .name = "cgroup.controllers",
a14c6874 4186 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4187 .seq_show = cgroup_root_controllers_show,
4188 },
4189 {
4190 .name = "cgroup.controllers",
a14c6874 4191 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4192 .seq_show = cgroup_controllers_show,
4193 },
4194 {
4195 .name = "cgroup.subtree_control",
f8f22e53 4196 .seq_show = cgroup_subtree_control_show,
451af504 4197 .write = cgroup_subtree_control_write,
f8f22e53 4198 },
842b597e
TH
4199 {
4200 .name = "cgroup.populated",
a14c6874 4201 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4202 .seq_show = cgroup_populated_show,
4203 },
a14c6874
TH
4204 { } /* terminate */
4205};
d5c56ced 4206
a14c6874
TH
4207/* cgroup core interface files for the legacy hierarchies */
4208static struct cftype cgroup_legacy_base_files[] = {
4209 {
4210 .name = "cgroup.procs",
4211 .seq_start = cgroup_pidlist_start,
4212 .seq_next = cgroup_pidlist_next,
4213 .seq_stop = cgroup_pidlist_stop,
4214 .seq_show = cgroup_pidlist_show,
4215 .private = CGROUP_FILE_PROCS,
4216 .write = cgroup_procs_write,
4217 .mode = S_IRUGO | S_IWUSR,
4218 },
4219 {
4220 .name = "cgroup.clone_children",
4221 .read_u64 = cgroup_clone_children_read,
4222 .write_u64 = cgroup_clone_children_write,
4223 },
4224 {
4225 .name = "cgroup.sane_behavior",
4226 .flags = CFTYPE_ONLY_ON_ROOT,
4227 .seq_show = cgroup_sane_behavior_show,
4228 },
d5c56ced
TH
4229 {
4230 .name = "tasks",
6612f05b
TH
4231 .seq_start = cgroup_pidlist_start,
4232 .seq_next = cgroup_pidlist_next,
4233 .seq_stop = cgroup_pidlist_stop,
4234 .seq_show = cgroup_pidlist_show,
5d22444f 4235 .private = CGROUP_FILE_TASKS,
acbef755 4236 .write = cgroup_tasks_write,
d5c56ced
TH
4237 .mode = S_IRUGO | S_IWUSR,
4238 },
4239 {
4240 .name = "notify_on_release",
d5c56ced
TH
4241 .read_u64 = cgroup_read_notify_on_release,
4242 .write_u64 = cgroup_write_notify_on_release,
4243 },
6e6ff25b
TH
4244 {
4245 .name = "release_agent",
a14c6874 4246 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4247 .seq_show = cgroup_release_agent_show,
451af504 4248 .write = cgroup_release_agent_write,
5f469907 4249 .max_write_len = PATH_MAX - 1,
6e6ff25b 4250 },
db0416b6 4251 { } /* terminate */
bbcb81d0
PM
4252};
4253
13af07df 4254/**
628f7cd4 4255 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4256 * @cgrp: target cgroup
13af07df 4257 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4258 *
4259 * On failure, no file is added.
13af07df 4260 */
69dfa00c 4261static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4262{
ddbcc7e8 4263 struct cgroup_subsys *ss;
b420ba7d 4264 int i, ret = 0;
bbcb81d0 4265
8e3f6541 4266 /* process cftsets of each subsystem */
b420ba7d 4267 for_each_subsys(ss, i) {
0adb0704 4268 struct cftype *cfts;
b420ba7d 4269
69dfa00c 4270 if (!(subsys_mask & (1 << i)))
13af07df 4271 continue;
8e3f6541 4272
0adb0704
TH
4273 list_for_each_entry(cfts, &ss->cfts, node) {
4274 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4275 if (ret < 0)
4276 goto err;
4277 }
ddbcc7e8 4278 }
ddbcc7e8 4279 return 0;
bee55099
TH
4280err:
4281 cgroup_clear_dir(cgrp, subsys_mask);
4282 return ret;
ddbcc7e8
PM
4283}
4284
0c21ead1
TH
4285/*
4286 * css destruction is four-stage process.
4287 *
4288 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4289 * Implemented in kill_css().
4290 *
4291 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4292 * and thus css_tryget_online() is guaranteed to fail, the css can be
4293 * offlined by invoking offline_css(). After offlining, the base ref is
4294 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4295 *
4296 * 3. When the percpu_ref reaches zero, the only possible remaining
4297 * accessors are inside RCU read sections. css_release() schedules the
4298 * RCU callback.
4299 *
4300 * 4. After the grace period, the css can be freed. Implemented in
4301 * css_free_work_fn().
4302 *
4303 * It is actually hairier because both step 2 and 4 require process context
4304 * and thus involve punting to css->destroy_work adding two additional
4305 * steps to the already complex sequence.
4306 */
35ef10da 4307static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4308{
4309 struct cgroup_subsys_state *css =
35ef10da 4310 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4311 struct cgroup *cgrp = css->cgroup;
48ddbe19 4312
9a1049da
TH
4313 percpu_ref_exit(&css->refcnt);
4314
9d755d33
TH
4315 if (css->ss) {
4316 /* css free path */
4317 if (css->parent)
4318 css_put(css->parent);
0ae78e0b 4319
9d755d33
TH
4320 css->ss->css_free(css);
4321 cgroup_put(cgrp);
4322 } else {
4323 /* cgroup free path */
4324 atomic_dec(&cgrp->root->nr_cgrps);
4325 cgroup_pidlist_destroy_all(cgrp);
971ff493 4326 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4327
d51f39b0 4328 if (cgroup_parent(cgrp)) {
9d755d33
TH
4329 /*
4330 * We get a ref to the parent, and put the ref when
4331 * this cgroup is being freed, so it's guaranteed
4332 * that the parent won't be destroyed before its
4333 * children.
