cgroup: remove sane_behavior support on non-default hierarchies
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
5533e011
TH
152/* some controllers are not supported in the default hierarchy */
153static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154#ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156#endif
157 ;
158
ddbcc7e8
PM
159/* The list of hierarchy roots */
160
9871bf95
TH
161static LIST_HEAD(cgroup_roots);
162static int cgroup_root_count;
ddbcc7e8 163
3417ae1f 164/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 165static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 166
794611a1 167/*
0cb51d71
TH
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
794611a1 173 */
0cb51d71 174static u64 css_serial_nr_next = 1;
794611a1 175
ddbcc7e8 176/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
ddbcc7e8 180 */
8947f9d5 181static int need_forkexit_callback __read_mostly;
ddbcc7e8 182
628f7cd4
TH
183static struct cftype cgroup_base_files[];
184
59f5296b 185static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 186static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 187 unsigned int ss_mask);
42809dd4 188static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
189static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
190 bool visible);
9d755d33 191static void css_release(struct percpu_ref *ref);
f8f22e53 192static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
193static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
194 bool is_add);
b1a21367 195static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 196
6fa4918d
TH
197/* IDR wrappers which synchronize using cgroup_idr_lock */
198static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
199 gfp_t gfp_mask)
200{
201 int ret;
202
203 idr_preload(gfp_mask);
54504e97 204 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 205 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 206 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
207 idr_preload_end();
208 return ret;
209}
210
211static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
212{
213 void *ret;
214
54504e97 215 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 216 ret = idr_replace(idr, ptr, id);
54504e97 217 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
218 return ret;
219}
220
221static void cgroup_idr_remove(struct idr *idr, int id)
222{
54504e97 223 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 224 idr_remove(idr, id);
54504e97 225 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
226}
227
d51f39b0
TH
228static struct cgroup *cgroup_parent(struct cgroup *cgrp)
229{
230 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
231
232 if (parent_css)
233 return container_of(parent_css, struct cgroup, self);
234 return NULL;
235}
236
95109b62
TH
237/**
238 * cgroup_css - obtain a cgroup's css for the specified subsystem
239 * @cgrp: the cgroup of interest
9d800df1 240 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 241 *
ca8bdcaf
TH
242 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
243 * function must be called either under cgroup_mutex or rcu_read_lock() and
244 * the caller is responsible for pinning the returned css if it wants to
245 * keep accessing it outside the said locks. This function may return
246 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
247 */
248static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 249 struct cgroup_subsys *ss)
95109b62 250{
ca8bdcaf 251 if (ss)
aec25020 252 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 253 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 254 else
9d800df1 255 return &cgrp->self;
95109b62 256}
42809dd4 257
aec3dfcb
TH
258/**
259 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
260 * @cgrp: the cgroup of interest
9d800df1 261 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
262 *
263 * Similar to cgroup_css() but returns the effctive css, which is defined
264 * as the matching css of the nearest ancestor including self which has @ss
265 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
266 * function is guaranteed to return non-NULL css.
267 */
268static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
269 struct cgroup_subsys *ss)
270{
271 lockdep_assert_held(&cgroup_mutex);
272
273 if (!ss)
9d800df1 274 return &cgrp->self;
aec3dfcb
TH
275
276 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
277 return NULL;
278
d51f39b0
TH
279 while (cgroup_parent(cgrp) &&
280 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
281 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
282
283 return cgroup_css(cgrp, ss);
95109b62 284}
42809dd4 285
ddbcc7e8 286/* convenient tests for these bits */
54766d4a 287static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 288{
184faf32 289 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
290}
291
b4168640 292struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 293{
2bd59d48 294 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 295 struct cftype *cft = of_cft(of);
2bd59d48
TH
296
297 /*
298 * This is open and unprotected implementation of cgroup_css().
299 * seq_css() is only called from a kernfs file operation which has
300 * an active reference on the file. Because all the subsystem
301 * files are drained before a css is disassociated with a cgroup,
302 * the matching css from the cgroup's subsys table is guaranteed to
303 * be and stay valid until the enclosing operation is complete.
304 */
305 if (cft->ss)
306 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
307 else
9d800df1 308 return &cgrp->self;
59f5296b 309}
b4168640 310EXPORT_SYMBOL_GPL(of_css);
59f5296b 311
78574cf9
LZ
312/**
313 * cgroup_is_descendant - test ancestry
314 * @cgrp: the cgroup to be tested
315 * @ancestor: possible ancestor of @cgrp
316 *
317 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
318 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
319 * and @ancestor are accessible.
320 */
321bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
322{
323 while (cgrp) {
324 if (cgrp == ancestor)
325 return true;
d51f39b0 326 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
327 }
328 return false;
329}
ddbcc7e8 330
e9685a03 331static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
332{
333 const int bits =
bd89aabc
PM
334 (1 << CGRP_RELEASABLE) |
335 (1 << CGRP_NOTIFY_ON_RELEASE);
336 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
337}
338
e9685a03 339static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 340{
bd89aabc 341 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
342}
343
1c6727af
TH
344/**
345 * for_each_css - iterate all css's of a cgroup
346 * @css: the iteration cursor
347 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
348 * @cgrp: the target cgroup to iterate css's of
349 *
aec3dfcb 350 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
351 */
352#define for_each_css(css, ssid, cgrp) \
353 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
354 if (!((css) = rcu_dereference_check( \
355 (cgrp)->subsys[(ssid)], \
356 lockdep_is_held(&cgroup_mutex)))) { } \
357 else
358
aec3dfcb
TH
359/**
360 * for_each_e_css - iterate all effective css's of a cgroup
361 * @css: the iteration cursor
362 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
363 * @cgrp: the target cgroup to iterate css's of
364 *
365 * Should be called under cgroup_[tree_]mutex.
366 */
367#define for_each_e_css(css, ssid, cgrp) \
368 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
369 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
370 ; \
371 else
372
30159ec7 373/**
3ed80a62 374 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 375 * @ss: the iteration cursor
780cd8b3 376 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 377 */
780cd8b3 378#define for_each_subsys(ss, ssid) \
3ed80a62
TH
379 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
380 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 381
985ed670
TH
382/* iterate across the hierarchies */
383#define for_each_root(root) \
5549c497 384 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 385
f8f22e53
TH
386/* iterate over child cgrps, lock should be held throughout iteration */
387#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 388 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 389 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
390 cgroup_is_dead(child); })) \
391 ; \
392 else
7ae1bad9 393
81a6a5cd
PM
394/* the list of cgroups eligible for automatic release. Protected by
395 * release_list_lock */
396static LIST_HEAD(release_list);
cdcc136f 397static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
398static void cgroup_release_agent(struct work_struct *work);
399static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 400static void check_for_release(struct cgroup *cgrp);
81a6a5cd 401
69d0206c
TH
402/*
403 * A cgroup can be associated with multiple css_sets as different tasks may
404 * belong to different cgroups on different hierarchies. In the other
405 * direction, a css_set is naturally associated with multiple cgroups.
406 * This M:N relationship is represented by the following link structure
407 * which exists for each association and allows traversing the associations
408 * from both sides.
409 */
410struct cgrp_cset_link {
411 /* the cgroup and css_set this link associates */
412 struct cgroup *cgrp;
413 struct css_set *cset;
414
415 /* list of cgrp_cset_links anchored at cgrp->cset_links */
416 struct list_head cset_link;
417
418 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
419 struct list_head cgrp_link;
817929ec
PM
420};
421
172a2c06
TH
422/*
423 * The default css_set - used by init and its children prior to any
817929ec
PM
424 * hierarchies being mounted. It contains a pointer to the root state
425 * for each subsystem. Also used to anchor the list of css_sets. Not
426 * reference-counted, to improve performance when child cgroups
427 * haven't been created.
428 */
5024ae29 429struct css_set init_css_set = {
172a2c06
TH
430 .refcount = ATOMIC_INIT(1),
431 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
432 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
433 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
434 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
435 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
436};
817929ec 437
172a2c06 438static int css_set_count = 1; /* 1 for init_css_set */
817929ec 439
842b597e
TH
440/**
441 * cgroup_update_populated - updated populated count of a cgroup
442 * @cgrp: the target cgroup
443 * @populated: inc or dec populated count
444 *
445 * @cgrp is either getting the first task (css_set) or losing the last.
446 * Update @cgrp->populated_cnt accordingly. The count is propagated
447 * towards root so that a given cgroup's populated_cnt is zero iff the
448 * cgroup and all its descendants are empty.
449 *
450 * @cgrp's interface file "cgroup.populated" is zero if
451 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
452 * changes from or to zero, userland is notified that the content of the
453 * interface file has changed. This can be used to detect when @cgrp and
454 * its descendants become populated or empty.
455 */
456static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
457{
458 lockdep_assert_held(&css_set_rwsem);
459
460 do {
461 bool trigger;
462
463 if (populated)
464 trigger = !cgrp->populated_cnt++;
465 else
466 trigger = !--cgrp->populated_cnt;
467
468 if (!trigger)
469 break;
470
471 if (cgrp->populated_kn)
472 kernfs_notify(cgrp->populated_kn);
d51f39b0 473 cgrp = cgroup_parent(cgrp);
842b597e
TH
474 } while (cgrp);
475}
476
7717f7ba
PM
477/*
478 * hash table for cgroup groups. This improves the performance to find
479 * an existing css_set. This hash doesn't (currently) take into
480 * account cgroups in empty hierarchies.
481 */
472b1053 482#define CSS_SET_HASH_BITS 7
0ac801fe 483static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 484
0ac801fe 485static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 486{
0ac801fe 487 unsigned long key = 0UL;
30159ec7
TH
488 struct cgroup_subsys *ss;
489 int i;
472b1053 490
30159ec7 491 for_each_subsys(ss, i)
0ac801fe
LZ
492 key += (unsigned long)css[i];
493 key = (key >> 16) ^ key;
472b1053 494
0ac801fe 495 return key;
472b1053
LZ
496}
497
89c5509b 498static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 499{
69d0206c 500 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
501 struct cgroup_subsys *ss;
502 int ssid;
5abb8855 503
89c5509b
TH
504 lockdep_assert_held(&css_set_rwsem);
505
506 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 507 return;
81a6a5cd 508
2c6ab6d2 509 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
510 for_each_subsys(ss, ssid)
511 list_del(&cset->e_cset_node[ssid]);
5abb8855 512 hash_del(&cset->hlist);
2c6ab6d2
PM
513 css_set_count--;
514
69d0206c 515 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 516 struct cgroup *cgrp = link->cgrp;
5abb8855 517
69d0206c
TH
518 list_del(&link->cset_link);
519 list_del(&link->cgrp_link);
71b5707e 520
96d365e0 521 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
522 if (list_empty(&cgrp->cset_links)) {
523 cgroup_update_populated(cgrp, false);
524 if (notify_on_release(cgrp)) {
525 if (taskexit)
526 set_bit(CGRP_RELEASABLE, &cgrp->flags);
527 check_for_release(cgrp);
528 }
81a6a5cd 529 }
2c6ab6d2
PM
530
531 kfree(link);
81a6a5cd 532 }
2c6ab6d2 533
5abb8855 534 kfree_rcu(cset, rcu_head);
b4f48b63
PM
535}
536
89c5509b
TH
537static void put_css_set(struct css_set *cset, bool taskexit)
538{
539 /*
540 * Ensure that the refcount doesn't hit zero while any readers
541 * can see it. Similar to atomic_dec_and_lock(), but for an
542 * rwlock
543 */
544 if (atomic_add_unless(&cset->refcount, -1, 1))
545 return;
546
547 down_write(&css_set_rwsem);
548 put_css_set_locked(cset, taskexit);
549 up_write(&css_set_rwsem);
550}
551
817929ec
PM
552/*
553 * refcounted get/put for css_set objects
554 */
5abb8855 555static inline void get_css_set(struct css_set *cset)
817929ec 556{
5abb8855 557 atomic_inc(&cset->refcount);
817929ec
PM
558}
559
b326f9d0 560/**
7717f7ba 561 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
562 * @cset: candidate css_set being tested
563 * @old_cset: existing css_set for a task
7717f7ba
PM
564 * @new_cgrp: cgroup that's being entered by the task
565 * @template: desired set of css pointers in css_set (pre-calculated)
566 *
6f4b7e63 567 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
568 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
569 */
5abb8855
TH
570static bool compare_css_sets(struct css_set *cset,
571 struct css_set *old_cset,
7717f7ba
PM
572 struct cgroup *new_cgrp,
573 struct cgroup_subsys_state *template[])
574{
575 struct list_head *l1, *l2;
576
aec3dfcb
TH
577 /*
578 * On the default hierarchy, there can be csets which are
579 * associated with the same set of cgroups but different csses.
580 * Let's first ensure that csses match.
581 */
582 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 583 return false;
7717f7ba
PM
584
585 /*
586 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
587 * different cgroups in hierarchies. As different cgroups may
588 * share the same effective css, this comparison is always
589 * necessary.
7717f7ba 590 */
69d0206c
TH
591 l1 = &cset->cgrp_links;
592 l2 = &old_cset->cgrp_links;
7717f7ba 593 while (1) {
69d0206c 594 struct cgrp_cset_link *link1, *link2;
5abb8855 595 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
596
597 l1 = l1->next;
598 l2 = l2->next;
599 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
600 if (l1 == &cset->cgrp_links) {
601 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
602 break;
603 } else {
69d0206c 604 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
605 }
606 /* Locate the cgroups associated with these links. */
69d0206c
TH
607 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
608 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
609 cgrp1 = link1->cgrp;
610 cgrp2 = link2->cgrp;
7717f7ba 611 /* Hierarchies should be linked in the same order. */
5abb8855 612 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
613
614 /*
615 * If this hierarchy is the hierarchy of the cgroup
616 * that's changing, then we need to check that this
617 * css_set points to the new cgroup; if it's any other
618 * hierarchy, then this css_set should point to the
619 * same cgroup as the old css_set.
620 */
5abb8855
TH
621 if (cgrp1->root == new_cgrp->root) {
622 if (cgrp1 != new_cgrp)
7717f7ba
PM
623 return false;
624 } else {
5abb8855 625 if (cgrp1 != cgrp2)
7717f7ba
PM
626 return false;
627 }
628 }
629 return true;
630}
631
b326f9d0
TH
632/**
633 * find_existing_css_set - init css array and find the matching css_set
634 * @old_cset: the css_set that we're using before the cgroup transition
635 * @cgrp: the cgroup that we're moving into
636 * @template: out param for the new set of csses, should be clear on entry
817929ec 637 */
5abb8855
TH
638static struct css_set *find_existing_css_set(struct css_set *old_cset,
639 struct cgroup *cgrp,
640 struct cgroup_subsys_state *template[])
b4f48b63 641{
3dd06ffa 642 struct cgroup_root *root = cgrp->root;
30159ec7 643 struct cgroup_subsys *ss;
5abb8855 644 struct css_set *cset;
0ac801fe 645 unsigned long key;
b326f9d0 646 int i;
817929ec 647
aae8aab4
BB
648 /*
649 * Build the set of subsystem state objects that we want to see in the
650 * new css_set. while subsystems can change globally, the entries here
651 * won't change, so no need for locking.
652 */
30159ec7 653 for_each_subsys(ss, i) {
f392e51c 654 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
655 /*
656 * @ss is in this hierarchy, so we want the
657 * effective css from @cgrp.
658 */
659 template[i] = cgroup_e_css(cgrp, ss);
817929ec 660 } else {
aec3dfcb
TH
661 /*
662 * @ss is not in this hierarchy, so we don't want
663 * to change the css.
664 */
5abb8855 665 template[i] = old_cset->subsys[i];
817929ec
PM
666 }
667 }
668
0ac801fe 669 key = css_set_hash(template);
5abb8855
TH
670 hash_for_each_possible(css_set_table, cset, hlist, key) {
671 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
672 continue;
673
674 /* This css_set matches what we need */
5abb8855 675 return cset;
472b1053 676 }
817929ec
PM
677
678 /* No existing cgroup group matched */
679 return NULL;
680}
681
69d0206c 682static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 683{
69d0206c 684 struct cgrp_cset_link *link, *tmp_link;
36553434 685
69d0206c
TH
686 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
687 list_del(&link->cset_link);
36553434
LZ
688 kfree(link);
689 }
690}
691
69d0206c
TH
692/**
693 * allocate_cgrp_cset_links - allocate cgrp_cset_links
694 * @count: the number of links to allocate
695 * @tmp_links: list_head the allocated links are put on
696 *
697 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
698 * through ->cset_link. Returns 0 on success or -errno.
817929ec 699 */
69d0206c 700static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 701{
69d0206c 702 struct cgrp_cset_link *link;
817929ec 703 int i;
69d0206c
TH
704
705 INIT_LIST_HEAD(tmp_links);
706
817929ec 707 for (i = 0; i < count; i++) {
f4f4be2b 708 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 709 if (!link) {
69d0206c 710 free_cgrp_cset_links(tmp_links);
817929ec
PM
711 return -ENOMEM;
712 }
69d0206c 713 list_add(&link->cset_link, tmp_links);
817929ec
PM
714 }
715 return 0;
716}
717
c12f65d4
LZ
718/**
719 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 720 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 721 * @cset: the css_set to be linked
c12f65d4
LZ
722 * @cgrp: the destination cgroup
723 */
69d0206c
TH
724static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
725 struct cgroup *cgrp)
c12f65d4 726{
69d0206c 727 struct cgrp_cset_link *link;
c12f65d4 728
69d0206c 729 BUG_ON(list_empty(tmp_links));
6803c006
TH
730
731 if (cgroup_on_dfl(cgrp))
732 cset->dfl_cgrp = cgrp;
733
69d0206c
TH
734 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
735 link->cset = cset;
7717f7ba 736 link->cgrp = cgrp;
842b597e
TH
737
738 if (list_empty(&cgrp->cset_links))
739 cgroup_update_populated(cgrp, true);
69d0206c 740 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 741
7717f7ba
PM
742 /*
743 * Always add links to the tail of the list so that the list
744 * is sorted by order of hierarchy creation
745 */
69d0206c 746 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
747}
748
b326f9d0
TH
749/**
750 * find_css_set - return a new css_set with one cgroup updated
751 * @old_cset: the baseline css_set
752 * @cgrp: the cgroup to be updated
753 *
754 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
755 * substituted into the appropriate hierarchy.
817929ec 756 */
5abb8855
TH
757static struct css_set *find_css_set(struct css_set *old_cset,
758 struct cgroup *cgrp)
817929ec 759{
b326f9d0 760 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 761 struct css_set *cset;
69d0206c
TH
762 struct list_head tmp_links;
763 struct cgrp_cset_link *link;
2d8f243a 764 struct cgroup_subsys *ss;
0ac801fe 765 unsigned long key;
2d8f243a 766 int ssid;
472b1053 767
b326f9d0
TH
768 lockdep_assert_held(&cgroup_mutex);
769
817929ec
PM
770 /* First see if we already have a cgroup group that matches
771 * the desired set */
96d365e0 772 down_read(&css_set_rwsem);
5abb8855
TH
773 cset = find_existing_css_set(old_cset, cgrp, template);
774 if (cset)
775 get_css_set(cset);
96d365e0 776 up_read(&css_set_rwsem);
817929ec 777
5abb8855
TH
778 if (cset)
779 return cset;
817929ec 780
f4f4be2b 781 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 782 if (!cset)
817929ec
PM
783 return NULL;
784
69d0206c 785 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 786 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 787 kfree(cset);
817929ec
PM
788 return NULL;
789 }
790
5abb8855 791 atomic_set(&cset->refcount, 1);
69d0206c 792 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 793 INIT_LIST_HEAD(&cset->tasks);
c7561128 794 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 795 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 796 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 797 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
798
799 /* Copy the set of subsystem state objects generated in
800 * find_existing_css_set() */
5abb8855 801 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 802
96d365e0 803 down_write(&css_set_rwsem);
817929ec 804 /* Add reference counts and links from the new css_set. */
69d0206c 805 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 806 struct cgroup *c = link->cgrp;
69d0206c 807
7717f7ba
PM
808 if (c->root == cgrp->root)
809 c = cgrp;
69d0206c 810 link_css_set(&tmp_links, cset, c);
7717f7ba 811 }
817929ec 812
69d0206c 813 BUG_ON(!list_empty(&tmp_links));
817929ec 814
817929ec 815 css_set_count++;
472b1053 816
2d8f243a 817 /* Add @cset to the hash table */
5abb8855
TH
818 key = css_set_hash(cset->subsys);
819 hash_add(css_set_table, &cset->hlist, key);
472b1053 820
2d8f243a
TH
821 for_each_subsys(ss, ssid)
822 list_add_tail(&cset->e_cset_node[ssid],
823 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
824
96d365e0 825 up_write(&css_set_rwsem);
817929ec 826
5abb8855 827 return cset;
b4f48b63
PM
828}
829
3dd06ffa 830static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 831{
3dd06ffa 832 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 833
3dd06ffa 834 return root_cgrp->root;
2bd59d48
TH
835}
836
3dd06ffa 837static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
838{
839 int id;
840
841 lockdep_assert_held(&cgroup_mutex);
842
985ed670 843 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
844 if (id < 0)
845 return id;
846
847 root->hierarchy_id = id;
848 return 0;
849}
850
3dd06ffa 851static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
852{
853 lockdep_assert_held(&cgroup_mutex);
854
855 if (root->hierarchy_id) {
856 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
857 root->hierarchy_id = 0;
858 }
859}
860
3dd06ffa 861static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
862{
863 if (root) {
864 /* hierarhcy ID shoulid already have been released */
865 WARN_ON_ONCE(root->hierarchy_id);
866
867 idr_destroy(&root->cgroup_idr);
868 kfree(root);
869 }
870}
871
3dd06ffa 872static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 873{
3dd06ffa 874 struct cgroup *cgrp = &root->cgrp;
f2e85d57 875 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 876
2bd59d48 877 mutex_lock(&cgroup_mutex);
f2e85d57 878
776f02fa 879 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 880 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 881
f2e85d57 882 /* Rebind all subsystems back to the default hierarchy */
f392e51c 883 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 884
7717f7ba 885 /*
f2e85d57
TH
886 * Release all the links from cset_links to this hierarchy's
887 * root cgroup
7717f7ba 888 */
96d365e0 889 down_write(&css_set_rwsem);
f2e85d57
TH
890
891 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
892 list_del(&link->cset_link);
893 list_del(&link->cgrp_link);
894 kfree(link);
895 }
96d365e0 896 up_write(&css_set_rwsem);
f2e85d57
TH
897
898 if (!list_empty(&root->root_list)) {
899 list_del(&root->root_list);
900 cgroup_root_count--;
901 }
902
903 cgroup_exit_root_id(root);
904
905 mutex_unlock(&cgroup_mutex);
f2e85d57 906
2bd59d48 907 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
908 cgroup_free_root(root);
909}
910
ceb6a081
TH
911/* look up cgroup associated with given css_set on the specified hierarchy */
912static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 913 struct cgroup_root *root)
7717f7ba 914{
7717f7ba
PM
915 struct cgroup *res = NULL;
916
96d365e0
TH
917 lockdep_assert_held(&cgroup_mutex);
918 lockdep_assert_held(&css_set_rwsem);
919
5abb8855 920 if (cset == &init_css_set) {
3dd06ffa 921 res = &root->cgrp;
7717f7ba 922 } else {
69d0206c
TH
923 struct cgrp_cset_link *link;
924
925 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 926 struct cgroup *c = link->cgrp;
69d0206c 927
7717f7ba
PM
928 if (c->root == root) {
929 res = c;
930 break;
931 }
932 }
933 }
96d365e0 934
7717f7ba
PM
935 BUG_ON(!res);
936 return res;
937}
938
ddbcc7e8 939/*
ceb6a081
TH
940 * Return the cgroup for "task" from the given hierarchy. Must be
941 * called with cgroup_mutex and css_set_rwsem held.
