cgroup: add seq_file forward declaration for struct cftype
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
d59cfc09 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
d59cfc09
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
110 rcu_lockdep_assert(rcu_read_lock_held() || \
111 lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
ddbcc7e8 142/*
3dd06ffa 143 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
144 * unattached - it never has more than a single cgroup, and all tasks are
145 * part of that cgroup.
ddbcc7e8 146 */
a2dd4247 147struct cgroup_root cgrp_dfl_root;
9871bf95 148
a2dd4247
TH
149/*
150 * The default hierarchy always exists but is hidden until mounted for the
151 * first time. This is for backward compatibility.
152 */
153static bool cgrp_dfl_root_visible;
ddbcc7e8 154
a8ddc821
TH
155/*
156 * Set by the boot param of the same name and makes subsystems with NULL
157 * ->dfl_files to use ->legacy_files on the default hierarchy.
158 */
159static bool cgroup_legacy_files_on_dfl;
160
5533e011 161/* some controllers are not supported in the default hierarchy */
8ab456ac 162static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 163
ddbcc7e8
PM
164/* The list of hierarchy roots */
165
9871bf95
TH
166static LIST_HEAD(cgroup_roots);
167static int cgroup_root_count;
ddbcc7e8 168
3417ae1f 169/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 170static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 171
794611a1 172/*
0cb51d71
TH
173 * Assign a monotonically increasing serial number to csses. It guarantees
174 * cgroups with bigger numbers are newer than those with smaller numbers.
175 * Also, as csses are always appended to the parent's ->children list, it
176 * guarantees that sibling csses are always sorted in the ascending serial
177 * number order on the list. Protected by cgroup_mutex.
794611a1 178 */
0cb51d71 179static u64 css_serial_nr_next = 1;
794611a1 180
ddbcc7e8 181/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
182 * check for fork/exit handlers to call. This avoids us having to do
183 * extra work in the fork/exit path if none of the subsystems need to
184 * be called.
ddbcc7e8 185 */
8947f9d5 186static int need_forkexit_callback __read_mostly;
ddbcc7e8 187
a14c6874
TH
188static struct cftype cgroup_dfl_base_files[];
189static struct cftype cgroup_legacy_base_files[];
628f7cd4 190
3dd06ffa 191static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 192 unsigned long ss_mask);
42809dd4 193static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
194static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
195 bool visible);
9d755d33 196static void css_release(struct percpu_ref *ref);
f8f22e53 197static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
198static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
199 bool is_add);
42809dd4 200
6fa4918d
TH
201/* IDR wrappers which synchronize using cgroup_idr_lock */
202static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
203 gfp_t gfp_mask)
204{
205 int ret;
206
207 idr_preload(gfp_mask);
54504e97 208 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 209 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 210 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
211 idr_preload_end();
212 return ret;
213}
214
215static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
216{
217 void *ret;
218
54504e97 219 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 220 ret = idr_replace(idr, ptr, id);
54504e97 221 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
222 return ret;
223}
224
225static void cgroup_idr_remove(struct idr *idr, int id)
226{
54504e97 227 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 228 idr_remove(idr, id);
54504e97 229 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
230}
231
d51f39b0
TH
232static struct cgroup *cgroup_parent(struct cgroup *cgrp)
233{
234 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
235
236 if (parent_css)
237 return container_of(parent_css, struct cgroup, self);
238 return NULL;
239}
240
95109b62
TH
241/**
242 * cgroup_css - obtain a cgroup's css for the specified subsystem
243 * @cgrp: the cgroup of interest
9d800df1 244 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 245 *
ca8bdcaf
TH
246 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
247 * function must be called either under cgroup_mutex or rcu_read_lock() and
248 * the caller is responsible for pinning the returned css if it wants to
249 * keep accessing it outside the said locks. This function may return
250 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
251 */
252static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 253 struct cgroup_subsys *ss)
95109b62 254{
ca8bdcaf 255 if (ss)
aec25020 256 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 257 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 258 else
9d800df1 259 return &cgrp->self;
95109b62 260}
42809dd4 261
aec3dfcb
TH
262/**
263 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
264 * @cgrp: the cgroup of interest
9d800df1 265 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 266 *
d0f702e6 267 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
268 * as the matching css of the nearest ancestor including self which has @ss
269 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
270 * function is guaranteed to return non-NULL css.
271 */
272static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
273 struct cgroup_subsys *ss)
274{
275 lockdep_assert_held(&cgroup_mutex);
276
277 if (!ss)
9d800df1 278 return &cgrp->self;
aec3dfcb
TH
279
280 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
281 return NULL;
282
eeecbd19
TH
283 /*
284 * This function is used while updating css associations and thus
285 * can't test the csses directly. Use ->child_subsys_mask.
286 */
d51f39b0
TH
287 while (cgroup_parent(cgrp) &&
288 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
289 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
290
291 return cgroup_css(cgrp, ss);
95109b62 292}
42809dd4 293
eeecbd19
TH
294/**
295 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
296 * @cgrp: the cgroup of interest
297 * @ss: the subsystem of interest
298 *
299 * Find and get the effective css of @cgrp for @ss. The effective css is
300 * defined as the matching css of the nearest ancestor including self which
301 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
302 * the root css is returned, so this function always returns a valid css.
303 * The returned css must be put using css_put().
304 */
305struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
306 struct cgroup_subsys *ss)
307{
308 struct cgroup_subsys_state *css;
309
310 rcu_read_lock();
311
312 do {
313 css = cgroup_css(cgrp, ss);
314
315 if (css && css_tryget_online(css))
316 goto out_unlock;
317 cgrp = cgroup_parent(cgrp);
318 } while (cgrp);
319
320 css = init_css_set.subsys[ss->id];
321 css_get(css);
322out_unlock:
323 rcu_read_unlock();
324 return css;
325}
326
ddbcc7e8 327/* convenient tests for these bits */
54766d4a 328static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 329{
184faf32 330 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
331}
332
b4168640 333struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 334{
2bd59d48 335 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 336 struct cftype *cft = of_cft(of);
2bd59d48
TH
337
338 /*
339 * This is open and unprotected implementation of cgroup_css().
340 * seq_css() is only called from a kernfs file operation which has
341 * an active reference on the file. Because all the subsystem
342 * files are drained before a css is disassociated with a cgroup,
343 * the matching css from the cgroup's subsys table is guaranteed to
344 * be and stay valid until the enclosing operation is complete.
345 */
346 if (cft->ss)
347 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
348 else
9d800df1 349 return &cgrp->self;
59f5296b 350}
b4168640 351EXPORT_SYMBOL_GPL(of_css);
59f5296b 352
78574cf9
LZ
353/**
354 * cgroup_is_descendant - test ancestry
355 * @cgrp: the cgroup to be tested
356 * @ancestor: possible ancestor of @cgrp
357 *
358 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
359 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
360 * and @ancestor are accessible.
361 */
362bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
363{
364 while (cgrp) {
365 if (cgrp == ancestor)
366 return true;
d51f39b0 367 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
368 }
369 return false;
370}
ddbcc7e8 371
e9685a03 372static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 373{
bd89aabc 374 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
375}
376
1c6727af
TH
377/**
378 * for_each_css - iterate all css's of a cgroup
379 * @css: the iteration cursor
380 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
381 * @cgrp: the target cgroup to iterate css's of
382 *
aec3dfcb 383 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
384 */
385#define for_each_css(css, ssid, cgrp) \
386 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
387 if (!((css) = rcu_dereference_check( \
388 (cgrp)->subsys[(ssid)], \
389 lockdep_is_held(&cgroup_mutex)))) { } \
390 else
391
aec3dfcb
TH
392/**
393 * for_each_e_css - iterate all effective css's of a cgroup
394 * @css: the iteration cursor
395 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
396 * @cgrp: the target cgroup to iterate css's of
397 *
398 * Should be called under cgroup_[tree_]mutex.
399 */
400#define for_each_e_css(css, ssid, cgrp) \
401 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
402 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
403 ; \
404 else
405
30159ec7 406/**
3ed80a62 407 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 408 * @ss: the iteration cursor
780cd8b3 409 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 410 */
780cd8b3 411#define for_each_subsys(ss, ssid) \
3ed80a62
TH
412 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
413 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 414
985ed670
TH
415/* iterate across the hierarchies */
416#define for_each_root(root) \
5549c497 417 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 418
f8f22e53
TH
419/* iterate over child cgrps, lock should be held throughout iteration */
420#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 421 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 422 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
423 cgroup_is_dead(child); })) \
424 ; \
425 else
7ae1bad9 426
81a6a5cd 427static void cgroup_release_agent(struct work_struct *work);
bd89aabc 428static void check_for_release(struct cgroup *cgrp);
81a6a5cd 429
69d0206c
TH
430/*
431 * A cgroup can be associated with multiple css_sets as different tasks may
432 * belong to different cgroups on different hierarchies. In the other
433 * direction, a css_set is naturally associated with multiple cgroups.
434 * This M:N relationship is represented by the following link structure
435 * which exists for each association and allows traversing the associations
436 * from both sides.
437 */
438struct cgrp_cset_link {
439 /* the cgroup and css_set this link associates */
440 struct cgroup *cgrp;
441 struct css_set *cset;
442
443 /* list of cgrp_cset_links anchored at cgrp->cset_links */
444 struct list_head cset_link;
445
446 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
447 struct list_head cgrp_link;
817929ec
PM
448};
449
172a2c06
TH
450/*
451 * The default css_set - used by init and its children prior to any
817929ec
PM
452 * hierarchies being mounted. It contains a pointer to the root state
453 * for each subsystem. Also used to anchor the list of css_sets. Not
454 * reference-counted, to improve performance when child cgroups
455 * haven't been created.
456 */
5024ae29 457struct css_set init_css_set = {
172a2c06
TH
458 .refcount = ATOMIC_INIT(1),
459 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
460 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
461 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
462 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
463 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
464};
817929ec 465
172a2c06 466static int css_set_count = 1; /* 1 for init_css_set */
817929ec 467
842b597e
TH
468/**
469 * cgroup_update_populated - updated populated count of a cgroup
470 * @cgrp: the target cgroup
471 * @populated: inc or dec populated count
472 *
473 * @cgrp is either getting the first task (css_set) or losing the last.
474 * Update @cgrp->populated_cnt accordingly. The count is propagated
475 * towards root so that a given cgroup's populated_cnt is zero iff the
476 * cgroup and all its descendants are empty.
477 *
478 * @cgrp's interface file "cgroup.populated" is zero if
479 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
480 * changes from or to zero, userland is notified that the content of the
481 * interface file has changed. This can be used to detect when @cgrp and
482 * its descendants become populated or empty.
483 */
484static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
485{
486 lockdep_assert_held(&css_set_rwsem);
487
488 do {
489 bool trigger;
490
491 if (populated)
492 trigger = !cgrp->populated_cnt++;
493 else
494 trigger = !--cgrp->populated_cnt;
495
496 if (!trigger)
497 break;
498
499 if (cgrp->populated_kn)
500 kernfs_notify(cgrp->populated_kn);
d51f39b0 501 cgrp = cgroup_parent(cgrp);
842b597e
TH
502 } while (cgrp);
503}
504
7717f7ba
PM
505/*
506 * hash table for cgroup groups. This improves the performance to find
507 * an existing css_set. This hash doesn't (currently) take into
508 * account cgroups in empty hierarchies.
509 */
472b1053 510#define CSS_SET_HASH_BITS 7
0ac801fe 511static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 512
0ac801fe 513static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 514{
0ac801fe 515 unsigned long key = 0UL;
30159ec7
TH
516 struct cgroup_subsys *ss;
517 int i;
472b1053 518
30159ec7 519 for_each_subsys(ss, i)
0ac801fe
LZ
520 key += (unsigned long)css[i];
521 key = (key >> 16) ^ key;
472b1053 522
0ac801fe 523 return key;
472b1053
LZ
524}
525
a25eb52e 526static void put_css_set_locked(struct css_set *cset)
b4f48b63 527{
69d0206c 528 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
529 struct cgroup_subsys *ss;
530 int ssid;
5abb8855 531
89c5509b
TH
532 lockdep_assert_held(&css_set_rwsem);
533
534 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 535 return;
81a6a5cd 536
2c6ab6d2 537 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
538 for_each_subsys(ss, ssid)
539 list_del(&cset->e_cset_node[ssid]);
5abb8855 540 hash_del(&cset->hlist);
2c6ab6d2
PM
541 css_set_count--;
542
69d0206c 543 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 544 struct cgroup *cgrp = link->cgrp;
5abb8855 545
69d0206c
TH
546 list_del(&link->cset_link);
547 list_del(&link->cgrp_link);
71b5707e 548
96d365e0 549 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
550 if (list_empty(&cgrp->cset_links)) {
551 cgroup_update_populated(cgrp, false);
a25eb52e 552 check_for_release(cgrp);
81a6a5cd 553 }
2c6ab6d2
PM
554
555 kfree(link);
81a6a5cd 556 }
2c6ab6d2 557
5abb8855 558 kfree_rcu(cset, rcu_head);
b4f48b63
PM
559}
560
a25eb52e 561static void put_css_set(struct css_set *cset)
89c5509b
TH
562{
563 /*
564 * Ensure that the refcount doesn't hit zero while any readers
565 * can see it. Similar to atomic_dec_and_lock(), but for an
566 * rwlock
567 */
568 if (atomic_add_unless(&cset->refcount, -1, 1))
569 return;
570
571 down_write(&css_set_rwsem);
a25eb52e 572 put_css_set_locked(cset);
89c5509b
TH
573 up_write(&css_set_rwsem);
574}
575
817929ec
PM
576/*
577 * refcounted get/put for css_set objects
578 */
5abb8855 579static inline void get_css_set(struct css_set *cset)
817929ec 580{
5abb8855 581 atomic_inc(&cset->refcount);
817929ec
PM
582}
583
b326f9d0 584/**
7717f7ba 585 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
586 * @cset: candidate css_set being tested
587 * @old_cset: existing css_set for a task
7717f7ba
PM
588 * @new_cgrp: cgroup that's being entered by the task
589 * @template: desired set of css pointers in css_set (pre-calculated)
590 *
6f4b7e63 591 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
592 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
593 */
5abb8855
TH
594static bool compare_css_sets(struct css_set *cset,
595 struct css_set *old_cset,
7717f7ba
PM
596 struct cgroup *new_cgrp,
597 struct cgroup_subsys_state *template[])
598{
599 struct list_head *l1, *l2;
600
aec3dfcb
TH
601 /*
602 * On the default hierarchy, there can be csets which are
603 * associated with the same set of cgroups but different csses.
604 * Let's first ensure that csses match.
605 */
606 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 607 return false;
7717f7ba
PM
608
609 /*
610 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
611 * different cgroups in hierarchies. As different cgroups may
612 * share the same effective css, this comparison is always
613 * necessary.
7717f7ba 614 */
69d0206c
TH
615 l1 = &cset->cgrp_links;
616 l2 = &old_cset->cgrp_links;
7717f7ba 617 while (1) {
69d0206c 618 struct cgrp_cset_link *link1, *link2;
5abb8855 619 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
620
621 l1 = l1->next;
622 l2 = l2->next;
623 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
624 if (l1 == &cset->cgrp_links) {
625 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
626 break;
627 } else {
69d0206c 628 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
629 }
630 /* Locate the cgroups associated with these links. */
69d0206c
TH
631 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
632 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
633 cgrp1 = link1->cgrp;
634 cgrp2 = link2->cgrp;
7717f7ba 635 /* Hierarchies should be linked in the same order. */
5abb8855 636 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
637
638 /*
639 * If this hierarchy is the hierarchy of the cgroup
640 * that's changing, then we need to check that this
641 * css_set points to the new cgroup; if it's any other
642 * hierarchy, then this css_set should point to the
643 * same cgroup as the old css_set.
