cgroup: introduce cgroup namespaces
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
60063497 60#include <linux/atomic.h>
e93ad19d 61#include <linux/cpuset.h>
a79a908f
AK
62#include <linux/proc_ns.h>
63#include <linux/nsproxy.h>
64#include <linux/proc_ns.h>
bd1060a1 65#include <net/sock.h>
ddbcc7e8 66
b1a21367
TH
67/*
68 * pidlists linger the following amount before being destroyed. The goal
69 * is avoiding frequent destruction in the middle of consecutive read calls
70 * Expiring in the middle is a performance problem not a correctness one.
71 * 1 sec should be enough.
72 */
73#define CGROUP_PIDLIST_DESTROY_DELAY HZ
74
8d7e6fb0
TH
75#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
76 MAX_CFTYPE_NAME + 2)
77
e25e2cbb
TH
78/*
79 * cgroup_mutex is the master lock. Any modification to cgroup or its
80 * hierarchy must be performed while holding it.
81 *
f0d9a5f1 82 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 83 * objects, and the chain of tasks off each css_set.
e25e2cbb 84 *
0e1d768f
TH
85 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
86 * cgroup.h can use them for lockdep annotations.
e25e2cbb 87 */
2219449a
TH
88#ifdef CONFIG_PROVE_RCU
89DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 90DEFINE_SPINLOCK(css_set_lock);
0e1d768f 91EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 92EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 93#else
81a6a5cd 94static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 95static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
96#endif
97
6fa4918d 98/*
15a4c835
TH
99 * Protects cgroup_idr and css_idr so that IDs can be released without
100 * grabbing cgroup_mutex.
6fa4918d
TH
101 */
102static DEFINE_SPINLOCK(cgroup_idr_lock);
103
34c06254
TH
104/*
105 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
106 * against file removal/re-creation across css hiding.
107 */
108static DEFINE_SPINLOCK(cgroup_file_kn_lock);
109
69e943b7
TH
110/*
111 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
112 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
113 */
114static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 115
1ed13287
TH
116struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
117
8353da1f 118#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
119 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
120 !lockdep_is_held(&cgroup_mutex), \
8353da1f 121 "cgroup_mutex or RCU read lock required");
780cd8b3 122
e5fca243
TH
123/*
124 * cgroup destruction makes heavy use of work items and there can be a lot
125 * of concurrent destructions. Use a separate workqueue so that cgroup
126 * destruction work items don't end up filling up max_active of system_wq
127 * which may lead to deadlock.
128 */
129static struct workqueue_struct *cgroup_destroy_wq;
130
b1a21367
TH
131/*
132 * pidlist destructions need to be flushed on cgroup destruction. Use a
133 * separate workqueue as flush domain.
134 */
135static struct workqueue_struct *cgroup_pidlist_destroy_wq;
136
3ed80a62 137/* generate an array of cgroup subsystem pointers */
073219e9 138#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 139static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
140#include <linux/cgroup_subsys.h>
141};
073219e9
TH
142#undef SUBSYS
143
144/* array of cgroup subsystem names */
145#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
146static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
147#include <linux/cgroup_subsys.h>
148};
073219e9 149#undef SUBSYS
ddbcc7e8 150
49d1dc4b
TH
151/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
152#define SUBSYS(_x) \
153 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
154 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
155 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
156 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
157#include <linux/cgroup_subsys.h>
158#undef SUBSYS
159
160#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
161static struct static_key_true *cgroup_subsys_enabled_key[] = {
162#include <linux/cgroup_subsys.h>
163};
164#undef SUBSYS
165
166#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
167static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
168#include <linux/cgroup_subsys.h>
169};
170#undef SUBSYS
171
ddbcc7e8 172/*
3dd06ffa 173 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
174 * unattached - it never has more than a single cgroup, and all tasks are
175 * part of that cgroup.
ddbcc7e8 176 */
a2dd4247 177struct cgroup_root cgrp_dfl_root;
d0ec4230 178EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 179
a2dd4247
TH
180/*
181 * The default hierarchy always exists but is hidden until mounted for the
182 * first time. This is for backward compatibility.
183 */
184static bool cgrp_dfl_root_visible;
ddbcc7e8 185
223ffb29
JW
186/* Controllers blocked by the commandline in v1 */
187static unsigned long cgroup_no_v1_mask;
188
5533e011 189/* some controllers are not supported in the default hierarchy */
8ab456ac 190static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 191
ddbcc7e8
PM
192/* The list of hierarchy roots */
193
9871bf95
TH
194static LIST_HEAD(cgroup_roots);
195static int cgroup_root_count;
ddbcc7e8 196
3417ae1f 197/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 198static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 199
794611a1 200/*
0cb51d71
TH
201 * Assign a monotonically increasing serial number to csses. It guarantees
202 * cgroups with bigger numbers are newer than those with smaller numbers.
203 * Also, as csses are always appended to the parent's ->children list, it
204 * guarantees that sibling csses are always sorted in the ascending serial
205 * number order on the list. Protected by cgroup_mutex.
794611a1 206 */
0cb51d71 207static u64 css_serial_nr_next = 1;
794611a1 208
cb4a3167
AS
209/*
210 * These bitmask flags indicate whether tasks in the fork and exit paths have
211 * fork/exit handlers to call. This avoids us having to do extra work in the
212 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 213 */
cb4a3167
AS
214static unsigned long have_fork_callback __read_mostly;
215static unsigned long have_exit_callback __read_mostly;
afcf6c8b 216static unsigned long have_free_callback __read_mostly;
ddbcc7e8 217
a79a908f
AK
218/* cgroup namespace for init task */
219struct cgroup_namespace init_cgroup_ns = {
220 .count = { .counter = 2, },
221 .user_ns = &init_user_ns,
222 .ns.ops = &cgroupns_operations,
223 .ns.inum = PROC_CGROUP_INIT_INO,
224 .root_cset = &init_css_set,
225};
226
7e47682e
AS
227/* Ditto for the can_fork callback. */
228static unsigned long have_canfork_callback __read_mostly;
229
67e9c74b 230static struct file_system_type cgroup2_fs_type;
a14c6874
TH
231static struct cftype cgroup_dfl_base_files[];
232static struct cftype cgroup_legacy_base_files[];
628f7cd4 233
3dd06ffa 234static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 235 unsigned long ss_mask);
ed27b9f7 236static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 237static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
238static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
239 bool visible);
9d755d33 240static void css_release(struct percpu_ref *ref);
f8f22e53 241static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
242static int cgroup_addrm_files(struct cgroup_subsys_state *css,
243 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 244 bool is_add);
42809dd4 245
fc5ed1e9
TH
246/**
247 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
248 * @ssid: subsys ID of interest
249 *
250 * cgroup_subsys_enabled() can only be used with literal subsys names which
251 * is fine for individual subsystems but unsuitable for cgroup core. This
252 * is slower static_key_enabled() based test indexed by @ssid.
253 */
254static bool cgroup_ssid_enabled(int ssid)
255{
256 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
257}
258
223ffb29
JW
259static bool cgroup_ssid_no_v1(int ssid)
260{
261 return cgroup_no_v1_mask & (1 << ssid);
262}
263
9e10a130
TH
264/**
265 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
266 * @cgrp: the cgroup of interest
267 *
268 * The default hierarchy is the v2 interface of cgroup and this function
269 * can be used to test whether a cgroup is on the default hierarchy for
270 * cases where a subsystem should behave differnetly depending on the
271 * interface version.
272 *
273 * The set of behaviors which change on the default hierarchy are still
274 * being determined and the mount option is prefixed with __DEVEL__.
275 *
276 * List of changed behaviors:
277 *
278 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
279 * and "name" are disallowed.
280 *
281 * - When mounting an existing superblock, mount options should match.
282 *
283 * - Remount is disallowed.
284 *
285 * - rename(2) is disallowed.
286 *
287 * - "tasks" is removed. Everything should be at process granularity. Use
288 * "cgroup.procs" instead.
289 *
290 * - "cgroup.procs" is not sorted. pids will be unique unless they got
291 * recycled inbetween reads.
292 *
293 * - "release_agent" and "notify_on_release" are removed. Replacement
294 * notification mechanism will be implemented.
295 *
296 * - "cgroup.clone_children" is removed.
297 *
298 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
299 * and its descendants contain no task; otherwise, 1. The file also
300 * generates kernfs notification which can be monitored through poll and
301 * [di]notify when the value of the file changes.
302 *
303 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
304 * take masks of ancestors with non-empty cpus/mems, instead of being
305 * moved to an ancestor.
306 *
307 * - cpuset: a task can be moved into an empty cpuset, and again it takes
308 * masks of ancestors.
309 *
310 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
311 * is not created.
312 *
313 * - blkcg: blk-throttle becomes properly hierarchical.
314 *
315 * - debug: disallowed on the default hierarchy.
316 */
317static bool cgroup_on_dfl(const struct cgroup *cgrp)
318{
319 return cgrp->root == &cgrp_dfl_root;
320}
321
6fa4918d
TH
322/* IDR wrappers which synchronize using cgroup_idr_lock */
323static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
324 gfp_t gfp_mask)
325{
326 int ret;
327
328 idr_preload(gfp_mask);
54504e97 329 spin_lock_bh(&cgroup_idr_lock);
d0164adc 330 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 331 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
332 idr_preload_end();
333 return ret;
334}
335
336static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
337{
338 void *ret;
339
54504e97 340 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 341 ret = idr_replace(idr, ptr, id);
54504e97 342 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
343 return ret;
344}
345
346static void cgroup_idr_remove(struct idr *idr, int id)
347{
54504e97 348 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 349 idr_remove(idr, id);
54504e97 350 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
351}
352
d51f39b0
TH
353static struct cgroup *cgroup_parent(struct cgroup *cgrp)
354{
355 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
356
357 if (parent_css)
358 return container_of(parent_css, struct cgroup, self);
359 return NULL;
360}
361
95109b62
TH
362/**
363 * cgroup_css - obtain a cgroup's css for the specified subsystem
364 * @cgrp: the cgroup of interest
9d800df1 365 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 366 *
ca8bdcaf
TH
367 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
368 * function must be called either under cgroup_mutex or rcu_read_lock() and
369 * the caller is responsible for pinning the returned css if it wants to
370 * keep accessing it outside the said locks. This function may return
371 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
372 */
373static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 374 struct cgroup_subsys *ss)
95109b62 375{
ca8bdcaf 376 if (ss)
aec25020 377 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 378 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 379 else
9d800df1 380 return &cgrp->self;
95109b62 381}
42809dd4 382
aec3dfcb
TH
383/**
384 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
385 * @cgrp: the cgroup of interest
9d800df1 386 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 387 *
d0f702e6 388 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
389 * as the matching css of the nearest ancestor including self which has @ss
390 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
391 * function is guaranteed to return non-NULL css.
392 */
393static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
394 struct cgroup_subsys *ss)
395{
396 lockdep_assert_held(&cgroup_mutex);
397
398 if (!ss)
9d800df1 399 return &cgrp->self;
aec3dfcb
TH
400
401 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
402 return NULL;
403
eeecbd19
TH
404 /*
405 * This function is used while updating css associations and thus
406 * can't test the csses directly. Use ->child_subsys_mask.
407 */
d51f39b0
TH
408 while (cgroup_parent(cgrp) &&
409 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
410 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
411
412 return cgroup_css(cgrp, ss);
95109b62 413}
42809dd4 414
eeecbd19
TH
415/**
416 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
417 * @cgrp: the cgroup of interest
418 * @ss: the subsystem of interest
419 *
420 * Find and get the effective css of @cgrp for @ss. The effective css is
421 * defined as the matching css of the nearest ancestor including self which
422 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
423 * the root css is returned, so this function always returns a valid css.
424 * The returned css must be put using css_put().
425 */
426struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
427 struct cgroup_subsys *ss)
428{
429 struct cgroup_subsys_state *css;
430
431 rcu_read_lock();
432
433 do {
434 css = cgroup_css(cgrp, ss);
435
436 if (css && css_tryget_online(css))
437 goto out_unlock;
438 cgrp = cgroup_parent(cgrp);
439 } while (cgrp);
440
441 css = init_css_set.subsys[ss->id];
442 css_get(css);
443out_unlock:
444 rcu_read_unlock();
445 return css;
446}
447
ddbcc7e8 448/* convenient tests for these bits */
54766d4a 449static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 450{
184faf32 451 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
452}
453
052c3f3a
TH
454static void cgroup_get(struct cgroup *cgrp)
455{
456 WARN_ON_ONCE(cgroup_is_dead(cgrp));
457 css_get(&cgrp->self);
458}
459
460static bool cgroup_tryget(struct cgroup *cgrp)
461{
462 return css_tryget(&cgrp->self);
463}
464
b4168640 465struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 466{
2bd59d48 467 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 468 struct cftype *cft = of_cft(of);
2bd59d48
TH
469
470 /*
471 * This is open and unprotected implementation of cgroup_css().
472 * seq_css() is only called from a kernfs file operation which has
473 * an active reference on the file. Because all the subsystem
474 * files are drained before a css is disassociated with a cgroup,
475 * the matching css from the cgroup's subsys table is guaranteed to
476 * be and stay valid until the enclosing operation is complete.
477 */
478 if (cft->ss)
479 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
480 else
9d800df1 481 return &cgrp->self;
59f5296b 482}
b4168640 483EXPORT_SYMBOL_GPL(of_css);
59f5296b 484
e9685a03 485static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 486{
bd89aabc 487 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
488}
489
1c6727af
TH
490/**
491 * for_each_css - iterate all css's of a cgroup
492 * @css: the iteration cursor
493 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
494 * @cgrp: the target cgroup to iterate css's of
495 *
aec3dfcb 496 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
497 */
498#define for_each_css(css, ssid, cgrp) \
499 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
500 if (!((css) = rcu_dereference_check( \
501 (cgrp)->subsys[(ssid)], \
502 lockdep_is_held(&cgroup_mutex)))) { } \
503 else
504
aec3dfcb
TH
505/**
506 * for_each_e_css - iterate all effective css's of a cgroup
507 * @css: the iteration cursor
508 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
509 * @cgrp: the target cgroup to iterate css's of
510 *
511 * Should be called under cgroup_[tree_]mutex.
512 */
513#define for_each_e_css(css, ssid, cgrp) \
514 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
515 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
516 ; \
517 else
518
30159ec7 519/**
3ed80a62 520 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 521 * @ss: the iteration cursor
780cd8b3 522 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 523 */
780cd8b3 524#define for_each_subsys(ss, ssid) \
3ed80a62
TH
525 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
526 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 527
cb4a3167
AS
528/**
529 * for_each_subsys_which - filter for_each_subsys with a bitmask
530 * @ss: the iteration cursor
531 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
532 * @ss_maskp: a pointer to the bitmask
533 *
534 * The block will only run for cases where the ssid-th bit (1 << ssid) of
535 * mask is set to 1.
536 */
537#define for_each_subsys_which(ss, ssid, ss_maskp) \
538 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 539 (ssid) = 0; \
cb4a3167
AS
540 else \
541 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
542 if (((ss) = cgroup_subsys[ssid]) && false) \
543 break; \
544 else
545
985ed670
TH
546/* iterate across the hierarchies */
547#define for_each_root(root) \
5549c497 548 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 549
f8f22e53
TH
550/* iterate over child cgrps, lock should be held throughout iteration */
551#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 552 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 553 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
554 cgroup_is_dead(child); })) \
555 ; \
556 else
7ae1bad9 557
81a6a5cd 558static void cgroup_release_agent(struct work_struct *work);
bd89aabc 559static void check_for_release(struct cgroup *cgrp);
81a6a5cd 560
69d0206c
TH
561/*
562 * A cgroup can be associated with multiple css_sets as different tasks may
563 * belong to different cgroups on different hierarchies. In the other
564 * direction, a css_set is naturally associated with multiple cgroups.
565 * This M:N relationship is represented by the following link structure
566 * which exists for each association and allows traversing the associations
567 * from both sides.
568 */
569struct cgrp_cset_link {
570 /* the cgroup and css_set this link associates */
571 struct cgroup *cgrp;
572 struct css_set *cset;
573
574 /* list of cgrp_cset_links anchored at cgrp->cset_links */
575 struct list_head cset_link;
576
577 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
578 struct list_head cgrp_link;
817929ec
PM
579};
580
172a2c06
TH
581/*
582 * The default css_set - used by init and its children prior to any
817929ec
PM
583 * hierarchies being mounted. It contains a pointer to the root state
584 * for each subsystem. Also used to anchor the list of css_sets. Not
585 * reference-counted, to improve performance when child cgroups
586 * haven't been created.
587 */
5024ae29 588struct css_set init_css_set = {
172a2c06
TH
589 .refcount = ATOMIC_INIT(1),
590 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
591 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
592 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
593 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
594 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 595 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 596};
817929ec 597
172a2c06 598static int css_set_count = 1; /* 1 for init_css_set */
817929ec 599
0de0942d
TH
600/**
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
603 */
604static bool css_set_populated(struct css_set *cset)
605{
f0d9a5f1 606 lockdep_assert_held(&css_set_lock);
0de0942d
TH
607
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
609}
610
842b597e
TH
611/**
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
615 *
0de0942d
TH
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
620 *
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
626 */
627static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
628{
f0d9a5f1 629 lockdep_assert_held(&css_set_lock);
842b597e
TH
630
631 do {
632 bool trigger;
633
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
638
639 if (!trigger)
640 break;
641
ad2ed2b3 642 check_for_release(cgrp);
6f60eade
TH
643 cgroup_file_notify(&cgrp->events_file);
644
d51f39b0 645 cgrp = cgroup_parent(cgrp);
842b597e
TH
646 } while (cgrp);
647}
648
0de0942d
TH
649/**
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
653 *
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
656 */
657static void css_set_update_populated(struct css_set *cset, bool populated)
658{
659 struct cgrp_cset_link *link;
660
f0d9a5f1 661 lockdep_assert_held(&css_set_lock);
0de0942d
TH
662
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
665}
666
f6d7d049
TH
667/**
668 * css_set_move_task - move a task from one css_set to another
669 * @task: task being moved
670 * @from_cset: css_set @task currently belongs to (may be NULL)
671 * @to_cset: new css_set @task is being moved to (may be NULL)
672 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
673 *
674 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
675 * css_set, @from_cset can be NULL. If @task is being disassociated
676 * instead of moved, @to_cset can be NULL.
677 *
ed27b9f7
TH
678 * This function automatically handles populated_cnt updates and
679 * css_task_iter adjustments but the caller is responsible for managing
680 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
681 */
682static void css_set_move_task(struct task_struct *task,
683 struct css_set *from_cset, struct css_set *to_cset,
684 bool use_mg_tasks)
685{
f0d9a5f1 686 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
687
688 if (from_cset) {
ed27b9f7
TH
689 struct css_task_iter *it, *pos;
690
f6d7d049 691 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
692
693 /*
694 * @task is leaving, advance task iterators which are
695 * pointing to it so that they can resume at the next
696 * position. Advancing an iterator might remove it from
697 * the list, use safe walk. See css_task_iter_advance*()
698 * for details.
699 */
700 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
701 iters_node)
702 if (it->task_pos == &task->cg_list)
703 css_task_iter_advance(it);
704
f6d7d049
TH
705 list_del_init(&task->cg_list);
706 if (!css_set_populated(from_cset))
707 css_set_update_populated(from_cset, false);
708 } else {
709 WARN_ON_ONCE(!list_empty(&task->cg_list));
710 }
711
712 if (to_cset) {
713 /*
714 * We are synchronized through cgroup_threadgroup_rwsem
715 * against PF_EXITING setting such that we can't race
716 * against cgroup_exit() changing the css_set to
717 * init_css_set and dropping the old one.
718 */
719 WARN_ON_ONCE(task->flags & PF_EXITING);
720
721 if (!css_set_populated(to_cset))
722 css_set_update_populated(to_cset, true);
723 rcu_assign_pointer(task->cgroups, to_cset);
724 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
725 &to_cset->tasks);
726 }
727}
728
7717f7ba
PM
729/*
730 * hash table for cgroup groups. This improves the performance to find
731 * an existing css_set. This hash doesn't (currently) take into
732 * account cgroups in empty hierarchies.
733 */
472b1053 734#define CSS_SET_HASH_BITS 7
0ac801fe 735static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 736
0ac801fe 737static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 738{
0ac801fe 739 unsigned long key = 0UL;
30159ec7
TH
740 struct cgroup_subsys *ss;
741 int i;
472b1053 742
30159ec7 743 for_each_subsys(ss, i)
0ac801fe
LZ
744 key += (unsigned long)css[i];
745 key = (key >> 16) ^ key;
472b1053 746
0ac801fe 747 return key;
472b1053
LZ
748}
749
a25eb52e 750static void put_css_set_locked(struct css_set *cset)
b4f48b63 751{
69d0206c 752 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
753 struct cgroup_subsys *ss;
754 int ssid;
5abb8855 755
f0d9a5f1 756 lockdep_assert_held(&css_set_lock);
89c5509b
TH
757
758 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 759 return;
81a6a5cd 760
53254f90
TH
761 /* This css_set is dead. unlink it and release cgroup and css refs */
762 for_each_subsys(ss, ssid) {
2d8f243a 763 list_del(&cset->e_cset_node[ssid]);
53254f90
TH
764 css_put(cset->subsys[ssid]);
765 }
5abb8855 766 hash_del(&cset->hlist);
2c6ab6d2
PM
767 css_set_count--;
768
69d0206c 769 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
770 list_del(&link->cset_link);
771 list_del(&link->cgrp_link);
2ceb231b
TH
772 if (cgroup_parent(link->cgrp))
773 cgroup_put(link->cgrp);
2c6ab6d2 774 kfree(link);
81a6a5cd 775 }
2c6ab6d2 776
5abb8855 777 kfree_rcu(cset, rcu_head);
b4f48b63
PM
778}
779
a25eb52e 780static void put_css_set(struct css_set *cset)
89c5509b
TH
781{
782 /*
783 * Ensure that the refcount doesn't hit zero while any readers
784 * can see it. Similar to atomic_dec_and_lock(), but for an
785 * rwlock
786 */
787 if (atomic_add_unless(&cset->refcount, -1, 1))
788 return;
789
f0d9a5f1 790 spin_lock_bh(&css_set_lock);
a25eb52e 791 put_css_set_locked(cset);
f0d9a5f1 792 spin_unlock_bh(&css_set_lock);
89c5509b
TH
793}
794
817929ec
PM
795/*
796 * refcounted get/put for css_set objects
797 */
5abb8855 798static inline void get_css_set(struct css_set *cset)
817929ec 799{
5abb8855 800 atomic_inc(&cset->refcount);
817929ec
PM
801}
802
b326f9d0 803/**
7717f7ba 804 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
805 * @cset: candidate css_set being tested
806 * @old_cset: existing css_set for a task
7717f7ba
PM
807 * @new_cgrp: cgroup that's being entered by the task
808 * @template: desired set of css pointers in css_set (pre-calculated)
809 *
6f4b7e63 810 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
811 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
812 */
5abb8855
TH
813static bool compare_css_sets(struct css_set *cset,
814 struct css_set *old_cset,
7717f7ba
PM
815 struct cgroup *new_cgrp,
816 struct cgroup_subsys_state *template[])
817{
818 struct list_head *l1, *l2;
819
aec3dfcb
TH
820 /*
821 * On the default hierarchy, there can be csets which are
822 * associated with the same set of cgroups but different csses.
823 * Let's first ensure that csses match.
824 */
825 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 826 return false;
7717f7ba
PM
827
828 /*
829 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
830 * different cgroups in hierarchies. As different cgroups may
831 * share the same effective css, this comparison is always
832 * necessary.
7717f7ba 833 */
69d0206c
TH
834 l1 = &cset->cgrp_links;
835 l2 = &old_cset->cgrp_links;
7717f7ba 836 while (1) {
69d0206c 837 struct cgrp_cset_link *link1, *link2;
5abb8855 838 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
839
840 l1 = l1->next;
841 l2 = l2->next;
842 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
843 if (l1 == &cset->cgrp_links) {
844 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
845 break;
846 } else {
69d0206c 847 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
848 }
849 /* Locate the cgroups associated with these links. */
69d0206c
TH
850 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
851 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
852 cgrp1 = link1->cgrp;
853 cgrp2 = link2->cgrp;
7717f7ba 854 /* Hierarchies should be linked in the same order. */
5abb8855 855 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
856
857 /*
858 * If this hierarchy is the hierarchy of the cgroup
859 * that's changing, then we need to check that this
860 * css_set points to the new cgroup; if it's any other
861 * hierarchy, then this css_set should point to the
862 * same cgroup as the old css_set.
863 */
5abb8855
TH
864 if (cgrp1->root == new_cgrp->root) {
865 if (cgrp1 != new_cgrp)
7717f7ba
PM
866 return false;
867 } else {
5abb8855 868 if (cgrp1 != cgrp2)
7717f7ba
PM
869 return false;
870 }
871 }
872 return true;
873}
874
b326f9d0
TH
875/**
876 * find_existing_css_set - init css array and find the matching css_set
877 * @old_cset: the css_set that we're using before the cgroup transition
878 * @cgrp: the cgroup that we're moving into
879 * @template: out param for the new set of csses, should be clear on entry
817929ec 880 */
5abb8855
TH
881static struct css_set *find_existing_css_set(struct css_set *old_cset,
882 struct cgroup *cgrp,
883 struct cgroup_subsys_state *template[])
b4f48b63 884{
3dd06ffa 885 struct cgroup_root *root = cgrp->root;
30159ec7 886 struct cgroup_subsys *ss;
5abb8855 887 struct css_set *cset;
0ac801fe 888 unsigned long key;
b326f9d0 889 int i;
817929ec 890
aae8aab4
BB
891 /*
892 * Build the set of subsystem state objects that we want to see in the
893 * new css_set. while subsystems can change globally, the entries here
894 * won't change, so no need for locking.
