kernfs: implement kernfs_walk_and_get()
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
1ed13287 48#include <linux/percpu-rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
f0d9a5f1 78 * css_set_lock protects task->cgroups pointer, the list of css_set
0e1d768f 79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 86DEFINE_SPINLOCK(css_set_lock);
0e1d768f 87EXPORT_SYMBOL_GPL(cgroup_mutex);
f0d9a5f1 88EXPORT_SYMBOL_GPL(css_set_lock);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
f0d9a5f1 91static DEFINE_SPINLOCK(css_set_lock);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
1ed13287
TH
106struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
107
8353da1f 108#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
8353da1f 111 "cgroup_mutex or RCU read lock required");
780cd8b3 112
e5fca243
TH
113/*
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
118 */
119static struct workqueue_struct *cgroup_destroy_wq;
120
b1a21367
TH
121/*
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
124 */
125static struct workqueue_struct *cgroup_pidlist_destroy_wq;
126
3ed80a62 127/* generate an array of cgroup subsystem pointers */
073219e9 128#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 129static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
130#include <linux/cgroup_subsys.h>
131};
073219e9
TH
132#undef SUBSYS
133
134/* array of cgroup subsystem names */
135#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
137#include <linux/cgroup_subsys.h>
138};
073219e9 139#undef SUBSYS
ddbcc7e8 140
49d1dc4b
TH
141/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142#define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147#include <linux/cgroup_subsys.h>
148#undef SUBSYS
149
150#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151static struct static_key_true *cgroup_subsys_enabled_key[] = {
152#include <linux/cgroup_subsys.h>
153};
154#undef SUBSYS
155
156#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158#include <linux/cgroup_subsys.h>
159};
160#undef SUBSYS
161
ddbcc7e8 162/*
3dd06ffa 163 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
ddbcc7e8 166 */
a2dd4247 167struct cgroup_root cgrp_dfl_root;
d0ec4230 168EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 169
a2dd4247
TH
170/*
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
173 */
174static bool cgrp_dfl_root_visible;
ddbcc7e8 175
5533e011 176/* some controllers are not supported in the default hierarchy */
8ab456ac 177static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 178
ddbcc7e8
PM
179/* The list of hierarchy roots */
180
9871bf95
TH
181static LIST_HEAD(cgroup_roots);
182static int cgroup_root_count;
ddbcc7e8 183
3417ae1f 184/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 185static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 186
794611a1 187/*
0cb51d71
TH
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
794611a1 193 */
0cb51d71 194static u64 css_serial_nr_next = 1;
794611a1 195
cb4a3167
AS
196/*
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 200 */
cb4a3167
AS
201static unsigned long have_fork_callback __read_mostly;
202static unsigned long have_exit_callback __read_mostly;
afcf6c8b 203static unsigned long have_free_callback __read_mostly;
ddbcc7e8 204
7e47682e
AS
205/* Ditto for the can_fork callback. */
206static unsigned long have_canfork_callback __read_mostly;
207
a14c6874
TH
208static struct cftype cgroup_dfl_base_files[];
209static struct cftype cgroup_legacy_base_files[];
628f7cd4 210
3dd06ffa 211static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 212 unsigned long ss_mask);
ed27b9f7 213static void css_task_iter_advance(struct css_task_iter *it);
42809dd4 214static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
215static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
216 bool visible);
9d755d33 217static void css_release(struct percpu_ref *ref);
f8f22e53 218static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
219static int cgroup_addrm_files(struct cgroup_subsys_state *css,
220 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 221 bool is_add);
42809dd4 222
fc5ed1e9
TH
223/**
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
226 *
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
230 */
231static bool cgroup_ssid_enabled(int ssid)
232{
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
234}
235
9e10a130
TH
236/**
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
239 *
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
244 *
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
247 *
248 * List of changed behaviors:
249 *
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
252 *
253 * - When mounting an existing superblock, mount options should match.
254 *
255 * - Remount is disallowed.
256 *
257 * - rename(2) is disallowed.
258 *
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
261 *
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
264 *
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
267 *
268 * - "cgroup.clone_children" is removed.
269 *
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
274 *
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
278 *
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
281 *
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
284 *
285 * - blkcg: blk-throttle becomes properly hierarchical.
286 *
287 * - debug: disallowed on the default hierarchy.
288 */
289static bool cgroup_on_dfl(const struct cgroup *cgrp)
290{
291 return cgrp->root == &cgrp_dfl_root;
292}
293
6fa4918d
TH
294/* IDR wrappers which synchronize using cgroup_idr_lock */
295static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
297{
298 int ret;
299
300 idr_preload(gfp_mask);
54504e97 301 spin_lock_bh(&cgroup_idr_lock);
d0164adc 302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
54504e97 303 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
304 idr_preload_end();
305 return ret;
306}
307
308static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
309{
310 void *ret;
311
54504e97 312 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 313 ret = idr_replace(idr, ptr, id);
54504e97 314 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
315 return ret;
316}
317
318static void cgroup_idr_remove(struct idr *idr, int id)
319{
54504e97 320 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 321 idr_remove(idr, id);
54504e97 322 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
323}
324
d51f39b0
TH
325static struct cgroup *cgroup_parent(struct cgroup *cgrp)
326{
327 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
328
329 if (parent_css)
330 return container_of(parent_css, struct cgroup, self);
331 return NULL;
332}
333
95109b62
TH
334/**
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
9d800df1 337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 338 *
ca8bdcaf
TH
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
344 */
345static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 346 struct cgroup_subsys *ss)
95109b62 347{
ca8bdcaf 348 if (ss)
aec25020 349 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 350 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 351 else
9d800df1 352 return &cgrp->self;
95109b62 353}
42809dd4 354
aec3dfcb
TH
355/**
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
9d800df1 358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 359 *
d0f702e6 360 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
364 */
365static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
367{
368 lockdep_assert_held(&cgroup_mutex);
369
370 if (!ss)
9d800df1 371 return &cgrp->self;
aec3dfcb
TH
372
373 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
374 return NULL;
375
eeecbd19
TH
376 /*
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
379 */
d51f39b0
TH
380 while (cgroup_parent(cgrp) &&
381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
382 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
383
384 return cgroup_css(cgrp, ss);
95109b62 385}
42809dd4 386
eeecbd19
TH
387/**
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
391 *
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
397 */
398struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
399 struct cgroup_subsys *ss)
400{
401 struct cgroup_subsys_state *css;
402
403 rcu_read_lock();
404
405 do {
406 css = cgroup_css(cgrp, ss);
407
408 if (css && css_tryget_online(css))
409 goto out_unlock;
410 cgrp = cgroup_parent(cgrp);
411 } while (cgrp);
412
413 css = init_css_set.subsys[ss->id];
414 css_get(css);
415out_unlock:
416 rcu_read_unlock();
417 return css;
418}
419
ddbcc7e8 420/* convenient tests for these bits */
54766d4a 421static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 422{
184faf32 423 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
424}
425
052c3f3a
TH
426static void cgroup_get(struct cgroup *cgrp)
427{
428 WARN_ON_ONCE(cgroup_is_dead(cgrp));
429 css_get(&cgrp->self);
430}
431
432static bool cgroup_tryget(struct cgroup *cgrp)
433{
434 return css_tryget(&cgrp->self);
435}
436
437static void cgroup_put(struct cgroup *cgrp)
438{
439 css_put(&cgrp->self);
440}
441
b4168640 442struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 443{
2bd59d48 444 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 445 struct cftype *cft = of_cft(of);
2bd59d48
TH
446
447 /*
448 * This is open and unprotected implementation of cgroup_css().
449 * seq_css() is only called from a kernfs file operation which has
450 * an active reference on the file. Because all the subsystem
451 * files are drained before a css is disassociated with a cgroup,
452 * the matching css from the cgroup's subsys table is guaranteed to
453 * be and stay valid until the enclosing operation is complete.
454 */
455 if (cft->ss)
456 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
457 else
9d800df1 458 return &cgrp->self;
59f5296b 459}
b4168640 460EXPORT_SYMBOL_GPL(of_css);
59f5296b 461
e9685a03 462static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 463{
bd89aabc 464 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
465}
466
1c6727af
TH
467/**
468 * for_each_css - iterate all css's of a cgroup
469 * @css: the iteration cursor
470 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
471 * @cgrp: the target cgroup to iterate css's of
472 *
aec3dfcb 473 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
474 */
475#define for_each_css(css, ssid, cgrp) \
476 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
477 if (!((css) = rcu_dereference_check( \
478 (cgrp)->subsys[(ssid)], \
479 lockdep_is_held(&cgroup_mutex)))) { } \
480 else
481
aec3dfcb
TH
482/**
483 * for_each_e_css - iterate all effective css's of a cgroup
484 * @css: the iteration cursor
485 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
486 * @cgrp: the target cgroup to iterate css's of
487 *
488 * Should be called under cgroup_[tree_]mutex.
489 */
490#define for_each_e_css(css, ssid, cgrp) \
491 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
492 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
493 ; \
494 else
495
30159ec7 496/**
3ed80a62 497 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 498 * @ss: the iteration cursor
780cd8b3 499 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 500 */
780cd8b3 501#define for_each_subsys(ss, ssid) \
3ed80a62
TH
502 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
503 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 504
cb4a3167
AS
505/**
506 * for_each_subsys_which - filter for_each_subsys with a bitmask
507 * @ss: the iteration cursor
508 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
509 * @ss_maskp: a pointer to the bitmask
510 *
511 * The block will only run for cases where the ssid-th bit (1 << ssid) of
512 * mask is set to 1.
513 */
514#define for_each_subsys_which(ss, ssid, ss_maskp) \
515 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 516 (ssid) = 0; \
cb4a3167
AS
517 else \
518 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
519 if (((ss) = cgroup_subsys[ssid]) && false) \
520 break; \
521 else
522
985ed670
TH
523/* iterate across the hierarchies */
524#define for_each_root(root) \
5549c497 525 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 526
f8f22e53
TH
527/* iterate over child cgrps, lock should be held throughout iteration */
528#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 529 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 530 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
531 cgroup_is_dead(child); })) \
532 ; \
533 else
7ae1bad9 534
81a6a5cd 535static void cgroup_release_agent(struct work_struct *work);
bd89aabc 536static void check_for_release(struct cgroup *cgrp);
81a6a5cd 537
69d0206c
TH
538/*
539 * A cgroup can be associated with multiple css_sets as different tasks may
540 * belong to different cgroups on different hierarchies. In the other
541 * direction, a css_set is naturally associated with multiple cgroups.
542 * This M:N relationship is represented by the following link structure
543 * which exists for each association and allows traversing the associations
544 * from both sides.
545 */
546struct cgrp_cset_link {
547 /* the cgroup and css_set this link associates */
548 struct cgroup *cgrp;
549 struct css_set *cset;
550
551 /* list of cgrp_cset_links anchored at cgrp->cset_links */
552 struct list_head cset_link;
553
554 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
555 struct list_head cgrp_link;
817929ec
PM
556};
557
172a2c06
TH
558/*
559 * The default css_set - used by init and its children prior to any
817929ec
PM
560 * hierarchies being mounted. It contains a pointer to the root state
561 * for each subsystem. Also used to anchor the list of css_sets. Not
562 * reference-counted, to improve performance when child cgroups
563 * haven't been created.
564 */
5024ae29 565struct css_set init_css_set = {
172a2c06
TH
566 .refcount = ATOMIC_INIT(1),
567 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
568 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
569 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
570 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
571 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
ed27b9f7 572 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
172a2c06 573};
817929ec 574
172a2c06 575static int css_set_count = 1; /* 1 for init_css_set */
817929ec 576
0de0942d
TH
577/**
578 * css_set_populated - does a css_set contain any tasks?
579 * @cset: target css_set
580 */
581static bool css_set_populated(struct css_set *cset)
582{
f0d9a5f1 583 lockdep_assert_held(&css_set_lock);
0de0942d
TH
584
585 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
586}
587
842b597e
TH
588/**
589 * cgroup_update_populated - updated populated count of a cgroup
590 * @cgrp: the target cgroup
591 * @populated: inc or dec populated count
592 *
0de0942d
TH
593 * One of the css_sets associated with @cgrp is either getting its first
594 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
595 * count is propagated towards root so that a given cgroup's populated_cnt
596 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
597 *
598 * @cgrp's interface file "cgroup.populated" is zero if
599 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
600 * changes from or to zero, userland is notified that the content of the
601 * interface file has changed. This can be used to detect when @cgrp and
602 * its descendants become populated or empty.
603 */
604static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
605{
f0d9a5f1 606 lockdep_assert_held(&css_set_lock);
842b597e
TH
607
608 do {
609 bool trigger;
610
611 if (populated)
612 trigger = !cgrp->populated_cnt++;
613 else
614 trigger = !--cgrp->populated_cnt;
615
616 if (!trigger)
617 break;
618
ad2ed2b3 619 check_for_release(cgrp);
6f60eade
TH
620 cgroup_file_notify(&cgrp->events_file);
621
d51f39b0 622 cgrp = cgroup_parent(cgrp);
842b597e
TH
623 } while (cgrp);
624}
625
0de0942d
TH
626/**
627 * css_set_update_populated - update populated state of a css_set
628 * @cset: target css_set
629 * @populated: whether @cset is populated or depopulated
630 *
631 * @cset is either getting the first task or losing the last. Update the
632 * ->populated_cnt of all associated cgroups accordingly.
633 */
634static void css_set_update_populated(struct css_set *cset, bool populated)
635{
636 struct cgrp_cset_link *link;
637
f0d9a5f1 638 lockdep_assert_held(&css_set_lock);
0de0942d
TH
639
640 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
641 cgroup_update_populated(link->cgrp, populated);
642}
643
f6d7d049
TH
644/**
645 * css_set_move_task - move a task from one css_set to another
646 * @task: task being moved
647 * @from_cset: css_set @task currently belongs to (may be NULL)
648 * @to_cset: new css_set @task is being moved to (may be NULL)
649 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
650 *
651 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
652 * css_set, @from_cset can be NULL. If @task is being disassociated
653 * instead of moved, @to_cset can be NULL.
654 *
ed27b9f7
TH
655 * This function automatically handles populated_cnt updates and
656 * css_task_iter adjustments but the caller is responsible for managing
657 * @from_cset and @to_cset's reference counts.
f6d7d049
TH
658 */
659static void css_set_move_task(struct task_struct *task,
660 struct css_set *from_cset, struct css_set *to_cset,
661 bool use_mg_tasks)
662{
f0d9a5f1 663 lockdep_assert_held(&css_set_lock);
f6d7d049
TH
664
665 if (from_cset) {
ed27b9f7
TH
666 struct css_task_iter *it, *pos;
667
f6d7d049 668 WARN_ON_ONCE(list_empty(&task->cg_list));
ed27b9f7
TH
669
670 /*
671 * @task is leaving, advance task iterators which are
672 * pointing to it so that they can resume at the next
673 * position. Advancing an iterator might remove it from
674 * the list, use safe walk. See css_task_iter_advance*()
675 * for details.
676 */
677 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
678 iters_node)
679 if (it->task_pos == &task->cg_list)
680 css_task_iter_advance(it);
681
f6d7d049
TH
682 list_del_init(&task->cg_list);
683 if (!css_set_populated(from_cset))
684 css_set_update_populated(from_cset, false);
685 } else {
686 WARN_ON_ONCE(!list_empty(&task->cg_list));
687 }
688
689 if (to_cset) {
690 /*
691 * We are synchronized through cgroup_threadgroup_rwsem
692 * against PF_EXITING setting such that we can't race
693 * against cgroup_exit() changing the css_set to
694 * init_css_set and dropping the old one.
695 */
696 WARN_ON_ONCE(task->flags & PF_EXITING);
697
698 if (!css_set_populated(to_cset))
699 css_set_update_populated(to_cset, true);
700 rcu_assign_pointer(task->cgroups, to_cset);
701 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
702 &to_cset->tasks);
703 }
704}
705
7717f7ba
PM
706/*
707 * hash table for cgroup groups. This improves the performance to find
708 * an existing css_set. This hash doesn't (currently) take into
709 * account cgroups in empty hierarchies.
710 */
472b1053 711#define CSS_SET_HASH_BITS 7
0ac801fe 712static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 713
0ac801fe 714static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 715{
0ac801fe 716 unsigned long key = 0UL;
30159ec7
TH
717 struct cgroup_subsys *ss;
718 int i;
472b1053 719
30159ec7 720 for_each_subsys(ss, i)
0ac801fe
LZ
721 key += (unsigned long)css[i];
722 key = (key >> 16) ^ key;
472b1053 723
0ac801fe 724 return key;
472b1053
LZ
725}
726
a25eb52e 727static void put_css_set_locked(struct css_set *cset)
b4f48b63 728{
69d0206c 729 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
730 struct cgroup_subsys *ss;
731 int ssid;
5abb8855 732
f0d9a5f1 733 lockdep_assert_held(&css_set_lock);
89c5509b
TH
734
735 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 736 return;
81a6a5cd 737
2c6ab6d2 738 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
739 for_each_subsys(ss, ssid)
740 list_del(&cset->e_cset_node[ssid]);
5abb8855 741 hash_del(&cset->hlist);
2c6ab6d2
PM
742 css_set_count--;
743
69d0206c 744 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
745 list_del(&link->cset_link);
746 list_del(&link->cgrp_link);
2ceb231b
TH
747 if (cgroup_parent(link->cgrp))
748 cgroup_put(link->cgrp);
2c6ab6d2 749 kfree(link);
81a6a5cd 750 }
2c6ab6d2 751
5abb8855 752 kfree_rcu(cset, rcu_head);
b4f48b63
PM
753}
754
a25eb52e 755static void put_css_set(struct css_set *cset)
89c5509b
TH
756{
757 /*
758 * Ensure that the refcount doesn't hit zero while any readers
759 * can see it. Similar to atomic_dec_and_lock(), but for an
760 * rwlock
761 */
762 if (atomic_add_unless(&cset->refcount, -1, 1))
763 return;
764
f0d9a5f1 765 spin_lock_bh(&css_set_lock);
a25eb52e 766 put_css_set_locked(cset);
f0d9a5f1 767 spin_unlock_bh(&css_set_lock);
89c5509b
TH
768}
769
817929ec
PM
770/*
771 * refcounted get/put for css_set objects
772 */
5abb8855 773static inline void get_css_set(struct css_set *cset)
817929ec 774{
5abb8855 775 atomic_inc(&cset->refcount);
817929ec
PM
776}
777
b326f9d0 778/**
7717f7ba 779 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
780 * @cset: candidate css_set being tested
781 * @old_cset: existing css_set for a task
7717f7ba
PM
782 * @new_cgrp: cgroup that's being entered by the task
783 * @template: desired set of css pointers in css_set (pre-calculated)
784 *
6f4b7e63 785 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
786 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
787 */
5abb8855
TH
788static bool compare_css_sets(struct css_set *cset,
789 struct css_set *old_cset,
7717f7ba
PM
790 struct cgroup *new_cgrp,
791 struct cgroup_subsys_state *template[])
792{
793 struct list_head *l1, *l2;
794
aec3dfcb
TH
795 /*
796 * On the default hierarchy, there can be csets which are
797 * associated with the same set of cgroups but different csses.
798 * Let's first ensure that csses match.
799 */
800 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 801 return false;
7717f7ba
PM
802
803 /*
804 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
805 * different cgroups in hierarchies. As different cgroups may
806 * share the same effective css, this comparison is always
807 * necessary.
7717f7ba 808 */
69d0206c
TH
809 l1 = &cset->cgrp_links;
810 l2 = &old_cset->cgrp_links;
7717f7ba 811 while (1) {
69d0206c 812 struct cgrp_cset_link *link1, *link2;
5abb8855 813 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
814
815 l1 = l1->next;
816 l2 = l2->next;
817 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
818 if (l1 == &cset->cgrp_links) {
819 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
820 break;
821 } else {
69d0206c 822 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
823 }
824 /* Locate the cgroups associated with these links. */
69d0206c
TH
825 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
826 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
827 cgrp1 = link1->cgrp;
828 cgrp2 = link2->cgrp;
7717f7ba 829 /* Hierarchies should be linked in the same order. */
5abb8855 830 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
831
832 /*
833 * If this hierarchy is the hierarchy of the cgroup
834 * that's changing, then we need to check that this
835 * css_set points to the new cgroup; if it's any other
836 * hierarchy, then this css_set should point to the
837 * same cgroup as the old css_set.
838 */
5abb8855
TH
839 if (cgrp1->root == new_cgrp->root) {
840 if (cgrp1 != new_cgrp)
7717f7ba
PM
841 return false;
842 } else {
5abb8855 843 if (cgrp1 != cgrp2)
7717f7ba
PM
844 return false;
845 }
846 }
847 return true;
848}
849
b326f9d0
TH
850/**
851 * find_existing_css_set - init css array and find the matching css_set
852 * @old_cset: the css_set that we're using before the cgroup transition
853 * @cgrp: the cgroup that we're moving into
854 * @template: out param for the new set of csses, should be clear on entry
817929ec 855 */
5abb8855
TH
856static struct css_set *find_existing_css_set(struct css_set *old_cset,
857 struct cgroup *cgrp,
858 struct cgroup_subsys_state *template[])
b4f48b63 859{
3dd06ffa 860 struct cgroup_root *root = cgrp->root;
30159ec7 861 struct cgroup_subsys *ss;
5abb8855 862 struct css_set *cset;
0ac801fe 863 unsigned long key;
b326f9d0 864 int i;
817929ec 865
aae8aab4
BB
866 /*
867 * Build the set of subsystem state objects that we want to see in the
868 * new css_set. while subsystems can change globally, the entries here
869 * won't change, so no need for locking.
870 */
30159ec7 871 for_each_subsys(ss, i) {
f392e51c 872 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
873 /*
874 * @ss is in this hierarchy, so we want the
875 * effective css from @cgrp.
876 */
877 template[i] = cgroup_e_css(cgrp, ss);
817929ec 878 } else {
aec3dfcb
TH
879 /*
880 * @ss is not in this hierarchy, so we don't want
881 * to change the css.
882 */
5abb8855 883 template[i] = old_cset->subsys[i];
817929ec
PM
884 }
885 }
886
0ac801fe 887 key = css_set_hash(template);
5abb8855
TH
888 hash_for_each_possible(css_set_table, cset, hlist, key) {
889 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
890 continue;
891
892 /* This css_set matches what we need */
5abb8855 893 return cset;
472b1053 894 }
817929ec
PM
895
896 /* No existing cgroup group matched */
897 return NULL;
898}
899
69d0206c 900static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 901{
69d0206c 902 struct cgrp_cset_link *link, *tmp_link;
36553434 903
69d0206c
TH
904 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
905 list_del(&link->cset_link);
36553434
LZ
906 kfree(link);
907 }
908}
909
69d0206c
TH
910/**
911 * allocate_cgrp_cset_links - allocate cgrp_cset_links
912 * @count: the number of links to allocate
913 * @tmp_links: list_head the allocated links are put on
914 *
915 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
916 * through ->cset_link. Returns 0 on success or -errno.
817929ec 917 */
69d0206c 918static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 919{
69d0206c 920 struct cgrp_cset_link *link;
817929ec 921 int i;
69d0206c
TH
922
923 INIT_LIST_HEAD(tmp_links);
924
817929ec 925 for (i = 0; i < count; i++) {
f4f4be2b 926 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 927 if (!link) {
69d0206c 928 free_cgrp_cset_links(tmp_links);
817929ec
PM
929 return -ENOMEM;
930 }
69d0206c 931 list_add(&link->cset_link, tmp_links);
817929ec
PM
932 }
933 return 0;
934}
935
c12f65d4
LZ
936/**
937 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 938 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 939 * @cset: the css_set to be linked
c12f65d4
LZ
940 * @cgrp: the destination cgroup
941 */
69d0206c
TH
942static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
943 struct cgroup *cgrp)
c12f65d4 944{
69d0206c 945 struct cgrp_cset_link *link;
c12f65d4 946
69d0206c 947 BUG_ON(list_empty(tmp_links));
6803c006
TH
948
949 if (cgroup_on_dfl(cgrp))
950 cset->dfl_cgrp = cgrp;
951
69d0206c
TH
952 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
953 link->cset = cset;
7717f7ba 954 link->cgrp = cgrp;
842b597e 955
7717f7ba 956 /*
389b9c1b
TH
957 * Always add links to the tail of the lists so that the lists are
958 * in choronological order.