644 */
5abb8855
TH
645 if (cgrp1->root == new_cgrp->root) {
646 if (cgrp1 != new_cgrp)
7717f7ba
PM
647 return false;
648 } else {
5abb8855 649 if (cgrp1 != cgrp2)
7717f7ba
PM
650 return false;
651 }
652 }
653 return true;
654}
655
b326f9d0
TH
656/**
657 * find_existing_css_set - init css array and find the matching css_set
658 * @old_cset: the css_set that we're using before the cgroup transition
659 * @cgrp: the cgroup that we're moving into
660 * @template: out param for the new set of csses, should be clear on entry
817929ec 661 */
5abb8855
TH
662static struct css_set *find_existing_css_set(struct css_set *old_cset,
663 struct cgroup *cgrp,
664 struct cgroup_subsys_state *template[])
b4f48b63 665{
3dd06ffa 666 struct cgroup_root *root = cgrp->root;
30159ec7 667 struct cgroup_subsys *ss;
5abb8855 668 struct css_set *cset;
0ac801fe 669 unsigned long key;
b326f9d0 670 int i;
817929ec 671
aae8aab4
BB
672 /*
673 * Build the set of subsystem state objects that we want to see in the
674 * new css_set. while subsystems can change globally, the entries here
675 * won't change, so no need for locking.
676 */
30159ec7 677 for_each_subsys(ss, i) {
f392e51c 678 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
679 /*
680 * @ss is in this hierarchy, so we want the
681 * effective css from @cgrp.
682 */
683 template[i] = cgroup_e_css(cgrp, ss);
817929ec 684 } else {
aec3dfcb
TH
685 /*
686 * @ss is not in this hierarchy, so we don't want
687 * to change the css.
688 */
5abb8855 689 template[i] = old_cset->subsys[i];
817929ec
PM
690 }
691 }
692
0ac801fe 693 key = css_set_hash(template);
5abb8855
TH
694 hash_for_each_possible(css_set_table, cset, hlist, key) {
695 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
696 continue;
697
698 /* This css_set matches what we need */
5abb8855 699 return cset;
472b1053 700 }
817929ec
PM
701
702 /* No existing cgroup group matched */
703 return NULL;
704}
705
69d0206c 706static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 707{
69d0206c 708 struct cgrp_cset_link *link, *tmp_link;
36553434 709
69d0206c
TH
710 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
711 list_del(&link->cset_link);
36553434
LZ
712 kfree(link);
713 }
714}
715
69d0206c
TH
716/**
717 * allocate_cgrp_cset_links - allocate cgrp_cset_links
718 * @count: the number of links to allocate
719 * @tmp_links: list_head the allocated links are put on
720 *
721 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
722 * through ->cset_link. Returns 0 on success or -errno.
817929ec 723 */
69d0206c 724static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 725{
69d0206c 726 struct cgrp_cset_link *link;
817929ec 727 int i;
69d0206c
TH
728
729 INIT_LIST_HEAD(tmp_links);
730
817929ec 731 for (i = 0; i < count; i++) {
f4f4be2b 732 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 733 if (!link) {
69d0206c 734 free_cgrp_cset_links(tmp_links);
817929ec
PM
735 return -ENOMEM;
736 }
69d0206c 737 list_add(&link->cset_link, tmp_links);
817929ec
PM
738 }
739 return 0;
740}
741
c12f65d4
LZ
742/**
743 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 744 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 745 * @cset: the css_set to be linked
c12f65d4
LZ
746 * @cgrp: the destination cgroup
747 */
69d0206c
TH
748static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
749 struct cgroup *cgrp)
c12f65d4 750{
69d0206c 751 struct cgrp_cset_link *link;
c12f65d4 752
69d0206c 753 BUG_ON(list_empty(tmp_links));
6803c006
TH
754
755 if (cgroup_on_dfl(cgrp))
756 cset->dfl_cgrp = cgrp;
757
69d0206c
TH
758 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
759 link->cset = cset;
7717f7ba 760 link->cgrp = cgrp;
842b597e
TH
761
762 if (list_empty(&cgrp->cset_links))
763 cgroup_update_populated(cgrp, true);
69d0206c 764 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 765
7717f7ba
PM
766 /*
767 * Always add links to the tail of the list so that the list
768 * is sorted by order of hierarchy creation
769 */
69d0206c 770 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
771}
772
b326f9d0
TH
773/**
774 * find_css_set - return a new css_set with one cgroup updated
775 * @old_cset: the baseline css_set
776 * @cgrp: the cgroup to be updated
777 *
778 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
779 * substituted into the appropriate hierarchy.
817929ec 780 */
5abb8855
TH
781static struct css_set *find_css_set(struct css_set *old_cset,
782 struct cgroup *cgrp)
817929ec 783{
b326f9d0 784 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 785 struct css_set *cset;
69d0206c
TH
786 struct list_head tmp_links;
787 struct cgrp_cset_link *link;
2d8f243a 788 struct cgroup_subsys *ss;
0ac801fe 789 unsigned long key;
2d8f243a 790 int ssid;
472b1053 791
b326f9d0
TH
792 lockdep_assert_held(&cgroup_mutex);
793
817929ec
PM
794 /* First see if we already have a cgroup group that matches
795 * the desired set */
96d365e0 796 down_read(&css_set_rwsem);
5abb8855
TH
797 cset = find_existing_css_set(old_cset, cgrp, template);
798 if (cset)
799 get_css_set(cset);
96d365e0 800 up_read(&css_set_rwsem);
817929ec 801
5abb8855
TH
802 if (cset)
803 return cset;
817929ec 804
f4f4be2b 805 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 806 if (!cset)
817929ec
PM
807 return NULL;
808
69d0206c 809 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 810 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 811 kfree(cset);
817929ec
PM
812 return NULL;
813 }
814
5abb8855 815 atomic_set(&cset->refcount, 1);
69d0206c 816 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 817 INIT_LIST_HEAD(&cset->tasks);
c7561128 818 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 819 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 820 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 821 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
822
823 /* Copy the set of subsystem state objects generated in
824 * find_existing_css_set() */
5abb8855 825 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 826
96d365e0 827 down_write(&css_set_rwsem);
817929ec 828 /* Add reference counts and links from the new css_set. */
69d0206c 829 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 830 struct cgroup *c = link->cgrp;
69d0206c 831
7717f7ba
PM
832 if (c->root == cgrp->root)
833 c = cgrp;
69d0206c 834 link_css_set(&tmp_links, cset, c);
7717f7ba 835 }
817929ec 836
69d0206c 837 BUG_ON(!list_empty(&tmp_links));
817929ec 838
817929ec 839 css_set_count++;
472b1053 840
2d8f243a 841 /* Add @cset to the hash table */
5abb8855
TH
842 key = css_set_hash(cset->subsys);
843 hash_add(css_set_table, &cset->hlist, key);
472b1053 844
2d8f243a
TH
845 for_each_subsys(ss, ssid)
846 list_add_tail(&cset->e_cset_node[ssid],
847 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
848
96d365e0 849 up_write(&css_set_rwsem);
817929ec 850
5abb8855 851 return cset;
b4f48b63
PM
852}
853
3dd06ffa 854static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 855{
3dd06ffa 856 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 857
3dd06ffa 858 return root_cgrp->root;
2bd59d48
TH
859}
860
3dd06ffa 861static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
862{
863 int id;
864
865 lockdep_assert_held(&cgroup_mutex);
866
985ed670 867 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
868 if (id < 0)
869 return id;
870
871 root->hierarchy_id = id;
872 return 0;
873}
874
3dd06ffa 875static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
876{
877 lockdep_assert_held(&cgroup_mutex);
878
879 if (root->hierarchy_id) {
880 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
881 root->hierarchy_id = 0;
882 }
883}
884
3dd06ffa 885static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
886{
887 if (root) {
d0f702e6 888 /* hierarchy ID should already have been released */
f2e85d57
TH
889 WARN_ON_ONCE(root->hierarchy_id);
890
891 idr_destroy(&root->cgroup_idr);
892 kfree(root);
893 }
894}
895
3dd06ffa 896static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 897{
3dd06ffa 898 struct cgroup *cgrp = &root->cgrp;
f2e85d57 899 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 900
2bd59d48 901 mutex_lock(&cgroup_mutex);
f2e85d57 902
776f02fa 903 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 904 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 905
f2e85d57 906 /* Rebind all subsystems back to the default hierarchy */
f392e51c 907 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 908
7717f7ba 909 /*
f2e85d57
TH
910 * Release all the links from cset_links to this hierarchy's
911 * root cgroup
7717f7ba 912 */
96d365e0 913 down_write(&css_set_rwsem);
f2e85d57
TH
914
915 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
916 list_del(&link->cset_link);
917 list_del(&link->cgrp_link);
918 kfree(link);
919 }
96d365e0 920 up_write(&css_set_rwsem);
f2e85d57
TH
921
922 if (!list_empty(&root->root_list)) {
923 list_del(&root->root_list);
924 cgroup_root_count--;
925 }
926
927 cgroup_exit_root_id(root);
928
929 mutex_unlock(&cgroup_mutex);
f2e85d57 930
2bd59d48 931 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
932 cgroup_free_root(root);
933}
934
ceb6a081
TH
935/* look up cgroup associated with given css_set on the specified hierarchy */
936static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 937 struct cgroup_root *root)
7717f7ba 938{
7717f7ba
PM
939 struct cgroup *res = NULL;
940
96d365e0
TH
941 lockdep_assert_held(&cgroup_mutex);
942 lockdep_assert_held(&css_set_rwsem);
943
5abb8855 944 if (cset == &init_css_set) {
3dd06ffa 945 res = &root->cgrp;
7717f7ba 946 } else {
69d0206c
TH
947 struct cgrp_cset_link *link;
948
949 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 950 struct cgroup *c = link->cgrp;
69d0206c 951
7717f7ba
PM
952 if (c->root == root) {
953 res = c;
954 break;
955 }
956 }
957 }
96d365e0 958
7717f7ba
PM
959 BUG_ON(!res);
960 return res;
961}
962
ddbcc7e8 963/*
ceb6a081
TH
964 * Return the cgroup for "task" from the given hierarchy. Must be
965 * called with cgroup_mutex and css_set_rwsem held.
966 */
967static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 968 struct cgroup_root *root)
ceb6a081
TH
969{
970 /*
971 * No need to lock the task - since we hold cgroup_mutex the
972 * task can't change groups, so the only thing that can happen
973 * is that it exits and its css is set back to init_css_set.
974 */
975 return cset_cgroup_from_root(task_css_set(task), root);
976}
977
ddbcc7e8 978/*
ddbcc7e8
PM
979 * A task must hold cgroup_mutex to modify cgroups.
980 *
981 * Any task can increment and decrement the count field without lock.
982 * So in general, code holding cgroup_mutex can't rely on the count
983 * field not changing. However, if the count goes to zero, then only
956db3ca 984 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
985 * means that no tasks are currently attached, therefore there is no
986 * way a task attached to that cgroup can fork (the other way to
987 * increment the count). So code holding cgroup_mutex can safely
988 * assume that if the count is zero, it will stay zero. Similarly, if
989 * a task holds cgroup_mutex on a cgroup with zero count, it
990 * knows that the cgroup won't be removed, as cgroup_rmdir()
991 * needs that mutex.
992 *
ddbcc7e8
PM
993 * A cgroup can only be deleted if both its 'count' of using tasks
994 * is zero, and its list of 'children' cgroups is empty. Since all
995 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 996 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 997 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 998 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
999 *
1000 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1001 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1002 */
1003
8ab456ac 1004static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 1005static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1006static const struct file_operations proc_cgroupstats_operations;
a424316c 1007
8d7e6fb0
TH
1008static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1009 char *buf)
ddbcc7e8 1010{
8d7e6fb0
TH
1011 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1012 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1013 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1014 cft->ss->name, cft->name);
1015 else
1016 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1017 return buf;
ddbcc7e8
PM
1018}
1019
f2e85d57
TH
1020/**
1021 * cgroup_file_mode - deduce file mode of a control file
1022 * @cft: the control file in question
1023 *
1024 * returns cft->mode if ->mode is not 0
1025 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1026 * returns S_IRUGO if it has only a read handler
1027 * returns S_IWUSR if it has only a write hander
1028 */
1029static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1030{
f2e85d57 1031 umode_t mode = 0;
65dff759 1032
f2e85d57
TH
1033 if (cft->mode)
1034 return cft->mode;
1035
1036 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1037 mode |= S_IRUGO;
1038
6770c64e 1039 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1040 mode |= S_IWUSR;
1041
1042 return mode;
65dff759
LZ
1043}
1044
59f5296b 1045static void cgroup_get(struct cgroup *cgrp)
be445626 1046{
2bd59d48 1047 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1048 css_get(&cgrp->self);
be445626
LZ
1049}
1050
aa32362f
LZ
1051static bool cgroup_tryget(struct cgroup *cgrp)
1052{
1053 return css_tryget(&cgrp->self);
1054}
1055
59f5296b 1056static void cgroup_put(struct cgroup *cgrp)
be445626 1057{
9d755d33 1058 css_put(&cgrp->self);
be445626
LZ
1059}
1060
af0ba678 1061/**
0f060deb 1062 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1063 * @cgrp: the target cgroup
0f060deb 1064 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1065 *
1066 * On the default hierarchy, a subsystem may request other subsystems to be
1067 * enabled together through its ->depends_on mask. In such cases, more
1068 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1069 *
0f060deb
TH
1070 * This function calculates which subsystems need to be enabled if
1071 * @subtree_control is to be applied to @cgrp. The returned mask is always
1072 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1073 */
8ab456ac
AS
1074static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1075 unsigned long subtree_control)
667c2491 1076{
af0ba678 1077 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1078 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1079 struct cgroup_subsys *ss;
1080 int ssid;
1081
1082 lockdep_assert_held(&cgroup_mutex);
1083
0f060deb
TH
1084 if (!cgroup_on_dfl(cgrp))
1085 return cur_ss_mask;
af0ba678
TH
1086
1087 while (true) {
8ab456ac 1088 unsigned long new_ss_mask = cur_ss_mask;
af0ba678
TH
1089
1090 for_each_subsys(ss, ssid)
1091 if (cur_ss_mask & (1 << ssid))
1092 new_ss_mask |= ss->depends_on;
1093
1094 /*
1095 * Mask out subsystems which aren't available. This can
1096 * happen only if some depended-upon subsystems were bound
1097 * to non-default hierarchies.
1098 */
1099 if (parent)
1100 new_ss_mask &= parent->child_subsys_mask;
1101 else
1102 new_ss_mask &= cgrp->root->subsys_mask;
1103
1104 if (new_ss_mask == cur_ss_mask)
1105 break;
1106 cur_ss_mask = new_ss_mask;
1107 }
1108
0f060deb
TH
1109 return cur_ss_mask;
1110}
1111
1112/**
1113 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1114 * @cgrp: the target cgroup
1115 *
1116 * Update @cgrp->child_subsys_mask according to the current
1117 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1118 */
1119static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1120{
1121 cgrp->child_subsys_mask =
1122 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1123}
1124
a9746d8d
TH
1125/**
1126 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1127 * @kn: the kernfs_node being serviced
1128 *
1129 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1130 * the method finishes if locking succeeded. Note that once this function
1131 * returns the cgroup returned by cgroup_kn_lock_live() may become
1132 * inaccessible any time. If the caller intends to continue to access the
1133 * cgroup, it should pin it before invoking this function.