4334 */
d51f39b0 4335 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4336 kernfs_put(cgrp->kn);
4337 kfree(cgrp);
4338 } else {
4339 /*
4340 * This is root cgroup's refcnt reaching zero,
4341 * which indicates that the root should be
4342 * released.
4343 */
4344 cgroup_destroy_root(cgrp->root);
4345 }
4346 }
48ddbe19
TH
4347}
4348
0c21ead1 4349static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4350{
4351 struct cgroup_subsys_state *css =
0c21ead1 4352 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4353
35ef10da 4354 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4355 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4356}
4357
25e15d83 4358static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4359{
4360 struct cgroup_subsys_state *css =
25e15d83 4361 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4362 struct cgroup_subsys *ss = css->ss;
9d755d33 4363 struct cgroup *cgrp = css->cgroup;
15a4c835 4364
1fed1b2e
TH
4365 mutex_lock(&cgroup_mutex);
4366
de3f0341 4367 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4368 list_del_rcu(&css->sibling);
4369
9d755d33
TH
4370 if (ss) {
4371 /* css release path */
4372 cgroup_idr_remove(&ss->css_idr, css->id);
4373 } else {
4374 /* cgroup release path */
9d755d33
TH
4375 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4376 cgrp->id = -1;
a4189487
LZ
4377
4378 /*
4379 * There are two control paths which try to determine
4380 * cgroup from dentry without going through kernfs -
4381 * cgroupstats_build() and css_tryget_online_from_dir().
4382 * Those are supported by RCU protecting clearing of
4383 * cgrp->kn->priv backpointer.
4384 */
4385 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4386 }
d3daf28d 4387
1fed1b2e
TH
4388 mutex_unlock(&cgroup_mutex);
4389
0c21ead1 4390 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4391}
4392
d3daf28d
TH
4393static void css_release(struct percpu_ref *ref)
4394{
4395 struct cgroup_subsys_state *css =
4396 container_of(ref, struct cgroup_subsys_state, refcnt);
4397
25e15d83
TH
4398 INIT_WORK(&css->destroy_work, css_release_work_fn);
4399 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4400}
4401
ddfcadab
TH
4402static void init_and_link_css(struct cgroup_subsys_state *css,
4403 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4404{
0cb51d71
TH
4405 lockdep_assert_held(&cgroup_mutex);
4406
ddfcadab
TH
4407 cgroup_get(cgrp);
4408
d5c419b6 4409 memset(css, 0, sizeof(*css));
bd89aabc 4410 css->cgroup = cgrp;
72c97e54 4411 css->ss = ss;
d5c419b6
TH
4412 INIT_LIST_HEAD(&css->sibling);
4413 INIT_LIST_HEAD(&css->children);
0cb51d71 4414 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4415
d51f39b0
TH
4416 if (cgroup_parent(cgrp)) {
4417 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4418 css_get(css->parent);
ddfcadab 4419 }
48ddbe19 4420
ca8bdcaf 4421 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4422}
4423
2a4ac633 4424/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4425static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4426{
623f926b 4427 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4428 int ret = 0;
4429
a31f2d3f
TH
4430 lockdep_assert_held(&cgroup_mutex);
4431
92fb9748 4432 if (ss->css_online)
eb95419b 4433 ret = ss->css_online(css);
ae7f164a 4434 if (!ret) {
eb95419b 4435 css->flags |= CSS_ONLINE;
aec25020 4436 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4437 }
b1929db4 4438 return ret;
a31f2d3f
TH
4439}
4440
2a4ac633 4441/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4442static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4443{
623f926b 4444 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4445
4446 lockdep_assert_held(&cgroup_mutex);
4447
4448 if (!(css->flags & CSS_ONLINE))
4449 return;
4450
d7eeac19 4451 if (ss->css_offline)
eb95419b 4452 ss->css_offline(css);
a31f2d3f 4453
eb95419b 4454 css->flags &= ~CSS_ONLINE;
e3297803 4455 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4456
4457 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4458}
4459
c81c925a
TH
4460/**
4461 * create_css - create a cgroup_subsys_state
4462 * @cgrp: the cgroup new css will be associated with
4463 * @ss: the subsys of new css
f63070d3 4464 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4465 *
4466 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4467 * css is online and installed in @cgrp with all interface files created if
4468 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4469 */
f63070d3
TH
4470static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4471 bool visible)
c81c925a 4472{
d51f39b0 4473 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4474 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4475 struct cgroup_subsys_state *css;
4476 int err;
4477
c81c925a
TH
4478 lockdep_assert_held(&cgroup_mutex);
4479
1fed1b2e 4480 css = ss->css_alloc(parent_css);
c81c925a
TH
4481 if (IS_ERR(css))
4482 return PTR_ERR(css);
4483
ddfcadab 4484 init_and_link_css(css, ss, cgrp);
a2bed820 4485
c81c925a
TH
4486 err = percpu_ref_init(&css->refcnt, css_release);
4487 if (err)
3eb59ec6 4488 goto err_free_css;
c81c925a 4489
15a4c835
TH
4490 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4491 if (err < 0)
4492 goto err_free_percpu_ref;
4493 css->id = err;
c81c925a 4494
f63070d3
TH
4495 if (visible) {
4496 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4497 if (err)
4498 goto err_free_id;
4499 }
15a4c835
TH
4500
4501 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4502 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4503 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4504
4505 err = online_css(css);
4506 if (err)
1fed1b2e 4507 goto err_list_del;
94419627 4508
c81c925a 4509 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4510 cgroup_parent(parent)) {
ed3d261b 4511 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4512 current->comm, current->pid, ss->name);
c81c925a 4513 if (!strcmp(ss->name, "memory"))
ed3d261b 4514 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4515 ss->warned_broken_hierarchy = true;
4516 }
4517
4518 return 0;
4519
1fed1b2e
TH
4520err_list_del:
4521 list_del_rcu(&css->sibling);
32d01dc7 4522 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4523err_free_id:
4524 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4525err_free_percpu_ref:
9a1049da 4526 percpu_ref_exit(&css->refcnt);
3eb59ec6 4527err_free_css:
a2bed820 4528 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4529 return err;
4530}
4531
b3bfd983
TH
4532static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4533 umode_t mode)
ddbcc7e8 4534{
a9746d8d
TH
4535 struct cgroup *parent, *cgrp;
4536 struct cgroup_root *root;
ddbcc7e8 4537 struct cgroup_subsys *ss;
2bd59d48 4538 struct kernfs_node *kn;
a14c6874 4539 struct cftype *base_files;
b3bfd983 4540 int ssid, ret;
ddbcc7e8 4541
71b1fb5c
AC
4542 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4543 */
4544 if (strchr(name, '\n'))
4545 return -EINVAL;
4546
a9746d8d
TH
4547 parent = cgroup_kn_lock_live(parent_kn);
4548 if (!parent)
4549 return -ENODEV;
4550 root = parent->root;
ddbcc7e8 4551
0a950f65 4552 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4553 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4554 if (!cgrp) {
4555 ret = -ENOMEM;
4556 goto out_unlock;
0ab02ca8
LZ
4557 }
4558
9d755d33
TH
4559 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4560 if (ret)
4561 goto out_free_cgrp;
4562
0ab02ca8
LZ
4563 /*
4564 * Temporarily set the pointer to NULL, so idr_find() won't return
4565 * a half-baked cgroup.