7717f7ba 959 */
389b9c1b 960 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 961 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
962
963 if (cgroup_parent(cgrp))
964 cgroup_get(cgrp);
c12f65d4
LZ
965}
966
b326f9d0
TH
967/**
968 * find_css_set - return a new css_set with one cgroup updated
969 * @old_cset: the baseline css_set
970 * @cgrp: the cgroup to be updated
971 *
972 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
973 * substituted into the appropriate hierarchy.
817929ec 974 */
5abb8855
TH
975static struct css_set *find_css_set(struct css_set *old_cset,
976 struct cgroup *cgrp)
817929ec 977{
b326f9d0 978 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 979 struct css_set *cset;
69d0206c
TH
980 struct list_head tmp_links;
981 struct cgrp_cset_link *link;
2d8f243a 982 struct cgroup_subsys *ss;
0ac801fe 983 unsigned long key;
2d8f243a 984 int ssid;
472b1053 985
b326f9d0
TH
986 lockdep_assert_held(&cgroup_mutex);
987
817929ec
PM
988 /* First see if we already have a cgroup group that matches
989 * the desired set */
f0d9a5f1 990 spin_lock_bh(&css_set_lock);
5abb8855
TH
991 cset = find_existing_css_set(old_cset, cgrp, template);
992 if (cset)
993 get_css_set(cset);
f0d9a5f1 994 spin_unlock_bh(&css_set_lock);
817929ec 995
5abb8855
TH
996 if (cset)
997 return cset;
817929ec 998
f4f4be2b 999 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1000 if (!cset)
817929ec
PM
1001 return NULL;
1002
69d0206c 1003 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1004 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1005 kfree(cset);
817929ec
PM
1006 return NULL;
1007 }
1008
5abb8855 1009 atomic_set(&cset->refcount, 1);
69d0206c 1010 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1011 INIT_LIST_HEAD(&cset->tasks);
c7561128 1012 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1013 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1014 INIT_LIST_HEAD(&cset->mg_node);
ed27b9f7 1015 INIT_LIST_HEAD(&cset->task_iters);
5abb8855 1016 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1017
1018 /* Copy the set of subsystem state objects generated in
1019 * find_existing_css_set() */
5abb8855 1020 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1021
f0d9a5f1 1022 spin_lock_bh(&css_set_lock);
817929ec 1023 /* Add reference counts and links from the new css_set. */
69d0206c 1024 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1025 struct cgroup *c = link->cgrp;
69d0206c 1026
7717f7ba
PM
1027 if (c->root == cgrp->root)
1028 c = cgrp;
69d0206c 1029 link_css_set(&tmp_links, cset, c);
7717f7ba 1030 }
817929ec 1031
69d0206c 1032 BUG_ON(!list_empty(&tmp_links));
817929ec 1033
817929ec 1034 css_set_count++;
472b1053 1035
2d8f243a 1036 /* Add @cset to the hash table */
5abb8855
TH
1037 key = css_set_hash(cset->subsys);
1038 hash_add(css_set_table, &cset->hlist, key);
472b1053 1039
2d8f243a
TH
1040 for_each_subsys(ss, ssid)
1041 list_add_tail(&cset->e_cset_node[ssid],
1042 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1043
f0d9a5f1 1044 spin_unlock_bh(&css_set_lock);
817929ec 1045
5abb8855 1046 return cset;
b4f48b63
PM
1047}
1048
3dd06ffa 1049static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1050{
3dd06ffa 1051 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1052
3dd06ffa 1053 return root_cgrp->root;
2bd59d48
TH
1054}
1055
3dd06ffa 1056static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1057{
1058 int id;
1059
1060 lockdep_assert_held(&cgroup_mutex);
1061
985ed670 1062 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1063 if (id < 0)
1064 return id;
1065
1066 root->hierarchy_id = id;
1067 return 0;
1068}
1069
3dd06ffa 1070static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1071{
1072 lockdep_assert_held(&cgroup_mutex);
1073
1074 if (root->hierarchy_id) {
1075 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1076 root->hierarchy_id = 0;
1077 }
1078}
1079
3dd06ffa 1080static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1081{
1082 if (root) {
d0f702e6 1083 /* hierarchy ID should already have been released */
f2e85d57
TH
1084 WARN_ON_ONCE(root->hierarchy_id);
1085
1086 idr_destroy(&root->cgroup_idr);
1087 kfree(root);
1088 }
1089}
1090
3dd06ffa 1091static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1092{
3dd06ffa 1093 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1094 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1095
2bd59d48 1096 mutex_lock(&cgroup_mutex);
f2e85d57 1097
776f02fa 1098 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1099 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1100
f2e85d57 1101 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1102 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1103
7717f7ba 1104 /*
f2e85d57
TH
1105 * Release all the links from cset_links to this hierarchy's
1106 * root cgroup
7717f7ba 1107 */
f0d9a5f1 1108 spin_lock_bh(&css_set_lock);
f2e85d57
TH
1109
1110 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1111 list_del(&link->cset_link);
1112 list_del(&link->cgrp_link);
1113 kfree(link);
1114 }
f0d9a5f1
TH
1115
1116 spin_unlock_bh(&css_set_lock);
f2e85d57
TH
1117
1118 if (!list_empty(&root->root_list)) {
1119 list_del(&root->root_list);
1120 cgroup_root_count--;
1121 }
1122
1123 cgroup_exit_root_id(root);
1124
1125 mutex_unlock(&cgroup_mutex);
f2e85d57 1126
2bd59d48 1127 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1128 cgroup_free_root(root);
1129}
1130
ceb6a081
TH
1131/* look up cgroup associated with given css_set on the specified hierarchy */
1132static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1133 struct cgroup_root *root)
7717f7ba 1134{
7717f7ba
PM
1135 struct cgroup *res = NULL;
1136
96d365e0 1137 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 1138 lockdep_assert_held(&css_set_lock);
96d365e0 1139
5abb8855 1140 if (cset == &init_css_set) {
3dd06ffa 1141 res = &root->cgrp;
7717f7ba 1142 } else {
69d0206c
TH
1143 struct cgrp_cset_link *link;
1144
1145 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1146 struct cgroup *c = link->cgrp;
69d0206c 1147
7717f7ba
PM
1148 if (c->root == root) {
1149 res = c;
1150 break;
1151 }
1152 }
1153 }
96d365e0 1154
7717f7ba
PM
1155 BUG_ON(!res);
1156 return res;
1157}
1158
ddbcc7e8 1159/*
ceb6a081 1160 * Return the cgroup for "task" from the given hierarchy. Must be
f0d9a5f1 1161 * called with cgroup_mutex and css_set_lock held.
ceb6a081
TH
1162 */
1163static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1164 struct cgroup_root *root)
ceb6a081
TH
1165{
1166 /*
1167 * No need to lock the task - since we hold cgroup_mutex the
1168 * task can't change groups, so the only thing that can happen
1169 * is that it exits and its css is set back to init_css_set.
1170 */
1171 return cset_cgroup_from_root(task_css_set(task), root);
1172}
1173
ddbcc7e8 1174/*
ddbcc7e8
PM
1175 * A task must hold cgroup_mutex to modify cgroups.
1176 *
1177 * Any task can increment and decrement the count field without lock.
1178 * So in general, code holding cgroup_mutex can't rely on the count
1179 * field not changing. However, if the count goes to zero, then only
956db3ca 1180 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1181 * means that no tasks are currently attached, therefore there is no
1182 * way a task attached to that cgroup can fork (the other way to
1183 * increment the count). So code holding cgroup_mutex can safely
1184 * assume that if the count is zero, it will stay zero. Similarly, if
1185 * a task holds cgroup_mutex on a cgroup with zero count, it
1186 * knows that the cgroup won't be removed, as cgroup_rmdir()
1187 * needs that mutex.
1188 *
ddbcc7e8
PM
1189 * A cgroup can only be deleted if both its 'count' of using tasks
1190 * is zero, and its list of 'children' cgroups is empty. Since all
1191 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1192 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1193 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1194 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1195 *
1196 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1197 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1198 */
1199
2bd59d48 1200static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1201static const struct file_operations proc_cgroupstats_operations;
a424316c 1202
8d7e6fb0
TH
1203static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1204 char *buf)
ddbcc7e8 1205{
3e1d2eed
TH
1206 struct cgroup_subsys *ss = cft->ss;
1207
8d7e6fb0
TH
1208 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1209 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1210 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1211 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1212 cft->name);
8d7e6fb0
TH
1213 else
1214 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1215 return buf;
ddbcc7e8
PM
1216}
1217
f2e85d57
TH
1218/**
1219 * cgroup_file_mode - deduce file mode of a control file
1220 * @cft: the control file in question
1221 *
7dbdb199 1222 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1223 */
1224static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1225{
f2e85d57 1226 umode_t mode = 0;
65dff759 1227
f2e85d57
TH
1228 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1229 mode |= S_IRUGO;
1230
7dbdb199
TH
1231 if (cft->write_u64 || cft->write_s64 || cft->write) {
1232 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1233 mode |= S_IWUGO;
1234 else
1235 mode |= S_IWUSR;
1236 }
f2e85d57
TH
1237
1238 return mode;
65dff759
LZ
1239}
1240
af0ba678 1241/**
0f060deb 1242 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1243 * @cgrp: the target cgroup
0f060deb 1244 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1245 *
1246 * On the default hierarchy, a subsystem may request other subsystems to be
1247 * enabled together through its ->depends_on mask. In such cases, more
1248 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1249 *
0f060deb
TH
1250 * This function calculates which subsystems need to be enabled if
1251 * @subtree_control is to be applied to @cgrp. The returned mask is always
1252 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1253 */
8ab456ac
AS
1254static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1255 unsigned long subtree_control)
667c2491 1256{
af0ba678 1257 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1258 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1259 struct cgroup_subsys *ss;
1260 int ssid;
1261
1262 lockdep_assert_held(&cgroup_mutex);
1263
0f060deb
TH
1264 if (!cgroup_on_dfl(cgrp))
1265 return cur_ss_mask;
af0ba678
TH
1266
1267 while (true) {
8ab456ac 1268 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1269
a966a4ed
AS
1270 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1271 new_ss_mask |= ss->depends_on;
af0ba678
TH
1272
1273 /*
1274 * Mask out subsystems which aren't available. This can
1275 * happen only if some depended-upon subsystems were bound
1276 * to non-default hierarchies.
1277 */
1278 if (parent)
1279 new_ss_mask &= parent->child_subsys_mask;
1280 else
1281 new_ss_mask &= cgrp->root->subsys_mask;
1282
1283 if (new_ss_mask == cur_ss_mask)
1284 break;
1285 cur_ss_mask = new_ss_mask;
1286 }
1287
0f060deb
TH
1288 return cur_ss_mask;
1289}
1290
1291/**
1292 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1293 * @cgrp: the target cgroup
1294 *
1295 * Update @cgrp->child_subsys_mask according to the current
1296 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1297 */
1298static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1299{
1300 cgrp->child_subsys_mask =
1301 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1302}
1303
a9746d8d
TH
1304/**
1305 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1306 * @kn: the kernfs_node being serviced
1307 *
1308 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1309 * the method finishes if locking succeeded. Note that once this function
1310 * returns the cgroup returned by cgroup_kn_lock_live() may become
1311 * inaccessible any time. If the caller intends to continue to access the
1312 * cgroup, it should pin it before invoking this function.
1313 */
1314static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1315{
a9746d8d
TH
1316 struct cgroup *cgrp;
1317
1318 if (kernfs_type(kn) == KERNFS_DIR)
1319 cgrp = kn->priv;
1320 else
1321 cgrp = kn->parent->priv;
1322
1323 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1324
1325 kernfs_unbreak_active_protection(kn);
1326 cgroup_put(cgrp);
ddbcc7e8
PM
1327}
1328
a9746d8d
TH
1329/**
1330 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1331 * @kn: the kernfs_node being serviced
1332 *
1333 * This helper is to be used by a cgroup kernfs method currently servicing
1334 * @kn. It breaks the active protection, performs cgroup locking and
1335 * verifies that the associated cgroup is alive. Returns the cgroup if
1336 * alive; otherwise, %NULL. A successful return should be undone by a
1337 * matching cgroup_kn_unlock() invocation.
1338 *
1339 * Any cgroup kernfs method implementation which requires locking the
1340 * associated cgroup should use this helper. It avoids nesting cgroup
1341 * locking under kernfs active protection and allows all kernfs operations
1342 * including self-removal.
1343 */
1344static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1345{
a9746d8d
TH
1346 struct cgroup *cgrp;
1347
1348 if (kernfs_type(kn) == KERNFS_DIR)
1349 cgrp = kn->priv;
1350 else
1351 cgrp = kn->parent->priv;
05ef1d7c 1352
2739d3cc 1353 /*
01f6474c 1354 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1355 * active_ref. cgroup liveliness check alone provides enough
1356 * protection against removal. Ensure @cgrp stays accessible and
1357 * break the active_ref protection.
2739d3cc 1358 */
aa32362f
LZ
1359 if (!cgroup_tryget(cgrp))
1360 return NULL;
a9746d8d
TH
1361 kernfs_break_active_protection(kn);
1362
2bd59d48 1363 mutex_lock(&cgroup_mutex);
05ef1d7c 1364
a9746d8d
TH
1365 if (!cgroup_is_dead(cgrp))
1366 return cgrp;
1367
1368 cgroup_kn_unlock(kn);
1369 return NULL;
ddbcc7e8 1370}
05ef1d7c 1371
2739d3cc 1372static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1373{
2bd59d48 1374 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1375
01f6474c 1376 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1377 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1378}
1379
13af07df 1380/**
4df8dc90
TH
1381 * css_clear_dir - remove subsys files in a cgroup directory
1382 * @css: taget css
1383 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1384 */
4df8dc90
TH
1385static void css_clear_dir(struct cgroup_subsys_state *css,
1386 struct cgroup *cgrp_override)
05ef1d7c 1387{
4df8dc90
TH
1388 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1389 struct cftype *cfts;
05ef1d7c 1390
4df8dc90
TH
1391 list_for_each_entry(cfts, &css->ss->cfts, node)
1392 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1393}
1394
ccdca218 1395/**
4df8dc90
TH
1396 * css_populate_dir - create subsys files in a cgroup directory
1397 * @css: target css
1398 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1399 *
1400 * On failure, no file is added.
1401 */
4df8dc90
TH
1402static int css_populate_dir(struct cgroup_subsys_state *css,
1403 struct cgroup *cgrp_override)
ccdca218 1404{
4df8dc90
TH
1405 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1406 struct cftype *cfts, *failed_cfts;
1407 int ret;
ccdca218 1408
4df8dc90
TH
1409 if (!css->ss) {
1410 if (cgroup_on_dfl(cgrp))
1411 cfts = cgroup_dfl_base_files;
1412 else
1413 cfts = cgroup_legacy_base_files;
ccdca218 1414
4df8dc90
TH
1415 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1416 }
ccdca218 1417
4df8dc90
TH
1418 list_for_each_entry(cfts, &css->ss->cfts, node) {
1419 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1420 if (ret < 0) {
1421 failed_cfts = cfts;
1422 goto err;
ccdca218
TH
1423 }
1424 }
1425 return 0;
1426err:
4df8dc90
TH
1427 list_for_each_entry(cfts, &css->ss->cfts, node) {
1428 if (cfts == failed_cfts)
1429 break;
1430 cgroup_addrm_files(css, cgrp, cfts, false);
1431 }
ccdca218
TH
1432 return ret;
1433}
1434
8ab456ac
AS
1435static int rebind_subsystems(struct cgroup_root *dst_root,
1436 unsigned long ss_mask)
ddbcc7e8 1437{
1ada4838 1438 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1439 struct cgroup_subsys *ss;
8ab456ac 1440 unsigned long tmp_ss_mask;
2d8f243a 1441 int ssid, i, ret;
ddbcc7e8 1442
ace2bee8 1443 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1444
a966a4ed 1445 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1446 /* if @ss has non-root csses attached to it, can't move */
1447 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1448 return -EBUSY;
1d5be6b2 1449
5df36032 1450 /* can't move between two non-dummy roots either */
7fd8c565 1451 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1452 return -EBUSY;
ddbcc7e8
PM
1453 }
1454
5533e011
TH
1455 /* skip creating root files on dfl_root for inhibited subsystems */
1456 tmp_ss_mask = ss_mask;
1457 if (dst_root == &cgrp_dfl_root)
1458 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1459
4df8dc90
TH
1460 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1461 struct cgroup *scgrp = &ss->root->cgrp;
1462 int tssid;
1463
1464 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1465 if (!ret)
1466 continue;
ddbcc7e8 1467
a2dd4247
TH
1468 /*
1469 * Rebinding back to the default root is not allowed to
1470 * fail. Using both default and non-default roots should
1471 * be rare. Moving subsystems back and forth even more so.
1472 * Just warn about it and continue.
1473 */
4df8dc90
TH
1474 if (dst_root == &cgrp_dfl_root) {
1475 if (cgrp_dfl_root_visible) {
1476 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1477 ret, ss_mask);
1478 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1479 }
1480 continue;
a2dd4247 1481 }
4df8dc90
TH
1482
1483 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1484 if (tssid == ssid)
1485 break;
1486 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1487 }
1488 return ret;
5df36032 1489 }
3126121f
TH
1490
1491 /*
1492 * Nothing can fail from this point on. Remove files for the
1493 * removed subsystems and rebind each subsystem.
1494 */
a966a4ed 1495 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1496 struct cgroup_root *src_root = ss->root;
1497 struct cgroup *scgrp = &src_root->cgrp;
1498 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1499 struct css_set *cset;
a8a648c4 1500
1ada4838 1501 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1502
4df8dc90
TH
1503 css_clear_dir(css, NULL);
1504
1ada4838
TH
1505 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1506 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1507 ss->root = dst_root;
1ada4838 1508 css->cgroup = dcgrp;
73e80ed8 1509
f0d9a5f1 1510 spin_lock_bh(&css_set_lock);
2d8f243a
TH
1511 hash_for_each(css_set_table, i, cset, hlist)
1512 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1513 &dcgrp->e_csets[ss->id]);
f0d9a5f1 1514 spin_unlock_bh(&css_set_lock);
2d8f243a 1515
f392e51c 1516 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1517 scgrp->subtree_control &= ~(1 << ssid);
1518 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1519
bd53d617 1520 /* default hierarchy doesn't enable controllers by default */
f392e51c 1521 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1522 if (dst_root == &cgrp_dfl_root) {
1523 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1524 } else {
1ada4838
TH
1525 dcgrp->subtree_control |= 1 << ssid;
1526 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1527 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1528 }
a8a648c4 1529
5df36032
TH
1530 if (ss->bind)
1531 ss->bind(css);
ddbcc7e8 1532 }
ddbcc7e8 1533
1ada4838 1534 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1535 return 0;
1536}
1537
2bd59d48
TH
1538static int cgroup_show_options(struct seq_file *seq,
1539 struct kernfs_root *kf_root)
ddbcc7e8 1540{
3dd06ffa 1541 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1542 struct cgroup_subsys *ss;
b85d2040 1543 int ssid;
ddbcc7e8 1544
d98817d4
TH
1545 if (root != &cgrp_dfl_root)
1546 for_each_subsys(ss, ssid)
1547 if (root->subsys_mask & (1 << ssid))
61e57c0c 1548 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1549 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1550 seq_puts(seq, ",noprefix");
93438629 1551 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1552 seq_puts(seq, ",xattr");
69e943b7
TH
1553
1554 spin_lock(&release_agent_path_lock);
81a6a5cd 1555 if (strlen(root->release_agent_path))
a068acf2
KC
1556 seq_show_option(seq, "release_agent",
1557 root->release_agent_path);
69e943b7
TH
1558 spin_unlock(&release_agent_path_lock);
1559
3dd06ffa 1560 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1561 seq_puts(seq, ",clone_children");
c6d57f33 1562 if (strlen(root->name))
a068acf2 1563 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1564 return 0;
1565}
1566
1567struct cgroup_sb_opts {
8ab456ac 1568 unsigned long subsys_mask;
69dfa00c 1569 unsigned int flags;
81a6a5cd 1570 char *release_agent;
2260e7fc 1571 bool cpuset_clone_children;
c6d57f33 1572 char *name;
2c6ab6d2
PM
1573 /* User explicitly requested empty subsystem */
1574 bool none;
ddbcc7e8
PM
1575};
1576
cf5d5941 1577static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1578{
32a8cf23
DL
1579 char *token, *o = data;
1580 bool all_ss = false, one_ss = false;
8ab456ac 1581 unsigned long mask = -1UL;
30159ec7 1582 struct cgroup_subsys *ss;
7b9a6ba5 1583 int nr_opts = 0;
30159ec7 1584 int i;
f9ab5b5b
LZ
1585
1586#ifdef CONFIG_CPUSETS
69dfa00c 1587 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1588#endif
ddbcc7e8 1589
c6d57f33 1590 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1591
1592 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1593 nr_opts++;
1594
ddbcc7e8
PM
1595 if (!*token)
1596 return -EINVAL;
32a8cf23 1597 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1598 /* Explicitly have no subsystems */
1599 opts->none = true;
32a8cf23
DL
1600 continue;
1601 }
1602 if (!strcmp(token, "all")) {
1603 /* Mutually exclusive option 'all' + subsystem name */
1604 if (one_ss)
1605 return -EINVAL;
1606 all_ss = true;
1607 continue;
1608 }
873fe09e
TH
1609 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1610 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1611 continue;
1612 }
32a8cf23 1613 if (!strcmp(token, "noprefix")) {
93438629 1614 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1615 continue;
1616 }
1617 if (!strcmp(token, "clone_children")) {
2260e7fc 1618 opts->cpuset_clone_children = true;
32a8cf23
DL
1619 continue;
1620 }
03b1cde6 1621 if (!strcmp(token, "xattr")) {
93438629 1622 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1623 continue;
1624 }
32a8cf23 1625 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1626 /* Specifying two release agents is forbidden */
1627 if (opts->release_agent)
1628 return -EINVAL;
c6d57f33 1629 opts->release_agent =
e400c285 1630 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1631 if (!opts->release_agent)
1632 return -ENOMEM;
32a8cf23
DL
1633 continue;
1634 }
1635 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1636 const char *name = token + 5;
1637 /* Can't specify an empty name */
1638 if (!strlen(name))
1639 return -EINVAL;
1640 /* Must match [\w.-]+ */
1641 for (i = 0; i < strlen(name); i++) {
1642 char c = name[i];
1643 if (isalnum(c))
1644 continue;
1645 if ((c == '.') || (c == '-') || (c == '_'))
1646 continue;
1647 return -EINVAL;
1648 }
1649 /* Specifying two names is forbidden */
1650 if (opts->name)
1651 return -EINVAL;
1652 opts->name = kstrndup(name,
e400c285 1653 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1654 GFP_KERNEL);
1655 if (!opts->name)
1656 return -ENOMEM;
32a8cf23
DL
1657
1658 continue;
1659 }
1660
30159ec7 1661 for_each_subsys(ss, i) {
3e1d2eed 1662 if (strcmp(token, ss->legacy_name))
32a8cf23 1663 continue;
fc5ed1e9 1664 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1665 continue;
1666
1667 /* Mutually exclusive option 'all' + subsystem name */
1668 if (all_ss)
1669 return -EINVAL;
69dfa00c 1670 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1671 one_ss = true;
1672
1673 break;
1674 }
1675 if (i == CGROUP_SUBSYS_COUNT)
1676 return -ENOENT;
1677 }
1678
873fe09e 1679 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1680 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1681 if (nr_opts != 1) {
1682 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1683 return -EINVAL;
1684 }
7b9a6ba5 1685 return 0;
873fe09e
TH
1686 }
1687
7b9a6ba5
TH
1688 /*
1689 * If the 'all' option was specified select all the subsystems,
1690 * otherwise if 'none', 'name=' and a subsystem name options were
1691 * not specified, let's default to 'all'
1692 */
1693 if (all_ss || (!one_ss && !opts->none && !opts->name))
1694 for_each_subsys(ss, i)
fc5ed1e9 1695 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1696 opts->subsys_mask |= (1 << i);
1697
1698 /*
1699 * We either have to specify by name or by subsystems. (So all
1700 * empty hierarchies must have a name).