895 */
30159ec7 896 for_each_subsys(ss, i) {
f392e51c 897 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
898 /*
899 * @ss is in this hierarchy, so we want the
900 * effective css from @cgrp.
901 */
902 template[i] = cgroup_e_css(cgrp, ss);
817929ec 903 } else {
aec3dfcb
TH
904 /*
905 * @ss is not in this hierarchy, so we don't want
906 * to change the css.
907 */
5abb8855 908 template[i] = old_cset->subsys[i];
817929ec
PM
909 }
910 }
911
0ac801fe 912 key = css_set_hash(template);
5abb8855
TH
913 hash_for_each_possible(css_set_table, cset, hlist, key) {
914 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
915 continue;
916
917 /* This css_set matches what we need */
5abb8855 918 return cset;
472b1053 919 }
817929ec
PM
920
921 /* No existing cgroup group matched */
922 return NULL;
923}
924
69d0206c 925static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 926{
69d0206c 927 struct cgrp_cset_link *link, *tmp_link;
36553434 928
69d0206c
TH
929 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
930 list_del(&link->cset_link);
36553434
LZ
931 kfree(link);
932 }
933}
934
69d0206c
TH
935/**
936 * allocate_cgrp_cset_links - allocate cgrp_cset_links
937 * @count: the number of links to allocate
938 * @tmp_links: list_head the allocated links are put on
939 *
940 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
941 * through ->cset_link. Returns 0 on success or -errno.
817929ec 942 */
69d0206c 943static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 944{
69d0206c 945 struct cgrp_cset_link *link;
817929ec 946 int i;
69d0206c
TH
947
948 INIT_LIST_HEAD(tmp_links);
949
817929ec 950 for (i = 0; i < count; i++) {
f4f4be2b 951 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 952 if (!link) {
69d0206c 953 free_cgrp_cset_links(tmp_links);
817929ec
PM
954 return -ENOMEM;
955 }
69d0206c 956 list_add(&link->cset_link, tmp_links);
817929ec
PM
957 }
958 return 0;
959}
960
c12f65d4
LZ
961/**
962 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 963 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 964 * @cset: the css_set to be linked
c12f65d4
LZ
965 * @cgrp: the destination cgroup
966 */
69d0206c
TH
967static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
968 struct cgroup *cgrp)
c12f65d4 969{
69d0206c 970 struct cgrp_cset_link *link;
c12f65d4 971
69d0206c 972 BUG_ON(list_empty(tmp_links));
6803c006
TH
973
974 if (cgroup_on_dfl(cgrp))
975 cset->dfl_cgrp = cgrp;
976
69d0206c
TH
977 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
978 link->cset = cset;
7717f7ba 979 link->cgrp = cgrp;
842b597e 980
7717f7ba 981 /*
389b9c1b
TH
982 * Always add links to the tail of the lists so that the lists are
983 * in choronological order.
7717f7ba 984 */
389b9c1b 985 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 986 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
987
988 if (cgroup_parent(cgrp))
989 cgroup_get(cgrp);
c12f65d4
LZ
990}
991
b326f9d0
TH
992/**
993 * find_css_set - return a new css_set with one cgroup updated
994 * @old_cset: the baseline css_set
995 * @cgrp: the cgroup to be updated
996 *
997 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
998 * substituted into the appropriate hierarchy.
817929ec 999 */
5abb8855
TH
1000static struct css_set *find_css_set(struct css_set *old_cset,
1001 struct cgroup *cgrp)
817929ec 1002{
b326f9d0 1003 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 1004 struct css_set *cset;
69d0206c
TH
1005 struct list_head tmp_links;
1006 struct cgrp_cset_link *link;
2d8f243a 1007 struct cgroup_subsys *ss;
0ac801fe 1008 unsigned long key;
2d8f243a 1009 int ssid;
472b1053 1010
b326f9d0
TH
1011 lockdep_assert_held(&cgroup_mutex);
1012
817929ec
PM
1013 /* First see if we already have a cgroup group that matches
1014 * the desired set */
f0d9a5f1 1015 spin_lock_bh(&css_set_lock);
5abb8855
TH
1016 cset = find_existing_css_set(old_cset, cgrp, template);
1017 if (cset)
1018 get_css_set(cset);
f0d9a5f1 1019 spin_unlock_bh(&css_set_lock);
817929ec 1020
5abb8855
TH
1021 if (cset)
1022 return cset;
817929ec 1023
f4f4be2b 1024 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1025 if (!cset)
817929ec
PM
1026 return NULL;
1027
69d0206c 1028 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1029 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1030 kfree(cset);
817929ec
PM
1031 return NULL;
1032 }
1033
5abb8855 1034 atomic_set(&cset->refcount, 1);
69d0206c 1035 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1036 INIT_LIST_HEAD(&cset->tasks);
c7561128 1037 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1038 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1039 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1040 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1041 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1042
1043 /* Copy the set of subsystem state objects generated in
1044 * find_existing_css_set() */
5abb8855 1045 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1046
f0d9a5f1 1047 spin_lock_bh(&css_set_lock);
817929ec 1048 /* Add reference counts and links from the new css_set. */
69d0206c 1049 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1050 struct cgroup *c = link->cgrp;
69d0206c 1051
7717f7ba
PM
1052 if (c->root == cgrp->root)
1053 c = cgrp;
69d0206c 1054 link_css_set(&tmp_links, cset, c);
7717f7ba 1055 }
817929ec 1056
69d0206c 1057 BUG_ON(!list_empty(&tmp_links));
817929ec 1058
817929ec 1059 css_set_count++;
472b1053 1060
2d8f243a 1061 /* Add @cset to the hash table */
5abb8855
TH
1062 key = css_set_hash(cset->subsys);
1063 hash_add(css_set_table, &cset->hlist, key);
472b1053 1064
53254f90
TH
1065 for_each_subsys(ss, ssid) {
1066 struct cgroup_subsys_state *css = cset->subsys[ssid];
1067
2d8f243a 1068 list_add_tail(&cset->e_cset_node[ssid],
53254f90
TH
1069 &css->cgroup->e_csets[ssid]);
1070 css_get(css);
1071 }
2d8f243a 1072
f0d9a5f1 1073 spin_unlock_bh(&css_set_lock);
817929ec 1074
5abb8855 1075 return cset;
b4f48b63
PM
1076}
1077
3dd06ffa 1078static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1079{
3dd06ffa 1080 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1081
3dd06ffa 1082 return root_cgrp->root;
2bd59d48
TH
1083}
1084
3dd06ffa 1085static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1086{
1087 int id;
1088
1089 lockdep_assert_held(&cgroup_mutex);
1090
985ed670 1091 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1092 if (id < 0)
1093 return id;
1094
1095 root->hierarchy_id = id;
1096 return 0;
1097}
1098
3dd06ffa 1099static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1100{
1101 lockdep_assert_held(&cgroup_mutex);
1102
1103 if (root->hierarchy_id) {
1104 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1105 root->hierarchy_id = 0;
1106 }
1107}
1108
3dd06ffa 1109static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1110{
1111 if (root) {
d0f702e6 1112 /* hierarchy ID should already have been released */
f2e85d57
TH
1113 WARN_ON_ONCE(root->hierarchy_id);
1114
1115 idr_destroy(&root->cgroup_idr);
1116 kfree(root);
1117 }
1118}
1119
3dd06ffa 1120static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1121{
3dd06ffa 1122 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1123 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1124
2bd59d48 1125 mutex_lock(&cgroup_mutex);
f2e85d57 1126
776f02fa 1127 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1128 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1129
f2e85d57 1130 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1131 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1132
7717f7ba 1133 /*
f2e85d57
TH
1134 * Release all the links from cset_links to this hierarchy's
1135 * root cgroup
7717f7ba 1136 */
f0d9a5f1 1137 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1138
1139 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1140 list_del(&link->cset_link);
1141 list_del(&link->cgrp_link);
1142 kfree(link);
1143 }
f0d9a5f1
TH
1144
1145 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1146
1147 if (!list_empty(&root->root_list)) {
1148 list_del(&root->root_list);
1149 cgroup_root_count--;
1150 }
1151
1152 cgroup_exit_root_id(root);
1153
1154 mutex_unlock(&cgroup_mutex);
f2e85d57 1155
2bd59d48 1156 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1157 cgroup_free_root(root);
1158}
1159
ceb6a081
TH
1160/* look up cgroup associated with given css_set on the specified hierarchy */
1161static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1162 struct cgroup_root *root)
7717f7ba 1163{
7717f7ba
PM
1164 struct cgroup *res = NULL;
1165
96d365e0 1166 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1167 lockdep_assert_held(&css_set_lock);
96d365e0 1168
5abb8855 1169 if (cset == &init_css_set) {
3dd06ffa 1170 res = &root->cgrp;
7717f7ba 1171 } else {
69d0206c
TH
1172 struct cgrp_cset_link *link;
1173
1174 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1175 struct cgroup *c = link->cgrp;
69d0206c 1176
7717f7ba
PM
1177 if (c->root == root) {
1178 res = c;
1179 break;
1180 }
1181 }
1182 }
96d365e0 1183
7717f7ba
PM
1184 BUG_ON(!res);
1185 return res;
1186}
1187
ddbcc7e8 1188/*
ceb6a081 1189 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1190 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1191 */
1192static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1193 struct cgroup_root *root)
ceb6a081
TH
1194{
1195 /*
1196 * No need to lock the task - since we hold cgroup_mutex the
1197 * task can't change groups, so the only thing that can happen
1198 * is that it exits and its css is set back to init_css_set.
1199 */
1200 return cset_cgroup_from_root(task_css_set(task), root);
1201}
1202
ddbcc7e8 1203/*
ddbcc7e8
PM
1204 * A task must hold cgroup_mutex to modify cgroups.
1205 *
1206 * Any task can increment and decrement the count field without lock.
1207 * So in general, code holding cgroup_mutex can't rely on the count
1208 * field not changing. However, if the count goes to zero, then only
956db3ca 1209 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1210 * means that no tasks are currently attached, therefore there is no
1211 * way a task attached to that cgroup can fork (the other way to
1212 * increment the count). So code holding cgroup_mutex can safely
1213 * assume that if the count is zero, it will stay zero. Similarly, if
1214 * a task holds cgroup_mutex on a cgroup with zero count, it
1215 * knows that the cgroup won't be removed, as cgroup_rmdir()
1216 * needs that mutex.
1217 *
ddbcc7e8
PM
1218 * A cgroup can only be deleted if both its 'count' of using tasks
1219 * is zero, and its list of 'children' cgroups is empty. Since all
1220 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1221 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1222 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1223 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1224 *
1225 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1226 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1227 */
1228
2bd59d48 1229static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1230static const struct file_operations proc_cgroupstats_operations;
a424316c 1231
8d7e6fb0
TH
1232static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1233 char *buf)
ddbcc7e8 1234{
3e1d2eed
TH
1235 struct cgroup_subsys *ss = cft->ss;
1236
8d7e6fb0
TH
1237 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1238 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1239 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1240 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1241 cft->name);
8d7e6fb0
TH
1242 else
1243 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1244 return buf;
ddbcc7e8
PM
1245}
1246
f2e85d57
TH
1247/**
1248 * cgroup_file_mode - deduce file mode of a control file
1249 * @cft: the control file in question
1250 *
7dbdb199 1251 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1252 */
1253static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1254{
f2e85d57 1255 umode_t mode = 0;
65dff759 1256
f2e85d57
TH
1257 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1258 mode |= S_IRUGO;
1259
7dbdb199
TH
1260 if (cft->write_u64 || cft->write_s64 || cft->write) {
1261 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1262 mode |= S_IWUGO;
1263 else
1264 mode |= S_IWUSR;
1265 }
f2e85d57
TH
1266
1267 return mode;
65dff759
LZ
1268}
1269
af0ba678 1270/**
0f060deb 1271 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1272 * @cgrp: the target cgroup
0f060deb 1273 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1274 *
1275 * On the default hierarchy, a subsystem may request other subsystems to be
1276 * enabled together through its ->depends_on mask. In such cases, more
1277 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1278 *
0f060deb
TH
1279 * This function calculates which subsystems need to be enabled if
1280 * @subtree_control is to be applied to @cgrp. The returned mask is always
1281 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1282 */
8ab456ac
AS
1283static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1284 unsigned long subtree_control)
667c2491 1285{
af0ba678 1286 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1287 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1288 struct cgroup_subsys *ss;
1289 int ssid;
1290
1291 lockdep_assert_held(&cgroup_mutex);
1292
0f060deb
TH
1293 if (!cgroup_on_dfl(cgrp))
1294 return cur_ss_mask;
af0ba678
TH
1295
1296 while (true) {
8ab456ac 1297 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1298
a966a4ed
AS
1299 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1300 new_ss_mask |= ss->depends_on;
af0ba678
TH
1301
1302 /*
1303 * Mask out subsystems which aren't available. This can
1304 * happen only if some depended-upon subsystems were bound
1305 * to non-default hierarchies.
1306 */
1307 if (parent)
1308 new_ss_mask &= parent->child_subsys_mask;
1309 else
1310 new_ss_mask &= cgrp->root->subsys_mask;
1311
1312 if (new_ss_mask == cur_ss_mask)
1313 break;
1314 cur_ss_mask = new_ss_mask;
1315 }
1316
0f060deb
TH
1317 return cur_ss_mask;
1318}
1319
1320/**
1321 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1322 * @cgrp: the target cgroup
1323 *
1324 * Update @cgrp->child_subsys_mask according to the current
1325 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1326 */
1327static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1328{
1329 cgrp->child_subsys_mask =
1330 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1331}
1332
a9746d8d
TH
1333/**
1334 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1335 * @kn: the kernfs_node being serviced
1336 *
1337 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1338 * the method finishes if locking succeeded. Note that once this function
1339 * returns the cgroup returned by cgroup_kn_lock_live() may become
1340 * inaccessible any time. If the caller intends to continue to access the
1341 * cgroup, it should pin it before invoking this function.
1342 */
1343static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1344{
a9746d8d
TH
1345 struct cgroup *cgrp;
1346
1347 if (kernfs_type(kn) == KERNFS_DIR)
1348 cgrp = kn->priv;
1349 else
1350 cgrp = kn->parent->priv;
1351
1352 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1353
1354 kernfs_unbreak_active_protection(kn);
1355 cgroup_put(cgrp);
ddbcc7e8
PM
1356}
1357
a9746d8d
TH
1358/**
1359 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1360 * @kn: the kernfs_node being serviced
1361 *
1362 * This helper is to be used by a cgroup kernfs method currently servicing
1363 * @kn. It breaks the active protection, performs cgroup locking and
1364 * verifies that the associated cgroup is alive. Returns the cgroup if
1365 * alive; otherwise, %NULL. A successful return should be undone by a
1366 * matching cgroup_kn_unlock() invocation.
1367 *
1368 * Any cgroup kernfs method implementation which requires locking the
1369 * associated cgroup should use this helper. It avoids nesting cgroup
1370 * locking under kernfs active protection and allows all kernfs operations
1371 * including self-removal.
1372 */
1373static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1374{
a9746d8d
TH
1375 struct cgroup *cgrp;
1376
1377 if (kernfs_type(kn) == KERNFS_DIR)
1378 cgrp = kn->priv;
1379 else
1380 cgrp = kn->parent->priv;
05ef1d7c 1381
2739d3cc 1382 /*
01f6474c 1383 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1384 * active_ref. cgroup liveliness check alone provides enough
1385 * protection against removal. Ensure @cgrp stays accessible and
1386 * break the active_ref protection.
2739d3cc 1387 */
aa32362f
LZ
1388 if (!cgroup_tryget(cgrp))
1389 return NULL;
a9746d8d
TH
1390 kernfs_break_active_protection(kn);
1391
2bd59d48 1392 mutex_lock(&cgroup_mutex);
05ef1d7c 1393
a9746d8d
TH
1394 if (!cgroup_is_dead(cgrp))
1395 return cgrp;
1396
1397 cgroup_kn_unlock(kn);
1398 return NULL;
ddbcc7e8 1399}
05ef1d7c 1400
2739d3cc 1401static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1402{
2bd59d48 1403 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1404
01f6474c 1405 lockdep_assert_held(&cgroup_mutex);
34c06254
TH
1406
1407 if (cft->file_offset) {
1408 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1409 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1410
1411 spin_lock_irq(&cgroup_file_kn_lock);
1412 cfile->kn = NULL;
1413 spin_unlock_irq(&cgroup_file_kn_lock);
1414 }
1415
2bd59d48 1416 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1417}
1418
13af07df 1419/**
4df8dc90
TH
1420 * css_clear_dir - remove subsys files in a cgroup directory
1421 * @css: taget css
1422 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1423 */
4df8dc90
TH
1424static void css_clear_dir(struct cgroup_subsys_state *css,
1425 struct cgroup *cgrp_override)
05ef1d7c 1426{
4df8dc90
TH
1427 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1428 struct cftype *cfts;
05ef1d7c 1429
4df8dc90
TH
1430 list_for_each_entry(cfts, &css->ss->cfts, node)
1431 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1432}
1433
ccdca218 1434/**
4df8dc90
TH
1435 * css_populate_dir - create subsys files in a cgroup directory
1436 * @css: target css
1437 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1438 *
1439 * On failure, no file is added.
1440 */
4df8dc90
TH
1441static int css_populate_dir(struct cgroup_subsys_state *css,
1442 struct cgroup *cgrp_override)
ccdca218 1443{
4df8dc90
TH
1444 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1445 struct cftype *cfts, *failed_cfts;
1446 int ret;
ccdca218 1447
4df8dc90
TH
1448 if (!css->ss) {
1449 if (cgroup_on_dfl(cgrp))
1450 cfts = cgroup_dfl_base_files;
1451 else
1452 cfts = cgroup_legacy_base_files;
ccdca218 1453
4df8dc90
TH
1454 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1455 }
ccdca218 1456
4df8dc90
TH
1457 list_for_each_entry(cfts, &css->ss->cfts, node) {
1458 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1459 if (ret < 0) {
1460 failed_cfts = cfts;
1461 goto err;
ccdca218
TH
1462 }
1463 }
1464 return 0;
1465err:
4df8dc90
TH
1466 list_for_each_entry(cfts, &css->ss->cfts, node) {
1467 if (cfts == failed_cfts)
1468 break;
1469 cgroup_addrm_files(css, cgrp, cfts, false);
1470 }
ccdca218
TH
1471 return ret;
1472}
1473
8ab456ac
AS
1474static int rebind_subsystems(struct cgroup_root *dst_root,
1475 unsigned long ss_mask)
ddbcc7e8 1476{
1ada4838 1477 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1478 struct cgroup_subsys *ss;
8ab456ac 1479 unsigned long tmp_ss_mask;
2d8f243a 1480 int ssid, i, ret;
ddbcc7e8 1481
ace2bee8 1482 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1483
a966a4ed 1484 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1485 /* if @ss has non-root csses attached to it, can't move */
1486 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1487 return -EBUSY;
1d5be6b2 1488
5df36032 1489 /* can't move between two non-dummy roots either */
7fd8c565 1490 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1491 return -EBUSY;
ddbcc7e8
PM
1492 }
1493
5533e011
TH
1494 /* skip creating root files on dfl_root for inhibited subsystems */
1495 tmp_ss_mask = ss_mask;
1496 if (dst_root == &cgrp_dfl_root)
1497 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1498
4df8dc90
TH
1499 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1500 struct cgroup *scgrp = &ss->root->cgrp;
1501 int tssid;
1502
1503 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1504 if (!ret)
1505 continue;
ddbcc7e8 1506
a2dd4247
TH
1507 /*
1508 * Rebinding back to the default root is not allowed to
1509 * fail. Using both default and non-default roots should
1510 * be rare. Moving subsystems back and forth even more so.
1511 * Just warn about it and continue.
1512 */
4df8dc90
TH
1513 if (dst_root == &cgrp_dfl_root) {
1514 if (cgrp_dfl_root_visible) {
1515 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1516 ret, ss_mask);
1517 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1518 }
1519 continue;
a2dd4247 1520 }
4df8dc90
TH
1521
1522 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1523 if (tssid == ssid)
1524 break;
1525 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1526 }
1527 return ret;
5df36032 1528 }
3126121f
TH
1529
1530 /*
1531 * Nothing can fail from this point on. Remove files for the
1532 * removed subsystems and rebind each subsystem.
1533 */
a966a4ed 1534 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1535 struct cgroup_root *src_root = ss->root;
1536 struct cgroup *scgrp = &src_root->cgrp;
1537 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1538 struct css_set *cset;
a8a648c4 1539
1ada4838 1540 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1541
4df8dc90
TH
1542 css_clear_dir(css, NULL);
1543
1ada4838
TH
1544 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1545 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1546 ss->root = dst_root;
1ada4838 1547 css->cgroup = dcgrp;
73e80ed8 1548
f0d9a5f1 1549 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1550 hash_for_each(css_set_table, i, cset, hlist)
1551 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1552 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1553 spin_unlock_bh(&css_set_lock);
2d8f243a 1554
f392e51c 1555 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1556 scgrp->subtree_control &= ~(1 << ssid);
1557 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1558
bd53d617 1559 /* default hierarchy doesn't enable controllers by default */
f392e51c 1560 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1561 if (dst_root == &cgrp_dfl_root) {
1562 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1563 } else {
1ada4838
TH
1564 dcgrp->subtree_control |= 1 << ssid;
1565 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1566 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1567 }
a8a648c4 1568
5df36032
TH
1569 if (ss->bind)
1570 ss->bind(css);
ddbcc7e8 1571 }
ddbcc7e8 1572
1ada4838 1573 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1574 return 0;
1575}
1576
2bd59d48
TH
1577static int cgroup_show_options(struct seq_file *seq,
1578 struct kernfs_root *kf_root)
ddbcc7e8 1579{
3dd06ffa 1580 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1581 struct cgroup_subsys *ss;
b85d2040 1582 int ssid;
ddbcc7e8 1583
d98817d4
TH
1584 if (root != &cgrp_dfl_root)
1585 for_each_subsys(ss, ssid)
1586 if (root->subsys_mask & (1 << ssid))
61e57c0c 1587 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1588 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1589 seq_puts(seq, ",noprefix");
93438629 1590 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1591 seq_puts(seq, ",xattr");
69e943b7
TH
1592
1593 spin_lock(&release_agent_path_lock);
81a6a5cd 1594 if (strlen(root->release_agent_path))
a068acf2
KC
1595 seq_show_option(seq, "release_agent",
1596 root->release_agent_path);
69e943b7
TH
1597 spin_unlock(&release_agent_path_lock);
1598
3dd06ffa 1599 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1600 seq_puts(seq, ",clone_children");
c6d57f33 1601 if (strlen(root->name))
a068acf2 1602 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1603 return 0;
1604}
1605
1606struct cgroup_sb_opts {
8ab456ac 1607 unsigned long subsys_mask;
69dfa00c 1608 unsigned int flags;
81a6a5cd 1609 char *release_agent;
2260e7fc 1610 bool cpuset_clone_children;
c6d57f33 1611 char *name;
2c6ab6d2
PM
1612 /* User explicitly requested empty subsystem */
1613 bool none;
ddbcc7e8
PM
1614};
1615
cf5d5941 1616static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1617{
32a8cf23
DL
1618 char *token, *o = data;
1619 bool all_ss = false, one_ss = false;
8ab456ac 1620 unsigned long mask = -1UL;
30159ec7 1621 struct cgroup_subsys *ss;
7b9a6ba5 1622 int nr_opts = 0;
30159ec7 1623 int i;
f9ab5b5b
LZ
1624
1625#ifdef CONFIG_CPUSETS
69dfa00c 1626 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1627#endif
ddbcc7e8 1628
c6d57f33 1629 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1630
1631 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1632 nr_opts++;
1633
ddbcc7e8
PM
1634 if (!*token)
1635 return -EINVAL;
32a8cf23 1636 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1637 /* Explicitly have no subsystems */
1638 opts->none = true;
32a8cf23
DL
1639 continue;
1640 }
1641 if (!strcmp(token, "all")) {
1642 /* Mutually exclusive option 'all' + subsystem name */
1643 if (one_ss)
1644 return -EINVAL;
1645 all_ss = true;
1646 continue;
1647 }
1648 if (!strcmp(token, "noprefix")) {
93438629 1649 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1650 continue;
1651 }
1652 if (!strcmp(token, "clone_children")) {
2260e7fc 1653 opts->cpuset_clone_children = true;
32a8cf23
DL
1654 continue;
1655 }
03b1cde6 1656 if (!strcmp(token, "xattr")) {
93438629 1657 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1658 continue;
1659 }
32a8cf23 1660 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1661 /* Specifying two release agents is forbidden */
1662 if (opts->release_agent)
1663 return -EINVAL;
c6d57f33 1664 opts->release_agent =
e400c285 1665 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1666 if (!opts->release_agent)
1667 return -ENOMEM;
32a8cf23
DL
1668 continue;
1669 }
1670 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1671 const char *name = token + 5;
1672 /* Can't specify an empty name */
1673 if (!strlen(name))
1674 return -EINVAL;
1675 /* Must match [\w.-]+ */
1676 for (i = 0; i < strlen(name); i++) {
1677 char c = name[i];
1678 if (isalnum(c))
1679 continue;
1680 if ((c == '.') || (c == '-') || (c == '_'))
1681 continue;
1682 return -EINVAL;
1683 }
1684 /* Specifying two names is forbidden */
1685 if (opts->name)
1686 return -EINVAL;
1687 opts->name = kstrndup(name,
e400c285 1688 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1689 GFP_KERNEL);
1690 if (!opts->name)
1691 return -ENOMEM;
32a8cf23
DL
1692
1693 continue;
1694 }
1695
30159ec7 1696 for_each_subsys(ss, i) {
3e1d2eed 1697 if (strcmp(token, ss->legacy_name))
32a8cf23 1698 continue;
fc5ed1e9 1699 if (!cgroup_ssid_enabled(i))
32a8cf23 1700 continue;
223ffb29
JW
1701 if (cgroup_ssid_no_v1(i))
1702 continue;
32a8cf23
DL
1703
1704 /* Mutually exclusive option 'all' + subsystem name */
1705 if (all_ss)
1706 return -EINVAL;
69dfa00c 1707 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1708 one_ss = true;
1709
1710 break;
1711 }
1712 if (i == CGROUP_SUBSYS_COUNT)
1713 return -ENOENT;
1714 }
1715
7b9a6ba5
TH
1716 /*
1717 * If the 'all' option was specified select all the subsystems,
1718 * otherwise if 'none', 'name=' and a subsystem name options were
1719 * not specified, let's default to 'all'
1720 */
1721 if (all_ss || (!one_ss && !opts->none && !opts->name))
1722 for_each_subsys(ss, i)
223ffb29 1723 if (cgroup_ssid_enabled(i) && !cgroup_ssid_no_v1(i))
7b9a6ba5
TH
1724 opts->subsys_mask |= (1 << i);
1725
1726 /*
1727 * We either have to specify by name or by subsystems. (So all
1728 * empty hierarchies must have a name).