942 */
943static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 944 struct cgroup_root *root)
ceb6a081
TH
945{
946 /*
947 * No need to lock the task - since we hold cgroup_mutex the
948 * task can't change groups, so the only thing that can happen
949 * is that it exits and its css is set back to init_css_set.
950 */
951 return cset_cgroup_from_root(task_css_set(task), root);
952}
953
ddbcc7e8 954/*
ddbcc7e8
PM
955 * A task must hold cgroup_mutex to modify cgroups.
956 *
957 * Any task can increment and decrement the count field without lock.
958 * So in general, code holding cgroup_mutex can't rely on the count
959 * field not changing. However, if the count goes to zero, then only
956db3ca 960 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
961 * means that no tasks are currently attached, therefore there is no
962 * way a task attached to that cgroup can fork (the other way to
963 * increment the count). So code holding cgroup_mutex can safely
964 * assume that if the count is zero, it will stay zero. Similarly, if
965 * a task holds cgroup_mutex on a cgroup with zero count, it
966 * knows that the cgroup won't be removed, as cgroup_rmdir()
967 * needs that mutex.
968 *
ddbcc7e8
PM
969 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
970 * (usually) take cgroup_mutex. These are the two most performance
971 * critical pieces of code here. The exception occurs on cgroup_exit(),
972 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
973 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
974 * to the release agent with the name of the cgroup (path relative to
975 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
976 *
977 * A cgroup can only be deleted if both its 'count' of using tasks
978 * is zero, and its list of 'children' cgroups is empty. Since all
979 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 980 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 981 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 982 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
983 *
984 * P.S. One more locking exception. RCU is used to guard the
956db3ca 985 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
986 */
987
69dfa00c 988static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 989static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 990static const struct file_operations proc_cgroupstats_operations;
a424316c 991
8d7e6fb0
TH
992static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
993 char *buf)
ddbcc7e8 994{
8d7e6fb0
TH
995 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
996 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
997 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
998 cft->ss->name, cft->name);
999 else
1000 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1001 return buf;
ddbcc7e8
PM
1002}
1003
f2e85d57
TH
1004/**
1005 * cgroup_file_mode - deduce file mode of a control file
1006 * @cft: the control file in question
1007 *
1008 * returns cft->mode if ->mode is not 0
1009 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1010 * returns S_IRUGO if it has only a read handler
1011 * returns S_IWUSR if it has only a write hander
1012 */
1013static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1014{
f2e85d57 1015 umode_t mode = 0;
65dff759 1016
f2e85d57
TH
1017 if (cft->mode)
1018 return cft->mode;
1019
1020 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1021 mode |= S_IRUGO;
1022
6770c64e 1023 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1024 mode |= S_IWUSR;
1025
1026 return mode;
65dff759
LZ
1027}
1028
59f5296b 1029static void cgroup_get(struct cgroup *cgrp)
be445626 1030{
2bd59d48 1031 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1032 css_get(&cgrp->self);
be445626
LZ
1033}
1034
59f5296b 1035static void cgroup_put(struct cgroup *cgrp)
be445626 1036{
9d755d33 1037 css_put(&cgrp->self);
be445626
LZ
1038}
1039
af0ba678
TH
1040/**
1041 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1042 * @cgrp: the target cgroup
1043 *
1044 * On the default hierarchy, a subsystem may request other subsystems to be
1045 * enabled together through its ->depends_on mask. In such cases, more
1046 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1047 *
1048 * This function determines which subsystems need to be enabled given the
1049 * current @cgrp->subtree_control and records it in
1050 * @cgrp->child_subsys_mask. The resulting mask is always a superset of
1051 * @cgrp->subtree_control and follows the usual hierarchy rules.
1052 */
667c2491
TH
1053static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1054{
af0ba678
TH
1055 struct cgroup *parent = cgroup_parent(cgrp);
1056 unsigned int cur_ss_mask = cgrp->subtree_control;
1057 struct cgroup_subsys *ss;
1058 int ssid;
1059
1060 lockdep_assert_held(&cgroup_mutex);
1061
1062 if (!cgroup_on_dfl(cgrp)) {
1063 cgrp->child_subsys_mask = cur_ss_mask;
1064 return;
1065 }
1066
1067 while (true) {
1068 unsigned int new_ss_mask = cur_ss_mask;
1069
1070 for_each_subsys(ss, ssid)
1071 if (cur_ss_mask & (1 << ssid))
1072 new_ss_mask |= ss->depends_on;
1073
1074 /*
1075 * Mask out subsystems which aren't available. This can
1076 * happen only if some depended-upon subsystems were bound
1077 * to non-default hierarchies.
1078 */
1079 if (parent)
1080 new_ss_mask &= parent->child_subsys_mask;
1081 else
1082 new_ss_mask &= cgrp->root->subsys_mask;
1083
1084 if (new_ss_mask == cur_ss_mask)
1085 break;
1086 cur_ss_mask = new_ss_mask;
1087 }
1088
1089 cgrp->child_subsys_mask = cur_ss_mask;
667c2491
TH
1090}
1091
a9746d8d
TH
1092/**
1093 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1094 * @kn: the kernfs_node being serviced
1095 *
1096 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1097 * the method finishes if locking succeeded. Note that once this function
1098 * returns the cgroup returned by cgroup_kn_lock_live() may become
1099 * inaccessible any time. If the caller intends to continue to access the
1100 * cgroup, it should pin it before invoking this function.
1101 */
1102static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1103{
a9746d8d
TH
1104 struct cgroup *cgrp;
1105
1106 if (kernfs_type(kn) == KERNFS_DIR)
1107 cgrp = kn->priv;
1108 else
1109 cgrp = kn->parent->priv;
1110
1111 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1112
1113 kernfs_unbreak_active_protection(kn);
1114 cgroup_put(cgrp);
ddbcc7e8
PM
1115}
1116
a9746d8d
TH
1117/**
1118 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1119 * @kn: the kernfs_node being serviced
1120 *
1121 * This helper is to be used by a cgroup kernfs method currently servicing
1122 * @kn. It breaks the active protection, performs cgroup locking and
1123 * verifies that the associated cgroup is alive. Returns the cgroup if
1124 * alive; otherwise, %NULL. A successful return should be undone by a
1125 * matching cgroup_kn_unlock() invocation.
1126 *
1127 * Any cgroup kernfs method implementation which requires locking the
1128 * associated cgroup should use this helper. It avoids nesting cgroup
1129 * locking under kernfs active protection and allows all kernfs operations
1130 * including self-removal.
1131 */
1132static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1133{
a9746d8d
TH
1134 struct cgroup *cgrp;
1135
1136 if (kernfs_type(kn) == KERNFS_DIR)
1137 cgrp = kn->priv;
1138 else
1139 cgrp = kn->parent->priv;
05ef1d7c 1140
2739d3cc 1141 /*
01f6474c 1142 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1143 * active_ref. cgroup liveliness check alone provides enough
1144 * protection against removal. Ensure @cgrp stays accessible and
1145 * break the active_ref protection.
2739d3cc 1146 */
a9746d8d
TH
1147 cgroup_get(cgrp);
1148 kernfs_break_active_protection(kn);
1149
2bd59d48 1150 mutex_lock(&cgroup_mutex);
05ef1d7c 1151
a9746d8d
TH
1152 if (!cgroup_is_dead(cgrp))
1153 return cgrp;
1154
1155 cgroup_kn_unlock(kn);
1156 return NULL;
ddbcc7e8 1157}
05ef1d7c 1158
2739d3cc 1159static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1160{
2bd59d48 1161 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1162
01f6474c 1163 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1164 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1165}
1166
13af07df 1167/**
628f7cd4 1168 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1169 * @cgrp: target cgroup
13af07df
AR
1170 * @subsys_mask: mask of the subsystem ids whose files should be removed
1171 */
69dfa00c 1172static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1173{
13af07df 1174 struct cgroup_subsys *ss;
b420ba7d 1175 int i;
05ef1d7c 1176
b420ba7d 1177 for_each_subsys(ss, i) {
0adb0704 1178 struct cftype *cfts;
b420ba7d 1179
69dfa00c 1180 if (!(subsys_mask & (1 << i)))
13af07df 1181 continue;
0adb0704
TH
1182 list_for_each_entry(cfts, &ss->cfts, node)
1183 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1184 }
ddbcc7e8
PM
1185}
1186
69dfa00c 1187static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1188{
30159ec7 1189 struct cgroup_subsys *ss;
5533e011 1190 unsigned int tmp_ss_mask;
2d8f243a 1191 int ssid, i, ret;
ddbcc7e8 1192
ace2bee8 1193 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1194
5df36032
TH
1195 for_each_subsys(ss, ssid) {
1196 if (!(ss_mask & (1 << ssid)))
1197 continue;
aae8aab4 1198
7fd8c565
TH
1199 /* if @ss has non-root csses attached to it, can't move */
1200 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1201 return -EBUSY;
1d5be6b2 1202
5df36032 1203 /* can't move between two non-dummy roots either */
7fd8c565 1204 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1205 return -EBUSY;
ddbcc7e8
PM
1206 }
1207
5533e011
TH
1208 /* skip creating root files on dfl_root for inhibited subsystems */
1209 tmp_ss_mask = ss_mask;
1210 if (dst_root == &cgrp_dfl_root)
1211 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1212
1213 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1214 if (ret) {
1215 if (dst_root != &cgrp_dfl_root)
5df36032 1216 return ret;
ddbcc7e8 1217
a2dd4247
TH
1218 /*
1219 * Rebinding back to the default root is not allowed to
1220 * fail. Using both default and non-default roots should
1221 * be rare. Moving subsystems back and forth even more so.
1222 * Just warn about it and continue.
1223 */
1224 if (cgrp_dfl_root_visible) {
69dfa00c 1225 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1226 ret, ss_mask);
ed3d261b 1227 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1228 }
5df36032 1229 }
3126121f
TH
1230
1231 /*
1232 * Nothing can fail from this point on. Remove files for the
1233 * removed subsystems and rebind each subsystem.
1234 */
5df36032 1235 for_each_subsys(ss, ssid)
a2dd4247 1236 if (ss_mask & (1 << ssid))
3dd06ffa 1237 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1238
5df36032 1239 for_each_subsys(ss, ssid) {
3dd06ffa 1240 struct cgroup_root *src_root;
5df36032 1241 struct cgroup_subsys_state *css;
2d8f243a 1242 struct css_set *cset;
a8a648c4 1243
5df36032
TH
1244 if (!(ss_mask & (1 << ssid)))
1245 continue;
a8a648c4 1246
5df36032 1247 src_root = ss->root;
3dd06ffa 1248 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1249
3dd06ffa 1250 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1251
3dd06ffa
TH
1252 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1253 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1254 ss->root = dst_root;
3dd06ffa 1255 css->cgroup = &dst_root->cgrp;
73e80ed8 1256
2d8f243a
TH
1257 down_write(&css_set_rwsem);
1258 hash_for_each(css_set_table, i, cset, hlist)
1259 list_move_tail(&cset->e_cset_node[ss->id],
1260 &dst_root->cgrp.e_csets[ss->id]);
1261 up_write(&css_set_rwsem);
1262
f392e51c 1263 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1264 src_root->cgrp.subtree_control &= ~(1 << ssid);
1265 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1266
bd53d617 1267 /* default hierarchy doesn't enable controllers by default */
f392e51c 1268 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1269 if (dst_root != &cgrp_dfl_root) {
1270 dst_root->cgrp.subtree_control |= 1 << ssid;
1271 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1272 }
a8a648c4 1273
5df36032
TH
1274 if (ss->bind)
1275 ss->bind(css);
ddbcc7e8 1276 }
ddbcc7e8 1277
a2dd4247 1278 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1279 return 0;
1280}
1281
2bd59d48
TH
1282static int cgroup_show_options(struct seq_file *seq,
1283 struct kernfs_root *kf_root)
ddbcc7e8 1284{
3dd06ffa 1285 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1286 struct cgroup_subsys *ss;
b85d2040 1287 int ssid;
ddbcc7e8 1288
b85d2040 1289 for_each_subsys(ss, ssid)
f392e51c 1290 if (root->subsys_mask & (1 << ssid))
b85d2040 1291 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1292 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1293 seq_puts(seq, ",sane_behavior");
93438629 1294 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1295 seq_puts(seq, ",noprefix");
93438629 1296 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1297 seq_puts(seq, ",xattr");
69e943b7
TH
1298
1299 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1300 if (strlen(root->release_agent_path))
1301 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1302 spin_unlock(&release_agent_path_lock);
1303
3dd06ffa 1304 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1305 seq_puts(seq, ",clone_children");
c6d57f33
PM
1306 if (strlen(root->name))
1307 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1308 return 0;
1309}
1310
1311struct cgroup_sb_opts {
69dfa00c
TH
1312 unsigned int subsys_mask;
1313 unsigned int flags;
81a6a5cd 1314 char *release_agent;
2260e7fc 1315 bool cpuset_clone_children;
c6d57f33 1316 char *name;
2c6ab6d2
PM
1317 /* User explicitly requested empty subsystem */
1318 bool none;
ddbcc7e8
PM
1319};
1320
cf5d5941 1321static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1322{
32a8cf23
DL
1323 char *token, *o = data;
1324 bool all_ss = false, one_ss = false;
69dfa00c 1325 unsigned int mask = -1U;
30159ec7
TH
1326 struct cgroup_subsys *ss;
1327 int i;
f9ab5b5b
LZ
1328
1329#ifdef CONFIG_CPUSETS
69dfa00c 1330 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1331#endif
ddbcc7e8 1332
c6d57f33 1333 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1334
1335 while ((token = strsep(&o, ",")) != NULL) {
1336 if (!*token)
1337 return -EINVAL;
32a8cf23 1338 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1339 /* Explicitly have no subsystems */
1340 opts->none = true;
32a8cf23
DL
1341 continue;
1342 }
1343 if (!strcmp(token, "all")) {
1344 /* Mutually exclusive option 'all' + subsystem name */
1345 if (one_ss)
1346 return -EINVAL;
1347 all_ss = true;
1348 continue;
1349 }
873fe09e
TH
1350 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1351 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1352 continue;
1353 }
32a8cf23 1354 if (!strcmp(token, "noprefix")) {
93438629 1355 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1356 continue;
1357 }
1358 if (!strcmp(token, "clone_children")) {
2260e7fc 1359 opts->cpuset_clone_children = true;
32a8cf23
DL
1360 continue;
1361 }
03b1cde6 1362 if (!strcmp(token, "xattr")) {
93438629 1363 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1364 continue;
1365 }
32a8cf23 1366 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1367 /* Specifying two release agents is forbidden */
1368 if (opts->release_agent)
1369 return -EINVAL;
c6d57f33 1370 opts->release_agent =
e400c285 1371 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1372 if (!opts->release_agent)
1373 return -ENOMEM;
32a8cf23
DL
1374 continue;
1375 }
1376 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1377 const char *name = token + 5;
1378 /* Can't specify an empty name */
1379 if (!strlen(name))
1380 return -EINVAL;
1381 /* Must match [\w.-]+ */
1382 for (i = 0; i < strlen(name); i++) {
1383 char c = name[i];
1384 if (isalnum(c))
1385 continue;
1386 if ((c == '.') || (c == '-') || (c == '_'))
1387 continue;
1388 return -EINVAL;
1389 }
1390 /* Specifying two names is forbidden */
1391 if (opts->name)
1392 return -EINVAL;
1393 opts->name = kstrndup(name,
e400c285 1394 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1395 GFP_KERNEL);
1396 if (!opts->name)
1397 return -ENOMEM;
32a8cf23
DL
1398
1399 continue;
1400 }
1401
30159ec7 1402 for_each_subsys(ss, i) {
32a8cf23
DL
1403 if (strcmp(token, ss->name))
1404 continue;
1405 if (ss->disabled)
1406 continue;
1407
1408 /* Mutually exclusive option 'all' + subsystem name */
1409 if (all_ss)
1410 return -EINVAL;
69dfa00c 1411 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1412 one_ss = true;
1413
1414 break;
1415 }
1416 if (i == CGROUP_SUBSYS_COUNT)
1417 return -ENOENT;
1418 }
1419
2c6ab6d2
PM
1420 /* Consistency checks */
1421
873fe09e 1422 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1423 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1424
d3ba07c3
TH
1425 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1426 opts->cpuset_clone_children || opts->release_agent ||
1427 opts->name) {
ed3d261b 1428 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1429 return -EINVAL;
1430 }
a2dd4247
TH
1431 } else {
1432 /*
1433 * If the 'all' option was specified select all the
1434 * subsystems, otherwise if 'none', 'name=' and a subsystem
1435 * name options were not specified, let's default to 'all'
1436 */
1437 if (all_ss || (!one_ss && !opts->none && !opts->name))
1438 for_each_subsys(ss, i)
1439 if (!ss->disabled)
69dfa00c 1440 opts->subsys_mask |= (1 << i);
873fe09e 1441
a2dd4247
TH
1442 /*
1443 * We either have to specify by name or by subsystems. (So
1444 * all empty hierarchies must have a name).
1445 */
1446 if (!opts->subsys_mask && !opts->name)
873fe09e 1447 return -EINVAL;
873fe09e
TH
1448 }
1449
f9ab5b5b
LZ
1450 /*
1451 * Option noprefix was introduced just for backward compatibility
1452 * with the old cpuset, so we allow noprefix only if mounting just
1453 * the cpuset subsystem.
1454 */
93438629 1455 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1456 return -EINVAL;
1457
2c6ab6d2
PM
1458
1459 /* Can't specify "none" and some subsystems */
a1a71b45 1460 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1461 return -EINVAL;
1462
ddbcc7e8
PM
1463 return 0;
1464}
1465
2bd59d48 1466static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1467{
1468 int ret = 0;
3dd06ffa 1469 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1470 struct cgroup_sb_opts opts;
69dfa00c 1471 unsigned int added_mask, removed_mask;
ddbcc7e8 1472
aa6ec29b
TH
1473 if (root == &cgrp_dfl_root) {
1474 pr_err("remount is not allowed\n");
873fe09e
TH
1475 return -EINVAL;
1476 }
1477
ddbcc7e8
PM
1478 mutex_lock(&cgroup_mutex);
1479
1480 /* See what subsystems are wanted */
1481 ret = parse_cgroupfs_options(data, &opts);
1482 if (ret)
1483 goto out_unlock;
1484
f392e51c 1485 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1486 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1487 task_tgid_nr(current), current->comm);
8b5a5a9d 1488
f392e51c
TH
1489 added_mask = opts.subsys_mask & ~root->subsys_mask;
1490 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1491
cf5d5941 1492 /* Don't allow flags or name to change at remount */
7450e90b 1493 if ((opts.flags ^ root->flags) ||
cf5d5941 1494 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1495 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1496 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1497 ret = -EINVAL;
1498 goto out_unlock;
1499 }
1500
f172e67c 1501 /* remounting is not allowed for populated hierarchies */
d5c419b6 1502 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1503 ret = -EBUSY;
0670e08b 1504 goto out_unlock;
cf5d5941 1505 }
ddbcc7e8 1506
5df36032 1507 ret = rebind_subsystems(root, added_mask);
3126121f 1508 if (ret)
0670e08b 1509 goto out_unlock;
ddbcc7e8 1510
3dd06ffa 1511 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1512
69e943b7
TH
1513 if (opts.release_agent) {
1514 spin_lock(&release_agent_path_lock);
81a6a5cd 1515 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1516 spin_unlock(&release_agent_path_lock);
1517 }
ddbcc7e8 1518 out_unlock:
66bdc9cf 1519 kfree(opts.release_agent);
c6d57f33 1520 kfree(opts.name);
ddbcc7e8 1521 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1522 return ret;
1523}
1524
afeb0f9f
TH
1525/*
1526 * To reduce the fork() overhead for systems that are not actually using
1527 * their cgroups capability, we don't maintain the lists running through
1528 * each css_set to its tasks until we see the list actually used - in other
1529 * words after the first mount.
1530 */
1531static bool use_task_css_set_links __read_mostly;
1532
1533static void cgroup_enable_task_cg_lists(void)
1534{
1535 struct task_struct *p, *g;
1536
96d365e0 1537 down_write(&css_set_rwsem);
afeb0f9f
TH
1538
1539 if (use_task_css_set_links)
1540 goto out_unlock;
1541
1542 use_task_css_set_links = true;
1543
1544 /*
1545 * We need tasklist_lock because RCU is not safe against
1546 * while_each_thread(). Besides, a forking task that has passed
1547 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1548 * is not guaranteed to have its child immediately visible in the
1549 * tasklist if we walk through it with RCU.