1701 */
1702 if (!opts->subsys_mask && !opts->name)
1703 return -EINVAL;
1704
f9ab5b5b
LZ
1705 /*
1706 * Option noprefix was introduced just for backward compatibility
1707 * with the old cpuset, so we allow noprefix only if mounting just
1708 * the cpuset subsystem.
1709 */
93438629 1710 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1711 return -EINVAL;
1712
2c6ab6d2 1713 /* Can't specify "none" and some subsystems */
a1a71b45 1714 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1715 return -EINVAL;
1716
ddbcc7e8
PM
1717 return 0;
1718}
1719
2bd59d48 1720static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1721{
1722 int ret = 0;
3dd06ffa 1723 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1724 struct cgroup_sb_opts opts;
8ab456ac 1725 unsigned long added_mask, removed_mask;
ddbcc7e8 1726
aa6ec29b
TH
1727 if (root == &cgrp_dfl_root) {
1728 pr_err("remount is not allowed\n");
873fe09e
TH
1729 return -EINVAL;
1730 }
1731
ddbcc7e8
PM
1732 mutex_lock(&cgroup_mutex);
1733
1734 /* See what subsystems are wanted */
1735 ret = parse_cgroupfs_options(data, &opts);
1736 if (ret)
1737 goto out_unlock;
1738
f392e51c 1739 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1740 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1741 task_tgid_nr(current), current->comm);
8b5a5a9d 1742
f392e51c
TH
1743 added_mask = opts.subsys_mask & ~root->subsys_mask;
1744 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1745
cf5d5941 1746 /* Don't allow flags or name to change at remount */
7450e90b 1747 if ((opts.flags ^ root->flags) ||
cf5d5941 1748 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1749 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1750 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1751 ret = -EINVAL;
1752 goto out_unlock;
1753 }
1754
f172e67c 1755 /* remounting is not allowed for populated hierarchies */
d5c419b6 1756 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1757 ret = -EBUSY;
0670e08b 1758 goto out_unlock;
cf5d5941 1759 }
ddbcc7e8 1760
5df36032 1761 ret = rebind_subsystems(root, added_mask);
3126121f 1762 if (ret)
0670e08b 1763 goto out_unlock;
ddbcc7e8 1764
3dd06ffa 1765 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1766
69e943b7
TH
1767 if (opts.release_agent) {
1768 spin_lock(&release_agent_path_lock);
81a6a5cd 1769 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1770 spin_unlock(&release_agent_path_lock);
1771 }
ddbcc7e8 1772 out_unlock:
66bdc9cf 1773 kfree(opts.release_agent);
c6d57f33 1774 kfree(opts.name);
ddbcc7e8 1775 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1776 return ret;
1777}
1778
afeb0f9f
TH
1779/*
1780 * To reduce the fork() overhead for systems that are not actually using
1781 * their cgroups capability, we don't maintain the lists running through
1782 * each css_set to its tasks until we see the list actually used - in other
1783 * words after the first mount.
1784 */
1785static bool use_task_css_set_links __read_mostly;
1786
1787static void cgroup_enable_task_cg_lists(void)
1788{
1789 struct task_struct *p, *g;
1790
f0d9a5f1 1791 spin_lock_bh(&css_set_lock);
afeb0f9f
TH
1792
1793 if (use_task_css_set_links)
1794 goto out_unlock;
1795
1796 use_task_css_set_links = true;
1797
1798 /*
1799 * We need tasklist_lock because RCU is not safe against
1800 * while_each_thread(). Besides, a forking task that has passed
1801 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1802 * is not guaranteed to have its child immediately visible in the
1803 * tasklist if we walk through it with RCU.
1804 */
1805 read_lock(&tasklist_lock);
1806 do_each_thread(g, p) {
afeb0f9f
TH
1807 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1808 task_css_set(p) != &init_css_set);
1809
1810 /*
1811 * We should check if the process is exiting, otherwise
1812 * it will race with cgroup_exit() in that the list
1813 * entry won't be deleted though the process has exited.
f153ad11
TH
1814 * Do it while holding siglock so that we don't end up
1815 * racing against cgroup_exit().
afeb0f9f 1816 */
f153ad11 1817 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1818 if (!(p->flags & PF_EXITING)) {
1819 struct css_set *cset = task_css_set(p);
1820
0de0942d
TH
1821 if (!css_set_populated(cset))
1822 css_set_update_populated(cset, true);
389b9c1b 1823 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1824 get_css_set(cset);
1825 }
f153ad11 1826 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1827 } while_each_thread(g, p);
1828 read_unlock(&tasklist_lock);
1829out_unlock:
f0d9a5f1 1830 spin_unlock_bh(&css_set_lock);
afeb0f9f 1831}
ddbcc7e8 1832
cc31edce
PM
1833static void init_cgroup_housekeeping(struct cgroup *cgrp)
1834{
2d8f243a
TH
1835 struct cgroup_subsys *ss;
1836 int ssid;
1837
d5c419b6
TH
1838 INIT_LIST_HEAD(&cgrp->self.sibling);
1839 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1840 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1841 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1842 INIT_LIST_HEAD(&cgrp->pidlists);
1843 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1844 cgrp->self.cgroup = cgrp;
184faf32 1845 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1846
1847 for_each_subsys(ss, ssid)
1848 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1849
1850 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1851 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1852}
c6d57f33 1853
3dd06ffa 1854static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1855 struct cgroup_sb_opts *opts)
ddbcc7e8 1856{
3dd06ffa 1857 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1858
ddbcc7e8 1859 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1860 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1861 cgrp->root = root;
cc31edce 1862 init_cgroup_housekeeping(cgrp);
4e96ee8e 1863 idr_init(&root->cgroup_idr);
c6d57f33 1864
c6d57f33
PM
1865 root->flags = opts->flags;
1866 if (opts->release_agent)
1867 strcpy(root->release_agent_path, opts->release_agent);
1868 if (opts->name)
1869 strcpy(root->name, opts->name);
2260e7fc 1870 if (opts->cpuset_clone_children)
3dd06ffa 1871 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1872}
1873
8ab456ac 1874static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1875{
d427dfeb 1876 LIST_HEAD(tmp_links);
3dd06ffa 1877 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1878 struct css_set *cset;
d427dfeb 1879 int i, ret;
2c6ab6d2 1880
d427dfeb 1881 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1882
cf780b7d 1883 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1884 if (ret < 0)
2bd59d48 1885 goto out;
d427dfeb 1886 root_cgrp->id = ret;
b11cfb58 1887 root_cgrp->ancestor_ids[0] = ret;
c6d57f33 1888
2aad2a86
TH
1889 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1890 GFP_KERNEL);
9d755d33
TH
1891 if (ret)
1892 goto out;
1893
d427dfeb 1894 /*
f0d9a5f1 1895 * We're accessing css_set_count without locking css_set_lock here,
d427dfeb
TH
1896 * but that's OK - it can only be increased by someone holding
1897 * cgroup_lock, and that's us. The worst that can happen is that we
1898 * have some link structures left over
1899 */
1900 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1901 if (ret)
9d755d33 1902 goto cancel_ref;
ddbcc7e8 1903
985ed670 1904 ret = cgroup_init_root_id(root);
ddbcc7e8 1905 if (ret)
9d755d33 1906 goto cancel_ref;
ddbcc7e8 1907
2bd59d48
TH
1908 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1909 KERNFS_ROOT_CREATE_DEACTIVATED,
1910 root_cgrp);
1911 if (IS_ERR(root->kf_root)) {
1912 ret = PTR_ERR(root->kf_root);
1913 goto exit_root_id;
1914 }
1915 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1916
4df8dc90 1917 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1918 if (ret)
2bd59d48 1919 goto destroy_root;
ddbcc7e8 1920
5df36032 1921 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1922 if (ret)
2bd59d48 1923 goto destroy_root;
ddbcc7e8 1924
d427dfeb
TH
1925 /*
1926 * There must be no failure case after here, since rebinding takes
1927 * care of subsystems' refcounts, which are explicitly dropped in
1928 * the failure exit path.
1929 */
1930 list_add(&root->root_list, &cgroup_roots);
1931 cgroup_root_count++;
0df6a63f 1932
d427dfeb 1933 /*
3dd06ffa 1934 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1935 * objects.
1936 */
f0d9a5f1 1937 spin_lock_bh(&css_set_lock);
0de0942d 1938 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1939 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1940 if (css_set_populated(cset))
1941 cgroup_update_populated(root_cgrp, true);
1942 }
f0d9a5f1 1943 spin_unlock_bh(&css_set_lock);
ddbcc7e8 1944
d5c419b6 1945 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1946 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1947
2bd59d48 1948 kernfs_activate(root_cgrp->kn);
d427dfeb 1949 ret = 0;
2bd59d48 1950 goto out;
d427dfeb 1951
2bd59d48
TH
1952destroy_root:
1953 kernfs_destroy_root(root->kf_root);
1954 root->kf_root = NULL;
1955exit_root_id:
d427dfeb 1956 cgroup_exit_root_id(root);
9d755d33 1957cancel_ref:
9a1049da 1958 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1959out:
d427dfeb
TH
1960 free_cgrp_cset_links(&tmp_links);
1961 return ret;
ddbcc7e8
PM
1962}
1963
f7e83571 1964static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1965 int flags, const char *unused_dev_name,
f7e83571 1966 void *data)
ddbcc7e8 1967{
3a32bd72 1968 struct super_block *pinned_sb = NULL;
970317aa 1969 struct cgroup_subsys *ss;
3dd06ffa 1970 struct cgroup_root *root;
ddbcc7e8 1971 struct cgroup_sb_opts opts;
2bd59d48 1972 struct dentry *dentry;
8e30e2b8 1973 int ret;
970317aa 1974 int i;
c6b3d5bc 1975 bool new_sb;
ddbcc7e8 1976
56fde9e0
TH
1977 /*
1978 * The first time anyone tries to mount a cgroup, enable the list
1979 * linking each css_set to its tasks and fix up all existing tasks.
1980 */
1981 if (!use_task_css_set_links)
1982 cgroup_enable_task_cg_lists();
e37a06f1 1983
aae8aab4 1984 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1985
1986 /* First find the desired set of subsystems */
ddbcc7e8 1987 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1988 if (ret)
8e30e2b8 1989 goto out_unlock;
a015edd2 1990
2bd59d48 1991 /* look for a matching existing root */
7b9a6ba5 1992 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1993 cgrp_dfl_root_visible = true;
1994 root = &cgrp_dfl_root;
1995 cgroup_get(&root->cgrp);
1996 ret = 0;
1997 goto out_unlock;
ddbcc7e8
PM
1998 }
1999
970317aa
LZ
2000 /*
2001 * Destruction of cgroup root is asynchronous, so subsystems may
2002 * still be dying after the previous unmount. Let's drain the
2003 * dying subsystems. We just need to ensure that the ones
2004 * unmounted previously finish dying and don't care about new ones
2005 * starting. Testing ref liveliness is good enough.
2006 */
2007 for_each_subsys(ss, i) {
2008 if (!(opts.subsys_mask & (1 << i)) ||
2009 ss->root == &cgrp_dfl_root)
2010 continue;
2011
2012 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2013 mutex_unlock(&cgroup_mutex);
2014 msleep(10);
2015 ret = restart_syscall();
2016 goto out_free;
2017 }
2018 cgroup_put(&ss->root->cgrp);
2019 }
2020
985ed670 2021 for_each_root(root) {
2bd59d48 2022 bool name_match = false;
3126121f 2023
3dd06ffa 2024 if (root == &cgrp_dfl_root)
985ed670 2025 continue;
3126121f 2026
cf5d5941 2027 /*
2bd59d48
TH
2028 * If we asked for a name then it must match. Also, if
2029 * name matches but sybsys_mask doesn't, we should fail.
2030 * Remember whether name matched.
cf5d5941 2031 */
2bd59d48
TH
2032 if (opts.name) {
2033 if (strcmp(opts.name, root->name))
2034 continue;
2035 name_match = true;
2036 }
ddbcc7e8 2037
c6d57f33 2038 /*
2bd59d48
TH
2039 * If we asked for subsystems (or explicitly for no
2040 * subsystems) then they must match.
c6d57f33 2041 */
2bd59d48 2042 if ((opts.subsys_mask || opts.none) &&
f392e51c 2043 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2044 if (!name_match)
2045 continue;
2046 ret = -EBUSY;
2047 goto out_unlock;
2048 }
873fe09e 2049
7b9a6ba5
TH
2050 if (root->flags ^ opts.flags)
2051 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2052
776f02fa 2053 /*
3a32bd72
LZ
2054 * We want to reuse @root whose lifetime is governed by its
2055 * ->cgrp. Let's check whether @root is alive and keep it
2056 * that way. As cgroup_kill_sb() can happen anytime, we
2057 * want to block it by pinning the sb so that @root doesn't
2058 * get killed before mount is complete.
2059 *
2060 * With the sb pinned, tryget_live can reliably indicate
2061 * whether @root can be reused. If it's being killed,
2062 * drain it. We can use wait_queue for the wait but this
2063 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2064 */
3a32bd72
LZ
2065 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2066 if (IS_ERR(pinned_sb) ||
2067 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2068 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2069 if (!IS_ERR_OR_NULL(pinned_sb))
2070 deactivate_super(pinned_sb);
776f02fa 2071 msleep(10);
a015edd2
TH
2072 ret = restart_syscall();
2073 goto out_free;
776f02fa 2074 }
ddbcc7e8 2075
776f02fa 2076 ret = 0;
2bd59d48 2077 goto out_unlock;
ddbcc7e8 2078 }
ddbcc7e8 2079
817929ec 2080 /*
172a2c06
TH
2081 * No such thing, create a new one. name= matching without subsys
2082 * specification is allowed for already existing hierarchies but we
2083 * can't create new one without subsys specification.
817929ec 2084 */
172a2c06
TH
2085 if (!opts.subsys_mask && !opts.none) {
2086 ret = -EINVAL;
2087 goto out_unlock;
817929ec 2088 }
817929ec 2089
172a2c06
TH
2090 root = kzalloc(sizeof(*root), GFP_KERNEL);
2091 if (!root) {
2092 ret = -ENOMEM;
2bd59d48 2093 goto out_unlock;
839ec545 2094 }
e5f6a860 2095
172a2c06
TH
2096 init_cgroup_root(root, &opts);
2097
35585573 2098 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2099 if (ret)
2100 cgroup_free_root(root);
fa3ca07e 2101
8e30e2b8 2102out_unlock:
ddbcc7e8 2103 mutex_unlock(&cgroup_mutex);
a015edd2 2104out_free:
c6d57f33
PM
2105 kfree(opts.release_agent);
2106 kfree(opts.name);
03b1cde6 2107
2bd59d48 2108 if (ret)
8e30e2b8 2109 return ERR_PTR(ret);
2bd59d48 2110
c9482a5b
JZ
2111 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2112 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2113 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2114 cgroup_put(&root->cgrp);
3a32bd72
LZ
2115
2116 /*
2117 * If @pinned_sb, we're reusing an existing root and holding an
2118 * extra ref on its sb. Mount is complete. Put the extra ref.
2119 */
2120 if (pinned_sb) {
2121 WARN_ON(new_sb);
2122 deactivate_super(pinned_sb);
2123 }
2124
2bd59d48
TH
2125 return dentry;
2126}
2127
2128static void cgroup_kill_sb(struct super_block *sb)
2129{
2130 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2131 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2132
9d755d33
TH
2133 /*
2134 * If @root doesn't have any mounts or children, start killing it.
2135 * This prevents new mounts by disabling percpu_ref_tryget_live().
2136 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2137 *
2138 * And don't kill the default root.
9d755d33 2139 */
3c606d35 2140 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2141 root == &cgrp_dfl_root)
9d755d33
TH
2142 cgroup_put(&root->cgrp);
2143 else
2144 percpu_ref_kill(&root->cgrp.self.refcnt);
2145
2bd59d48 2146 kernfs_kill_sb(sb);
ddbcc7e8
PM
2147}
2148
2149static struct file_system_type cgroup_fs_type = {
2150 .name = "cgroup",
f7e83571 2151 .mount = cgroup_mount,
ddbcc7e8
PM
2152 .kill_sb = cgroup_kill_sb,
2153};
2154
857a2beb 2155/**
913ffdb5 2156 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2157 * @task: target task
857a2beb
TH
2158 * @buf: the buffer to write the path into
2159 * @buflen: the length of the buffer
2160 *
913ffdb5
TH
2161 * Determine @task's cgroup on the first (the one with the lowest non-zero
2162 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2163 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2164 * cgroup controller callbacks.
2165 *
e61734c5 2166 * Return value is the same as kernfs_path().
857a2beb 2167 */
e61734c5 2168char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2169{
3dd06ffa 2170 struct cgroup_root *root;
913ffdb5 2171 struct cgroup *cgrp;
e61734c5
TH
2172 int hierarchy_id = 1;
2173 char *path = NULL;
857a2beb
TH
2174
2175 mutex_lock(&cgroup_mutex);
f0d9a5f1 2176 spin_lock_bh(&css_set_lock);
857a2beb 2177
913ffdb5
TH
2178 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2179
857a2beb
TH
2180 if (root) {
2181 cgrp = task_cgroup_from_root(task, root);
e61734c5 2182 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2183 } else {
2184 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2185 if (strlcpy(buf, "/", buflen) < buflen)
2186 path = buf;
857a2beb
TH
2187 }
2188
f0d9a5f1 2189 spin_unlock_bh(&css_set_lock);
857a2beb 2190 mutex_unlock(&cgroup_mutex);
e61734c5 2191 return path;
857a2beb 2192}
913ffdb5 2193EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2194
b3dc094e 2195/* used to track tasks and other necessary states during migration */
2f7ee569 2196struct cgroup_taskset {
b3dc094e
TH
2197 /* the src and dst cset list running through cset->mg_node */
2198 struct list_head src_csets;
2199 struct list_head dst_csets;
2200
2201 /*
2202 * Fields for cgroup_taskset_*() iteration.
2203 *
2204 * Before migration is committed, the target migration tasks are on
2205 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2206 * the csets on ->dst_csets. ->csets point to either ->src_csets
2207 * or ->dst_csets depending on whether migration is committed.
2208 *
2209 * ->cur_csets and ->cur_task point to the current task position
2210 * during iteration.
2211 */
2212 struct list_head *csets;
2213 struct css_set *cur_cset;
2214 struct task_struct *cur_task;
2f7ee569
TH
2215};
2216
adaae5dc
TH
2217#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2218 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2219 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2220 .csets = &tset.src_csets, \
2221}
2222
2223/**
2224 * cgroup_taskset_add - try to add a migration target task to a taskset
2225 * @task: target task
2226 * @tset: target taskset
2227 *
2228 * Add @task, which is a migration target, to @tset. This function becomes
2229 * noop if @task doesn't need to be migrated. @task's css_set should have
2230 * been added as a migration source and @task->cg_list will be moved from
2231 * the css_set's tasks list to mg_tasks one.
2232 */
2233static void cgroup_taskset_add(struct task_struct *task,
2234 struct cgroup_taskset *tset)
2235{
2236 struct css_set *cset;
2237
f0d9a5f1 2238 lockdep_assert_held(&css_set_lock);
adaae5dc
TH
2239
2240 /* @task either already exited or can't exit until the end */
2241 if (task->flags & PF_EXITING)
2242 return;
2243
2244 /* leave @task alone if post_fork() hasn't linked it yet */
2245 if (list_empty(&task->cg_list))
2246 return;
2247
2248 cset = task_css_set(task);
2249 if (!cset->mg_src_cgrp)
2250 return;
2251
2252 list_move_tail(&task->cg_list, &cset->mg_tasks);
2253 if (list_empty(&cset->mg_node))
2254 list_add_tail(&cset->mg_node, &tset->src_csets);
2255 if (list_empty(&cset->mg_dst_cset->mg_node))
2256 list_move_tail(&cset->mg_dst_cset->mg_node,
2257 &tset->dst_csets);
2258}
2259
2f7ee569
TH
2260/**
2261 * cgroup_taskset_first - reset taskset and return the first task
2262 * @tset: taskset of interest
2263 *
2264 * @tset iteration is initialized and the first task is returned.
2265 */
2266struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2267{
b3dc094e
TH
2268 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2269 tset->cur_task = NULL;
2270
2271 return cgroup_taskset_next(tset);
2f7ee569 2272}
2f7ee569
TH
2273
2274/**
2275 * cgroup_taskset_next - iterate to the next task in taskset
2276 * @tset: taskset of interest
2277 *
2278 * Return the next task in @tset. Iteration must have been initialized
2279 * with cgroup_taskset_first().
2280 */
2281struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2282{
b3dc094e
TH
2283 struct css_set *cset = tset->cur_cset;
2284 struct task_struct *task = tset->cur_task;
2f7ee569 2285
b3dc094e
TH
2286 while (&cset->mg_node != tset->csets) {
2287 if (!task)
2288 task = list_first_entry(&cset->mg_tasks,
2289 struct task_struct, cg_list);
2290 else
2291 task = list_next_entry(task, cg_list);
2f7ee569 2292
b3dc094e
TH
2293 if (&task->cg_list != &cset->mg_tasks) {
2294 tset->cur_cset = cset;
2295 tset->cur_task = task;
2296 return task;
2297 }
2f7ee569 2298
b3dc094e
TH
2299 cset = list_next_entry(cset, mg_node);
2300 task = NULL;
2301 }
2f7ee569 2302
b3dc094e 2303 return NULL;
2f7ee569 2304}
2f7ee569 2305
adaae5dc
TH
2306/**
2307 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2308 * @tset: taget taskset
2309 * @dst_cgrp: destination cgroup
2310 *
2311 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2312 * ->can_attach callbacks fails and guarantees that either all or none of
2313 * the tasks in @tset are migrated. @tset is consumed regardless of
2314 * success.
2315 */
2316static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2317 struct cgroup *dst_cgrp)
2318{
2319 struct cgroup_subsys_state *css, *failed_css = NULL;
2320 struct task_struct *task, *tmp_task;
2321 struct css_set *cset, *tmp_cset;
2322 int i, ret;
2323
2324 /* methods shouldn't be called if no task is actually migrating */
2325 if (list_empty(&tset->src_csets))
2326 return 0;
2327
2328 /* check that we can legitimately attach to the cgroup */
2329 for_each_e_css(css, i, dst_cgrp) {
2330 if (css->ss->can_attach) {
2331 ret = css->ss->can_attach(css, tset);
2332 if (ret) {
2333 failed_css = css;
2334 goto out_cancel_attach;
2335 }
2336 }
2337 }
2338
2339 /*
2340 * Now that we're guaranteed success, proceed to move all tasks to
2341 * the new cgroup. There are no failure cases after here, so this
2342 * is the commit point.
2343 */
f0d9a5f1 2344 spin_lock_bh(&css_set_lock);
adaae5dc 2345 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2346 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2347 struct css_set *from_cset = task_css_set(task);
2348 struct css_set *to_cset = cset->mg_dst_cset;
2349
2350 get_css_set(to_cset);
2351 css_set_move_task(task, from_cset, to_cset, true);
2352 put_css_set_locked(from_cset);
2353 }
adaae5dc 2354 }
f0d9a5f1 2355 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2356
2357 /*
2358 * Migration is committed, all target tasks are now on dst_csets.