4566 */
6fa4918d 4567 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4568 if (cgrp->id < 0) {
ba0f4d76 4569 ret = -ENOMEM;
9d755d33 4570 goto out_cancel_ref;
976c06bc
TH
4571 }
4572
cc31edce 4573 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4574
9d800df1 4575 cgrp->self.parent = &parent->self;
ba0f4d76 4576 cgrp->root = root;
ddbcc7e8 4577
b6abdb0e
LZ
4578 if (notify_on_release(parent))
4579 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4580
2260e7fc
TH
4581 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4582 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4583
2bd59d48 4584 /* create the directory */
e61734c5 4585 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4586 if (IS_ERR(kn)) {
ba0f4d76
TH
4587 ret = PTR_ERR(kn);
4588 goto out_free_id;
2bd59d48
TH
4589 }
4590 cgrp->kn = kn;
ddbcc7e8 4591
4e139afc 4592 /*
6f30558f
TH
4593 * This extra ref will be put in cgroup_free_fn() and guarantees
4594 * that @cgrp->kn is always accessible.
4e139afc 4595 */
6f30558f 4596 kernfs_get(kn);
ddbcc7e8 4597
0cb51d71 4598 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4599
4e139afc 4600 /* allocation complete, commit to creation */
d5c419b6 4601 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4602 atomic_inc(&root->nr_cgrps);
59f5296b 4603 cgroup_get(parent);
415cf07a 4604
0d80255e
TH
4605 /*
4606 * @cgrp is now fully operational. If something fails after this
4607 * point, it'll be released via the normal destruction path.
4608 */
6fa4918d 4609 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4610
ba0f4d76
TH
4611 ret = cgroup_kn_set_ugid(kn);
4612 if (ret)
4613 goto out_destroy;
49957f8e 4614
a14c6874
TH
4615 if (cgroup_on_dfl(cgrp))
4616 base_files = cgroup_dfl_base_files;
4617 else
4618 base_files = cgroup_legacy_base_files;
4619
4620 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4621 if (ret)
4622 goto out_destroy;
628f7cd4 4623
9d403e99 4624 /* let's create and online css's */
b85d2040 4625 for_each_subsys(ss, ssid) {
f392e51c 4626 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4627 ret = create_css(cgrp, ss,
4628 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4629 if (ret)
4630 goto out_destroy;
b85d2040 4631 }
a8638030 4632 }
ddbcc7e8 4633
bd53d617
TH
4634 /*
4635 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4636 * subtree_control from the parent. Each is configured manually.
bd53d617 4637 */
667c2491
TH
4638 if (!cgroup_on_dfl(cgrp)) {
4639 cgrp->subtree_control = parent->subtree_control;
4640 cgroup_refresh_child_subsys_mask(cgrp);
4641 }
2bd59d48 4642
2bd59d48 4643 kernfs_activate(kn);
ddbcc7e8 4644
ba0f4d76
TH
4645 ret = 0;
4646 goto out_unlock;
ddbcc7e8 4647
ba0f4d76 4648out_free_id:
6fa4918d 4649 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4650out_cancel_ref:
9a1049da 4651 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4652out_free_cgrp:
bd89aabc 4653 kfree(cgrp);
ba0f4d76 4654out_unlock:
a9746d8d 4655 cgroup_kn_unlock(parent_kn);
ba0f4d76 4656 return ret;
4b8b47eb 4657
ba0f4d76 4658out_destroy:
4b8b47eb 4659 cgroup_destroy_locked(cgrp);
ba0f4d76 4660 goto out_unlock;
ddbcc7e8
PM
4661}
4662
223dbc38
TH
4663/*
4664 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4665 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4666 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4667 */
4668static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4669{
223dbc38
TH
4670 struct cgroup_subsys_state *css =
4671 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4672
f20104de 4673 mutex_lock(&cgroup_mutex);
09a503ea 4674 offline_css(css);
f20104de 4675 mutex_unlock(&cgroup_mutex);
09a503ea 4676
09a503ea 4677 css_put(css);
d3daf28d
TH
4678}
4679
223dbc38
TH
4680/* css kill confirmation processing requires process context, bounce */
4681static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4682{
4683 struct cgroup_subsys_state *css =
4684 container_of(ref, struct cgroup_subsys_state, refcnt);
4685
223dbc38 4686 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4687 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4688}
4689
f392e51c
TH
4690/**
4691 * kill_css - destroy a css
4692 * @css: css to destroy
4693 *
4694 * This function initiates destruction of @css by removing cgroup interface
4695 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4696 * asynchronously once css_tryget_online() is guaranteed to fail and when
4697 * the reference count reaches zero, @css will be released.
f392e51c
TH
4698 */
4699static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4700{
01f6474c 4701 lockdep_assert_held(&cgroup_mutex);
94419627 4702
2bd59d48
TH
4703 /*
4704 * This must happen before css is disassociated with its cgroup.