1550 */
1551 read_lock(&tasklist_lock);
1552 do_each_thread(g, p) {
afeb0f9f
TH
1553 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1554 task_css_set(p) != &init_css_set);
1555
1556 /*
1557 * We should check if the process is exiting, otherwise
1558 * it will race with cgroup_exit() in that the list
1559 * entry won't be deleted though the process has exited.
f153ad11
TH
1560 * Do it while holding siglock so that we don't end up
1561 * racing against cgroup_exit().
afeb0f9f 1562 */
f153ad11 1563 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1564 if (!(p->flags & PF_EXITING)) {
1565 struct css_set *cset = task_css_set(p);
1566
1567 list_add(&p->cg_list, &cset->tasks);
1568 get_css_set(cset);
1569 }
f153ad11 1570 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1571 } while_each_thread(g, p);
1572 read_unlock(&tasklist_lock);
1573out_unlock:
96d365e0 1574 up_write(&css_set_rwsem);
afeb0f9f 1575}
ddbcc7e8 1576
cc31edce
PM
1577static void init_cgroup_housekeeping(struct cgroup *cgrp)
1578{
2d8f243a
TH
1579 struct cgroup_subsys *ss;
1580 int ssid;
1581
d5c419b6
TH
1582 INIT_LIST_HEAD(&cgrp->self.sibling);
1583 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1584 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1585 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1586 INIT_LIST_HEAD(&cgrp->pidlists);
1587 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1588 cgrp->self.cgroup = cgrp;
184faf32 1589 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1590
1591 for_each_subsys(ss, ssid)
1592 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1593
1594 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1595}
c6d57f33 1596
3dd06ffa 1597static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1598 struct cgroup_sb_opts *opts)
ddbcc7e8 1599{
3dd06ffa 1600 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1601
ddbcc7e8 1602 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1603 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1604 cgrp->root = root;
cc31edce 1605 init_cgroup_housekeeping(cgrp);
4e96ee8e 1606 idr_init(&root->cgroup_idr);
c6d57f33 1607
c6d57f33
PM
1608 root->flags = opts->flags;
1609 if (opts->release_agent)
1610 strcpy(root->release_agent_path, opts->release_agent);
1611 if (opts->name)
1612 strcpy(root->name, opts->name);
2260e7fc 1613 if (opts->cpuset_clone_children)
3dd06ffa 1614 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1615}
1616
69dfa00c 1617static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1618{
d427dfeb 1619 LIST_HEAD(tmp_links);
3dd06ffa 1620 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1621 struct css_set *cset;
d427dfeb 1622 int i, ret;
2c6ab6d2 1623
d427dfeb 1624 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1625
6fa4918d 1626 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1627 if (ret < 0)
2bd59d48 1628 goto out;
d427dfeb 1629 root_cgrp->id = ret;
c6d57f33 1630
9d755d33
TH
1631 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1632 if (ret)
1633 goto out;
1634
d427dfeb 1635 /*
96d365e0 1636 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1637 * but that's OK - it can only be increased by someone holding
1638 * cgroup_lock, and that's us. The worst that can happen is that we
1639 * have some link structures left over
1640 */
1641 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1642 if (ret)
9d755d33 1643 goto cancel_ref;
ddbcc7e8 1644
985ed670 1645 ret = cgroup_init_root_id(root);
ddbcc7e8 1646 if (ret)
9d755d33 1647 goto cancel_ref;
ddbcc7e8 1648
2bd59d48
TH
1649 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1650 KERNFS_ROOT_CREATE_DEACTIVATED,
1651 root_cgrp);
1652 if (IS_ERR(root->kf_root)) {
1653 ret = PTR_ERR(root->kf_root);
1654 goto exit_root_id;
1655 }
1656 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1657
d427dfeb
TH
1658 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1659 if (ret)
2bd59d48 1660 goto destroy_root;
ddbcc7e8 1661
5df36032 1662 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1663 if (ret)
2bd59d48 1664 goto destroy_root;
ddbcc7e8 1665
d427dfeb
TH
1666 /*
1667 * There must be no failure case after here, since rebinding takes
1668 * care of subsystems' refcounts, which are explicitly dropped in
1669 * the failure exit path.
1670 */
1671 list_add(&root->root_list, &cgroup_roots);
1672 cgroup_root_count++;
0df6a63f 1673
d427dfeb 1674 /*
3dd06ffa 1675 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1676 * objects.
1677 */
96d365e0 1678 down_write(&css_set_rwsem);
d427dfeb
TH
1679 hash_for_each(css_set_table, i, cset, hlist)
1680 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1681 up_write(&css_set_rwsem);
ddbcc7e8 1682
d5c419b6 1683 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1684 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1685
2bd59d48 1686 kernfs_activate(root_cgrp->kn);
d427dfeb 1687 ret = 0;
2bd59d48 1688 goto out;
d427dfeb 1689
2bd59d48
TH
1690destroy_root:
1691 kernfs_destroy_root(root->kf_root);
1692 root->kf_root = NULL;
1693exit_root_id:
d427dfeb 1694 cgroup_exit_root_id(root);
9d755d33
TH
1695cancel_ref:
1696 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1697out:
d427dfeb
TH
1698 free_cgrp_cset_links(&tmp_links);
1699 return ret;
ddbcc7e8
PM
1700}
1701
f7e83571 1702static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1703 int flags, const char *unused_dev_name,
f7e83571 1704 void *data)
ddbcc7e8 1705{
3dd06ffa 1706 struct cgroup_root *root;
ddbcc7e8 1707 struct cgroup_sb_opts opts;
2bd59d48 1708 struct dentry *dentry;
8e30e2b8 1709 int ret;
c6b3d5bc 1710 bool new_sb;
ddbcc7e8 1711
56fde9e0
TH
1712 /*
1713 * The first time anyone tries to mount a cgroup, enable the list
1714 * linking each css_set to its tasks and fix up all existing tasks.
1715 */
1716 if (!use_task_css_set_links)
1717 cgroup_enable_task_cg_lists();
e37a06f1 1718
aae8aab4 1719 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1720
1721 /* First find the desired set of subsystems */
ddbcc7e8 1722 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1723 if (ret)
8e30e2b8 1724 goto out_unlock;
a015edd2 1725
2bd59d48 1726 /* look for a matching existing root */
a2dd4247
TH
1727 if (!opts.subsys_mask && !opts.none && !opts.name) {
1728 cgrp_dfl_root_visible = true;
1729 root = &cgrp_dfl_root;
1730 cgroup_get(&root->cgrp);
1731 ret = 0;
1732 goto out_unlock;
ddbcc7e8
PM
1733 }
1734
985ed670 1735 for_each_root(root) {
2bd59d48 1736 bool name_match = false;
3126121f 1737
3dd06ffa 1738 if (root == &cgrp_dfl_root)
985ed670 1739 continue;
3126121f 1740
cf5d5941 1741 /*
2bd59d48
TH
1742 * If we asked for a name then it must match. Also, if
1743 * name matches but sybsys_mask doesn't, we should fail.
1744 * Remember whether name matched.
cf5d5941 1745 */
2bd59d48
TH
1746 if (opts.name) {
1747 if (strcmp(opts.name, root->name))
1748 continue;
1749 name_match = true;
1750 }
ddbcc7e8 1751
c6d57f33 1752 /*
2bd59d48
TH
1753 * If we asked for subsystems (or explicitly for no
1754 * subsystems) then they must match.
c6d57f33 1755 */
2bd59d48 1756 if ((opts.subsys_mask || opts.none) &&
f392e51c 1757 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1758 if (!name_match)
1759 continue;
1760 ret = -EBUSY;
1761 goto out_unlock;
1762 }
873fe09e 1763
7450e90b 1764 if (root->flags ^ opts.flags) {
2a0ff3fb 1765 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1766 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1767 ret = -EINVAL;
8e30e2b8 1768 goto out_unlock;
2a0ff3fb 1769 } else {
ed3d261b 1770 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1771 }
873fe09e 1772 }
ddbcc7e8 1773
776f02fa 1774 /*
9d755d33
TH
1775 * A root's lifetime is governed by its root cgroup.
1776 * tryget_live failure indicate that the root is being
1777 * destroyed. Wait for destruction to complete so that the
1778 * subsystems are free. We can use wait_queue for the wait
1779 * but this path is super cold. Let's just sleep for a bit
1780 * and retry.
776f02fa 1781 */
9d755d33 1782 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1783 mutex_unlock(&cgroup_mutex);
776f02fa 1784 msleep(10);
a015edd2
TH
1785 ret = restart_syscall();
1786 goto out_free;
776f02fa 1787 }
ddbcc7e8 1788
776f02fa 1789 ret = 0;
2bd59d48 1790 goto out_unlock;
ddbcc7e8 1791 }
ddbcc7e8 1792
817929ec 1793 /*
172a2c06
TH
1794 * No such thing, create a new one. name= matching without subsys
1795 * specification is allowed for already existing hierarchies but we
1796 * can't create new one without subsys specification.
817929ec 1797 */
172a2c06
TH
1798 if (!opts.subsys_mask && !opts.none) {
1799 ret = -EINVAL;
1800 goto out_unlock;
817929ec 1801 }
817929ec 1802
172a2c06
TH
1803 root = kzalloc(sizeof(*root), GFP_KERNEL);
1804 if (!root) {
1805 ret = -ENOMEM;
2bd59d48 1806 goto out_unlock;
839ec545 1807 }
e5f6a860 1808
172a2c06
TH
1809 init_cgroup_root(root, &opts);
1810
35585573 1811 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1812 if (ret)
1813 cgroup_free_root(root);
fa3ca07e 1814
8e30e2b8 1815out_unlock:
ddbcc7e8 1816 mutex_unlock(&cgroup_mutex);
a015edd2 1817out_free:
c6d57f33
PM
1818 kfree(opts.release_agent);
1819 kfree(opts.name);
03b1cde6 1820
2bd59d48 1821 if (ret)
8e30e2b8 1822 return ERR_PTR(ret);
2bd59d48 1823
c9482a5b
JZ
1824 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1825 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1826 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1827 cgroup_put(&root->cgrp);
2bd59d48
TH
1828 return dentry;
1829}
1830
1831static void cgroup_kill_sb(struct super_block *sb)
1832{
1833 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1834 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1835
9d755d33
TH
1836 /*
1837 * If @root doesn't have any mounts or children, start killing it.
1838 * This prevents new mounts by disabling percpu_ref_tryget_live().
1839 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1840 *
1841 * And don't kill the default root.
9d755d33 1842 */
1f779fb2
LZ
1843 if (css_has_online_children(&root->cgrp.self) ||
1844 root == &cgrp_dfl_root)
9d755d33
TH
1845 cgroup_put(&root->cgrp);
1846 else
1847 percpu_ref_kill(&root->cgrp.self.refcnt);
1848
2bd59d48 1849 kernfs_kill_sb(sb);
ddbcc7e8
PM
1850}
1851
1852static struct file_system_type cgroup_fs_type = {
1853 .name = "cgroup",
f7e83571 1854 .mount = cgroup_mount,
ddbcc7e8
PM
1855 .kill_sb = cgroup_kill_sb,
1856};
1857
676db4af
GK
1858static struct kobject *cgroup_kobj;
1859
857a2beb 1860/**
913ffdb5 1861 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1862 * @task: target task
857a2beb
TH
1863 * @buf: the buffer to write the path into
1864 * @buflen: the length of the buffer
1865 *
913ffdb5
TH
1866 * Determine @task's cgroup on the first (the one with the lowest non-zero
1867 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1868 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1869 * cgroup controller callbacks.
1870 *
e61734c5 1871 * Return value is the same as kernfs_path().
857a2beb 1872 */
e61734c5 1873char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1874{
3dd06ffa 1875 struct cgroup_root *root;
913ffdb5 1876 struct cgroup *cgrp;
e61734c5
TH
1877 int hierarchy_id = 1;
1878 char *path = NULL;
857a2beb
TH
1879
1880 mutex_lock(&cgroup_mutex);
96d365e0 1881 down_read(&css_set_rwsem);
857a2beb 1882
913ffdb5
TH
1883 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1884
857a2beb
TH
1885 if (root) {
1886 cgrp = task_cgroup_from_root(task, root);
e61734c5 1887 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1888 } else {
1889 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1890 if (strlcpy(buf, "/", buflen) < buflen)
1891 path = buf;
857a2beb
TH
1892 }
1893
96d365e0 1894 up_read(&css_set_rwsem);
857a2beb 1895 mutex_unlock(&cgroup_mutex);
e61734c5 1896 return path;
857a2beb 1897}
913ffdb5 1898EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1899
b3dc094e 1900/* used to track tasks and other necessary states during migration */
2f7ee569 1901struct cgroup_taskset {
b3dc094e
TH
1902 /* the src and dst cset list running through cset->mg_node */
1903 struct list_head src_csets;
1904 struct list_head dst_csets;
1905
1906 /*
1907 * Fields for cgroup_taskset_*() iteration.
1908 *
1909 * Before migration is committed, the target migration tasks are on
1910 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1911 * the csets on ->dst_csets. ->csets point to either ->src_csets
1912 * or ->dst_csets depending on whether migration is committed.
1913 *
1914 * ->cur_csets and ->cur_task point to the current task position
1915 * during iteration.
1916 */
1917 struct list_head *csets;
1918 struct css_set *cur_cset;
1919 struct task_struct *cur_task;
2f7ee569
TH
1920};
1921
1922/**
1923 * cgroup_taskset_first - reset taskset and return the first task
1924 * @tset: taskset of interest
1925 *
1926 * @tset iteration is initialized and the first task is returned.
1927 */
1928struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1929{
b3dc094e
TH
1930 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1931 tset->cur_task = NULL;
1932
1933 return cgroup_taskset_next(tset);
2f7ee569 1934}
2f7ee569
TH
1935
1936/**
1937 * cgroup_taskset_next - iterate to the next task in taskset
1938 * @tset: taskset of interest
1939 *
1940 * Return the next task in @tset. Iteration must have been initialized
1941 * with cgroup_taskset_first().
1942 */
1943struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1944{
b3dc094e
TH
1945 struct css_set *cset = tset->cur_cset;
1946 struct task_struct *task = tset->cur_task;
2f7ee569 1947
b3dc094e
TH
1948 while (&cset->mg_node != tset->csets) {
1949 if (!task)
1950 task = list_first_entry(&cset->mg_tasks,
1951 struct task_struct, cg_list);
1952 else
1953 task = list_next_entry(task, cg_list);
2f7ee569 1954
b3dc094e
TH
1955 if (&task->cg_list != &cset->mg_tasks) {
1956 tset->cur_cset = cset;
1957 tset->cur_task = task;
1958 return task;
1959 }
2f7ee569 1960
b3dc094e
TH
1961 cset = list_next_entry(cset, mg_node);
1962 task = NULL;
1963 }
2f7ee569 1964
b3dc094e 1965 return NULL;
2f7ee569 1966}
2f7ee569 1967
cb0f1fe9 1968/**
74a1166d 1969 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1970 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1971 * @tsk: the task being migrated
1972 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1973 *
cb0f1fe9 1974 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1975 */
5abb8855
TH
1976static void cgroup_task_migrate(struct cgroup *old_cgrp,
1977 struct task_struct *tsk,
1978 struct css_set *new_cset)
74a1166d 1979{
5abb8855 1980 struct css_set *old_cset;
74a1166d 1981
cb0f1fe9
TH
1982 lockdep_assert_held(&cgroup_mutex);
1983 lockdep_assert_held(&css_set_rwsem);
1984
74a1166d 1985 /*
026085ef
MSB
1986 * We are synchronized through threadgroup_lock() against PF_EXITING
1987 * setting such that we can't race against cgroup_exit() changing the
1988 * css_set to init_css_set and dropping the old one.
74a1166d 1989 */
c84cdf75 1990 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1991 old_cset = task_css_set(tsk);
74a1166d 1992
b3dc094e 1993 get_css_set(new_cset);
5abb8855 1994 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1995
1b9aba49
TH
1996 /*
1997 * Use move_tail so that cgroup_taskset_first() still returns the
1998 * leader after migration. This works because cgroup_migrate()
1999 * ensures that the dst_cset of the leader is the first on the
2000 * tset's dst_csets list.
2001 */
2002 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2003
2004 /*
5abb8855
TH
2005 * We just gained a reference on old_cset by taking it from the
2006 * task. As trading it for new_cset is protected by cgroup_mutex,
2007 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2008 */
5abb8855 2009 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 2010 put_css_set_locked(old_cset, false);
74a1166d
BB
2011}
2012
a043e3b2 2013/**
1958d2d5
TH
2014 * cgroup_migrate_finish - cleanup after attach
2015 * @preloaded_csets: list of preloaded css_sets
74a1166d 2016 *
1958d2d5
TH
2017 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2018 * those functions for details.
74a1166d 2019 */
1958d2d5 2020static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2021{
1958d2d5 2022 struct css_set *cset, *tmp_cset;
74a1166d 2023
1958d2d5
TH
2024 lockdep_assert_held(&cgroup_mutex);
2025
2026 down_write(&css_set_rwsem);
2027 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2028 cset->mg_src_cgrp = NULL;
2029 cset->mg_dst_cset = NULL;
2030 list_del_init(&cset->mg_preload_node);
2031 put_css_set_locked(cset, false);
2032 }
2033 up_write(&css_set_rwsem);
2034}
2035
2036/**
2037 * cgroup_migrate_add_src - add a migration source css_set
2038 * @src_cset: the source css_set to add
2039 * @dst_cgrp: the destination cgroup
2040 * @preloaded_csets: list of preloaded css_sets
2041 *
2042 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2043 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2044 * up by cgroup_migrate_finish().
2045 *
2046 * This function may be called without holding threadgroup_lock even if the
2047 * target is a process. Threads may be created and destroyed but as long
2048 * as cgroup_mutex is not dropped, no new css_set can be put into play and
2049 * the preloaded css_sets are guaranteed to cover all migrations.
2050 */
2051static void cgroup_migrate_add_src(struct css_set *src_cset,
2052 struct cgroup *dst_cgrp,
2053 struct list_head *preloaded_csets)
2054{
2055 struct cgroup *src_cgrp;
2056
2057 lockdep_assert_held(&cgroup_mutex);
2058 lockdep_assert_held(&css_set_rwsem);
2059
2060 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2061
1958d2d5
TH
2062 if (!list_empty(&src_cset->mg_preload_node))
2063 return;
2064
2065 WARN_ON(src_cset->mg_src_cgrp);
2066 WARN_ON(!list_empty(&src_cset->mg_tasks));
2067 WARN_ON(!list_empty(&src_cset->mg_node));
2068
2069 src_cset->mg_src_cgrp = src_cgrp;
2070 get_css_set(src_cset);
2071 list_add(&src_cset->mg_preload_node, preloaded_csets);
2072}
2073
2074/**
2075 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2076 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2077 * @preloaded_csets: list of preloaded source css_sets
2078 *
2079 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2080 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2081 * pins all destination css_sets, links each to its source, and append them
2082 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2083 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2084 *
2085 * This function must be called after cgroup_migrate_add_src() has been
2086 * called on each migration source css_set. After migration is performed
2087 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2088 * @preloaded_csets.
2089 */
2090static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2091 struct list_head *preloaded_csets)
2092{
2093 LIST_HEAD(csets);
f817de98 2094 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2095
2096 lockdep_assert_held(&cgroup_mutex);
2097
f8f22e53
TH
2098 /*
2099 * Except for the root, child_subsys_mask must be zero for a cgroup
2100 * with tasks so that child cgroups don't compete against tasks.
2101 */
d51f39b0 2102 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2103 dst_cgrp->child_subsys_mask)
2104 return -EBUSY;
2105
1958d2d5 2106 /* look up the dst cset for each src cset and link it to src */
f817de98 2107 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2108 struct css_set *dst_cset;
2109
f817de98
TH
2110 dst_cset = find_css_set(src_cset,
2111 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2112 if (!dst_cset)
2113 goto err;
2114
2115 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2116
2117 /*
2118 * If src cset equals dst, it's noop. Drop the src.
2119 * cgroup_migrate() will skip the cset too. Note that we
2120 * can't handle src == dst as some nodes are used by both.
2121 */
2122 if (src_cset == dst_cset) {
2123 src_cset->mg_src_cgrp = NULL;
2124 list_del_init(&src_cset->mg_preload_node);
2125 put_css_set(src_cset, false);
2126 put_css_set(dst_cset, false);
2127 continue;
2128 }
2129
1958d2d5
TH
2130 src_cset->mg_dst_cset = dst_cset;
2131
2132 if (list_empty(&dst_cset->mg_preload_node))
2133 list_add(&dst_cset->mg_preload_node, &csets);
2134 else
2135 put_css_set(dst_cset, false);
2136 }
2137
f817de98 2138 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2139 return 0;
2140err:
2141 cgroup_migrate_finish(&csets);
2142 return -ENOMEM;
2143}
2144
2145/**
2146 * cgroup_migrate - migrate a process or task to a cgroup
2147 * @cgrp: the destination cgroup
2148 * @leader: the leader of the process or the task to migrate
2149 * @threadgroup: whether @leader points to the whole process or a single task
2150 *
2151 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2152 * process, the caller must be holding threadgroup_lock of @leader. The
2153 * caller is also responsible for invoking cgroup_migrate_add_src() and
2154 * cgroup_migrate_prepare_dst() on the targets before invoking this
2155 * function and following up with cgroup_migrate_finish().
2156 *
2157 * As long as a controller's ->can_attach() doesn't fail, this function is
2158 * guaranteed to succeed. This means that, excluding ->can_attach()
2159 * failure, when migrating multiple targets, the success or failure can be
2160 * decided for all targets by invoking group_migrate_prepare_dst() before
2161 * actually starting migrating.
2162 */
2163static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2164 bool threadgroup)
74a1166d 2165{
b3dc094e
TH
2166 struct cgroup_taskset tset = {
2167 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2168 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2169 .csets = &tset.src_csets,
2170 };
1c6727af 2171 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2172 struct css_set *cset, *tmp_cset;
2173 struct task_struct *task, *tmp_task;
2174 int i, ret;
74a1166d 2175
fb5d2b4c
MSB
2176 /*
2177 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2178 * already PF_EXITING could be freed from underneath us unless we
2179 * take an rcu_read_lock.