1134 */
1135static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1136{
a9746d8d
TH
1137 struct cgroup *cgrp;
1138
1139 if (kernfs_type(kn) == KERNFS_DIR)
1140 cgrp = kn->priv;
1141 else
1142 cgrp = kn->parent->priv;
1143
1144 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1145
1146 kernfs_unbreak_active_protection(kn);
1147 cgroup_put(cgrp);
ddbcc7e8
PM
1148}
1149
a9746d8d
TH
1150/**
1151 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1152 * @kn: the kernfs_node being serviced
1153 *
1154 * This helper is to be used by a cgroup kernfs method currently servicing
1155 * @kn. It breaks the active protection, performs cgroup locking and
1156 * verifies that the associated cgroup is alive. Returns the cgroup if
1157 * alive; otherwise, %NULL. A successful return should be undone by a
1158 * matching cgroup_kn_unlock() invocation.
1159 *
1160 * Any cgroup kernfs method implementation which requires locking the
1161 * associated cgroup should use this helper. It avoids nesting cgroup
1162 * locking under kernfs active protection and allows all kernfs operations
1163 * including self-removal.
1164 */
1165static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1166{
a9746d8d
TH
1167 struct cgroup *cgrp;
1168
1169 if (kernfs_type(kn) == KERNFS_DIR)
1170 cgrp = kn->priv;
1171 else
1172 cgrp = kn->parent->priv;
05ef1d7c 1173
2739d3cc 1174 /*
01f6474c 1175 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1176 * active_ref. cgroup liveliness check alone provides enough
1177 * protection against removal. Ensure @cgrp stays accessible and
1178 * break the active_ref protection.
2739d3cc 1179 */
aa32362f
LZ
1180 if (!cgroup_tryget(cgrp))
1181 return NULL;
a9746d8d
TH
1182 kernfs_break_active_protection(kn);
1183
2bd59d48 1184 mutex_lock(&cgroup_mutex);
05ef1d7c 1185
a9746d8d
TH
1186 if (!cgroup_is_dead(cgrp))
1187 return cgrp;
1188
1189 cgroup_kn_unlock(kn);
1190 return NULL;
ddbcc7e8 1191}
05ef1d7c 1192
2739d3cc 1193static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1194{
2bd59d48 1195 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1196
01f6474c 1197 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1198 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1199}
1200
13af07df 1201/**
628f7cd4 1202 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1203 * @cgrp: target cgroup
13af07df
AR
1204 * @subsys_mask: mask of the subsystem ids whose files should be removed
1205 */
8ab456ac 1206static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 1207{
13af07df 1208 struct cgroup_subsys *ss;
b420ba7d 1209 int i;
05ef1d7c 1210
b420ba7d 1211 for_each_subsys(ss, i) {
0adb0704 1212 struct cftype *cfts;
b420ba7d 1213
69dfa00c 1214 if (!(subsys_mask & (1 << i)))
13af07df 1215 continue;
0adb0704
TH
1216 list_for_each_entry(cfts, &ss->cfts, node)
1217 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1218 }
ddbcc7e8
PM
1219}
1220
8ab456ac
AS
1221static int rebind_subsystems(struct cgroup_root *dst_root,
1222 unsigned long ss_mask)
ddbcc7e8 1223{
30159ec7 1224 struct cgroup_subsys *ss;
8ab456ac 1225 unsigned long tmp_ss_mask;
2d8f243a 1226 int ssid, i, ret;
ddbcc7e8 1227
ace2bee8 1228 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1229
5df36032
TH
1230 for_each_subsys(ss, ssid) {
1231 if (!(ss_mask & (1 << ssid)))
1232 continue;
aae8aab4 1233
7fd8c565
TH
1234 /* if @ss has non-root csses attached to it, can't move */
1235 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1236 return -EBUSY;
1d5be6b2 1237
5df36032 1238 /* can't move between two non-dummy roots either */
7fd8c565 1239 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1240 return -EBUSY;
ddbcc7e8
PM
1241 }
1242
5533e011
TH
1243 /* skip creating root files on dfl_root for inhibited subsystems */
1244 tmp_ss_mask = ss_mask;
1245 if (dst_root == &cgrp_dfl_root)
1246 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1247
1248 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1249 if (ret) {
1250 if (dst_root != &cgrp_dfl_root)
5df36032 1251 return ret;
ddbcc7e8 1252
a2dd4247
TH
1253 /*
1254 * Rebinding back to the default root is not allowed to
1255 * fail. Using both default and non-default roots should
1256 * be rare. Moving subsystems back and forth even more so.
1257 * Just warn about it and continue.
1258 */
1259 if (cgrp_dfl_root_visible) {
8ab456ac 1260 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
a2a1f9ea 1261 ret, ss_mask);
ed3d261b 1262 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1263 }
5df36032 1264 }
3126121f
TH
1265
1266 /*
1267 * Nothing can fail from this point on. Remove files for the
1268 * removed subsystems and rebind each subsystem.
1269 */
5df36032 1270 for_each_subsys(ss, ssid)
a2dd4247 1271 if (ss_mask & (1 << ssid))
3dd06ffa 1272 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1273
5df36032 1274 for_each_subsys(ss, ssid) {
3dd06ffa 1275 struct cgroup_root *src_root;
5df36032 1276 struct cgroup_subsys_state *css;
2d8f243a 1277 struct css_set *cset;
a8a648c4 1278
5df36032
TH
1279 if (!(ss_mask & (1 << ssid)))
1280 continue;
a8a648c4 1281
5df36032 1282 src_root = ss->root;
3dd06ffa 1283 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1284
3dd06ffa 1285 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1286
3dd06ffa
TH
1287 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1288 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1289 ss->root = dst_root;
3dd06ffa 1290 css->cgroup = &dst_root->cgrp;
73e80ed8 1291
2d8f243a
TH
1292 down_write(&css_set_rwsem);
1293 hash_for_each(css_set_table, i, cset, hlist)
1294 list_move_tail(&cset->e_cset_node[ss->id],
1295 &dst_root->cgrp.e_csets[ss->id]);
1296 up_write(&css_set_rwsem);
1297
f392e51c 1298 src_root->subsys_mask &= ~(1 << ssid);
667c2491
TH
1299 src_root->cgrp.subtree_control &= ~(1 << ssid);
1300 cgroup_refresh_child_subsys_mask(&src_root->cgrp);
f392e51c 1301
bd53d617 1302 /* default hierarchy doesn't enable controllers by default */
f392e51c 1303 dst_root->subsys_mask |= 1 << ssid;
667c2491
TH
1304 if (dst_root != &cgrp_dfl_root) {
1305 dst_root->cgrp.subtree_control |= 1 << ssid;
1306 cgroup_refresh_child_subsys_mask(&dst_root->cgrp);
1307 }
a8a648c4 1308
5df36032
TH
1309 if (ss->bind)
1310 ss->bind(css);
ddbcc7e8 1311 }
ddbcc7e8 1312
a2dd4247 1313 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1314 return 0;
1315}
1316
2bd59d48
TH
1317static int cgroup_show_options(struct seq_file *seq,
1318 struct kernfs_root *kf_root)
ddbcc7e8 1319{
3dd06ffa 1320 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1321 struct cgroup_subsys *ss;
b85d2040 1322 int ssid;
ddbcc7e8 1323
b85d2040 1324 for_each_subsys(ss, ssid)
f392e51c 1325 if (root->subsys_mask & (1 << ssid))
b85d2040 1326 seq_printf(seq, ",%s", ss->name);
93438629 1327 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1328 seq_puts(seq, ",noprefix");
93438629 1329 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1330 seq_puts(seq, ",xattr");
69e943b7
TH
1331
1332 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1333 if (strlen(root->release_agent_path))
1334 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1335 spin_unlock(&release_agent_path_lock);
1336
3dd06ffa 1337 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1338 seq_puts(seq, ",clone_children");
c6d57f33
PM
1339 if (strlen(root->name))
1340 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1341 return 0;
1342}
1343
1344struct cgroup_sb_opts {
8ab456ac 1345 unsigned long subsys_mask;
69dfa00c 1346 unsigned int flags;
81a6a5cd 1347 char *release_agent;
2260e7fc 1348 bool cpuset_clone_children;
c6d57f33 1349 char *name;
2c6ab6d2
PM
1350 /* User explicitly requested empty subsystem */
1351 bool none;
ddbcc7e8
PM
1352};
1353
cf5d5941 1354static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1355{
32a8cf23
DL
1356 char *token, *o = data;
1357 bool all_ss = false, one_ss = false;
8ab456ac 1358 unsigned long mask = -1UL;
30159ec7 1359 struct cgroup_subsys *ss;
7b9a6ba5 1360 int nr_opts = 0;
30159ec7 1361 int i;
f9ab5b5b
LZ
1362
1363#ifdef CONFIG_CPUSETS
69dfa00c 1364 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1365#endif
ddbcc7e8 1366
c6d57f33 1367 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1368
1369 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1370 nr_opts++;
1371
ddbcc7e8
PM
1372 if (!*token)
1373 return -EINVAL;
32a8cf23 1374 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1375 /* Explicitly have no subsystems */
1376 opts->none = true;
32a8cf23
DL
1377 continue;
1378 }
1379 if (!strcmp(token, "all")) {
1380 /* Mutually exclusive option 'all' + subsystem name */
1381 if (one_ss)
1382 return -EINVAL;
1383 all_ss = true;
1384 continue;
1385 }
873fe09e
TH
1386 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1387 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1388 continue;
1389 }
32a8cf23 1390 if (!strcmp(token, "noprefix")) {
93438629 1391 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1392 continue;
1393 }
1394 if (!strcmp(token, "clone_children")) {
2260e7fc 1395 opts->cpuset_clone_children = true;
32a8cf23
DL
1396 continue;
1397 }
03b1cde6 1398 if (!strcmp(token, "xattr")) {
93438629 1399 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1400 continue;
1401 }
32a8cf23 1402 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1403 /* Specifying two release agents is forbidden */
1404 if (opts->release_agent)
1405 return -EINVAL;
c6d57f33 1406 opts->release_agent =
e400c285 1407 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1408 if (!opts->release_agent)
1409 return -ENOMEM;
32a8cf23
DL
1410 continue;
1411 }
1412 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1413 const char *name = token + 5;
1414 /* Can't specify an empty name */
1415 if (!strlen(name))
1416 return -EINVAL;
1417 /* Must match [\w.-]+ */
1418 for (i = 0; i < strlen(name); i++) {
1419 char c = name[i];
1420 if (isalnum(c))
1421 continue;
1422 if ((c == '.') || (c == '-') || (c == '_'))
1423 continue;
1424 return -EINVAL;
1425 }
1426 /* Specifying two names is forbidden */
1427 if (opts->name)
1428 return -EINVAL;
1429 opts->name = kstrndup(name,
e400c285 1430 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1431 GFP_KERNEL);
1432 if (!opts->name)
1433 return -ENOMEM;
32a8cf23
DL
1434
1435 continue;
1436 }
1437
30159ec7 1438 for_each_subsys(ss, i) {
32a8cf23
DL
1439 if (strcmp(token, ss->name))
1440 continue;
1441 if (ss->disabled)
1442 continue;
1443
1444 /* Mutually exclusive option 'all' + subsystem name */
1445 if (all_ss)
1446 return -EINVAL;
69dfa00c 1447 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1448 one_ss = true;
1449
1450 break;
1451 }
1452 if (i == CGROUP_SUBSYS_COUNT)
1453 return -ENOENT;
1454 }
1455
873fe09e 1456 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1457 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1458 if (nr_opts != 1) {
1459 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1460 return -EINVAL;
1461 }
7b9a6ba5 1462 return 0;
873fe09e
TH
1463 }
1464
7b9a6ba5
TH
1465 /*
1466 * If the 'all' option was specified select all the subsystems,
1467 * otherwise if 'none', 'name=' and a subsystem name options were
1468 * not specified, let's default to 'all'
1469 */
1470 if (all_ss || (!one_ss && !opts->none && !opts->name))
1471 for_each_subsys(ss, i)
1472 if (!ss->disabled)
1473 opts->subsys_mask |= (1 << i);
1474
1475 /*
1476 * We either have to specify by name or by subsystems. (So all
1477 * empty hierarchies must have a name).
1478 */
1479 if (!opts->subsys_mask && !opts->name)
1480 return -EINVAL;
1481
f9ab5b5b
LZ
1482 /*
1483 * Option noprefix was introduced just for backward compatibility
1484 * with the old cpuset, so we allow noprefix only if mounting just
1485 * the cpuset subsystem.
1486 */
93438629 1487 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1488 return -EINVAL;
1489
2c6ab6d2 1490 /* Can't specify "none" and some subsystems */
a1a71b45 1491 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1492 return -EINVAL;
1493
ddbcc7e8
PM
1494 return 0;
1495}
1496
2bd59d48 1497static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1498{
1499 int ret = 0;
3dd06ffa 1500 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1501 struct cgroup_sb_opts opts;
8ab456ac 1502 unsigned long added_mask, removed_mask;
ddbcc7e8 1503
aa6ec29b
TH
1504 if (root == &cgrp_dfl_root) {
1505 pr_err("remount is not allowed\n");
873fe09e
TH
1506 return -EINVAL;
1507 }
1508
ddbcc7e8
PM
1509 mutex_lock(&cgroup_mutex);
1510
1511 /* See what subsystems are wanted */
1512 ret = parse_cgroupfs_options(data, &opts);
1513 if (ret)
1514 goto out_unlock;
1515
f392e51c 1516 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1517 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1518 task_tgid_nr(current), current->comm);
8b5a5a9d 1519
f392e51c
TH
1520 added_mask = opts.subsys_mask & ~root->subsys_mask;
1521 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1522
cf5d5941 1523 /* Don't allow flags or name to change at remount */
7450e90b 1524 if ((opts.flags ^ root->flags) ||
cf5d5941 1525 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1526 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1527 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1528 ret = -EINVAL;
1529 goto out_unlock;
1530 }
1531
f172e67c 1532 /* remounting is not allowed for populated hierarchies */
d5c419b6 1533 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1534 ret = -EBUSY;
0670e08b 1535 goto out_unlock;
cf5d5941 1536 }
ddbcc7e8 1537
5df36032 1538 ret = rebind_subsystems(root, added_mask);
3126121f 1539 if (ret)
0670e08b 1540 goto out_unlock;
ddbcc7e8 1541
3dd06ffa 1542 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1543
69e943b7
TH
1544 if (opts.release_agent) {
1545 spin_lock(&release_agent_path_lock);
81a6a5cd 1546 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1547 spin_unlock(&release_agent_path_lock);
1548 }
ddbcc7e8 1549 out_unlock:
66bdc9cf 1550 kfree(opts.release_agent);
c6d57f33 1551 kfree(opts.name);
ddbcc7e8 1552 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1553 return ret;
1554}
1555
afeb0f9f
TH
1556/*
1557 * To reduce the fork() overhead for systems that are not actually using
1558 * their cgroups capability, we don't maintain the lists running through
1559 * each css_set to its tasks until we see the list actually used - in other
1560 * words after the first mount.