4705 * See seq_css() for details.
4706 */
aec25020 4707 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4708
edae0c33
TH
4709 /*
4710 * Killing would put the base ref, but we need to keep it alive
4711 * until after ->css_offline().
4712 */
4713 css_get(css);
4714
4715 /*
4716 * cgroup core guarantees that, by the time ->css_offline() is
4717 * invoked, no new css reference will be given out via
ec903c0c 4718 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4719 * proceed to offlining css's because percpu_ref_kill() doesn't
4720 * guarantee that the ref is seen as killed on all CPUs on return.
4721 *
4722 * Use percpu_ref_kill_and_confirm() to get notifications as each
4723 * css is confirmed to be seen as killed on all CPUs.
4724 */
4725 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4726}
4727
4728/**
4729 * cgroup_destroy_locked - the first stage of cgroup destruction
4730 * @cgrp: cgroup to be destroyed
4731 *
4732 * css's make use of percpu refcnts whose killing latency shouldn't be
4733 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4734 * guarantee that css_tryget_online() won't succeed by the time
4735 * ->css_offline() is invoked. To satisfy all the requirements,
4736 * destruction is implemented in the following two steps.
d3daf28d
TH
4737 *
4738 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4739 * userland visible parts and start killing the percpu refcnts of
4740 * css's. Set up so that the next stage will be kicked off once all
4741 * the percpu refcnts are confirmed to be killed.
4742 *
4743 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4744 * rest of destruction. Once all cgroup references are gone, the
4745 * cgroup is RCU-freed.
4746 *
4747 * This function implements s1. After this step, @cgrp is gone as far as
4748 * the userland is concerned and a new cgroup with the same name may be
4749 * created. As cgroup doesn't care about the names internally, this
4750 * doesn't cause any problem.
4751 */
42809dd4
TH
4752static int cgroup_destroy_locked(struct cgroup *cgrp)
4753 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4754{
2bd59d48 4755 struct cgroup_subsys_state *css;
ddd69148 4756 bool empty;
1c6727af 4757 int ssid;
ddbcc7e8 4758
42809dd4
TH
4759 lockdep_assert_held(&cgroup_mutex);
4760
ddd69148 4761 /*
96d365e0 4762 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4763 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4764 */
96d365e0 4765 down_read(&css_set_rwsem);
bb78a92f 4766 empty = list_empty(&cgrp->cset_links);
96d365e0 4767 up_read(&css_set_rwsem);
ddd69148 4768 if (!empty)
ddbcc7e8 4769 return -EBUSY;
a043e3b2 4770
bb78a92f 4771 /*
d5c419b6
TH
4772 * Make sure there's no live children. We can't test emptiness of
4773 * ->self.children as dead children linger on it while being
4774 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4775 */
f3d46500 4776 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4777 return -EBUSY;
4778
455050d2
TH
4779 /*
4780 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4781 * creation by disabling cgroup_lock_live_group().
455050d2 4782 */
184faf32 4783 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4784
249f3468 4785 /* initiate massacre of all css's */
1c6727af
TH
4786 for_each_css(css, ssid, cgrp)
4787 kill_css(css);
455050d2 4788
455050d2 4789 /*
01f6474c
TH
4790 * Remove @cgrp directory along with the base files. @cgrp has an
4791 * extra ref on its kn.
f20104de 4792 */
01f6474c 4793 kernfs_remove(cgrp->kn);
f20104de 4794
d51f39b0 4795 check_for_release(cgroup_parent(cgrp));
2bd59d48 4796
249f3468 4797 /* put the base reference */
9d755d33 4798 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4799
ea15f8cc
TH
4800 return 0;
4801};
4802
2bd59d48 4803static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4804{
a9746d8d 4805 struct cgroup *cgrp;
2bd59d48 4806 int ret = 0;
42809dd4 4807
a9746d8d
TH
4808 cgrp = cgroup_kn_lock_live(kn);
4809 if (!cgrp)
4810 return 0;
42809dd4 4811
a9746d8d 4812 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4813
a9746d8d 4814 cgroup_kn_unlock(kn);
42809dd4 4815 return ret;
8e3f6541
TH
4816}
4817
2bd59d48
TH
4818static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4819 .remount_fs = cgroup_remount,
4820 .show_options = cgroup_show_options,
4821 .mkdir = cgroup_mkdir,
4822 .rmdir = cgroup_rmdir,
4823 .rename = cgroup_rename,
4824};
4825
15a4c835 4826static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4827{
ddbcc7e8 4828 struct cgroup_subsys_state *css;
cfe36bde
DC
4829
4830 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4831
648bb56d
TH
4832 mutex_lock(&cgroup_mutex);
4833
15a4c835 4834 idr_init(&ss->css_idr);
0adb0704 4835 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4836
3dd06ffa
TH
4837 /* Create the root cgroup state for this subsystem */
4838 ss->root = &cgrp_dfl_root;
4839 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4840 /* We don't handle early failures gracefully */
4841 BUG_ON(IS_ERR(css));
ddfcadab 4842 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4843
4844 /*
4845 * Root csses are never destroyed and we can't initialize
4846 * percpu_ref during early init. Disable refcnting.