2180 */
b3dc094e 2181 down_write(&css_set_rwsem);
fb5d2b4c 2182 rcu_read_lock();
9db8de37 2183 task = leader;
74a1166d 2184 do {
9db8de37
TH
2185 /* @task either already exited or can't exit until the end */
2186 if (task->flags & PF_EXITING)
ea84753c 2187 goto next;
134d3373 2188
eaf797ab
TH
2189 /* leave @task alone if post_fork() hasn't linked it yet */
2190 if (list_empty(&task->cg_list))
ea84753c 2191 goto next;
cd3d0952 2192
b3dc094e 2193 cset = task_css_set(task);
1958d2d5 2194 if (!cset->mg_src_cgrp)
ea84753c 2195 goto next;
b3dc094e 2196
61d1d219 2197 /*
1b9aba49
TH
2198 * cgroup_taskset_first() must always return the leader.
2199 * Take care to avoid disturbing the ordering.
61d1d219 2200 */
1b9aba49
TH
2201 list_move_tail(&task->cg_list, &cset->mg_tasks);
2202 if (list_empty(&cset->mg_node))
2203 list_add_tail(&cset->mg_node, &tset.src_csets);
2204 if (list_empty(&cset->mg_dst_cset->mg_node))
2205 list_move_tail(&cset->mg_dst_cset->mg_node,
2206 &tset.dst_csets);
ea84753c 2207 next:
081aa458
LZ
2208 if (!threadgroup)
2209 break;
9db8de37 2210 } while_each_thread(leader, task);
fb5d2b4c 2211 rcu_read_unlock();
b3dc094e 2212 up_write(&css_set_rwsem);
74a1166d 2213
134d3373 2214 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2215 if (list_empty(&tset.src_csets))
2216 return 0;
134d3373 2217
1958d2d5 2218 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2219 for_each_e_css(css, i, cgrp) {
1c6727af 2220 if (css->ss->can_attach) {
9db8de37
TH
2221 ret = css->ss->can_attach(css, &tset);
2222 if (ret) {
1c6727af 2223 failed_css = css;
74a1166d
BB
2224 goto out_cancel_attach;
2225 }
2226 }
74a1166d
BB
2227 }
2228
2229 /*
1958d2d5
TH
2230 * Now that we're guaranteed success, proceed to move all tasks to
2231 * the new cgroup. There are no failure cases after here, so this
2232 * is the commit point.
74a1166d 2233 */
cb0f1fe9 2234 down_write(&css_set_rwsem);
b3dc094e
TH
2235 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2236 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2237 cgroup_task_migrate(cset->mg_src_cgrp, task,
2238 cset->mg_dst_cset);
74a1166d 2239 }
cb0f1fe9 2240 up_write(&css_set_rwsem);
74a1166d
BB
2241
2242 /*
1958d2d5
TH
2243 * Migration is committed, all target tasks are now on dst_csets.
2244 * Nothing is sensitive to fork() after this point. Notify
2245 * controllers that migration is complete.
74a1166d 2246 */
1958d2d5 2247 tset.csets = &tset.dst_csets;
74a1166d 2248
aec3dfcb 2249 for_each_e_css(css, i, cgrp)
1c6727af
TH
2250 if (css->ss->attach)
2251 css->ss->attach(css, &tset);
74a1166d 2252
9db8de37 2253 ret = 0;
b3dc094e
TH
2254 goto out_release_tset;
2255
74a1166d 2256out_cancel_attach:
aec3dfcb 2257 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2258 if (css == failed_css)
2259 break;
2260 if (css->ss->cancel_attach)
2261 css->ss->cancel_attach(css, &tset);
74a1166d 2262 }
b3dc094e
TH
2263out_release_tset:
2264 down_write(&css_set_rwsem);
2265 list_splice_init(&tset.dst_csets, &tset.src_csets);
2266 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2267 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2268 list_del_init(&cset->mg_node);
b3dc094e
TH
2269 }
2270 up_write(&css_set_rwsem);
9db8de37 2271 return ret;
74a1166d
BB
2272}
2273
1958d2d5
TH
2274/**
2275 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2276 * @dst_cgrp: the cgroup to attach to
2277 * @leader: the task or the leader of the threadgroup to be attached
2278 * @threadgroup: attach the whole threadgroup?
2279 *
0e1d768f 2280 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2281 */
2282static int cgroup_attach_task(struct cgroup *dst_cgrp,
2283 struct task_struct *leader, bool threadgroup)
2284{
2285 LIST_HEAD(preloaded_csets);
2286 struct task_struct *task;
2287 int ret;
2288
2289 /* look up all src csets */
2290 down_read(&css_set_rwsem);
2291 rcu_read_lock();
2292 task = leader;
2293 do {
2294 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2295 &preloaded_csets);
2296 if (!threadgroup)
2297 break;
2298 } while_each_thread(leader, task);
2299 rcu_read_unlock();
2300 up_read(&css_set_rwsem);
2301
2302 /* prepare dst csets and commit */
2303 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2304 if (!ret)
2305 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2306
2307 cgroup_migrate_finish(&preloaded_csets);
2308 return ret;
74a1166d
BB
2309}
2310
2311/*
2312 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2313 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2314 * cgroup_mutex and threadgroup.
bbcb81d0 2315 */
acbef755
TH
2316static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2317 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2318{
bbcb81d0 2319 struct task_struct *tsk;
c69e8d9c 2320 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2321 struct cgroup *cgrp;
acbef755 2322 pid_t pid;
bbcb81d0
PM
2323 int ret;
2324
acbef755
TH
2325 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2326 return -EINVAL;
2327
e76ecaee
TH
2328 cgrp = cgroup_kn_lock_live(of->kn);
2329 if (!cgrp)
74a1166d
BB
2330 return -ENODEV;
2331
b78949eb
MSB
2332retry_find_task:
2333 rcu_read_lock();
bbcb81d0 2334 if (pid) {
73507f33 2335 tsk = find_task_by_vpid(pid);
74a1166d
BB
2336 if (!tsk) {
2337 rcu_read_unlock();
dd4b0a46 2338 ret = -ESRCH;
b78949eb 2339 goto out_unlock_cgroup;
bbcb81d0 2340 }
74a1166d
BB
2341 /*
2342 * even if we're attaching all tasks in the thread group, we
2343 * only need to check permissions on one of them.
2344 */
c69e8d9c 2345 tcred = __task_cred(tsk);
14a590c3
EB
2346 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2347 !uid_eq(cred->euid, tcred->uid) &&
2348 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2349 rcu_read_unlock();
b78949eb
MSB
2350 ret = -EACCES;
2351 goto out_unlock_cgroup;
bbcb81d0 2352 }
b78949eb
MSB
2353 } else
2354 tsk = current;
cd3d0952
TH
2355
2356 if (threadgroup)
b78949eb 2357 tsk = tsk->group_leader;
c4c27fbd
MG
2358
2359 /*
14a40ffc 2360 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2361 * trapped in a cpuset, or RT worker may be born in a cgroup
2362 * with no rt_runtime allocated. Just say no.
2363 */
14a40ffc 2364 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2365 ret = -EINVAL;
2366 rcu_read_unlock();
2367 goto out_unlock_cgroup;
2368 }
2369
b78949eb
MSB
2370 get_task_struct(tsk);
2371 rcu_read_unlock();
2372
2373 threadgroup_lock(tsk);
2374 if (threadgroup) {
2375 if (!thread_group_leader(tsk)) {
2376 /*
2377 * a race with de_thread from another thread's exec()
2378 * may strip us of our leadership, if this happens,
2379 * there is no choice but to throw this task away and
2380 * try again; this is
2381 * "double-double-toil-and-trouble-check locking".
2382 */
2383 threadgroup_unlock(tsk);
2384 put_task_struct(tsk);
2385 goto retry_find_task;
2386 }
081aa458
LZ
2387 }
2388
2389 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2390
cd3d0952
TH
2391 threadgroup_unlock(tsk);
2392
bbcb81d0 2393 put_task_struct(tsk);
b78949eb 2394out_unlock_cgroup:
e76ecaee 2395 cgroup_kn_unlock(of->kn);
acbef755 2396 return ret ?: nbytes;
bbcb81d0
PM
2397}
2398
7ae1bad9
TH
2399/**
2400 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2401 * @from: attach to all cgroups of a given task
2402 * @tsk: the task to be attached
2403 */
2404int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2405{
3dd06ffa 2406 struct cgroup_root *root;
7ae1bad9
TH
2407 int retval = 0;
2408
47cfcd09 2409 mutex_lock(&cgroup_mutex);
985ed670 2410 for_each_root(root) {
96d365e0
TH
2411 struct cgroup *from_cgrp;
2412
3dd06ffa 2413 if (root == &cgrp_dfl_root)
985ed670
TH
2414 continue;
2415
96d365e0
TH
2416 down_read(&css_set_rwsem);
2417 from_cgrp = task_cgroup_from_root(from, root);
2418 up_read(&css_set_rwsem);
7ae1bad9 2419
6f4b7e63 2420 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2421 if (retval)
2422 break;
2423 }
47cfcd09 2424 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2425
2426 return retval;
2427}
2428EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2429
acbef755
TH
2430static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2431 char *buf, size_t nbytes, loff_t off)
74a1166d 2432{
acbef755 2433 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2434}
2435
acbef755
TH
2436static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2437 char *buf, size_t nbytes, loff_t off)
af351026 2438{
acbef755 2439 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2440}
2441
451af504
TH
2442static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2443 char *buf, size_t nbytes, loff_t off)
e788e066 2444{
e76ecaee 2445 struct cgroup *cgrp;
5f469907 2446
e76ecaee 2447 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2448
e76ecaee
TH
2449 cgrp = cgroup_kn_lock_live(of->kn);
2450 if (!cgrp)
e788e066 2451 return -ENODEV;
69e943b7 2452 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2453 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2454 sizeof(cgrp->root->release_agent_path));
69e943b7 2455 spin_unlock(&release_agent_path_lock);
e76ecaee 2456 cgroup_kn_unlock(of->kn);
451af504 2457 return nbytes;
e788e066
PM
2458}
2459
2da8ca82 2460static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2461{
2da8ca82 2462 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2463
46cfeb04 2464 spin_lock(&release_agent_path_lock);
e788e066 2465 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2466 spin_unlock(&release_agent_path_lock);
e788e066 2467 seq_putc(seq, '\n');
e788e066
PM
2468 return 0;
2469}
2470
2da8ca82 2471static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2472{
c1d5d42e 2473 seq_puts(seq, "0\n");
e788e066
PM
2474 return 0;
2475}
2476
f8f22e53 2477static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2478{
f8f22e53
TH
2479 struct cgroup_subsys *ss;
2480 bool printed = false;
2481 int ssid;
a742c59d 2482
f8f22e53
TH
2483 for_each_subsys(ss, ssid) {
2484 if (ss_mask & (1 << ssid)) {
2485 if (printed)
2486 seq_putc(seq, ' ');
2487 seq_printf(seq, "%s", ss->name);
2488 printed = true;
2489 }
e73d2c61 2490 }
f8f22e53
TH
2491 if (printed)
2492 seq_putc(seq, '\n');
355e0c48
PM
2493}
2494
f8f22e53
TH
2495/* show controllers which are currently attached to the default hierarchy */
2496static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2497{
f8f22e53
TH
2498 struct cgroup *cgrp = seq_css(seq)->cgroup;
2499
5533e011
TH
2500 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2501 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2502 return 0;
db3b1497
PM
2503}
2504
f8f22e53
TH
2505/* show controllers which are enabled from the parent */
2506static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2507{
f8f22e53
TH
2508 struct cgroup *cgrp = seq_css(seq)->cgroup;
2509
667c2491 2510 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2511 return 0;
ddbcc7e8
PM
2512}
2513
f8f22e53
TH
2514/* show controllers which are enabled for a given cgroup's children */
2515static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2516{
f8f22e53
TH
2517 struct cgroup *cgrp = seq_css(seq)->cgroup;
2518
667c2491 2519 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2520 return 0;
2521}
2522
2523/**
2524 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2525 * @cgrp: root of the subtree to update csses for
2526 *
2527 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2528 * css associations need to be updated accordingly. This function looks up
2529 * all css_sets which are attached to the subtree, creates the matching
2530 * updated css_sets and migrates the tasks to the new ones.
2531 */
2532static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2533{
2534 LIST_HEAD(preloaded_csets);
2535 struct cgroup_subsys_state *css;
2536 struct css_set *src_cset;
2537 int ret;
2538
f8f22e53
TH
2539 lockdep_assert_held(&cgroup_mutex);
2540
2541 /* look up all csses currently attached to @cgrp's subtree */
2542 down_read(&css_set_rwsem);
2543 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2544 struct cgrp_cset_link *link;
2545
2546 /* self is not affected by child_subsys_mask change */
2547 if (css->cgroup == cgrp)
2548 continue;
2549
2550 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2551 cgroup_migrate_add_src(link->cset, cgrp,
2552 &preloaded_csets);
2553 }
2554 up_read(&css_set_rwsem);
2555
2556 /* NULL dst indicates self on default hierarchy */
2557 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2558 if (ret)
2559 goto out_finish;
2560
2561 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2562 struct task_struct *last_task = NULL, *task;
2563
2564 /* src_csets precede dst_csets, break on the first dst_cset */
2565 if (!src_cset->mg_src_cgrp)
2566 break;
2567
2568 /*
2569 * All tasks in src_cset need to be migrated to the
2570 * matching dst_cset. Empty it process by process. We
2571 * walk tasks but migrate processes. The leader might even
2572 * belong to a different cset but such src_cset would also
2573 * be among the target src_csets because the default
2574 * hierarchy enforces per-process membership.
2575 */
2576 while (true) {
2577 down_read(&css_set_rwsem);
2578 task = list_first_entry_or_null(&src_cset->tasks,
2579 struct task_struct, cg_list);
2580 if (task) {
2581 task = task->group_leader;
2582 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2583 get_task_struct(task);
2584 }
2585 up_read(&css_set_rwsem);
2586
2587 if (!task)
2588 break;
2589
2590 /* guard against possible infinite loop */
2591 if (WARN(last_task == task,
2592 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2593 goto out_finish;
2594 last_task = task;
2595
2596 threadgroup_lock(task);
2597 /* raced against de_thread() from another thread? */
2598 if (!thread_group_leader(task)) {
2599 threadgroup_unlock(task);
2600 put_task_struct(task);
2601 continue;
2602 }
2603
2604 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2605
2606 threadgroup_unlock(task);
2607 put_task_struct(task);
2608
2609 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2610 goto out_finish;
2611 }
2612 }
2613
2614out_finish:
2615 cgroup_migrate_finish(&preloaded_csets);
2616 return ret;
2617}
2618
2619/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2620static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2621 char *buf, size_t nbytes,
2622 loff_t off)
f8f22e53 2623{
7d331fa9 2624 unsigned int enable = 0, disable = 0;
f63070d3 2625 unsigned int css_enable, css_disable, old_ctrl, new_ctrl;
a9746d8d 2626 struct cgroup *cgrp, *child;
f8f22e53 2627 struct cgroup_subsys *ss;
451af504 2628 char *tok;
f8f22e53
TH
2629 int ssid, ret;
2630
2631 /*
d37167ab
TH
2632 * Parse input - space separated list of subsystem names prefixed
2633 * with either + or -.
f8f22e53 2634 */
451af504
TH
2635 buf = strstrip(buf);
2636 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2637 if (tok[0] == '\0')
2638 continue;
f8f22e53 2639 for_each_subsys(ss, ssid) {
5533e011
TH
2640 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2641 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2642 continue;
2643
2644 if (*tok == '+') {
7d331fa9
TH
2645 enable |= 1 << ssid;
2646 disable &= ~(1 << ssid);
f8f22e53 2647 } else if (*tok == '-') {
7d331fa9
TH
2648 disable |= 1 << ssid;
2649 enable &= ~(1 << ssid);
f8f22e53
TH
2650 } else {
2651 return -EINVAL;
2652 }
2653 break;
2654 }
2655 if (ssid == CGROUP_SUBSYS_COUNT)
2656 return -EINVAL;
2657 }
2658
a9746d8d
TH
2659 cgrp = cgroup_kn_lock_live(of->kn);
2660 if (!cgrp)
2661 return -ENODEV;
f8f22e53
TH
2662
2663 for_each_subsys(ss, ssid) {
2664 if (enable & (1 << ssid)) {
667c2491 2665 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2666 enable &= ~(1 << ssid);
2667 continue;
2668 }
2669
c29adf24
TH
2670 /* unavailable or not enabled on the parent? */
2671 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2672 (cgroup_parent(cgrp) &&
667c2491 2673 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2674 ret = -ENOENT;
2675 goto out_unlock;
2676 }
2677
f63070d3
TH
2678 /*
2679 * @ss is already enabled through dependency and
2680 * we'll just make it visible. Skip draining.
2681 */
2682 if (cgrp->child_subsys_mask & (1 << ssid))
2683 continue;
2684
f8f22e53
TH
2685 /*
2686 * Because css offlining is asynchronous, userland
2687 * might try to re-enable the same controller while
2688 * the previous instance is still around. In such
2689 * cases, wait till it's gone using offline_waitq.
2690 */
2691 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2692 DEFINE_WAIT(wait);
f8f22e53
TH
2693
2694 if (!cgroup_css(child, ss))
2695 continue;
2696
0cee8b77 2697 cgroup_get(child);
f8f22e53
TH
2698 prepare_to_wait(&child->offline_waitq, &wait,
2699 TASK_UNINTERRUPTIBLE);
a9746d8d 2700 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2701 schedule();
2702 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2703 cgroup_put(child);
7d331fa9 2704
a9746d8d 2705 return restart_syscall();
f8f22e53 2706 }
f8f22e53 2707 } else if (disable & (1 << ssid)) {
667c2491 2708 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2709 disable &= ~(1 << ssid);
2710 continue;
2711 }
2712
2713 /* a child has it enabled? */
2714 cgroup_for_each_live_child(child, cgrp) {
667c2491 2715 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2716 ret = -EBUSY;
ddab2b6e 2717 goto out_unlock;
f8f22e53
TH
2718 }
2719 }
2720 }
2721 }
2722
2723 if (!enable && !disable) {
2724 ret = 0;
ddab2b6e 2725 goto out_unlock;
f8f22e53
TH
2726 }
2727
2728 /*
667c2491 2729 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2730 * with tasks so that child cgroups don't compete against tasks.
2731 */
d51f39b0 2732 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2733 ret = -EBUSY;
2734 goto out_unlock;
2735 }
2736
f63070d3
TH
2737 /*
2738 * Update subsys masks and calculate what needs to be done. More
2739 * subsystems than specified may need to be enabled or disabled
2740 * depending on subsystem dependencies.
2741 */
667c2491
TH
2742 cgrp->subtree_control |= enable;
2743 cgrp->subtree_control &= ~disable;
f63070d3
TH
2744
2745 old_ctrl = cgrp->child_subsys_mask;
667c2491 2746 cgroup_refresh_child_subsys_mask(cgrp);
f63070d3
TH
2747 new_ctrl = cgrp->child_subsys_mask;
2748
2749 css_enable = ~old_ctrl & new_ctrl;
2750 css_disable = old_ctrl & ~new_ctrl;
2751 enable |= css_enable;
2752 disable |= css_disable;
c29adf24 2753
f63070d3
TH
2754 /*
2755 * Create new csses or make the existing ones visible. A css is
2756 * created invisible if it's being implicitly enabled through
2757 * dependency. An invisible css is made visible when the userland
2758 * explicitly enables it.
2759 */
f8f22e53
TH
2760 for_each_subsys(ss, ssid) {
2761 if (!(enable & (1 << ssid)))
2762 continue;
2763
2764 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2765 if (css_enable & (1 << ssid))
2766 ret = create_css(child, ss,
2767 cgrp->subtree_control & (1 << ssid));
2768 else
2769 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2770 if (ret)
2771 goto err_undo_css;
2772 }
2773 }
2774
c29adf24
TH
2775 /*
2776 * At this point, cgroup_e_css() results reflect the new csses
2777 * making the following cgroup_update_dfl_csses() properly update
2778 * css associations of all tasks in the subtree.
2779 */
f8f22e53
TH
2780 ret = cgroup_update_dfl_csses(cgrp);
2781 if (ret)
2782 goto err_undo_css;
2783
f63070d3
TH
2784 /*
2785 * All tasks are migrated out of disabled csses. Kill or hide
2786 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2787 * disabled while other subsystems are still depending on it. The
2788 * css must not actively control resources and be in the vanilla
2789 * state if it's made visible again later. Controllers which may
2790 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2791 */
f8f22e53
TH
2792 for_each_subsys(ss, ssid) {
2793 if (!(disable & (1 << ssid)))
2794 continue;
2795
f63070d3 2796 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2797 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2798
2799 if (css_disable & (1 << ssid)) {
2800 kill_css(css);
2801 } else {
f63070d3 2802 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2803 if (ss->css_reset)
2804 ss->css_reset(css);
2805 }
f63070d3 2806 }
f8f22e53
TH
2807 }
2808
2809 kernfs_activate(cgrp->kn);
2810 ret = 0;
2811out_unlock:
a9746d8d 2812 cgroup_kn_unlock(of->kn);
451af504 2813 return ret ?: nbytes;
f8f22e53
TH
2814
2815err_undo_css:
667c2491
TH
2816 cgrp->subtree_control &= ~enable;
2817 cgrp->subtree_control |= disable;
2818 cgroup_refresh_child_subsys_mask(cgrp);
f8f22e53
TH
2819
2820 for_each_subsys(ss, ssid) {
2821 if (!(enable & (1 << ssid)))
2822 continue;
2823
2824 cgroup_for_each_live_child(child, cgrp) {
2825 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2826
2827 if (!css)
2828 continue;
2829
2830 if (css_enable & (1 << ssid))
f8f22e53 2831 kill_css(css);
f63070d3
TH
2832 else
2833 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2834 }
2835 }
2836 goto out_unlock;
2837}
2838
842b597e
TH
2839static int cgroup_populated_show(struct seq_file *seq, void *v)
2840{
2841 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2842 return 0;
2843}
2844
2bd59d48
TH
2845static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2846 size_t nbytes, loff_t off)
355e0c48 2847{
2bd59d48
TH
2848 struct cgroup *cgrp = of->kn->parent->priv;
2849 struct cftype *cft = of->kn->priv;
2850 struct cgroup_subsys_state *css;
a742c59d 2851 int ret;
355e0c48 2852
b4168640
TH
2853 if (cft->write)
2854 return cft->write(of, buf, nbytes, off);
2855
2bd59d48
TH
2856 /*
2857 * kernfs guarantees that a file isn't deleted with operations in
2858 * flight, which means that the matching css is and stays alive and
2859 * doesn't need to be pinned. The RCU locking is not necessary
2860 * either. It's just for the convenience of using cgroup_css().