1729 */
1730 if (!opts->subsys_mask && !opts->name)
1731 return -EINVAL;
1732
f9ab5b5b
LZ
1733 /*
1734 * Option noprefix was introduced just for backward compatibility
1735 * with the old cpuset, so we allow noprefix only if mounting just
1736 * the cpuset subsystem.
1737 */
93438629 1738 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1739 return -EINVAL;
1740
2c6ab6d2 1741 /* Can't specify "none" and some subsystems */
a1a71b45 1742 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1743 return -EINVAL;
1744
ddbcc7e8
PM
1745 return 0;
1746}
1747
2bd59d48 1748static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1749{
1750 int ret = 0;
3dd06ffa 1751 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1752 struct cgroup_sb_opts opts;
8ab456ac 1753 unsigned long added_mask, removed_mask;
ddbcc7e8 1754
aa6ec29b
TH
1755 if (root == &cgrp_dfl_root) {
1756 pr_err("remount is not allowed\n");
873fe09e
TH
1757 return -EINVAL;
1758 }
1759
ddbcc7e8
PM
1760 mutex_lock(&cgroup_mutex);
1761
1762 /* See what subsystems are wanted */
1763 ret = parse_cgroupfs_options(data, &opts);
1764 if (ret)
1765 goto out_unlock;
1766
f392e51c 1767 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1768 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1769 task_tgid_nr(current), current->comm);
8b5a5a9d 1770
f392e51c
TH
1771 added_mask = opts.subsys_mask & ~root->subsys_mask;
1772 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1773
cf5d5941 1774 /* Don't allow flags or name to change at remount */
7450e90b 1775 if ((opts.flags ^ root->flags) ||
cf5d5941 1776 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1777 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1778 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1779 ret = -EINVAL;
1780 goto out_unlock;
1781 }
1782
f172e67c 1783 /* remounting is not allowed for populated hierarchies */
d5c419b6 1784 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1785 ret = -EBUSY;
0670e08b 1786 goto out_unlock;
cf5d5941 1787 }
ddbcc7e8 1788
5df36032 1789 ret = rebind_subsystems(root, added_mask);
3126121f 1790 if (ret)
0670e08b 1791 goto out_unlock;
ddbcc7e8 1792
3dd06ffa 1793 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1794
69e943b7
TH
1795 if (opts.release_agent) {
1796 spin_lock(&release_agent_path_lock);
81a6a5cd 1797 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1798 spin_unlock(&release_agent_path_lock);
1799 }
ddbcc7e8 1800 out_unlock:
66bdc9cf 1801 kfree(opts.release_agent);
c6d57f33 1802 kfree(opts.name);
ddbcc7e8 1803 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1804 return ret;
1805}
1806
afeb0f9f
TH
1807/*
1808 * To reduce the fork() overhead for systems that are not actually using
1809 * their cgroups capability, we don't maintain the lists running through
1810 * each css_set to its tasks until we see the list actually used - in other
1811 * words after the first mount.
1812 */
1813static bool use_task_css_set_links __read_mostly;
1814
1815static void cgroup_enable_task_cg_lists(void)
1816{
1817 struct task_struct *p, *g;
1818
f0d9a5f1 1819 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1820
1821 if (use_task_css_set_links)
1822 goto out_unlock;
1823
1824 use_task_css_set_links = true;
1825
1826 /*
1827 * We need tasklist_lock because RCU is not safe against
1828 * while_each_thread(). Besides, a forking task that has passed
1829 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1830 * is not guaranteed to have its child immediately visible in the
1831 * tasklist if we walk through it with RCU.
1832 */
1833 read_lock(&tasklist_lock);
1834 do_each_thread(g, p) {
afeb0f9f
TH
1835 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1836 task_css_set(p) != &init_css_set);
1837
1838 /*
1839 * We should check if the process is exiting, otherwise
1840 * it will race with cgroup_exit() in that the list
1841 * entry won't be deleted though the process has exited.
f153ad11
TH
1842 * Do it while holding siglock so that we don't end up
1843 * racing against cgroup_exit().
afeb0f9f 1844 */
f153ad11 1845 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1846 if (!(p->flags & PF_EXITING)) {
1847 struct css_set *cset = task_css_set(p);
1848
0de0942d
TH
1849 if (!css_set_populated(cset))
1850 css_set_update_populated(cset, true);
389b9c1b 1851 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1852 get_css_set(cset);
1853 }
f153ad11 1854 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1855 } while_each_thread(g, p);
1856 read_unlock(&tasklist_lock);
1857out_unlock:
f0d9a5f1 1858 spin_unlock_bh(&css_set_lock);
afeb0f9f 1859}
ddbcc7e8 1860
cc31edce
PM
1861static void init_cgroup_housekeeping(struct cgroup *cgrp)
1862{
2d8f243a
TH
1863 struct cgroup_subsys *ss;
1864 int ssid;
1865
d5c419b6
TH
1866 INIT_LIST_HEAD(&cgrp->self.sibling);
1867 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1868 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1869 INIT_LIST_HEAD(&cgrp->pidlists);
1870 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1871 cgrp->self.cgroup = cgrp;
184faf32 1872 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1873
1874 for_each_subsys(ss, ssid)
1875 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1876
1877 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1878 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1879}
c6d57f33 1880
3dd06ffa 1881static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1882 struct cgroup_sb_opts *opts)
ddbcc7e8 1883{
3dd06ffa 1884 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1885
ddbcc7e8 1886 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1887 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1888 cgrp->root = root;
cc31edce 1889 init_cgroup_housekeeping(cgrp);
4e96ee8e 1890 idr_init(&root->cgroup_idr);
c6d57f33 1891
c6d57f33
PM
1892 root->flags = opts->flags;
1893 if (opts->release_agent)
1894 strcpy(root->release_agent_path, opts->release_agent);
1895 if (opts->name)
1896 strcpy(root->name, opts->name);
2260e7fc 1897 if (opts->cpuset_clone_children)
3dd06ffa 1898 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1899}
1900
8ab456ac 1901static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1902{
d427dfeb 1903 LIST_HEAD(tmp_links);
3dd06ffa 1904 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1905 struct css_set *cset;
d427dfeb 1906 int i, ret;
2c6ab6d2 1907
d427dfeb 1908 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1909
cf780b7d 1910 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1911 if (ret < 0)
2bd59d48 1912 goto out;
d427dfeb 1913 root_cgrp->id = ret;
b11cfb58 1914 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1915
2aad2a86
TH
1916 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1917 GFP_KERNEL);
9d755d33
TH
1918 if (ret)
1919 goto out;
1920
d427dfeb 1921 /*
f0d9a5f1 1922 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1923 * but that's OK - it can only be increased by someone holding
1924 * cgroup_lock, and that's us. The worst that can happen is that we
1925 * have some link structures left over
1926 */
1927 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1928 if (ret)
9d755d33 1929 goto cancel_ref;
ddbcc7e8 1930
985ed670 1931 ret = cgroup_init_root_id(root);
ddbcc7e8 1932 if (ret)
9d755d33 1933 goto cancel_ref;
ddbcc7e8 1934
2bd59d48
TH
1935 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1936 KERNFS_ROOT_CREATE_DEACTIVATED,
1937 root_cgrp);
1938 if (IS_ERR(root->kf_root)) {
1939 ret = PTR_ERR(root->kf_root);
1940 goto exit_root_id;
1941 }
1942 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1943
4df8dc90 1944 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1945 if (ret)
2bd59d48 1946 goto destroy_root;
ddbcc7e8 1947
5df36032 1948 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1949 if (ret)
2bd59d48 1950 goto destroy_root;
ddbcc7e8 1951
d427dfeb
TH
1952 /*
1953 * There must be no failure case after here, since rebinding takes
1954 * care of subsystems' refcounts, which are explicitly dropped in
1955 * the failure exit path.
1956 */
1957 list_add(&root->root_list, &cgroup_roots);
1958 cgroup_root_count++;
0df6a63f 1959
d427dfeb 1960 /*
3dd06ffa 1961 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1962 * objects.
1963 */
f0d9a5f1 1964 spin_lock_bh(&css_set_lock);
0de0942d 1965 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1966 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1967 if (css_set_populated(cset))
1968 cgroup_update_populated(root_cgrp, true);
1969 }
f0d9a5f1 1970 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1971
d5c419b6 1972 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1973 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1974
2bd59d48 1975 kernfs_activate(root_cgrp->kn);
d427dfeb 1976 ret = 0;
2bd59d48 1977 goto out;
d427dfeb 1978
2bd59d48
TH
1979destroy_root:
1980 kernfs_destroy_root(root->kf_root);
1981 root->kf_root = NULL;
1982exit_root_id:
d427dfeb 1983 cgroup_exit_root_id(root);
9d755d33 1984cancel_ref:
9a1049da 1985 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1986out:
d427dfeb
TH
1987 free_cgrp_cset_links(&tmp_links);
1988 return ret;
ddbcc7e8
PM
1989}
1990
f7e83571 1991static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1992 int flags, const char *unused_dev_name,
f7e83571 1993 void *data)
ddbcc7e8 1994{
67e9c74b 1995 bool is_v2 = fs_type == &cgroup2_fs_type;
3a32bd72 1996 struct super_block *pinned_sb = NULL;
970317aa 1997 struct cgroup_subsys *ss;
3dd06ffa 1998 struct cgroup_root *root;
ddbcc7e8 1999 struct cgroup_sb_opts opts;
2bd59d48 2000 struct dentry *dentry;
8e30e2b8 2001 int ret;
970317aa 2002 int i;
c6b3d5bc 2003 bool new_sb;
ddbcc7e8 2004
56fde9e0
TH
2005 /*
2006 * The first time anyone tries to mount a cgroup, enable the list
2007 * linking each css_set to its tasks and fix up all existing tasks.
2008 */
2009 if (!use_task_css_set_links)
2010 cgroup_enable_task_cg_lists();
e37a06f1 2011
67e9c74b
TH
2012 if (is_v2) {
2013 if (data) {
2014 pr_err("cgroup2: unknown option \"%s\"\n", (char *)data);
2015 return ERR_PTR(-EINVAL);
2016 }
2017 cgrp_dfl_root_visible = true;
2018 root = &cgrp_dfl_root;
2019 cgroup_get(&root->cgrp);
2020 goto out_mount;
2021 }
2022
aae8aab4 2023 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
2024
2025 /* First find the desired set of subsystems */
ddbcc7e8 2026 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 2027 if (ret)
8e30e2b8 2028 goto out_unlock;
a015edd2 2029
970317aa
LZ
2030 /*
2031 * Destruction of cgroup root is asynchronous, so subsystems may
2032 * still be dying after the previous unmount. Let's drain the
2033 * dying subsystems. We just need to ensure that the ones
2034 * unmounted previously finish dying and don't care about new ones
2035 * starting. Testing ref liveliness is good enough.
2036 */
2037 for_each_subsys(ss, i) {
2038 if (!(opts.subsys_mask & (1 << i)) ||
2039 ss->root == &cgrp_dfl_root)
2040 continue;
2041
2042 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2043 mutex_unlock(&cgroup_mutex);
2044 msleep(10);
2045 ret = restart_syscall();
2046 goto out_free;
2047 }
2048 cgroup_put(&ss->root->cgrp);
2049 }
2050
985ed670 2051 for_each_root(root) {
2bd59d48 2052 bool name_match = false;
3126121f 2053
3dd06ffa 2054 if (root == &cgrp_dfl_root)
985ed670 2055 continue;
3126121f 2056
cf5d5941 2057 /*
2bd59d48
TH
2058 * If we asked for a name then it must match. Also, if
2059 * name matches but sybsys_mask doesn't, we should fail.
2060 * Remember whether name matched.
cf5d5941 2061 */
2bd59d48
TH
2062 if (opts.name) {
2063 if (strcmp(opts.name, root->name))
2064 continue;
2065 name_match = true;
2066 }
ddbcc7e8 2067
c6d57f33 2068 /*
2bd59d48
TH
2069 * If we asked for subsystems (or explicitly for no
2070 * subsystems) then they must match.
c6d57f33 2071 */
2bd59d48 2072 if ((opts.subsys_mask || opts.none) &&
f392e51c 2073 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2074 if (!name_match)
2075 continue;
2076 ret = -EBUSY;
2077 goto out_unlock;
2078 }
873fe09e 2079
7b9a6ba5
TH
2080 if (root->flags ^ opts.flags)
2081 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2082
776f02fa 2083 /*
3a32bd72
LZ
2084 * We want to reuse @root whose lifetime is governed by its
2085 * ->cgrp. Let's check whether @root is alive and keep it
2086 * that way. As cgroup_kill_sb() can happen anytime, we
2087 * want to block it by pinning the sb so that @root doesn't
2088 * get killed before mount is complete.
2089 *
2090 * With the sb pinned, tryget_live can reliably indicate
2091 * whether @root can be reused. If it's being killed,
2092 * drain it. We can use wait_queue for the wait but this
2093 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2094 */
3a32bd72
LZ
2095 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2096 if (IS_ERR(pinned_sb) ||
2097 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2098 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2099 if (!IS_ERR_OR_NULL(pinned_sb))
2100 deactivate_super(pinned_sb);
776f02fa 2101 msleep(10);
a015edd2
TH
2102 ret = restart_syscall();
2103 goto out_free;
776f02fa 2104 }
ddbcc7e8 2105
776f02fa 2106 ret = 0;
2bd59d48 2107 goto out_unlock;
ddbcc7e8 2108 }
ddbcc7e8 2109
817929ec 2110 /*
172a2c06
TH
2111 * No such thing, create a new one. name= matching without subsys
2112 * specification is allowed for already existing hierarchies but we
2113 * can't create new one without subsys specification.
817929ec 2114 */
172a2c06
TH
2115 if (!opts.subsys_mask && !opts.none) {
2116 ret = -EINVAL;
2117 goto out_unlock;
817929ec 2118 }
817929ec 2119
172a2c06
TH
2120 root = kzalloc(sizeof(*root), GFP_KERNEL);
2121 if (!root) {
2122 ret = -ENOMEM;
2bd59d48 2123 goto out_unlock;
839ec545 2124 }
e5f6a860 2125
172a2c06
TH
2126 init_cgroup_root(root, &opts);
2127
35585573 2128 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2129 if (ret)
2130 cgroup_free_root(root);
fa3ca07e 2131
8e30e2b8 2132out_unlock:
ddbcc7e8 2133 mutex_unlock(&cgroup_mutex);
a015edd2 2134out_free:
c6d57f33
PM
2135 kfree(opts.release_agent);
2136 kfree(opts.name);
03b1cde6 2137
2bd59d48 2138 if (ret)
8e30e2b8 2139 return ERR_PTR(ret);
67e9c74b 2140out_mount:
c9482a5b 2141 dentry = kernfs_mount(fs_type, flags, root->kf_root,
67e9c74b
TH
2142 is_v2 ? CGROUP2_SUPER_MAGIC : CGROUP_SUPER_MAGIC,
2143 &new_sb);
c6b3d5bc 2144 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2145 cgroup_put(&root->cgrp);
3a32bd72
LZ
2146
2147 /*
2148 * If @pinned_sb, we're reusing an existing root and holding an
2149 * extra ref on its sb. Mount is complete. Put the extra ref.
2150 */
2151 if (pinned_sb) {
2152 WARN_ON(new_sb);
2153 deactivate_super(pinned_sb);
2154 }
2155
2bd59d48
TH
2156 return dentry;
2157}
2158
2159static void cgroup_kill_sb(struct super_block *sb)
2160{
2161 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2162 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2163
9d755d33
TH
2164 /*
2165 * If @root doesn't have any mounts or children, start killing it.
2166 * This prevents new mounts by disabling percpu_ref_tryget_live().
2167 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2168 *
2169 * And don't kill the default root.
9d755d33 2170 */
3c606d35 2171 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2172 root == &cgrp_dfl_root)
9d755d33
TH
2173 cgroup_put(&root->cgrp);
2174 else
2175 percpu_ref_kill(&root->cgrp.self.refcnt);
2176
2bd59d48 2177 kernfs_kill_sb(sb);
ddbcc7e8
PM
2178}
2179
2180static struct file_system_type cgroup_fs_type = {
2181 .name = "cgroup",
f7e83571 2182 .mount = cgroup_mount,
ddbcc7e8
PM
2183 .kill_sb = cgroup_kill_sb,
2184};
2185
67e9c74b
TH
2186static struct file_system_type cgroup2_fs_type = {
2187 .name = "cgroup2",
2188 .mount = cgroup_mount,
2189 .kill_sb = cgroup_kill_sb,
2190};
2191
a79a908f
AK
2192static char *cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2193 struct cgroup_namespace *ns)
2194{
2195 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2196 int ret;
2197
2198 ret = kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2199 if (ret < 0 || ret >= buflen)
2200 return NULL;
2201 return buf;
2202}
2203
2204char *cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2205 struct cgroup_namespace *ns)
2206{
2207 char *ret;
2208
2209 mutex_lock(&cgroup_mutex);
2210 spin_lock_bh(&css_set_lock);
2211
2212 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2213
2214 spin_unlock_bh(&css_set_lock);
2215 mutex_unlock(&cgroup_mutex);
2216
2217 return ret;
2218}
2219EXPORT_SYMBOL_GPL(cgroup_path_ns);
2220
857a2beb 2221/**
913ffdb5 2222 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2223 * @task: target task
857a2beb
TH
2224 * @buf: the buffer to write the path into
2225 * @buflen: the length of the buffer
2226 *
913ffdb5
TH
2227 * Determine @task's cgroup on the first (the one with the lowest non-zero
2228 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2229 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2230 * cgroup controller callbacks.
2231 *
e61734c5 2232 * Return value is the same as kernfs_path().
857a2beb 2233 */
e61734c5 2234char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2235{
3dd06ffa 2236 struct cgroup_root *root;
913ffdb5 2237 struct cgroup *cgrp;
e61734c5
TH
2238 int hierarchy_id = 1;
2239 char *path = NULL;
857a2beb
TH
2240
2241 mutex_lock(&cgroup_mutex);
f0d9a5f1 2242 spin_lock_bh(&css_set_lock);
857a2beb 2243
913ffdb5
TH
2244 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2245
857a2beb
TH
2246 if (root) {
2247 cgrp = task_cgroup_from_root(task, root);
a79a908f 2248 path = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
913ffdb5
TH
2249 } else {
2250 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2251 if (strlcpy(buf, "/", buflen) < buflen)
2252 path = buf;
857a2beb
TH
2253 }
2254
f0d9a5f1 2255 spin_unlock_bh(&css_set_lock);
857a2beb 2256 mutex_unlock(&cgroup_mutex);
e61734c5 2257 return path;
857a2beb 2258}
913ffdb5 2259EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2260
b3dc094e 2261/* used to track tasks and other necessary states during migration */
2f7ee569 2262struct cgroup_taskset {
b3dc094e
TH
2263 /* the src and dst cset list running through cset->mg_node */
2264 struct list_head src_csets;
2265 struct list_head dst_csets;
2266
1f7dd3e5
TH
2267 /* the subsys currently being processed */
2268 int ssid;
2269
b3dc094e
TH
2270 /*
2271 * Fields for cgroup_taskset_*() iteration.
2272 *
2273 * Before migration is committed, the target migration tasks are on
2274 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2275 * the csets on ->dst_csets. ->csets point to either ->src_csets
2276 * or ->dst_csets depending on whether migration is committed.
2277 *
2278 * ->cur_csets and ->cur_task point to the current task position
2279 * during iteration.
2280 */
2281 struct list_head *csets;
2282 struct css_set *cur_cset;
2283 struct task_struct *cur_task;
2f7ee569
TH
2284};
2285
adaae5dc
TH
2286#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2287 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2288 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2289 .csets = &tset.src_csets, \
2290}
2291
2292/**
2293 * cgroup_taskset_add - try to add a migration target task to a taskset
2294 * @task: target task
2295 * @tset: target taskset
2296 *
2297 * Add @task, which is a migration target, to @tset. This function becomes
2298 * noop if @task doesn't need to be migrated. @task's css_set should have
2299 * been added as a migration source and @task->cg_list will be moved from
2300 * the css_set's tasks list to mg_tasks one.
2301 */
2302static void cgroup_taskset_add(struct task_struct *task,
2303 struct cgroup_taskset *tset)
2304{
2305 struct css_set *cset;
2306
f0d9a5f1 2307 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2308
2309 /* @task either already exited or can't exit until the end */
2310 if (task->flags & PF_EXITING)
2311 return;
2312
2313 /* leave @task alone if post_fork() hasn't linked it yet */
2314 if (list_empty(&task->cg_list))
2315 return;
2316
2317 cset = task_css_set(task);
2318 if (!cset->mg_src_cgrp)
2319 return;
2320
2321 list_move_tail(&task->cg_list, &cset->mg_tasks);
2322 if (list_empty(&cset->mg_node))
2323 list_add_tail(&cset->mg_node, &tset->src_csets);
2324 if (list_empty(&cset->mg_dst_cset->mg_node))
2325 list_move_tail(&cset->mg_dst_cset->mg_node,
2326 &tset->dst_csets);
2327}
2328
2f7ee569
TH
2329/**
2330 * cgroup_taskset_first - reset taskset and return the first task
2331 * @tset: taskset of interest
1f7dd3e5 2332 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2333 *
2334 * @tset iteration is initialized and the first task is returned.
2335 */
1f7dd3e5
TH
2336struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2337 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2338{
b3dc094e
TH
2339 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2340 tset->cur_task = NULL;
2341
1f7dd3e5 2342 return cgroup_taskset_next(tset, dst_cssp);
2f7ee569 2343}
2f7ee569
TH
2344
2345/**
2346 * cgroup_taskset_next - iterate to the next task in taskset
2347 * @tset: taskset of interest
1f7dd3e5 2348 * @dst_cssp: output variable for the destination css
2f7ee569
TH
2349 *
2350 * Return the next task in @tset. Iteration must have been initialized
2351 * with cgroup_taskset_first().
2352 */
1f7dd3e5
TH
2353struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2354 struct cgroup_subsys_state **dst_cssp)
2f7ee569 2355{
b3dc094e
TH
2356 struct css_set *cset = tset->cur_cset;
2357 struct task_struct *task = tset->cur_task;
2f7ee569 2358
b3dc094e
TH
2359 while (&cset->mg_node != tset->csets) {
2360 if (!task)
2361 task = list_first_entry(&cset->mg_tasks,
2362 struct task_struct, cg_list);
2363 else
2364 task = list_next_entry(task, cg_list);
2f7ee569 2365
b3dc094e
TH
2366 if (&task->cg_list != &cset->mg_tasks) {
2367 tset->cur_cset = cset;
2368 tset->cur_task = task;
1f7dd3e5
TH
2369
2370 /*
2371 * This function may be called both before and
2372 * after cgroup_taskset_migrate(). The two cases
2373 * can be distinguished by looking at whether @cset
2374 * has its ->mg_dst_cset set.
2375 */
2376 if (cset->mg_dst_cset)
2377 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2378 else
2379 *dst_cssp = cset->subsys[tset->ssid];
2380
b3dc094e
TH
2381 return task;
2382 }
2f7ee569 2383
b3dc094e
TH
2384 cset = list_next_entry(cset, mg_node);
2385 task = NULL;
2386 }
2f7ee569 2387
b3dc094e 2388 return NULL;
2f7ee569 2389}
2f7ee569 2390
adaae5dc
TH
2391/**
2392 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2393 * @tset: taget taskset
2394 * @dst_cgrp: destination cgroup
2395 *
2396 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2397 * ->can_attach callbacks fails and guarantees that either all or none of
2398 * the tasks in @tset are migrated. @tset is consumed regardless of
2399 * success.