2359 * Nothing is sensitive to fork() after this point. Notify
2360 * controllers that migration is complete.
2361 */
2362 tset->csets = &tset->dst_csets;
2363
2364 for_each_e_css(css, i, dst_cgrp)
2365 if (css->ss->attach)
2366 css->ss->attach(css, tset);
2367
2368 ret = 0;
2369 goto out_release_tset;
2370
2371out_cancel_attach:
2372 for_each_e_css(css, i, dst_cgrp) {
2373 if (css == failed_css)
2374 break;
2375 if (css->ss->cancel_attach)
2376 css->ss->cancel_attach(css, tset);
2377 }
2378out_release_tset:
f0d9a5f1 2379 spin_lock_bh(&css_set_lock);
adaae5dc
TH
2380 list_splice_init(&tset->dst_csets, &tset->src_csets);
2381 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2382 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2383 list_del_init(&cset->mg_node);
2384 }
f0d9a5f1 2385 spin_unlock_bh(&css_set_lock);
adaae5dc
TH
2386 return ret;
2387}
2388
a043e3b2 2389/**
1958d2d5
TH
2390 * cgroup_migrate_finish - cleanup after attach
2391 * @preloaded_csets: list of preloaded css_sets
74a1166d 2392 *
1958d2d5
TH
2393 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2394 * those functions for details.
74a1166d 2395 */
1958d2d5 2396static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2397{
1958d2d5 2398 struct css_set *cset, *tmp_cset;
74a1166d 2399
1958d2d5
TH
2400 lockdep_assert_held(&cgroup_mutex);
2401
f0d9a5f1 2402 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2403 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2404 cset->mg_src_cgrp = NULL;
2405 cset->mg_dst_cset = NULL;
2406 list_del_init(&cset->mg_preload_node);
a25eb52e 2407 put_css_set_locked(cset);
1958d2d5 2408 }
f0d9a5f1 2409 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2410}
2411
2412/**
2413 * cgroup_migrate_add_src - add a migration source css_set
2414 * @src_cset: the source css_set to add
2415 * @dst_cgrp: the destination cgroup
2416 * @preloaded_csets: list of preloaded css_sets
2417 *
2418 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2419 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2420 * up by cgroup_migrate_finish().
2421 *
1ed13287
TH
2422 * This function may be called without holding cgroup_threadgroup_rwsem
2423 * even if the target is a process. Threads may be created and destroyed
2424 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2425 * into play and the preloaded css_sets are guaranteed to cover all
2426 * migrations.
1958d2d5
TH
2427 */
2428static void cgroup_migrate_add_src(struct css_set *src_cset,
2429 struct cgroup *dst_cgrp,
2430 struct list_head *preloaded_csets)
2431{
2432 struct cgroup *src_cgrp;
2433
2434 lockdep_assert_held(&cgroup_mutex);
f0d9a5f1 2435 lockdep_assert_held(&css_set_lock);
1958d2d5
TH
2436
2437 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2438
1958d2d5
TH
2439 if (!list_empty(&src_cset->mg_preload_node))
2440 return;
2441
2442 WARN_ON(src_cset->mg_src_cgrp);
2443 WARN_ON(!list_empty(&src_cset->mg_tasks));
2444 WARN_ON(!list_empty(&src_cset->mg_node));
2445
2446 src_cset->mg_src_cgrp = src_cgrp;
2447 get_css_set(src_cset);
2448 list_add(&src_cset->mg_preload_node, preloaded_csets);
2449}
2450
2451/**
2452 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2453 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2454 * @preloaded_csets: list of preloaded source css_sets
2455 *
2456 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2457 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2458 * pins all destination css_sets, links each to its source, and append them
2459 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2460 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2461 *
2462 * This function must be called after cgroup_migrate_add_src() has been
2463 * called on each migration source css_set. After migration is performed
2464 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2465 * @preloaded_csets.
2466 */
2467static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2468 struct list_head *preloaded_csets)
2469{
2470 LIST_HEAD(csets);
f817de98 2471 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2472
2473 lockdep_assert_held(&cgroup_mutex);
2474
f8f22e53
TH
2475 /*
2476 * Except for the root, child_subsys_mask must be zero for a cgroup
2477 * with tasks so that child cgroups don't compete against tasks.
2478 */
d51f39b0 2479 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2480 dst_cgrp->child_subsys_mask)
2481 return -EBUSY;
2482
1958d2d5 2483 /* look up the dst cset for each src cset and link it to src */
f817de98 2484 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2485 struct css_set *dst_cset;
2486
f817de98
TH
2487 dst_cset = find_css_set(src_cset,
2488 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2489 if (!dst_cset)
2490 goto err;
2491
2492 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2493
2494 /*
2495 * If src cset equals dst, it's noop. Drop the src.
2496 * cgroup_migrate() will skip the cset too. Note that we
2497 * can't handle src == dst as some nodes are used by both.
2498 */
2499 if (src_cset == dst_cset) {
2500 src_cset->mg_src_cgrp = NULL;
2501 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2502 put_css_set(src_cset);
2503 put_css_set(dst_cset);
f817de98
TH
2504 continue;
2505 }
2506
1958d2d5
TH
2507 src_cset->mg_dst_cset = dst_cset;
2508
2509 if (list_empty(&dst_cset->mg_preload_node))
2510 list_add(&dst_cset->mg_preload_node, &csets);
2511 else
a25eb52e 2512 put_css_set(dst_cset);
1958d2d5
TH
2513 }
2514
f817de98 2515 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2516 return 0;
2517err:
2518 cgroup_migrate_finish(&csets);
2519 return -ENOMEM;
2520}
2521
2522/**
2523 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2524 * @leader: the leader of the process or the task to migrate
2525 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2526 * @cgrp: the destination cgroup
1958d2d5
TH
2527 *
2528 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2529 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2530 * caller is also responsible for invoking cgroup_migrate_add_src() and
2531 * cgroup_migrate_prepare_dst() on the targets before invoking this
2532 * function and following up with cgroup_migrate_finish().
2533 *
2534 * As long as a controller's ->can_attach() doesn't fail, this function is
2535 * guaranteed to succeed. This means that, excluding ->can_attach()
2536 * failure, when migrating multiple targets, the success or failure can be
2537 * decided for all targets by invoking group_migrate_prepare_dst() before
2538 * actually starting migrating.
2539 */
9af2ec45
TH
2540static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2541 struct cgroup *cgrp)
74a1166d 2542{
adaae5dc
TH
2543 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2544 struct task_struct *task;
74a1166d 2545
fb5d2b4c
MSB
2546 /*
2547 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2548 * already PF_EXITING could be freed from underneath us unless we
2549 * take an rcu_read_lock.
2550 */
f0d9a5f1 2551 spin_lock_bh(&css_set_lock);
fb5d2b4c 2552 rcu_read_lock();
9db8de37 2553 task = leader;
74a1166d 2554 do {
adaae5dc 2555 cgroup_taskset_add(task, &tset);
081aa458
LZ
2556 if (!threadgroup)
2557 break;
9db8de37 2558 } while_each_thread(leader, task);
fb5d2b4c 2559 rcu_read_unlock();
f0d9a5f1 2560 spin_unlock_bh(&css_set_lock);
74a1166d 2561
adaae5dc 2562 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2563}
2564
1958d2d5
TH
2565/**
2566 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2567 * @dst_cgrp: the cgroup to attach to
2568 * @leader: the task or the leader of the threadgroup to be attached
2569 * @threadgroup: attach the whole threadgroup?
2570 *
1ed13287 2571 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2572 */
2573static int cgroup_attach_task(struct cgroup *dst_cgrp,
2574 struct task_struct *leader, bool threadgroup)
2575{
2576 LIST_HEAD(preloaded_csets);
2577 struct task_struct *task;
2578 int ret;
2579
2580 /* look up all src csets */
f0d9a5f1 2581 spin_lock_bh(&css_set_lock);
1958d2d5
TH
2582 rcu_read_lock();
2583 task = leader;
2584 do {
2585 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2586 &preloaded_csets);
2587 if (!threadgroup)
2588 break;
2589 } while_each_thread(leader, task);
2590 rcu_read_unlock();
f0d9a5f1 2591 spin_unlock_bh(&css_set_lock);
1958d2d5
TH
2592
2593 /* prepare dst csets and commit */
2594 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2595 if (!ret)
9af2ec45 2596 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2597
2598 cgroup_migrate_finish(&preloaded_csets);
2599 return ret;
74a1166d
BB
2600}
2601
187fe840
TH
2602static int cgroup_procs_write_permission(struct task_struct *task,
2603 struct cgroup *dst_cgrp,
2604 struct kernfs_open_file *of)
dedf22e9
TH
2605{
2606 const struct cred *cred = current_cred();
2607 const struct cred *tcred = get_task_cred(task);
2608 int ret = 0;
2609
2610 /*
2611 * even if we're attaching all tasks in the thread group, we only
2612 * need to check permissions on one of them.
2613 */
2614 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2615 !uid_eq(cred->euid, tcred->uid) &&
2616 !uid_eq(cred->euid, tcred->suid))
2617 ret = -EACCES;
2618
187fe840
TH
2619 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2620 struct super_block *sb = of->file->f_path.dentry->d_sb;
2621 struct cgroup *cgrp;
2622 struct inode *inode;
2623
f0d9a5f1 2624 spin_lock_bh(&css_set_lock);
187fe840 2625 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
f0d9a5f1 2626 spin_unlock_bh(&css_set_lock);
187fe840
TH
2627
2628 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2629 cgrp = cgroup_parent(cgrp);
2630
2631 ret = -ENOMEM;
6f60eade 2632 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2633 if (inode) {
2634 ret = inode_permission(inode, MAY_WRITE);
2635 iput(inode);
2636 }
2637 }
2638
dedf22e9
TH
2639 put_cred(tcred);
2640 return ret;
2641}
2642
74a1166d
BB
2643/*
2644 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2645 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2646 * cgroup_mutex and threadgroup.
bbcb81d0 2647 */
acbef755
TH
2648static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2649 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2650{
bbcb81d0 2651 struct task_struct *tsk;
e76ecaee 2652 struct cgroup *cgrp;
acbef755 2653 pid_t pid;
bbcb81d0
PM
2654 int ret;
2655
acbef755
TH
2656 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2657 return -EINVAL;
2658
e76ecaee
TH
2659 cgrp = cgroup_kn_lock_live(of->kn);
2660 if (!cgrp)
74a1166d
BB
2661 return -ENODEV;
2662
3014dde7 2663 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2664 rcu_read_lock();
bbcb81d0 2665 if (pid) {
73507f33 2666 tsk = find_task_by_vpid(pid);
74a1166d 2667 if (!tsk) {
dd4b0a46 2668 ret = -ESRCH;
3014dde7 2669 goto out_unlock_rcu;
bbcb81d0 2670 }
dedf22e9 2671 } else {
b78949eb 2672 tsk = current;
dedf22e9 2673 }
cd3d0952
TH
2674
2675 if (threadgroup)
b78949eb 2676 tsk = tsk->group_leader;
c4c27fbd
MG
2677
2678 /*
14a40ffc 2679 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2680 * trapped in a cpuset, or RT worker may be born in a cgroup
2681 * with no rt_runtime allocated. Just say no.
2682 */
14a40ffc 2683 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2684 ret = -EINVAL;
3014dde7 2685 goto out_unlock_rcu;
c4c27fbd
MG
2686 }
2687
b78949eb
MSB
2688 get_task_struct(tsk);
2689 rcu_read_unlock();
2690
187fe840 2691 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2692 if (!ret)
2693 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2694
f9f9e7b7 2695 put_task_struct(tsk);
3014dde7
TH
2696 goto out_unlock_threadgroup;
2697
2698out_unlock_rcu:
2699 rcu_read_unlock();
2700out_unlock_threadgroup:
2701 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2702 cgroup_kn_unlock(of->kn);
acbef755 2703 return ret ?: nbytes;
bbcb81d0
PM
2704}
2705
7ae1bad9
TH
2706/**
2707 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2708 * @from: attach to all cgroups of a given task
2709 * @tsk: the task to be attached
2710 */
2711int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2712{
3dd06ffa 2713 struct cgroup_root *root;
7ae1bad9
TH
2714 int retval = 0;
2715
47cfcd09 2716 mutex_lock(&cgroup_mutex);
985ed670 2717 for_each_root(root) {
96d365e0
TH
2718 struct cgroup *from_cgrp;
2719
3dd06ffa 2720 if (root == &cgrp_dfl_root)
985ed670
TH
2721 continue;
2722
f0d9a5f1 2723 spin_lock_bh(&css_set_lock);
96d365e0 2724 from_cgrp = task_cgroup_from_root(from, root);
f0d9a5f1 2725 spin_unlock_bh(&css_set_lock);
7ae1bad9 2726
6f4b7e63 2727 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2728 if (retval)
2729 break;
2730 }
47cfcd09 2731 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2732
2733 return retval;
2734}
2735EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2736
acbef755
TH
2737static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2738 char *buf, size_t nbytes, loff_t off)
74a1166d 2739{
acbef755 2740 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2741}
2742
acbef755
TH
2743static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2744 char *buf, size_t nbytes, loff_t off)
af351026 2745{
acbef755 2746 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2747}
2748
451af504
TH
2749static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2750 char *buf, size_t nbytes, loff_t off)
e788e066 2751{
e76ecaee 2752 struct cgroup *cgrp;
5f469907 2753
e76ecaee 2754 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2755
e76ecaee
TH
2756 cgrp = cgroup_kn_lock_live(of->kn);
2757 if (!cgrp)
e788e066 2758 return -ENODEV;
69e943b7 2759 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2760 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2761 sizeof(cgrp->root->release_agent_path));
69e943b7 2762 spin_unlock(&release_agent_path_lock);
e76ecaee 2763 cgroup_kn_unlock(of->kn);
451af504 2764 return nbytes;
e788e066
PM
2765}
2766
2da8ca82 2767static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2768{
2da8ca82 2769 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2770
46cfeb04 2771 spin_lock(&release_agent_path_lock);
e788e066 2772 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2773 spin_unlock(&release_agent_path_lock);
e788e066 2774 seq_putc(seq, '\n');
e788e066
PM
2775 return 0;
2776}
2777
2da8ca82 2778static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2779{
c1d5d42e 2780 seq_puts(seq, "0\n");
e788e066
PM
2781 return 0;
2782}
2783
8ab456ac 2784static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2785{
f8f22e53
TH
2786 struct cgroup_subsys *ss;
2787 bool printed = false;
2788 int ssid;
a742c59d 2789
a966a4ed
AS
2790 for_each_subsys_which(ss, ssid, &ss_mask) {
2791 if (printed)
2792 seq_putc(seq, ' ');
2793 seq_printf(seq, "%s", ss->name);
2794 printed = true;
e73d2c61 2795 }
f8f22e53
TH
2796 if (printed)
2797 seq_putc(seq, '\n');
355e0c48
PM
2798}
2799
f8f22e53
TH
2800/* show controllers which are currently attached to the default hierarchy */
2801static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2802{
f8f22e53
TH
2803 struct cgroup *cgrp = seq_css(seq)->cgroup;
2804
5533e011
TH
2805 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2806 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2807 return 0;
db3b1497
PM
2808}
2809
f8f22e53
TH
2810/* show controllers which are enabled from the parent */
2811static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2812{
f8f22e53
TH
2813 struct cgroup *cgrp = seq_css(seq)->cgroup;
2814
667c2491 2815 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2816 return 0;
ddbcc7e8
PM
2817}
2818
f8f22e53
TH
2819/* show controllers which are enabled for a given cgroup's children */
2820static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2821{
f8f22e53
TH
2822 struct cgroup *cgrp = seq_css(seq)->cgroup;
2823
667c2491 2824 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2825 return 0;
2826}
2827
2828/**
2829 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2830 * @cgrp: root of the subtree to update csses for
2831 *
2832 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2833 * css associations need to be updated accordingly. This function looks up
2834 * all css_sets which are attached to the subtree, creates the matching
2835 * updated css_sets and migrates the tasks to the new ones.
2836 */
2837static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2838{
2839 LIST_HEAD(preloaded_csets);
10265075 2840 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2841 struct cgroup_subsys_state *css;
2842 struct css_set *src_cset;
2843 int ret;
2844
f8f22e53
TH
2845 lockdep_assert_held(&cgroup_mutex);
2846
3014dde7
TH
2847 percpu_down_write(&cgroup_threadgroup_rwsem);
2848
f8f22e53 2849 /* look up all csses currently attached to @cgrp's subtree */
f0d9a5f1 2850 spin_lock_bh(&css_set_lock);
f8f22e53
TH
2851 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2852 struct cgrp_cset_link *link;
2853
2854 /* self is not affected by child_subsys_mask change */
2855 if (css->cgroup == cgrp)
2856 continue;
2857
2858 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2859 cgroup_migrate_add_src(link->cset, cgrp,
2860 &preloaded_csets);
2861 }
f0d9a5f1 2862 spin_unlock_bh(&css_set_lock);
f8f22e53
TH
2863
2864 /* NULL dst indicates self on default hierarchy */
2865 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2866 if (ret)
2867 goto out_finish;
2868
f0d9a5f1 2869 spin_lock_bh(&css_set_lock);
f8f22e53 2870 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2871 struct task_struct *task, *ntask;
f8f22e53
TH
2872
2873 /* src_csets precede dst_csets, break on the first dst_cset */
2874 if (!src_cset->mg_src_cgrp)
2875 break;
2876
10265075
TH
2877 /* all tasks in src_csets need to be migrated */
2878 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2879 cgroup_taskset_add(task, &tset);
f8f22e53 2880 }
f0d9a5f1 2881 spin_unlock_bh(&css_set_lock);
f8f22e53 2882
10265075 2883 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2884out_finish:
2885 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2886 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2887 return ret;
2888}
2889
2890/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2891static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2892 char *buf, size_t nbytes,
2893 loff_t off)
f8f22e53 2894{
8ab456ac
AS
2895 unsigned long enable = 0, disable = 0;
2896 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2897 struct cgroup *cgrp, *child;
f8f22e53 2898 struct cgroup_subsys *ss;
451af504 2899 char *tok;
f8f22e53
TH
2900 int ssid, ret;
2901
2902 /*
d37167ab
TH
2903 * Parse input - space separated list of subsystem names prefixed
2904 * with either + or -.
f8f22e53 2905 */
451af504
TH
2906 buf = strstrip(buf);
2907 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2908 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2909
d37167ab
TH
2910 if (tok[0] == '\0')
2911 continue;
a966a4ed 2912 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2913 if (!cgroup_ssid_enabled(ssid) ||
2914 strcmp(tok + 1, ss->name))
f8f22e53
TH
2915 continue;
2916
2917 if (*tok == '+') {
7d331fa9
TH
2918 enable |= 1 << ssid;
2919 disable &= ~(1 << ssid);
f8f22e53 2920 } else if (*tok == '-') {
7d331fa9
TH
2921 disable |= 1 << ssid;
2922 enable &= ~(1 << ssid);
f8f22e53
TH
2923 } else {
2924 return -EINVAL;
2925 }
2926 break;
2927 }
2928 if (ssid == CGROUP_SUBSYS_COUNT)
2929 return -EINVAL;
2930 }
2931
a9746d8d
TH
2932 cgrp = cgroup_kn_lock_live(of->kn);
2933 if (!cgrp)
2934 return -ENODEV;
f8f22e53
TH
2935
2936 for_each_subsys(ss, ssid) {
2937 if (enable & (1 << ssid)) {
667c2491 2938 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2939 enable &= ~(1 << ssid);
2940 continue;
2941 }
2942
c29adf24
TH
2943 /* unavailable or not enabled on the parent? */
2944 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2945 (cgroup_parent(cgrp) &&
667c2491 2946 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2947 ret = -ENOENT;
2948 goto out_unlock;
2949 }
f8f22e53 2950 } else if (disable & (1 << ssid)) {
667c2491 2951 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2952 disable &= ~(1 << ssid);
2953 continue;
2954 }
2955
2956 /* a child has it enabled? */
2957 cgroup_for_each_live_child(child, cgrp) {
667c2491 2958 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2959 ret = -EBUSY;
ddab2b6e 2960 goto out_unlock;
f8f22e53
TH
2961 }
2962 }
2963 }
2964 }
2965
2966 if (!enable && !disable) {
2967 ret = 0;
ddab2b6e 2968 goto out_unlock;
f8f22e53
TH
2969 }
2970
2971 /*
667c2491 2972 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2973 * with tasks so that child cgroups don't compete against tasks.
2974 */
d51f39b0 2975 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2976 ret = -EBUSY;
2977 goto out_unlock;
2978 }
2979
2980 /*
f63070d3
TH
2981 * Update subsys masks and calculate what needs to be done. More
2982 * subsystems than specified may need to be enabled or disabled
2983 * depending on subsystem dependencies.
2984 */
755bf5ee
TH
2985 old_sc = cgrp->subtree_control;
2986 old_ss = cgrp->child_subsys_mask;
2987 new_sc = (old_sc | enable) & ~disable;
2988 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2989
755bf5ee
TH
2990 css_enable = ~old_ss & new_ss;
2991 css_disable = old_ss & ~new_ss;
f63070d3
TH
2992 enable |= css_enable;
2993 disable |= css_disable;
c29adf24 2994
db6e3053
TH
2995 /*
2996 * Because css offlining is asynchronous, userland might try to
2997 * re-enable the same controller while the previous instance is
2998 * still around. In such cases, wait till it's gone using
2999 * offline_waitq.
3000 */
a966a4ed 3001 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3002 cgroup_for_each_live_child(child, cgrp) {
3003 DEFINE_WAIT(wait);
3004
3005 if (!cgroup_css(child, ss))
3006 continue;
3007
3008 cgroup_get(child);
3009 prepare_to_wait(&child->offline_waitq, &wait,
3010 TASK_UNINTERRUPTIBLE);
3011 cgroup_kn_unlock(of->kn);
3012 schedule();
3013 finish_wait(&child->offline_waitq, &wait);
3014 cgroup_put(child);
3015
3016 return restart_syscall();
3017 }
3018 }
3019
755bf5ee
TH
3020 cgrp->subtree_control = new_sc;
3021 cgrp->child_subsys_mask = new_ss;
3022
f63070d3
TH
3023 /*
3024 * Create new csses or make the existing ones visible. A css is
3025 * created invisible if it's being implicitly enabled through
3026 * dependency. An invisible css is made visible when the userland
3027 * explicitly enables it.
f8f22e53
TH
3028 */
3029 for_each_subsys(ss, ssid) {
3030 if (!(enable & (1 << ssid)))
3031 continue;
3032
3033 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3034 if (css_enable & (1 << ssid))
3035 ret = create_css(child, ss,
3036 cgrp->subtree_control & (1 << ssid));
3037 else
4df8dc90
TH
3038 ret = css_populate_dir(cgroup_css(child, ss),
3039 NULL);
f8f22e53
TH
3040 if (ret)
3041 goto err_undo_css;
3042 }
3043 }
3044
c29adf24
TH
3045 /*
3046 * At this point, cgroup_e_css() results reflect the new csses
3047 * making the following cgroup_update_dfl_csses() properly update
3048 * css associations of all tasks in the subtree.