1561 */
1562static bool use_task_css_set_links __read_mostly;
1563
1564static void cgroup_enable_task_cg_lists(void)
1565{
1566 struct task_struct *p, *g;
1567
96d365e0 1568 down_write(&css_set_rwsem);
afeb0f9f
TH
1569
1570 if (use_task_css_set_links)
1571 goto out_unlock;
1572
1573 use_task_css_set_links = true;
1574
1575 /*
1576 * We need tasklist_lock because RCU is not safe against
1577 * while_each_thread(). Besides, a forking task that has passed
1578 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1579 * is not guaranteed to have its child immediately visible in the
1580 * tasklist if we walk through it with RCU.
1581 */
1582 read_lock(&tasklist_lock);
1583 do_each_thread(g, p) {
afeb0f9f
TH
1584 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1585 task_css_set(p) != &init_css_set);
1586
1587 /*
1588 * We should check if the process is exiting, otherwise
1589 * it will race with cgroup_exit() in that the list
1590 * entry won't be deleted though the process has exited.
f153ad11
TH
1591 * Do it while holding siglock so that we don't end up
1592 * racing against cgroup_exit().
afeb0f9f 1593 */
f153ad11 1594 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1595 if (!(p->flags & PF_EXITING)) {
1596 struct css_set *cset = task_css_set(p);
1597
1598 list_add(&p->cg_list, &cset->tasks);
1599 get_css_set(cset);
1600 }
f153ad11 1601 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1602 } while_each_thread(g, p);
1603 read_unlock(&tasklist_lock);
1604out_unlock:
96d365e0 1605 up_write(&css_set_rwsem);
afeb0f9f 1606}
ddbcc7e8 1607
cc31edce
PM
1608static void init_cgroup_housekeeping(struct cgroup *cgrp)
1609{
2d8f243a
TH
1610 struct cgroup_subsys *ss;
1611 int ssid;
1612
d5c419b6
TH
1613 INIT_LIST_HEAD(&cgrp->self.sibling);
1614 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1615 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1616 INIT_LIST_HEAD(&cgrp->pidlists);
1617 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1618 cgrp->self.cgroup = cgrp;
184faf32 1619 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1620
1621 for_each_subsys(ss, ssid)
1622 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1623
1624 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1625 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1626}
c6d57f33 1627
3dd06ffa 1628static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1629 struct cgroup_sb_opts *opts)
ddbcc7e8 1630{
3dd06ffa 1631 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1632
ddbcc7e8 1633 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1634 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1635 cgrp->root = root;
cc31edce 1636 init_cgroup_housekeeping(cgrp);
4e96ee8e 1637 idr_init(&root->cgroup_idr);
c6d57f33 1638
c6d57f33
PM
1639 root->flags = opts->flags;
1640 if (opts->release_agent)
1641 strcpy(root->release_agent_path, opts->release_agent);
1642 if (opts->name)
1643 strcpy(root->name, opts->name);
2260e7fc 1644 if (opts->cpuset_clone_children)
3dd06ffa 1645 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1646}
1647
8ab456ac 1648static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1649{
d427dfeb 1650 LIST_HEAD(tmp_links);
3dd06ffa 1651 struct cgroup *root_cgrp = &root->cgrp;
a14c6874 1652 struct cftype *base_files;
d427dfeb 1653 struct css_set *cset;
d427dfeb 1654 int i, ret;
2c6ab6d2 1655
d427dfeb 1656 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1657
6fa4918d 1658 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1659 if (ret < 0)
2bd59d48 1660 goto out;
d427dfeb 1661 root_cgrp->id = ret;
c6d57f33 1662
2aad2a86
TH
1663 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1664 GFP_KERNEL);
9d755d33
TH
1665 if (ret)
1666 goto out;
1667
d427dfeb 1668 /*
96d365e0 1669 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1670 * but that's OK - it can only be increased by someone holding
1671 * cgroup_lock, and that's us. The worst that can happen is that we
1672 * have some link structures left over
1673 */
1674 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1675 if (ret)
9d755d33 1676 goto cancel_ref;
ddbcc7e8 1677
985ed670 1678 ret = cgroup_init_root_id(root);
ddbcc7e8 1679 if (ret)
9d755d33 1680 goto cancel_ref;
ddbcc7e8 1681
2bd59d48
TH
1682 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1683 KERNFS_ROOT_CREATE_DEACTIVATED,
1684 root_cgrp);
1685 if (IS_ERR(root->kf_root)) {
1686 ret = PTR_ERR(root->kf_root);
1687 goto exit_root_id;
1688 }
1689 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1690
a14c6874
TH
1691 if (root == &cgrp_dfl_root)
1692 base_files = cgroup_dfl_base_files;
1693 else
1694 base_files = cgroup_legacy_base_files;
1695
1696 ret = cgroup_addrm_files(root_cgrp, base_files, true);
d427dfeb 1697 if (ret)
2bd59d48 1698 goto destroy_root;
ddbcc7e8 1699
5df36032 1700 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1701 if (ret)
2bd59d48 1702 goto destroy_root;
ddbcc7e8 1703
d427dfeb
TH
1704 /*
1705 * There must be no failure case after here, since rebinding takes
1706 * care of subsystems' refcounts, which are explicitly dropped in
1707 * the failure exit path.
1708 */
1709 list_add(&root->root_list, &cgroup_roots);
1710 cgroup_root_count++;
0df6a63f 1711
d427dfeb 1712 /*
3dd06ffa 1713 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1714 * objects.
1715 */
96d365e0 1716 down_write(&css_set_rwsem);
d427dfeb
TH
1717 hash_for_each(css_set_table, i, cset, hlist)
1718 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1719 up_write(&css_set_rwsem);
ddbcc7e8 1720
d5c419b6 1721 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1722 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1723
2bd59d48 1724 kernfs_activate(root_cgrp->kn);
d427dfeb 1725 ret = 0;
2bd59d48 1726 goto out;
d427dfeb 1727
2bd59d48
TH
1728destroy_root:
1729 kernfs_destroy_root(root->kf_root);
1730 root->kf_root = NULL;
1731exit_root_id:
d427dfeb 1732 cgroup_exit_root_id(root);
9d755d33 1733cancel_ref:
9a1049da 1734 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1735out:
d427dfeb
TH
1736 free_cgrp_cset_links(&tmp_links);
1737 return ret;
ddbcc7e8
PM
1738}
1739
f7e83571 1740static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1741 int flags, const char *unused_dev_name,
f7e83571 1742 void *data)
ddbcc7e8 1743{
3a32bd72 1744 struct super_block *pinned_sb = NULL;
970317aa 1745 struct cgroup_subsys *ss;
3dd06ffa 1746 struct cgroup_root *root;
ddbcc7e8 1747 struct cgroup_sb_opts opts;
2bd59d48 1748 struct dentry *dentry;
8e30e2b8 1749 int ret;
970317aa 1750 int i;
c6b3d5bc 1751 bool new_sb;
ddbcc7e8 1752
56fde9e0
TH
1753 /*
1754 * The first time anyone tries to mount a cgroup, enable the list
1755 * linking each css_set to its tasks and fix up all existing tasks.
1756 */
1757 if (!use_task_css_set_links)
1758 cgroup_enable_task_cg_lists();
e37a06f1 1759
aae8aab4 1760 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1761
1762 /* First find the desired set of subsystems */
ddbcc7e8 1763 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1764 if (ret)
8e30e2b8 1765 goto out_unlock;
a015edd2 1766
2bd59d48 1767 /* look for a matching existing root */
7b9a6ba5 1768 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1769 cgrp_dfl_root_visible = true;
1770 root = &cgrp_dfl_root;
1771 cgroup_get(&root->cgrp);
1772 ret = 0;
1773 goto out_unlock;
ddbcc7e8
PM
1774 }
1775
970317aa
LZ
1776 /*
1777 * Destruction of cgroup root is asynchronous, so subsystems may
1778 * still be dying after the previous unmount. Let's drain the
1779 * dying subsystems. We just need to ensure that the ones
1780 * unmounted previously finish dying and don't care about new ones
1781 * starting. Testing ref liveliness is good enough.
1782 */
1783 for_each_subsys(ss, i) {
1784 if (!(opts.subsys_mask & (1 << i)) ||
1785 ss->root == &cgrp_dfl_root)
1786 continue;
1787
1788 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
1789 mutex_unlock(&cgroup_mutex);
1790 msleep(10);
1791 ret = restart_syscall();
1792 goto out_free;
1793 }
1794 cgroup_put(&ss->root->cgrp);
1795 }
1796
985ed670 1797 for_each_root(root) {
2bd59d48 1798 bool name_match = false;
3126121f 1799
3dd06ffa 1800 if (root == &cgrp_dfl_root)
985ed670 1801 continue;
3126121f 1802
cf5d5941 1803 /*
2bd59d48
TH
1804 * If we asked for a name then it must match. Also, if
1805 * name matches but sybsys_mask doesn't, we should fail.
1806 * Remember whether name matched.
cf5d5941 1807 */
2bd59d48
TH
1808 if (opts.name) {
1809 if (strcmp(opts.name, root->name))
1810 continue;
1811 name_match = true;
1812 }
ddbcc7e8 1813
c6d57f33 1814 /*
2bd59d48
TH
1815 * If we asked for subsystems (or explicitly for no
1816 * subsystems) then they must match.
c6d57f33 1817 */
2bd59d48 1818 if ((opts.subsys_mask || opts.none) &&
f392e51c 1819 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1820 if (!name_match)
1821 continue;
1822 ret = -EBUSY;
1823 goto out_unlock;
1824 }
873fe09e 1825
7b9a6ba5
TH
1826 if (root->flags ^ opts.flags)
1827 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 1828
776f02fa 1829 /*
3a32bd72
LZ
1830 * We want to reuse @root whose lifetime is governed by its
1831 * ->cgrp. Let's check whether @root is alive and keep it
1832 * that way. As cgroup_kill_sb() can happen anytime, we
1833 * want to block it by pinning the sb so that @root doesn't
1834 * get killed before mount is complete.
1835 *
1836 * With the sb pinned, tryget_live can reliably indicate
1837 * whether @root can be reused. If it's being killed,
1838 * drain it. We can use wait_queue for the wait but this
1839 * path is super cold. Let's just sleep a bit and retry.
776f02fa 1840 */
3a32bd72
LZ
1841 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
1842 if (IS_ERR(pinned_sb) ||
1843 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1844 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
1845 if (!IS_ERR_OR_NULL(pinned_sb))
1846 deactivate_super(pinned_sb);
776f02fa 1847 msleep(10);
a015edd2
TH
1848 ret = restart_syscall();
1849 goto out_free;
776f02fa 1850 }
ddbcc7e8 1851
776f02fa 1852 ret = 0;
2bd59d48 1853 goto out_unlock;
ddbcc7e8 1854 }
ddbcc7e8 1855
817929ec 1856 /*
172a2c06
TH
1857 * No such thing, create a new one. name= matching without subsys
1858 * specification is allowed for already existing hierarchies but we
1859 * can't create new one without subsys specification.
817929ec 1860 */
172a2c06
TH
1861 if (!opts.subsys_mask && !opts.none) {
1862 ret = -EINVAL;
1863 goto out_unlock;
817929ec 1864 }
817929ec 1865
172a2c06
TH
1866 root = kzalloc(sizeof(*root), GFP_KERNEL);
1867 if (!root) {
1868 ret = -ENOMEM;
2bd59d48 1869 goto out_unlock;
839ec545 1870 }
e5f6a860 1871
172a2c06
TH
1872 init_cgroup_root(root, &opts);
1873
35585573 1874 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1875 if (ret)
1876 cgroup_free_root(root);
fa3ca07e 1877
8e30e2b8 1878out_unlock:
ddbcc7e8 1879 mutex_unlock(&cgroup_mutex);
a015edd2 1880out_free:
c6d57f33
PM
1881 kfree(opts.release_agent);
1882 kfree(opts.name);
03b1cde6 1883
2bd59d48 1884 if (ret)
8e30e2b8 1885 return ERR_PTR(ret);
2bd59d48 1886
c9482a5b
JZ
1887 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1888 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1889 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1890 cgroup_put(&root->cgrp);
3a32bd72
LZ
1891
1892 /*
1893 * If @pinned_sb, we're reusing an existing root and holding an
1894 * extra ref on its sb. Mount is complete. Put the extra ref.
1895 */
1896 if (pinned_sb) {
1897 WARN_ON(new_sb);
1898 deactivate_super(pinned_sb);
1899 }
1900
2bd59d48
TH
1901 return dentry;
1902}
1903
1904static void cgroup_kill_sb(struct super_block *sb)
1905{
1906 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1907 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1908
9d755d33
TH
1909 /*
1910 * If @root doesn't have any mounts or children, start killing it.
1911 * This prevents new mounts by disabling percpu_ref_tryget_live().
1912 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1913 *
1914 * And don't kill the default root.
9d755d33 1915 */
3c606d35 1916 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 1917 root == &cgrp_dfl_root)
9d755d33
TH
1918 cgroup_put(&root->cgrp);
1919 else
1920 percpu_ref_kill(&root->cgrp.self.refcnt);
1921
2bd59d48 1922 kernfs_kill_sb(sb);
ddbcc7e8
PM
1923}
1924
1925static struct file_system_type cgroup_fs_type = {
1926 .name = "cgroup",
f7e83571 1927 .mount = cgroup_mount,
ddbcc7e8
PM
1928 .kill_sb = cgroup_kill_sb,
1929};
1930
676db4af
GK
1931static struct kobject *cgroup_kobj;
1932
857a2beb 1933/**
913ffdb5 1934 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1935 * @task: target task
857a2beb
TH
1936 * @buf: the buffer to write the path into
1937 * @buflen: the length of the buffer
1938 *
913ffdb5
TH
1939 * Determine @task's cgroup on the first (the one with the lowest non-zero
1940 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1941 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1942 * cgroup controller callbacks.
1943 *
e61734c5 1944 * Return value is the same as kernfs_path().
857a2beb 1945 */
e61734c5 1946char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1947{
3dd06ffa 1948 struct cgroup_root *root;
913ffdb5 1949 struct cgroup *cgrp;
e61734c5
TH
1950 int hierarchy_id = 1;
1951 char *path = NULL;
857a2beb
TH
1952
1953 mutex_lock(&cgroup_mutex);
96d365e0 1954 down_read(&css_set_rwsem);
857a2beb 1955
913ffdb5
TH
1956 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1957
857a2beb
TH
1958 if (root) {
1959 cgrp = task_cgroup_from_root(task, root);
e61734c5 1960 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1961 } else {
1962 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1963 if (strlcpy(buf, "/", buflen) < buflen)
1964 path = buf;
857a2beb
TH
1965 }
1966
96d365e0 1967 up_read(&css_set_rwsem);
857a2beb 1968 mutex_unlock(&cgroup_mutex);
e61734c5 1969 return path;
857a2beb 1970}
913ffdb5 1971EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1972
b3dc094e 1973/* used to track tasks and other necessary states during migration */
2f7ee569 1974struct cgroup_taskset {
b3dc094e
TH
1975 /* the src and dst cset list running through cset->mg_node */
1976 struct list_head src_csets;
1977 struct list_head dst_csets;
1978
1979 /*
1980 * Fields for cgroup_taskset_*() iteration.