2400 */
2401static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2402 struct cgroup *dst_cgrp)
2403{
2404 struct cgroup_subsys_state *css, *failed_css = NULL;
2405 struct task_struct *task, *tmp_task;
2406 struct css_set *cset, *tmp_cset;
2407 int i, ret;
2408
2409 /* methods shouldn't be called if no task is actually migrating */
2410 if (list_empty(&tset->src_csets))
2411 return 0;
2412
2413 /* check that we can legitimately attach to the cgroup */
2414 for_each_e_css(css, i, dst_cgrp) {
2415 if (css->ss->can_attach) {
1f7dd3e5
TH
2416 tset->ssid = i;
2417 ret = css->ss->can_attach(tset);
adaae5dc
TH
2418 if (ret) {
2419 failed_css = css;
2420 goto out_cancel_attach;
2421 }
2422 }
2423 }
2424
2425 /*
2426 * Now that we're guaranteed success, proceed to move all tasks to
2427 * the new cgroup. There are no failure cases after here, so this
2428 * is the commit point.
2429 */
f0d9a5f1 2430 spin_lock_bh(&css_set_lock);
adaae5dc 2431 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2432 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2433 struct css_set *from_cset = task_css_set(task);
2434 struct css_set *to_cset = cset->mg_dst_cset;
2435
2436 get_css_set(to_cset);
2437 css_set_move_task(task, from_cset, to_cset, true);
2438 put_css_set_locked(from_cset);
2439 }
adaae5dc 2440 }
f0d9a5f1 2441 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2442
2443 /*
2444 * Migration is committed, all target tasks are now on dst_csets.
2445 * Nothing is sensitive to fork() after this point. Notify
2446 * controllers that migration is complete.
2447 */
2448 tset->csets = &tset->dst_csets;
2449
1f7dd3e5
TH
2450 for_each_e_css(css, i, dst_cgrp) {
2451 if (css->ss->attach) {
2452 tset->ssid = i;
2453 css->ss->attach(tset);
2454 }
2455 }
adaae5dc
TH
2456
2457 ret = 0;
2458 goto out_release_tset;
2459
2460out_cancel_attach:
2461 for_each_e_css(css, i, dst_cgrp) {
2462 if (css == failed_css)
2463 break;
1f7dd3e5
TH
2464 if (css->ss->cancel_attach) {
2465 tset->ssid = i;
2466 css->ss->cancel_attach(tset);
2467 }
adaae5dc
TH
2468 }
2469out_release_tset:
f0d9a5f1 2470 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2471 list_splice_init(&tset->dst_csets, &tset->src_csets);
2472 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2473 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2474 list_del_init(&cset->mg_node);
2475 }
f0d9a5f1 2476 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2477 return ret;
2478}
2479
a043e3b2 2480/**
1958d2d5
TH
2481 * cgroup_migrate_finish - cleanup after attach
2482 * @preloaded_csets: list of preloaded css_sets
74a1166d 2483 *
1958d2d5
TH
2484 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2485 * those functions for details.
74a1166d 2486 */
1958d2d5 2487static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2488{
1958d2d5 2489 struct css_set *cset, *tmp_cset;
74a1166d 2490
1958d2d5
TH
2491 lockdep_assert_held(&cgroup_mutex);
2492
f0d9a5f1 2493 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2494 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2495 cset->mg_src_cgrp = NULL;
2496 cset->mg_dst_cset = NULL;
2497 list_del_init(&cset->mg_preload_node);
a25eb52e 2498 put_css_set_locked(cset);
1958d2d5 2499 }
f0d9a5f1 2500 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2501}
2502
2503/**
2504 * cgroup_migrate_add_src - add a migration source css_set
2505 * @src_cset: the source css_set to add
2506 * @dst_cgrp: the destination cgroup
2507 * @preloaded_csets: list of preloaded css_sets
2508 *
2509 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2510 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2511 * up by cgroup_migrate_finish().
2512 *
1ed13287
TH
2513 * This function may be called without holding cgroup_threadgroup_rwsem
2514 * even if the target is a process. Threads may be created and destroyed
2515 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2516 * into play and the preloaded css_sets are guaranteed to cover all
2517 * migrations.
1958d2d5
TH
2518 */
2519static void cgroup_migrate_add_src(struct css_set *src_cset,
2520 struct cgroup *dst_cgrp,
2521 struct list_head *preloaded_csets)
2522{
2523 struct cgroup *src_cgrp;
2524
2525 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2526 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2527
2528 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2529
1958d2d5
TH
2530 if (!list_empty(&src_cset->mg_preload_node))
2531 return;
2532
2533 WARN_ON(src_cset->mg_src_cgrp);
2534 WARN_ON(!list_empty(&src_cset->mg_tasks));
2535 WARN_ON(!list_empty(&src_cset->mg_node));
2536
2537 src_cset->mg_src_cgrp = src_cgrp;
2538 get_css_set(src_cset);
2539 list_add(&src_cset->mg_preload_node, preloaded_csets);
2540}
2541
2542/**
2543 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2544 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2545 * @preloaded_csets: list of preloaded source css_sets
2546 *
2547 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2548 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2549 * pins all destination css_sets, links each to its source, and append them
2550 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2551 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2552 *
2553 * This function must be called after cgroup_migrate_add_src() has been
2554 * called on each migration source css_set. After migration is performed
2555 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2556 * @preloaded_csets.
2557 */
2558static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2559 struct list_head *preloaded_csets)
2560{
2561 LIST_HEAD(csets);
f817de98 2562 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2563
2564 lockdep_assert_held(&cgroup_mutex);
2565
f8f22e53
TH
2566 /*
2567 * Except for the root, child_subsys_mask must be zero for a cgroup
2568 * with tasks so that child cgroups don't compete against tasks.
2569 */
d51f39b0 2570 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2571 dst_cgrp->child_subsys_mask)
2572 return -EBUSY;
2573
1958d2d5 2574 /* look up the dst cset for each src cset and link it to src */
f817de98 2575 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2576 struct css_set *dst_cset;
2577
f817de98
TH
2578 dst_cset = find_css_set(src_cset,
2579 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2580 if (!dst_cset)
2581 goto err;
2582
2583 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2584
2585 /*
2586 * If src cset equals dst, it's noop. Drop the src.
2587 * cgroup_migrate() will skip the cset too. Note that we
2588 * can't handle src == dst as some nodes are used by both.
2589 */
2590 if (src_cset == dst_cset) {
2591 src_cset->mg_src_cgrp = NULL;
2592 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2593 put_css_set(src_cset);
2594 put_css_set(dst_cset);
f817de98
TH
2595 continue;
2596 }
2597
1958d2d5
TH
2598 src_cset->mg_dst_cset = dst_cset;
2599
2600 if (list_empty(&dst_cset->mg_preload_node))
2601 list_add(&dst_cset->mg_preload_node, &csets);
2602 else
a25eb52e 2603 put_css_set(dst_cset);
1958d2d5
TH
2604 }
2605
f817de98 2606 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2607 return 0;
2608err:
2609 cgroup_migrate_finish(&csets);
2610 return -ENOMEM;
2611}
2612
2613/**
2614 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2615 * @leader: the leader of the process or the task to migrate
2616 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2617 * @cgrp: the destination cgroup
1958d2d5
TH
2618 *
2619 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2620 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2621 * caller is also responsible for invoking cgroup_migrate_add_src() and
2622 * cgroup_migrate_prepare_dst() on the targets before invoking this
2623 * function and following up with cgroup_migrate_finish().
2624 *
2625 * As long as a controller's ->can_attach() doesn't fail, this function is
2626 * guaranteed to succeed. This means that, excluding ->can_attach()
2627 * failure, when migrating multiple targets, the success or failure can be
2628 * decided for all targets by invoking group_migrate_prepare_dst() before
2629 * actually starting migrating.
2630 */
9af2ec45
TH
2631static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2632 struct cgroup *cgrp)
74a1166d 2633{
adaae5dc
TH
2634 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2635 struct task_struct *task;
74a1166d 2636
fb5d2b4c
MSB
2637 /*
2638 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2639 * already PF_EXITING could be freed from underneath us unless we
2640 * take an rcu_read_lock.
2641 */
f0d9a5f1 2642 spin_lock_bh(&css_set_lock);
fb5d2b4c 2643 rcu_read_lock();
9db8de37 2644 task = leader;
74a1166d 2645 do {
adaae5dc 2646 cgroup_taskset_add(task, &tset);
081aa458
LZ
2647 if (!threadgroup)
2648 break;
9db8de37 2649 } while_each_thread(leader, task);
fb5d2b4c 2650 rcu_read_unlock();
f0d9a5f1 2651 spin_unlock_bh(&css_set_lock);
74a1166d 2652
adaae5dc 2653 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2654}
2655
1958d2d5
TH
2656/**
2657 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2658 * @dst_cgrp: the cgroup to attach to
2659 * @leader: the task or the leader of the threadgroup to be attached
2660 * @threadgroup: attach the whole threadgroup?
2661 *
1ed13287 2662 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2663 */
2664static int cgroup_attach_task(struct cgroup *dst_cgrp,
2665 struct task_struct *leader, bool threadgroup)
2666{
2667 LIST_HEAD(preloaded_csets);
2668 struct task_struct *task;
2669 int ret;
2670
2671 /* look up all src csets */
f0d9a5f1 2672 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2673 rcu_read_lock();
2674 task = leader;
2675 do {
2676 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2677 &preloaded_csets);
2678 if (!threadgroup)
2679 break;
2680 } while_each_thread(leader, task);
2681 rcu_read_unlock();
f0d9a5f1 2682 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2683
2684 /* prepare dst csets and commit */
2685 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2686 if (!ret)
9af2ec45 2687 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2688
2689 cgroup_migrate_finish(&preloaded_csets);
2690 return ret;
74a1166d
BB
2691}
2692
187fe840
TH
2693static int cgroup_procs_write_permission(struct task_struct *task,
2694 struct cgroup *dst_cgrp,
2695 struct kernfs_open_file *of)
dedf22e9
TH
2696{
2697 const struct cred *cred = current_cred();
2698 const struct cred *tcred = get_task_cred(task);
2699 int ret = 0;
2700
2701 /*
2702 * even if we're attaching all tasks in the thread group, we only
2703 * need to check permissions on one of them.
2704 */
2705 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2706 !uid_eq(cred->euid, tcred->uid) &&
2707 !uid_eq(cred->euid, tcred->suid))
2708 ret = -EACCES;
2709
187fe840
TH
2710 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2711 struct super_block *sb = of->file->f_path.dentry->d_sb;
2712 struct cgroup *cgrp;
2713 struct inode *inode;
2714
f0d9a5f1 2715 spin_lock_bh(&css_set_lock);
187fe840 2716 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2717 spin_unlock_bh(&css_set_lock);
187fe840
TH
2718
2719 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2720 cgrp = cgroup_parent(cgrp);
2721
2722 ret = -ENOMEM;
6f60eade 2723 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2724 if (inode) {
2725 ret = inode_permission(inode, MAY_WRITE);
2726 iput(inode);
2727 }
2728 }
2729
dedf22e9
TH
2730 put_cred(tcred);
2731 return ret;
2732}
2733
74a1166d
BB
2734/*
2735 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2736 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2737 * cgroup_mutex and threadgroup.
bbcb81d0 2738 */
acbef755
TH
2739static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2740 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2741{
bbcb81d0 2742 struct task_struct *tsk;
e76ecaee 2743 struct cgroup *cgrp;
acbef755 2744 pid_t pid;
bbcb81d0
PM
2745 int ret;
2746
acbef755
TH
2747 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2748 return -EINVAL;
2749
e76ecaee
TH
2750 cgrp = cgroup_kn_lock_live(of->kn);
2751 if (!cgrp)
74a1166d
BB
2752 return -ENODEV;
2753
3014dde7 2754 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2755 rcu_read_lock();
bbcb81d0 2756 if (pid) {
73507f33 2757 tsk = find_task_by_vpid(pid);
74a1166d 2758 if (!tsk) {
dd4b0a46 2759 ret = -ESRCH;
3014dde7 2760 goto out_unlock_rcu;
bbcb81d0 2761 }
dedf22e9 2762 } else {
b78949eb 2763 tsk = current;
dedf22e9 2764 }
cd3d0952
TH
2765
2766 if (threadgroup)
b78949eb 2767 tsk = tsk->group_leader;
c4c27fbd
MG
2768
2769 /*
14a40ffc 2770 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2771 * trapped in a cpuset, or RT worker may be born in a cgroup
2772 * with no rt_runtime allocated. Just say no.
2773 */
14a40ffc 2774 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2775 ret = -EINVAL;
3014dde7 2776 goto out_unlock_rcu;
c4c27fbd
MG
2777 }
2778
b78949eb
MSB
2779 get_task_struct(tsk);
2780 rcu_read_unlock();
2781
187fe840 2782 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2783 if (!ret)
2784 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2785
f9f9e7b7 2786 put_task_struct(tsk);
3014dde7
TH
2787 goto out_unlock_threadgroup;
2788
2789out_unlock_rcu:
2790 rcu_read_unlock();
2791out_unlock_threadgroup:
2792 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2793 cgroup_kn_unlock(of->kn);
e93ad19d 2794 cpuset_post_attach_flush();
acbef755 2795 return ret ?: nbytes;
bbcb81d0
PM
2796}
2797
7ae1bad9
TH
2798/**
2799 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2800 * @from: attach to all cgroups of a given task
2801 * @tsk: the task to be attached
2802 */
2803int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2804{
3dd06ffa 2805 struct cgroup_root *root;
7ae1bad9
TH
2806 int retval = 0;
2807
47cfcd09 2808 mutex_lock(&cgroup_mutex);
985ed670 2809 for_each_root(root) {
96d365e0
TH
2810 struct cgroup *from_cgrp;
2811
3dd06ffa 2812 if (root == &cgrp_dfl_root)
985ed670
TH
2813 continue;
2814
f0d9a5f1 2815 spin_lock_bh(&css_set_lock);
96d365e0 2816 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2817 spin_unlock_bh(&css_set_lock);
7ae1bad9 2818
6f4b7e63 2819 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2820 if (retval)
2821 break;
2822 }
47cfcd09 2823 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2824
2825 return retval;
2826}
2827EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2828
acbef755
TH
2829static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2830 char *buf, size_t nbytes, loff_t off)
74a1166d 2831{
acbef755 2832 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2833}
2834
acbef755
TH
2835static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2836 char *buf, size_t nbytes, loff_t off)
af351026 2837{
acbef755 2838 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2839}
2840
451af504
TH
2841static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2842 char *buf, size_t nbytes, loff_t off)
e788e066 2843{
e76ecaee 2844 struct cgroup *cgrp;
5f469907 2845
e76ecaee 2846 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2847
e76ecaee
TH
2848 cgrp = cgroup_kn_lock_live(of->kn);
2849 if (!cgrp)
e788e066 2850 return -ENODEV;
69e943b7 2851 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2852 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2853 sizeof(cgrp->root->release_agent_path));
69e943b7 2854 spin_unlock(&release_agent_path_lock);
e76ecaee 2855 cgroup_kn_unlock(of->kn);
451af504 2856 return nbytes;
e788e066
PM
2857}
2858
2da8ca82 2859static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2860{
2da8ca82 2861 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2862
46cfeb04 2863 spin_lock(&release_agent_path_lock);
e788e066 2864 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2865 spin_unlock(&release_agent_path_lock);
e788e066 2866 seq_putc(seq, '\n');
e788e066
PM
2867 return 0;
2868}
2869
2da8ca82 2870static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2871{
c1d5d42e 2872 seq_puts(seq, "0\n");
e788e066
PM
2873 return 0;
2874}
2875
8ab456ac 2876static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2877{
f8f22e53
TH
2878 struct cgroup_subsys *ss;
2879 bool printed = false;
2880 int ssid;
a742c59d 2881
a966a4ed
AS
2882 for_each_subsys_which(ss, ssid, &ss_mask) {
2883 if (printed)
2884 seq_putc(seq, ' ');
2885 seq_printf(seq, "%s", ss->name);
2886 printed = true;
e73d2c61 2887 }
f8f22e53
TH
2888 if (printed)
2889 seq_putc(seq, '\n');
355e0c48
PM
2890}
2891
f8f22e53
TH
2892/* show controllers which are currently attached to the default hierarchy */
2893static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2894{
f8f22e53
TH
2895 struct cgroup *cgrp = seq_css(seq)->cgroup;
2896
5533e011
TH
2897 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2898 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2899 return 0;
db3b1497
PM
2900}
2901
f8f22e53
TH
2902/* show controllers which are enabled from the parent */
2903static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2904{
f8f22e53
TH
2905 struct cgroup *cgrp = seq_css(seq)->cgroup;
2906
667c2491 2907 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2908 return 0;
ddbcc7e8
PM
2909}
2910
f8f22e53
TH
2911/* show controllers which are enabled for a given cgroup's children */
2912static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2913{
f8f22e53
TH
2914 struct cgroup *cgrp = seq_css(seq)->cgroup;
2915
667c2491 2916 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2917 return 0;
2918}
2919
2920/**
2921 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2922 * @cgrp: root of the subtree to update csses for
2923 *
2924 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2925 * css associations need to be updated accordingly. This function looks up
2926 * all css_sets which are attached to the subtree, creates the matching
2927 * updated css_sets and migrates the tasks to the new ones.
2928 */
2929static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2930{
2931 LIST_HEAD(preloaded_csets);
10265075 2932 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2933 struct cgroup_subsys_state *css;
2934 struct css_set *src_cset;
2935 int ret;
2936
f8f22e53
TH
2937 lockdep_assert_held(&cgroup_mutex);
2938
3014dde7
TH
2939 percpu_down_write(&cgroup_threadgroup_rwsem);
2940
f8f22e53 2941 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2942 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2943 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2944 struct cgrp_cset_link *link;
2945
2946 /* self is not affected by child_subsys_mask change */
2947 if (css->cgroup == cgrp)
2948 continue;
2949
2950 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2951 cgroup_migrate_add_src(link->cset, cgrp,
2952 &preloaded_csets);
2953 }
f0d9a5f1 2954 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2955
2956 /* NULL dst indicates self on default hierarchy */
2957 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2958 if (ret)
2959 goto out_finish;
2960
f0d9a5f1 2961 spin_lock_bh(&css_set_lock);
f8f22e53 2962 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2963 struct task_struct *task, *ntask;
f8f22e53
TH
2964
2965 /* src_csets precede dst_csets, break on the first dst_cset */
2966 if (!src_cset->mg_src_cgrp)
2967 break;
2968
10265075
TH
2969 /* all tasks in src_csets need to be migrated */
2970 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2971 cgroup_taskset_add(task, &tset);
f8f22e53 2972 }
f0d9a5f1 2973 spin_unlock_bh(&css_set_lock);
f8f22e53 2974
10265075 2975 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2976out_finish:
2977 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2978 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2979 return ret;
2980}
2981
2982/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2983static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes,
2985 loff_t off)
f8f22e53 2986{
8ab456ac
AS
2987 unsigned long enable = 0, disable = 0;
2988 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2989 struct cgroup *cgrp, *child;
f8f22e53 2990 struct cgroup_subsys *ss;
451af504 2991 char *tok;
f8f22e53
TH
2992 int ssid, ret;
2993
2994 /*
d37167ab
TH
2995 * Parse input - space separated list of subsystem names prefixed
2996 * with either + or -.
f8f22e53 2997 */
451af504
TH
2998 buf = strstrip(buf);
2999 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
3000 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
3001
d37167ab
TH
3002 if (tok[0] == '\0')
3003 continue;
a966a4ed 3004 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
3005 if (!cgroup_ssid_enabled(ssid) ||
3006 strcmp(tok + 1, ss->name))
f8f22e53
TH
3007 continue;
3008
3009 if (*tok == '+') {
7d331fa9
TH
3010 enable |= 1 << ssid;
3011 disable &= ~(1 << ssid);
f8f22e53 3012 } else if (*tok == '-') {
7d331fa9
TH
3013 disable |= 1 << ssid;
3014 enable &= ~(1 << ssid);
f8f22e53
TH
3015 } else {
3016 return -EINVAL;
3017 }
3018 break;
3019 }
3020 if (ssid == CGROUP_SUBSYS_COUNT)
3021 return -EINVAL;
3022 }
3023
a9746d8d
TH
3024 cgrp = cgroup_kn_lock_live(of->kn);
3025 if (!cgrp)
3026 return -ENODEV;
f8f22e53
TH
3027
3028 for_each_subsys(ss, ssid) {
3029 if (enable & (1 << ssid)) {
667c2491 3030 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
3031 enable &= ~(1 << ssid);
3032 continue;
3033 }
3034
c29adf24
TH
3035 /* unavailable or not enabled on the parent? */
3036 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3037 (cgroup_parent(cgrp) &&
667c2491 3038 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
3039 ret = -ENOENT;
3040 goto out_unlock;
3041 }
f8f22e53 3042 } else if (disable & (1 << ssid)) {
667c2491 3043 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
3044 disable &= ~(1 << ssid);
3045 continue;
3046 }
3047
3048 /* a child has it enabled? */
3049 cgroup_for_each_live_child(child, cgrp) {
667c2491 3050 if (child->subtree_control & (1 << ssid)) {
f8f22e53 3051 ret = -EBUSY;
ddab2b6e 3052 goto out_unlock;
f8f22e53
TH
3053 }
3054 }
3055 }
3056 }
3057
3058 if (!enable && !disable) {
3059 ret = 0;
ddab2b6e 3060 goto out_unlock;
f8f22e53
TH
3061 }
3062
3063 /*
667c2491 3064 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
3065 * with tasks so that child cgroups don't compete against tasks.
3066 */
d51f39b0 3067 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
3068 ret = -EBUSY;
3069 goto out_unlock;
3070 }
3071
3072 /*
f63070d3
TH
3073 * Update subsys masks and calculate what needs to be done. More
3074 * subsystems than specified may need to be enabled or disabled
3075 * depending on subsystem dependencies.
3076 */
755bf5ee
TH
3077 old_sc = cgrp->subtree_control;
3078 old_ss = cgrp->child_subsys_mask;
3079 new_sc = (old_sc | enable) & ~disable;
3080 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 3081
755bf5ee
TH
3082 css_enable = ~old_ss & new_ss;
3083 css_disable = old_ss & ~new_ss;
f63070d3
TH
3084 enable |= css_enable;
3085 disable |= css_disable;
c29adf24 3086
db6e3053
TH
3087 /*
3088 * Because css offlining is asynchronous, userland might try to
3089 * re-enable the same controller while the previous instance is
3090 * still around. In such cases, wait till it's gone using
3091 * offline_waitq.
3092 */
a966a4ed 3093 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3094 cgroup_for_each_live_child(child, cgrp) {
3095 DEFINE_WAIT(wait);
3096
3097 if (!cgroup_css(child, ss))
3098 continue;
3099
3100 cgroup_get(child);
3101 prepare_to_wait(&child->offline_waitq, &wait,
3102 TASK_UNINTERRUPTIBLE);
3103 cgroup_kn_unlock(of->kn);
3104 schedule();
3105 finish_wait(&child->offline_waitq, &wait);
3106 cgroup_put(child);
3107
3108 return restart_syscall();
3109 }
3110 }
3111
755bf5ee
TH
3112 cgrp->subtree_control = new_sc;
3113 cgrp->child_subsys_mask = new_ss;
3114
f63070d3
TH
3115 /*
3116 * Create new csses or make the existing ones visible. A css is
3117 * created invisible if it's being implicitly enabled through
3118 * dependency. An invisible css is made visible when the userland
3119 * explicitly enables it.
f8f22e53
TH
3120 */
3121 for_each_subsys(ss, ssid) {
3122 if (!(enable & (1 << ssid)))
3123 continue;
3124
3125 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3126 if (css_enable & (1 << ssid))
3127 ret = create_css(child, ss,
3128 cgrp->subtree_control & (1 << ssid));
3129 else
4df8dc90
TH
3130 ret = css_populate_dir(cgroup_css(child, ss),
3131 NULL);
f8f22e53
TH
3132 if (ret)
3133 goto err_undo_css;
3134 }
3135 }
3136
c29adf24
TH
3137 /*
3138 * At this point, cgroup_e_css() results reflect the new csses
3139 * making the following cgroup_update_dfl_csses() properly update
3140 * css associations of all tasks in the subtree.
3141 */
f8f22e53
TH
3142 ret = cgroup_update_dfl_csses(cgrp);
3143 if (ret)
3144 goto err_undo_css;
3145
f63070d3
TH
3146 /*
3147 * All tasks are migrated out of disabled csses. Kill or hide
3148 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3149 * disabled while other subsystems are still depending on it. The
3150 * css must not actively control resources and be in the vanilla
3151 * state if it's made visible again later. Controllers which may
3152 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3153 */
f8f22e53
TH
3154 for_each_subsys(ss, ssid) {
3155 if (!(disable & (1 << ssid)))
3156 continue;
3157
f63070d3 3158 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3159 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3160
3161 if (css_disable & (1 << ssid)) {
3162 kill_css(css);
3163 } else {
4df8dc90 3164 css_clear_dir(css, NULL);
b4536f0c
TH
3165 if (ss->css_reset)
3166 ss->css_reset(css);
3167 }
f63070d3 3168 }
f8f22e53
TH
3169 }
3170
56c807ba
TH
3171 /*
3172 * The effective csses of all the descendants (excluding @cgrp) may
3173 * have changed. Subsystems can optionally subscribe to this event
3174 * by implementing ->css_e_css_changed() which is invoked if any of
3175 * the effective csses seen from the css's cgroup may have changed.