4847 */
4848 css->flags |= CSS_NO_REF;
4849
15a4c835 4850 if (early) {
9395a450 4851 /* allocation can't be done safely during early init */
15a4c835
TH
4852 css->id = 1;
4853 } else {
4854 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4855 BUG_ON(css->id < 0);
4856 }
ddbcc7e8 4857
e8d55fde 4858 /* Update the init_css_set to contain a subsys
817929ec 4859 * pointer to this state - since the subsystem is
e8d55fde 4860 * newly registered, all tasks and hence the
3dd06ffa 4861 * init_css_set is in the subsystem's root cgroup. */
aec25020 4862 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4863
4864 need_forkexit_callback |= ss->fork || ss->exit;
4865
e8d55fde
LZ
4866 /* At system boot, before all subsystems have been
4867 * registered, no tasks have been forked, so we don't
4868 * need to invoke fork callbacks here. */
4869 BUG_ON(!list_empty(&init_task.tasks));
4870
ae7f164a 4871 BUG_ON(online_css(css));
a8638030 4872
cf5d5941
BB
4873 mutex_unlock(&cgroup_mutex);
4874}
cf5d5941 4875
ddbcc7e8 4876/**
a043e3b2
LZ
4877 * cgroup_init_early - cgroup initialization at system boot
4878 *
4879 * Initialize cgroups at system boot, and initialize any
4880 * subsystems that request early init.
ddbcc7e8
PM
4881 */
4882int __init cgroup_init_early(void)
4883{
7b9a6ba5 4884 static struct cgroup_sb_opts __initdata opts;
30159ec7 4885 struct cgroup_subsys *ss;
ddbcc7e8 4886 int i;
30159ec7 4887
3dd06ffa 4888 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4889 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4890
a4ea1cc9 4891 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4892
3ed80a62 4893 for_each_subsys(ss, i) {
aec25020 4894 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4895 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4896 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4897 ss->id, ss->name);
073219e9
TH
4898 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4899 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4900
aec25020 4901 ss->id = i;
073219e9 4902 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4903
4904 if (ss->early_init)
15a4c835 4905 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4906 }
4907 return 0;
4908}
4909
4910/**
a043e3b2
LZ
4911 * cgroup_init - cgroup initialization
4912 *
4913 * Register cgroup filesystem and /proc file, and initialize
4914 * any subsystems that didn't request early init.
ddbcc7e8
PM
4915 */
4916int __init cgroup_init(void)
4917{
30159ec7 4918 struct cgroup_subsys *ss;
0ac801fe 4919 unsigned long key;
172a2c06 4920 int ssid, err;
ddbcc7e8 4921
a14c6874
TH
4922 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4923 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4924
54e7b4eb 4925 mutex_lock(&cgroup_mutex);
54e7b4eb 4926
82fe9b0d
TH
4927 /* Add init_css_set to the hash table */
4928 key = css_set_hash(init_css_set.subsys);
4929 hash_add(css_set_table, &init_css_set.hlist, key);
4930
3dd06ffa 4931 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4932
54e7b4eb
TH
4933 mutex_unlock(&cgroup_mutex);
4934
172a2c06 4935 for_each_subsys(ss, ssid) {
15a4c835
TH
4936 if (ss->early_init) {
4937 struct cgroup_subsys_state *css =
4938 init_css_set.subsys[ss->id];
4939
4940 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4941 GFP_KERNEL);
4942 BUG_ON(css->id < 0);
4943 } else {
4944 cgroup_init_subsys(ss, false);
4945 }
172a2c06 4946
2d8f243a
TH
4947 list_add_tail(&init_css_set.e_cset_node[ssid],
4948 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4949
4950 /*
c731ae1d
LZ
4951 * Setting dfl_root subsys_mask needs to consider the
4952 * disabled flag and cftype registration needs kmalloc,
4953 * both of which aren't available during early_init.
172a2c06 4954 */
a8ddc821
TH
4955 if (ss->disabled)
4956 continue;
4957
4958 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
4959
4960 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
4961 ss->dfl_cftypes = ss->legacy_cftypes;
4962
5de4fa13
TH
4963 if (!ss->dfl_cftypes)
4964 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
4965
a8ddc821
TH
4966 if (ss->dfl_cftypes == ss->legacy_cftypes) {
4967 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
4968 } else {
4969 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
4970 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 4971 }
676db4af
GK
4972 }
4973
676db4af 4974 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4975 if (!cgroup_kobj)
4976 return -ENOMEM;
676db4af 4977
ddbcc7e8 4978 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4979 if (err < 0) {
4980 kobject_put(cgroup_kobj);
2bd59d48 4981 return err;
676db4af 4982 }
ddbcc7e8 4983
46ae220b 4984 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4985 return 0;
ddbcc7e8 4986}
b4f48b63 4987
e5fca243
TH
4988static int __init cgroup_wq_init(void)
4989{
4990 /*
4991 * There isn't much point in executing destruction path in
4992 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4993 * Use 1 for @max_active.
e5fca243
TH
4994 *
4995 * We would prefer to do this in cgroup_init() above, but that
4996 * is called before init_workqueues(): so leave this until after.
4997 */
1a11533f 4998 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4999 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5000
5001 /*
5002 * Used to destroy pidlists and separate to serve as flush domain.
5003 * Cap @max_active to 1 too.