2861 */
2862 rcu_read_lock();
2863 css = cgroup_css(cgrp, cft->ss);
2864 rcu_read_unlock();
a742c59d 2865
451af504 2866 if (cft->write_u64) {
a742c59d
TH
2867 unsigned long long v;
2868 ret = kstrtoull(buf, 0, &v);
2869 if (!ret)
2870 ret = cft->write_u64(css, cft, v);
2871 } else if (cft->write_s64) {
2872 long long v;
2873 ret = kstrtoll(buf, 0, &v);
2874 if (!ret)
2875 ret = cft->write_s64(css, cft, v);
e73d2c61 2876 } else {
a742c59d 2877 ret = -EINVAL;
e73d2c61 2878 }
2bd59d48 2879
a742c59d 2880 return ret ?: nbytes;
355e0c48
PM
2881}
2882
6612f05b 2883static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2884{
2bd59d48 2885 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2886}
2887
6612f05b 2888static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2889{
2bd59d48 2890 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2891}
2892
6612f05b 2893static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2894{
2bd59d48 2895 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2896}
2897
91796569 2898static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2899{
7da11279
TH
2900 struct cftype *cft = seq_cft(m);
2901 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2902
2da8ca82
TH
2903 if (cft->seq_show)
2904 return cft->seq_show(m, arg);
e73d2c61 2905
f4c753b7 2906 if (cft->read_u64)
896f5199
TH
2907 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2908 else if (cft->read_s64)
2909 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2910 else
2911 return -EINVAL;
2912 return 0;
91796569
PM
2913}
2914
2bd59d48
TH
2915static struct kernfs_ops cgroup_kf_single_ops = {
2916 .atomic_write_len = PAGE_SIZE,
2917 .write = cgroup_file_write,
2918 .seq_show = cgroup_seqfile_show,
91796569
PM
2919};
2920
2bd59d48
TH
2921static struct kernfs_ops cgroup_kf_ops = {
2922 .atomic_write_len = PAGE_SIZE,
2923 .write = cgroup_file_write,
2924 .seq_start = cgroup_seqfile_start,
2925 .seq_next = cgroup_seqfile_next,
2926 .seq_stop = cgroup_seqfile_stop,
2927 .seq_show = cgroup_seqfile_show,
2928};
ddbcc7e8
PM
2929
2930/*
2931 * cgroup_rename - Only allow simple rename of directories in place.
2932 */
2bd59d48
TH
2933static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2934 const char *new_name_str)
ddbcc7e8 2935{
2bd59d48 2936 struct cgroup *cgrp = kn->priv;
65dff759 2937 int ret;
65dff759 2938
2bd59d48 2939 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2940 return -ENOTDIR;
2bd59d48 2941 if (kn->parent != new_parent)
ddbcc7e8 2942 return -EIO;
65dff759 2943
6db8e85c
TH
2944 /*
2945 * This isn't a proper migration and its usefulness is very
aa6ec29b 2946 * limited. Disallow on the default hierarchy.
6db8e85c 2947 */
aa6ec29b 2948 if (cgroup_on_dfl(cgrp))
6db8e85c 2949 return -EPERM;
099fca32 2950
e1b2dc17 2951 /*
8353da1f 2952 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2953 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2954 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2955 */
2956 kernfs_break_active_protection(new_parent);
2957 kernfs_break_active_protection(kn);
099fca32 2958
2bd59d48 2959 mutex_lock(&cgroup_mutex);
099fca32 2960
2bd59d48 2961 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2962
2bd59d48 2963 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2964
2965 kernfs_unbreak_active_protection(kn);
2966 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2967 return ret;
099fca32
LZ
2968}
2969
49957f8e
TH
2970/* set uid and gid of cgroup dirs and files to that of the creator */
2971static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2972{
2973 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2974 .ia_uid = current_fsuid(),
2975 .ia_gid = current_fsgid(), };
2976
2977 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2978 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2979 return 0;
2980
2981 return kernfs_setattr(kn, &iattr);
2982}
2983
2bb566cb 2984static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2985{
8d7e6fb0 2986 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2987 struct kernfs_node *kn;
2988 struct lock_class_key *key = NULL;
49957f8e 2989 int ret;
05ef1d7c 2990
2bd59d48
TH
2991#ifdef CONFIG_DEBUG_LOCK_ALLOC
2992 key = &cft->lockdep_key;
2993#endif
2994 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2995 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2996 NULL, false, key);
49957f8e
TH
2997 if (IS_ERR(kn))
2998 return PTR_ERR(kn);
2999
3000 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3001 if (ret) {
49957f8e 3002 kernfs_remove(kn);
f8f22e53
TH
3003 return ret;
3004 }
3005
b7fc5ad2 3006 if (cft->seq_show == cgroup_populated_show)
842b597e 3007 cgrp->populated_kn = kn;
f8f22e53 3008 return 0;
ddbcc7e8
PM
3009}
3010
b1f28d31
TH
3011/**
3012 * cgroup_addrm_files - add or remove files to a cgroup directory
3013 * @cgrp: the target cgroup
b1f28d31
TH
3014 * @cfts: array of cftypes to be added
3015 * @is_add: whether to add or remove
3016 *
3017 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3018 * For removals, this function never fails. If addition fails, this
3019 * function doesn't remove files already added. The caller is responsible
3020 * for cleaning up.
b1f28d31 3021 */
2bb566cb
TH
3022static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3023 bool is_add)
ddbcc7e8 3024{
03b1cde6 3025 struct cftype *cft;
b1f28d31
TH
3026 int ret;
3027
01f6474c 3028 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3029
3030 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3031 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
3032 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3033 continue;
aa6ec29b 3034 if ((cft->flags & CFTYPE_INSANE) && cgroup_on_dfl(cgrp))
873fe09e 3035 continue;
d51f39b0 3036 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3037 continue;
d51f39b0 3038 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3039 continue;
3040
2739d3cc 3041 if (is_add) {
2bb566cb 3042 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3043 if (ret) {
ed3d261b
JP
3044 pr_warn("%s: failed to add %s, err=%d\n",
3045 __func__, cft->name, ret);
b1f28d31
TH
3046 return ret;
3047 }
2739d3cc
LZ
3048 } else {
3049 cgroup_rm_file(cgrp, cft);
db0416b6 3050 }
ddbcc7e8 3051 }
b1f28d31 3052 return 0;
ddbcc7e8
PM
3053}
3054
21a2d343 3055static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3056{
3057 LIST_HEAD(pending);
2bb566cb 3058 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3059 struct cgroup *root = &ss->root->cgrp;
492eb21b 3060 struct cgroup_subsys_state *css;
9ccece80 3061 int ret = 0;
8e3f6541 3062
01f6474c 3063 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3064
e8c82d20 3065 /* add/rm files for all cgroups created before */
ca8bdcaf 3066 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3067 struct cgroup *cgrp = css->cgroup;
3068
e8c82d20
LZ
3069 if (cgroup_is_dead(cgrp))
3070 continue;
3071
21a2d343 3072 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3073 if (ret)
3074 break;
8e3f6541 3075 }
21a2d343
TH
3076
3077 if (is_add && !ret)
3078 kernfs_activate(root->kn);
9ccece80 3079 return ret;
8e3f6541
TH
3080}
3081
2da440a2 3082static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3083{
2bb566cb 3084 struct cftype *cft;
8e3f6541 3085
2bd59d48
TH
3086 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3087 /* free copy for custom atomic_write_len, see init_cftypes() */
3088 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3089 kfree(cft->kf_ops);
3090 cft->kf_ops = NULL;
2da440a2 3091 cft->ss = NULL;
2bd59d48 3092 }
2da440a2
TH
3093}
3094
2bd59d48 3095static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3096{
3097 struct cftype *cft;
3098
2bd59d48
TH
3099 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3100 struct kernfs_ops *kf_ops;
3101
0adb0704
TH
3102 WARN_ON(cft->ss || cft->kf_ops);
3103
2bd59d48
TH
3104 if (cft->seq_start)
3105 kf_ops = &cgroup_kf_ops;
3106 else
3107 kf_ops = &cgroup_kf_single_ops;
3108
3109 /*
3110 * Ugh... if @cft wants a custom max_write_len, we need to
3111 * make a copy of kf_ops to set its atomic_write_len.
3112 */
3113 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3114 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3115 if (!kf_ops) {
3116 cgroup_exit_cftypes(cfts);
3117 return -ENOMEM;
3118 }
3119 kf_ops->atomic_write_len = cft->max_write_len;
3120 }
8e3f6541 3121
2bd59d48 3122 cft->kf_ops = kf_ops;
2bb566cb 3123 cft->ss = ss;
2bd59d48 3124 }
2bb566cb 3125
2bd59d48 3126 return 0;
2da440a2
TH
3127}
3128
21a2d343
TH
3129static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3130{
01f6474c 3131 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3132
3133 if (!cfts || !cfts[0].ss)
3134 return -ENOENT;
3135
3136 list_del(&cfts->node);
3137 cgroup_apply_cftypes(cfts, false);
3138 cgroup_exit_cftypes(cfts);
3139 return 0;
8e3f6541 3140}
8e3f6541 3141
79578621
TH
3142/**
3143 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3144 * @cfts: zero-length name terminated array of cftypes
3145 *
2bb566cb
TH
3146 * Unregister @cfts. Files described by @cfts are removed from all
3147 * existing cgroups and all future cgroups won't have them either. This
3148 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3149 *
3150 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3151 * registered.
79578621 3152 */
2bb566cb 3153int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3154{
21a2d343 3155 int ret;
79578621 3156
01f6474c 3157 mutex_lock(&cgroup_mutex);
21a2d343 3158 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3159 mutex_unlock(&cgroup_mutex);
21a2d343 3160 return ret;
80b13586
TH
3161}
3162
8e3f6541
TH
3163/**
3164 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3165 * @ss: target cgroup subsystem
3166 * @cfts: zero-length name terminated array of cftypes
3167 *
3168 * Register @cfts to @ss. Files described by @cfts are created for all
3169 * existing cgroups to which @ss is attached and all future cgroups will
3170 * have them too. This function can be called anytime whether @ss is
3171 * attached or not.
3172 *
3173 * Returns 0 on successful registration, -errno on failure. Note that this
3174 * function currently returns 0 as long as @cfts registration is successful
3175 * even if some file creation attempts on existing cgroups fail.
3176 */
03b1cde6 3177int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3178{
9ccece80 3179 int ret;
8e3f6541 3180
c731ae1d
LZ
3181 if (ss->disabled)
3182 return 0;
3183
dc5736ed
LZ
3184 if (!cfts || cfts[0].name[0] == '\0')
3185 return 0;
2bb566cb 3186
2bd59d48
TH
3187 ret = cgroup_init_cftypes(ss, cfts);
3188 if (ret)
3189 return ret;
79578621 3190
01f6474c 3191 mutex_lock(&cgroup_mutex);
21a2d343 3192
0adb0704 3193 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3194 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3195 if (ret)
21a2d343 3196 cgroup_rm_cftypes_locked(cfts);
79578621 3197
01f6474c 3198 mutex_unlock(&cgroup_mutex);
9ccece80 3199 return ret;
79578621
TH
3200}
3201
a043e3b2
LZ
3202/**
3203 * cgroup_task_count - count the number of tasks in a cgroup.
3204 * @cgrp: the cgroup in question
3205 *
3206 * Return the number of tasks in the cgroup.
3207 */
07bc356e 3208static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3209{
3210 int count = 0;
69d0206c 3211 struct cgrp_cset_link *link;
817929ec 3212
96d365e0 3213 down_read(&css_set_rwsem);
69d0206c
TH
3214 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3215 count += atomic_read(&link->cset->refcount);
96d365e0 3216 up_read(&css_set_rwsem);
bbcb81d0
PM
3217 return count;
3218}
3219
53fa5261 3220/**
492eb21b 3221 * css_next_child - find the next child of a given css
c2931b70
TH
3222 * @pos: the current position (%NULL to initiate traversal)
3223 * @parent: css whose children to walk
53fa5261 3224 *
c2931b70 3225 * This function returns the next child of @parent and should be called
87fb54f1 3226 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3227 * that @parent and @pos are accessible. The next sibling is guaranteed to
3228 * be returned regardless of their states.
3229 *
3230 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3231 * css which finished ->css_online() is guaranteed to be visible in the
3232 * future iterations and will stay visible until the last reference is put.
3233 * A css which hasn't finished ->css_online() or already finished
3234 * ->css_offline() may show up during traversal. It's each subsystem's
3235 * responsibility to synchronize against on/offlining.
53fa5261 3236 */
c2931b70
TH
3237struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3238 struct cgroup_subsys_state *parent)
53fa5261 3239{
c2931b70 3240 struct cgroup_subsys_state *next;
53fa5261 3241
8353da1f 3242 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3243
3244 /*
de3f0341
TH
3245 * @pos could already have been unlinked from the sibling list.
3246 * Once a cgroup is removed, its ->sibling.next is no longer
3247 * updated when its next sibling changes. CSS_RELEASED is set when
3248 * @pos is taken off list, at which time its next pointer is valid,
3249 * and, as releases are serialized, the one pointed to by the next
3250 * pointer is guaranteed to not have started release yet. This
3251 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3252 * critical section, the one pointed to by its next pointer is
3253 * guaranteed to not have finished its RCU grace period even if we
3254 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3255 *
de3f0341
TH
3256 * If @pos has CSS_RELEASED set, its next pointer can't be
3257 * dereferenced; however, as each css is given a monotonically
3258 * increasing unique serial number and always appended to the
3259 * sibling list, the next one can be found by walking the parent's
3260 * children until the first css with higher serial number than
3261 * @pos's. While this path can be slower, it happens iff iteration
3262 * races against release and the race window is very small.
53fa5261 3263 */
3b287a50 3264 if (!pos) {
c2931b70
TH
3265 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3266 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3267 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3268 } else {
c2931b70 3269 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3270 if (next->serial_nr > pos->serial_nr)
3271 break;
53fa5261
TH
3272 }
3273
3b281afb
TH
3274 /*
3275 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3276 * the next sibling.
3b281afb 3277 */
c2931b70
TH
3278 if (&next->sibling != &parent->children)
3279 return next;
3b281afb 3280 return NULL;
53fa5261 3281}
53fa5261 3282
574bd9f7 3283/**
492eb21b 3284 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3285 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3286 * @root: css whose descendants to walk
574bd9f7 3287 *
492eb21b 3288 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3289 * to visit for pre-order traversal of @root's descendants. @root is
3290 * included in the iteration and the first node to be visited.
75501a6d 3291 *
87fb54f1
TH
3292 * While this function requires cgroup_mutex or RCU read locking, it
3293 * doesn't require the whole traversal to be contained in a single critical
3294 * section. This function will return the correct next descendant as long
3295 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3296 *
3297 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3298 * css which finished ->css_online() is guaranteed to be visible in the
3299 * future iterations and will stay visible until the last reference is put.
3300 * A css which hasn't finished ->css_online() or already finished
3301 * ->css_offline() may show up during traversal. It's each subsystem's
3302 * responsibility to synchronize against on/offlining.
574bd9f7 3303 */
492eb21b
TH
3304struct cgroup_subsys_state *
3305css_next_descendant_pre(struct cgroup_subsys_state *pos,
3306 struct cgroup_subsys_state *root)
574bd9f7 3307{
492eb21b 3308 struct cgroup_subsys_state *next;
574bd9f7 3309
8353da1f 3310 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3311
bd8815a6 3312 /* if first iteration, visit @root */
7805d000 3313 if (!pos)
bd8815a6 3314 return root;
574bd9f7
TH
3315
3316 /* visit the first child if exists */
492eb21b 3317 next = css_next_child(NULL, pos);
574bd9f7
TH
3318 if (next)
3319 return next;
3320
3321 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3322 while (pos != root) {
5c9d535b 3323 next = css_next_child(pos, pos->parent);
75501a6d 3324 if (next)
574bd9f7 3325 return next;
5c9d535b 3326 pos = pos->parent;
7805d000 3327 }
574bd9f7
TH
3328
3329 return NULL;
3330}
574bd9f7 3331
12a9d2fe 3332/**
492eb21b
TH
3333 * css_rightmost_descendant - return the rightmost descendant of a css
3334 * @pos: css of interest
12a9d2fe 3335 *
492eb21b
TH
3336 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3337 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3338 * subtree of @pos.
75501a6d 3339 *
87fb54f1
TH
3340 * While this function requires cgroup_mutex or RCU read locking, it
3341 * doesn't require the whole traversal to be contained in a single critical
3342 * section. This function will return the correct rightmost descendant as
3343 * long as @pos is accessible.
12a9d2fe 3344 */
492eb21b
TH
3345struct cgroup_subsys_state *
3346css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3347{
492eb21b 3348 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3349
8353da1f 3350 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3351
3352 do {
3353 last = pos;
3354 /* ->prev isn't RCU safe, walk ->next till the end */
3355 pos = NULL;
492eb21b 3356 css_for_each_child(tmp, last)
12a9d2fe
TH
3357 pos = tmp;
3358 } while (pos);
3359
3360 return last;
3361}
12a9d2fe 3362
492eb21b
TH
3363static struct cgroup_subsys_state *
3364css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3365{
492eb21b 3366 struct cgroup_subsys_state *last;
574bd9f7
TH
3367
3368 do {
3369 last = pos;
492eb21b 3370 pos = css_next_child(NULL, pos);
574bd9f7
TH
3371 } while (pos);
3372
3373 return last;
3374}
3375
3376/**
492eb21b 3377 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3378 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3379 * @root: css whose descendants to walk
574bd9f7 3380 *
492eb21b 3381 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3382 * to visit for post-order traversal of @root's descendants. @root is
3383 * included in the iteration and the last node to be visited.
75501a6d 3384 *
87fb54f1
TH
3385 * While this function requires cgroup_mutex or RCU read locking, it
3386 * doesn't require the whole traversal to be contained in a single critical
3387 * section. This function will return the correct next descendant as long
3388 * as both @pos and @cgroup are accessible and @pos is a descendant of
3389 * @cgroup.
c2931b70
TH
3390 *
3391 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3392 * css which finished ->css_online() is guaranteed to be visible in the
3393 * future iterations and will stay visible until the last reference is put.
3394 * A css which hasn't finished ->css_online() or already finished
3395 * ->css_offline() may show up during traversal. It's each subsystem's
3396 * responsibility to synchronize against on/offlining.
574bd9f7 3397 */
492eb21b
TH
3398struct cgroup_subsys_state *
3399css_next_descendant_post(struct cgroup_subsys_state *pos,
3400 struct cgroup_subsys_state *root)
574bd9f7 3401{
492eb21b 3402 struct cgroup_subsys_state *next;
574bd9f7 3403
8353da1f 3404 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3405
58b79a91
TH
3406 /* if first iteration, visit leftmost descendant which may be @root */
3407 if (!pos)
3408 return css_leftmost_descendant(root);
574bd9f7 3409
bd8815a6
TH
3410 /* if we visited @root, we're done */
3411 if (pos == root)
3412 return NULL;
3413
574bd9f7 3414 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3415 next = css_next_child(pos, pos->parent);
75501a6d 3416 if (next)
492eb21b 3417 return css_leftmost_descendant(next);
574bd9f7
TH
3418
3419 /* no sibling left, visit parent */
5c9d535b 3420 return pos->parent;
574bd9f7 3421}
574bd9f7 3422
f3d46500
TH
3423/**
3424 * css_has_online_children - does a css have online children
3425 * @css: the target css
3426 *
3427 * Returns %true if @css has any online children; otherwise, %false. This
3428 * function can be called from any context but the caller is responsible
3429 * for synchronizing against on/offlining as necessary.
3430 */
3431bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3432{
f3d46500
TH
3433 struct cgroup_subsys_state *child;
3434 bool ret = false;
cbc125ef
TH
3435
3436 rcu_read_lock();
f3d46500
TH
3437 css_for_each_child(child, css) {
3438 if (css->flags & CSS_ONLINE) {
3439 ret = true;
3440 break;
cbc125ef
TH
3441 }
3442 }
3443 rcu_read_unlock();
f3d46500 3444 return ret;
574bd9f7 3445}
574bd9f7 3446
0942eeee 3447/**
72ec7029 3448 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3449 * @it: the iterator to advance
3450 *
3451 * Advance @it to the next css_set to walk.
d515876e 3452 */
72ec7029 3453static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3454{
0f0a2b4f 3455 struct list_head *l = it->cset_pos;
d515876e
TH
3456 struct cgrp_cset_link *link;
3457 struct css_set *cset;
3458
3459 /* Advance to the next non-empty css_set */
3460 do {
3461 l = l->next;
0f0a2b4f
TH
3462 if (l == it->cset_head) {
3463 it->cset_pos = NULL;
d515876e
TH
3464 return;
3465 }
3ebb2b6e
TH
3466
3467 if (it->ss) {
3468 cset = container_of(l, struct css_set,
3469 e_cset_node[it->ss->id]);
3470 } else {
3471 link = list_entry(l, struct cgrp_cset_link, cset_link);
3472 cset = link->cset;
3473 }
c7561128
TH
3474 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3475
0f0a2b4f 3476 it->cset_pos = l;
c7561128
TH
3477
3478 if (!list_empty(&cset->tasks))
0f0a2b4f 3479 it->task_pos = cset->tasks.next;
c7561128 3480 else
0f0a2b4f
TH
3481 it->task_pos = cset->mg_tasks.next;
3482
3483 it->tasks_head = &cset->tasks;
3484 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3485}
3486
0942eeee 3487/**
72ec7029
TH
3488 * css_task_iter_start - initiate task iteration
3489 * @css: the css to walk tasks of
0942eeee
TH
3490 * @it: the task iterator to use
3491 *
72ec7029
TH
3492 * Initiate iteration through the tasks of @css. The caller can call
3493 * css_task_iter_next() to walk through the tasks until the function
3494 * returns NULL. On completion of iteration, css_task_iter_end() must be
3495 * called.