3176 */
3177 for_each_subsys(ss, ssid) {
3178 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3179 struct cgroup_subsys_state *css;
3180
3181 if (!ss->css_e_css_changed || !this_css)
3182 continue;
3183
3184 css_for_each_descendant_pre(css, this_css)
3185 if (css != this_css)
3186 ss->css_e_css_changed(css);
3187 }
3188
f8f22e53
TH
3189 kernfs_activate(cgrp->kn);
3190 ret = 0;
3191out_unlock:
a9746d8d 3192 cgroup_kn_unlock(of->kn);
451af504 3193 return ret ?: nbytes;
f8f22e53
TH
3194
3195err_undo_css:
755bf5ee
TH
3196 cgrp->subtree_control = old_sc;
3197 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3198
3199 for_each_subsys(ss, ssid) {
3200 if (!(enable & (1 << ssid)))
3201 continue;
3202
3203 cgroup_for_each_live_child(child, cgrp) {
3204 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3205
3206 if (!css)
3207 continue;
3208
3209 if (css_enable & (1 << ssid))
f8f22e53 3210 kill_css(css);
f63070d3 3211 else
4df8dc90 3212 css_clear_dir(css, NULL);
f8f22e53
TH
3213 }
3214 }
3215 goto out_unlock;
3216}
3217
4a07c222 3218static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3219{
4a07c222 3220 seq_printf(seq, "populated %d\n",
27bd4dbb 3221 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3222 return 0;
3223}
3224
2bd59d48
TH
3225static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3226 size_t nbytes, loff_t off)
355e0c48 3227{
2bd59d48
TH
3228 struct cgroup *cgrp = of->kn->parent->priv;
3229 struct cftype *cft = of->kn->priv;
3230 struct cgroup_subsys_state *css;
a742c59d 3231 int ret;
355e0c48 3232
b4168640
TH
3233 if (cft->write)
3234 return cft->write(of, buf, nbytes, off);
3235
2bd59d48
TH
3236 /*
3237 * kernfs guarantees that a file isn't deleted with operations in
3238 * flight, which means that the matching css is and stays alive and
3239 * doesn't need to be pinned. The RCU locking is not necessary
3240 * either. It's just for the convenience of using cgroup_css().
3241 */
3242 rcu_read_lock();
3243 css = cgroup_css(cgrp, cft->ss);
3244 rcu_read_unlock();
a742c59d 3245
451af504 3246 if (cft->write_u64) {
a742c59d
TH
3247 unsigned long long v;
3248 ret = kstrtoull(buf, 0, &v);
3249 if (!ret)
3250 ret = cft->write_u64(css, cft, v);
3251 } else if (cft->write_s64) {
3252 long long v;
3253 ret = kstrtoll(buf, 0, &v);
3254 if (!ret)
3255 ret = cft->write_s64(css, cft, v);
e73d2c61 3256 } else {
a742c59d 3257 ret = -EINVAL;
e73d2c61 3258 }
2bd59d48 3259
a742c59d 3260 return ret ?: nbytes;
355e0c48
PM
3261}
3262
6612f05b 3263static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3264{
2bd59d48 3265 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3266}
3267
6612f05b 3268static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3269{
2bd59d48 3270 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3271}
3272
6612f05b 3273static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3274{
2bd59d48 3275 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3276}
3277
91796569 3278static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3279{
7da11279
TH
3280 struct cftype *cft = seq_cft(m);
3281 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3282
2da8ca82
TH
3283 if (cft->seq_show)
3284 return cft->seq_show(m, arg);
e73d2c61 3285
f4c753b7 3286 if (cft->read_u64)
896f5199
TH
3287 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3288 else if (cft->read_s64)
3289 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3290 else
3291 return -EINVAL;
3292 return 0;
91796569
PM
3293}
3294
2bd59d48
TH
3295static struct kernfs_ops cgroup_kf_single_ops = {
3296 .atomic_write_len = PAGE_SIZE,
3297 .write = cgroup_file_write,
3298 .seq_show = cgroup_seqfile_show,
91796569
PM
3299};
3300
2bd59d48
TH
3301static struct kernfs_ops cgroup_kf_ops = {
3302 .atomic_write_len = PAGE_SIZE,
3303 .write = cgroup_file_write,
3304 .seq_start = cgroup_seqfile_start,
3305 .seq_next = cgroup_seqfile_next,
3306 .seq_stop = cgroup_seqfile_stop,
3307 .seq_show = cgroup_seqfile_show,
3308};
ddbcc7e8
PM
3309
3310/*
3311 * cgroup_rename - Only allow simple rename of directories in place.
3312 */
2bd59d48
TH
3313static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3314 const char *new_name_str)
ddbcc7e8 3315{
2bd59d48 3316 struct cgroup *cgrp = kn->priv;
65dff759 3317 int ret;
65dff759 3318
2bd59d48 3319 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3320 return -ENOTDIR;
2bd59d48 3321 if (kn->parent != new_parent)
ddbcc7e8 3322 return -EIO;
65dff759 3323
6db8e85c
TH
3324 /*
3325 * This isn't a proper migration and its usefulness is very
aa6ec29b 3326 * limited. Disallow on the default hierarchy.
6db8e85c 3327 */
aa6ec29b 3328 if (cgroup_on_dfl(cgrp))
6db8e85c 3329 return -EPERM;
099fca32 3330
e1b2dc17 3331 /*
8353da1f 3332 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3333 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3334 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3335 */
3336 kernfs_break_active_protection(new_parent);
3337 kernfs_break_active_protection(kn);
099fca32 3338
2bd59d48 3339 mutex_lock(&cgroup_mutex);
099fca32 3340
2bd59d48 3341 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3342
2bd59d48 3343 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3344
3345 kernfs_unbreak_active_protection(kn);
3346 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3347 return ret;
099fca32
LZ
3348}
3349
49957f8e
TH
3350/* set uid and gid of cgroup dirs and files to that of the creator */
3351static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3352{
3353 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3354 .ia_uid = current_fsuid(),
3355 .ia_gid = current_fsgid(), };
3356
3357 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3358 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3359 return 0;
3360
3361 return kernfs_setattr(kn, &iattr);
3362}
3363
4df8dc90
TH
3364static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3365 struct cftype *cft)
ddbcc7e8 3366{
8d7e6fb0 3367 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3368 struct kernfs_node *kn;
3369 struct lock_class_key *key = NULL;
49957f8e 3370 int ret;
05ef1d7c 3371
2bd59d48
TH
3372#ifdef CONFIG_DEBUG_LOCK_ALLOC
3373 key = &cft->lockdep_key;
3374#endif
3375 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3376 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3377 NULL, key);
49957f8e
TH
3378 if (IS_ERR(kn))
3379 return PTR_ERR(kn);
3380
3381 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3382 if (ret) {
49957f8e 3383 kernfs_remove(kn);
f8f22e53
TH
3384 return ret;
3385 }
3386
6f60eade
TH
3387 if (cft->file_offset) {
3388 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3389
34c06254 3390 spin_lock_irq(&cgroup_file_kn_lock);
6f60eade 3391 cfile->kn = kn;
34c06254 3392 spin_unlock_irq(&cgroup_file_kn_lock);
6f60eade
TH
3393 }
3394
f8f22e53 3395 return 0;
ddbcc7e8
PM
3396}
3397
b1f28d31
TH
3398/**
3399 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3400 * @css: the target css
3401 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3402 * @cfts: array of cftypes to be added
3403 * @is_add: whether to add or remove
3404 *
3405 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3406 * For removals, this function never fails.
b1f28d31 3407 */
4df8dc90
TH
3408static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3409 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3410 bool is_add)
ddbcc7e8 3411{
6732ed85 3412 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3413 int ret;
3414
01f6474c 3415 lockdep_assert_held(&cgroup_mutex);
db0416b6 3416
6732ed85
TH
3417restart:
3418 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3419 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3420 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3421 continue;
05ebb6e6 3422 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3423 continue;
d51f39b0 3424 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3425 continue;
d51f39b0 3426 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3427 continue;
3428
2739d3cc 3429 if (is_add) {
4df8dc90 3430 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3431 if (ret) {
ed3d261b
JP
3432 pr_warn("%s: failed to add %s, err=%d\n",
3433 __func__, cft->name, ret);
6732ed85
TH
3434 cft_end = cft;
3435 is_add = false;
3436 goto restart;
b1f28d31 3437 }
2739d3cc
LZ
3438 } else {
3439 cgroup_rm_file(cgrp, cft);
db0416b6 3440 }
ddbcc7e8 3441 }
b1f28d31 3442 return 0;
ddbcc7e8
PM
3443}
3444
21a2d343 3445static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3446{
3447 LIST_HEAD(pending);
2bb566cb 3448 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3449 struct cgroup *root = &ss->root->cgrp;
492eb21b 3450 struct cgroup_subsys_state *css;
9ccece80 3451 int ret = 0;
8e3f6541 3452
01f6474c 3453 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3454
e8c82d20 3455 /* add/rm files for all cgroups created before */
ca8bdcaf 3456 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3457 struct cgroup *cgrp = css->cgroup;
3458
e8c82d20
LZ
3459 if (cgroup_is_dead(cgrp))
3460 continue;
3461
4df8dc90 3462 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3463 if (ret)
3464 break;
8e3f6541 3465 }
21a2d343
TH
3466
3467 if (is_add && !ret)
3468 kernfs_activate(root->kn);
9ccece80 3469 return ret;
8e3f6541
TH
3470}
3471
2da440a2 3472static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3473{
2bb566cb 3474 struct cftype *cft;
8e3f6541 3475
2bd59d48
TH
3476 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3477 /* free copy for custom atomic_write_len, see init_cftypes() */
3478 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3479 kfree(cft->kf_ops);
3480 cft->kf_ops = NULL;
2da440a2 3481 cft->ss = NULL;
a8ddc821
TH
3482
3483 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3484 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3485 }
2da440a2
TH
3486}
3487
2bd59d48 3488static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3489{
3490 struct cftype *cft;
3491
2bd59d48
TH
3492 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3493 struct kernfs_ops *kf_ops;
3494
0adb0704
TH
3495 WARN_ON(cft->ss || cft->kf_ops);
3496
2bd59d48
TH
3497 if (cft->seq_start)
3498 kf_ops = &cgroup_kf_ops;
3499 else
3500 kf_ops = &cgroup_kf_single_ops;
3501
3502 /*
3503 * Ugh... if @cft wants a custom max_write_len, we need to
3504 * make a copy of kf_ops to set its atomic_write_len.
3505 */
3506 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3507 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3508 if (!kf_ops) {
3509 cgroup_exit_cftypes(cfts);
3510 return -ENOMEM;
3511 }
3512 kf_ops->atomic_write_len = cft->max_write_len;
3513 }
8e3f6541 3514
2bd59d48 3515 cft->kf_ops = kf_ops;
2bb566cb 3516 cft->ss = ss;
2bd59d48 3517 }
2bb566cb 3518
2bd59d48 3519 return 0;
2da440a2
TH
3520}
3521
21a2d343
TH
3522static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3523{
01f6474c 3524 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3525
3526 if (!cfts || !cfts[0].ss)
3527 return -ENOENT;
3528
3529 list_del(&cfts->node);
3530 cgroup_apply_cftypes(cfts, false);
3531 cgroup_exit_cftypes(cfts);
3532 return 0;
8e3f6541 3533}
8e3f6541 3534
79578621
TH
3535/**
3536 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3537 * @cfts: zero-length name terminated array of cftypes
3538 *
2bb566cb
TH
3539 * Unregister @cfts. Files described by @cfts are removed from all
3540 * existing cgroups and all future cgroups won't have them either. This
3541 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3542 *
3543 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3544 * registered.
79578621 3545 */
2bb566cb 3546int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3547{
21a2d343 3548 int ret;
79578621 3549
01f6474c 3550 mutex_lock(&cgroup_mutex);
21a2d343 3551 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3552 mutex_unlock(&cgroup_mutex);
21a2d343 3553 return ret;
80b13586
TH
3554}
3555
8e3f6541
TH
3556/**
3557 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3558 * @ss: target cgroup subsystem
3559 * @cfts: zero-length name terminated array of cftypes
3560 *
3561 * Register @cfts to @ss. Files described by @cfts are created for all
3562 * existing cgroups to which @ss is attached and all future cgroups will
3563 * have them too. This function can be called anytime whether @ss is
3564 * attached or not.
3565 *
3566 * Returns 0 on successful registration, -errno on failure. Note that this
3567 * function currently returns 0 as long as @cfts registration is successful
3568 * even if some file creation attempts on existing cgroups fail.
3569 */
2cf669a5 3570static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3571{
9ccece80 3572 int ret;
8e3f6541 3573
fc5ed1e9 3574 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3575 return 0;
3576
dc5736ed
LZ
3577 if (!cfts || cfts[0].name[0] == '\0')
3578 return 0;
2bb566cb 3579
2bd59d48
TH
3580 ret = cgroup_init_cftypes(ss, cfts);
3581 if (ret)
3582 return ret;
79578621 3583
01f6474c 3584 mutex_lock(&cgroup_mutex);
21a2d343 3585
0adb0704 3586 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3587 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3588 if (ret)
21a2d343 3589 cgroup_rm_cftypes_locked(cfts);
79578621 3590
01f6474c 3591 mutex_unlock(&cgroup_mutex);
9ccece80 3592 return ret;
79578621
TH
3593}
3594
a8ddc821
TH
3595/**
3596 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3597 * @ss: target cgroup subsystem
3598 * @cfts: zero-length name terminated array of cftypes
3599 *
3600 * Similar to cgroup_add_cftypes() but the added files are only used for
3601 * the default hierarchy.
3602 */
3603int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3604{
3605 struct cftype *cft;
3606
3607 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3608 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3609 return cgroup_add_cftypes(ss, cfts);
3610}
3611
3612/**
3613 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3614 * @ss: target cgroup subsystem
3615 * @cfts: zero-length name terminated array of cftypes
3616 *
3617 * Similar to cgroup_add_cftypes() but the added files are only used for
3618 * the legacy hierarchies.
3619 */
2cf669a5
TH
3620int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3621{
a8ddc821
TH
3622 struct cftype *cft;
3623
e4b7037c
TH
3624 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3625 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3626 return cgroup_add_cftypes(ss, cfts);
3627}
3628
34c06254
TH
3629/**
3630 * cgroup_file_notify - generate a file modified event for a cgroup_file
3631 * @cfile: target cgroup_file
3632 *
3633 * @cfile must have been obtained by setting cftype->file_offset.
3634 */
3635void cgroup_file_notify(struct cgroup_file *cfile)
3636{
3637 unsigned long flags;
3638
3639 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3640 if (cfile->kn)
3641 kernfs_notify(cfile->kn);
3642 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3643}
3644
a043e3b2
LZ
3645/**
3646 * cgroup_task_count - count the number of tasks in a cgroup.
3647 * @cgrp: the cgroup in question
3648 *
3649 * Return the number of tasks in the cgroup.
3650 */
07bc356e 3651static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3652{
3653 int count = 0;
69d0206c 3654 struct cgrp_cset_link *link;
817929ec 3655
f0d9a5f1 3656 spin_lock_bh(&css_set_lock);
69d0206c
TH
3657 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3658 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3659 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3660 return count;
3661}
3662
53fa5261 3663/**
492eb21b 3664 * css_next_child - find the next child of a given css
c2931b70
TH
3665 * @pos: the current position (%NULL to initiate traversal)
3666 * @parent: css whose children to walk
53fa5261 3667 *
c2931b70 3668 * This function returns the next child of @parent and should be called
87fb54f1 3669 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3670 * that @parent and @pos are accessible. The next sibling is guaranteed to
3671 * be returned regardless of their states.
3672 *
3673 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3674 * css which finished ->css_online() is guaranteed to be visible in the
3675 * future iterations and will stay visible until the last reference is put.
3676 * A css which hasn't finished ->css_online() or already finished
3677 * ->css_offline() may show up during traversal. It's each subsystem's
3678 * responsibility to synchronize against on/offlining.
53fa5261 3679 */
c2931b70
TH
3680struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3681 struct cgroup_subsys_state *parent)
53fa5261 3682{
c2931b70 3683 struct cgroup_subsys_state *next;
53fa5261 3684
8353da1f 3685 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3686
3687 /*
de3f0341
TH
3688 * @pos could already have been unlinked from the sibling list.
3689 * Once a cgroup is removed, its ->sibling.next is no longer
3690 * updated when its next sibling changes. CSS_RELEASED is set when
3691 * @pos is taken off list, at which time its next pointer is valid,
3692 * and, as releases are serialized, the one pointed to by the next
3693 * pointer is guaranteed to not have started release yet. This
3694 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3695 * critical section, the one pointed to by its next pointer is
3696 * guaranteed to not have finished its RCU grace period even if we
3697 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3698 *
de3f0341
TH
3699 * If @pos has CSS_RELEASED set, its next pointer can't be
3700 * dereferenced; however, as each css is given a monotonically
3701 * increasing unique serial number and always appended to the
3702 * sibling list, the next one can be found by walking the parent's
3703 * children until the first css with higher serial number than
3704 * @pos's. While this path can be slower, it happens iff iteration
3705 * races against release and the race window is very small.
53fa5261 3706 */
3b287a50 3707 if (!pos) {
c2931b70
TH
3708 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3709 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3710 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3711 } else {
c2931b70 3712 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3713 if (next->serial_nr > pos->serial_nr)
3714 break;
53fa5261
TH
3715 }
3716
3b281afb
TH
3717 /*
3718 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3719 * the next sibling.
3b281afb 3720 */
c2931b70
TH
3721 if (&next->sibling != &parent->children)
3722 return next;
3b281afb 3723 return NULL;
53fa5261 3724}
53fa5261 3725
574bd9f7 3726/**
492eb21b 3727 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3728 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3729 * @root: css whose descendants to walk
574bd9f7 3730 *
492eb21b 3731 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3732 * to visit for pre-order traversal of @root's descendants. @root is
3733 * included in the iteration and the first node to be visited.
75501a6d 3734 *
87fb54f1
TH
3735 * While this function requires cgroup_mutex or RCU read locking, it
3736 * doesn't require the whole traversal to be contained in a single critical
3737 * section. This function will return the correct next descendant as long
3738 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3739 *
3740 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3741 * css which finished ->css_online() is guaranteed to be visible in the
3742 * future iterations and will stay visible until the last reference is put.
3743 * A css which hasn't finished ->css_online() or already finished
3744 * ->css_offline() may show up during traversal. It's each subsystem's
3745 * responsibility to synchronize against on/offlining.
574bd9f7 3746 */
492eb21b
TH
3747struct cgroup_subsys_state *
3748css_next_descendant_pre(struct cgroup_subsys_state *pos,
3749 struct cgroup_subsys_state *root)
574bd9f7 3750{
492eb21b 3751 struct cgroup_subsys_state *next;
574bd9f7 3752
8353da1f 3753 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3754
bd8815a6 3755 /* if first iteration, visit @root */
7805d000 3756 if (!pos)
bd8815a6 3757 return root;
574bd9f7
TH
3758
3759 /* visit the first child if exists */
492eb21b 3760 next = css_next_child(NULL, pos);
574bd9f7
TH
3761 if (next)
3762 return next;
3763
3764 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3765 while (pos != root) {
5c9d535b 3766 next = css_next_child(pos, pos->parent);
75501a6d 3767 if (next)
574bd9f7 3768 return next;
5c9d535b 3769 pos = pos->parent;
7805d000 3770 }
574bd9f7
TH
3771
3772 return NULL;
3773}
574bd9f7 3774
12a9d2fe 3775/**
492eb21b
TH
3776 * css_rightmost_descendant - return the rightmost descendant of a css
3777 * @pos: css of interest
12a9d2fe 3778 *
492eb21b
TH
3779 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3780 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3781 * subtree of @pos.
75501a6d 3782 *
87fb54f1
TH
3783 * While this function requires cgroup_mutex or RCU read locking, it
3784 * doesn't require the whole traversal to be contained in a single critical
3785 * section. This function will return the correct rightmost descendant as
3786 * long as @pos is accessible.
12a9d2fe 3787 */
492eb21b
TH
3788struct cgroup_subsys_state *
3789css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3790{
492eb21b 3791 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3792
8353da1f 3793 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3794
3795 do {
3796 last = pos;
3797 /* ->prev isn't RCU safe, walk ->next till the end */
3798 pos = NULL;
492eb21b 3799 css_for_each_child(tmp, last)
12a9d2fe
TH
3800 pos = tmp;
3801 } while (pos);
3802
3803 return last;
3804}
12a9d2fe 3805
492eb21b
TH
3806static struct cgroup_subsys_state *
3807css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3808{
492eb21b 3809 struct cgroup_subsys_state *last;
574bd9f7
TH
3810
3811 do {
3812 last = pos;
492eb21b 3813 pos = css_next_child(NULL, pos);
574bd9f7
TH
3814 } while (pos);
3815
3816 return last;
3817}
3818
3819/**
492eb21b 3820 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3821 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3822 * @root: css whose descendants to walk
574bd9f7 3823 *
492eb21b 3824 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3825 * to visit for post-order traversal of @root's descendants. @root is
3826 * included in the iteration and the last node to be visited.
75501a6d 3827 *
87fb54f1
TH
3828 * While this function requires cgroup_mutex or RCU read locking, it
3829 * doesn't require the whole traversal to be contained in a single critical
3830 * section. This function will return the correct next descendant as long
3831 * as both @pos and @cgroup are accessible and @pos is a descendant of
3832 * @cgroup.
c2931b70
TH
3833 *
3834 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3835 * css which finished ->css_online() is guaranteed to be visible in the
3836 * future iterations and will stay visible until the last reference is put.
3837 * A css which hasn't finished ->css_online() or already finished
3838 * ->css_offline() may show up during traversal. It's each subsystem's
3839 * responsibility to synchronize against on/offlining.
574bd9f7 3840 */
492eb21b
TH
3841struct cgroup_subsys_state *
3842css_next_descendant_post(struct cgroup_subsys_state *pos,
3843 struct cgroup_subsys_state *root)
574bd9f7 3844{
492eb21b 3845 struct cgroup_subsys_state *next;
574bd9f7 3846
8353da1f 3847 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3848
58b79a91
TH
3849 /* if first iteration, visit leftmost descendant which may be @root */
3850 if (!pos)
3851 return css_leftmost_descendant(root);
574bd9f7 3852
bd8815a6
TH
3853 /* if we visited @root, we're done */
3854 if (pos == root)
3855 return NULL;
3856
574bd9f7 3857 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3858 next = css_next_child(pos, pos->parent);
75501a6d 3859 if (next)
492eb21b 3860 return css_leftmost_descendant(next);
574bd9f7
TH
3861
3862 /* no sibling left, visit parent */
5c9d535b 3863 return pos->parent;
574bd9f7 3864}
574bd9f7 3865
f3d46500
TH
3866/**
3867 * css_has_online_children - does a css have online children
3868 * @css: the target css
3869 *
3870 * Returns %true if @css has any online children; otherwise, %false. This
3871 * function can be called from any context but the caller is responsible
3872 * for synchronizing against on/offlining as necessary.
3873 */
3874bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3875{
f3d46500
TH
3876 struct cgroup_subsys_state *child;
3877 bool ret = false;
cbc125ef
TH
3878
3879 rcu_read_lock();
f3d46500 3880 css_for_each_child(child, css) {
99bae5f9 3881 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3882 ret = true;
3883 break;
cbc125ef
TH
3884 }
3885 }
3886 rcu_read_unlock();
f3d46500 3887 return ret;
574bd9f7 3888}
574bd9f7 3889
0942eeee 3890/**
ecb9d535 3891 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3892 * @it: the iterator to advance
3893 *
3894 * Advance @it to the next css_set to walk.
d515876e 3895 */
ecb9d535 3896static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3897{
0f0a2b4f 3898 struct list_head *l = it->cset_pos;
d515876e
TH
3899 struct cgrp_cset_link *link;
3900 struct css_set *cset;
3901
f0d9a5f1 3902 lockdep_assert_held(&css_set_lock);
ed27b9f7 3903
d515876e
TH
3904 /* Advance to the next non-empty css_set */
3905 do {
3906 l = l->next;
0f0a2b4f
TH
3907 if (l == it->cset_head) {
3908 it->cset_pos = NULL;
ecb9d535 3909 it->task_pos = NULL;
d515876e
TH
3910 return;
3911 }
3ebb2b6e
TH
3912
3913 if (it->ss) {
3914 cset = container_of(l, struct css_set,
3915 e_cset_node[it->ss->id]);
3916 } else {
3917 link = list_entry(l, struct cgrp_cset_link, cset_link);
3918 cset = link->cset;
3919 }
0de0942d 3920 } while (!css_set_populated(cset));
c7561128 3921
0f0a2b4f 3922 it->cset_pos = l;
c7561128
TH
3923
3924 if (!list_empty(&cset->tasks))
0f0a2b4f 3925 it->task_pos = cset->tasks.next;
c7561128 3926 else
0f0a2b4f
TH
3927 it->task_pos = cset->mg_tasks.next;
3928
3929 it->tasks_head = &cset->tasks;
3930 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3931
3932 /*
3933 * We don't keep css_sets locked across iteration steps and thus
3934 * need to take steps to ensure that iteration can be resumed after
3935 * the lock is re-acquired. Iteration is performed at two levels -
3936 * css_sets and tasks in them.
3937 *
3938 * Once created, a css_set never leaves its cgroup lists, so a
3939 * pinned css_set is guaranteed to stay put and we can resume
3940 * iteration afterwards.
3941 *
3942 * Tasks may leave @cset across iteration steps. This is resolved
3943 * by registering each iterator with the css_set currently being
3944 * walked and making css_set_move_task() advance iterators whose
3945 * next task is leaving.