1981 *
1982 * Before migration is committed, the target migration tasks are on
1983 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1984 * the csets on ->dst_csets. ->csets point to either ->src_csets
1985 * or ->dst_csets depending on whether migration is committed.
1986 *
1987 * ->cur_csets and ->cur_task point to the current task position
1988 * during iteration.
1989 */
1990 struct list_head *csets;
1991 struct css_set *cur_cset;
1992 struct task_struct *cur_task;
2f7ee569
TH
1993};
1994
1995/**
1996 * cgroup_taskset_first - reset taskset and return the first task
1997 * @tset: taskset of interest
1998 *
1999 * @tset iteration is initialized and the first task is returned.
2000 */
2001struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2002{
b3dc094e
TH
2003 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2004 tset->cur_task = NULL;
2005
2006 return cgroup_taskset_next(tset);
2f7ee569 2007}
2f7ee569
TH
2008
2009/**
2010 * cgroup_taskset_next - iterate to the next task in taskset
2011 * @tset: taskset of interest
2012 *
2013 * Return the next task in @tset. Iteration must have been initialized
2014 * with cgroup_taskset_first().
2015 */
2016struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2017{
b3dc094e
TH
2018 struct css_set *cset = tset->cur_cset;
2019 struct task_struct *task = tset->cur_task;
2f7ee569 2020
b3dc094e
TH
2021 while (&cset->mg_node != tset->csets) {
2022 if (!task)
2023 task = list_first_entry(&cset->mg_tasks,
2024 struct task_struct, cg_list);
2025 else
2026 task = list_next_entry(task, cg_list);
2f7ee569 2027
b3dc094e
TH
2028 if (&task->cg_list != &cset->mg_tasks) {
2029 tset->cur_cset = cset;
2030 tset->cur_task = task;
2031 return task;
2032 }
2f7ee569 2033
b3dc094e
TH
2034 cset = list_next_entry(cset, mg_node);
2035 task = NULL;
2036 }
2f7ee569 2037
b3dc094e 2038 return NULL;
2f7ee569 2039}
2f7ee569 2040
cb0f1fe9 2041/**
74a1166d 2042 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 2043 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
2044 * @tsk: the task being migrated
2045 * @new_cset: the new css_set @tsk is being attached to
74a1166d 2046 *
cb0f1fe9 2047 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 2048 */
5abb8855
TH
2049static void cgroup_task_migrate(struct cgroup *old_cgrp,
2050 struct task_struct *tsk,
2051 struct css_set *new_cset)
74a1166d 2052{
5abb8855 2053 struct css_set *old_cset;
74a1166d 2054
cb0f1fe9
TH
2055 lockdep_assert_held(&cgroup_mutex);
2056 lockdep_assert_held(&css_set_rwsem);
2057
74a1166d 2058 /*
d59cfc09
TH
2059 * We are synchronized through cgroup_threadgroup_rwsem against
2060 * PF_EXITING setting such that we can't race against cgroup_exit()
2061 * changing the css_set to init_css_set and dropping the old one.
74a1166d 2062 */
c84cdf75 2063 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 2064 old_cset = task_css_set(tsk);
74a1166d 2065
b3dc094e 2066 get_css_set(new_cset);
5abb8855 2067 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 2068
1b9aba49
TH
2069 /*
2070 * Use move_tail so that cgroup_taskset_first() still returns the
2071 * leader after migration. This works because cgroup_migrate()
2072 * ensures that the dst_cset of the leader is the first on the
2073 * tset's dst_csets list.
2074 */
2075 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
2076
2077 /*
5abb8855
TH
2078 * We just gained a reference on old_cset by taking it from the
2079 * task. As trading it for new_cset is protected by cgroup_mutex,
2080 * we're safe to drop it here; it will be freed under RCU.
74a1166d 2081 */
a25eb52e 2082 put_css_set_locked(old_cset);
74a1166d
BB
2083}
2084
a043e3b2 2085/**
1958d2d5
TH
2086 * cgroup_migrate_finish - cleanup after attach
2087 * @preloaded_csets: list of preloaded css_sets
74a1166d 2088 *
1958d2d5
TH
2089 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2090 * those functions for details.
74a1166d 2091 */
1958d2d5 2092static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2093{
1958d2d5 2094 struct css_set *cset, *tmp_cset;
74a1166d 2095
1958d2d5
TH
2096 lockdep_assert_held(&cgroup_mutex);
2097
2098 down_write(&css_set_rwsem);
2099 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2100 cset->mg_src_cgrp = NULL;
2101 cset->mg_dst_cset = NULL;
2102 list_del_init(&cset->mg_preload_node);
a25eb52e 2103 put_css_set_locked(cset);
1958d2d5
TH
2104 }
2105 up_write(&css_set_rwsem);
2106}
2107
2108/**
2109 * cgroup_migrate_add_src - add a migration source css_set
2110 * @src_cset: the source css_set to add
2111 * @dst_cgrp: the destination cgroup
2112 * @preloaded_csets: list of preloaded css_sets
2113 *
2114 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2115 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2116 * up by cgroup_migrate_finish().
2117 *
d59cfc09
TH
2118 * This function may be called without holding cgroup_threadgroup_rwsem
2119 * even if the target is a process. Threads may be created and destroyed
2120 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2121 * into play and the preloaded css_sets are guaranteed to cover all
2122 * migrations.
1958d2d5
TH
2123 */
2124static void cgroup_migrate_add_src(struct css_set *src_cset,
2125 struct cgroup *dst_cgrp,
2126 struct list_head *preloaded_csets)
2127{
2128 struct cgroup *src_cgrp;
2129
2130 lockdep_assert_held(&cgroup_mutex);
2131 lockdep_assert_held(&css_set_rwsem);
2132
2133 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2134
1958d2d5
TH
2135 if (!list_empty(&src_cset->mg_preload_node))
2136 return;
2137
2138 WARN_ON(src_cset->mg_src_cgrp);
2139 WARN_ON(!list_empty(&src_cset->mg_tasks));
2140 WARN_ON(!list_empty(&src_cset->mg_node));
2141
2142 src_cset->mg_src_cgrp = src_cgrp;
2143 get_css_set(src_cset);
2144 list_add(&src_cset->mg_preload_node, preloaded_csets);
2145}
2146
2147/**
2148 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2149 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2150 * @preloaded_csets: list of preloaded source css_sets
2151 *
2152 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2153 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2154 * pins all destination css_sets, links each to its source, and append them
2155 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2156 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2157 *
2158 * This function must be called after cgroup_migrate_add_src() has been
2159 * called on each migration source css_set. After migration is performed
2160 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2161 * @preloaded_csets.
2162 */
2163static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2164 struct list_head *preloaded_csets)
2165{
2166 LIST_HEAD(csets);
f817de98 2167 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2168
2169 lockdep_assert_held(&cgroup_mutex);
2170
f8f22e53
TH
2171 /*
2172 * Except for the root, child_subsys_mask must be zero for a cgroup
2173 * with tasks so that child cgroups don't compete against tasks.
2174 */
d51f39b0 2175 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2176 dst_cgrp->child_subsys_mask)
2177 return -EBUSY;
2178
1958d2d5 2179 /* look up the dst cset for each src cset and link it to src */
f817de98 2180 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2181 struct css_set *dst_cset;
2182
f817de98
TH
2183 dst_cset = find_css_set(src_cset,
2184 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2185 if (!dst_cset)
2186 goto err;
2187
2188 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2189
2190 /*
2191 * If src cset equals dst, it's noop. Drop the src.
2192 * cgroup_migrate() will skip the cset too. Note that we
2193 * can't handle src == dst as some nodes are used by both.
2194 */
2195 if (src_cset == dst_cset) {
2196 src_cset->mg_src_cgrp = NULL;
2197 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2198 put_css_set(src_cset);
2199 put_css_set(dst_cset);
f817de98
TH
2200 continue;
2201 }
2202
1958d2d5
TH
2203 src_cset->mg_dst_cset = dst_cset;
2204
2205 if (list_empty(&dst_cset->mg_preload_node))
2206 list_add(&dst_cset->mg_preload_node, &csets);
2207 else
a25eb52e 2208 put_css_set(dst_cset);
1958d2d5
TH
2209 }
2210
f817de98 2211 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2212 return 0;
2213err:
2214 cgroup_migrate_finish(&csets);
2215 return -ENOMEM;
2216}
2217
2218/**
2219 * cgroup_migrate - migrate a process or task to a cgroup
2220 * @cgrp: the destination cgroup
2221 * @leader: the leader of the process or the task to migrate
2222 * @threadgroup: whether @leader points to the whole process or a single task
2223 *
2224 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
d59cfc09 2225 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2226 * caller is also responsible for invoking cgroup_migrate_add_src() and
2227 * cgroup_migrate_prepare_dst() on the targets before invoking this
2228 * function and following up with cgroup_migrate_finish().
2229 *
2230 * As long as a controller's ->can_attach() doesn't fail, this function is
2231 * guaranteed to succeed. This means that, excluding ->can_attach()
2232 * failure, when migrating multiple targets, the success or failure can be
2233 * decided for all targets by invoking group_migrate_prepare_dst() before
2234 * actually starting migrating.
2235 */
2236static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2237 bool threadgroup)
74a1166d 2238{
b3dc094e
TH
2239 struct cgroup_taskset tset = {
2240 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2241 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2242 .csets = &tset.src_csets,
2243 };
1c6727af 2244 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2245 struct css_set *cset, *tmp_cset;
2246 struct task_struct *task, *tmp_task;
2247 int i, ret;
74a1166d 2248
fb5d2b4c
MSB
2249 /*
2250 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2251 * already PF_EXITING could be freed from underneath us unless we
2252 * take an rcu_read_lock.
2253 */
b3dc094e 2254 down_write(&css_set_rwsem);
fb5d2b4c 2255 rcu_read_lock();
9db8de37 2256 task = leader;
74a1166d 2257 do {
9db8de37
TH
2258 /* @task either already exited or can't exit until the end */
2259 if (task->flags & PF_EXITING)
ea84753c 2260 goto next;
134d3373 2261
eaf797ab
TH
2262 /* leave @task alone if post_fork() hasn't linked it yet */
2263 if (list_empty(&task->cg_list))
ea84753c 2264 goto next;
cd3d0952 2265
b3dc094e 2266 cset = task_css_set(task);
1958d2d5 2267 if (!cset->mg_src_cgrp)
ea84753c 2268 goto next;
b3dc094e 2269
61d1d219 2270 /*
1b9aba49
TH
2271 * cgroup_taskset_first() must always return the leader.
2272 * Take care to avoid disturbing the ordering.
61d1d219 2273 */
1b9aba49
TH
2274 list_move_tail(&task->cg_list, &cset->mg_tasks);
2275 if (list_empty(&cset->mg_node))
2276 list_add_tail(&cset->mg_node, &tset.src_csets);
2277 if (list_empty(&cset->mg_dst_cset->mg_node))
2278 list_move_tail(&cset->mg_dst_cset->mg_node,
2279 &tset.dst_csets);
ea84753c 2280 next:
081aa458
LZ
2281 if (!threadgroup)
2282 break;
9db8de37 2283 } while_each_thread(leader, task);
fb5d2b4c 2284 rcu_read_unlock();
b3dc094e 2285 up_write(&css_set_rwsem);
74a1166d 2286
134d3373 2287 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2288 if (list_empty(&tset.src_csets))
2289 return 0;
134d3373 2290
1958d2d5 2291 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2292 for_each_e_css(css, i, cgrp) {
1c6727af 2293 if (css->ss->can_attach) {
9db8de37
TH
2294 ret = css->ss->can_attach(css, &tset);
2295 if (ret) {
1c6727af 2296 failed_css = css;
74a1166d
BB
2297 goto out_cancel_attach;
2298 }
2299 }
74a1166d
BB
2300 }
2301
2302 /*
1958d2d5
TH
2303 * Now that we're guaranteed success, proceed to move all tasks to
2304 * the new cgroup. There are no failure cases after here, so this
2305 * is the commit point.
74a1166d 2306 */
cb0f1fe9 2307 down_write(&css_set_rwsem);
b3dc094e
TH
2308 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2309 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2310 cgroup_task_migrate(cset->mg_src_cgrp, task,
2311 cset->mg_dst_cset);
74a1166d 2312 }
cb0f1fe9 2313 up_write(&css_set_rwsem);
74a1166d
BB
2314
2315 /*
1958d2d5
TH
2316 * Migration is committed, all target tasks are now on dst_csets.
2317 * Nothing is sensitive to fork() after this point. Notify
2318 * controllers that migration is complete.
74a1166d 2319 */
1958d2d5 2320 tset.csets = &tset.dst_csets;
74a1166d 2321
aec3dfcb 2322 for_each_e_css(css, i, cgrp)
1c6727af
TH
2323 if (css->ss->attach)
2324 css->ss->attach(css, &tset);
74a1166d 2325
9db8de37 2326 ret = 0;
b3dc094e
TH
2327 goto out_release_tset;
2328
74a1166d 2329out_cancel_attach:
aec3dfcb 2330 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2331 if (css == failed_css)
2332 break;
2333 if (css->ss->cancel_attach)
2334 css->ss->cancel_attach(css, &tset);
74a1166d 2335 }
b3dc094e
TH
2336out_release_tset:
2337 down_write(&css_set_rwsem);
2338 list_splice_init(&tset.dst_csets, &tset.src_csets);
2339 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2340 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2341 list_del_init(&cset->mg_node);
b3dc094e
TH
2342 }
2343 up_write(&css_set_rwsem);
9db8de37 2344 return ret;
74a1166d
BB
2345}
2346
1958d2d5
TH
2347/**
2348 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2349 * @dst_cgrp: the cgroup to attach to
2350 * @leader: the task or the leader of the threadgroup to be attached
2351 * @threadgroup: attach the whole threadgroup?
2352 *
d59cfc09 2353 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2354 */
2355static int cgroup_attach_task(struct cgroup *dst_cgrp,
2356 struct task_struct *leader, bool threadgroup)
2357{
2358 LIST_HEAD(preloaded_csets);
2359 struct task_struct *task;
2360 int ret;
2361
2362 /* look up all src csets */
2363 down_read(&css_set_rwsem);
2364 rcu_read_lock();
2365 task = leader;
2366 do {
2367 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2368 &preloaded_csets);
2369 if (!threadgroup)
2370 break;
2371 } while_each_thread(leader, task);
2372 rcu_read_unlock();
2373 up_read(&css_set_rwsem);
2374
2375 /* prepare dst csets and commit */
2376 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2377 if (!ret)
2378 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2379
2380 cgroup_migrate_finish(&preloaded_csets);
2381 return ret;
74a1166d
BB
2382}
2383
2384/*
2385 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2386 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2387 * cgroup_mutex and threadgroup.
bbcb81d0 2388 */
acbef755
TH
2389static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2390 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2391{
bbcb81d0 2392 struct task_struct *tsk;
c69e8d9c 2393 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2394 struct cgroup *cgrp;
acbef755 2395 pid_t pid;
bbcb81d0
PM
2396 int ret;
2397
acbef755
TH
2398 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2399 return -EINVAL;
2400
e76ecaee
TH
2401 cgrp = cgroup_kn_lock_live(of->kn);
2402 if (!cgrp)
74a1166d
BB
2403 return -ENODEV;
2404
b5ba75b5 2405 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2406 rcu_read_lock();
bbcb81d0 2407 if (pid) {
73507f33 2408 tsk = find_task_by_vpid(pid);
74a1166d 2409 if (!tsk) {
dd4b0a46 2410 ret = -ESRCH;
b5ba75b5 2411 goto out_unlock_rcu;
bbcb81d0 2412 }
74a1166d
BB
2413 /*
2414 * even if we're attaching all tasks in the thread group, we
2415 * only need to check permissions on one of them.