0942eeee
TH
3496 *
3497 * Note that this function acquires a lock which is released when the
3498 * iteration finishes. The caller can't sleep while iteration is in
3499 * progress.
3500 */
72ec7029
TH
3501void css_task_iter_start(struct cgroup_subsys_state *css,
3502 struct css_task_iter *it)
96d365e0 3503 __acquires(css_set_rwsem)
817929ec 3504{
56fde9e0
TH
3505 /* no one should try to iterate before mounting cgroups */
3506 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3507
96d365e0 3508 down_read(&css_set_rwsem);
c59cd3d8 3509
3ebb2b6e
TH
3510 it->ss = css->ss;
3511
3512 if (it->ss)
3513 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3514 else
3515 it->cset_pos = &css->cgroup->cset_links;
3516
0f0a2b4f 3517 it->cset_head = it->cset_pos;
c59cd3d8 3518
72ec7029 3519 css_advance_task_iter(it);
817929ec
PM
3520}
3521
0942eeee 3522/**
72ec7029 3523 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3524 * @it: the task iterator being iterated
3525 *
3526 * The "next" function for task iteration. @it should have been
72ec7029
TH
3527 * initialized via css_task_iter_start(). Returns NULL when the iteration
3528 * reaches the end.
0942eeee 3529 */
72ec7029 3530struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3531{
3532 struct task_struct *res;
0f0a2b4f 3533 struct list_head *l = it->task_pos;
817929ec
PM
3534
3535 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3536 if (!it->cset_pos)
817929ec
PM
3537 return NULL;
3538 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3539
3540 /*
3541 * Advance iterator to find next entry. cset->tasks is consumed
3542 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3543 * next cset.
3544 */
817929ec 3545 l = l->next;
c7561128 3546
0f0a2b4f
TH
3547 if (l == it->tasks_head)
3548 l = it->mg_tasks_head->next;
c7561128 3549
0f0a2b4f 3550 if (l == it->mg_tasks_head)
72ec7029 3551 css_advance_task_iter(it);
c7561128 3552 else
0f0a2b4f 3553 it->task_pos = l;
c7561128 3554
817929ec
PM
3555 return res;
3556}
3557
0942eeee 3558/**
72ec7029 3559 * css_task_iter_end - finish task iteration
0942eeee
TH
3560 * @it: the task iterator to finish
3561 *
72ec7029 3562 * Finish task iteration started by css_task_iter_start().
0942eeee 3563 */
72ec7029 3564void css_task_iter_end(struct css_task_iter *it)
96d365e0 3565 __releases(css_set_rwsem)
31a7df01 3566{
96d365e0 3567 up_read(&css_set_rwsem);
31a7df01
CW
3568}
3569
3570/**
8cc99345
TH
3571 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3572 * @to: cgroup to which the tasks will be moved
3573 * @from: cgroup in which the tasks currently reside
31a7df01 3574 *
eaf797ab
TH
3575 * Locking rules between cgroup_post_fork() and the migration path
3576 * guarantee that, if a task is forking while being migrated, the new child
3577 * is guaranteed to be either visible in the source cgroup after the
3578 * parent's migration is complete or put into the target cgroup. No task
3579 * can slip out of migration through forking.
31a7df01 3580 */
8cc99345 3581int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3582{
952aaa12
TH
3583 LIST_HEAD(preloaded_csets);
3584 struct cgrp_cset_link *link;
72ec7029 3585 struct css_task_iter it;
e406d1cf 3586 struct task_struct *task;
952aaa12 3587 int ret;
31a7df01 3588
952aaa12 3589 mutex_lock(&cgroup_mutex);
31a7df01 3590
952aaa12
TH
3591 /* all tasks in @from are being moved, all csets are source */
3592 down_read(&css_set_rwsem);
3593 list_for_each_entry(link, &from->cset_links, cset_link)
3594 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3595 up_read(&css_set_rwsem);
31a7df01 3596
952aaa12
TH
3597 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3598 if (ret)
3599 goto out_err;
8cc99345 3600
952aaa12
TH
3601 /*
3602 * Migrate tasks one-by-one until @form is empty. This fails iff
3603 * ->can_attach() fails.
3604 */
e406d1cf 3605 do {
9d800df1 3606 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3607 task = css_task_iter_next(&it);
3608 if (task)
3609 get_task_struct(task);
3610 css_task_iter_end(&it);
3611
3612 if (task) {
952aaa12 3613 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3614 put_task_struct(task);
3615 }
3616 } while (task && !ret);
952aaa12
TH
3617out_err:
3618 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3619 mutex_unlock(&cgroup_mutex);
e406d1cf 3620 return ret;
8cc99345
TH
3621}
3622
bbcb81d0 3623/*
102a775e 3624 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3625 *
3626 * Reading this file can return large amounts of data if a cgroup has
3627 * *lots* of attached tasks. So it may need several calls to read(),
3628 * but we cannot guarantee that the information we produce is correct
3629 * unless we produce it entirely atomically.
3630 *
bbcb81d0 3631 */
bbcb81d0 3632
24528255
LZ
3633/* which pidlist file are we talking about? */
3634enum cgroup_filetype {
3635 CGROUP_FILE_PROCS,
3636 CGROUP_FILE_TASKS,
3637};
3638
3639/*
3640 * A pidlist is a list of pids that virtually represents the contents of one
3641 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3642 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3643 * to the cgroup.
3644 */
3645struct cgroup_pidlist {
3646 /*
3647 * used to find which pidlist is wanted. doesn't change as long as
3648 * this particular list stays in the list.
3649 */
3650 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3651 /* array of xids */
3652 pid_t *list;
3653 /* how many elements the above list has */
3654 int length;
24528255
LZ
3655 /* each of these stored in a list by its cgroup */
3656 struct list_head links;
3657 /* pointer to the cgroup we belong to, for list removal purposes */
3658 struct cgroup *owner;
b1a21367
TH
3659 /* for delayed destruction */
3660 struct delayed_work destroy_dwork;
24528255
LZ
3661};
3662
d1d9fd33
BB
3663/*
3664 * The following two functions "fix" the issue where there are more pids
3665 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3666 * TODO: replace with a kernel-wide solution to this problem
3667 */
3668#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3669static void *pidlist_allocate(int count)
3670{
3671 if (PIDLIST_TOO_LARGE(count))
3672 return vmalloc(count * sizeof(pid_t));
3673 else
3674 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3675}
b1a21367 3676
d1d9fd33
BB
3677static void pidlist_free(void *p)
3678{
3679 if (is_vmalloc_addr(p))
3680 vfree(p);
3681 else
3682 kfree(p);
3683}
d1d9fd33 3684
b1a21367
TH
3685/*
3686 * Used to destroy all pidlists lingering waiting for destroy timer. None
3687 * should be left afterwards.
3688 */
3689static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3690{
3691 struct cgroup_pidlist *l, *tmp_l;
3692
3693 mutex_lock(&cgrp->pidlist_mutex);
3694 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3695 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3696 mutex_unlock(&cgrp->pidlist_mutex);
3697
3698 flush_workqueue(cgroup_pidlist_destroy_wq);
3699 BUG_ON(!list_empty(&cgrp->pidlists));
3700}
3701
3702static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3703{
3704 struct delayed_work *dwork = to_delayed_work(work);
3705 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3706 destroy_dwork);
3707 struct cgroup_pidlist *tofree = NULL;
3708
3709 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3710
3711 /*
04502365
TH
3712 * Destroy iff we didn't get queued again. The state won't change
3713 * as destroy_dwork can only be queued while locked.
b1a21367 3714 */
04502365 3715 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3716 list_del(&l->links);
3717 pidlist_free(l->list);
3718 put_pid_ns(l->key.ns);
3719 tofree = l;
3720 }
3721
b1a21367
TH
3722 mutex_unlock(&l->owner->pidlist_mutex);
3723 kfree(tofree);
3724}
3725
bbcb81d0 3726/*
102a775e 3727 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3728 * Returns the number of unique elements.
bbcb81d0 3729 */
6ee211ad 3730static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3731{
102a775e 3732 int src, dest = 1;
102a775e
BB
3733
3734 /*
3735 * we presume the 0th element is unique, so i starts at 1. trivial
3736 * edge cases first; no work needs to be done for either
3737 */
3738 if (length == 0 || length == 1)
3739 return length;
3740 /* src and dest walk down the list; dest counts unique elements */
3741 for (src = 1; src < length; src++) {
3742 /* find next unique element */
3743 while (list[src] == list[src-1]) {
3744 src++;
3745 if (src == length)
3746 goto after;
3747 }
3748 /* dest always points to where the next unique element goes */
3749 list[dest] = list[src];
3750 dest++;
3751 }
3752after:
102a775e
BB
3753 return dest;
3754}
3755
afb2bc14
TH
3756/*
3757 * The two pid files - task and cgroup.procs - guaranteed that the result
3758 * is sorted, which forced this whole pidlist fiasco. As pid order is
3759 * different per namespace, each namespace needs differently sorted list,
3760 * making it impossible to use, for example, single rbtree of member tasks
3761 * sorted by task pointer. As pidlists can be fairly large, allocating one
3762 * per open file is dangerous, so cgroup had to implement shared pool of
3763 * pidlists keyed by cgroup and namespace.
3764 *
3765 * All this extra complexity was caused by the original implementation
3766 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3767 * want to do away with it. Explicitly scramble sort order if on the
3768 * default hierarchy so that no such expectation exists in the new
3769 * interface.
afb2bc14
TH
3770 *
3771 * Scrambling is done by swapping every two consecutive bits, which is
3772 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3773 */
3774static pid_t pid_fry(pid_t pid)
3775{
3776 unsigned a = pid & 0x55555555;
3777 unsigned b = pid & 0xAAAAAAAA;
3778
3779 return (a << 1) | (b >> 1);
3780}
3781
3782static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3783{
aa6ec29b 3784 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3785 return pid_fry(pid);
3786 else
3787 return pid;
3788}
3789
102a775e
BB
3790static int cmppid(const void *a, const void *b)
3791{
3792 return *(pid_t *)a - *(pid_t *)b;
3793}
3794
afb2bc14
TH
3795static int fried_cmppid(const void *a, const void *b)
3796{
3797 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3798}
3799
e6b81710
TH
3800static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3801 enum cgroup_filetype type)
3802{
3803 struct cgroup_pidlist *l;
3804 /* don't need task_nsproxy() if we're looking at ourself */
3805 struct pid_namespace *ns = task_active_pid_ns(current);
3806
3807 lockdep_assert_held(&cgrp->pidlist_mutex);
3808
3809 list_for_each_entry(l, &cgrp->pidlists, links)
3810 if (l->key.type == type && l->key.ns == ns)
3811 return l;
3812 return NULL;
3813}
3814
72a8cb30
BB
3815/*
3816 * find the appropriate pidlist for our purpose (given procs vs tasks)
3817 * returns with the lock on that pidlist already held, and takes care
3818 * of the use count, or returns NULL with no locks held if we're out of
3819 * memory.
3820 */
e6b81710
TH
3821static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3822 enum cgroup_filetype type)
72a8cb30
BB
3823{
3824 struct cgroup_pidlist *l;
b70cc5fd 3825
e6b81710
TH
3826 lockdep_assert_held(&cgrp->pidlist_mutex);
3827
3828 l = cgroup_pidlist_find(cgrp, type);
3829 if (l)
3830 return l;
3831
72a8cb30 3832 /* entry not found; create a new one */
f4f4be2b 3833 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3834 if (!l)
72a8cb30 3835 return l;
e6b81710 3836
b1a21367 3837 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3838 l->key.type = type;
e6b81710
TH
3839 /* don't need task_nsproxy() if we're looking at ourself */
3840 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3841 l->owner = cgrp;
3842 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3843 return l;
3844}
3845
102a775e
BB
3846/*
3847 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3848 */
72a8cb30
BB
3849static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3850 struct cgroup_pidlist **lp)
102a775e
BB
3851{
3852 pid_t *array;
3853 int length;
3854 int pid, n = 0; /* used for populating the array */
72ec7029 3855 struct css_task_iter it;
817929ec 3856 struct task_struct *tsk;
102a775e
BB
3857 struct cgroup_pidlist *l;
3858
4bac00d1
TH
3859 lockdep_assert_held(&cgrp->pidlist_mutex);
3860
102a775e
BB
3861 /*
3862 * If cgroup gets more users after we read count, we won't have
3863 * enough space - tough. This race is indistinguishable to the
3864 * caller from the case that the additional cgroup users didn't
3865 * show up until sometime later on.
3866 */
3867 length = cgroup_task_count(cgrp);
d1d9fd33 3868 array = pidlist_allocate(length);
102a775e
BB
3869 if (!array)
3870 return -ENOMEM;
3871 /* now, populate the array */
9d800df1 3872 css_task_iter_start(&cgrp->self, &it);
72ec7029 3873 while ((tsk = css_task_iter_next(&it))) {
102a775e 3874 if (unlikely(n == length))
817929ec 3875 break;
102a775e 3876 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3877 if (type == CGROUP_FILE_PROCS)
3878 pid = task_tgid_vnr(tsk);
3879 else
3880 pid = task_pid_vnr(tsk);
102a775e
BB
3881 if (pid > 0) /* make sure to only use valid results */
3882 array[n++] = pid;
817929ec 3883 }
72ec7029 3884 css_task_iter_end(&it);
102a775e
BB
3885 length = n;
3886 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3887 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3888 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3889 else
3890 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3891 if (type == CGROUP_FILE_PROCS)
6ee211ad 3892 length = pidlist_uniq(array, length);
e6b81710 3893
e6b81710 3894 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3895 if (!l) {
e6b81710 3896 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3897 pidlist_free(array);
72a8cb30 3898 return -ENOMEM;
102a775e 3899 }
e6b81710
TH
3900
3901 /* store array, freeing old if necessary */
d1d9fd33 3902 pidlist_free(l->list);
102a775e
BB
3903 l->list = array;
3904 l->length = length;
72a8cb30 3905 *lp = l;
102a775e 3906 return 0;
bbcb81d0
PM
3907}
3908
846c7bb0 3909/**
a043e3b2 3910 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3911 * @stats: cgroupstats to fill information into
3912 * @dentry: A dentry entry belonging to the cgroup for which stats have
3913 * been requested.
a043e3b2
LZ
3914 *
3915 * Build and fill cgroupstats so that taskstats can export it to user
3916 * space.
846c7bb0
BS
3917 */
3918int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3919{
2bd59d48 3920 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3921 struct cgroup *cgrp;
72ec7029 3922 struct css_task_iter it;
846c7bb0 3923 struct task_struct *tsk;
33d283be 3924
2bd59d48
TH
3925 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3926 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3927 kernfs_type(kn) != KERNFS_DIR)
3928 return -EINVAL;
3929
bad34660
LZ
3930 mutex_lock(&cgroup_mutex);
3931
846c7bb0 3932 /*
2bd59d48 3933 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3934 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3935 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3936 */
2bd59d48
TH
3937 rcu_read_lock();
3938 cgrp = rcu_dereference(kn->priv);
bad34660 3939 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3940 rcu_read_unlock();
bad34660 3941 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3942 return -ENOENT;
3943 }
bad34660 3944 rcu_read_unlock();
846c7bb0 3945
9d800df1 3946 css_task_iter_start(&cgrp->self, &it);
72ec7029 3947 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3948 switch (tsk->state) {
3949 case TASK_RUNNING:
3950 stats->nr_running++;
3951 break;
3952 case TASK_INTERRUPTIBLE:
3953 stats->nr_sleeping++;
3954 break;
3955 case TASK_UNINTERRUPTIBLE:
3956 stats->nr_uninterruptible++;
3957 break;
3958 case TASK_STOPPED:
3959 stats->nr_stopped++;
3960 break;
3961 default:
3962 if (delayacct_is_task_waiting_on_io(tsk))
3963 stats->nr_io_wait++;
3964 break;
3965 }
3966 }
72ec7029 3967 css_task_iter_end(&it);
846c7bb0 3968
bad34660 3969 mutex_unlock(&cgroup_mutex);
2bd59d48 3970 return 0;
846c7bb0
BS
3971}
3972
8f3ff208 3973
bbcb81d0 3974/*
102a775e 3975 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3976 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3977 * in the cgroup->l->list array.
bbcb81d0 3978 */
cc31edce 3979
102a775e 3980static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3981{
cc31edce
PM
3982 /*
3983 * Initially we receive a position value that corresponds to
3984 * one more than the last pid shown (or 0 on the first call or
3985 * after a seek to the start). Use a binary-search to find the
3986 * next pid to display, if any
3987 */
2bd59d48 3988 struct kernfs_open_file *of = s->private;
7da11279 3989 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3990 struct cgroup_pidlist *l;
7da11279 3991 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3992 int index = 0, pid = *pos;
4bac00d1
TH
3993 int *iter, ret;
3994
3995 mutex_lock(&cgrp->pidlist_mutex);
3996
3997 /*
5d22444f 3998 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3999 * after open. If the matching pidlist is around, we can use that.
5d22444f 4000 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4001 * could already have been destroyed.
4002 */
5d22444f
TH
4003 if (of->priv)
4004 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4005
4006 /*
4007 * Either this is the first start() after open or the matching
4008 * pidlist has been destroyed inbetween. Create a new one.
4009 */
5d22444f
TH
4010 if (!of->priv) {
4011 ret = pidlist_array_load(cgrp, type,
4012 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4013 if (ret)
4014 return ERR_PTR(ret);
4015 }
5d22444f 4016 l = of->priv;
cc31edce 4017
cc31edce 4018 if (pid) {
102a775e 4019 int end = l->length;
20777766 4020
cc31edce
PM
4021 while (index < end) {
4022 int mid = (index + end) / 2;
afb2bc14 4023 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4024 index = mid;
4025 break;
afb2bc14 4026 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4027 index = mid + 1;
4028 else
4029 end = mid;
4030 }
4031 }
4032 /* If we're off the end of the array, we're done */
102a775e 4033 if (index >= l->length)
cc31edce
PM
4034 return NULL;
4035 /* Update the abstract position to be the actual pid that we found */
102a775e 4036 iter = l->list + index;
afb2bc14 4037 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4038 return iter;
4039}
4040
102a775e 4041static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4042{
2bd59d48 4043 struct kernfs_open_file *of = s->private;
5d22444f 4044 struct cgroup_pidlist *l = of->priv;
62236858 4045
5d22444f
TH
4046 if (l)
4047 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4048 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4049 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4050}
4051
102a775e 4052static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4053{
2bd59d48 4054 struct kernfs_open_file *of = s->private;
5d22444f 4055 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4056 pid_t *p = v;
4057 pid_t *end = l->list + l->length;
cc31edce
PM
4058 /*
4059 * Advance to the next pid in the array. If this goes off the
4060 * end, we're done
4061 */
4062 p++;
4063 if (p >= end) {
4064 return NULL;
4065 } else {
7da11279 4066 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4067 return p;
4068 }
4069}
4070
102a775e 4071static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
4072{
4073 return seq_printf(s, "%d\n", *(int *)v);
4074}
bbcb81d0 4075
182446d0
TH
4076static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4077 struct cftype *cft)
81a6a5cd 4078{
182446d0 4079 return notify_on_release(css->cgroup);
81a6a5cd
PM
4080}
4081
182446d0
TH
4082static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4083 struct cftype *cft, u64 val)
6379c106 4084{
182446d0 4085 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 4086 if (val)
182446d0 4087 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4088 else
182446d0 4089 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4090 return 0;
4091}
4092
182446d0
TH
4093static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4094 struct cftype *cft)
97978e6d 4095{
182446d0 4096 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4097}
4098
182446d0
TH
4099static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4100 struct cftype *cft, u64 val)
97978e6d
DL
4101{
4102 if (val)
182446d0 4103 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4104 else
182446d0 4105 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4106 return 0;
4107}
4108
d5c56ced 4109static struct cftype cgroup_base_files[] = {
81a6a5cd 4110 {
d5c56ced 4111 .name = "cgroup.procs",
6612f05b
TH
4112 .seq_start = cgroup_pidlist_start,
4113 .seq_next = cgroup_pidlist_next,
4114 .seq_stop = cgroup_pidlist_stop,
4115 .seq_show = cgroup_pidlist_show,
5d22444f 4116 .private = CGROUP_FILE_PROCS,
acbef755 4117 .write = cgroup_procs_write,
74a1166d 4118 .mode = S_IRUGO | S_IWUSR,
102a775e 4119 },
97978e6d
DL
4120 {
4121 .name = "cgroup.clone_children",
873fe09e 4122 .flags = CFTYPE_INSANE,
97978e6d
DL
4123 .read_u64 = cgroup_clone_children_read,
4124 .write_u64 = cgroup_clone_children_write,
4125 },
873fe09e
TH
4126 {
4127 .name = "cgroup.sane_behavior",
c1d5d42e 4128 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4129 .seq_show = cgroup_sane_behavior_show,
873fe09e 4130 },
f8f22e53
TH
4131 {
4132 .name = "cgroup.controllers",
4133 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4134 .seq_show = cgroup_root_controllers_show,
4135 },
4136 {
4137 .name = "cgroup.controllers",
4138 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4139 .seq_show = cgroup_controllers_show,
4140 },
4141 {
4142 .name = "cgroup.subtree_control",
4143 .flags = CFTYPE_ONLY_ON_DFL,
4144 .seq_show = cgroup_subtree_control_show,
451af504 4145 .write = cgroup_subtree_control_write,
f8f22e53 4146 },
842b597e
TH
4147 {
4148 .name = "cgroup.populated",
4149 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4150 .seq_show = cgroup_populated_show,
4151 },
d5c56ced
TH
4152
4153 /*
4154 * Historical crazy stuff. These don't have "cgroup." prefix and
4155 * don't exist if sane_behavior. If you're depending on these, be
4156 * prepared to be burned.