3946 */
3947 if (it->cur_cset) {
3948 list_del(&it->iters_node);
3949 put_css_set_locked(it->cur_cset);
3950 }
3951 get_css_set(cset);
3952 it->cur_cset = cset;
3953 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3954}
3955
ecb9d535
TH
3956static void css_task_iter_advance(struct css_task_iter *it)
3957{
3958 struct list_head *l = it->task_pos;
3959
f0d9a5f1 3960 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3961 WARN_ON_ONCE(!l);
3962
3963 /*
3964 * Advance iterator to find next entry. cset->tasks is consumed
3965 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3966 * next cset.
3967 */
3968 l = l->next;
3969
3970 if (l == it->tasks_head)
3971 l = it->mg_tasks_head->next;
3972
3973 if (l == it->mg_tasks_head)
3974 css_task_iter_advance_css_set(it);
3975 else
3976 it->task_pos = l;
3977}
3978
0942eeee 3979/**
72ec7029
TH
3980 * css_task_iter_start - initiate task iteration
3981 * @css: the css to walk tasks of
0942eeee
TH
3982 * @it: the task iterator to use
3983 *
72ec7029
TH
3984 * Initiate iteration through the tasks of @css. The caller can call
3985 * css_task_iter_next() to walk through the tasks until the function
3986 * returns NULL. On completion of iteration, css_task_iter_end() must be
3987 * called.
0942eeee 3988 */
72ec7029
TH
3989void css_task_iter_start(struct cgroup_subsys_state *css,
3990 struct css_task_iter *it)
817929ec 3991{
56fde9e0
TH
3992 /* no one should try to iterate before mounting cgroups */
3993 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3994
ed27b9f7
TH
3995 memset(it, 0, sizeof(*it));
3996
f0d9a5f1 3997 spin_lock_bh(&css_set_lock);
c59cd3d8 3998
3ebb2b6e
TH
3999 it->ss = css->ss;
4000
4001 if (it->ss)
4002 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4003 else
4004 it->cset_pos = &css->cgroup->cset_links;
4005
0f0a2b4f 4006 it->cset_head = it->cset_pos;
c59cd3d8 4007
ecb9d535 4008 css_task_iter_advance_css_set(it);
ed27b9f7 4009
f0d9a5f1 4010 spin_unlock_bh(&css_set_lock);
817929ec
PM
4011}
4012
0942eeee 4013/**
72ec7029 4014 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
4015 * @it: the task iterator being iterated
4016 *
4017 * The "next" function for task iteration. @it should have been
72ec7029
TH
4018 * initialized via css_task_iter_start(). Returns NULL when the iteration
4019 * reaches the end.
0942eeee 4020 */
72ec7029 4021struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 4022{
d5745675 4023 if (it->cur_task) {
ed27b9f7 4024 put_task_struct(it->cur_task);
d5745675
TH
4025 it->cur_task = NULL;
4026 }
ed27b9f7 4027
f0d9a5f1 4028 spin_lock_bh(&css_set_lock);
ed27b9f7 4029
d5745675
TH
4030 if (it->task_pos) {
4031 it->cur_task = list_entry(it->task_pos, struct task_struct,
4032 cg_list);
4033 get_task_struct(it->cur_task);
4034 css_task_iter_advance(it);
4035 }
ed27b9f7 4036
f0d9a5f1 4037 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4038
4039 return it->cur_task;
817929ec
PM
4040}
4041
0942eeee 4042/**
72ec7029 4043 * css_task_iter_end - finish task iteration
0942eeee
TH
4044 * @it: the task iterator to finish
4045 *
72ec7029 4046 * Finish task iteration started by css_task_iter_start().
0942eeee 4047 */
72ec7029 4048void css_task_iter_end(struct css_task_iter *it)
31a7df01 4049{
ed27b9f7 4050 if (it->cur_cset) {
f0d9a5f1 4051 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
4052 list_del(&it->iters_node);
4053 put_css_set_locked(it->cur_cset);
f0d9a5f1 4054 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
4055 }
4056
4057 if (it->cur_task)
4058 put_task_struct(it->cur_task);
31a7df01
CW
4059}
4060
4061/**
8cc99345
TH
4062 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4063 * @to: cgroup to which the tasks will be moved
4064 * @from: cgroup in which the tasks currently reside
31a7df01 4065 *
eaf797ab
TH
4066 * Locking rules between cgroup_post_fork() and the migration path
4067 * guarantee that, if a task is forking while being migrated, the new child
4068 * is guaranteed to be either visible in the source cgroup after the
4069 * parent's migration is complete or put into the target cgroup. No task
4070 * can slip out of migration through forking.
31a7df01 4071 */
8cc99345 4072int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 4073{
952aaa12
TH
4074 LIST_HEAD(preloaded_csets);
4075 struct cgrp_cset_link *link;
72ec7029 4076 struct css_task_iter it;
e406d1cf 4077 struct task_struct *task;
952aaa12 4078 int ret;
31a7df01 4079
952aaa12 4080 mutex_lock(&cgroup_mutex);
31a7df01 4081
952aaa12 4082 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 4083 spin_lock_bh(&css_set_lock);
952aaa12
TH
4084 list_for_each_entry(link, &from->cset_links, cset_link)
4085 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 4086 spin_unlock_bh(&css_set_lock);
31a7df01 4087
952aaa12
TH
4088 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4089 if (ret)
4090 goto out_err;
8cc99345 4091
952aaa12 4092 /*
2cfa2b19 4093 * Migrate tasks one-by-one until @from is empty. This fails iff
952aaa12
TH
4094 * ->can_attach() fails.
4095 */
e406d1cf 4096 do {
9d800df1 4097 css_task_iter_start(&from->self, &it);
e406d1cf
TH
4098 task = css_task_iter_next(&it);
4099 if (task)
4100 get_task_struct(task);
4101 css_task_iter_end(&it);
4102
4103 if (task) {
9af2ec45 4104 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
4105 put_task_struct(task);
4106 }
4107 } while (task && !ret);
952aaa12
TH
4108out_err:
4109 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4110 mutex_unlock(&cgroup_mutex);
e406d1cf 4111 return ret;
8cc99345
TH
4112}
4113
bbcb81d0 4114/*
102a775e 4115 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4116 *
4117 * Reading this file can return large amounts of data if a cgroup has
4118 * *lots* of attached tasks. So it may need several calls to read(),
4119 * but we cannot guarantee that the information we produce is correct
4120 * unless we produce it entirely atomically.
4121 *
bbcb81d0 4122 */
bbcb81d0 4123
24528255
LZ
4124/* which pidlist file are we talking about? */
4125enum cgroup_filetype {
4126 CGROUP_FILE_PROCS,
4127 CGROUP_FILE_TASKS,
4128};
4129
4130/*
4131 * A pidlist is a list of pids that virtually represents the contents of one
4132 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4133 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4134 * to the cgroup.
4135 */
4136struct cgroup_pidlist {
4137 /*
4138 * used to find which pidlist is wanted. doesn't change as long as
4139 * this particular list stays in the list.
4140 */
4141 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4142 /* array of xids */
4143 pid_t *list;
4144 /* how many elements the above list has */
4145 int length;
24528255
LZ
4146 /* each of these stored in a list by its cgroup */
4147 struct list_head links;
4148 /* pointer to the cgroup we belong to, for list removal purposes */
4149 struct cgroup *owner;
b1a21367
TH
4150 /* for delayed destruction */
4151 struct delayed_work destroy_dwork;
24528255
LZ
4152};
4153
d1d9fd33
BB
4154/*
4155 * The following two functions "fix" the issue where there are more pids
4156 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4157 * TODO: replace with a kernel-wide solution to this problem
4158 */
4159#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4160static void *pidlist_allocate(int count)
4161{
4162 if (PIDLIST_TOO_LARGE(count))
4163 return vmalloc(count * sizeof(pid_t));
4164 else
4165 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4166}
b1a21367 4167
d1d9fd33
BB
4168static void pidlist_free(void *p)
4169{
58794514 4170 kvfree(p);
d1d9fd33 4171}
d1d9fd33 4172
b1a21367
TH
4173/*
4174 * Used to destroy all pidlists lingering waiting for destroy timer. None
4175 * should be left afterwards.
4176 */
4177static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4178{
4179 struct cgroup_pidlist *l, *tmp_l;
4180
4181 mutex_lock(&cgrp->pidlist_mutex);
4182 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4183 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4184 mutex_unlock(&cgrp->pidlist_mutex);
4185
4186 flush_workqueue(cgroup_pidlist_destroy_wq);
4187 BUG_ON(!list_empty(&cgrp->pidlists));
4188}
4189
4190static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4191{
4192 struct delayed_work *dwork = to_delayed_work(work);
4193 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4194 destroy_dwork);
4195 struct cgroup_pidlist *tofree = NULL;
4196
4197 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4198
4199 /*
04502365
TH
4200 * Destroy iff we didn't get queued again. The state won't change
4201 * as destroy_dwork can only be queued while locked.
b1a21367 4202 */
04502365 4203 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4204 list_del(&l->links);
4205 pidlist_free(l->list);
4206 put_pid_ns(l->key.ns);
4207 tofree = l;
4208 }
4209
b1a21367
TH
4210 mutex_unlock(&l->owner->pidlist_mutex);
4211 kfree(tofree);
4212}
4213
bbcb81d0 4214/*
102a775e 4215 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4216 * Returns the number of unique elements.
bbcb81d0 4217 */
6ee211ad 4218static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4219{
102a775e 4220 int src, dest = 1;
102a775e
BB
4221
4222 /*
4223 * we presume the 0th element is unique, so i starts at 1. trivial
4224 * edge cases first; no work needs to be done for either
4225 */
4226 if (length == 0 || length == 1)
4227 return length;
4228 /* src and dest walk down the list; dest counts unique elements */
4229 for (src = 1; src < length; src++) {
4230 /* find next unique element */
4231 while (list[src] == list[src-1]) {
4232 src++;
4233 if (src == length)
4234 goto after;
4235 }
4236 /* dest always points to where the next unique element goes */
4237 list[dest] = list[src];
4238 dest++;
4239 }
4240after:
102a775e
BB
4241 return dest;
4242}
4243
afb2bc14
TH
4244/*
4245 * The two pid files - task and cgroup.procs - guaranteed that the result
4246 * is sorted, which forced this whole pidlist fiasco. As pid order is
4247 * different per namespace, each namespace needs differently sorted list,
4248 * making it impossible to use, for example, single rbtree of member tasks
4249 * sorted by task pointer. As pidlists can be fairly large, allocating one
4250 * per open file is dangerous, so cgroup had to implement shared pool of
4251 * pidlists keyed by cgroup and namespace.
4252 *
4253 * All this extra complexity was caused by the original implementation
4254 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4255 * want to do away with it. Explicitly scramble sort order if on the
4256 * default hierarchy so that no such expectation exists in the new
4257 * interface.
afb2bc14
TH
4258 *
4259 * Scrambling is done by swapping every two consecutive bits, which is
4260 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4261 */
4262static pid_t pid_fry(pid_t pid)
4263{
4264 unsigned a = pid & 0x55555555;
4265 unsigned b = pid & 0xAAAAAAAA;
4266
4267 return (a << 1) | (b >> 1);
4268}
4269
4270static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4271{
aa6ec29b 4272 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4273 return pid_fry(pid);
4274 else
4275 return pid;
4276}
4277
102a775e
BB
4278static int cmppid(const void *a, const void *b)
4279{
4280 return *(pid_t *)a - *(pid_t *)b;
4281}
4282
afb2bc14
TH
4283static int fried_cmppid(const void *a, const void *b)
4284{
4285 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4286}
4287
e6b81710
TH
4288static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4289 enum cgroup_filetype type)
4290{
4291 struct cgroup_pidlist *l;
4292 /* don't need task_nsproxy() if we're looking at ourself */
4293 struct pid_namespace *ns = task_active_pid_ns(current);
4294
4295 lockdep_assert_held(&cgrp->pidlist_mutex);
4296
4297 list_for_each_entry(l, &cgrp->pidlists, links)
4298 if (l->key.type == type && l->key.ns == ns)
4299 return l;
4300 return NULL;
4301}
4302
72a8cb30
BB
4303/*
4304 * find the appropriate pidlist for our purpose (given procs vs tasks)
4305 * returns with the lock on that pidlist already held, and takes care
4306 * of the use count, or returns NULL with no locks held if we're out of
4307 * memory.
4308 */
e6b81710
TH
4309static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4310 enum cgroup_filetype type)
72a8cb30
BB
4311{
4312 struct cgroup_pidlist *l;
b70cc5fd 4313
e6b81710
TH
4314 lockdep_assert_held(&cgrp->pidlist_mutex);
4315
4316 l = cgroup_pidlist_find(cgrp, type);
4317 if (l)
4318 return l;
4319
72a8cb30 4320 /* entry not found; create a new one */
f4f4be2b 4321 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4322 if (!l)
72a8cb30 4323 return l;
e6b81710 4324
b1a21367 4325 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4326 l->key.type = type;
e6b81710
TH
4327 /* don't need task_nsproxy() if we're looking at ourself */
4328 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4329 l->owner = cgrp;
4330 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4331 return l;
4332}
4333
102a775e
BB
4334/*
4335 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4336 */
72a8cb30
BB
4337static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4338 struct cgroup_pidlist **lp)
102a775e
BB
4339{
4340 pid_t *array;
4341 int length;
4342 int pid, n = 0; /* used for populating the array */
72ec7029 4343 struct css_task_iter it;
817929ec 4344 struct task_struct *tsk;
102a775e
BB
4345 struct cgroup_pidlist *l;
4346
4bac00d1
TH
4347 lockdep_assert_held(&cgrp->pidlist_mutex);
4348
102a775e
BB
4349 /*
4350 * If cgroup gets more users after we read count, we won't have
4351 * enough space - tough. This race is indistinguishable to the
4352 * caller from the case that the additional cgroup users didn't
4353 * show up until sometime later on.
4354 */
4355 length = cgroup_task_count(cgrp);
d1d9fd33 4356 array = pidlist_allocate(length);
102a775e
BB
4357 if (!array)
4358 return -ENOMEM;
4359 /* now, populate the array */
9d800df1 4360 css_task_iter_start(&cgrp->self, &it);
72ec7029 4361 while ((tsk = css_task_iter_next(&it))) {
102a775e 4362 if (unlikely(n == length))
817929ec 4363 break;
102a775e 4364 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4365 if (type == CGROUP_FILE_PROCS)
4366 pid = task_tgid_vnr(tsk);
4367 else
4368 pid = task_pid_vnr(tsk);
102a775e
BB
4369 if (pid > 0) /* make sure to only use valid results */
4370 array[n++] = pid;
817929ec 4371 }
72ec7029 4372 css_task_iter_end(&it);
102a775e
BB
4373 length = n;
4374 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4375 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4376 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4377 else
4378 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4379 if (type == CGROUP_FILE_PROCS)
6ee211ad 4380 length = pidlist_uniq(array, length);
e6b81710 4381
e6b81710 4382 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4383 if (!l) {
d1d9fd33 4384 pidlist_free(array);
72a8cb30 4385 return -ENOMEM;
102a775e 4386 }
e6b81710
TH
4387
4388 /* store array, freeing old if necessary */
d1d9fd33 4389 pidlist_free(l->list);
102a775e
BB
4390 l->list = array;
4391 l->length = length;
72a8cb30 4392 *lp = l;
102a775e 4393 return 0;
bbcb81d0
PM
4394}
4395
846c7bb0 4396/**
a043e3b2 4397 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4398 * @stats: cgroupstats to fill information into
4399 * @dentry: A dentry entry belonging to the cgroup for which stats have
4400 * been requested.
a043e3b2
LZ
4401 *
4402 * Build and fill cgroupstats so that taskstats can export it to user
4403 * space.
846c7bb0
BS
4404 */
4405int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4406{
2bd59d48 4407 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4408 struct cgroup *cgrp;
72ec7029 4409 struct css_task_iter it;
846c7bb0 4410 struct task_struct *tsk;
33d283be 4411
2bd59d48
TH
4412 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4413 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4414 kernfs_type(kn) != KERNFS_DIR)
4415 return -EINVAL;
4416
bad34660
LZ
4417 mutex_lock(&cgroup_mutex);
4418
846c7bb0 4419 /*
2bd59d48 4420 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4421 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4422 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4423 */
2bd59d48
TH
4424 rcu_read_lock();
4425 cgrp = rcu_dereference(kn->priv);
bad34660 4426 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4427 rcu_read_unlock();
bad34660 4428 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4429 return -ENOENT;
4430 }
bad34660 4431 rcu_read_unlock();
846c7bb0 4432
9d800df1 4433 css_task_iter_start(&cgrp->self, &it);
72ec7029 4434 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4435 switch (tsk->state) {
4436 case TASK_RUNNING:
4437 stats->nr_running++;
4438 break;
4439 case TASK_INTERRUPTIBLE:
4440 stats->nr_sleeping++;
4441 break;
4442 case TASK_UNINTERRUPTIBLE:
4443 stats->nr_uninterruptible++;
4444 break;
4445 case TASK_STOPPED:
4446 stats->nr_stopped++;
4447 break;
4448 default:
4449 if (delayacct_is_task_waiting_on_io(tsk))
4450 stats->nr_io_wait++;
4451 break;
4452 }
4453 }
72ec7029 4454 css_task_iter_end(&it);
846c7bb0 4455
bad34660 4456 mutex_unlock(&cgroup_mutex);
2bd59d48 4457 return 0;
846c7bb0
BS
4458}
4459
8f3ff208 4460
bbcb81d0 4461/*
102a775e 4462 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4463 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4464 * in the cgroup->l->list array.
bbcb81d0 4465 */
cc31edce 4466
102a775e 4467static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4468{
cc31edce
PM
4469 /*
4470 * Initially we receive a position value that corresponds to
4471 * one more than the last pid shown (or 0 on the first call or
4472 * after a seek to the start). Use a binary-search to find the
4473 * next pid to display, if any
4474 */
2bd59d48 4475 struct kernfs_open_file *of = s->private;
7da11279 4476 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4477 struct cgroup_pidlist *l;
7da11279 4478 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4479 int index = 0, pid = *pos;
4bac00d1
TH
4480 int *iter, ret;
4481
4482 mutex_lock(&cgrp->pidlist_mutex);
4483
4484 /*
5d22444f 4485 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4486 * after open. If the matching pidlist is around, we can use that.
5d22444f 4487 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4488 * could already have been destroyed.
4489 */
5d22444f
TH
4490 if (of->priv)
4491 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4492
4493 /*
4494 * Either this is the first start() after open or the matching
4495 * pidlist has been destroyed inbetween. Create a new one.
4496 */
5d22444f
TH
4497 if (!of->priv) {
4498 ret = pidlist_array_load(cgrp, type,
4499 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4500 if (ret)
4501 return ERR_PTR(ret);
4502 }
5d22444f 4503 l = of->priv;
cc31edce 4504
cc31edce 4505 if (pid) {
102a775e 4506 int end = l->length;
20777766 4507
cc31edce
PM
4508 while (index < end) {
4509 int mid = (index + end) / 2;
afb2bc14 4510 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4511 index = mid;
4512 break;
afb2bc14 4513 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4514 index = mid + 1;
4515 else
4516 end = mid;
4517 }
4518 }
4519 /* If we're off the end of the array, we're done */
102a775e 4520 if (index >= l->length)
cc31edce
PM
4521 return NULL;
4522 /* Update the abstract position to be the actual pid that we found */
102a775e 4523 iter = l->list + index;
afb2bc14 4524 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4525 return iter;
4526}
4527
102a775e 4528static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4529{
2bd59d48 4530 struct kernfs_open_file *of = s->private;
5d22444f 4531 struct cgroup_pidlist *l = of->priv;
62236858 4532
5d22444f
TH
4533 if (l)
4534 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4535 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4536 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4537}
4538
102a775e 4539static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4540{
2bd59d48 4541 struct kernfs_open_file *of = s->private;
5d22444f 4542 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4543 pid_t *p = v;
4544 pid_t *end = l->list + l->length;
cc31edce
PM
4545 /*
4546 * Advance to the next pid in the array. If this goes off the
4547 * end, we're done
4548 */
4549 p++;
4550 if (p >= end) {
4551 return NULL;
4552 } else {
7da11279 4553 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4554 return p;
4555 }
4556}
4557
102a775e 4558static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4559{
94ff212d
JP
4560 seq_printf(s, "%d\n", *(int *)v);
4561
4562 return 0;
cc31edce 4563}
bbcb81d0 4564
182446d0
TH
4565static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4566 struct cftype *cft)
81a6a5cd 4567{
182446d0 4568 return notify_on_release(css->cgroup);
81a6a5cd
PM
4569}
4570
182446d0
TH
4571static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4572 struct cftype *cft, u64 val)
6379c106 4573{
6379c106 4574 if (val)
182446d0 4575 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4576 else
182446d0 4577 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4578 return 0;
4579}
4580
182446d0
TH
4581static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4582 struct cftype *cft)
97978e6d 4583{
182446d0 4584 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4585}
4586
182446d0
TH
4587static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4588 struct cftype *cft, u64 val)
97978e6d
DL
4589{
4590 if (val)
182446d0 4591 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4592 else
182446d0 4593 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4594 return 0;
4595}
4596
a14c6874
TH
4597/* cgroup core interface files for the default hierarchy */
4598static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4599 {
d5c56ced 4600 .name = "cgroup.procs",
6f60eade 4601 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4602 .seq_start = cgroup_pidlist_start,
4603 .seq_next = cgroup_pidlist_next,
4604 .seq_stop = cgroup_pidlist_stop,
4605 .seq_show = cgroup_pidlist_show,
5d22444f 4606 .private = CGROUP_FILE_PROCS,
acbef755 4607 .write = cgroup_procs_write,
102a775e 4608 },
f8f22e53
TH
4609 {
4610 .name = "cgroup.controllers",
a14c6874 4611 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4612 .seq_show = cgroup_root_controllers_show,
4613 },
4614 {
4615 .name = "cgroup.controllers",
a14c6874 4616 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4617 .seq_show = cgroup_controllers_show,
4618 },
4619 {
4620 .name = "cgroup.subtree_control",
f8f22e53 4621 .seq_show = cgroup_subtree_control_show,
451af504 4622 .write = cgroup_subtree_control_write,
f8f22e53 4623 },
842b597e 4624 {
4a07c222 4625 .name = "cgroup.events",
a14c6874 4626 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4627 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4628 .seq_show = cgroup_events_show,
842b597e 4629 },
a14c6874
TH
4630 { } /* terminate */
4631};
d5c56ced 4632
a14c6874
TH
4633/* cgroup core interface files for the legacy hierarchies */
4634static struct cftype cgroup_legacy_base_files[] = {
4635 {
4636 .name = "cgroup.procs",
4637 .seq_start = cgroup_pidlist_start,
4638 .seq_next = cgroup_pidlist_next,
4639 .seq_stop = cgroup_pidlist_stop,
4640 .seq_show = cgroup_pidlist_show,
4641 .private = CGROUP_FILE_PROCS,
4642 .write = cgroup_procs_write,
a14c6874
TH
4643 },
4644 {
4645 .name = "cgroup.clone_children",
4646 .read_u64 = cgroup_clone_children_read,
4647 .write_u64 = cgroup_clone_children_write,
4648 },
4649 {
4650 .name = "cgroup.sane_behavior",
4651 .flags = CFTYPE_ONLY_ON_ROOT,
4652 .seq_show = cgroup_sane_behavior_show,
4653 },
d5c56ced
TH
4654 {
4655 .name = "tasks",
6612f05b
TH
4656 .seq_start = cgroup_pidlist_start,
4657 .seq_next = cgroup_pidlist_next,
4658 .seq_stop = cgroup_pidlist_stop,
4659 .seq_show = cgroup_pidlist_show,
5d22444f 4660 .private = CGROUP_FILE_TASKS,
acbef755 4661 .write = cgroup_tasks_write,
d5c56ced
TH
4662 },
4663 {
4664 .name = "notify_on_release",
d5c56ced
TH
4665 .read_u64 = cgroup_read_notify_on_release,
4666 .write_u64 = cgroup_write_notify_on_release,
4667 },
6e6ff25b
TH
4668 {
4669 .name = "release_agent",
a14c6874 4670 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4671 .seq_show = cgroup_release_agent_show,
451af504 4672 .write = cgroup_release_agent_write,
5f469907 4673 .max_write_len = PATH_MAX - 1,
6e6ff25b 4674 },
db0416b6 4675 { } /* terminate */
bbcb81d0
PM
4676};
4677
0c21ead1
TH
4678/*
4679 * css destruction is four-stage process.
4680 *
4681 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4682 * Implemented in kill_css().
4683 *
4684 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4685 * and thus css_tryget_online() is guaranteed to fail, the css can be
4686 * offlined by invoking offline_css(). After offlining, the base ref is
4687 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4688 *
4689 * 3. When the percpu_ref reaches zero, the only possible remaining
4690 * accessors are inside RCU read sections. css_release() schedules the
4691 * RCU callback.
4692 *
4693 * 4. After the grace period, the css can be freed. Implemented in
4694 * css_free_work_fn().
4695 *
4696 * It is actually hairier because both step 2 and 4 require process context
4697 * and thus involve punting to css->destroy_work adding two additional
4698 * steps to the already complex sequence.