3049 */
f8f22e53
TH
3050 ret = cgroup_update_dfl_csses(cgrp);
3051 if (ret)
3052 goto err_undo_css;
3053
f63070d3
TH
3054 /*
3055 * All tasks are migrated out of disabled csses. Kill or hide
3056 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3057 * disabled while other subsystems are still depending on it. The
3058 * css must not actively control resources and be in the vanilla
3059 * state if it's made visible again later. Controllers which may
3060 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3061 */
f8f22e53
TH
3062 for_each_subsys(ss, ssid) {
3063 if (!(disable & (1 << ssid)))
3064 continue;
3065
f63070d3 3066 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3067 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3068
3069 if (css_disable & (1 << ssid)) {
3070 kill_css(css);
3071 } else {
4df8dc90 3072 css_clear_dir(css, NULL);
b4536f0c
TH
3073 if (ss->css_reset)
3074 ss->css_reset(css);
3075 }
f63070d3 3076 }
f8f22e53
TH
3077 }
3078
56c807ba
TH
3079 /*
3080 * The effective csses of all the descendants (excluding @cgrp) may
3081 * have changed. Subsystems can optionally subscribe to this event
3082 * by implementing ->css_e_css_changed() which is invoked if any of
3083 * the effective csses seen from the css's cgroup may have changed.
3084 */
3085 for_each_subsys(ss, ssid) {
3086 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3087 struct cgroup_subsys_state *css;
3088
3089 if (!ss->css_e_css_changed || !this_css)
3090 continue;
3091
3092 css_for_each_descendant_pre(css, this_css)
3093 if (css != this_css)
3094 ss->css_e_css_changed(css);
3095 }
3096
f8f22e53
TH
3097 kernfs_activate(cgrp->kn);
3098 ret = 0;
3099out_unlock:
a9746d8d 3100 cgroup_kn_unlock(of->kn);
451af504 3101 return ret ?: nbytes;
f8f22e53
TH
3102
3103err_undo_css:
755bf5ee
TH
3104 cgrp->subtree_control = old_sc;
3105 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3106
3107 for_each_subsys(ss, ssid) {
3108 if (!(enable & (1 << ssid)))
3109 continue;
3110
3111 cgroup_for_each_live_child(child, cgrp) {
3112 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3113
3114 if (!css)
3115 continue;
3116
3117 if (css_enable & (1 << ssid))
f8f22e53 3118 kill_css(css);
f63070d3 3119 else
4df8dc90 3120 css_clear_dir(css, NULL);
f8f22e53
TH
3121 }
3122 }
3123 goto out_unlock;
3124}
3125
4a07c222 3126static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3127{
4a07c222 3128 seq_printf(seq, "populated %d\n",
27bd4dbb 3129 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3130 return 0;
3131}
3132
2bd59d48
TH
3133static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3134 size_t nbytes, loff_t off)
355e0c48 3135{
2bd59d48
TH
3136 struct cgroup *cgrp = of->kn->parent->priv;
3137 struct cftype *cft = of->kn->priv;
3138 struct cgroup_subsys_state *css;
a742c59d 3139 int ret;
355e0c48 3140
b4168640
TH
3141 if (cft->write)
3142 return cft->write(of, buf, nbytes, off);
3143
2bd59d48
TH
3144 /*
3145 * kernfs guarantees that a file isn't deleted with operations in
3146 * flight, which means that the matching css is and stays alive and
3147 * doesn't need to be pinned. The RCU locking is not necessary
3148 * either. It's just for the convenience of using cgroup_css().
3149 */
3150 rcu_read_lock();
3151 css = cgroup_css(cgrp, cft->ss);
3152 rcu_read_unlock();
a742c59d 3153
451af504 3154 if (cft->write_u64) {
a742c59d
TH
3155 unsigned long long v;
3156 ret = kstrtoull(buf, 0, &v);
3157 if (!ret)
3158 ret = cft->write_u64(css, cft, v);
3159 } else if (cft->write_s64) {
3160 long long v;
3161 ret = kstrtoll(buf, 0, &v);
3162 if (!ret)
3163 ret = cft->write_s64(css, cft, v);
e73d2c61 3164 } else {
a742c59d 3165 ret = -EINVAL;
e73d2c61 3166 }
2bd59d48 3167
a742c59d 3168 return ret ?: nbytes;
355e0c48
PM
3169}
3170
6612f05b 3171static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3172{
2bd59d48 3173 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3174}
3175
6612f05b 3176static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3177{
2bd59d48 3178 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3179}
3180
6612f05b 3181static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3182{
2bd59d48 3183 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3184}
3185
91796569 3186static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3187{
7da11279
TH
3188 struct cftype *cft = seq_cft(m);
3189 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3190
2da8ca82
TH
3191 if (cft->seq_show)
3192 return cft->seq_show(m, arg);
e73d2c61 3193
f4c753b7 3194 if (cft->read_u64)
896f5199
TH
3195 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3196 else if (cft->read_s64)
3197 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3198 else
3199 return -EINVAL;
3200 return 0;
91796569
PM
3201}
3202
2bd59d48
TH
3203static struct kernfs_ops cgroup_kf_single_ops = {
3204 .atomic_write_len = PAGE_SIZE,
3205 .write = cgroup_file_write,
3206 .seq_show = cgroup_seqfile_show,
91796569
PM
3207};
3208
2bd59d48
TH
3209static struct kernfs_ops cgroup_kf_ops = {
3210 .atomic_write_len = PAGE_SIZE,
3211 .write = cgroup_file_write,
3212 .seq_start = cgroup_seqfile_start,
3213 .seq_next = cgroup_seqfile_next,
3214 .seq_stop = cgroup_seqfile_stop,
3215 .seq_show = cgroup_seqfile_show,
3216};
ddbcc7e8
PM
3217
3218/*
3219 * cgroup_rename - Only allow simple rename of directories in place.
3220 */
2bd59d48
TH
3221static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3222 const char *new_name_str)
ddbcc7e8 3223{
2bd59d48 3224 struct cgroup *cgrp = kn->priv;
65dff759 3225 int ret;
65dff759 3226
2bd59d48 3227 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3228 return -ENOTDIR;
2bd59d48 3229 if (kn->parent != new_parent)
ddbcc7e8 3230 return -EIO;
65dff759 3231
6db8e85c
TH
3232 /*
3233 * This isn't a proper migration and its usefulness is very
aa6ec29b 3234 * limited. Disallow on the default hierarchy.
6db8e85c 3235 */
aa6ec29b 3236 if (cgroup_on_dfl(cgrp))
6db8e85c 3237 return -EPERM;
099fca32 3238
e1b2dc17 3239 /*
8353da1f 3240 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3241 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3242 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3243 */
3244 kernfs_break_active_protection(new_parent);
3245 kernfs_break_active_protection(kn);
099fca32 3246
2bd59d48 3247 mutex_lock(&cgroup_mutex);
099fca32 3248
2bd59d48 3249 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3250
2bd59d48 3251 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3252
3253 kernfs_unbreak_active_protection(kn);
3254 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3255 return ret;
099fca32
LZ
3256}
3257
49957f8e
TH
3258/* set uid and gid of cgroup dirs and files to that of the creator */
3259static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3260{
3261 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3262 .ia_uid = current_fsuid(),
3263 .ia_gid = current_fsgid(), };
3264
3265 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3266 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3267 return 0;
3268
3269 return kernfs_setattr(kn, &iattr);
3270}
3271
4df8dc90
TH
3272static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3273 struct cftype *cft)
ddbcc7e8 3274{
8d7e6fb0 3275 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3276 struct kernfs_node *kn;
3277 struct lock_class_key *key = NULL;
49957f8e 3278 int ret;
05ef1d7c 3279
2bd59d48
TH
3280#ifdef CONFIG_DEBUG_LOCK_ALLOC
3281 key = &cft->lockdep_key;
3282#endif
3283 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3284 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3285 NULL, key);
49957f8e
TH
3286 if (IS_ERR(kn))
3287 return PTR_ERR(kn);
3288
3289 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3290 if (ret) {
49957f8e 3291 kernfs_remove(kn);
f8f22e53
TH
3292 return ret;
3293 }
3294
6f60eade
TH
3295 if (cft->file_offset) {
3296 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3297
3298 kernfs_get(kn);
3299 cfile->kn = kn;
3300 list_add(&cfile->node, &css->files);
3301 }
3302
f8f22e53 3303 return 0;
ddbcc7e8
PM
3304}
3305
b1f28d31
TH
3306/**
3307 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3308 * @css: the target css
3309 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3310 * @cfts: array of cftypes to be added
3311 * @is_add: whether to add or remove
3312 *
3313 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3314 * For removals, this function never fails.
b1f28d31 3315 */
4df8dc90
TH
3316static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3317 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3318 bool is_add)
ddbcc7e8 3319{
6732ed85 3320 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3321 int ret;
3322
01f6474c 3323 lockdep_assert_held(&cgroup_mutex);
db0416b6 3324
6732ed85
TH
3325restart:
3326 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3327 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3328 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3329 continue;
05ebb6e6 3330 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3331 continue;
d51f39b0 3332 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3333 continue;
d51f39b0 3334 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3335 continue;
3336
2739d3cc 3337 if (is_add) {
4df8dc90 3338 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3339 if (ret) {
ed3d261b
JP
3340 pr_warn("%s: failed to add %s, err=%d\n",
3341 __func__, cft->name, ret);
6732ed85
TH
3342 cft_end = cft;
3343 is_add = false;
3344 goto restart;
b1f28d31 3345 }
2739d3cc
LZ
3346 } else {
3347 cgroup_rm_file(cgrp, cft);
db0416b6 3348 }
ddbcc7e8 3349 }
b1f28d31 3350 return 0;
ddbcc7e8
PM
3351}
3352
21a2d343 3353static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3354{
3355 LIST_HEAD(pending);
2bb566cb 3356 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3357 struct cgroup *root = &ss->root->cgrp;
492eb21b 3358 struct cgroup_subsys_state *css;
9ccece80 3359 int ret = 0;
8e3f6541 3360
01f6474c 3361 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3362
e8c82d20 3363 /* add/rm files for all cgroups created before */
ca8bdcaf 3364 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3365 struct cgroup *cgrp = css->cgroup;
3366
e8c82d20
LZ
3367 if (cgroup_is_dead(cgrp))
3368 continue;
3369
4df8dc90 3370 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3371 if (ret)
3372 break;
8e3f6541 3373 }
21a2d343
TH
3374
3375 if (is_add && !ret)
3376 kernfs_activate(root->kn);
9ccece80 3377 return ret;
8e3f6541
TH
3378}
3379
2da440a2 3380static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3381{
2bb566cb 3382 struct cftype *cft;
8e3f6541 3383
2bd59d48
TH
3384 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3385 /* free copy for custom atomic_write_len, see init_cftypes() */
3386 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3387 kfree(cft->kf_ops);
3388 cft->kf_ops = NULL;
2da440a2 3389 cft->ss = NULL;
a8ddc821
TH
3390
3391 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3392 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3393 }
2da440a2
TH
3394}
3395
2bd59d48 3396static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3397{
3398 struct cftype *cft;
3399
2bd59d48
TH
3400 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3401 struct kernfs_ops *kf_ops;
3402
0adb0704
TH
3403 WARN_ON(cft->ss || cft->kf_ops);
3404
2bd59d48
TH
3405 if (cft->seq_start)
3406 kf_ops = &cgroup_kf_ops;
3407 else
3408 kf_ops = &cgroup_kf_single_ops;
3409
3410 /*
3411 * Ugh... if @cft wants a custom max_write_len, we need to
3412 * make a copy of kf_ops to set its atomic_write_len.
3413 */
3414 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3415 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3416 if (!kf_ops) {
3417 cgroup_exit_cftypes(cfts);
3418 return -ENOMEM;
3419 }
3420 kf_ops->atomic_write_len = cft->max_write_len;
3421 }
8e3f6541 3422
2bd59d48 3423 cft->kf_ops = kf_ops;
2bb566cb 3424 cft->ss = ss;
2bd59d48 3425 }
2bb566cb 3426
2bd59d48 3427 return 0;
2da440a2
TH
3428}
3429
21a2d343
TH
3430static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3431{
01f6474c 3432 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3433
3434 if (!cfts || !cfts[0].ss)
3435 return -ENOENT;
3436
3437 list_del(&cfts->node);
3438 cgroup_apply_cftypes(cfts, false);
3439 cgroup_exit_cftypes(cfts);
3440 return 0;
8e3f6541 3441}
8e3f6541 3442
79578621
TH
3443/**
3444 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3445 * @cfts: zero-length name terminated array of cftypes
3446 *
2bb566cb
TH
3447 * Unregister @cfts. Files described by @cfts are removed from all
3448 * existing cgroups and all future cgroups won't have them either. This
3449 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3450 *
3451 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3452 * registered.
79578621 3453 */
2bb566cb 3454int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3455{
21a2d343 3456 int ret;
79578621 3457
01f6474c 3458 mutex_lock(&cgroup_mutex);
21a2d343 3459 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3460 mutex_unlock(&cgroup_mutex);
21a2d343 3461 return ret;
80b13586
TH
3462}
3463
8e3f6541
TH
3464/**
3465 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3466 * @ss: target cgroup subsystem
3467 * @cfts: zero-length name terminated array of cftypes
3468 *
3469 * Register @cfts to @ss. Files described by @cfts are created for all
3470 * existing cgroups to which @ss is attached and all future cgroups will
3471 * have them too. This function can be called anytime whether @ss is
3472 * attached or not.
3473 *
3474 * Returns 0 on successful registration, -errno on failure. Note that this
3475 * function currently returns 0 as long as @cfts registration is successful
3476 * even if some file creation attempts on existing cgroups fail.
3477 */
2cf669a5 3478static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3479{
9ccece80 3480 int ret;
8e3f6541 3481
fc5ed1e9 3482 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3483 return 0;
3484
dc5736ed
LZ
3485 if (!cfts || cfts[0].name[0] == '\0')
3486 return 0;
2bb566cb 3487
2bd59d48
TH
3488 ret = cgroup_init_cftypes(ss, cfts);
3489 if (ret)
3490 return ret;
79578621 3491
01f6474c 3492 mutex_lock(&cgroup_mutex);
21a2d343 3493
0adb0704 3494 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3495 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3496 if (ret)
21a2d343 3497 cgroup_rm_cftypes_locked(cfts);
79578621 3498
01f6474c 3499 mutex_unlock(&cgroup_mutex);
9ccece80 3500 return ret;
79578621
TH
3501}
3502
a8ddc821
TH
3503/**
3504 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3505 * @ss: target cgroup subsystem
3506 * @cfts: zero-length name terminated array of cftypes
3507 *
3508 * Similar to cgroup_add_cftypes() but the added files are only used for
3509 * the default hierarchy.
3510 */
3511int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3512{
3513 struct cftype *cft;
3514
3515 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3516 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3517 return cgroup_add_cftypes(ss, cfts);
3518}
3519
3520/**
3521 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3522 * @ss: target cgroup subsystem
3523 * @cfts: zero-length name terminated array of cftypes
3524 *
3525 * Similar to cgroup_add_cftypes() but the added files are only used for
3526 * the legacy hierarchies.
3527 */
2cf669a5
TH
3528int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3529{
a8ddc821
TH
3530 struct cftype *cft;
3531
e4b7037c
TH
3532 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3533 cft->flags |= __CFTYPE_NOT_ON_DFL;
2cf669a5
TH
3534 return cgroup_add_cftypes(ss, cfts);
3535}
3536
a043e3b2
LZ
3537/**
3538 * cgroup_task_count - count the number of tasks in a cgroup.
3539 * @cgrp: the cgroup in question
3540 *
3541 * Return the number of tasks in the cgroup.
3542 */
07bc356e 3543static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3544{
3545 int count = 0;
69d0206c 3546 struct cgrp_cset_link *link;
817929ec 3547
f0d9a5f1 3548 spin_lock_bh(&css_set_lock);
69d0206c
TH
3549 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3550 count += atomic_read(&link->cset->refcount);
f0d9a5f1 3551 spin_unlock_bh(&css_set_lock);
bbcb81d0
PM
3552 return count;
3553}
3554
53fa5261 3555/**
492eb21b 3556 * css_next_child - find the next child of a given css
c2931b70
TH
3557 * @pos: the current position (%NULL to initiate traversal)
3558 * @parent: css whose children to walk
53fa5261 3559 *
c2931b70 3560 * This function returns the next child of @parent and should be called
87fb54f1 3561 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3562 * that @parent and @pos are accessible. The next sibling is guaranteed to
3563 * be returned regardless of their states.
3564 *
3565 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3566 * css which finished ->css_online() is guaranteed to be visible in the
3567 * future iterations and will stay visible until the last reference is put.
3568 * A css which hasn't finished ->css_online() or already finished
3569 * ->css_offline() may show up during traversal. It's each subsystem's
3570 * responsibility to synchronize against on/offlining.
53fa5261 3571 */
c2931b70
TH
3572struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3573 struct cgroup_subsys_state *parent)
53fa5261 3574{
c2931b70 3575 struct cgroup_subsys_state *next;
53fa5261 3576
8353da1f 3577 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3578
3579 /*
de3f0341
TH
3580 * @pos could already have been unlinked from the sibling list.
3581 * Once a cgroup is removed, its ->sibling.next is no longer
3582 * updated when its next sibling changes. CSS_RELEASED is set when
3583 * @pos is taken off list, at which time its next pointer is valid,
3584 * and, as releases are serialized, the one pointed to by the next
3585 * pointer is guaranteed to not have started release yet. This
3586 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3587 * critical section, the one pointed to by its next pointer is
3588 * guaranteed to not have finished its RCU grace period even if we
3589 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3590 *
de3f0341
TH
3591 * If @pos has CSS_RELEASED set, its next pointer can't be
3592 * dereferenced; however, as each css is given a monotonically
3593 * increasing unique serial number and always appended to the
3594 * sibling list, the next one can be found by walking the parent's
3595 * children until the first css with higher serial number than
3596 * @pos's. While this path can be slower, it happens iff iteration
3597 * races against release and the race window is very small.
53fa5261 3598 */
3b287a50 3599 if (!pos) {
c2931b70
TH
3600 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3601 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3602 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3603 } else {
c2931b70 3604 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3605 if (next->serial_nr > pos->serial_nr)
3606 break;
53fa5261
TH
3607 }
3608
3b281afb
TH
3609 /*
3610 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3611 * the next sibling.
3b281afb 3612 */
c2931b70
TH
3613 if (&next->sibling != &parent->children)
3614 return next;
3b281afb 3615 return NULL;
53fa5261 3616}
53fa5261 3617
574bd9f7 3618/**
492eb21b 3619 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3620 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3621 * @root: css whose descendants to walk
574bd9f7 3622 *
492eb21b 3623 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3624 * to visit for pre-order traversal of @root's descendants. @root is
3625 * included in the iteration and the first node to be visited.
75501a6d 3626 *
87fb54f1
TH
3627 * While this function requires cgroup_mutex or RCU read locking, it
3628 * doesn't require the whole traversal to be contained in a single critical
3629 * section. This function will return the correct next descendant as long
3630 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3631 *
3632 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3633 * css which finished ->css_online() is guaranteed to be visible in the
3634 * future iterations and will stay visible until the last reference is put.
3635 * A css which hasn't finished ->css_online() or already finished
3636 * ->css_offline() may show up during traversal. It's each subsystem's
3637 * responsibility to synchronize against on/offlining.
574bd9f7 3638 */
492eb21b
TH
3639struct cgroup_subsys_state *
3640css_next_descendant_pre(struct cgroup_subsys_state *pos,
3641 struct cgroup_subsys_state *root)
574bd9f7 3642{
492eb21b 3643 struct cgroup_subsys_state *next;
574bd9f7 3644
8353da1f 3645 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3646
bd8815a6 3647 /* if first iteration, visit @root */
7805d000 3648 if (!pos)
bd8815a6 3649 return root;
574bd9f7
TH
3650
3651 /* visit the first child if exists */
492eb21b 3652 next = css_next_child(NULL, pos);
574bd9f7
TH
3653 if (next)
3654 return next;
3655
3656 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3657 while (pos != root) {
5c9d535b 3658 next = css_next_child(pos, pos->parent);
75501a6d 3659 if (next)
574bd9f7 3660 return next;
5c9d535b 3661 pos = pos->parent;
7805d000 3662 }
574bd9f7
TH
3663
3664 return NULL;
3665}
574bd9f7 3666
12a9d2fe 3667/**
492eb21b
TH
3668 * css_rightmost_descendant - return the rightmost descendant of a css
3669 * @pos: css of interest
12a9d2fe 3670 *
492eb21b
TH
3671 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3672 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3673 * subtree of @pos.
75501a6d 3674 *
87fb54f1
TH
3675 * While this function requires cgroup_mutex or RCU read locking, it
3676 * doesn't require the whole traversal to be contained in a single critical
3677 * section. This function will return the correct rightmost descendant as
3678 * long as @pos is accessible.
12a9d2fe 3679 */
492eb21b
TH
3680struct cgroup_subsys_state *
3681css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3682{
492eb21b 3683 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3684
8353da1f 3685 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3686
3687 do {
3688 last = pos;
3689 /* ->prev isn't RCU safe, walk ->next till the end */
3690 pos = NULL;
492eb21b 3691 css_for_each_child(tmp, last)
12a9d2fe
TH
3692 pos = tmp;
3693 } while (pos);
3694
3695 return last;
3696}
12a9d2fe 3697
492eb21b
TH
3698static struct cgroup_subsys_state *
3699css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3700{
492eb21b 3701 struct cgroup_subsys_state *last;
574bd9f7
TH
3702
3703 do {
3704 last = pos;
492eb21b 3705 pos = css_next_child(NULL, pos);
574bd9f7
TH
3706 } while (pos);
3707
3708 return last;
3709}
3710
3711/**
492eb21b 3712 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3713 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3714 * @root: css whose descendants to walk
574bd9f7 3715 *
492eb21b 3716 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3717 * to visit for post-order traversal of @root's descendants. @root is
3718 * included in the iteration and the last node to be visited.
75501a6d 3719 *
87fb54f1
TH
3720 * While this function requires cgroup_mutex or RCU read locking, it
3721 * doesn't require the whole traversal to be contained in a single critical
3722 * section. This function will return the correct next descendant as long
3723 * as both @pos and @cgroup are accessible and @pos is a descendant of
3724 * @cgroup.
c2931b70
TH
3725 *
3726 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3727 * css which finished ->css_online() is guaranteed to be visible in the
3728 * future iterations and will stay visible until the last reference is put.
3729 * A css which hasn't finished ->css_online() or already finished
3730 * ->css_offline() may show up during traversal. It's each subsystem's
3731 * responsibility to synchronize against on/offlining.
574bd9f7 3732 */
492eb21b
TH
3733struct cgroup_subsys_state *
3734css_next_descendant_post(struct cgroup_subsys_state *pos,
3735 struct cgroup_subsys_state *root)
574bd9f7 3736{
492eb21b 3737 struct cgroup_subsys_state *next;
574bd9f7 3738
8353da1f 3739 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3740
58b79a91
TH
3741 /* if first iteration, visit leftmost descendant which may be @root */
3742 if (!pos)
3743 return css_leftmost_descendant(root);
574bd9f7 3744
bd8815a6
TH
3745 /* if we visited @root, we're done */
3746 if (pos == root)
3747 return NULL;
3748
574bd9f7 3749 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3750 next = css_next_child(pos, pos->parent);
75501a6d 3751 if (next)
492eb21b 3752 return css_leftmost_descendant(next);
574bd9f7
TH
3753
3754 /* no sibling left, visit parent */
5c9d535b 3755 return pos->parent;
574bd9f7 3756}
574bd9f7 3757
f3d46500
TH
3758/**
3759 * css_has_online_children - does a css have online children
3760 * @css: the target css
3761 *
3762 * Returns %true if @css has any online children; otherwise, %false. This
3763 * function can be called from any context but the caller is responsible
3764 * for synchronizing against on/offlining as necessary.