4157 */
4158 {
4159 .name = "tasks",
4160 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4161 .seq_start = cgroup_pidlist_start,
4162 .seq_next = cgroup_pidlist_next,
4163 .seq_stop = cgroup_pidlist_stop,
4164 .seq_show = cgroup_pidlist_show,
5d22444f 4165 .private = CGROUP_FILE_TASKS,
acbef755 4166 .write = cgroup_tasks_write,
d5c56ced
TH
4167 .mode = S_IRUGO | S_IWUSR,
4168 },
4169 {
4170 .name = "notify_on_release",
4171 .flags = CFTYPE_INSANE,
4172 .read_u64 = cgroup_read_notify_on_release,
4173 .write_u64 = cgroup_write_notify_on_release,
4174 },
6e6ff25b
TH
4175 {
4176 .name = "release_agent",
cc5943a7 4177 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4178 .seq_show = cgroup_release_agent_show,
451af504 4179 .write = cgroup_release_agent_write,
5f469907 4180 .max_write_len = PATH_MAX - 1,
6e6ff25b 4181 },
db0416b6 4182 { } /* terminate */
bbcb81d0
PM
4183};
4184
13af07df 4185/**
628f7cd4 4186 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4187 * @cgrp: target cgroup
13af07df 4188 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4189 *
4190 * On failure, no file is added.
13af07df 4191 */
69dfa00c 4192static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4193{
ddbcc7e8 4194 struct cgroup_subsys *ss;
b420ba7d 4195 int i, ret = 0;
bbcb81d0 4196
8e3f6541 4197 /* process cftsets of each subsystem */
b420ba7d 4198 for_each_subsys(ss, i) {
0adb0704 4199 struct cftype *cfts;
b420ba7d 4200
69dfa00c 4201 if (!(subsys_mask & (1 << i)))
13af07df 4202 continue;
8e3f6541 4203
0adb0704
TH
4204 list_for_each_entry(cfts, &ss->cfts, node) {
4205 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4206 if (ret < 0)
4207 goto err;
4208 }
ddbcc7e8 4209 }
ddbcc7e8 4210 return 0;
bee55099
TH
4211err:
4212 cgroup_clear_dir(cgrp, subsys_mask);
4213 return ret;
ddbcc7e8
PM
4214}
4215
0c21ead1
TH
4216/*
4217 * css destruction is four-stage process.
4218 *
4219 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4220 * Implemented in kill_css().
4221 *
4222 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4223 * and thus css_tryget_online() is guaranteed to fail, the css can be
4224 * offlined by invoking offline_css(). After offlining, the base ref is
4225 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4226 *
4227 * 3. When the percpu_ref reaches zero, the only possible remaining
4228 * accessors are inside RCU read sections. css_release() schedules the
4229 * RCU callback.
4230 *
4231 * 4. After the grace period, the css can be freed. Implemented in
4232 * css_free_work_fn().
4233 *
4234 * It is actually hairier because both step 2 and 4 require process context
4235 * and thus involve punting to css->destroy_work adding two additional
4236 * steps to the already complex sequence.
4237 */
35ef10da 4238static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4239{
4240 struct cgroup_subsys_state *css =
35ef10da 4241 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4242 struct cgroup *cgrp = css->cgroup;
48ddbe19 4243
9d755d33
TH
4244 if (css->ss) {
4245 /* css free path */
4246 if (css->parent)
4247 css_put(css->parent);
0ae78e0b 4248
9d755d33
TH
4249 css->ss->css_free(css);
4250 cgroup_put(cgrp);
4251 } else {
4252 /* cgroup free path */
4253 atomic_dec(&cgrp->root->nr_cgrps);
4254 cgroup_pidlist_destroy_all(cgrp);
4255
d51f39b0 4256 if (cgroup_parent(cgrp)) {
9d755d33
TH
4257 /*
4258 * We get a ref to the parent, and put the ref when
4259 * this cgroup is being freed, so it's guaranteed
4260 * that the parent won't be destroyed before its
4261 * children.
4262 */
d51f39b0 4263 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4264 kernfs_put(cgrp->kn);
4265 kfree(cgrp);
4266 } else {
4267 /*
4268 * This is root cgroup's refcnt reaching zero,
4269 * which indicates that the root should be
4270 * released.
4271 */
4272 cgroup_destroy_root(cgrp->root);
4273 }
4274 }
48ddbe19
TH
4275}
4276
0c21ead1 4277static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4278{
4279 struct cgroup_subsys_state *css =
0c21ead1 4280 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4281
35ef10da 4282 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4283 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4284}
4285
25e15d83 4286static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4287{
4288 struct cgroup_subsys_state *css =
25e15d83 4289 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4290 struct cgroup_subsys *ss = css->ss;
9d755d33 4291 struct cgroup *cgrp = css->cgroup;
15a4c835 4292
1fed1b2e
TH
4293 mutex_lock(&cgroup_mutex);
4294
de3f0341 4295 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4296 list_del_rcu(&css->sibling);
4297
9d755d33
TH
4298 if (ss) {
4299 /* css release path */
4300 cgroup_idr_remove(&ss->css_idr, css->id);
4301 } else {
4302 /* cgroup release path */
9d755d33
TH
4303 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4304 cgrp->id = -1;
4305 }
d3daf28d 4306
1fed1b2e
TH
4307 mutex_unlock(&cgroup_mutex);
4308
0c21ead1 4309 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4310}
4311
d3daf28d
TH
4312static void css_release(struct percpu_ref *ref)
4313{
4314 struct cgroup_subsys_state *css =
4315 container_of(ref, struct cgroup_subsys_state, refcnt);
4316
25e15d83
TH
4317 INIT_WORK(&css->destroy_work, css_release_work_fn);
4318 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4319}
4320
ddfcadab
TH
4321static void init_and_link_css(struct cgroup_subsys_state *css,
4322 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4323{
0cb51d71
TH
4324 lockdep_assert_held(&cgroup_mutex);
4325
ddfcadab
TH
4326 cgroup_get(cgrp);
4327
d5c419b6 4328 memset(css, 0, sizeof(*css));
bd89aabc 4329 css->cgroup = cgrp;
72c97e54 4330 css->ss = ss;
d5c419b6
TH
4331 INIT_LIST_HEAD(&css->sibling);
4332 INIT_LIST_HEAD(&css->children);
0cb51d71 4333 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4334
d51f39b0
TH
4335 if (cgroup_parent(cgrp)) {
4336 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4337 css_get(css->parent);
ddfcadab 4338 }
48ddbe19 4339
ca8bdcaf 4340 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4341}
4342
2a4ac633 4343/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4344static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4345{
623f926b 4346 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4347 int ret = 0;
4348
a31f2d3f
TH
4349 lockdep_assert_held(&cgroup_mutex);
4350
92fb9748 4351 if (ss->css_online)
eb95419b 4352 ret = ss->css_online(css);
ae7f164a 4353 if (!ret) {
eb95419b 4354 css->flags |= CSS_ONLINE;
aec25020 4355 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4356 }
b1929db4 4357 return ret;
a31f2d3f
TH
4358}
4359
2a4ac633 4360/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4361static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4362{
623f926b 4363 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4364
4365 lockdep_assert_held(&cgroup_mutex);
4366
4367 if (!(css->flags & CSS_ONLINE))
4368 return;
4369
d7eeac19 4370 if (ss->css_offline)
eb95419b 4371 ss->css_offline(css);
a31f2d3f 4372
eb95419b 4373 css->flags &= ~CSS_ONLINE;
e3297803 4374 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4375
4376 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4377}
4378
c81c925a
TH
4379/**
4380 * create_css - create a cgroup_subsys_state
4381 * @cgrp: the cgroup new css will be associated with
4382 * @ss: the subsys of new css
f63070d3 4383 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4384 *
4385 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4386 * css is online and installed in @cgrp with all interface files created if
4387 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4388 */
f63070d3
TH
4389static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4390 bool visible)
c81c925a 4391{
d51f39b0 4392 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4393 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4394 struct cgroup_subsys_state *css;
4395 int err;
4396
c81c925a
TH
4397 lockdep_assert_held(&cgroup_mutex);
4398
1fed1b2e 4399 css = ss->css_alloc(parent_css);
c81c925a
TH
4400 if (IS_ERR(css))
4401 return PTR_ERR(css);
4402
ddfcadab 4403 init_and_link_css(css, ss, cgrp);
a2bed820 4404
c81c925a
TH
4405 err = percpu_ref_init(&css->refcnt, css_release);
4406 if (err)
3eb59ec6 4407 goto err_free_css;
c81c925a 4408
15a4c835
TH
4409 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4410 if (err < 0)
4411 goto err_free_percpu_ref;
4412 css->id = err;
c81c925a 4413
f63070d3
TH
4414 if (visible) {
4415 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4416 if (err)
4417 goto err_free_id;
4418 }
15a4c835
TH
4419
4420 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4421 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4422 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4423
4424 err = online_css(css);
4425 if (err)
1fed1b2e 4426 goto err_list_del;
94419627 4427
c81c925a 4428 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4429 cgroup_parent(parent)) {
ed3d261b 4430 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4431 current->comm, current->pid, ss->name);
c81c925a 4432 if (!strcmp(ss->name, "memory"))
ed3d261b 4433 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4434 ss->warned_broken_hierarchy = true;
4435 }
4436
4437 return 0;
4438
1fed1b2e
TH
4439err_list_del:
4440 list_del_rcu(&css->sibling);
32d01dc7 4441 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4442err_free_id:
4443 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4444err_free_percpu_ref:
c81c925a 4445 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4446err_free_css:
a2bed820 4447 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4448 return err;
4449}
4450
b3bfd983
TH
4451static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4452 umode_t mode)
ddbcc7e8 4453{
a9746d8d
TH
4454 struct cgroup *parent, *cgrp;
4455 struct cgroup_root *root;
ddbcc7e8 4456 struct cgroup_subsys *ss;
2bd59d48 4457 struct kernfs_node *kn;
b3bfd983 4458 int ssid, ret;
ddbcc7e8 4459
a9746d8d
TH
4460 parent = cgroup_kn_lock_live(parent_kn);
4461 if (!parent)
4462 return -ENODEV;
4463 root = parent->root;
ddbcc7e8 4464
0a950f65 4465 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4466 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4467 if (!cgrp) {
4468 ret = -ENOMEM;
4469 goto out_unlock;
0ab02ca8
LZ
4470 }
4471
9d755d33
TH
4472 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4473 if (ret)
4474 goto out_free_cgrp;
4475
0ab02ca8
LZ
4476 /*
4477 * Temporarily set the pointer to NULL, so idr_find() won't return
4478 * a half-baked cgroup.
4479 */
6fa4918d 4480 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4481 if (cgrp->id < 0) {
ba0f4d76 4482 ret = -ENOMEM;
9d755d33 4483 goto out_cancel_ref;
976c06bc
TH
4484 }
4485
cc31edce 4486 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4487
9d800df1 4488 cgrp->self.parent = &parent->self;
ba0f4d76 4489 cgrp->root = root;
ddbcc7e8 4490
b6abdb0e
LZ
4491 if (notify_on_release(parent))
4492 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4493
2260e7fc
TH
4494 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4495 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4496
2bd59d48 4497 /* create the directory */
e61734c5 4498 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4499 if (IS_ERR(kn)) {
ba0f4d76
TH
4500 ret = PTR_ERR(kn);
4501 goto out_free_id;
2bd59d48
TH
4502 }
4503 cgrp->kn = kn;
ddbcc7e8 4504
4e139afc 4505 /*
6f30558f
TH
4506 * This extra ref will be put in cgroup_free_fn() and guarantees
4507 * that @cgrp->kn is always accessible.
4e139afc 4508 */
6f30558f 4509 kernfs_get(kn);
ddbcc7e8 4510
0cb51d71 4511 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4512
4e139afc 4513 /* allocation complete, commit to creation */
d5c419b6 4514 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4515 atomic_inc(&root->nr_cgrps);
59f5296b 4516 cgroup_get(parent);
415cf07a 4517
0d80255e
TH
4518 /*
4519 * @cgrp is now fully operational. If something fails after this
4520 * point, it'll be released via the normal destruction path.
4521 */
6fa4918d 4522 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4523
ba0f4d76
TH
4524 ret = cgroup_kn_set_ugid(kn);
4525 if (ret)
4526 goto out_destroy;
49957f8e 4527
ba0f4d76
TH
4528 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4529 if (ret)
4530 goto out_destroy;
628f7cd4 4531
9d403e99 4532 /* let's create and online css's */
b85d2040 4533 for_each_subsys(ss, ssid) {
f392e51c 4534 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4535 ret = create_css(cgrp, ss,
4536 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4537 if (ret)
4538 goto out_destroy;
b85d2040 4539 }
a8638030 4540 }
ddbcc7e8 4541
bd53d617
TH
4542 /*
4543 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4544 * subtree_control from the parent. Each is configured manually.
bd53d617 4545 */
667c2491
TH
4546 if (!cgroup_on_dfl(cgrp)) {
4547 cgrp->subtree_control = parent->subtree_control;
4548 cgroup_refresh_child_subsys_mask(cgrp);
4549 }
2bd59d48 4550
2bd59d48 4551 kernfs_activate(kn);
ddbcc7e8 4552
ba0f4d76
TH
4553 ret = 0;
4554 goto out_unlock;
ddbcc7e8 4555
ba0f4d76 4556out_free_id:
6fa4918d 4557 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4558out_cancel_ref:
4559 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4560out_free_cgrp:
bd89aabc 4561 kfree(cgrp);
ba0f4d76 4562out_unlock:
a9746d8d 4563 cgroup_kn_unlock(parent_kn);
ba0f4d76 4564 return ret;
4b8b47eb 4565
ba0f4d76 4566out_destroy:
4b8b47eb 4567 cgroup_destroy_locked(cgrp);
ba0f4d76 4568 goto out_unlock;
ddbcc7e8
PM
4569}
4570
223dbc38
TH
4571/*
4572 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4573 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4574 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4575 */
4576static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4577{
223dbc38
TH
4578 struct cgroup_subsys_state *css =
4579 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4580
f20104de 4581 mutex_lock(&cgroup_mutex);
09a503ea 4582 offline_css(css);
f20104de 4583 mutex_unlock(&cgroup_mutex);
09a503ea 4584
09a503ea 4585 css_put(css);
d3daf28d
TH
4586}
4587
223dbc38
TH
4588/* css kill confirmation processing requires process context, bounce */
4589static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4590{
4591 struct cgroup_subsys_state *css =
4592 container_of(ref, struct cgroup_subsys_state, refcnt);
4593
223dbc38 4594 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4595 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4596}
4597
f392e51c
TH
4598/**
4599 * kill_css - destroy a css
4600 * @css: css to destroy
4601 *
4602 * This function initiates destruction of @css by removing cgroup interface
4603 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4604 * asynchronously once css_tryget_online() is guaranteed to fail and when
4605 * the reference count reaches zero, @css will be released.
f392e51c
TH
4606 */
4607static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4608{
01f6474c 4609 lockdep_assert_held(&cgroup_mutex);
94419627 4610
2bd59d48
TH
4611 /*
4612 * This must happen before css is disassociated with its cgroup.
4613 * See seq_css() for details.
4614 */
aec25020 4615 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4616
edae0c33
TH
4617 /*
4618 * Killing would put the base ref, but we need to keep it alive
4619 * until after ->css_offline().
4620 */
4621 css_get(css);
4622
4623 /*
4624 * cgroup core guarantees that, by the time ->css_offline() is
4625 * invoked, no new css reference will be given out via
ec903c0c 4626 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4627 * proceed to offlining css's because percpu_ref_kill() doesn't
4628 * guarantee that the ref is seen as killed on all CPUs on return.
4629 *
4630 * Use percpu_ref_kill_and_confirm() to get notifications as each
4631 * css is confirmed to be seen as killed on all CPUs.
4632 */
4633 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4634}
4635
4636/**
4637 * cgroup_destroy_locked - the first stage of cgroup destruction
4638 * @cgrp: cgroup to be destroyed
4639 *
4640 * css's make use of percpu refcnts whose killing latency shouldn't be
4641 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4642 * guarantee that css_tryget_online() won't succeed by the time
4643 * ->css_offline() is invoked. To satisfy all the requirements,
4644 * destruction is implemented in the following two steps.
d3daf28d
TH
4645 *
4646 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4647 * userland visible parts and start killing the percpu refcnts of
4648 * css's. Set up so that the next stage will be kicked off once all
4649 * the percpu refcnts are confirmed to be killed.
4650 *
4651 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4652 * rest of destruction. Once all cgroup references are gone, the
4653 * cgroup is RCU-freed.
4654 *
4655 * This function implements s1. After this step, @cgrp is gone as far as
4656 * the userland is concerned and a new cgroup with the same name may be
4657 * created. As cgroup doesn't care about the names internally, this
4658 * doesn't cause any problem.
4659 */
42809dd4
TH
4660static int cgroup_destroy_locked(struct cgroup *cgrp)
4661 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4662{
2bd59d48 4663 struct cgroup_subsys_state *css;
ddd69148 4664 bool empty;
1c6727af 4665 int ssid;
ddbcc7e8 4666
42809dd4
TH
4667 lockdep_assert_held(&cgroup_mutex);
4668
ddd69148 4669 /*
96d365e0 4670 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4671 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4672 */
96d365e0 4673 down_read(&css_set_rwsem);
bb78a92f 4674 empty = list_empty(&cgrp->cset_links);
96d365e0 4675 up_read(&css_set_rwsem);
ddd69148 4676 if (!empty)
ddbcc7e8 4677 return -EBUSY;
a043e3b2 4678
bb78a92f 4679 /*
d5c419b6
TH
4680 * Make sure there's no live children. We can't test emptiness of
4681 * ->self.children as dead children linger on it while being
4682 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4683 */
f3d46500 4684 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4685 return -EBUSY;
4686
455050d2
TH
4687 /*
4688 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4689 * creation by disabling cgroup_lock_live_group().
455050d2 4690 */
184faf32 4691 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4692
249f3468 4693 /* initiate massacre of all css's */
1c6727af
TH
4694 for_each_css(css, ssid, cgrp)
4695 kill_css(css);
455050d2 4696
184faf32 4697 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4698 raw_spin_lock(&release_list_lock);
4699 if (!list_empty(&cgrp->release_list))
4700 list_del_init(&cgrp->release_list);
4701 raw_spin_unlock(&release_list_lock);
4702
4703 /*
01f6474c
TH
4704 * Remove @cgrp directory along with the base files. @cgrp has an
4705 * extra ref on its kn.
f20104de 4706 */
01f6474c 4707 kernfs_remove(cgrp->kn);
f20104de 4708
d51f39b0
TH
4709 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4710 check_for_release(cgroup_parent(cgrp));
2bd59d48 4711
249f3468 4712 /* put the base reference */
9d755d33 4713 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4714
ea15f8cc
TH
4715 return 0;
4716};
4717
2bd59d48 4718static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4719{
a9746d8d 4720 struct cgroup *cgrp;
2bd59d48 4721 int ret = 0;
42809dd4 4722
a9746d8d
TH
4723 cgrp = cgroup_kn_lock_live(kn);
4724 if (!cgrp)
4725 return 0;
4726 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4727
a9746d8d 4728 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4729
a9746d8d 4730 cgroup_kn_unlock(kn);
8e3f6541
TH
4731
4732 /*
cfc79d5b
TH
4733 * There are two control paths which try to determine cgroup from
4734 * dentry without going through kernfs - cgroupstats_build() and
4735 * css_tryget_online_from_dir(). Those are supported by RCU
4736 * protecting clearing of cgrp->kn->priv backpointer, which should
4737 * happen after all files under it have been removed.
8e3f6541 4738 */
cfc79d5b
TH
4739 if (!ret)
4740 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4741
2bd59d48 4742 cgroup_put(cgrp);
42809dd4 4743 return ret;
8e3f6541
TH
4744}
4745
2bd59d48
TH
4746static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4747 .remount_fs = cgroup_remount,
4748 .show_options = cgroup_show_options,
4749 .mkdir = cgroup_mkdir,
4750 .rmdir = cgroup_rmdir,
4751 .rename = cgroup_rename,
4752};
4753
15a4c835 4754static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4755{
ddbcc7e8 4756 struct cgroup_subsys_state *css;
cfe36bde
DC
4757
4758 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4759
648bb56d
TH
4760 mutex_lock(&cgroup_mutex);
4761
15a4c835 4762 idr_init(&ss->css_idr);
0adb0704 4763 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4764
3dd06ffa
TH
4765 /* Create the root cgroup state for this subsystem */
4766 ss->root = &cgrp_dfl_root;
4767 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4768 /* We don't handle early failures gracefully */
4769 BUG_ON(IS_ERR(css));
ddfcadab 4770 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4771
4772 /*
4773 * Root csses are never destroyed and we can't initialize
4774 * percpu_ref during early init. Disable refcnting.