2416 */
c69e8d9c 2417 tcred = __task_cred(tsk);
14a590c3
EB
2418 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2419 !uid_eq(cred->euid, tcred->uid) &&
2420 !uid_eq(cred->euid, tcred->suid)) {
b78949eb 2421 ret = -EACCES;
b5ba75b5 2422 goto out_unlock_rcu;
bbcb81d0 2423 }
b78949eb
MSB
2424 } else
2425 tsk = current;
cd3d0952
TH
2426
2427 if (threadgroup)
b78949eb 2428 tsk = tsk->group_leader;
c4c27fbd
MG
2429
2430 /*
14a40ffc 2431 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2432 * trapped in a cpuset, or RT worker may be born in a cgroup
2433 * with no rt_runtime allocated. Just say no.
2434 */
14a40ffc 2435 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2436 ret = -EINVAL;
b5ba75b5 2437 goto out_unlock_rcu;
c4c27fbd
MG
2438 }
2439
b78949eb
MSB
2440 get_task_struct(tsk);
2441 rcu_read_unlock();
2442
081aa458
LZ
2443 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2444
bbcb81d0 2445 put_task_struct(tsk);
b5ba75b5
TH
2446 goto out_unlock_threadgroup;
2447
2448out_unlock_rcu:
2449 rcu_read_unlock();
2450out_unlock_threadgroup:
2451 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2452 cgroup_kn_unlock(of->kn);
acbef755 2453 return ret ?: nbytes;
bbcb81d0
PM
2454}
2455
7ae1bad9
TH
2456/**
2457 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2458 * @from: attach to all cgroups of a given task
2459 * @tsk: the task to be attached
2460 */
2461int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2462{
3dd06ffa 2463 struct cgroup_root *root;
7ae1bad9
TH
2464 int retval = 0;
2465
47cfcd09 2466 mutex_lock(&cgroup_mutex);
985ed670 2467 for_each_root(root) {
96d365e0
TH
2468 struct cgroup *from_cgrp;
2469
3dd06ffa 2470 if (root == &cgrp_dfl_root)
985ed670
TH
2471 continue;
2472
96d365e0
TH
2473 down_read(&css_set_rwsem);
2474 from_cgrp = task_cgroup_from_root(from, root);
2475 up_read(&css_set_rwsem);
7ae1bad9 2476
6f4b7e63 2477 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2478 if (retval)
2479 break;
2480 }
47cfcd09 2481 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2482
2483 return retval;
2484}
2485EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2486
acbef755
TH
2487static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2488 char *buf, size_t nbytes, loff_t off)
74a1166d 2489{
acbef755 2490 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2491}
2492
acbef755
TH
2493static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2494 char *buf, size_t nbytes, loff_t off)
af351026 2495{
acbef755 2496 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2497}
2498
451af504
TH
2499static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2500 char *buf, size_t nbytes, loff_t off)
e788e066 2501{
e76ecaee 2502 struct cgroup *cgrp;
5f469907 2503
e76ecaee 2504 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2505
e76ecaee
TH
2506 cgrp = cgroup_kn_lock_live(of->kn);
2507 if (!cgrp)
e788e066 2508 return -ENODEV;
69e943b7 2509 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2510 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2511 sizeof(cgrp->root->release_agent_path));
69e943b7 2512 spin_unlock(&release_agent_path_lock);
e76ecaee 2513 cgroup_kn_unlock(of->kn);
451af504 2514 return nbytes;
e788e066
PM
2515}
2516
2da8ca82 2517static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2518{
2da8ca82 2519 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2520
46cfeb04 2521 spin_lock(&release_agent_path_lock);
e788e066 2522 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2523 spin_unlock(&release_agent_path_lock);
e788e066 2524 seq_putc(seq, '\n');
e788e066
PM
2525 return 0;
2526}
2527
2da8ca82 2528static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2529{
c1d5d42e 2530 seq_puts(seq, "0\n");
e788e066
PM
2531 return 0;
2532}
2533
8ab456ac 2534static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2535{
f8f22e53
TH
2536 struct cgroup_subsys *ss;
2537 bool printed = false;
2538 int ssid;
a742c59d 2539
f8f22e53
TH
2540 for_each_subsys(ss, ssid) {
2541 if (ss_mask & (1 << ssid)) {
2542 if (printed)
2543 seq_putc(seq, ' ');
2544 seq_printf(seq, "%s", ss->name);
2545 printed = true;
2546 }
e73d2c61 2547 }
f8f22e53
TH
2548 if (printed)
2549 seq_putc(seq, '\n');
355e0c48
PM
2550}
2551
f8f22e53
TH
2552/* show controllers which are currently attached to the default hierarchy */
2553static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2554{
f8f22e53
TH
2555 struct cgroup *cgrp = seq_css(seq)->cgroup;
2556
5533e011
TH
2557 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2558 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2559 return 0;
db3b1497
PM
2560}
2561
f8f22e53
TH
2562/* show controllers which are enabled from the parent */
2563static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2564{
f8f22e53
TH
2565 struct cgroup *cgrp = seq_css(seq)->cgroup;
2566
667c2491 2567 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2568 return 0;
ddbcc7e8
PM
2569}
2570
f8f22e53
TH
2571/* show controllers which are enabled for a given cgroup's children */
2572static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2573{
f8f22e53
TH
2574 struct cgroup *cgrp = seq_css(seq)->cgroup;
2575
667c2491 2576 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2577 return 0;
2578}
2579
2580/**
2581 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2582 * @cgrp: root of the subtree to update csses for
2583 *
2584 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2585 * css associations need to be updated accordingly. This function looks up
2586 * all css_sets which are attached to the subtree, creates the matching
2587 * updated css_sets and migrates the tasks to the new ones.
2588 */
2589static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2590{
2591 LIST_HEAD(preloaded_csets);
2592 struct cgroup_subsys_state *css;
2593 struct css_set *src_cset;
2594 int ret;
2595
f8f22e53
TH
2596 lockdep_assert_held(&cgroup_mutex);
2597
b5ba75b5
TH
2598 percpu_down_write(&cgroup_threadgroup_rwsem);
2599
f8f22e53
TH
2600 /* look up all csses currently attached to @cgrp's subtree */
2601 down_read(&css_set_rwsem);
2602 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2603 struct cgrp_cset_link *link;
2604
2605 /* self is not affected by child_subsys_mask change */
2606 if (css->cgroup == cgrp)
2607 continue;
2608
2609 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2610 cgroup_migrate_add_src(link->cset, cgrp,
2611 &preloaded_csets);
2612 }
2613 up_read(&css_set_rwsem);
2614
2615 /* NULL dst indicates self on default hierarchy */
2616 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2617 if (ret)
2618 goto out_finish;
2619
2620 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2621 struct task_struct *last_task = NULL, *task;
2622
2623 /* src_csets precede dst_csets, break on the first dst_cset */
2624 if (!src_cset->mg_src_cgrp)
2625 break;
2626
2627 /*
2628 * All tasks in src_cset need to be migrated to the
2629 * matching dst_cset. Empty it process by process. We
2630 * walk tasks but migrate processes. The leader might even
2631 * belong to a different cset but such src_cset would also
2632 * be among the target src_csets because the default
2633 * hierarchy enforces per-process membership.
2634 */
2635 while (true) {
2636 down_read(&css_set_rwsem);
2637 task = list_first_entry_or_null(&src_cset->tasks,
2638 struct task_struct, cg_list);
2639 if (task) {
2640 task = task->group_leader;
2641 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2642 get_task_struct(task);
2643 }
2644 up_read(&css_set_rwsem);
2645
2646 if (!task)
2647 break;
2648
2649 /* guard against possible infinite loop */
2650 if (WARN(last_task == task,
2651 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2652 goto out_finish;
2653 last_task = task;
2654
f8f22e53
TH
2655 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2656
f8f22e53
TH
2657 put_task_struct(task);
2658
2659 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2660 goto out_finish;
2661 }
2662 }
2663
2664out_finish:
2665 cgroup_migrate_finish(&preloaded_csets);
b5ba75b5 2666 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2667 return ret;
2668}
2669
2670/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2671static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2672 char *buf, size_t nbytes,
2673 loff_t off)
f8f22e53 2674{
8ab456ac
AS
2675 unsigned long enable = 0, disable = 0;
2676 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2677 struct cgroup *cgrp, *child;
f8f22e53 2678 struct cgroup_subsys *ss;
451af504 2679 char *tok;
f8f22e53
TH
2680 int ssid, ret;
2681
2682 /*
d37167ab
TH
2683 * Parse input - space separated list of subsystem names prefixed
2684 * with either + or -.
f8f22e53 2685 */
451af504
TH
2686 buf = strstrip(buf);
2687 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2688 if (tok[0] == '\0')
2689 continue;
f8f22e53 2690 for_each_subsys(ss, ssid) {
5533e011
TH
2691 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2692 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2693 continue;
2694
2695 if (*tok == '+') {
7d331fa9
TH
2696 enable |= 1 << ssid;
2697 disable &= ~(1 << ssid);
f8f22e53 2698 } else if (*tok == '-') {
7d331fa9
TH
2699 disable |= 1 << ssid;
2700 enable &= ~(1 << ssid);
f8f22e53
TH
2701 } else {
2702 return -EINVAL;
2703 }
2704 break;
2705 }
2706 if (ssid == CGROUP_SUBSYS_COUNT)
2707 return -EINVAL;
2708 }
2709
a9746d8d
TH
2710 cgrp = cgroup_kn_lock_live(of->kn);
2711 if (!cgrp)
2712 return -ENODEV;
f8f22e53
TH
2713
2714 for_each_subsys(ss, ssid) {
2715 if (enable & (1 << ssid)) {
667c2491 2716 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2717 enable &= ~(1 << ssid);
2718 continue;
2719 }
2720
c29adf24
TH
2721 /* unavailable or not enabled on the parent? */
2722 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2723 (cgroup_parent(cgrp) &&
667c2491 2724 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2725 ret = -ENOENT;
2726 goto out_unlock;
2727 }
f8f22e53 2728 } else if (disable & (1 << ssid)) {
667c2491 2729 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2730 disable &= ~(1 << ssid);
2731 continue;
2732 }
2733
2734 /* a child has it enabled? */
2735 cgroup_for_each_live_child(child, cgrp) {
667c2491 2736 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2737 ret = -EBUSY;
ddab2b6e 2738 goto out_unlock;
f8f22e53
TH
2739 }
2740 }
2741 }
2742 }
2743
2744 if (!enable && !disable) {
2745 ret = 0;
ddab2b6e 2746 goto out_unlock;
f8f22e53
TH
2747 }
2748
2749 /*
667c2491 2750 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2751 * with tasks so that child cgroups don't compete against tasks.
2752 */
d51f39b0 2753 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2754 ret = -EBUSY;
2755 goto out_unlock;
2756 }
2757
2758 /*
f63070d3
TH
2759 * Update subsys masks and calculate what needs to be done. More
2760 * subsystems than specified may need to be enabled or disabled
2761 * depending on subsystem dependencies.
2762 */
755bf5ee
TH
2763 old_sc = cgrp->subtree_control;
2764 old_ss = cgrp->child_subsys_mask;
2765 new_sc = (old_sc | enable) & ~disable;
2766 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2767
755bf5ee
TH
2768 css_enable = ~old_ss & new_ss;
2769 css_disable = old_ss & ~new_ss;
f63070d3
TH
2770 enable |= css_enable;
2771 disable |= css_disable;
c29adf24 2772
db6e3053
TH
2773 /*
2774 * Because css offlining is asynchronous, userland might try to
2775 * re-enable the same controller while the previous instance is
2776 * still around. In such cases, wait till it's gone using
2777 * offline_waitq.
2778 */
2779 for_each_subsys(ss, ssid) {
2780 if (!(css_enable & (1 << ssid)))
2781 continue;
2782
2783 cgroup_for_each_live_child(child, cgrp) {
2784 DEFINE_WAIT(wait);
2785
2786 if (!cgroup_css(child, ss))
2787 continue;
2788
2789 cgroup_get(child);
2790 prepare_to_wait(&child->offline_waitq, &wait,
2791 TASK_UNINTERRUPTIBLE);
2792 cgroup_kn_unlock(of->kn);
2793 schedule();
2794 finish_wait(&child->offline_waitq, &wait);
2795 cgroup_put(child);
2796
2797 return restart_syscall();
2798 }
2799 }
2800
755bf5ee
TH
2801 cgrp->subtree_control = new_sc;
2802 cgrp->child_subsys_mask = new_ss;
2803
f63070d3
TH
2804 /*
2805 * Create new csses or make the existing ones visible. A css is
2806 * created invisible if it's being implicitly enabled through
2807 * dependency. An invisible css is made visible when the userland
2808 * explicitly enables it.
f8f22e53
TH
2809 */
2810 for_each_subsys(ss, ssid) {
2811 if (!(enable & (1 << ssid)))
2812 continue;
2813
2814 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
2815 if (css_enable & (1 << ssid))
2816 ret = create_css(child, ss,
2817 cgrp->subtree_control & (1 << ssid));
2818 else
2819 ret = cgroup_populate_dir(child, 1 << ssid);
f8f22e53
TH
2820 if (ret)
2821 goto err_undo_css;
2822 }
2823 }
2824
c29adf24
TH
2825 /*
2826 * At this point, cgroup_e_css() results reflect the new csses
2827 * making the following cgroup_update_dfl_csses() properly update
2828 * css associations of all tasks in the subtree.
2829 */
f8f22e53
TH
2830 ret = cgroup_update_dfl_csses(cgrp);
2831 if (ret)
2832 goto err_undo_css;
2833
f63070d3
TH
2834 /*
2835 * All tasks are migrated out of disabled csses. Kill or hide
2836 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
2837 * disabled while other subsystems are still depending on it. The
2838 * css must not actively control resources and be in the vanilla
2839 * state if it's made visible again later. Controllers which may
2840 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 2841 */
f8f22e53
TH
2842 for_each_subsys(ss, ssid) {
2843 if (!(disable & (1 << ssid)))
2844 continue;
2845
f63070d3 2846 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
2847 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2848
2849 if (css_disable & (1 << ssid)) {
2850 kill_css(css);
2851 } else {
f63070d3 2852 cgroup_clear_dir(child, 1 << ssid);
b4536f0c
TH
2853 if (ss->css_reset)
2854 ss->css_reset(css);
2855 }
f63070d3 2856 }
f8f22e53
TH
2857 }
2858
56c807ba
TH
2859 /*
2860 * The effective csses of all the descendants (excluding @cgrp) may
2861 * have changed. Subsystems can optionally subscribe to this event
2862 * by implementing ->css_e_css_changed() which is invoked if any of
2863 * the effective csses seen from the css's cgroup may have changed.