4699 */
35ef10da 4700static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4701{
4702 struct cgroup_subsys_state *css =
35ef10da 4703 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4704 struct cgroup_subsys *ss = css->ss;
0c21ead1 4705 struct cgroup *cgrp = css->cgroup;
48ddbe19 4706
9a1049da
TH
4707 percpu_ref_exit(&css->refcnt);
4708
01e58659 4709 if (ss) {
9d755d33 4710 /* css free path */
8bb5ef79 4711 struct cgroup_subsys_state *parent = css->parent;
01e58659
VD
4712 int id = css->id;
4713
01e58659
VD
4714 ss->css_free(css);
4715 cgroup_idr_remove(&ss->css_idr, id);
9d755d33 4716 cgroup_put(cgrp);
8bb5ef79
TH
4717
4718 if (parent)
4719 css_put(parent);
9d755d33
TH
4720 } else {
4721 /* cgroup free path */
4722 atomic_dec(&cgrp->root->nr_cgrps);
4723 cgroup_pidlist_destroy_all(cgrp);
971ff493 4724 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4725
d51f39b0 4726 if (cgroup_parent(cgrp)) {
9d755d33
TH
4727 /*
4728 * We get a ref to the parent, and put the ref when
4729 * this cgroup is being freed, so it's guaranteed
4730 * that the parent won't be destroyed before its
4731 * children.
4732 */
d51f39b0 4733 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4734 kernfs_put(cgrp->kn);
4735 kfree(cgrp);
4736 } else {
4737 /*
4738 * This is root cgroup's refcnt reaching zero,
4739 * which indicates that the root should be
4740 * released.
4741 */
4742 cgroup_destroy_root(cgrp->root);
4743 }
4744 }
48ddbe19
TH
4745}
4746
0c21ead1 4747static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4748{
4749 struct cgroup_subsys_state *css =
0c21ead1 4750 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4751
35ef10da 4752 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4753 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4754}
4755
25e15d83 4756static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4757{
4758 struct cgroup_subsys_state *css =
25e15d83 4759 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4760 struct cgroup_subsys *ss = css->ss;
9d755d33 4761 struct cgroup *cgrp = css->cgroup;
15a4c835 4762
1fed1b2e
TH
4763 mutex_lock(&cgroup_mutex);
4764
de3f0341 4765 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4766 list_del_rcu(&css->sibling);
4767
9d755d33
TH
4768 if (ss) {
4769 /* css release path */
01e58659 4770 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4771 if (ss->css_released)
4772 ss->css_released(css);
9d755d33
TH
4773 } else {
4774 /* cgroup release path */
9d755d33
TH
4775 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4776 cgrp->id = -1;
a4189487
LZ
4777
4778 /*
4779 * There are two control paths which try to determine
4780 * cgroup from dentry without going through kernfs -
4781 * cgroupstats_build() and css_tryget_online_from_dir().
4782 * Those are supported by RCU protecting clearing of
4783 * cgrp->kn->priv backpointer.
4784 */
4785 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4786 }
d3daf28d 4787
1fed1b2e
TH
4788 mutex_unlock(&cgroup_mutex);
4789
0c21ead1 4790 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4791}
4792
d3daf28d
TH
4793static void css_release(struct percpu_ref *ref)
4794{
4795 struct cgroup_subsys_state *css =
4796 container_of(ref, struct cgroup_subsys_state, refcnt);
4797
25e15d83
TH
4798 INIT_WORK(&css->destroy_work, css_release_work_fn);
4799 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4800}
4801
ddfcadab
TH
4802static void init_and_link_css(struct cgroup_subsys_state *css,
4803 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4804{
0cb51d71
TH
4805 lockdep_assert_held(&cgroup_mutex);
4806
ddfcadab
TH
4807 cgroup_get(cgrp);
4808
d5c419b6 4809 memset(css, 0, sizeof(*css));
bd89aabc 4810 css->cgroup = cgrp;
72c97e54 4811 css->ss = ss;
d5c419b6
TH
4812 INIT_LIST_HEAD(&css->sibling);
4813 INIT_LIST_HEAD(&css->children);
0cb51d71 4814 css->serial_nr = css_serial_nr_next++;
aa226ff4 4815 atomic_set(&css->online_cnt, 0);
0ae78e0b 4816
d51f39b0
TH
4817 if (cgroup_parent(cgrp)) {
4818 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4819 css_get(css->parent);
ddfcadab 4820 }
48ddbe19 4821
ca8bdcaf 4822 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4823}
4824
2a4ac633 4825/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4826static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4827{
623f926b 4828 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4829 int ret = 0;
4830
a31f2d3f
TH
4831 lockdep_assert_held(&cgroup_mutex);
4832
92fb9748 4833 if (ss->css_online)
eb95419b 4834 ret = ss->css_online(css);
ae7f164a 4835 if (!ret) {
eb95419b 4836 css->flags |= CSS_ONLINE;
aec25020 4837 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
aa226ff4
TH
4838
4839 atomic_inc(&css->online_cnt);
4840 if (css->parent)
4841 atomic_inc(&css->parent->online_cnt);
ae7f164a 4842 }
b1929db4 4843 return ret;
a31f2d3f
TH
4844}
4845
2a4ac633 4846/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4847static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4848{
623f926b 4849 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4850
4851 lockdep_assert_held(&cgroup_mutex);
4852
4853 if (!(css->flags & CSS_ONLINE))
4854 return;
4855
d7eeac19 4856 if (ss->css_offline)
eb95419b 4857 ss->css_offline(css);
a31f2d3f 4858
eb95419b 4859 css->flags &= ~CSS_ONLINE;
e3297803 4860 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4861
4862 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4863}
4864
c81c925a
TH
4865/**
4866 * create_css - create a cgroup_subsys_state
4867 * @cgrp: the cgroup new css will be associated with
4868 * @ss: the subsys of new css
f63070d3 4869 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4870 *
4871 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4872 * css is online and installed in @cgrp with all interface files created if
4873 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4874 */
f63070d3
TH
4875static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4876 bool visible)
c81c925a 4877{
d51f39b0 4878 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4879 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4880 struct cgroup_subsys_state *css;
4881 int err;
4882
c81c925a
TH
4883 lockdep_assert_held(&cgroup_mutex);
4884
1fed1b2e 4885 css = ss->css_alloc(parent_css);
c81c925a
TH
4886 if (IS_ERR(css))
4887 return PTR_ERR(css);
4888
ddfcadab 4889 init_and_link_css(css, ss, cgrp);
a2bed820 4890
2aad2a86 4891 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4892 if (err)
3eb59ec6 4893 goto err_free_css;
c81c925a 4894
cf780b7d 4895 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4896 if (err < 0)
4897 goto err_free_percpu_ref;
4898 css->id = err;
c81c925a 4899
f63070d3 4900 if (visible) {
4df8dc90 4901 err = css_populate_dir(css, NULL);
f63070d3
TH
4902 if (err)
4903 goto err_free_id;
4904 }
15a4c835
TH
4905
4906 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4907 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4908 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4909
4910 err = online_css(css);
4911 if (err)
1fed1b2e 4912 goto err_list_del;
94419627 4913
c81c925a 4914 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4915 cgroup_parent(parent)) {
ed3d261b 4916 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4917 current->comm, current->pid, ss->name);
c81c925a 4918 if (!strcmp(ss->name, "memory"))
ed3d261b 4919 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4920 ss->warned_broken_hierarchy = true;
4921 }
4922
4923 return 0;
4924
1fed1b2e
TH
4925err_list_del:
4926 list_del_rcu(&css->sibling);
4df8dc90 4927 css_clear_dir(css, NULL);
15a4c835
TH
4928err_free_id:
4929 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4930err_free_percpu_ref:
9a1049da 4931 percpu_ref_exit(&css->refcnt);
3eb59ec6 4932err_free_css:
a2bed820 4933 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4934 return err;
4935}
4936
b3bfd983
TH
4937static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4938 umode_t mode)
ddbcc7e8 4939{
b11cfb58 4940 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4941 struct cgroup_root *root;
ddbcc7e8 4942 struct cgroup_subsys *ss;
2bd59d48 4943 struct kernfs_node *kn;
b11cfb58 4944 int level, ssid, ret;
ddbcc7e8 4945
71b1fb5c
AC
4946 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4947 */
4948 if (strchr(name, '\n'))
4949 return -EINVAL;
4950
a9746d8d
TH
4951 parent = cgroup_kn_lock_live(parent_kn);
4952 if (!parent)
4953 return -ENODEV;
4954 root = parent->root;
b11cfb58 4955 level = parent->level + 1;
ddbcc7e8 4956
0a950f65 4957 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4958 cgrp = kzalloc(sizeof(*cgrp) +
4959 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4960 if (!cgrp) {
4961 ret = -ENOMEM;
4962 goto out_unlock;
0ab02ca8
LZ
4963 }
4964
2aad2a86 4965 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4966 if (ret)
4967 goto out_free_cgrp;
4968
0ab02ca8
LZ
4969 /*
4970 * Temporarily set the pointer to NULL, so idr_find() won't return
4971 * a half-baked cgroup.
4972 */
cf780b7d 4973 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4974 if (cgrp->id < 0) {
ba0f4d76 4975 ret = -ENOMEM;
9d755d33 4976 goto out_cancel_ref;
976c06bc
TH
4977 }
4978
cc31edce 4979 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4980
9d800df1 4981 cgrp->self.parent = &parent->self;
ba0f4d76 4982 cgrp->root = root;
b11cfb58
TH
4983 cgrp->level = level;
4984
4985 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4986 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4987
b6abdb0e
LZ
4988 if (notify_on_release(parent))
4989 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4990
2260e7fc
TH
4991 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4992 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4993
2bd59d48 4994 /* create the directory */
e61734c5 4995 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4996 if (IS_ERR(kn)) {
ba0f4d76
TH
4997 ret = PTR_ERR(kn);
4998 goto out_free_id;
2bd59d48
TH
4999 }
5000 cgrp->kn = kn;
ddbcc7e8 5001
4e139afc 5002 /*
6f30558f
TH
5003 * This extra ref will be put in cgroup_free_fn() and guarantees
5004 * that @cgrp->kn is always accessible.
4e139afc 5005 */
6f30558f 5006 kernfs_get(kn);
ddbcc7e8 5007
0cb51d71 5008 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 5009
4e139afc 5010 /* allocation complete, commit to creation */
d5c419b6 5011 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 5012 atomic_inc(&root->nr_cgrps);
59f5296b 5013 cgroup_get(parent);
415cf07a 5014
0d80255e
TH
5015 /*
5016 * @cgrp is now fully operational. If something fails after this
5017 * point, it'll be released via the normal destruction path.
5018 */
6fa4918d 5019 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 5020
ba0f4d76
TH
5021 ret = cgroup_kn_set_ugid(kn);
5022 if (ret)
5023 goto out_destroy;
49957f8e 5024
4df8dc90 5025 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
5026 if (ret)
5027 goto out_destroy;
628f7cd4 5028
9d403e99 5029 /* let's create and online css's */
b85d2040 5030 for_each_subsys(ss, ssid) {
f392e51c 5031 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
5032 ret = create_css(cgrp, ss,
5033 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
5034 if (ret)
5035 goto out_destroy;
b85d2040 5036 }
a8638030 5037 }
ddbcc7e8 5038
bd53d617
TH
5039 /*
5040 * On the default hierarchy, a child doesn't automatically inherit
667c2491 5041 * subtree_control from the parent. Each is configured manually.
bd53d617 5042 */
667c2491
TH
5043 if (!cgroup_on_dfl(cgrp)) {
5044 cgrp->subtree_control = parent->subtree_control;
5045 cgroup_refresh_child_subsys_mask(cgrp);
5046 }
2bd59d48 5047
2bd59d48 5048 kernfs_activate(kn);
ddbcc7e8 5049
ba0f4d76
TH
5050 ret = 0;
5051 goto out_unlock;
ddbcc7e8 5052
ba0f4d76 5053out_free_id:
6fa4918d 5054 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 5055out_cancel_ref:
9a1049da 5056 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 5057out_free_cgrp:
bd89aabc 5058 kfree(cgrp);
ba0f4d76 5059out_unlock:
a9746d8d 5060 cgroup_kn_unlock(parent_kn);
ba0f4d76 5061 return ret;
4b8b47eb 5062
ba0f4d76 5063out_destroy:
4b8b47eb 5064 cgroup_destroy_locked(cgrp);
ba0f4d76 5065 goto out_unlock;
ddbcc7e8
PM
5066}
5067
223dbc38
TH
5068/*
5069 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
5070 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5071 * initate destruction and put the css ref from kill_css().
223dbc38
TH
5072 */
5073static void css_killed_work_fn(struct work_struct *work)
d3daf28d 5074{
223dbc38
TH
5075 struct cgroup_subsys_state *css =
5076 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 5077
f20104de 5078 mutex_lock(&cgroup_mutex);
09a503ea 5079
aa226ff4
TH
5080 do {
5081 offline_css(css);
5082 css_put(css);
5083 /* @css can't go away while we're holding cgroup_mutex */
5084 css = css->parent;
5085 } while (css && atomic_dec_and_test(&css->online_cnt));
5086
5087 mutex_unlock(&cgroup_mutex);
d3daf28d
TH
5088}
5089
223dbc38
TH
5090/* css kill confirmation processing requires process context, bounce */
5091static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
5092{
5093 struct cgroup_subsys_state *css =
5094 container_of(ref, struct cgroup_subsys_state, refcnt);
5095
aa226ff4
TH
5096 if (atomic_dec_and_test(&css->online_cnt)) {
5097 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5098 queue_work(cgroup_destroy_wq, &css->destroy_work);
5099 }
d3daf28d
TH
5100}
5101
f392e51c
TH
5102/**
5103 * kill_css - destroy a css
5104 * @css: css to destroy
5105 *
5106 * This function initiates destruction of @css by removing cgroup interface
5107 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
5108 * asynchronously once css_tryget_online() is guaranteed to fail and when
5109 * the reference count reaches zero, @css will be released.
f392e51c
TH
5110 */
5111static void kill_css(struct cgroup_subsys_state *css)
edae0c33 5112{
01f6474c 5113 lockdep_assert_held(&cgroup_mutex);
94419627 5114
2bd59d48
TH
5115 /*
5116 * This must happen before css is disassociated with its cgroup.
5117 * See seq_css() for details.
5118 */
4df8dc90 5119 css_clear_dir(css, NULL);
3c14f8b4 5120
edae0c33
TH
5121 /*
5122 * Killing would put the base ref, but we need to keep it alive
5123 * until after ->css_offline().
5124 */
5125 css_get(css);
5126
5127 /*
5128 * cgroup core guarantees that, by the time ->css_offline() is
5129 * invoked, no new css reference will be given out via
ec903c0c 5130 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5131 * proceed to offlining css's because percpu_ref_kill() doesn't
5132 * guarantee that the ref is seen as killed on all CPUs on return.
5133 *
5134 * Use percpu_ref_kill_and_confirm() to get notifications as each
5135 * css is confirmed to be seen as killed on all CPUs.
5136 */
5137 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5138}
5139
5140/**
5141 * cgroup_destroy_locked - the first stage of cgroup destruction
5142 * @cgrp: cgroup to be destroyed
5143 *
5144 * css's make use of percpu refcnts whose killing latency shouldn't be
5145 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5146 * guarantee that css_tryget_online() won't succeed by the time
5147 * ->css_offline() is invoked. To satisfy all the requirements,
5148 * destruction is implemented in the following two steps.
d3daf28d
TH
5149 *
5150 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5151 * userland visible parts and start killing the percpu refcnts of
5152 * css's. Set up so that the next stage will be kicked off once all
5153 * the percpu refcnts are confirmed to be killed.
5154 *
5155 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5156 * rest of destruction. Once all cgroup references are gone, the
5157 * cgroup is RCU-freed.
5158 *
5159 * This function implements s1. After this step, @cgrp is gone as far as
5160 * the userland is concerned and a new cgroup with the same name may be
5161 * created. As cgroup doesn't care about the names internally, this
5162 * doesn't cause any problem.
5163 */
42809dd4
TH
5164static int cgroup_destroy_locked(struct cgroup *cgrp)
5165 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5166{
2bd59d48 5167 struct cgroup_subsys_state *css;
1c6727af 5168 int ssid;
ddbcc7e8 5169
42809dd4
TH
5170 lockdep_assert_held(&cgroup_mutex);
5171
91486f61
TH
5172 /*
5173 * Only migration can raise populated from zero and we're already
5174 * holding cgroup_mutex.
5175 */
5176 if (cgroup_is_populated(cgrp))
ddbcc7e8 5177 return -EBUSY;
a043e3b2 5178
bb78a92f 5179 /*
d5c419b6
TH
5180 * Make sure there's no live children. We can't test emptiness of
5181 * ->self.children as dead children linger on it while being
5182 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5183 */
f3d46500 5184 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5185 return -EBUSY;
5186
455050d2
TH
5187 /*
5188 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5189 * creation by disabling cgroup_lock_live_group().
455050d2 5190 */
184faf32 5191 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5192
249f3468 5193 /* initiate massacre of all css's */
1c6727af
TH
5194 for_each_css(css, ssid, cgrp)
5195 kill_css(css);
455050d2 5196
455050d2 5197 /*
01f6474c
TH
5198 * Remove @cgrp directory along with the base files. @cgrp has an
5199 * extra ref on its kn.
f20104de 5200 */
01f6474c 5201 kernfs_remove(cgrp->kn);
f20104de 5202
d51f39b0 5203 check_for_release(cgroup_parent(cgrp));
2bd59d48 5204
249f3468 5205 /* put the base reference */
9d755d33 5206 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5207
ea15f8cc
TH
5208 return 0;
5209};
5210
2bd59d48 5211static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5212{
a9746d8d 5213 struct cgroup *cgrp;
2bd59d48 5214 int ret = 0;
42809dd4 5215
a9746d8d
TH
5216 cgrp = cgroup_kn_lock_live(kn);
5217 if (!cgrp)
5218 return 0;
42809dd4 5219
a9746d8d 5220 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5221
a9746d8d 5222 cgroup_kn_unlock(kn);
42809dd4 5223 return ret;
8e3f6541
TH
5224}
5225
2bd59d48
TH
5226static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5227 .remount_fs = cgroup_remount,
5228 .show_options = cgroup_show_options,
5229 .mkdir = cgroup_mkdir,
5230 .rmdir = cgroup_rmdir,
5231 .rename = cgroup_rename,
5232};
5233
15a4c835 5234static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5235{
ddbcc7e8 5236 struct cgroup_subsys_state *css;
cfe36bde 5237
a5ae9899 5238 pr_debug("Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5239
648bb56d
TH
5240 mutex_lock(&cgroup_mutex);
5241
15a4c835 5242 idr_init(&ss->css_idr);
0adb0704 5243 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5244
3dd06ffa
TH
5245 /* Create the root cgroup state for this subsystem */
5246 ss->root = &cgrp_dfl_root;
5247 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5248 /* We don't handle early failures gracefully */
5249 BUG_ON(IS_ERR(css));
ddfcadab 5250 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5251
5252 /*
5253 * Root csses are never destroyed and we can't initialize
5254 * percpu_ref during early init. Disable refcnting.
5255 */
5256 css->flags |= CSS_NO_REF;
5257
15a4c835 5258 if (early) {
9395a450 5259 /* allocation can't be done safely during early init */
15a4c835
TH
5260 css->id = 1;
5261 } else {
5262 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5263 BUG_ON(css->id < 0);
5264 }
ddbcc7e8 5265
e8d55fde 5266 /* Update the init_css_set to contain a subsys
817929ec 5267 * pointer to this state - since the subsystem is
e8d55fde 5268 * newly registered, all tasks and hence the
3dd06ffa 5269 * init_css_set is in the subsystem's root cgroup. */
aec25020 5270 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5271
cb4a3167
AS
5272 have_fork_callback |= (bool)ss->fork << ss->id;
5273 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5274 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5275 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5276
e8d55fde
LZ
5277 /* At system boot, before all subsystems have been
5278 * registered, no tasks have been forked, so we don't
5279 * need to invoke fork callbacks here. */
5280 BUG_ON(!list_empty(&init_task.tasks));
5281
ae7f164a 5282 BUG_ON(online_css(css));
a8638030 5283
cf5d5941
BB
5284 mutex_unlock(&cgroup_mutex);
5285}
cf5d5941 5286
ddbcc7e8 5287/**
a043e3b2
LZ
5288 * cgroup_init_early - cgroup initialization at system boot
5289 *
5290 * Initialize cgroups at system boot, and initialize any
5291 * subsystems that request early init.
ddbcc7e8
PM
5292 */
5293int __init cgroup_init_early(void)
5294{
7b9a6ba5 5295 static struct cgroup_sb_opts __initdata opts;
30159ec7 5296 struct cgroup_subsys *ss;
ddbcc7e8 5297 int i;
30159ec7 5298
3dd06ffa 5299 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5300 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5301
a4ea1cc9 5302 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5303
3ed80a62 5304 for_each_subsys(ss, i) {
aec25020 5305 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5306 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5307 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5308 ss->id, ss->name);
073219e9
TH
5309 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5310 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5311
aec25020 5312 ss->id = i;
073219e9 5313 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5314 if (!ss->legacy_name)
5315 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5316
5317 if (ss->early_init)
15a4c835 5318 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5319 }
5320 return 0;
5321}
5322
a3e72739
TH
5323static unsigned long cgroup_disable_mask __initdata;
5324
ddbcc7e8 5325/**
a043e3b2
LZ
5326 * cgroup_init - cgroup initialization
5327 *
5328 * Register cgroup filesystem and /proc file, and initialize
5329 * any subsystems that didn't request early init.
ddbcc7e8
PM
5330 */
5331int __init cgroup_init(void)
5332{
30159ec7 5333 struct cgroup_subsys *ss;
0ac801fe 5334 unsigned long key;
035f4f51 5335 int ssid;
ddbcc7e8 5336
1ed13287 5337 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5338 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5339 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5340
a79a908f
AK
5341 get_user_ns(init_cgroup_ns.user_ns);
5342
54e7b4eb 5343 mutex_lock(&cgroup_mutex);
54e7b4eb 5344
82fe9b0d
TH
5345 /* Add init_css_set to the hash table */
5346 key = css_set_hash(init_css_set.subsys);
5347 hash_add(css_set_table, &init_css_set.hlist, key);
5348
3dd06ffa 5349 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5350
54e7b4eb
TH
5351 mutex_unlock(&cgroup_mutex);
5352
172a2c06 5353 for_each_subsys(ss, ssid) {
15a4c835
TH
5354 if (ss->early_init) {
5355 struct cgroup_subsys_state *css =
5356 init_css_set.subsys[ss->id];
5357
5358 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5359 GFP_KERNEL);
5360 BUG_ON(css->id < 0);
5361 } else {
5362 cgroup_init_subsys(ss, false);
5363 }
172a2c06 5364
2d8f243a
TH
5365 list_add_tail(&init_css_set.e_cset_node[ssid],
5366 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5367
5368 /*
c731ae1d
LZ
5369 * Setting dfl_root subsys_mask needs to consider the
5370 * disabled flag and cftype registration needs kmalloc,
5371 * both of which aren't available during early_init.
172a2c06 5372 */
a3e72739
TH
5373 if (cgroup_disable_mask & (1 << ssid)) {
5374 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5375 printk(KERN_INFO "Disabling %s control group subsystem\n",
5376 ss->name);
a8ddc821 5377 continue;
a3e72739 5378 }
a8ddc821 5379
223ffb29
JW
5380 if (cgroup_ssid_no_v1(ssid))
5381 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5382 ss->name);
5383
a8ddc821
TH
5384 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5385
5de4fa13
TH
5386 if (!ss->dfl_cftypes)
5387 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5388
a8ddc821
TH
5389 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5390 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5391 } else {
5392 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5393 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5394 }
295458e6
VD
5395
5396 if (ss->bind)
5397 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5398 }
5399
035f4f51
TH
5400 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5401 WARN_ON(register_filesystem(&cgroup_fs_type));
67e9c74b 5402 WARN_ON(register_filesystem(&cgroup2_fs_type));
035f4f51 5403 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5404
2bd59d48 5405 return 0;
ddbcc7e8 5406}
b4f48b63 5407
e5fca243
TH
5408static int __init cgroup_wq_init(void)
5409{
5410 /*
5411 * There isn't much point in executing destruction path in
5412 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5413 * Use 1 for @max_active.
e5fca243
TH
5414 *
5415 * We would prefer to do this in cgroup_init() above, but that
5416 * is called before init_workqueues(): so leave this until after.
5417 */
1a11533f 5418 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5419 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5420
5421 /*
5422 * Used to destroy pidlists and separate to serve as flush domain.
5423 * Cap @max_active to 1 too.