5004 */
5005 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5006 0, 1);
5007 BUG_ON(!cgroup_pidlist_destroy_wq);
5008
e5fca243
TH
5009 return 0;
5010}
5011core_initcall(cgroup_wq_init);
5012
a424316c
PM
5013/*
5014 * proc_cgroup_show()
5015 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5016 * - Used for /proc/<pid>/cgroup.
a424316c 5017 */
006f4ac4
ZL
5018int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5019 struct pid *pid, struct task_struct *tsk)
a424316c 5020{
e61734c5 5021 char *buf, *path;
a424316c 5022 int retval;
3dd06ffa 5023 struct cgroup_root *root;
a424316c
PM
5024
5025 retval = -ENOMEM;
e61734c5 5026 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5027 if (!buf)
5028 goto out;
5029
a424316c 5030 mutex_lock(&cgroup_mutex);
96d365e0 5031 down_read(&css_set_rwsem);
a424316c 5032
985ed670 5033 for_each_root(root) {
a424316c 5034 struct cgroup_subsys *ss;
bd89aabc 5035 struct cgroup *cgrp;
b85d2040 5036 int ssid, count = 0;
a424316c 5037
a2dd4247 5038 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5039 continue;
5040
2c6ab6d2 5041 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5042 for_each_subsys(ss, ssid)
f392e51c 5043 if (root->subsys_mask & (1 << ssid))
b85d2040 5044 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5045 if (strlen(root->name))
5046 seq_printf(m, "%sname=%s", count ? "," : "",
5047 root->name);
a424316c 5048 seq_putc(m, ':');
7717f7ba 5049 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5050 path = cgroup_path(cgrp, buf, PATH_MAX);
5051 if (!path) {
5052 retval = -ENAMETOOLONG;
a424316c 5053 goto out_unlock;
e61734c5
TH
5054 }
5055 seq_puts(m, path);
a424316c
PM
5056 seq_putc(m, '\n');
5057 }
5058
006f4ac4 5059 retval = 0;
a424316c 5060out_unlock:
96d365e0 5061 up_read(&css_set_rwsem);
a424316c 5062 mutex_unlock(&cgroup_mutex);
a424316c
PM
5063 kfree(buf);
5064out:
5065 return retval;
5066}
5067
a424316c
PM
5068/* Display information about each subsystem and each hierarchy */
5069static int proc_cgroupstats_show(struct seq_file *m, void *v)
5070{
30159ec7 5071 struct cgroup_subsys *ss;
a424316c 5072 int i;
a424316c 5073
8bab8dde 5074 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5075 /*
5076 * ideally we don't want subsystems moving around while we do this.
5077 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5078 * subsys/hierarchy state.
5079 */
a424316c 5080 mutex_lock(&cgroup_mutex);
30159ec7
TH
5081
5082 for_each_subsys(ss, i)
2c6ab6d2
PM
5083 seq_printf(m, "%s\t%d\t%d\t%d\n",
5084 ss->name, ss->root->hierarchy_id,
3c9c825b 5085 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5086
a424316c
PM
5087 mutex_unlock(&cgroup_mutex);
5088 return 0;
5089}
5090
5091static int cgroupstats_open(struct inode *inode, struct file *file)
5092{
9dce07f1 5093 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5094}
5095
828c0950 5096static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5097 .open = cgroupstats_open,
5098 .read = seq_read,
5099 .llseek = seq_lseek,
5100 .release = single_release,
5101};
5102
b4f48b63 5103/**
eaf797ab 5104 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5105 * @child: pointer to task_struct of forking parent process.
b4f48b63 5106 *
eaf797ab
TH
5107 * A task is associated with the init_css_set until cgroup_post_fork()
5108 * attaches it to the parent's css_set. Empty cg_list indicates that
5109 * @child isn't holding reference to its css_set.
b4f48b63
PM
5110 */
5111void cgroup_fork(struct task_struct *child)
5112{
eaf797ab 5113 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5114 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5115}
5116
817929ec 5117/**
a043e3b2
LZ
5118 * cgroup_post_fork - called on a new task after adding it to the task list
5119 * @child: the task in question
5120 *
5edee61e
TH
5121 * Adds the task to the list running through its css_set if necessary and
5122 * call the subsystem fork() callbacks. Has to be after the task is
5123 * visible on the task list in case we race with the first call to
0942eeee 5124 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5125 * list.
a043e3b2 5126 */
817929ec
PM
5127void cgroup_post_fork(struct task_struct *child)
5128{
30159ec7 5129 struct cgroup_subsys *ss;
5edee61e
TH
5130 int i;
5131
3ce3230a 5132 /*
251f8c03 5133 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5134 * function sets use_task_css_set_links before grabbing
5135 * tasklist_lock and we just went through tasklist_lock to add
5136 * @child, it's guaranteed that either we see the set
5137 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5138 * @child during its iteration.
5139 *
5140 * If we won the race, @child is associated with %current's
5141 * css_set. Grabbing css_set_rwsem guarantees both that the
5142 * association is stable, and, on completion of the parent's
5143 * migration, @child is visible in the source of migration or
5144 * already in the destination cgroup. This guarantee is necessary
5145 * when implementing operations which need to migrate all tasks of
5146 * a cgroup to another.
5147 *
251f8c03 5148 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5149 * will remain in init_css_set. This is safe because all tasks are
5150 * in the init_css_set before cg_links is enabled and there's no
5151 * operation which transfers all tasks out of init_css_set.
3ce3230a 5152 */
817929ec 5153 if (use_task_css_set_links) {
eaf797ab
TH
5154 struct css_set *cset;
5155
96d365e0 5156 down_write(&css_set_rwsem);
0e1d768f 5157 cset = task_css_set(current);
eaf797ab
TH
5158 if (list_empty(&child->cg_list)) {
5159 rcu_assign_pointer(child->cgroups, cset);
5160 list_add(&child->cg_list, &cset->tasks);
5161 get_css_set(cset);
5162 }
96d365e0 5163 up_write(&css_set_rwsem);
817929ec 5164 }
5edee61e
TH
5165
5166 /*
5167 * Call ss->fork(). This must happen after @child is linked on
5168 * css_set; otherwise, @child might change state between ->fork()
5169 * and addition to css_set.