3765 */
3766bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3767{
f3d46500
TH
3768 struct cgroup_subsys_state *child;
3769 bool ret = false;
cbc125ef
TH
3770
3771 rcu_read_lock();
f3d46500 3772 css_for_each_child(child, css) {
99bae5f9 3773 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3774 ret = true;
3775 break;
cbc125ef
TH
3776 }
3777 }
3778 rcu_read_unlock();
f3d46500 3779 return ret;
574bd9f7 3780}
574bd9f7 3781
0942eeee 3782/**
ecb9d535 3783 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
0942eeee
TH
3784 * @it: the iterator to advance
3785 *
3786 * Advance @it to the next css_set to walk.
d515876e 3787 */
ecb9d535 3788static void css_task_iter_advance_css_set(struct css_task_iter *it)
d515876e 3789{
0f0a2b4f 3790 struct list_head *l = it->cset_pos;
d515876e
TH
3791 struct cgrp_cset_link *link;
3792 struct css_set *cset;
3793
f0d9a5f1 3794 lockdep_assert_held(&css_set_lock);
ed27b9f7 3795
d515876e
TH
3796 /* Advance to the next non-empty css_set */
3797 do {
3798 l = l->next;
0f0a2b4f
TH
3799 if (l == it->cset_head) {
3800 it->cset_pos = NULL;
ecb9d535 3801 it->task_pos = NULL;
d515876e
TH
3802 return;
3803 }
3ebb2b6e
TH
3804
3805 if (it->ss) {
3806 cset = container_of(l, struct css_set,
3807 e_cset_node[it->ss->id]);
3808 } else {
3809 link = list_entry(l, struct cgrp_cset_link, cset_link);
3810 cset = link->cset;
3811 }
0de0942d 3812 } while (!css_set_populated(cset));
c7561128 3813
0f0a2b4f 3814 it->cset_pos = l;
c7561128
TH
3815
3816 if (!list_empty(&cset->tasks))
0f0a2b4f 3817 it->task_pos = cset->tasks.next;
c7561128 3818 else
0f0a2b4f
TH
3819 it->task_pos = cset->mg_tasks.next;
3820
3821 it->tasks_head = &cset->tasks;
3822 it->mg_tasks_head = &cset->mg_tasks;
ed27b9f7
TH
3823
3824 /*
3825 * We don't keep css_sets locked across iteration steps and thus
3826 * need to take steps to ensure that iteration can be resumed after
3827 * the lock is re-acquired. Iteration is performed at two levels -
3828 * css_sets and tasks in them.
3829 *
3830 * Once created, a css_set never leaves its cgroup lists, so a
3831 * pinned css_set is guaranteed to stay put and we can resume
3832 * iteration afterwards.
3833 *
3834 * Tasks may leave @cset across iteration steps. This is resolved
3835 * by registering each iterator with the css_set currently being
3836 * walked and making css_set_move_task() advance iterators whose
3837 * next task is leaving.
3838 */
3839 if (it->cur_cset) {
3840 list_del(&it->iters_node);
3841 put_css_set_locked(it->cur_cset);
3842 }
3843 get_css_set(cset);
3844 it->cur_cset = cset;
3845 list_add(&it->iters_node, &cset->task_iters);
d515876e
TH
3846}
3847
ecb9d535
TH
3848static void css_task_iter_advance(struct css_task_iter *it)
3849{
3850 struct list_head *l = it->task_pos;
3851
f0d9a5f1 3852 lockdep_assert_held(&css_set_lock);
ecb9d535
TH
3853 WARN_ON_ONCE(!l);
3854
3855 /*
3856 * Advance iterator to find next entry. cset->tasks is consumed
3857 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3858 * next cset.
3859 */
3860 l = l->next;
3861
3862 if (l == it->tasks_head)
3863 l = it->mg_tasks_head->next;
3864
3865 if (l == it->mg_tasks_head)
3866 css_task_iter_advance_css_set(it);
3867 else
3868 it->task_pos = l;
3869}
3870
0942eeee 3871/**
72ec7029
TH
3872 * css_task_iter_start - initiate task iteration
3873 * @css: the css to walk tasks of
0942eeee
TH
3874 * @it: the task iterator to use
3875 *
72ec7029
TH
3876 * Initiate iteration through the tasks of @css. The caller can call
3877 * css_task_iter_next() to walk through the tasks until the function
3878 * returns NULL. On completion of iteration, css_task_iter_end() must be
3879 * called.
0942eeee 3880 */
72ec7029
TH
3881void css_task_iter_start(struct cgroup_subsys_state *css,
3882 struct css_task_iter *it)
817929ec 3883{
56fde9e0
TH
3884 /* no one should try to iterate before mounting cgroups */
3885 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3886
ed27b9f7
TH
3887 memset(it, 0, sizeof(*it));
3888
f0d9a5f1 3889 spin_lock_bh(&css_set_lock);
c59cd3d8 3890
3ebb2b6e
TH
3891 it->ss = css->ss;
3892
3893 if (it->ss)
3894 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3895 else
3896 it->cset_pos = &css->cgroup->cset_links;
3897
0f0a2b4f 3898 it->cset_head = it->cset_pos;
c59cd3d8 3899
ecb9d535 3900 css_task_iter_advance_css_set(it);
ed27b9f7 3901
f0d9a5f1 3902 spin_unlock_bh(&css_set_lock);
817929ec
PM
3903}
3904
0942eeee 3905/**
72ec7029 3906 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3907 * @it: the task iterator being iterated
3908 *
3909 * The "next" function for task iteration. @it should have been
72ec7029
TH
3910 * initialized via css_task_iter_start(). Returns NULL when the iteration
3911 * reaches the end.
0942eeee 3912 */
72ec7029 3913struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec 3914{
d5745675 3915 if (it->cur_task) {
ed27b9f7 3916 put_task_struct(it->cur_task);
d5745675
TH
3917 it->cur_task = NULL;
3918 }
ed27b9f7 3919
f0d9a5f1 3920 spin_lock_bh(&css_set_lock);
ed27b9f7 3921
d5745675
TH
3922 if (it->task_pos) {
3923 it->cur_task = list_entry(it->task_pos, struct task_struct,
3924 cg_list);
3925 get_task_struct(it->cur_task);
3926 css_task_iter_advance(it);
3927 }
ed27b9f7 3928
f0d9a5f1 3929 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3930
3931 return it->cur_task;
817929ec
PM
3932}
3933
0942eeee 3934/**
72ec7029 3935 * css_task_iter_end - finish task iteration
0942eeee
TH
3936 * @it: the task iterator to finish
3937 *
72ec7029 3938 * Finish task iteration started by css_task_iter_start().
0942eeee 3939 */
72ec7029 3940void css_task_iter_end(struct css_task_iter *it)
31a7df01 3941{
ed27b9f7 3942 if (it->cur_cset) {
f0d9a5f1 3943 spin_lock_bh(&css_set_lock);
ed27b9f7
TH
3944 list_del(&it->iters_node);
3945 put_css_set_locked(it->cur_cset);
f0d9a5f1 3946 spin_unlock_bh(&css_set_lock);
ed27b9f7
TH
3947 }
3948
3949 if (it->cur_task)
3950 put_task_struct(it->cur_task);
31a7df01
CW
3951}
3952
3953/**
8cc99345
TH
3954 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3955 * @to: cgroup to which the tasks will be moved
3956 * @from: cgroup in which the tasks currently reside
31a7df01 3957 *
eaf797ab
TH
3958 * Locking rules between cgroup_post_fork() and the migration path
3959 * guarantee that, if a task is forking while being migrated, the new child
3960 * is guaranteed to be either visible in the source cgroup after the
3961 * parent's migration is complete or put into the target cgroup. No task
3962 * can slip out of migration through forking.
31a7df01 3963 */
8cc99345 3964int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3965{
952aaa12
TH
3966 LIST_HEAD(preloaded_csets);
3967 struct cgrp_cset_link *link;
72ec7029 3968 struct css_task_iter it;
e406d1cf 3969 struct task_struct *task;
952aaa12 3970 int ret;
31a7df01 3971
952aaa12 3972 mutex_lock(&cgroup_mutex);
31a7df01 3973
952aaa12 3974 /* all tasks in @from are being moved, all csets are source */
f0d9a5f1 3975 spin_lock_bh(&css_set_lock);
952aaa12
TH
3976 list_for_each_entry(link, &from->cset_links, cset_link)
3977 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
f0d9a5f1 3978 spin_unlock_bh(&css_set_lock);
31a7df01 3979
952aaa12
TH
3980 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3981 if (ret)
3982 goto out_err;
8cc99345 3983
952aaa12
TH
3984 /*
3985 * Migrate tasks one-by-one until @form is empty. This fails iff
3986 * ->can_attach() fails.
3987 */
e406d1cf 3988 do {
9d800df1 3989 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3990 task = css_task_iter_next(&it);
3991 if (task)
3992 get_task_struct(task);
3993 css_task_iter_end(&it);
3994
3995 if (task) {
9af2ec45 3996 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3997 put_task_struct(task);
3998 }
3999 } while (task && !ret);
952aaa12
TH
4000out_err:
4001 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 4002 mutex_unlock(&cgroup_mutex);
e406d1cf 4003 return ret;
8cc99345
TH
4004}
4005
bbcb81d0 4006/*
102a775e 4007 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
4008 *
4009 * Reading this file can return large amounts of data if a cgroup has
4010 * *lots* of attached tasks. So it may need several calls to read(),
4011 * but we cannot guarantee that the information we produce is correct
4012 * unless we produce it entirely atomically.
4013 *
bbcb81d0 4014 */
bbcb81d0 4015
24528255
LZ
4016/* which pidlist file are we talking about? */
4017enum cgroup_filetype {
4018 CGROUP_FILE_PROCS,
4019 CGROUP_FILE_TASKS,
4020};
4021
4022/*
4023 * A pidlist is a list of pids that virtually represents the contents of one
4024 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4025 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4026 * to the cgroup.
4027 */
4028struct cgroup_pidlist {
4029 /*
4030 * used to find which pidlist is wanted. doesn't change as long as
4031 * this particular list stays in the list.
4032 */
4033 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4034 /* array of xids */
4035 pid_t *list;
4036 /* how many elements the above list has */
4037 int length;
24528255
LZ
4038 /* each of these stored in a list by its cgroup */
4039 struct list_head links;
4040 /* pointer to the cgroup we belong to, for list removal purposes */
4041 struct cgroup *owner;
b1a21367
TH
4042 /* for delayed destruction */
4043 struct delayed_work destroy_dwork;
24528255
LZ
4044};
4045
d1d9fd33
BB
4046/*
4047 * The following two functions "fix" the issue where there are more pids
4048 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4049 * TODO: replace with a kernel-wide solution to this problem
4050 */
4051#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4052static void *pidlist_allocate(int count)
4053{
4054 if (PIDLIST_TOO_LARGE(count))
4055 return vmalloc(count * sizeof(pid_t));
4056 else
4057 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4058}
b1a21367 4059
d1d9fd33
BB
4060static void pidlist_free(void *p)
4061{
58794514 4062 kvfree(p);
d1d9fd33 4063}
d1d9fd33 4064
b1a21367
TH
4065/*
4066 * Used to destroy all pidlists lingering waiting for destroy timer. None
4067 * should be left afterwards.
4068 */
4069static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4070{
4071 struct cgroup_pidlist *l, *tmp_l;
4072
4073 mutex_lock(&cgrp->pidlist_mutex);
4074 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4075 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4076 mutex_unlock(&cgrp->pidlist_mutex);
4077
4078 flush_workqueue(cgroup_pidlist_destroy_wq);
4079 BUG_ON(!list_empty(&cgrp->pidlists));
4080}
4081
4082static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4083{
4084 struct delayed_work *dwork = to_delayed_work(work);
4085 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4086 destroy_dwork);
4087 struct cgroup_pidlist *tofree = NULL;
4088
4089 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4090
4091 /*
04502365
TH
4092 * Destroy iff we didn't get queued again. The state won't change
4093 * as destroy_dwork can only be queued while locked.
b1a21367 4094 */
04502365 4095 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4096 list_del(&l->links);
4097 pidlist_free(l->list);
4098 put_pid_ns(l->key.ns);
4099 tofree = l;
4100 }
4101
b1a21367
TH
4102 mutex_unlock(&l->owner->pidlist_mutex);
4103 kfree(tofree);
4104}
4105
bbcb81d0 4106/*
102a775e 4107 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4108 * Returns the number of unique elements.
bbcb81d0 4109 */
6ee211ad 4110static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4111{
102a775e 4112 int src, dest = 1;
102a775e
BB
4113
4114 /*
4115 * we presume the 0th element is unique, so i starts at 1. trivial
4116 * edge cases first; no work needs to be done for either
4117 */
4118 if (length == 0 || length == 1)
4119 return length;
4120 /* src and dest walk down the list; dest counts unique elements */
4121 for (src = 1; src < length; src++) {
4122 /* find next unique element */
4123 while (list[src] == list[src-1]) {
4124 src++;
4125 if (src == length)
4126 goto after;
4127 }
4128 /* dest always points to where the next unique element goes */
4129 list[dest] = list[src];
4130 dest++;
4131 }
4132after:
102a775e
BB
4133 return dest;
4134}
4135
afb2bc14
TH
4136/*
4137 * The two pid files - task and cgroup.procs - guaranteed that the result
4138 * is sorted, which forced this whole pidlist fiasco. As pid order is
4139 * different per namespace, each namespace needs differently sorted list,
4140 * making it impossible to use, for example, single rbtree of member tasks
4141 * sorted by task pointer. As pidlists can be fairly large, allocating one
4142 * per open file is dangerous, so cgroup had to implement shared pool of
4143 * pidlists keyed by cgroup and namespace.
4144 *
4145 * All this extra complexity was caused by the original implementation
4146 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4147 * want to do away with it. Explicitly scramble sort order if on the
4148 * default hierarchy so that no such expectation exists in the new
4149 * interface.
afb2bc14
TH
4150 *
4151 * Scrambling is done by swapping every two consecutive bits, which is
4152 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4153 */
4154static pid_t pid_fry(pid_t pid)
4155{
4156 unsigned a = pid & 0x55555555;
4157 unsigned b = pid & 0xAAAAAAAA;
4158
4159 return (a << 1) | (b >> 1);
4160}
4161
4162static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4163{
aa6ec29b 4164 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4165 return pid_fry(pid);
4166 else
4167 return pid;
4168}
4169
102a775e
BB
4170static int cmppid(const void *a, const void *b)
4171{
4172 return *(pid_t *)a - *(pid_t *)b;
4173}
4174
afb2bc14
TH
4175static int fried_cmppid(const void *a, const void *b)
4176{
4177 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4178}
4179
e6b81710
TH
4180static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4181 enum cgroup_filetype type)
4182{
4183 struct cgroup_pidlist *l;
4184 /* don't need task_nsproxy() if we're looking at ourself */
4185 struct pid_namespace *ns = task_active_pid_ns(current);
4186
4187 lockdep_assert_held(&cgrp->pidlist_mutex);
4188
4189 list_for_each_entry(l, &cgrp->pidlists, links)
4190 if (l->key.type == type && l->key.ns == ns)
4191 return l;
4192 return NULL;
4193}
4194
72a8cb30
BB
4195/*
4196 * find the appropriate pidlist for our purpose (given procs vs tasks)
4197 * returns with the lock on that pidlist already held, and takes care
4198 * of the use count, or returns NULL with no locks held if we're out of
4199 * memory.
4200 */
e6b81710
TH
4201static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4202 enum cgroup_filetype type)
72a8cb30
BB
4203{
4204 struct cgroup_pidlist *l;
b70cc5fd 4205
e6b81710
TH
4206 lockdep_assert_held(&cgrp->pidlist_mutex);
4207
4208 l = cgroup_pidlist_find(cgrp, type);
4209 if (l)
4210 return l;
4211
72a8cb30 4212 /* entry not found; create a new one */
f4f4be2b 4213 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4214 if (!l)
72a8cb30 4215 return l;
e6b81710 4216
b1a21367 4217 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4218 l->key.type = type;
e6b81710
TH
4219 /* don't need task_nsproxy() if we're looking at ourself */
4220 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4221 l->owner = cgrp;
4222 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4223 return l;
4224}
4225
102a775e
BB
4226/*
4227 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4228 */
72a8cb30
BB
4229static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4230 struct cgroup_pidlist **lp)
102a775e
BB
4231{
4232 pid_t *array;
4233 int length;
4234 int pid, n = 0; /* used for populating the array */
72ec7029 4235 struct css_task_iter it;
817929ec 4236 struct task_struct *tsk;
102a775e
BB
4237 struct cgroup_pidlist *l;
4238
4bac00d1
TH
4239 lockdep_assert_held(&cgrp->pidlist_mutex);
4240
102a775e
BB
4241 /*
4242 * If cgroup gets more users after we read count, we won't have
4243 * enough space - tough. This race is indistinguishable to the
4244 * caller from the case that the additional cgroup users didn't
4245 * show up until sometime later on.
4246 */
4247 length = cgroup_task_count(cgrp);
d1d9fd33 4248 array = pidlist_allocate(length);
102a775e
BB
4249 if (!array)
4250 return -ENOMEM;
4251 /* now, populate the array */
9d800df1 4252 css_task_iter_start(&cgrp->self, &it);
72ec7029 4253 while ((tsk = css_task_iter_next(&it))) {
102a775e 4254 if (unlikely(n == length))
817929ec 4255 break;
102a775e 4256 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4257 if (type == CGROUP_FILE_PROCS)
4258 pid = task_tgid_vnr(tsk);
4259 else
4260 pid = task_pid_vnr(tsk);
102a775e
BB
4261 if (pid > 0) /* make sure to only use valid results */
4262 array[n++] = pid;
817929ec 4263 }
72ec7029 4264 css_task_iter_end(&it);
102a775e
BB
4265 length = n;
4266 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4267 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4268 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4269 else
4270 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4271 if (type == CGROUP_FILE_PROCS)
6ee211ad 4272 length = pidlist_uniq(array, length);
e6b81710 4273
e6b81710 4274 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4275 if (!l) {
d1d9fd33 4276 pidlist_free(array);
72a8cb30 4277 return -ENOMEM;
102a775e 4278 }
e6b81710
TH
4279
4280 /* store array, freeing old if necessary */
d1d9fd33 4281 pidlist_free(l->list);
102a775e
BB
4282 l->list = array;
4283 l->length = length;
72a8cb30 4284 *lp = l;
102a775e 4285 return 0;
bbcb81d0
PM
4286}
4287
846c7bb0 4288/**
a043e3b2 4289 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4290 * @stats: cgroupstats to fill information into
4291 * @dentry: A dentry entry belonging to the cgroup for which stats have
4292 * been requested.
a043e3b2
LZ
4293 *
4294 * Build and fill cgroupstats so that taskstats can export it to user
4295 * space.
846c7bb0
BS
4296 */
4297int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4298{
2bd59d48 4299 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4300 struct cgroup *cgrp;
72ec7029 4301 struct css_task_iter it;
846c7bb0 4302 struct task_struct *tsk;
33d283be 4303
2bd59d48
TH
4304 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4305 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4306 kernfs_type(kn) != KERNFS_DIR)
4307 return -EINVAL;
4308
bad34660
LZ
4309 mutex_lock(&cgroup_mutex);
4310
846c7bb0 4311 /*
2bd59d48 4312 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4313 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4314 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4315 */
2bd59d48
TH
4316 rcu_read_lock();
4317 cgrp = rcu_dereference(kn->priv);
bad34660 4318 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4319 rcu_read_unlock();
bad34660 4320 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4321 return -ENOENT;
4322 }
bad34660 4323 rcu_read_unlock();
846c7bb0 4324
9d800df1 4325 css_task_iter_start(&cgrp->self, &it);
72ec7029 4326 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4327 switch (tsk->state) {
4328 case TASK_RUNNING:
4329 stats->nr_running++;
4330 break;
4331 case TASK_INTERRUPTIBLE:
4332 stats->nr_sleeping++;
4333 break;
4334 case TASK_UNINTERRUPTIBLE:
4335 stats->nr_uninterruptible++;
4336 break;
4337 case TASK_STOPPED:
4338 stats->nr_stopped++;
4339 break;
4340 default:
4341 if (delayacct_is_task_waiting_on_io(tsk))
4342 stats->nr_io_wait++;
4343 break;
4344 }
4345 }
72ec7029 4346 css_task_iter_end(&it);
846c7bb0 4347
bad34660 4348 mutex_unlock(&cgroup_mutex);
2bd59d48 4349 return 0;
846c7bb0
BS
4350}
4351
8f3ff208 4352
bbcb81d0 4353/*
102a775e 4354 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4355 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4356 * in the cgroup->l->list array.
bbcb81d0 4357 */
cc31edce 4358
102a775e 4359static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4360{
cc31edce
PM
4361 /*
4362 * Initially we receive a position value that corresponds to
4363 * one more than the last pid shown (or 0 on the first call or
4364 * after a seek to the start). Use a binary-search to find the
4365 * next pid to display, if any
4366 */
2bd59d48 4367 struct kernfs_open_file *of = s->private;
7da11279 4368 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4369 struct cgroup_pidlist *l;
7da11279 4370 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4371 int index = 0, pid = *pos;
4bac00d1
TH
4372 int *iter, ret;
4373
4374 mutex_lock(&cgrp->pidlist_mutex);
4375
4376 /*
5d22444f 4377 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4378 * after open. If the matching pidlist is around, we can use that.
5d22444f 4379 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4380 * could already have been destroyed.
4381 */
5d22444f
TH
4382 if (of->priv)
4383 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4384
4385 /*
4386 * Either this is the first start() after open or the matching
4387 * pidlist has been destroyed inbetween. Create a new one.