5424 */
5425 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5426 0, 1);
5427 BUG_ON(!cgroup_pidlist_destroy_wq);
5428
e5fca243
TH
5429 return 0;
5430}
5431core_initcall(cgroup_wq_init);
5432
a424316c
PM
5433/*
5434 * proc_cgroup_show()
5435 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5436 * - Used for /proc/<pid>/cgroup.
a424316c 5437 */
006f4ac4
ZL
5438int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5439 struct pid *pid, struct task_struct *tsk)
a424316c 5440{
e61734c5 5441 char *buf, *path;
a424316c 5442 int retval;
3dd06ffa 5443 struct cgroup_root *root;
a424316c
PM
5444
5445 retval = -ENOMEM;
e61734c5 5446 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5447 if (!buf)
5448 goto out;
5449
a424316c 5450 mutex_lock(&cgroup_mutex);
f0d9a5f1 5451 spin_lock_bh(&css_set_lock);
a424316c 5452
985ed670 5453 for_each_root(root) {
a424316c 5454 struct cgroup_subsys *ss;
bd89aabc 5455 struct cgroup *cgrp;
b85d2040 5456 int ssid, count = 0;
a424316c 5457
a2dd4247 5458 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5459 continue;
5460
2c6ab6d2 5461 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5462 if (root != &cgrp_dfl_root)
5463 for_each_subsys(ss, ssid)
5464 if (root->subsys_mask & (1 << ssid))
5465 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5466 ss->legacy_name);
c6d57f33
PM
5467 if (strlen(root->name))
5468 seq_printf(m, "%sname=%s", count ? "," : "",
5469 root->name);
a424316c 5470 seq_putc(m, ':');
2e91fa7f 5471
7717f7ba 5472 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5473
5474 /*
5475 * On traditional hierarchies, all zombie tasks show up as
5476 * belonging to the root cgroup. On the default hierarchy,
5477 * while a zombie doesn't show up in "cgroup.procs" and
5478 * thus can't be migrated, its /proc/PID/cgroup keeps
5479 * reporting the cgroup it belonged to before exiting. If
5480 * the cgroup is removed before the zombie is reaped,
5481 * " (deleted)" is appended to the cgroup path.
5482 */
5483 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
a79a908f
AK
5484 path = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5485 current->nsproxy->cgroup_ns);
2e91fa7f
TH
5486 if (!path) {
5487 retval = -ENAMETOOLONG;
5488 goto out_unlock;
5489 }
5490 } else {
5491 path = "/";
e61734c5 5492 }
2e91fa7f 5493
e61734c5 5494 seq_puts(m, path);
2e91fa7f
TH
5495
5496 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5497 seq_puts(m, " (deleted)\n");
5498 else
5499 seq_putc(m, '\n');
a424316c
PM
5500 }
5501
006f4ac4 5502 retval = 0;
a424316c 5503out_unlock:
f0d9a5f1 5504 spin_unlock_bh(&css_set_lock);
a424316c 5505 mutex_unlock(&cgroup_mutex);
a424316c
PM
5506 kfree(buf);
5507out:
5508 return retval;
5509}
5510
a424316c
PM
5511/* Display information about each subsystem and each hierarchy */
5512static int proc_cgroupstats_show(struct seq_file *m, void *v)
5513{
30159ec7 5514 struct cgroup_subsys *ss;
a424316c 5515 int i;
a424316c 5516
8bab8dde 5517 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5518 /*
5519 * ideally we don't want subsystems moving around while we do this.
5520 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5521 * subsys/hierarchy state.
5522 */
a424316c 5523 mutex_lock(&cgroup_mutex);
30159ec7
TH
5524
5525 for_each_subsys(ss, i)
2c6ab6d2 5526 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5527 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5528 atomic_read(&ss->root->nr_cgrps),
5529 cgroup_ssid_enabled(i));
30159ec7 5530
a424316c
PM
5531 mutex_unlock(&cgroup_mutex);
5532 return 0;
5533}
5534
5535static int cgroupstats_open(struct inode *inode, struct file *file)
5536{
9dce07f1 5537 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5538}
5539
828c0950 5540static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5541 .open = cgroupstats_open,
5542 .read = seq_read,
5543 .llseek = seq_lseek,
5544 .release = single_release,
5545};
5546
b4f48b63 5547/**
eaf797ab 5548 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5549 * @child: pointer to task_struct of forking parent process.
b4f48b63 5550 *
eaf797ab
TH
5551 * A task is associated with the init_css_set until cgroup_post_fork()
5552 * attaches it to the parent's css_set. Empty cg_list indicates that
5553 * @child isn't holding reference to its css_set.
b4f48b63
PM
5554 */
5555void cgroup_fork(struct task_struct *child)
5556{
eaf797ab 5557 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5558 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5559}
5560
7e47682e
AS
5561/**
5562 * cgroup_can_fork - called on a new task before the process is exposed
5563 * @child: the task in question.
5564 *
5565 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5566 * returns an error, the fork aborts with that error code. This allows for
5567 * a cgroup subsystem to conditionally allow or deny new forks.
5568 */
b53202e6 5569int cgroup_can_fork(struct task_struct *child)
7e47682e
AS
5570{
5571 struct cgroup_subsys *ss;
5572 int i, j, ret;
5573
5574 for_each_subsys_which(ss, i, &have_canfork_callback) {
b53202e6 5575 ret = ss->can_fork(child);
7e47682e
AS
5576 if (ret)
5577 goto out_revert;
5578 }
5579
5580 return 0;
5581
5582out_revert:
5583 for_each_subsys(ss, j) {
5584 if (j >= i)
5585 break;
5586 if (ss->cancel_fork)
b53202e6 5587 ss->cancel_fork(child);
7e47682e
AS
5588 }
5589
5590 return ret;
5591}
5592
5593/**
5594 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5595 * @child: the task in question
5596 *
5597 * This calls the cancel_fork() callbacks if a fork failed *after*
5598 * cgroup_can_fork() succeded.
5599 */
b53202e6 5600void cgroup_cancel_fork(struct task_struct *child)
7e47682e
AS
5601{
5602 struct cgroup_subsys *ss;
5603 int i;
5604
5605 for_each_subsys(ss, i)
5606 if (ss->cancel_fork)
b53202e6 5607 ss->cancel_fork(child);
7e47682e
AS
5608}
5609
817929ec 5610/**
a043e3b2
LZ
5611 * cgroup_post_fork - called on a new task after adding it to the task list
5612 * @child: the task in question
5613 *
5edee61e
TH
5614 * Adds the task to the list running through its css_set if necessary and
5615 * call the subsystem fork() callbacks. Has to be after the task is
5616 * visible on the task list in case we race with the first call to
0942eeee 5617 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5618 * list.
a043e3b2 5619 */
b53202e6 5620void cgroup_post_fork(struct task_struct *child)
817929ec 5621{
30159ec7 5622 struct cgroup_subsys *ss;
5edee61e
TH
5623 int i;
5624
3ce3230a 5625 /*
251f8c03 5626 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5627 * function sets use_task_css_set_links before grabbing
5628 * tasklist_lock and we just went through tasklist_lock to add
5629 * @child, it's guaranteed that either we see the set
5630 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5631 * @child during its iteration.
5632 *
5633 * If we won the race, @child is associated with %current's
f0d9a5f1 5634 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5635 * association is stable, and, on completion of the parent's
5636 * migration, @child is visible in the source of migration or
5637 * already in the destination cgroup. This guarantee is necessary
5638 * when implementing operations which need to migrate all tasks of
5639 * a cgroup to another.
5640 *
251f8c03 5641 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5642 * will remain in init_css_set. This is safe because all tasks are
5643 * in the init_css_set before cg_links is enabled and there's no
5644 * operation which transfers all tasks out of init_css_set.
3ce3230a 5645 */
817929ec 5646 if (use_task_css_set_links) {
eaf797ab
TH
5647 struct css_set *cset;
5648
f0d9a5f1 5649 spin_lock_bh(&css_set_lock);
0e1d768f 5650 cset = task_css_set(current);
eaf797ab 5651 if (list_empty(&child->cg_list)) {
eaf797ab 5652 get_css_set(cset);
f6d7d049 5653 css_set_move_task(child, NULL, cset, false);
eaf797ab 5654 }
f0d9a5f1 5655 spin_unlock_bh(&css_set_lock);
817929ec 5656 }
5edee61e
TH
5657
5658 /*
5659 * Call ss->fork(). This must happen after @child is linked on
5660 * css_set; otherwise, @child might change state between ->fork()
5661 * and addition to css_set.
5662 */
cb4a3167 5663 for_each_subsys_which(ss, i, &have_fork_callback)
b53202e6 5664 ss->fork(child);
817929ec 5665}
5edee61e 5666
b4f48b63
PM
5667/**
5668 * cgroup_exit - detach cgroup from exiting task
5669 * @tsk: pointer to task_struct of exiting process
5670 *
5671 * Description: Detach cgroup from @tsk and release it.
5672 *
5673 * Note that cgroups marked notify_on_release force every task in
5674 * them to take the global cgroup_mutex mutex when exiting.
5675 * This could impact scaling on very large systems. Be reluctant to
5676 * use notify_on_release cgroups where very high task exit scaling
5677 * is required on large systems.
5678 *
0e1d768f
TH
5679 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5680 * call cgroup_exit() while the task is still competent to handle
5681 * notify_on_release(), then leave the task attached to the root cgroup in
5682 * each hierarchy for the remainder of its exit. No need to bother with
5683 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5684 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5685 */
1ec41830 5686void cgroup_exit(struct task_struct *tsk)
b4f48b63 5687{
30159ec7 5688 struct cgroup_subsys *ss;
5abb8855 5689 struct css_set *cset;
d41d5a01 5690 int i;
817929ec
PM
5691
5692 /*
0e1d768f 5693 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5694 * with us, we can check css_set and cg_list without synchronization.
817929ec 5695 */
0de0942d
TH
5696 cset = task_css_set(tsk);
5697
817929ec 5698 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5699 spin_lock_bh(&css_set_lock);
f6d7d049 5700 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5701 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5702 } else {
5703 get_css_set(cset);
817929ec
PM
5704 }
5705
cb4a3167 5706 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5707 for_each_subsys_which(ss, i, &have_exit_callback)
5708 ss->exit(tsk);
5709}
30159ec7 5710
2e91fa7f
TH
5711void cgroup_free(struct task_struct *task)
5712{
5713 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5714 struct cgroup_subsys *ss;
5715 int ssid;
5716
5717 for_each_subsys_which(ss, ssid, &have_free_callback)
5718 ss->free(task);
d41d5a01 5719
2e91fa7f 5720 put_css_set(cset);
b4f48b63 5721}
697f4161 5722
bd89aabc 5723static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5724{
27bd4dbb 5725 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5726 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5727 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5728}
5729
81a6a5cd
PM
5730/*
5731 * Notify userspace when a cgroup is released, by running the
5732 * configured release agent with the name of the cgroup (path
5733 * relative to the root of cgroup file system) as the argument.
5734 *
5735 * Most likely, this user command will try to rmdir this cgroup.
5736 *
5737 * This races with the possibility that some other task will be
5738 * attached to this cgroup before it is removed, or that some other
5739 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5740 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5741 * unused, and this cgroup will be reprieved from its death sentence,
5742 * to continue to serve a useful existence. Next time it's released,
5743 * we will get notified again, if it still has 'notify_on_release' set.
5744 *
5745 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5746 * means only wait until the task is successfully execve()'d. The
5747 * separate release agent task is forked by call_usermodehelper(),
5748 * then control in this thread returns here, without waiting for the
5749 * release agent task. We don't bother to wait because the caller of
5750 * this routine has no use for the exit status of the release agent
5751 * task, so no sense holding our caller up for that.
81a6a5cd 5752 */
81a6a5cd
PM
5753static void cgroup_release_agent(struct work_struct *work)
5754{
971ff493
ZL
5755 struct cgroup *cgrp =
5756 container_of(work, struct cgroup, release_agent_work);
5757 char *pathbuf = NULL, *agentbuf = NULL, *path;
5758 char *argv[3], *envp[3];
5759
81a6a5cd 5760 mutex_lock(&cgroup_mutex);
971ff493
ZL
5761
5762 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5763 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5764 if (!pathbuf || !agentbuf)
5765 goto out;
5766
a79a908f
AK
5767 spin_lock_bh(&css_set_lock);
5768 path = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns);
5769 spin_unlock_bh(&css_set_lock);
971ff493
ZL
5770 if (!path)
5771 goto out;
5772
5773 argv[0] = agentbuf;
5774 argv[1] = path;
5775 argv[2] = NULL;
5776
5777 /* minimal command environment */
5778 envp[0] = "HOME=/";
5779 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5780 envp[2] = NULL;
5781
81a6a5cd 5782 mutex_unlock(&cgroup_mutex);
971ff493 5783 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5784 goto out_free;
971ff493 5785out:
81a6a5cd 5786 mutex_unlock(&cgroup_mutex);
3e2cd91a 5787out_free:
971ff493
ZL
5788 kfree(agentbuf);
5789 kfree(pathbuf);
81a6a5cd 5790}
8bab8dde
PM
5791
5792static int __init cgroup_disable(char *str)
5793{
30159ec7 5794 struct cgroup_subsys *ss;
8bab8dde 5795 char *token;
30159ec7 5796 int i;
8bab8dde
PM
5797
5798 while ((token = strsep(&str, ",")) != NULL) {
5799 if (!*token)
5800 continue;
be45c900 5801
3ed80a62 5802 for_each_subsys(ss, i) {
3e1d2eed
TH
5803 if (strcmp(token, ss->name) &&
5804 strcmp(token, ss->legacy_name))
5805 continue;
a3e72739 5806 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5807 }
5808 }
5809 return 1;
5810}
5811__setup("cgroup_disable=", cgroup_disable);
38460b48 5812
223ffb29
JW
5813static int __init cgroup_no_v1(char *str)
5814{
5815 struct cgroup_subsys *ss;
5816 char *token;
5817 int i;
5818
5819 while ((token = strsep(&str, ",")) != NULL) {
5820 if (!*token)
5821 continue;
5822
5823 if (!strcmp(token, "all")) {
5824 cgroup_no_v1_mask = ~0UL;
5825 break;
5826 }
5827
5828 for_each_subsys(ss, i) {
5829 if (strcmp(token, ss->name) &&
5830 strcmp(token, ss->legacy_name))
5831 continue;
5832
5833 cgroup_no_v1_mask |= 1 << i;
5834 }
5835 }
5836 return 1;
5837}
5838__setup("cgroup_no_v1=", cgroup_no_v1);
5839
b77d7b60 5840/**
ec903c0c 5841 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5842 * @dentry: directory dentry of interest
5843 * @ss: subsystem of interest
b77d7b60 5844 *
5a17f543
TH
5845 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5846 * to get the corresponding css and return it. If such css doesn't exist
5847 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5848 */
ec903c0c
TH
5849struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5850 struct cgroup_subsys *ss)
e5d1367f 5851{
2bd59d48
TH
5852 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5853 struct cgroup_subsys_state *css = NULL;
e5d1367f 5854 struct cgroup *cgrp;
e5d1367f 5855
35cf0836 5856 /* is @dentry a cgroup dir? */
2bd59d48
TH
5857 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5858 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5859 return ERR_PTR(-EBADF);
5860
5a17f543
TH
5861 rcu_read_lock();
5862
2bd59d48
TH
5863 /*
5864 * This path doesn't originate from kernfs and @kn could already
5865 * have been or be removed at any point. @kn->priv is RCU
a4189487 5866 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5867 */
5868 cgrp = rcu_dereference(kn->priv);
5869 if (cgrp)
5870 css = cgroup_css(cgrp, ss);
5a17f543 5871
ec903c0c 5872 if (!css || !css_tryget_online(css))
5a17f543
TH
5873 css = ERR_PTR(-ENOENT);
5874
5875 rcu_read_unlock();
5876 return css;
e5d1367f 5877}
e5d1367f 5878
1cb650b9
LZ
5879/**
5880 * css_from_id - lookup css by id
5881 * @id: the cgroup id
5882 * @ss: cgroup subsys to be looked into
5883 *
5884 * Returns the css if there's valid one with @id, otherwise returns NULL.
5885 * Should be called under rcu_read_lock().
5886 */
5887struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5888{
6fa4918d 5889 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5890 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5891}
5892
16af4396
TH
5893/**
5894 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5895 * @path: path on the default hierarchy
5896 *
5897 * Find the cgroup at @path on the default hierarchy, increment its
5898 * reference count and return it. Returns pointer to the found cgroup on
5899 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5900 * if @path points to a non-directory.
5901 */
5902struct cgroup *cgroup_get_from_path(const char *path)
5903{
5904 struct kernfs_node *kn;
5905 struct cgroup *cgrp;
5906
5907 mutex_lock(&cgroup_mutex);
5908
5909 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5910 if (kn) {
5911 if (kernfs_type(kn) == KERNFS_DIR) {
5912 cgrp = kn->priv;
5913 cgroup_get(cgrp);
5914 } else {
5915 cgrp = ERR_PTR(-ENOTDIR);
5916 }
5917 kernfs_put(kn);
5918 } else {
5919 cgrp = ERR_PTR(-ENOENT);
5920 }
5921
5922 mutex_unlock(&cgroup_mutex);
5923 return cgrp;
5924}
5925EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5926
bd1060a1
TH
5927/*
5928 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5929 * definition in cgroup-defs.h.
5930 */
5931#ifdef CONFIG_SOCK_CGROUP_DATA
5932
5933#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5934
3fa4cc9c 5935DEFINE_SPINLOCK(cgroup_sk_update_lock);
bd1060a1
TH
5936static bool cgroup_sk_alloc_disabled __read_mostly;
5937
5938void cgroup_sk_alloc_disable(void)
5939{
5940 if (cgroup_sk_alloc_disabled)
5941 return;
5942 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5943 cgroup_sk_alloc_disabled = true;
5944}
5945
5946#else
5947
5948#define cgroup_sk_alloc_disabled false
5949
5950#endif
5951
5952void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5953{
5954 if (cgroup_sk_alloc_disabled)
5955 return;
5956
5957 rcu_read_lock();
5958
5959 while (true) {
5960 struct css_set *cset;
5961
5962 cset = task_css_set(current);
5963 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5964 skcd->val = (unsigned long)cset->dfl_cgrp;
5965 break;
5966 }
5967 cpu_relax();
5968 }
5969
5970 rcu_read_unlock();
5971}
5972
5973void cgroup_sk_free(struct sock_cgroup_data *skcd)
5974{
5975 cgroup_put(sock_cgroup_ptr(skcd));
5976}
5977
5978#endif /* CONFIG_SOCK_CGROUP_DATA */
5979
a79a908f
AK
5980/* cgroup namespaces */
5981
5982static struct cgroup_namespace *alloc_cgroup_ns(void)
5983{
5984 struct cgroup_namespace *new_ns;
5985 int ret;
5986
5987 new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL);
5988 if (!new_ns)
5989 return ERR_PTR(-ENOMEM);
5990 ret = ns_alloc_inum(&new_ns->ns);
5991 if (ret) {
5992 kfree(new_ns);
5993 return ERR_PTR(ret);
5994 }
5995 atomic_set(&new_ns->count, 1);
5996 new_ns->ns.ops = &cgroupns_operations;
5997 return new_ns;
5998}
5999
6000void free_cgroup_ns(struct cgroup_namespace *ns)
6001{
6002 put_css_set(ns->root_cset);
6003 put_user_ns(ns->user_ns);
6004 ns_free_inum(&ns->ns);
6005 kfree(ns);
6006}
6007EXPORT_SYMBOL(free_cgroup_ns);
6008
6009struct cgroup_namespace *copy_cgroup_ns(unsigned long flags,
6010 struct user_namespace *user_ns,
6011 struct cgroup_namespace *old_ns)
6012{
6013 struct cgroup_namespace *new_ns = NULL;
6014 struct css_set *cset = NULL;
6015 int err;
6016
6017 BUG_ON(!old_ns);
6018
6019 if (!(flags & CLONE_NEWCGROUP)) {
6020 get_cgroup_ns(old_ns);
6021 return old_ns;
6022 }
6023
6024 /* Allow only sysadmin to create cgroup namespace. */
6025 err = -EPERM;
6026 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
6027 goto err_out;
6028
6029 mutex_lock(&cgroup_mutex);
6030 spin_lock_bh(&css_set_lock);
6031
6032 cset = task_css_set(current);
6033 get_css_set(cset);
6034
6035 spin_unlock_bh(&css_set_lock);
6036 mutex_unlock(&cgroup_mutex);
6037
6038 err = -ENOMEM;
6039 new_ns = alloc_cgroup_ns();
6040 if (!new_ns)
6041 goto err_out;
6042
6043 new_ns->user_ns = get_user_ns(user_ns);
6044 new_ns->root_cset = cset;
6045
6046 return new_ns;
6047
6048err_out:
6049 if (cset)
6050 put_css_set(cset);
6051 kfree(new_ns);
6052 return ERR_PTR(err);
6053}
6054
6055static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns)
6056{
6057 return container_of(ns, struct cgroup_namespace, ns);
6058}
6059
6060static int cgroupns_install(struct nsproxy *nsproxy, void *ns)
6061{
6062 pr_info("setns not supported for cgroup namespace");
6063 return -EINVAL;
6064}
6065
6066static struct ns_common *cgroupns_get(struct task_struct *task)
6067{
6068 struct cgroup_namespace *ns = NULL;
6069 struct nsproxy *nsproxy;
6070
6071 task_lock(task);
6072 nsproxy = task->nsproxy;
6073 if (nsproxy) {
6074 ns = nsproxy->cgroup_ns;
6075 get_cgroup_ns(ns);
6076 }
6077 task_unlock(task);
6078
6079 return ns ? &ns->ns : NULL;
6080}
6081
6082static void cgroupns_put(struct ns_common *ns)
6083{
6084 put_cgroup_ns(to_cg_ns(ns));
6085}
6086
6087const struct proc_ns_operations cgroupns_operations = {
6088 .name = "cgroup",
6089 .type = CLONE_NEWCGROUP,
6090 .get = cgroupns_get,
6091 .put = cgroupns_put,
6092 .install = cgroupns_install,
6093};
6094
6095static __init int cgroup_namespaces_init(void)
6096{
6097 return 0;
6098}
6099subsys_initcall(cgroup_namespaces_init);
6100
fe693435 6101#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
6102static struct cgroup_subsys_state *
6103debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
6104{
6105 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
6106
6107 if (!css)
6108 return ERR_PTR(-ENOMEM);
6109
6110 return css;
6111}
6112
eb95419b 6113static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 6114{
eb95419b 6115 kfree(css);
fe693435
PM
6116}
6117
182446d0
TH
6118static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
6119 struct cftype *cft)
fe693435 6120{
182446d0 6121 return cgroup_task_count(css->cgroup);
fe693435
PM
6122}
6123
182446d0
TH
6124static u64 current_css_set_read(struct cgroup_subsys_state *css,
6125 struct cftype *cft)
fe693435
PM
6126{
6127 return (u64)(unsigned long)current->cgroups;
6128}
6129
182446d0 6130static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 6131 struct cftype *cft)
fe693435
PM
6132{
6133 u64 count;
6134
6135 rcu_read_lock();
a8ad805c 6136 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
6137 rcu_read_unlock();
6138 return count;
6139}
6140
2da8ca82 6141static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 6142{
69d0206c 6143 struct cgrp_cset_link *link;
5abb8855 6144 struct css_set *cset;
e61734c5
TH
6145 char *name_buf;
6146
6147 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
6148 if (!name_buf)
6149 return -ENOMEM;
7717f7ba 6150
f0d9a5f1 6151 spin_lock_bh(&css_set_lock);
7717f7ba 6152 rcu_read_lock();
5abb8855 6153 cset = rcu_dereference(current->cgroups);
69d0206c 6154 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 6155 struct cgroup *c = link->cgrp;
7717f7ba 6156
a2dd4247 6157 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 6158 seq_printf(seq, "Root %d group %s\n",
a2dd4247 6159 c->root->hierarchy_id, name_buf);
7717f7ba
PM
6160 }
6161 rcu_read_unlock();
f0d9a5f1 6162 spin_unlock_bh(&css_set_lock);
e61734c5 6163 kfree(name_buf);
7717f7ba
PM
6164 return 0;
6165}
6166
6167#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 6168static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 6169{
2da8ca82 6170 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 6171 struct cgrp_cset_link *link;
7717f7ba 6172
f0d9a5f1 6173 spin_lock_bh(&css_set_lock);
182446d0 6174 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 6175 struct css_set *cset = link->cset;
7717f7ba
PM
6176 struct task_struct *task;
6177 int count = 0;
c7561128 6178
5abb8855 6179 seq_printf(seq, "css_set %p\n", cset);
c7561128 6180
5abb8855 6181 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
6182 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6183 goto overflow;
6184 seq_printf(seq, " task %d\n", task_pid_vnr(task));
6185 }
6186
6187 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
6188 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
6189 goto overflow;
6190 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 6191 }
c7561128
TH
6192 continue;
6193 overflow:
6194 seq_puts(seq, " ...\n");
7717f7ba 6195 }
f0d9a5f1 6196 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
6197 return 0;
6198}
6199
182446d0 6200static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 6201{
27bd4dbb 6202 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 6203 !css_has_online_children(&css->cgroup->self));
fe693435
PM
6204}
6205
6206static struct cftype debug_files[] = {
fe693435
PM
6207 {
6208 .name = "taskcount",
6209 .read_u64 = debug_taskcount_read,
6210 },
6211
6212 {
6213 .name = "current_css_set",
6214 .read_u64 = current_css_set_read,
6215 },
6216
6217 {
6218 .name = "current_css_set_refcount",
6219 .read_u64 = current_css_set_refcount_read,
6220 },
6221
7717f7ba
PM
6222 {
6223 .name = "current_css_set_cg_links",
2da8ca82 6224 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
6225 },
6226
6227 {
6228 .name = "cgroup_css_links",
2da8ca82 6229 .seq_show = cgroup_css_links_read,
7717f7ba
PM
6230 },
6231
fe693435
PM
6232 {
6233 .name = "releasable",
6234 .read_u64 = releasable_read,
6235 },
fe693435 6236
4baf6e33
TH
6237 { } /* terminate */
6238};
fe693435 6239
073219e9 6240struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
6241 .css_alloc = debug_css_alloc,
6242 .css_free = debug_css_free,
5577964e 6243 .legacy_cftypes = debug_files,
fe693435
PM
6244};
6245#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.132569 seconds and 5 git commands to generate.