5170 */
5171 if (need_forkexit_callback) {
3ed80a62 5172 for_each_subsys(ss, i)
5edee61e
TH
5173 if (ss->fork)
5174 ss->fork(child);
5edee61e 5175 }
817929ec 5176}
5edee61e 5177
b4f48b63
PM
5178/**
5179 * cgroup_exit - detach cgroup from exiting task
5180 * @tsk: pointer to task_struct of exiting process
5181 *
5182 * Description: Detach cgroup from @tsk and release it.
5183 *
5184 * Note that cgroups marked notify_on_release force every task in
5185 * them to take the global cgroup_mutex mutex when exiting.
5186 * This could impact scaling on very large systems. Be reluctant to
5187 * use notify_on_release cgroups where very high task exit scaling
5188 * is required on large systems.
5189 *
0e1d768f
TH
5190 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5191 * call cgroup_exit() while the task is still competent to handle
5192 * notify_on_release(), then leave the task attached to the root cgroup in
5193 * each hierarchy for the remainder of its exit. No need to bother with
5194 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5195 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5196 */
1ec41830 5197void cgroup_exit(struct task_struct *tsk)
b4f48b63 5198{
30159ec7 5199 struct cgroup_subsys *ss;
5abb8855 5200 struct css_set *cset;
eaf797ab 5201 bool put_cset = false;
d41d5a01 5202 int i;
817929ec
PM
5203
5204 /*
0e1d768f
TH
5205 * Unlink from @tsk from its css_set. As migration path can't race
5206 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5207 */
5208 if (!list_empty(&tsk->cg_list)) {
96d365e0 5209 down_write(&css_set_rwsem);
0e1d768f 5210 list_del_init(&tsk->cg_list);
96d365e0 5211 up_write(&css_set_rwsem);
0e1d768f 5212 put_cset = true;
817929ec
PM
5213 }
5214
b4f48b63 5215 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5216 cset = task_css_set(tsk);
5217 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5218
1ec41830 5219 if (need_forkexit_callback) {
3ed80a62
TH
5220 /* see cgroup_post_fork() for details */
5221 for_each_subsys(ss, i) {
d41d5a01 5222 if (ss->exit) {
eb95419b
TH
5223 struct cgroup_subsys_state *old_css = cset->subsys[i];
5224 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5225
eb95419b 5226 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5227 }
5228 }
5229 }
d41d5a01 5230
eaf797ab 5231 if (put_cset)
a25eb52e 5232 put_css_set(cset);
b4f48b63 5233}
697f4161 5234
bd89aabc 5235static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5236{
a25eb52e 5237 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5238 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5239 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5240}
5241
81a6a5cd
PM
5242/*
5243 * Notify userspace when a cgroup is released, by running the
5244 * configured release agent with the name of the cgroup (path
5245 * relative to the root of cgroup file system) as the argument.
5246 *
5247 * Most likely, this user command will try to rmdir this cgroup.
5248 *
5249 * This races with the possibility that some other task will be
5250 * attached to this cgroup before it is removed, or that some other
5251 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5252 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5253 * unused, and this cgroup will be reprieved from its death sentence,
5254 * to continue to serve a useful existence. Next time it's released,
5255 * we will get notified again, if it still has 'notify_on_release' set.
5256 *
5257 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5258 * means only wait until the task is successfully execve()'d. The
5259 * separate release agent task is forked by call_usermodehelper(),
5260 * then control in this thread returns here, without waiting for the
5261 * release agent task. We don't bother to wait because the caller of
5262 * this routine has no use for the exit status of the release agent
5263 * task, so no sense holding our caller up for that.
81a6a5cd 5264 */
81a6a5cd
PM
5265static void cgroup_release_agent(struct work_struct *work)
5266{
971ff493
ZL
5267 struct cgroup *cgrp =
5268 container_of(work, struct cgroup, release_agent_work);
5269 char *pathbuf = NULL, *agentbuf = NULL, *path;
5270 char *argv[3], *envp[3];
5271
81a6a5cd 5272 mutex_lock(&cgroup_mutex);
971ff493
ZL
5273
5274 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5275 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5276 if (!pathbuf || !agentbuf)
5277 goto out;
5278
5279 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5280 if (!path)
5281 goto out;
5282
5283 argv[0] = agentbuf;
5284 argv[1] = path;
5285 argv[2] = NULL;
5286
5287 /* minimal command environment */
5288 envp[0] = "HOME=/";
5289 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5290 envp[2] = NULL;
5291
81a6a5cd 5292 mutex_unlock(&cgroup_mutex);
971ff493
ZL
5293 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5294out:
5295 kfree(agentbuf);
5296 kfree(pathbuf);
81a6a5cd 5297}
8bab8dde
PM
5298
5299static int __init cgroup_disable(char *str)
5300{
30159ec7 5301 struct cgroup_subsys *ss;
8bab8dde 5302 char *token;
30159ec7 5303 int i;
8bab8dde
PM
5304
5305 while ((token = strsep(&str, ",")) != NULL) {
5306 if (!*token)
5307 continue;
be45c900 5308
3ed80a62 5309 for_each_subsys(ss, i) {
8bab8dde
PM
5310 if (!strcmp(token, ss->name)) {
5311 ss->disabled = 1;
5312 printk(KERN_INFO "Disabling %s control group"
5313 " subsystem\n", ss->name);
5314 break;
5315 }
5316 }
5317 }
5318 return 1;
5319}
5320__setup("cgroup_disable=", cgroup_disable);
38460b48 5321
a8ddc821
TH
5322static int __init cgroup_set_legacy_files_on_dfl(char *str)
5323{
5324 printk("cgroup: using legacy files on the default hierarchy\n");
5325 cgroup_legacy_files_on_dfl = true;
5326 return 0;
5327}
5328__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5329
b77d7b60 5330/**
ec903c0c 5331 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5332 * @dentry: directory dentry of interest
5333 * @ss: subsystem of interest
b77d7b60 5334 *
5a17f543
TH
5335 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5336 * to get the corresponding css and return it. If such css doesn't exist
5337 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5338 */
ec903c0c
TH
5339struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5340 struct cgroup_subsys *ss)
e5d1367f 5341{
2bd59d48
TH
5342 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5343 struct cgroup_subsys_state *css = NULL;
e5d1367f 5344 struct cgroup *cgrp;
e5d1367f 5345
35cf0836 5346 /* is @dentry a cgroup dir? */
2bd59d48
TH
5347 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5348 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5349 return ERR_PTR(-EBADF);
5350
5a17f543
TH
5351 rcu_read_lock();
5352
2bd59d48
TH
5353 /*
5354 * This path doesn't originate from kernfs and @kn could already
5355 * have been or be removed at any point. @kn->priv is RCU
a4189487 5356 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5357 */
5358 cgrp = rcu_dereference(kn->priv);
5359 if (cgrp)
5360 css = cgroup_css(cgrp, ss);
5a17f543 5361
ec903c0c 5362 if (!css || !css_tryget_online(css))
5a17f543
TH
5363 css = ERR_PTR(-ENOENT);
5364
5365 rcu_read_unlock();
5366 return css;
e5d1367f 5367}
e5d1367f 5368
1cb650b9
LZ
5369/**
5370 * css_from_id - lookup css by id
5371 * @id: the cgroup id
5372 * @ss: cgroup subsys to be looked into
5373 *
5374 * Returns the css if there's valid one with @id, otherwise returns NULL.