4388 */
5d22444f
TH
4389 if (!of->priv) {
4390 ret = pidlist_array_load(cgrp, type,
4391 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4392 if (ret)
4393 return ERR_PTR(ret);
4394 }
5d22444f 4395 l = of->priv;
cc31edce 4396
cc31edce 4397 if (pid) {
102a775e 4398 int end = l->length;
20777766 4399
cc31edce
PM
4400 while (index < end) {
4401 int mid = (index + end) / 2;
afb2bc14 4402 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4403 index = mid;
4404 break;
afb2bc14 4405 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4406 index = mid + 1;
4407 else
4408 end = mid;
4409 }
4410 }
4411 /* If we're off the end of the array, we're done */
102a775e 4412 if (index >= l->length)
cc31edce
PM
4413 return NULL;
4414 /* Update the abstract position to be the actual pid that we found */
102a775e 4415 iter = l->list + index;
afb2bc14 4416 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4417 return iter;
4418}
4419
102a775e 4420static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4421{
2bd59d48 4422 struct kernfs_open_file *of = s->private;
5d22444f 4423 struct cgroup_pidlist *l = of->priv;
62236858 4424
5d22444f
TH
4425 if (l)
4426 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4427 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4428 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4429}
4430
102a775e 4431static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4432{
2bd59d48 4433 struct kernfs_open_file *of = s->private;
5d22444f 4434 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4435 pid_t *p = v;
4436 pid_t *end = l->list + l->length;
cc31edce
PM
4437 /*
4438 * Advance to the next pid in the array. If this goes off the
4439 * end, we're done
4440 */
4441 p++;
4442 if (p >= end) {
4443 return NULL;
4444 } else {
7da11279 4445 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4446 return p;
4447 }
4448}
4449
102a775e 4450static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4451{
94ff212d
JP
4452 seq_printf(s, "%d\n", *(int *)v);
4453
4454 return 0;
cc31edce 4455}
bbcb81d0 4456
182446d0
TH
4457static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4458 struct cftype *cft)
81a6a5cd 4459{
182446d0 4460 return notify_on_release(css->cgroup);
81a6a5cd
PM
4461}
4462
182446d0
TH
4463static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4464 struct cftype *cft, u64 val)
6379c106 4465{
6379c106 4466 if (val)
182446d0 4467 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4468 else
182446d0 4469 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4470 return 0;
4471}
4472
182446d0
TH
4473static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4474 struct cftype *cft)
97978e6d 4475{
182446d0 4476 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4477}
4478
182446d0
TH
4479static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4480 struct cftype *cft, u64 val)
97978e6d
DL
4481{
4482 if (val)
182446d0 4483 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4484 else
182446d0 4485 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4486 return 0;
4487}
4488
a14c6874
TH
4489/* cgroup core interface files for the default hierarchy */
4490static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4491 {
d5c56ced 4492 .name = "cgroup.procs",
6f60eade 4493 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4494 .seq_start = cgroup_pidlist_start,
4495 .seq_next = cgroup_pidlist_next,
4496 .seq_stop = cgroup_pidlist_stop,
4497 .seq_show = cgroup_pidlist_show,
5d22444f 4498 .private = CGROUP_FILE_PROCS,
acbef755 4499 .write = cgroup_procs_write,
102a775e 4500 },
f8f22e53
TH
4501 {
4502 .name = "cgroup.controllers",
a14c6874 4503 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4504 .seq_show = cgroup_root_controllers_show,
4505 },
4506 {
4507 .name = "cgroup.controllers",
a14c6874 4508 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4509 .seq_show = cgroup_controllers_show,
4510 },
4511 {
4512 .name = "cgroup.subtree_control",
f8f22e53 4513 .seq_show = cgroup_subtree_control_show,
451af504 4514 .write = cgroup_subtree_control_write,
f8f22e53 4515 },
842b597e 4516 {
4a07c222 4517 .name = "cgroup.events",
a14c6874 4518 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4519 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4520 .seq_show = cgroup_events_show,
842b597e 4521 },
a14c6874
TH
4522 { } /* terminate */
4523};
d5c56ced 4524
a14c6874
TH
4525/* cgroup core interface files for the legacy hierarchies */
4526static struct cftype cgroup_legacy_base_files[] = {
4527 {
4528 .name = "cgroup.procs",
4529 .seq_start = cgroup_pidlist_start,
4530 .seq_next = cgroup_pidlist_next,
4531 .seq_stop = cgroup_pidlist_stop,
4532 .seq_show = cgroup_pidlist_show,
4533 .private = CGROUP_FILE_PROCS,
4534 .write = cgroup_procs_write,
a14c6874
TH
4535 },
4536 {
4537 .name = "cgroup.clone_children",
4538 .read_u64 = cgroup_clone_children_read,
4539 .write_u64 = cgroup_clone_children_write,
4540 },
4541 {
4542 .name = "cgroup.sane_behavior",
4543 .flags = CFTYPE_ONLY_ON_ROOT,
4544 .seq_show = cgroup_sane_behavior_show,
4545 },
d5c56ced
TH
4546 {
4547 .name = "tasks",
6612f05b
TH
4548 .seq_start = cgroup_pidlist_start,
4549 .seq_next = cgroup_pidlist_next,
4550 .seq_stop = cgroup_pidlist_stop,
4551 .seq_show = cgroup_pidlist_show,
5d22444f 4552 .private = CGROUP_FILE_TASKS,
acbef755 4553 .write = cgroup_tasks_write,
d5c56ced
TH
4554 },
4555 {
4556 .name = "notify_on_release",
d5c56ced
TH
4557 .read_u64 = cgroup_read_notify_on_release,
4558 .write_u64 = cgroup_write_notify_on_release,
4559 },
6e6ff25b
TH
4560 {
4561 .name = "release_agent",
a14c6874 4562 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4563 .seq_show = cgroup_release_agent_show,
451af504 4564 .write = cgroup_release_agent_write,
5f469907 4565 .max_write_len = PATH_MAX - 1,
6e6ff25b 4566 },
db0416b6 4567 { } /* terminate */
bbcb81d0
PM
4568};
4569
0c21ead1
TH
4570/*
4571 * css destruction is four-stage process.
4572 *
4573 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4574 * Implemented in kill_css().
4575 *
4576 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4577 * and thus css_tryget_online() is guaranteed to fail, the css can be
4578 * offlined by invoking offline_css(). After offlining, the base ref is
4579 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4580 *
4581 * 3. When the percpu_ref reaches zero, the only possible remaining
4582 * accessors are inside RCU read sections. css_release() schedules the
4583 * RCU callback.
4584 *
4585 * 4. After the grace period, the css can be freed. Implemented in
4586 * css_free_work_fn().
4587 *
4588 * It is actually hairier because both step 2 and 4 require process context
4589 * and thus involve punting to css->destroy_work adding two additional
4590 * steps to the already complex sequence.
4591 */
35ef10da 4592static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4593{
4594 struct cgroup_subsys_state *css =
35ef10da 4595 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4596 struct cgroup_subsys *ss = css->ss;
0c21ead1 4597 struct cgroup *cgrp = css->cgroup;
6f60eade 4598 struct cgroup_file *cfile;
48ddbe19 4599
9a1049da
TH
4600 percpu_ref_exit(&css->refcnt);
4601
6f60eade
TH
4602 list_for_each_entry(cfile, &css->files, node)
4603 kernfs_put(cfile->kn);
4604
01e58659 4605 if (ss) {
9d755d33 4606 /* css free path */
01e58659
VD
4607 int id = css->id;
4608
9d755d33
TH
4609 if (css->parent)
4610 css_put(css->parent);
0ae78e0b 4611
01e58659
VD
4612 ss->css_free(css);
4613 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4614 cgroup_put(cgrp);
4615 } else {
4616 /* cgroup free path */
4617 atomic_dec(&cgrp->root->nr_cgrps);
4618 cgroup_pidlist_destroy_all(cgrp);
971ff493 4619 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4620
d51f39b0 4621 if (cgroup_parent(cgrp)) {
9d755d33
TH
4622 /*
4623 * We get a ref to the parent, and put the ref when
4624 * this cgroup is being freed, so it's guaranteed
4625 * that the parent won't be destroyed before its
4626 * children.
4627 */
d51f39b0 4628 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4629 kernfs_put(cgrp->kn);
4630 kfree(cgrp);
4631 } else {
4632 /*
4633 * This is root cgroup's refcnt reaching zero,
4634 * which indicates that the root should be
4635 * released.
4636 */
4637 cgroup_destroy_root(cgrp->root);
4638 }
4639 }
48ddbe19
TH
4640}
4641
0c21ead1 4642static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4643{
4644 struct cgroup_subsys_state *css =
0c21ead1 4645 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4646
35ef10da 4647 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4648 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4649}
4650
25e15d83 4651static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4652{
4653 struct cgroup_subsys_state *css =
25e15d83 4654 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4655 struct cgroup_subsys *ss = css->ss;
9d755d33 4656 struct cgroup *cgrp = css->cgroup;
15a4c835 4657
1fed1b2e
TH
4658 mutex_lock(&cgroup_mutex);
4659
de3f0341 4660 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4661 list_del_rcu(&css->sibling);
4662
9d755d33
TH
4663 if (ss) {
4664 /* css release path */
01e58659 4665 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4666 if (ss->css_released)
4667 ss->css_released(css);
9d755d33
TH
4668 } else {
4669 /* cgroup release path */
9d755d33
TH
4670 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4671 cgrp->id = -1;
a4189487
LZ
4672
4673 /*
4674 * There are two control paths which try to determine
4675 * cgroup from dentry without going through kernfs -
4676 * cgroupstats_build() and css_tryget_online_from_dir().
4677 * Those are supported by RCU protecting clearing of
4678 * cgrp->kn->priv backpointer.
4679 */
4680 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4681 }
d3daf28d 4682
1fed1b2e
TH
4683 mutex_unlock(&cgroup_mutex);
4684
0c21ead1 4685 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4686}
4687
d3daf28d
TH
4688static void css_release(struct percpu_ref *ref)
4689{
4690 struct cgroup_subsys_state *css =
4691 container_of(ref, struct cgroup_subsys_state, refcnt);
4692
25e15d83
TH
4693 INIT_WORK(&css->destroy_work, css_release_work_fn);
4694 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4695}
4696
ddfcadab
TH
4697static void init_and_link_css(struct cgroup_subsys_state *css,
4698 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4699{
0cb51d71
TH
4700 lockdep_assert_held(&cgroup_mutex);
4701
ddfcadab
TH
4702 cgroup_get(cgrp);
4703
d5c419b6 4704 memset(css, 0, sizeof(*css));
bd89aabc 4705 css->cgroup = cgrp;
72c97e54 4706 css->ss = ss;
d5c419b6
TH
4707 INIT_LIST_HEAD(&css->sibling);
4708 INIT_LIST_HEAD(&css->children);
6f60eade 4709 INIT_LIST_HEAD(&css->files);
0cb51d71 4710 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4711
d51f39b0
TH
4712 if (cgroup_parent(cgrp)) {
4713 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4714 css_get(css->parent);
ddfcadab 4715 }
48ddbe19 4716
ca8bdcaf 4717 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4718}
4719
2a4ac633 4720/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4721static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4722{
623f926b 4723 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4724 int ret = 0;
4725
a31f2d3f
TH
4726 lockdep_assert_held(&cgroup_mutex);
4727
92fb9748 4728 if (ss->css_online)
eb95419b 4729 ret = ss->css_online(css);
ae7f164a 4730 if (!ret) {
eb95419b 4731 css->flags |= CSS_ONLINE;
aec25020 4732 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4733 }
b1929db4 4734 return ret;
a31f2d3f
TH
4735}
4736
2a4ac633 4737/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4738static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4739{
623f926b 4740 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4741
4742 lockdep_assert_held(&cgroup_mutex);
4743
4744 if (!(css->flags & CSS_ONLINE))
4745 return;
4746
d7eeac19 4747 if (ss->css_offline)
eb95419b 4748 ss->css_offline(css);
a31f2d3f 4749
eb95419b 4750 css->flags &= ~CSS_ONLINE;
e3297803 4751 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4752
4753 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4754}
4755
c81c925a
TH
4756/**
4757 * create_css - create a cgroup_subsys_state
4758 * @cgrp: the cgroup new css will be associated with
4759 * @ss: the subsys of new css
f63070d3 4760 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4761 *
4762 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4763 * css is online and installed in @cgrp with all interface files created if
4764 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4765 */
f63070d3
TH
4766static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4767 bool visible)
c81c925a 4768{
d51f39b0 4769 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4770 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4771 struct cgroup_subsys_state *css;
4772 int err;
4773
c81c925a
TH
4774 lockdep_assert_held(&cgroup_mutex);
4775
1fed1b2e 4776 css = ss->css_alloc(parent_css);
c81c925a
TH
4777 if (IS_ERR(css))
4778 return PTR_ERR(css);
4779
ddfcadab 4780 init_and_link_css(css, ss, cgrp);
a2bed820 4781
2aad2a86 4782 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4783 if (err)
3eb59ec6 4784 goto err_free_css;
c81c925a 4785
cf780b7d 4786 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4787 if (err < 0)
4788 goto err_free_percpu_ref;
4789 css->id = err;
c81c925a 4790
f63070d3 4791 if (visible) {
4df8dc90 4792 err = css_populate_dir(css, NULL);
f63070d3
TH
4793 if (err)
4794 goto err_free_id;
4795 }
15a4c835
TH
4796
4797 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4798 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4799 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4800
4801 err = online_css(css);
4802 if (err)
1fed1b2e 4803 goto err_list_del;
94419627 4804
c81c925a 4805 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4806 cgroup_parent(parent)) {
ed3d261b 4807 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4808 current->comm, current->pid, ss->name);
c81c925a 4809 if (!strcmp(ss->name, "memory"))
ed3d261b 4810 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4811 ss->warned_broken_hierarchy = true;
4812 }
4813
4814 return 0;
4815
1fed1b2e
TH
4816err_list_del:
4817 list_del_rcu(&css->sibling);
4df8dc90 4818 css_clear_dir(css, NULL);
15a4c835
TH
4819err_free_id:
4820 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4821err_free_percpu_ref:
9a1049da 4822 percpu_ref_exit(&css->refcnt);
3eb59ec6 4823err_free_css:
a2bed820 4824 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4825 return err;
4826}
4827
b3bfd983
TH
4828static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4829 umode_t mode)
ddbcc7e8 4830{
b11cfb58 4831 struct cgroup *parent, *cgrp, *tcgrp;
a9746d8d 4832 struct cgroup_root *root;
ddbcc7e8 4833 struct cgroup_subsys *ss;
2bd59d48 4834 struct kernfs_node *kn;
b11cfb58 4835 int level, ssid, ret;
ddbcc7e8 4836
71b1fb5c
AC
4837 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4838 */
4839 if (strchr(name, '\n'))
4840 return -EINVAL;
4841
a9746d8d
TH
4842 parent = cgroup_kn_lock_live(parent_kn);
4843 if (!parent)
4844 return -ENODEV;
4845 root = parent->root;
b11cfb58 4846 level = parent->level + 1;
ddbcc7e8 4847
0a950f65 4848 /* allocate the cgroup and its ID, 0 is reserved for the root */
b11cfb58
TH
4849 cgrp = kzalloc(sizeof(*cgrp) +
4850 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
ba0f4d76
TH
4851 if (!cgrp) {
4852 ret = -ENOMEM;
4853 goto out_unlock;
0ab02ca8
LZ
4854 }
4855
2aad2a86 4856 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4857 if (ret)
4858 goto out_free_cgrp;
4859
0ab02ca8
LZ
4860 /*
4861 * Temporarily set the pointer to NULL, so idr_find() won't return
4862 * a half-baked cgroup.
4863 */
cf780b7d 4864 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4865 if (cgrp->id < 0) {
ba0f4d76 4866 ret = -ENOMEM;
9d755d33 4867 goto out_cancel_ref;
976c06bc
TH
4868 }
4869
cc31edce 4870 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4871
9d800df1 4872 cgrp->self.parent = &parent->self;
ba0f4d76 4873 cgrp->root = root;
b11cfb58
TH
4874 cgrp->level = level;
4875
4876 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4877 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
ddbcc7e8 4878
b6abdb0e
LZ
4879 if (notify_on_release(parent))
4880 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4881
2260e7fc
TH
4882 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4883 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4884
2bd59d48 4885 /* create the directory */
e61734c5 4886 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4887 if (IS_ERR(kn)) {
ba0f4d76
TH
4888 ret = PTR_ERR(kn);
4889 goto out_free_id;
2bd59d48
TH
4890 }
4891 cgrp->kn = kn;
ddbcc7e8 4892
4e139afc 4893 /*
6f30558f
TH
4894 * This extra ref will be put in cgroup_free_fn() and guarantees
4895 * that @cgrp->kn is always accessible.
4e139afc 4896 */
6f30558f 4897 kernfs_get(kn);
ddbcc7e8 4898
0cb51d71 4899 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4900
4e139afc 4901 /* allocation complete, commit to creation */
d5c419b6 4902 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4903 atomic_inc(&root->nr_cgrps);
59f5296b 4904 cgroup_get(parent);
415cf07a 4905
0d80255e
TH
4906 /*
4907 * @cgrp is now fully operational. If something fails after this
4908 * point, it'll be released via the normal destruction path.
4909 */
6fa4918d 4910 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4911
ba0f4d76
TH
4912 ret = cgroup_kn_set_ugid(kn);
4913 if (ret)
4914 goto out_destroy;
49957f8e 4915
4df8dc90 4916 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4917 if (ret)
4918 goto out_destroy;
628f7cd4 4919
9d403e99 4920 /* let's create and online css's */
b85d2040 4921 for_each_subsys(ss, ssid) {
f392e51c 4922 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4923 ret = create_css(cgrp, ss,
4924 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4925 if (ret)
4926 goto out_destroy;
b85d2040 4927 }
a8638030 4928 }
ddbcc7e8 4929
bd53d617
TH
4930 /*
4931 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4932 * subtree_control from the parent. Each is configured manually.
bd53d617 4933 */
667c2491
TH
4934 if (!cgroup_on_dfl(cgrp)) {
4935 cgrp->subtree_control = parent->subtree_control;
4936 cgroup_refresh_child_subsys_mask(cgrp);
4937 }
2bd59d48 4938
2bd59d48 4939 kernfs_activate(kn);
ddbcc7e8 4940
ba0f4d76
TH
4941 ret = 0;
4942 goto out_unlock;
ddbcc7e8 4943
ba0f4d76 4944out_free_id:
6fa4918d 4945 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4946out_cancel_ref:
9a1049da 4947 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4948out_free_cgrp:
bd89aabc 4949 kfree(cgrp);
ba0f4d76 4950out_unlock:
a9746d8d 4951 cgroup_kn_unlock(parent_kn);
ba0f4d76 4952 return ret;
4b8b47eb 4953
ba0f4d76 4954out_destroy:
4b8b47eb 4955 cgroup_destroy_locked(cgrp);
ba0f4d76 4956 goto out_unlock;
ddbcc7e8
PM
4957}
4958
223dbc38
TH
4959/*
4960 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4961 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4962 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4963 */
4964static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4965{
223dbc38
TH
4966 struct cgroup_subsys_state *css =
4967 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4968
f20104de 4969 mutex_lock(&cgroup_mutex);
09a503ea 4970 offline_css(css);
f20104de 4971 mutex_unlock(&cgroup_mutex);
09a503ea 4972
09a503ea 4973 css_put(css);
d3daf28d
TH
4974}
4975
223dbc38
TH
4976/* css kill confirmation processing requires process context, bounce */
4977static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4978{
4979 struct cgroup_subsys_state *css =
4980 container_of(ref, struct cgroup_subsys_state, refcnt);
4981
223dbc38 4982 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4983 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4984}
4985
f392e51c
TH
4986/**
4987 * kill_css - destroy a css
4988 * @css: css to destroy
4989 *
4990 * This function initiates destruction of @css by removing cgroup interface
4991 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4992 * asynchronously once css_tryget_online() is guaranteed to fail and when
4993 * the reference count reaches zero, @css will be released.
f392e51c
TH
4994 */
4995static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4996{
01f6474c 4997 lockdep_assert_held(&cgroup_mutex);
94419627 4998
2bd59d48
TH
4999 /*
5000 * This must happen before css is disassociated with its cgroup.
5001 * See seq_css() for details.
5002 */
4df8dc90 5003 css_clear_dir(css, NULL);
3c14f8b4 5004
edae0c33
TH
5005 /*
5006 * Killing would put the base ref, but we need to keep it alive
5007 * until after ->css_offline().
5008 */
5009 css_get(css);
5010
5011 /*
5012 * cgroup core guarantees that, by the time ->css_offline() is
5013 * invoked, no new css reference will be given out via
ec903c0c 5014 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
5015 * proceed to offlining css's because percpu_ref_kill() doesn't
5016 * guarantee that the ref is seen as killed on all CPUs on return.
5017 *
5018 * Use percpu_ref_kill_and_confirm() to get notifications as each
5019 * css is confirmed to be seen as killed on all CPUs.
5020 */
5021 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
5022}
5023
5024/**
5025 * cgroup_destroy_locked - the first stage of cgroup destruction
5026 * @cgrp: cgroup to be destroyed
5027 *
5028 * css's make use of percpu refcnts whose killing latency shouldn't be
5029 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
5030 * guarantee that css_tryget_online() won't succeed by the time
5031 * ->css_offline() is invoked. To satisfy all the requirements,
5032 * destruction is implemented in the following two steps.
d3daf28d
TH
5033 *
5034 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5035 * userland visible parts and start killing the percpu refcnts of
5036 * css's. Set up so that the next stage will be kicked off once all
5037 * the percpu refcnts are confirmed to be killed.
5038 *
5039 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5040 * rest of destruction. Once all cgroup references are gone, the
5041 * cgroup is RCU-freed.
5042 *
5043 * This function implements s1. After this step, @cgrp is gone as far as
5044 * the userland is concerned and a new cgroup with the same name may be
5045 * created. As cgroup doesn't care about the names internally, this
5046 * doesn't cause any problem.
5047 */
42809dd4
TH
5048static int cgroup_destroy_locked(struct cgroup *cgrp)
5049 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5050{
2bd59d48 5051 struct cgroup_subsys_state *css;
1c6727af 5052 int ssid;
ddbcc7e8 5053
42809dd4
TH
5054 lockdep_assert_held(&cgroup_mutex);
5055
91486f61
TH
5056 /*
5057 * Only migration can raise populated from zero and we're already
5058 * holding cgroup_mutex.
5059 */
5060 if (cgroup_is_populated(cgrp))
ddbcc7e8 5061 return -EBUSY;
a043e3b2 5062
bb78a92f 5063 /*
d5c419b6
TH
5064 * Make sure there's no live children. We can't test emptiness of
5065 * ->self.children as dead children linger on it while being
5066 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5067 */
f3d46500 5068 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5069 return -EBUSY;
5070
455050d2
TH
5071 /*
5072 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5073 * creation by disabling cgroup_lock_live_group().
455050d2 5074 */
184faf32 5075 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5076
249f3468 5077 /* initiate massacre of all css's */
1c6727af
TH
5078 for_each_css(css, ssid, cgrp)
5079 kill_css(css);
455050d2 5080
455050d2 5081 /*
01f6474c
TH
5082 * Remove @cgrp directory along with the base files. @cgrp has an
5083 * extra ref on its kn.
f20104de 5084 */
01f6474c 5085 kernfs_remove(cgrp->kn);
f20104de 5086
d51f39b0 5087 check_for_release(cgroup_parent(cgrp));
2bd59d48 5088
249f3468 5089 /* put the base reference */
9d755d33 5090 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5091
ea15f8cc
TH
5092 return 0;
5093};
5094
2bd59d48 5095static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5096{
a9746d8d 5097 struct cgroup *cgrp;
2bd59d48 5098 int ret = 0;
42809dd4 5099
a9746d8d
TH
5100 cgrp = cgroup_kn_lock_live(kn);
5101 if (!cgrp)
5102 return 0;
42809dd4 5103
a9746d8d 5104 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5105
a9746d8d 5106 cgroup_kn_unlock(kn);
42809dd4 5107 return ret;
8e3f6541
TH
5108}
5109
2bd59d48
TH
5110static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5111 .remount_fs = cgroup_remount,
5112 .show_options = cgroup_show_options,
5113 .mkdir = cgroup_mkdir,
5114 .rmdir = cgroup_rmdir,
5115 .rename = cgroup_rename,
5116};
5117
15a4c835 5118static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5119{
ddbcc7e8 5120 struct cgroup_subsys_state *css;
cfe36bde
DC
5121
5122 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5123
648bb56d
TH
5124 mutex_lock(&cgroup_mutex);
5125
15a4c835 5126 idr_init(&ss->css_idr);
0adb0704 5127 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5128
3dd06ffa
TH
5129 /* Create the root cgroup state for this subsystem */
5130 ss->root = &cgrp_dfl_root;
5131 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5132 /* We don't handle early failures gracefully */
5133 BUG_ON(IS_ERR(css));
ddfcadab 5134 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5135
5136 /*
5137 * Root csses are never destroyed and we can't initialize
5138 * percpu_ref during early init. Disable refcnting.