4775 */
4776 css->flags |= CSS_NO_REF;
4777
15a4c835 4778 if (early) {
9395a450 4779 /* allocation can't be done safely during early init */
15a4c835
TH
4780 css->id = 1;
4781 } else {
4782 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4783 BUG_ON(css->id < 0);
4784 }
ddbcc7e8 4785
e8d55fde 4786 /* Update the init_css_set to contain a subsys
817929ec 4787 * pointer to this state - since the subsystem is
e8d55fde 4788 * newly registered, all tasks and hence the
3dd06ffa 4789 * init_css_set is in the subsystem's root cgroup. */
aec25020 4790 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4791
4792 need_forkexit_callback |= ss->fork || ss->exit;
4793
e8d55fde
LZ
4794 /* At system boot, before all subsystems have been
4795 * registered, no tasks have been forked, so we don't
4796 * need to invoke fork callbacks here. */
4797 BUG_ON(!list_empty(&init_task.tasks));
4798
ae7f164a 4799 BUG_ON(online_css(css));
a8638030 4800
cf5d5941
BB
4801 mutex_unlock(&cgroup_mutex);
4802}
cf5d5941 4803
ddbcc7e8 4804/**
a043e3b2
LZ
4805 * cgroup_init_early - cgroup initialization at system boot
4806 *
4807 * Initialize cgroups at system boot, and initialize any
4808 * subsystems that request early init.
ddbcc7e8
PM
4809 */
4810int __init cgroup_init_early(void)
4811{
a2dd4247
TH
4812 static struct cgroup_sb_opts __initdata opts =
4813 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4814 struct cgroup_subsys *ss;
ddbcc7e8 4815 int i;
30159ec7 4816
3dd06ffa 4817 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4818 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4819
a4ea1cc9 4820 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4821
3ed80a62 4822 for_each_subsys(ss, i) {
aec25020 4823 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4824 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4825 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4826 ss->id, ss->name);
073219e9
TH
4827 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4828 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4829
aec25020 4830 ss->id = i;
073219e9 4831 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4832
4833 if (ss->early_init)
15a4c835 4834 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4835 }
4836 return 0;
4837}
4838
4839/**
a043e3b2
LZ
4840 * cgroup_init - cgroup initialization
4841 *
4842 * Register cgroup filesystem and /proc file, and initialize
4843 * any subsystems that didn't request early init.
ddbcc7e8
PM
4844 */
4845int __init cgroup_init(void)
4846{
30159ec7 4847 struct cgroup_subsys *ss;
0ac801fe 4848 unsigned long key;
172a2c06 4849 int ssid, err;
ddbcc7e8 4850
2bd59d48 4851 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4852
54e7b4eb 4853 mutex_lock(&cgroup_mutex);
54e7b4eb 4854
82fe9b0d
TH
4855 /* Add init_css_set to the hash table */
4856 key = css_set_hash(init_css_set.subsys);
4857 hash_add(css_set_table, &init_css_set.hlist, key);
4858
3dd06ffa 4859 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4860
54e7b4eb
TH
4861 mutex_unlock(&cgroup_mutex);
4862
172a2c06 4863 for_each_subsys(ss, ssid) {
15a4c835
TH
4864 if (ss->early_init) {
4865 struct cgroup_subsys_state *css =
4866 init_css_set.subsys[ss->id];
4867
4868 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4869 GFP_KERNEL);
4870 BUG_ON(css->id < 0);
4871 } else {
4872 cgroup_init_subsys(ss, false);
4873 }
172a2c06 4874
2d8f243a
TH
4875 list_add_tail(&init_css_set.e_cset_node[ssid],
4876 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4877
4878 /*
c731ae1d
LZ
4879 * Setting dfl_root subsys_mask needs to consider the
4880 * disabled flag and cftype registration needs kmalloc,
4881 * both of which aren't available during early_init.
172a2c06 4882 */
c731ae1d
LZ
4883 if (!ss->disabled) {
4884 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
172a2c06 4885 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
c731ae1d 4886 }
676db4af
GK
4887 }
4888
676db4af 4889 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4890 if (!cgroup_kobj)
4891 return -ENOMEM;
676db4af 4892
ddbcc7e8 4893 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4894 if (err < 0) {
4895 kobject_put(cgroup_kobj);
2bd59d48 4896 return err;
676db4af 4897 }
ddbcc7e8 4898
46ae220b 4899 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4900 return 0;
ddbcc7e8 4901}
b4f48b63 4902
e5fca243
TH
4903static int __init cgroup_wq_init(void)
4904{
4905 /*
4906 * There isn't much point in executing destruction path in
4907 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4908 * Use 1 for @max_active.
e5fca243
TH
4909 *
4910 * We would prefer to do this in cgroup_init() above, but that
4911 * is called before init_workqueues(): so leave this until after.
4912 */
1a11533f 4913 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4914 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4915
4916 /*
4917 * Used to destroy pidlists and separate to serve as flush domain.
4918 * Cap @max_active to 1 too.
4919 */
4920 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4921 0, 1);
4922 BUG_ON(!cgroup_pidlist_destroy_wq);
4923
e5fca243
TH
4924 return 0;
4925}
4926core_initcall(cgroup_wq_init);
4927
a424316c
PM
4928/*
4929 * proc_cgroup_show()
4930 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4931 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4932 */
4933
4934/* TODO: Use a proper seq_file iterator */
8d8b97ba 4935int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4936{
4937 struct pid *pid;
4938 struct task_struct *tsk;
e61734c5 4939 char *buf, *path;
a424316c 4940 int retval;
3dd06ffa 4941 struct cgroup_root *root;
a424316c
PM
4942
4943 retval = -ENOMEM;
e61734c5 4944 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4945 if (!buf)
4946 goto out;
4947
4948 retval = -ESRCH;
4949 pid = m->private;
4950 tsk = get_pid_task(pid, PIDTYPE_PID);
4951 if (!tsk)
4952 goto out_free;
4953
4954 retval = 0;
4955
4956 mutex_lock(&cgroup_mutex);
96d365e0 4957 down_read(&css_set_rwsem);
a424316c 4958
985ed670 4959 for_each_root(root) {
a424316c 4960 struct cgroup_subsys *ss;
bd89aabc 4961 struct cgroup *cgrp;
b85d2040 4962 int ssid, count = 0;
a424316c 4963
a2dd4247 4964 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4965 continue;
4966
2c6ab6d2 4967 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4968 for_each_subsys(ss, ssid)
f392e51c 4969 if (root->subsys_mask & (1 << ssid))
b85d2040 4970 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4971 if (strlen(root->name))
4972 seq_printf(m, "%sname=%s", count ? "," : "",
4973 root->name);
a424316c 4974 seq_putc(m, ':');
7717f7ba 4975 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4976 path = cgroup_path(cgrp, buf, PATH_MAX);
4977 if (!path) {
4978 retval = -ENAMETOOLONG;
a424316c 4979 goto out_unlock;
e61734c5
TH
4980 }
4981 seq_puts(m, path);
a424316c
PM
4982 seq_putc(m, '\n');
4983 }
4984
4985out_unlock:
96d365e0 4986 up_read(&css_set_rwsem);
a424316c
PM
4987 mutex_unlock(&cgroup_mutex);
4988 put_task_struct(tsk);
4989out_free:
4990 kfree(buf);
4991out:
4992 return retval;
4993}
4994
a424316c
PM
4995/* Display information about each subsystem and each hierarchy */
4996static int proc_cgroupstats_show(struct seq_file *m, void *v)
4997{
30159ec7 4998 struct cgroup_subsys *ss;
a424316c 4999 int i;
a424316c 5000
8bab8dde 5001 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5002 /*
5003 * ideally we don't want subsystems moving around while we do this.
5004 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5005 * subsys/hierarchy state.
5006 */
a424316c 5007 mutex_lock(&cgroup_mutex);
30159ec7
TH
5008
5009 for_each_subsys(ss, i)
2c6ab6d2
PM
5010 seq_printf(m, "%s\t%d\t%d\t%d\n",
5011 ss->name, ss->root->hierarchy_id,
3c9c825b 5012 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5013
a424316c
PM
5014 mutex_unlock(&cgroup_mutex);
5015 return 0;
5016}
5017
5018static int cgroupstats_open(struct inode *inode, struct file *file)
5019{
9dce07f1 5020 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5021}
5022
828c0950 5023static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5024 .open = cgroupstats_open,
5025 .read = seq_read,
5026 .llseek = seq_lseek,
5027 .release = single_release,
5028};
5029
b4f48b63 5030/**
eaf797ab 5031 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5032 * @child: pointer to task_struct of forking parent process.
b4f48b63 5033 *
eaf797ab
TH
5034 * A task is associated with the init_css_set until cgroup_post_fork()
5035 * attaches it to the parent's css_set. Empty cg_list indicates that
5036 * @child isn't holding reference to its css_set.
b4f48b63
PM
5037 */
5038void cgroup_fork(struct task_struct *child)
5039{
eaf797ab 5040 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5041 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5042}
5043
817929ec 5044/**
a043e3b2
LZ
5045 * cgroup_post_fork - called on a new task after adding it to the task list
5046 * @child: the task in question
5047 *
5edee61e
TH
5048 * Adds the task to the list running through its css_set if necessary and
5049 * call the subsystem fork() callbacks. Has to be after the task is
5050 * visible on the task list in case we race with the first call to
0942eeee 5051 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5052 * list.
a043e3b2 5053 */
817929ec
PM
5054void cgroup_post_fork(struct task_struct *child)
5055{
30159ec7 5056 struct cgroup_subsys *ss;
5edee61e
TH
5057 int i;
5058
3ce3230a 5059 /*
eaf797ab
TH
5060 * This may race against cgroup_enable_task_cg_links(). As that
5061 * function sets use_task_css_set_links before grabbing
5062 * tasklist_lock and we just went through tasklist_lock to add
5063 * @child, it's guaranteed that either we see the set
5064 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5065 * @child during its iteration.
5066 *
5067 * If we won the race, @child is associated with %current's
5068 * css_set. Grabbing css_set_rwsem guarantees both that the
5069 * association is stable, and, on completion of the parent's
5070 * migration, @child is visible in the source of migration or
5071 * already in the destination cgroup. This guarantee is necessary
5072 * when implementing operations which need to migrate all tasks of
5073 * a cgroup to another.
5074 *
5075 * Note that if we lose to cgroup_enable_task_cg_links(), @child
5076 * will remain in init_css_set. This is safe because all tasks are
5077 * in the init_css_set before cg_links is enabled and there's no
5078 * operation which transfers all tasks out of init_css_set.
3ce3230a 5079 */
817929ec 5080 if (use_task_css_set_links) {
eaf797ab
TH
5081 struct css_set *cset;
5082
96d365e0 5083 down_write(&css_set_rwsem);
0e1d768f 5084 cset = task_css_set(current);
eaf797ab
TH
5085 if (list_empty(&child->cg_list)) {
5086 rcu_assign_pointer(child->cgroups, cset);
5087 list_add(&child->cg_list, &cset->tasks);
5088 get_css_set(cset);
5089 }
96d365e0 5090 up_write(&css_set_rwsem);
817929ec 5091 }
5edee61e
TH
5092
5093 /*
5094 * Call ss->fork(). This must happen after @child is linked on
5095 * css_set; otherwise, @child might change state between ->fork()
5096 * and addition to css_set.
5097 */
5098 if (need_forkexit_callback) {
3ed80a62 5099 for_each_subsys(ss, i)
5edee61e
TH
5100 if (ss->fork)
5101 ss->fork(child);
5edee61e 5102 }
817929ec 5103}
5edee61e 5104
b4f48b63
PM
5105/**
5106 * cgroup_exit - detach cgroup from exiting task
5107 * @tsk: pointer to task_struct of exiting process
5108 *
5109 * Description: Detach cgroup from @tsk and release it.
5110 *
5111 * Note that cgroups marked notify_on_release force every task in
5112 * them to take the global cgroup_mutex mutex when exiting.
5113 * This could impact scaling on very large systems. Be reluctant to
5114 * use notify_on_release cgroups where very high task exit scaling
5115 * is required on large systems.
5116 *
0e1d768f
TH
5117 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5118 * call cgroup_exit() while the task is still competent to handle
5119 * notify_on_release(), then leave the task attached to the root cgroup in
5120 * each hierarchy for the remainder of its exit. No need to bother with
5121 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5122 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5123 */
1ec41830 5124void cgroup_exit(struct task_struct *tsk)
b4f48b63 5125{
30159ec7 5126 struct cgroup_subsys *ss;
5abb8855 5127 struct css_set *cset;
eaf797ab 5128 bool put_cset = false;
d41d5a01 5129 int i;
817929ec
PM
5130
5131 /*
0e1d768f
TH
5132 * Unlink from @tsk from its css_set. As migration path can't race
5133 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5134 */
5135 if (!list_empty(&tsk->cg_list)) {
96d365e0 5136 down_write(&css_set_rwsem);
0e1d768f 5137 list_del_init(&tsk->cg_list);
96d365e0 5138 up_write(&css_set_rwsem);
0e1d768f 5139 put_cset = true;
817929ec
PM
5140 }
5141
b4f48b63 5142 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5143 cset = task_css_set(tsk);
5144 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5145
1ec41830 5146 if (need_forkexit_callback) {
3ed80a62
TH
5147 /* see cgroup_post_fork() for details */
5148 for_each_subsys(ss, i) {
d41d5a01 5149 if (ss->exit) {
eb95419b
TH
5150 struct cgroup_subsys_state *old_css = cset->subsys[i];
5151 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5152
eb95419b 5153 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5154 }
5155 }
5156 }
d41d5a01 5157
eaf797ab
TH
5158 if (put_cset)
5159 put_css_set(cset, true);
b4f48b63 5160}
697f4161 5161
bd89aabc 5162static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5163{
f3d46500
TH
5164 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5165 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5166 /*
5167 * Control Group is currently removeable. If it's not
81a6a5cd 5168 * already queued for a userspace notification, queue
f50daa70
LZ
5169 * it now
5170 */
81a6a5cd 5171 int need_schedule_work = 0;
f50daa70 5172
cdcc136f 5173 raw_spin_lock(&release_list_lock);
54766d4a 5174 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5175 list_empty(&cgrp->release_list)) {
5176 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5177 need_schedule_work = 1;
5178 }
cdcc136f 5179 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5180 if (need_schedule_work)
5181 schedule_work(&release_agent_work);
5182 }
5183}
5184
81a6a5cd
PM
5185/*
5186 * Notify userspace when a cgroup is released, by running the
5187 * configured release agent with the name of the cgroup (path
5188 * relative to the root of cgroup file system) as the argument.
5189 *
5190 * Most likely, this user command will try to rmdir this cgroup.
5191 *
5192 * This races with the possibility that some other task will be
5193 * attached to this cgroup before it is removed, or that some other
5194 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5195 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5196 * unused, and this cgroup will be reprieved from its death sentence,
5197 * to continue to serve a useful existence. Next time it's released,
5198 * we will get notified again, if it still has 'notify_on_release' set.
5199 *
5200 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5201 * means only wait until the task is successfully execve()'d. The
5202 * separate release agent task is forked by call_usermodehelper(),
5203 * then control in this thread returns here, without waiting for the
5204 * release agent task. We don't bother to wait because the caller of
5205 * this routine has no use for the exit status of the release agent
5206 * task, so no sense holding our caller up for that.
81a6a5cd 5207 */
81a6a5cd
PM
5208static void cgroup_release_agent(struct work_struct *work)
5209{
5210 BUG_ON(work != &release_agent_work);
5211 mutex_lock(&cgroup_mutex);
cdcc136f 5212 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5213 while (!list_empty(&release_list)) {
5214 char *argv[3], *envp[3];
5215 int i;
e61734c5 5216 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5217 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5218 struct cgroup,
5219 release_list);
bd89aabc 5220 list_del_init(&cgrp->release_list);
cdcc136f 5221 raw_spin_unlock(&release_list_lock);
e61734c5 5222 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5223 if (!pathbuf)
5224 goto continue_free;
e61734c5
TH
5225 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5226 if (!path)
e788e066
PM
5227 goto continue_free;
5228 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5229 if (!agentbuf)
5230 goto continue_free;
81a6a5cd
PM
5231
5232 i = 0;
e788e066 5233 argv[i++] = agentbuf;
e61734c5 5234 argv[i++] = path;
81a6a5cd
PM
5235 argv[i] = NULL;
5236
5237 i = 0;
5238 /* minimal command environment */
5239 envp[i++] = "HOME=/";
5240 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5241 envp[i] = NULL;
5242
5243 /* Drop the lock while we invoke the usermode helper,
5244 * since the exec could involve hitting disk and hence
5245 * be a slow process */
5246 mutex_unlock(&cgroup_mutex);
5247 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5248 mutex_lock(&cgroup_mutex);
e788e066
PM
5249 continue_free:
5250 kfree(pathbuf);
5251 kfree(agentbuf);
cdcc136f 5252 raw_spin_lock(&release_list_lock);
81a6a5cd 5253 }
cdcc136f 5254 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5255 mutex_unlock(&cgroup_mutex);
5256}
8bab8dde
PM
5257
5258static int __init cgroup_disable(char *str)
5259{
30159ec7 5260 struct cgroup_subsys *ss;
8bab8dde 5261 char *token;
30159ec7 5262 int i;
8bab8dde
PM
5263
5264 while ((token = strsep(&str, ",")) != NULL) {
5265 if (!*token)
5266 continue;
be45c900 5267
3ed80a62 5268 for_each_subsys(ss, i) {
8bab8dde
PM
5269 if (!strcmp(token, ss->name)) {
5270 ss->disabled = 1;
5271 printk(KERN_INFO "Disabling %s control group"
5272 " subsystem\n", ss->name);
5273 break;
5274 }
5275 }
5276 }
5277 return 1;
5278}
5279__setup("cgroup_disable=", cgroup_disable);
38460b48 5280
b77d7b60 5281/**
ec903c0c 5282 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5283 * @dentry: directory dentry of interest
5284 * @ss: subsystem of interest
b77d7b60 5285 *
5a17f543
TH
5286 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5287 * to get the corresponding css and return it. If such css doesn't exist
5288 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5289 */
ec903c0c
TH
5290struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5291 struct cgroup_subsys *ss)
e5d1367f 5292{
2bd59d48
TH
5293 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5294 struct cgroup_subsys_state *css = NULL;
e5d1367f 5295 struct cgroup *cgrp;
e5d1367f 5296
35cf0836 5297 /* is @dentry a cgroup dir? */
2bd59d48
TH
5298 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5299 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5300 return ERR_PTR(-EBADF);
5301
5a17f543
TH
5302 rcu_read_lock();
5303
2bd59d48
TH
5304 /*
5305 * This path doesn't originate from kernfs and @kn could already
5306 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5307 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5308 */
5309 cgrp = rcu_dereference(kn->priv);
5310 if (cgrp)
5311 css = cgroup_css(cgrp, ss);
5a17f543 5312
ec903c0c 5313 if (!css || !css_tryget_online(css))
5a17f543
TH
5314 css = ERR_PTR(-ENOENT);
5315
5316 rcu_read_unlock();
5317 return css;
e5d1367f 5318}
e5d1367f 5319
1cb650b9
LZ
5320/**
5321 * css_from_id - lookup css by id
5322 * @id: the cgroup id
5323 * @ss: cgroup subsys to be looked into
5324 *
5325 * Returns the css if there's valid one with @id, otherwise returns NULL.
5326 * Should be called under rcu_read_lock().
5327 */
5328struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5329{
6fa4918d 5330 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5331 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5332}
5333
fe693435 5334#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5335static struct cgroup_subsys_state *
5336debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5337{
5338 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5339
5340 if (!css)
5341 return ERR_PTR(-ENOMEM);
5342
5343 return css;
5344}
5345
eb95419b 5346static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5347{
eb95419b 5348 kfree(css);
fe693435
PM
5349}
5350
182446d0
TH
5351static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5352 struct cftype *cft)
fe693435 5353{
182446d0 5354 return cgroup_task_count(css->cgroup);
fe693435
PM
5355}
5356
182446d0
TH
5357static u64 current_css_set_read(struct cgroup_subsys_state *css,
5358 struct cftype *cft)
fe693435
PM
5359{
5360 return (u64)(unsigned long)current->cgroups;
5361}
5362
182446d0 5363static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5364 struct cftype *cft)
fe693435
PM
5365{
5366 u64 count;
5367
5368 rcu_read_lock();
a8ad805c 5369 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5370 rcu_read_unlock();
5371 return count;
5372}
5373
2da8ca82 5374static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5375{
69d0206c 5376 struct cgrp_cset_link *link;
5abb8855 5377 struct css_set *cset;
e61734c5
TH
5378 char *name_buf;
5379
5380 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5381 if (!name_buf)
5382 return -ENOMEM;
7717f7ba 5383
96d365e0 5384 down_read(&css_set_rwsem);
7717f7ba 5385 rcu_read_lock();
5abb8855 5386 cset = rcu_dereference(current->cgroups);
69d0206c 5387 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5388 struct cgroup *c = link->cgrp;
7717f7ba 5389
a2dd4247 5390 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5391 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5392 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5393 }
5394 rcu_read_unlock();
96d365e0 5395 up_read(&css_set_rwsem);
e61734c5 5396 kfree(name_buf);
7717f7ba
PM
5397 return 0;
5398}
5399
5400#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5401static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5402{
2da8ca82 5403 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5404 struct cgrp_cset_link *link;
7717f7ba 5405
96d365e0 5406 down_read(&css_set_rwsem);
182446d0 5407 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5408 struct css_set *cset = link->cset;
7717f7ba
PM
5409 struct task_struct *task;
5410 int count = 0;
c7561128 5411
5abb8855 5412 seq_printf(seq, "css_set %p\n", cset);
c7561128 5413
5abb8855 5414 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5415 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5416 goto overflow;
5417 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5418 }
5419
5420 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5421 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5422 goto overflow;
5423 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5424 }
c7561128
TH
5425 continue;
5426 overflow:
5427 seq_puts(seq, " ...\n");
7717f7ba 5428 }
96d365e0 5429 up_read(&css_set_rwsem);
7717f7ba
PM
5430 return 0;
5431}
5432
182446d0 5433static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5434{
182446d0 5435 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5436}
5437
5438static struct cftype debug_files[] = {
fe693435
PM
5439 {
5440 .name = "taskcount",
5441 .read_u64 = debug_taskcount_read,
5442 },
5443
5444 {
5445 .name = "current_css_set",
5446 .read_u64 = current_css_set_read,
5447 },
5448
5449 {
5450 .name = "current_css_set_refcount",
5451 .read_u64 = current_css_set_refcount_read,
5452 },
5453
7717f7ba
PM
5454 {
5455 .name = "current_css_set_cg_links",
2da8ca82 5456 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5457 },
5458
5459 {
5460 .name = "cgroup_css_links",
2da8ca82 5461 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5462 },
5463
fe693435
PM
5464 {
5465 .name = "releasable",
5466 .read_u64 = releasable_read,
5467 },
fe693435 5468
4baf6e33
TH
5469 { } /* terminate */
5470};
fe693435 5471
073219e9 5472struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5473 .css_alloc = debug_css_alloc,
5474 .css_free = debug_css_free,
4baf6e33 5475 .base_cftypes = debug_files,
fe693435
PM
5476};
5477#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.975577 seconds and 5 git commands to generate.