5375 * Should be called under rcu_read_lock().
5376 */
5377struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5378{
6fa4918d 5379 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5380 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5381}
5382
fe693435 5383#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5384static struct cgroup_subsys_state *
5385debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5386{
5387 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5388
5389 if (!css)
5390 return ERR_PTR(-ENOMEM);
5391
5392 return css;
5393}
5394
eb95419b 5395static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5396{
eb95419b 5397 kfree(css);
fe693435
PM
5398}
5399
182446d0
TH
5400static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5401 struct cftype *cft)
fe693435 5402{
182446d0 5403 return cgroup_task_count(css->cgroup);
fe693435
PM
5404}
5405
182446d0
TH
5406static u64 current_css_set_read(struct cgroup_subsys_state *css,
5407 struct cftype *cft)
fe693435
PM
5408{
5409 return (u64)(unsigned long)current->cgroups;
5410}
5411
182446d0 5412static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5413 struct cftype *cft)
fe693435
PM
5414{
5415 u64 count;
5416
5417 rcu_read_lock();
a8ad805c 5418 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5419 rcu_read_unlock();
5420 return count;
5421}
5422
2da8ca82 5423static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5424{
69d0206c 5425 struct cgrp_cset_link *link;
5abb8855 5426 struct css_set *cset;
e61734c5
TH
5427 char *name_buf;
5428
5429 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5430 if (!name_buf)
5431 return -ENOMEM;
7717f7ba 5432
96d365e0 5433 down_read(&css_set_rwsem);
7717f7ba 5434 rcu_read_lock();
5abb8855 5435 cset = rcu_dereference(current->cgroups);
69d0206c 5436 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5437 struct cgroup *c = link->cgrp;
7717f7ba 5438
a2dd4247 5439 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5440 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5441 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5442 }
5443 rcu_read_unlock();
96d365e0 5444 up_read(&css_set_rwsem);
e61734c5 5445 kfree(name_buf);
7717f7ba
PM
5446 return 0;
5447}
5448
5449#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5450static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5451{
2da8ca82 5452 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5453 struct cgrp_cset_link *link;
7717f7ba 5454
96d365e0 5455 down_read(&css_set_rwsem);
182446d0 5456 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5457 struct css_set *cset = link->cset;
7717f7ba
PM
5458 struct task_struct *task;
5459 int count = 0;
c7561128 5460
5abb8855 5461 seq_printf(seq, "css_set %p\n", cset);
c7561128 5462
5abb8855 5463 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5464 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5465 goto overflow;
5466 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5467 }
5468
5469 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5470 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5471 goto overflow;
5472 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5473 }
c7561128
TH
5474 continue;
5475 overflow:
5476 seq_puts(seq, " ...\n");
7717f7ba 5477 }
96d365e0 5478 up_read(&css_set_rwsem);
7717f7ba
PM
5479 return 0;
5480}
5481
182446d0 5482static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5483{
a25eb52e
ZL
5484 return (!cgroup_has_tasks(css->cgroup) &&
5485 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5486}
5487
5488static struct cftype debug_files[] = {
fe693435
PM
5489 {
5490 .name = "taskcount",
5491 .read_u64 = debug_taskcount_read,
5492 },
5493
5494 {
5495 .name = "current_css_set",
5496 .read_u64 = current_css_set_read,
5497 },
5498
5499 {
5500 .name = "current_css_set_refcount",
5501 .read_u64 = current_css_set_refcount_read,
5502 },
5503
7717f7ba
PM
5504 {
5505 .name = "current_css_set_cg_links",
2da8ca82 5506 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5507 },
5508
5509 {
5510 .name = "cgroup_css_links",
2da8ca82 5511 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5512 },
5513
fe693435
PM
5514 {
5515 .name = "releasable",
5516 .read_u64 = releasable_read,
5517 },
fe693435 5518
4baf6e33
TH
5519 { } /* terminate */
5520};
fe693435 5521
073219e9 5522struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5523 .css_alloc = debug_css_alloc,
5524 .css_free = debug_css_free,
5577964e 5525 .legacy_cftypes = debug_files,
fe693435
PM
5526};
5527#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.705763 seconds and 5 git commands to generate.