5139 */
5140 css->flags |= CSS_NO_REF;
5141
15a4c835 5142 if (early) {
9395a450 5143 /* allocation can't be done safely during early init */
15a4c835
TH
5144 css->id = 1;
5145 } else {
5146 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5147 BUG_ON(css->id < 0);
5148 }
ddbcc7e8 5149
e8d55fde 5150 /* Update the init_css_set to contain a subsys
817929ec 5151 * pointer to this state - since the subsystem is
e8d55fde 5152 * newly registered, all tasks and hence the
3dd06ffa 5153 * init_css_set is in the subsystem's root cgroup. */
aec25020 5154 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5155
cb4a3167
AS
5156 have_fork_callback |= (bool)ss->fork << ss->id;
5157 have_exit_callback |= (bool)ss->exit << ss->id;
afcf6c8b 5158 have_free_callback |= (bool)ss->free << ss->id;
7e47682e 5159 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5160
e8d55fde
LZ
5161 /* At system boot, before all subsystems have been
5162 * registered, no tasks have been forked, so we don't
5163 * need to invoke fork callbacks here. */
5164 BUG_ON(!list_empty(&init_task.tasks));
5165
ae7f164a 5166 BUG_ON(online_css(css));
a8638030 5167
cf5d5941
BB
5168 mutex_unlock(&cgroup_mutex);
5169}
cf5d5941 5170
ddbcc7e8 5171/**
a043e3b2
LZ
5172 * cgroup_init_early - cgroup initialization at system boot
5173 *
5174 * Initialize cgroups at system boot, and initialize any
5175 * subsystems that request early init.
ddbcc7e8
PM
5176 */
5177int __init cgroup_init_early(void)
5178{
7b9a6ba5 5179 static struct cgroup_sb_opts __initdata opts;
30159ec7 5180 struct cgroup_subsys *ss;
ddbcc7e8 5181 int i;
30159ec7 5182
3dd06ffa 5183 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5184 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5185
a4ea1cc9 5186 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5187
3ed80a62 5188 for_each_subsys(ss, i) {
aec25020 5189 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5190 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5191 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5192 ss->id, ss->name);
073219e9
TH
5193 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5194 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5195
aec25020 5196 ss->id = i;
073219e9 5197 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5198 if (!ss->legacy_name)
5199 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5200
5201 if (ss->early_init)
15a4c835 5202 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5203 }
5204 return 0;
5205}
5206
a3e72739
TH
5207static unsigned long cgroup_disable_mask __initdata;
5208
ddbcc7e8 5209/**
a043e3b2
LZ
5210 * cgroup_init - cgroup initialization
5211 *
5212 * Register cgroup filesystem and /proc file, and initialize
5213 * any subsystems that didn't request early init.
ddbcc7e8
PM
5214 */
5215int __init cgroup_init(void)
5216{
30159ec7 5217 struct cgroup_subsys *ss;
0ac801fe 5218 unsigned long key;
035f4f51 5219 int ssid;
ddbcc7e8 5220
1ed13287 5221 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5222 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5223 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5224
54e7b4eb 5225 mutex_lock(&cgroup_mutex);
54e7b4eb 5226
82fe9b0d
TH
5227 /* Add init_css_set to the hash table */
5228 key = css_set_hash(init_css_set.subsys);
5229 hash_add(css_set_table, &init_css_set.hlist, key);
5230
3dd06ffa 5231 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5232
54e7b4eb
TH
5233 mutex_unlock(&cgroup_mutex);
5234
172a2c06 5235 for_each_subsys(ss, ssid) {
15a4c835
TH
5236 if (ss->early_init) {
5237 struct cgroup_subsys_state *css =
5238 init_css_set.subsys[ss->id];
5239
5240 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5241 GFP_KERNEL);
5242 BUG_ON(css->id < 0);
5243 } else {
5244 cgroup_init_subsys(ss, false);
5245 }
172a2c06 5246
2d8f243a
TH
5247 list_add_tail(&init_css_set.e_cset_node[ssid],
5248 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5249
5250 /*
c731ae1d
LZ
5251 * Setting dfl_root subsys_mask needs to consider the
5252 * disabled flag and cftype registration needs kmalloc,
5253 * both of which aren't available during early_init.
172a2c06 5254 */
a3e72739
TH
5255 if (cgroup_disable_mask & (1 << ssid)) {
5256 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5257 printk(KERN_INFO "Disabling %s control group subsystem\n",
5258 ss->name);
a8ddc821 5259 continue;
a3e72739 5260 }
a8ddc821
TH
5261
5262 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5263
5de4fa13
TH
5264 if (!ss->dfl_cftypes)
5265 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5266
a8ddc821
TH
5267 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5268 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5269 } else {
5270 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5271 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5272 }
295458e6
VD
5273
5274 if (ss->bind)
5275 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5276 }
5277
035f4f51
TH
5278 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5279 WARN_ON(register_filesystem(&cgroup_fs_type));
5280 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
ddbcc7e8 5281
2bd59d48 5282 return 0;
ddbcc7e8 5283}
b4f48b63 5284
e5fca243
TH
5285static int __init cgroup_wq_init(void)
5286{
5287 /*
5288 * There isn't much point in executing destruction path in
5289 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5290 * Use 1 for @max_active.
e5fca243
TH
5291 *
5292 * We would prefer to do this in cgroup_init() above, but that
5293 * is called before init_workqueues(): so leave this until after.
5294 */
1a11533f 5295 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5296 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5297
5298 /*
5299 * Used to destroy pidlists and separate to serve as flush domain.
5300 * Cap @max_active to 1 too.
5301 */
5302 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5303 0, 1);
5304 BUG_ON(!cgroup_pidlist_destroy_wq);
5305
e5fca243
TH
5306 return 0;
5307}
5308core_initcall(cgroup_wq_init);
5309
a424316c
PM
5310/*
5311 * proc_cgroup_show()
5312 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5313 * - Used for /proc/<pid>/cgroup.
a424316c 5314 */
006f4ac4
ZL
5315int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5316 struct pid *pid, struct task_struct *tsk)
a424316c 5317{
e61734c5 5318 char *buf, *path;
a424316c 5319 int retval;
3dd06ffa 5320 struct cgroup_root *root;
a424316c
PM
5321
5322 retval = -ENOMEM;
e61734c5 5323 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5324 if (!buf)
5325 goto out;
5326
a424316c 5327 mutex_lock(&cgroup_mutex);
f0d9a5f1 5328 spin_lock_bh(&css_set_lock);
a424316c 5329
985ed670 5330 for_each_root(root) {
a424316c 5331 struct cgroup_subsys *ss;
bd89aabc 5332 struct cgroup *cgrp;
b85d2040 5333 int ssid, count = 0;
a424316c 5334
a2dd4247 5335 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5336 continue;
5337
2c6ab6d2 5338 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5339 if (root != &cgrp_dfl_root)
5340 for_each_subsys(ss, ssid)
5341 if (root->subsys_mask & (1 << ssid))
5342 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5343 ss->legacy_name);
c6d57f33
PM
5344 if (strlen(root->name))
5345 seq_printf(m, "%sname=%s", count ? "," : "",
5346 root->name);
a424316c 5347 seq_putc(m, ':');
2e91fa7f 5348
7717f7ba 5349 cgrp = task_cgroup_from_root(tsk, root);
2e91fa7f
TH
5350
5351 /*
5352 * On traditional hierarchies, all zombie tasks show up as
5353 * belonging to the root cgroup. On the default hierarchy,
5354 * while a zombie doesn't show up in "cgroup.procs" and
5355 * thus can't be migrated, its /proc/PID/cgroup keeps
5356 * reporting the cgroup it belonged to before exiting. If
5357 * the cgroup is removed before the zombie is reaped,
5358 * " (deleted)" is appended to the cgroup path.
5359 */
5360 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5361 path = cgroup_path(cgrp, buf, PATH_MAX);
5362 if (!path) {
5363 retval = -ENAMETOOLONG;
5364 goto out_unlock;
5365 }
5366 } else {
5367 path = "/";
e61734c5 5368 }
2e91fa7f 5369
e61734c5 5370 seq_puts(m, path);
2e91fa7f
TH
5371
5372 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5373 seq_puts(m, " (deleted)\n");
5374 else
5375 seq_putc(m, '\n');
a424316c
PM
5376 }
5377
006f4ac4 5378 retval = 0;
a424316c 5379out_unlock:
f0d9a5f1 5380 spin_unlock_bh(&css_set_lock);
a424316c 5381 mutex_unlock(&cgroup_mutex);
a424316c
PM
5382 kfree(buf);
5383out:
5384 return retval;
5385}
5386
a424316c
PM
5387/* Display information about each subsystem and each hierarchy */
5388static int proc_cgroupstats_show(struct seq_file *m, void *v)
5389{
30159ec7 5390 struct cgroup_subsys *ss;
a424316c 5391 int i;
a424316c 5392
8bab8dde 5393 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5394 /*
5395 * ideally we don't want subsystems moving around while we do this.
5396 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5397 * subsys/hierarchy state.
5398 */
a424316c 5399 mutex_lock(&cgroup_mutex);
30159ec7
TH
5400
5401 for_each_subsys(ss, i)
2c6ab6d2 5402 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5403 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5404 atomic_read(&ss->root->nr_cgrps),
5405 cgroup_ssid_enabled(i));
30159ec7 5406
a424316c
PM
5407 mutex_unlock(&cgroup_mutex);
5408 return 0;
5409}
5410
5411static int cgroupstats_open(struct inode *inode, struct file *file)
5412{
9dce07f1 5413 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5414}
5415
828c0950 5416static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5417 .open = cgroupstats_open,
5418 .read = seq_read,
5419 .llseek = seq_lseek,
5420 .release = single_release,
5421};
5422
7e47682e
AS
5423static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5424{
5425 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5426 return &ss_priv[i - CGROUP_CANFORK_START];
5427 return NULL;
5428}
5429
5430static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5431{
5432 void **private = subsys_canfork_priv_p(ss_priv, i);
5433 return private ? *private : NULL;
5434}
5435
b4f48b63 5436/**
eaf797ab 5437 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5438 * @child: pointer to task_struct of forking parent process.
b4f48b63 5439 *
eaf797ab
TH
5440 * A task is associated with the init_css_set until cgroup_post_fork()
5441 * attaches it to the parent's css_set. Empty cg_list indicates that
5442 * @child isn't holding reference to its css_set.
b4f48b63
PM
5443 */
5444void cgroup_fork(struct task_struct *child)
5445{
eaf797ab 5446 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5447 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5448}
5449
7e47682e
AS
5450/**
5451 * cgroup_can_fork - called on a new task before the process is exposed
5452 * @child: the task in question.
5453 *
5454 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5455 * returns an error, the fork aborts with that error code. This allows for
5456 * a cgroup subsystem to conditionally allow or deny new forks.
5457 */
5458int cgroup_can_fork(struct task_struct *child,
5459 void *ss_priv[CGROUP_CANFORK_COUNT])
5460{
5461 struct cgroup_subsys *ss;
5462 int i, j, ret;
5463
5464 for_each_subsys_which(ss, i, &have_canfork_callback) {
5465 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5466 if (ret)
5467 goto out_revert;
5468 }
5469
5470 return 0;
5471
5472out_revert:
5473 for_each_subsys(ss, j) {
5474 if (j >= i)
5475 break;
5476 if (ss->cancel_fork)
5477 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5478 }
5479
5480 return ret;
5481}
5482
5483/**
5484 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5485 * @child: the task in question
5486 *
5487 * This calls the cancel_fork() callbacks if a fork failed *after*
5488 * cgroup_can_fork() succeded.
5489 */
5490void cgroup_cancel_fork(struct task_struct *child,
5491 void *ss_priv[CGROUP_CANFORK_COUNT])
5492{
5493 struct cgroup_subsys *ss;
5494 int i;
5495
5496 for_each_subsys(ss, i)
5497 if (ss->cancel_fork)
5498 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5499}
5500
817929ec 5501/**
a043e3b2
LZ
5502 * cgroup_post_fork - called on a new task after adding it to the task list
5503 * @child: the task in question
5504 *
5edee61e
TH
5505 * Adds the task to the list running through its css_set if necessary and
5506 * call the subsystem fork() callbacks. Has to be after the task is
5507 * visible on the task list in case we race with the first call to
0942eeee 5508 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5509 * list.
a043e3b2 5510 */
7e47682e
AS
5511void cgroup_post_fork(struct task_struct *child,
5512 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5513{
30159ec7 5514 struct cgroup_subsys *ss;
5edee61e
TH
5515 int i;
5516
3ce3230a 5517 /*
251f8c03 5518 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5519 * function sets use_task_css_set_links before grabbing
5520 * tasklist_lock and we just went through tasklist_lock to add
5521 * @child, it's guaranteed that either we see the set
5522 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5523 * @child during its iteration.
5524 *
5525 * If we won the race, @child is associated with %current's
f0d9a5f1 5526 * css_set. Grabbing css_set_lock guarantees both that the
eaf797ab
TH
5527 * association is stable, and, on completion of the parent's
5528 * migration, @child is visible in the source of migration or
5529 * already in the destination cgroup. This guarantee is necessary
5530 * when implementing operations which need to migrate all tasks of
5531 * a cgroup to another.
5532 *
251f8c03 5533 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5534 * will remain in init_css_set. This is safe because all tasks are
5535 * in the init_css_set before cg_links is enabled and there's no
5536 * operation which transfers all tasks out of init_css_set.
3ce3230a 5537 */
817929ec 5538 if (use_task_css_set_links) {
eaf797ab
TH
5539 struct css_set *cset;
5540
f0d9a5f1 5541 spin_lock_bh(&css_set_lock);
0e1d768f 5542 cset = task_css_set(current);
eaf797ab 5543 if (list_empty(&child->cg_list)) {
eaf797ab 5544 get_css_set(cset);
f6d7d049 5545 css_set_move_task(child, NULL, cset, false);
eaf797ab 5546 }
f0d9a5f1 5547 spin_unlock_bh(&css_set_lock);
817929ec 5548 }
5edee61e
TH
5549
5550 /*
5551 * Call ss->fork(). This must happen after @child is linked on
5552 * css_set; otherwise, @child might change state between ->fork()
5553 * and addition to css_set.
5554 */
cb4a3167 5555 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5556 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5557}
5edee61e 5558
b4f48b63
PM
5559/**
5560 * cgroup_exit - detach cgroup from exiting task
5561 * @tsk: pointer to task_struct of exiting process
5562 *
5563 * Description: Detach cgroup from @tsk and release it.
5564 *
5565 * Note that cgroups marked notify_on_release force every task in
5566 * them to take the global cgroup_mutex mutex when exiting.
5567 * This could impact scaling on very large systems. Be reluctant to
5568 * use notify_on_release cgroups where very high task exit scaling
5569 * is required on large systems.
5570 *
0e1d768f
TH
5571 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5572 * call cgroup_exit() while the task is still competent to handle
5573 * notify_on_release(), then leave the task attached to the root cgroup in
5574 * each hierarchy for the remainder of its exit. No need to bother with
5575 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5576 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5577 */
1ec41830 5578void cgroup_exit(struct task_struct *tsk)
b4f48b63 5579{
30159ec7 5580 struct cgroup_subsys *ss;
5abb8855 5581 struct css_set *cset;
d41d5a01 5582 int i;
817929ec
PM
5583
5584 /*
0e1d768f 5585 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5586 * with us, we can check css_set and cg_list without synchronization.
817929ec 5587 */
0de0942d
TH
5588 cset = task_css_set(tsk);
5589
817929ec 5590 if (!list_empty(&tsk->cg_list)) {
f0d9a5f1 5591 spin_lock_bh(&css_set_lock);
f6d7d049 5592 css_set_move_task(tsk, cset, NULL, false);
f0d9a5f1 5593 spin_unlock_bh(&css_set_lock);
2e91fa7f
TH
5594 } else {
5595 get_css_set(cset);
817929ec
PM
5596 }
5597
cb4a3167 5598 /* see cgroup_post_fork() for details */
2e91fa7f
TH
5599 for_each_subsys_which(ss, i, &have_exit_callback)
5600 ss->exit(tsk);
5601}
30159ec7 5602
2e91fa7f
TH
5603void cgroup_free(struct task_struct *task)
5604{
5605 struct css_set *cset = task_css_set(task);
afcf6c8b
TH
5606 struct cgroup_subsys *ss;
5607 int ssid;
5608
5609 for_each_subsys_which(ss, ssid, &have_free_callback)
5610 ss->free(task);
d41d5a01 5611
2e91fa7f 5612 put_css_set(cset);
b4f48b63 5613}
697f4161 5614
bd89aabc 5615static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5616{
27bd4dbb 5617 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5618 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5619 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5620}
5621
81a6a5cd
PM
5622/*
5623 * Notify userspace when a cgroup is released, by running the
5624 * configured release agent with the name of the cgroup (path
5625 * relative to the root of cgroup file system) as the argument.
5626 *
5627 * Most likely, this user command will try to rmdir this cgroup.
5628 *
5629 * This races with the possibility that some other task will be
5630 * attached to this cgroup before it is removed, or that some other
5631 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5632 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5633 * unused, and this cgroup will be reprieved from its death sentence,
5634 * to continue to serve a useful existence. Next time it's released,
5635 * we will get notified again, if it still has 'notify_on_release' set.
5636 *
5637 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5638 * means only wait until the task is successfully execve()'d. The
5639 * separate release agent task is forked by call_usermodehelper(),
5640 * then control in this thread returns here, without waiting for the
5641 * release agent task. We don't bother to wait because the caller of
5642 * this routine has no use for the exit status of the release agent
5643 * task, so no sense holding our caller up for that.
81a6a5cd 5644 */
81a6a5cd
PM
5645static void cgroup_release_agent(struct work_struct *work)
5646{
971ff493
ZL
5647 struct cgroup *cgrp =
5648 container_of(work, struct cgroup, release_agent_work);
5649 char *pathbuf = NULL, *agentbuf = NULL, *path;
5650 char *argv[3], *envp[3];
5651
81a6a5cd 5652 mutex_lock(&cgroup_mutex);
971ff493
ZL
5653
5654 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5655 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5656 if (!pathbuf || !agentbuf)
5657 goto out;
5658
5659 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5660 if (!path)
5661 goto out;
5662
5663 argv[0] = agentbuf;
5664 argv[1] = path;
5665 argv[2] = NULL;
5666
5667 /* minimal command environment */
5668 envp[0] = "HOME=/";
5669 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5670 envp[2] = NULL;
5671
81a6a5cd 5672 mutex_unlock(&cgroup_mutex);
971ff493 5673 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5674 goto out_free;
971ff493 5675out:
81a6a5cd 5676 mutex_unlock(&cgroup_mutex);
3e2cd91a 5677out_free:
971ff493
ZL
5678 kfree(agentbuf);
5679 kfree(pathbuf);
81a6a5cd 5680}
8bab8dde
PM
5681
5682static int __init cgroup_disable(char *str)
5683{
30159ec7 5684 struct cgroup_subsys *ss;
8bab8dde 5685 char *token;
30159ec7 5686 int i;
8bab8dde
PM
5687
5688 while ((token = strsep(&str, ",")) != NULL) {
5689 if (!*token)
5690 continue;
be45c900 5691
3ed80a62 5692 for_each_subsys(ss, i) {
3e1d2eed
TH
5693 if (strcmp(token, ss->name) &&
5694 strcmp(token, ss->legacy_name))
5695 continue;
a3e72739 5696 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5697 }
5698 }
5699 return 1;
5700}
5701__setup("cgroup_disable=", cgroup_disable);
38460b48 5702
b77d7b60 5703/**
ec903c0c 5704 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5705 * @dentry: directory dentry of interest
5706 * @ss: subsystem of interest
b77d7b60 5707 *
5a17f543
TH
5708 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5709 * to get the corresponding css and return it. If such css doesn't exist
5710 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5711 */
ec903c0c
TH
5712struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5713 struct cgroup_subsys *ss)
e5d1367f 5714{
2bd59d48
TH
5715 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5716 struct cgroup_subsys_state *css = NULL;
e5d1367f 5717 struct cgroup *cgrp;
e5d1367f 5718
35cf0836 5719 /* is @dentry a cgroup dir? */
2bd59d48
TH
5720 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5721 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5722 return ERR_PTR(-EBADF);
5723
5a17f543
TH
5724 rcu_read_lock();
5725
2bd59d48
TH
5726 /*
5727 * This path doesn't originate from kernfs and @kn could already
5728 * have been or be removed at any point. @kn->priv is RCU
a4189487 5729 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5730 */
5731 cgrp = rcu_dereference(kn->priv);
5732 if (cgrp)
5733 css = cgroup_css(cgrp, ss);
5a17f543 5734
ec903c0c 5735 if (!css || !css_tryget_online(css))
5a17f543
TH
5736 css = ERR_PTR(-ENOENT);
5737
5738 rcu_read_unlock();
5739 return css;
e5d1367f 5740}
e5d1367f 5741
1cb650b9
LZ
5742/**
5743 * css_from_id - lookup css by id
5744 * @id: the cgroup id
5745 * @ss: cgroup subsys to be looked into
5746 *
5747 * Returns the css if there's valid one with @id, otherwise returns NULL.
5748 * Should be called under rcu_read_lock().
5749 */
5750struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5751{
6fa4918d 5752 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5753 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5754}
5755
fe693435 5756#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5757static struct cgroup_subsys_state *
5758debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5759{
5760 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5761
5762 if (!css)
5763 return ERR_PTR(-ENOMEM);
5764
5765 return css;
5766}
5767
eb95419b 5768static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5769{
eb95419b 5770 kfree(css);
fe693435
PM
5771}
5772
182446d0
TH
5773static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5774 struct cftype *cft)
fe693435 5775{
182446d0 5776 return cgroup_task_count(css->cgroup);
fe693435
PM
5777}
5778
182446d0
TH
5779static u64 current_css_set_read(struct cgroup_subsys_state *css,
5780 struct cftype *cft)
fe693435
PM
5781{
5782 return (u64)(unsigned long)current->cgroups;
5783}
5784
182446d0 5785static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5786 struct cftype *cft)
fe693435
PM
5787{
5788 u64 count;
5789
5790 rcu_read_lock();
a8ad805c 5791 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5792 rcu_read_unlock();
5793 return count;
5794}
5795
2da8ca82 5796static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5797{
69d0206c 5798 struct cgrp_cset_link *link;
5abb8855 5799 struct css_set *cset;
e61734c5
TH
5800 char *name_buf;
5801
5802 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5803 if (!name_buf)
5804 return -ENOMEM;
7717f7ba 5805
f0d9a5f1 5806 spin_lock_bh(&css_set_lock);
7717f7ba 5807 rcu_read_lock();
5abb8855 5808 cset = rcu_dereference(current->cgroups);
69d0206c 5809 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5810 struct cgroup *c = link->cgrp;
7717f7ba 5811
a2dd4247 5812 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5813 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5814 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5815 }
5816 rcu_read_unlock();
f0d9a5f1 5817 spin_unlock_bh(&css_set_lock);
e61734c5 5818 kfree(name_buf);
7717f7ba
PM
5819 return 0;
5820}
5821
5822#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5823static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5824{
2da8ca82 5825 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5826 struct cgrp_cset_link *link;
7717f7ba 5827
f0d9a5f1 5828 spin_lock_bh(&css_set_lock);
182446d0 5829 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5830 struct css_set *cset = link->cset;
7717f7ba
PM
5831 struct task_struct *task;
5832 int count = 0;
c7561128 5833
5abb8855 5834 seq_printf(seq, "css_set %p\n", cset);
c7561128 5835
5abb8855 5836 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5837 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5838 goto overflow;
5839 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5840 }
5841
5842 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5843 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5844 goto overflow;
5845 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5846 }
c7561128
TH
5847 continue;
5848 overflow:
5849 seq_puts(seq, " ...\n");
7717f7ba 5850 }
f0d9a5f1 5851 spin_unlock_bh(&css_set_lock);
7717f7ba
PM
5852 return 0;
5853}
5854
182446d0 5855static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5856{
27bd4dbb 5857 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5858 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5859}
5860
5861static struct cftype debug_files[] = {
fe693435
PM
5862 {
5863 .name = "taskcount",
5864 .read_u64 = debug_taskcount_read,
5865 },
5866
5867 {
5868 .name = "current_css_set",
5869 .read_u64 = current_css_set_read,
5870 },
5871
5872 {
5873 .name = "current_css_set_refcount",
5874 .read_u64 = current_css_set_refcount_read,
5875 },
5876
7717f7ba
PM
5877 {
5878 .name = "current_css_set_cg_links",
2da8ca82 5879 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5880 },
5881
5882 {
5883 .name = "cgroup_css_links",
2da8ca82 5884 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5885 },
5886
fe693435
PM
5887 {
5888 .name = "releasable",
5889 .read_u64 = releasable_read,
5890 },
fe693435 5891
4baf6e33
TH
5892 { } /* terminate */
5893};
fe693435 5894
073219e9 5895struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5896 .css_alloc = debug_css_alloc,
5897 .css_free = debug_css_free,
5577964e 5898 .legacy_cftypes = debug_files,
fe693435
PM
5899};
5900#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.076121 seconds and 5 git commands to generate.