2864 */
2865 for_each_subsys(ss, ssid) {
2866 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
2867 struct cgroup_subsys_state *css;
2868
2869 if (!ss->css_e_css_changed || !this_css)
2870 continue;
2871
2872 css_for_each_descendant_pre(css, this_css)
2873 if (css != this_css)
2874 ss->css_e_css_changed(css);
2875 }
2876
f8f22e53
TH
2877 kernfs_activate(cgrp->kn);
2878 ret = 0;
2879out_unlock:
a9746d8d 2880 cgroup_kn_unlock(of->kn);
451af504 2881 return ret ?: nbytes;
f8f22e53
TH
2882
2883err_undo_css:
755bf5ee
TH
2884 cgrp->subtree_control = old_sc;
2885 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
2886
2887 for_each_subsys(ss, ssid) {
2888 if (!(enable & (1 << ssid)))
2889 continue;
2890
2891 cgroup_for_each_live_child(child, cgrp) {
2892 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
2893
2894 if (!css)
2895 continue;
2896
2897 if (css_enable & (1 << ssid))
f8f22e53 2898 kill_css(css);
f63070d3
TH
2899 else
2900 cgroup_clear_dir(child, 1 << ssid);
f8f22e53
TH
2901 }
2902 }
2903 goto out_unlock;
2904}
2905
842b597e
TH
2906static int cgroup_populated_show(struct seq_file *seq, void *v)
2907{
2908 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2909 return 0;
2910}
2911
2bd59d48
TH
2912static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2913 size_t nbytes, loff_t off)
355e0c48 2914{
2bd59d48
TH
2915 struct cgroup *cgrp = of->kn->parent->priv;
2916 struct cftype *cft = of->kn->priv;
2917 struct cgroup_subsys_state *css;
a742c59d 2918 int ret;
355e0c48 2919
b4168640
TH
2920 if (cft->write)
2921 return cft->write(of, buf, nbytes, off);
2922
2bd59d48
TH
2923 /*
2924 * kernfs guarantees that a file isn't deleted with operations in
2925 * flight, which means that the matching css is and stays alive and
2926 * doesn't need to be pinned. The RCU locking is not necessary
2927 * either. It's just for the convenience of using cgroup_css().
2928 */
2929 rcu_read_lock();
2930 css = cgroup_css(cgrp, cft->ss);
2931 rcu_read_unlock();
a742c59d 2932
451af504 2933 if (cft->write_u64) {
a742c59d
TH
2934 unsigned long long v;
2935 ret = kstrtoull(buf, 0, &v);
2936 if (!ret)
2937 ret = cft->write_u64(css, cft, v);
2938 } else if (cft->write_s64) {
2939 long long v;
2940 ret = kstrtoll(buf, 0, &v);
2941 if (!ret)
2942 ret = cft->write_s64(css, cft, v);
e73d2c61 2943 } else {
a742c59d 2944 ret = -EINVAL;
e73d2c61 2945 }
2bd59d48 2946
a742c59d 2947 return ret ?: nbytes;
355e0c48
PM
2948}
2949
6612f05b 2950static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2951{
2bd59d48 2952 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2953}
2954
6612f05b 2955static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2956{
2bd59d48 2957 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2958}
2959
6612f05b 2960static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2961{
2bd59d48 2962 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2963}
2964
91796569 2965static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2966{
7da11279
TH
2967 struct cftype *cft = seq_cft(m);
2968 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2969
2da8ca82
TH
2970 if (cft->seq_show)
2971 return cft->seq_show(m, arg);
e73d2c61 2972
f4c753b7 2973 if (cft->read_u64)
896f5199
TH
2974 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2975 else if (cft->read_s64)
2976 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2977 else
2978 return -EINVAL;
2979 return 0;
91796569
PM
2980}
2981
2bd59d48
TH
2982static struct kernfs_ops cgroup_kf_single_ops = {
2983 .atomic_write_len = PAGE_SIZE,
2984 .write = cgroup_file_write,
2985 .seq_show = cgroup_seqfile_show,
91796569
PM
2986};
2987
2bd59d48
TH
2988static struct kernfs_ops cgroup_kf_ops = {
2989 .atomic_write_len = PAGE_SIZE,
2990 .write = cgroup_file_write,
2991 .seq_start = cgroup_seqfile_start,
2992 .seq_next = cgroup_seqfile_next,
2993 .seq_stop = cgroup_seqfile_stop,
2994 .seq_show = cgroup_seqfile_show,
2995};
ddbcc7e8
PM
2996
2997/*
2998 * cgroup_rename - Only allow simple rename of directories in place.
2999 */
2bd59d48
TH
3000static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3001 const char *new_name_str)
ddbcc7e8 3002{
2bd59d48 3003 struct cgroup *cgrp = kn->priv;
65dff759 3004 int ret;
65dff759 3005
2bd59d48 3006 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3007 return -ENOTDIR;
2bd59d48 3008 if (kn->parent != new_parent)
ddbcc7e8 3009 return -EIO;
65dff759 3010
6db8e85c
TH
3011 /*
3012 * This isn't a proper migration and its usefulness is very
aa6ec29b 3013 * limited. Disallow on the default hierarchy.
6db8e85c 3014 */
aa6ec29b 3015 if (cgroup_on_dfl(cgrp))
6db8e85c 3016 return -EPERM;
099fca32 3017
e1b2dc17 3018 /*
8353da1f 3019 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3020 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3021 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3022 */
3023 kernfs_break_active_protection(new_parent);
3024 kernfs_break_active_protection(kn);
099fca32 3025
2bd59d48 3026 mutex_lock(&cgroup_mutex);
099fca32 3027
2bd59d48 3028 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3029
2bd59d48 3030 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3031
3032 kernfs_unbreak_active_protection(kn);
3033 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3034 return ret;
099fca32
LZ
3035}
3036
49957f8e
TH
3037/* set uid and gid of cgroup dirs and files to that of the creator */
3038static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3039{
3040 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3041 .ia_uid = current_fsuid(),
3042 .ia_gid = current_fsgid(), };
3043
3044 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3045 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3046 return 0;
3047
3048 return kernfs_setattr(kn, &iattr);
3049}
3050
2bb566cb 3051static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 3052{
8d7e6fb0 3053 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3054 struct kernfs_node *kn;
3055 struct lock_class_key *key = NULL;
49957f8e 3056 int ret;
05ef1d7c 3057
2bd59d48
TH
3058#ifdef CONFIG_DEBUG_LOCK_ALLOC
3059 key = &cft->lockdep_key;
3060#endif
3061 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3062 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3063 NULL, key);
49957f8e
TH
3064 if (IS_ERR(kn))
3065 return PTR_ERR(kn);
3066
3067 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3068 if (ret) {
49957f8e 3069 kernfs_remove(kn);
f8f22e53
TH
3070 return ret;
3071 }
3072
b7fc5ad2 3073 if (cft->seq_show == cgroup_populated_show)
842b597e 3074 cgrp->populated_kn = kn;
f8f22e53 3075 return 0;
ddbcc7e8
PM
3076}
3077
b1f28d31
TH
3078/**
3079 * cgroup_addrm_files - add or remove files to a cgroup directory
3080 * @cgrp: the target cgroup
b1f28d31
TH
3081 * @cfts: array of cftypes to be added
3082 * @is_add: whether to add or remove
3083 *
3084 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
3085 * For removals, this function never fails. If addition fails, this
3086 * function doesn't remove files already added. The caller is responsible
3087 * for cleaning up.
b1f28d31 3088 */
2bb566cb
TH
3089static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
3090 bool is_add)
ddbcc7e8 3091{
03b1cde6 3092 struct cftype *cft;
b1f28d31
TH
3093 int ret;
3094
01f6474c 3095 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
3096
3097 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 3098 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3099 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3100 continue;
05ebb6e6 3101 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3102 continue;
d51f39b0 3103 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3104 continue;
d51f39b0 3105 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3106 continue;
3107
2739d3cc 3108 if (is_add) {
2bb566cb 3109 ret = cgroup_add_file(cgrp, cft);
b1f28d31 3110 if (ret) {
ed3d261b
JP
3111 pr_warn("%s: failed to add %s, err=%d\n",
3112 __func__, cft->name, ret);
b1f28d31
TH
3113 return ret;
3114 }
2739d3cc
LZ
3115 } else {
3116 cgroup_rm_file(cgrp, cft);
db0416b6 3117 }
ddbcc7e8 3118 }
b1f28d31 3119 return 0;
ddbcc7e8
PM
3120}
3121
21a2d343 3122static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3123{
3124 LIST_HEAD(pending);
2bb566cb 3125 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3126 struct cgroup *root = &ss->root->cgrp;
492eb21b 3127 struct cgroup_subsys_state *css;
9ccece80 3128 int ret = 0;
8e3f6541 3129
01f6474c 3130 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3131
e8c82d20 3132 /* add/rm files for all cgroups created before */
ca8bdcaf 3133 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3134 struct cgroup *cgrp = css->cgroup;
3135
e8c82d20
LZ
3136 if (cgroup_is_dead(cgrp))
3137 continue;
3138
21a2d343 3139 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
3140 if (ret)
3141 break;
8e3f6541 3142 }
21a2d343
TH
3143
3144 if (is_add && !ret)
3145 kernfs_activate(root->kn);
9ccece80 3146 return ret;
8e3f6541
TH
3147}
3148
2da440a2 3149static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3150{
2bb566cb 3151 struct cftype *cft;
8e3f6541 3152
2bd59d48
TH
3153 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3154 /* free copy for custom atomic_write_len, see init_cftypes() */
3155 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3156 kfree(cft->kf_ops);
3157 cft->kf_ops = NULL;
2da440a2 3158 cft->ss = NULL;
a8ddc821
TH
3159
3160 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3161 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3162 }
2da440a2
TH
3163}
3164
2bd59d48 3165static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3166{
3167 struct cftype *cft;
3168
2bd59d48
TH
3169 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3170 struct kernfs_ops *kf_ops;
3171
0adb0704
TH
3172 WARN_ON(cft->ss || cft->kf_ops);
3173
2bd59d48
TH
3174 if (cft->seq_start)
3175 kf_ops = &cgroup_kf_ops;
3176 else
3177 kf_ops = &cgroup_kf_single_ops;
3178
3179 /*
3180 * Ugh... if @cft wants a custom max_write_len, we need to
3181 * make a copy of kf_ops to set its atomic_write_len.
3182 */
3183 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3184 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3185 if (!kf_ops) {
3186 cgroup_exit_cftypes(cfts);
3187 return -ENOMEM;
3188 }
3189 kf_ops->atomic_write_len = cft->max_write_len;
3190 }
8e3f6541 3191
2bd59d48 3192 cft->kf_ops = kf_ops;
2bb566cb 3193 cft->ss = ss;
2bd59d48 3194 }
2bb566cb 3195
2bd59d48 3196 return 0;
2da440a2
TH
3197}
3198
21a2d343
TH
3199static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3200{
01f6474c 3201 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3202
3203 if (!cfts || !cfts[0].ss)
3204 return -ENOENT;
3205
3206 list_del(&cfts->node);
3207 cgroup_apply_cftypes(cfts, false);
3208 cgroup_exit_cftypes(cfts);
3209 return 0;
8e3f6541 3210}
8e3f6541 3211
79578621
TH
3212/**
3213 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3214 * @cfts: zero-length name terminated array of cftypes
3215 *
2bb566cb
TH
3216 * Unregister @cfts. Files described by @cfts are removed from all
3217 * existing cgroups and all future cgroups won't have them either. This
3218 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3219 *
3220 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3221 * registered.
79578621 3222 */
2bb566cb 3223int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3224{
21a2d343 3225 int ret;
79578621 3226
01f6474c 3227 mutex_lock(&cgroup_mutex);
21a2d343 3228 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3229 mutex_unlock(&cgroup_mutex);
21a2d343 3230 return ret;
80b13586
TH
3231}
3232
8e3f6541
TH
3233/**
3234 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3235 * @ss: target cgroup subsystem
3236 * @cfts: zero-length name terminated array of cftypes
3237 *
3238 * Register @cfts to @ss. Files described by @cfts are created for all
3239 * existing cgroups to which @ss is attached and all future cgroups will
3240 * have them too. This function can be called anytime whether @ss is
3241 * attached or not.
3242 *
3243 * Returns 0 on successful registration, -errno on failure. Note that this
3244 * function currently returns 0 as long as @cfts registration is successful
3245 * even if some file creation attempts on existing cgroups fail.
3246 */
2cf669a5 3247static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3248{
9ccece80 3249 int ret;
8e3f6541 3250
c731ae1d
LZ
3251 if (ss->disabled)
3252 return 0;
3253
dc5736ed
LZ
3254 if (!cfts || cfts[0].name[0] == '\0')
3255 return 0;
2bb566cb 3256
2bd59d48
TH
3257 ret = cgroup_init_cftypes(ss, cfts);
3258 if (ret)
3259 return ret;
79578621 3260
01f6474c 3261 mutex_lock(&cgroup_mutex);
21a2d343 3262
0adb0704 3263 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3264 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3265 if (ret)
21a2d343 3266 cgroup_rm_cftypes_locked(cfts);
79578621 3267
01f6474c 3268 mutex_unlock(&cgroup_mutex);
9ccece80 3269 return ret;
79578621
TH
3270}
3271
a8ddc821
TH
3272/**
3273 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3274 * @ss: target cgroup subsystem
3275 * @cfts: zero-length name terminated array of cftypes
3276 *
3277 * Similar to cgroup_add_cftypes() but the added files are only used for
3278 * the default hierarchy.
3279 */
3280int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3281{
3282 struct cftype *cft;
3283
3284 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3285 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3286 return cgroup_add_cftypes(ss, cfts);
3287}
3288
3289/**
3290 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3291 * @ss: target cgroup subsystem
3292 * @cfts: zero-length name terminated array of cftypes
3293 *
3294 * Similar to cgroup_add_cftypes() but the added files are only used for
3295 * the legacy hierarchies.
3296 */
2cf669a5
TH
3297int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3298{
a8ddc821
TH
3299 struct cftype *cft;
3300
fa8137be
VG
3301 /*
3302 * If legacy_flies_on_dfl, we want to show the legacy files on the
3303 * dfl hierarchy but iff the target subsystem hasn't been updated
3304 * for the dfl hierarchy yet.
3305 */
3306 if (!cgroup_legacy_files_on_dfl ||
3307 ss->dfl_cftypes != ss->legacy_cftypes) {
3308 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3309 cft->flags |= __CFTYPE_NOT_ON_DFL;
3310 }
3311
2cf669a5
TH
3312 return cgroup_add_cftypes(ss, cfts);
3313}
3314
a043e3b2
LZ
3315/**
3316 * cgroup_task_count - count the number of tasks in a cgroup.
3317 * @cgrp: the cgroup in question
3318 *
3319 * Return the number of tasks in the cgroup.
3320 */
07bc356e 3321static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3322{
3323 int count = 0;
69d0206c 3324 struct cgrp_cset_link *link;
817929ec 3325
96d365e0 3326 down_read(&css_set_rwsem);
69d0206c
TH
3327 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3328 count += atomic_read(&link->cset->refcount);
96d365e0 3329 up_read(&css_set_rwsem);
bbcb81d0
PM
3330 return count;
3331}
3332
53fa5261 3333/**
492eb21b 3334 * css_next_child - find the next child of a given css
c2931b70
TH
3335 * @pos: the current position (%NULL to initiate traversal)
3336 * @parent: css whose children to walk
53fa5261 3337 *
c2931b70 3338 * This function returns the next child of @parent and should be called
87fb54f1 3339 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3340 * that @parent and @pos are accessible. The next sibling is guaranteed to
3341 * be returned regardless of their states.
3342 *
3343 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3344 * css which finished ->css_online() is guaranteed to be visible in the
3345 * future iterations and will stay visible until the last reference is put.
3346 * A css which hasn't finished ->css_online() or already finished
3347 * ->css_offline() may show up during traversal. It's each subsystem's
3348 * responsibility to synchronize against on/offlining.
53fa5261 3349 */
c2931b70
TH
3350struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3351 struct cgroup_subsys_state *parent)
53fa5261 3352{
c2931b70 3353 struct cgroup_subsys_state *next;
53fa5261 3354
8353da1f 3355 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3356
3357 /*
de3f0341
TH
3358 * @pos could already have been unlinked from the sibling list.
3359 * Once a cgroup is removed, its ->sibling.next is no longer
3360 * updated when its next sibling changes. CSS_RELEASED is set when
3361 * @pos is taken off list, at which time its next pointer is valid,
3362 * and, as releases are serialized, the one pointed to by the next
3363 * pointer is guaranteed to not have started release yet. This
3364 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3365 * critical section, the one pointed to by its next pointer is
3366 * guaranteed to not have finished its RCU grace period even if we
3367 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3368 *
de3f0341
TH
3369 * If @pos has CSS_RELEASED set, its next pointer can't be
3370 * dereferenced; however, as each css is given a monotonically
3371 * increasing unique serial number and always appended to the
3372 * sibling list, the next one can be found by walking the parent's
3373 * children until the first css with higher serial number than
3374 * @pos's. While this path can be slower, it happens iff iteration
3375 * races against release and the race window is very small.
53fa5261 3376 */
3b287a50 3377 if (!pos) {
c2931b70
TH
3378 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3379 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3380 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3381 } else {
c2931b70 3382 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3383 if (next->serial_nr > pos->serial_nr)
3384 break;
53fa5261
TH
3385 }
3386
3b281afb
TH
3387 /*
3388 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3389 * the next sibling.
3b281afb 3390 */
c2931b70
TH
3391 if (&next->sibling != &parent->children)
3392 return next;
3b281afb 3393 return NULL;
53fa5261 3394}
53fa5261 3395
574bd9f7 3396/**
492eb21b 3397 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3398 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3399 * @root: css whose descendants to walk
574bd9f7 3400 *
492eb21b 3401 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3402 * to visit for pre-order traversal of @root's descendants. @root is
3403 * included in the iteration and the first node to be visited.
75501a6d 3404 *
87fb54f1
TH
3405 * While this function requires cgroup_mutex or RCU read locking, it
3406 * doesn't require the whole traversal to be contained in a single critical
3407 * section. This function will return the correct next descendant as long
3408 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3409 *
3410 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3411 * css which finished ->css_online() is guaranteed to be visible in the
3412 * future iterations and will stay visible until the last reference is put.
3413 * A css which hasn't finished ->css_online() or already finished
3414 * ->css_offline() may show up during traversal. It's each subsystem's
3415 * responsibility to synchronize against on/offlining.
574bd9f7 3416 */
492eb21b
TH
3417struct cgroup_subsys_state *
3418css_next_descendant_pre(struct cgroup_subsys_state *pos,
3419 struct cgroup_subsys_state *root)
574bd9f7 3420{
492eb21b 3421 struct cgroup_subsys_state *next;
574bd9f7 3422
8353da1f 3423 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3424
bd8815a6 3425 /* if first iteration, visit @root */
7805d000 3426 if (!pos)
bd8815a6 3427 return root;
574bd9f7
TH
3428
3429 /* visit the first child if exists */
492eb21b 3430 next = css_next_child(NULL, pos);
574bd9f7
TH
3431 if (next)
3432 return next;
3433
3434 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3435 while (pos != root) {
5c9d535b 3436 next = css_next_child(pos, pos->parent);
75501a6d 3437 if (next)
574bd9f7 3438 return next;
5c9d535b 3439 pos = pos->parent;
7805d000 3440 }
574bd9f7
TH
3441
3442 return NULL;
3443}
574bd9f7 3444
12a9d2fe 3445/**
492eb21b
TH
3446 * css_rightmost_descendant - return the rightmost descendant of a css
3447 * @pos: css of interest
12a9d2fe 3448 *
492eb21b
TH
3449 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3450 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3451 * subtree of @pos.
75501a6d 3452 *
87fb54f1
TH
3453 * While this function requires cgroup_mutex or RCU read locking, it
3454 * doesn't require the whole traversal to be contained in a single critical
3455 * section. This function will return the correct rightmost descendant as
3456 * long as @pos is accessible.
12a9d2fe 3457 */
492eb21b
TH
3458struct cgroup_subsys_state *
3459css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3460{
492eb21b 3461 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3462
8353da1f 3463 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3464
3465 do {
3466 last = pos;
3467 /* ->prev isn't RCU safe, walk ->next till the end */
3468 pos = NULL;
492eb21b 3469 css_for_each_child(tmp, last)
12a9d2fe
TH
3470 pos = tmp;
3471 } while (pos);
3472
3473 return last;
3474}
12a9d2fe 3475
492eb21b
TH
3476static struct cgroup_subsys_state *
3477css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3478{
492eb21b 3479 struct cgroup_subsys_state *last;
574bd9f7
TH
3480
3481 do {
3482 last = pos;
492eb21b 3483 pos = css_next_child(NULL, pos);
574bd9f7
TH
3484 } while (pos);
3485
3486 return last;
3487}
3488
3489/**
492eb21b 3490 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3491 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3492 * @root: css whose descendants to walk
574bd9f7 3493 *
492eb21b 3494 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3495 * to visit for post-order traversal of @root's descendants. @root is
3496 * included in the iteration and the last node to be visited.
75501a6d 3497 *
87fb54f1
TH
3498 * While this function requires cgroup_mutex or RCU read locking, it
3499 * doesn't require the whole traversal to be contained in a single critical
3500 * section. This function will return the correct next descendant as long
3501 * as both @pos and @cgroup are accessible and @pos is a descendant of
3502 * @cgroup.
c2931b70
TH
3503 *
3504 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3505 * css which finished ->css_online() is guaranteed to be visible in the
3506 * future iterations and will stay visible until the last reference is put.
3507 * A css which hasn't finished ->css_online() or already finished
3508 * ->css_offline() may show up during traversal. It's each subsystem's
3509 * responsibility to synchronize against on/offlining.
574bd9f7 3510 */
492eb21b
TH
3511struct cgroup_subsys_state *
3512css_next_descendant_post(struct cgroup_subsys_state *pos,
3513 struct cgroup_subsys_state *root)
574bd9f7 3514{
492eb21b 3515 struct cgroup_subsys_state *next;
574bd9f7 3516
8353da1f 3517 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3518
58b79a91
TH
3519 /* if first iteration, visit leftmost descendant which may be @root */
3520 if (!pos)
3521 return css_leftmost_descendant(root);
574bd9f7 3522
bd8815a6
TH
3523 /* if we visited @root, we're done */
3524 if (pos == root)
3525 return NULL;
3526
574bd9f7 3527 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3528 next = css_next_child(pos, pos->parent);
75501a6d 3529 if (next)
492eb21b 3530 return css_leftmost_descendant(next);
574bd9f7
TH
3531
3532 /* no sibling left, visit parent */
5c9d535b 3533 return pos->parent;
574bd9f7 3534}
574bd9f7 3535
f3d46500
TH
3536/**
3537 * css_has_online_children - does a css have online children
3538 * @css: the target css
3539 *
3540 * Returns %true if @css has any online children; otherwise, %false. This
3541 * function can be called from any context but the caller is responsible
3542 * for synchronizing against on/offlining as necessary.
3543 */
3544bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3545{
f3d46500
TH
3546 struct cgroup_subsys_state *child;
3547 bool ret = false;
cbc125ef
TH
3548
3549 rcu_read_lock();
f3d46500 3550 css_for_each_child(child, css) {
99bae5f9 3551 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3552 ret = true;
3553 break;
cbc125ef
TH
3554 }
3555 }
3556 rcu_read_unlock();
f3d46500 3557 return ret;
574bd9f7 3558}
574bd9f7 3559
0942eeee 3560/**
72ec7029 3561 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3562 * @it: the iterator to advance
3563 *
3564 * Advance @it to the next css_set to walk.
d515876e 3565 */
72ec7029 3566static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3567{
0f0a2b4f 3568 struct list_head *l = it->cset_pos;
d515876e
TH
3569 struct cgrp_cset_link *link;
3570 struct css_set *cset;
3571
3572 /* Advance to the next non-empty css_set */
3573 do {
3574 l = l->next;
0f0a2b4f
TH
3575 if (l == it->cset_head) {
3576 it->cset_pos = NULL;
d515876e
TH
3577 return;
3578 }
3ebb2b6e
TH
3579
3580 if (it->ss) {
3581 cset = container_of(l, struct css_set,
3582 e_cset_node[it->ss->id]);
3583 } else {
3584 link = list_entry(l, struct cgrp_cset_link, cset_link);
3585 cset = link->cset;
3586 }
c7561128
TH
3587 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3588
0f0a2b4f 3589 it->cset_pos = l;
c7561128
TH
3590
3591 if (!list_empty(&cset->tasks))
0f0a2b4f 3592 it->task_pos = cset->tasks.next;
c7561128 3593 else
0f0a2b4f
TH
3594 it->task_pos = cset->mg_tasks.next;
3595
3596 it->tasks_head = &cset->tasks;
3597 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3598}
3599
0942eeee 3600/**
72ec7029
TH
3601 * css_task_iter_start - initiate task iteration
3602 * @css: the css to walk tasks of
0942eeee
TH
3603 * @it: the task iterator to use
3604 *
72ec7029
TH
3605 * Initiate iteration through the tasks of @css. The caller can call
3606 * css_task_iter_next() to walk through the tasks until the function
3607 * returns NULL. On completion of iteration, css_task_iter_end() must be
3608 * called.
0942eeee
TH
3609 *
3610 * Note that this function acquires a lock which is released when the
3611 * iteration finishes. The caller can't sleep while iteration is in
3612 * progress.
3613 */
72ec7029
TH
3614void css_task_iter_start(struct cgroup_subsys_state *css,
3615 struct css_task_iter *it)
96d365e0 3616 __acquires(css_set_rwsem)
817929ec 3617{
56fde9e0
TH
3618 /* no one should try to iterate before mounting cgroups */
3619 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3620
96d365e0 3621 down_read(&css_set_rwsem);
c59cd3d8 3622
3ebb2b6e
TH
3623 it->ss = css->ss;
3624
3625 if (it->ss)
3626 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3627 else
3628 it->cset_pos = &css->cgroup->cset_links;
3629
0f0a2b4f 3630 it->cset_head = it->cset_pos;
c59cd3d8 3631
72ec7029 3632 css_advance_task_iter(it);
817929ec
PM
3633}
3634
0942eeee 3635/**
72ec7029 3636 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3637 * @it: the task iterator being iterated
3638 *
3639 * The "next" function for task iteration. @it should have been
72ec7029
TH
3640 * initialized via css_task_iter_start(). Returns NULL when the iteration
3641 * reaches the end.
0942eeee 3642 */
72ec7029 3643struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3644{
3645 struct task_struct *res;
0f0a2b4f 3646 struct list_head *l = it->task_pos;
817929ec
PM
3647
3648 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3649 if (!it->cset_pos)
817929ec
PM
3650 return NULL;
3651 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3652
3653 /*
3654 * Advance iterator to find next entry. cset->tasks is consumed
3655 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3656 * next cset.
3657 */
817929ec 3658 l = l->next;
c7561128 3659
0f0a2b4f
TH
3660 if (l == it->tasks_head)
3661 l = it->mg_tasks_head->next;
c7561128 3662
0f0a2b4f 3663 if (l == it->mg_tasks_head)
72ec7029 3664 css_advance_task_iter(it);
c7561128 3665 else
0f0a2b4f 3666 it->task_pos = l;
c7561128 3667
817929ec
PM
3668 return res;
3669}
3670
0942eeee 3671/**
72ec7029 3672 * css_task_iter_end - finish task iteration
0942eeee
TH
3673 * @it: the task iterator to finish
3674 *
72ec7029 3675 * Finish task iteration started by css_task_iter_start().
0942eeee 3676 */
72ec7029 3677void css_task_iter_end(struct css_task_iter *it)
96d365e0 3678 __releases(css_set_rwsem)
31a7df01 3679{
96d365e0 3680 up_read(&css_set_rwsem);
31a7df01
CW
3681}
3682
3683/**
8cc99345
TH
3684 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3685 * @to: cgroup to which the tasks will be moved
3686 * @from: cgroup in which the tasks currently reside
31a7df01 3687 *
eaf797ab
TH
3688 * Locking rules between cgroup_post_fork() and the migration path
3689 * guarantee that, if a task is forking while being migrated, the new child
3690 * is guaranteed to be either visible in the source cgroup after the
3691 * parent's migration is complete or put into the target cgroup. No task
3692 * can slip out of migration through forking.
31a7df01 3693 */
8cc99345 3694int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3695{
952aaa12
TH
3696 LIST_HEAD(preloaded_csets);
3697 struct cgrp_cset_link *link;
72ec7029 3698 struct css_task_iter it;
e406d1cf 3699 struct task_struct *task;
952aaa12 3700 int ret;
31a7df01 3701
952aaa12 3702 mutex_lock(&cgroup_mutex);
31a7df01 3703
952aaa12
TH
3704 /* all tasks in @from are being moved, all csets are source */
3705 down_read(&css_set_rwsem);
3706 list_for_each_entry(link, &from->cset_links, cset_link)
3707 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3708 up_read(&css_set_rwsem);
31a7df01 3709
952aaa12
TH
3710 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3711 if (ret)
3712 goto out_err;
8cc99345 3713
952aaa12
TH
3714 /*
3715 * Migrate tasks one-by-one until @form is empty. This fails iff
3716 * ->can_attach() fails.
3717 */
e406d1cf 3718 do {
9d800df1 3719 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3720 task = css_task_iter_next(&it);
3721 if (task)
3722 get_task_struct(task);
3723 css_task_iter_end(&it);
3724
3725 if (task) {
952aaa12 3726 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3727 put_task_struct(task);
3728 }
3729 } while (task && !ret);
952aaa12
TH
3730out_err:
3731 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3732 mutex_unlock(&cgroup_mutex);
e406d1cf 3733 return ret;
8cc99345
TH
3734}
3735
bbcb81d0 3736/*
102a775e 3737 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3738 *
3739 * Reading this file can return large amounts of data if a cgroup has
3740 * *lots* of attached tasks. So it may need several calls to read(),
3741 * but we cannot guarantee that the information we produce is correct
3742 * unless we produce it entirely atomically.
3743 *
bbcb81d0 3744 */
bbcb81d0 3745
24528255
LZ
3746/* which pidlist file are we talking about? */
3747enum cgroup_filetype {
3748 CGROUP_FILE_PROCS,
3749 CGROUP_FILE_TASKS,
3750};
3751
3752/*
3753 * A pidlist is a list of pids that virtually represents the contents of one
3754 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3755 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3756 * to the cgroup.
3757 */
3758struct cgroup_pidlist {
3759 /*
3760 * used to find which pidlist is wanted. doesn't change as long as
3761 * this particular list stays in the list.
3762 */
3763 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3764 /* array of xids */
3765 pid_t *list;
3766 /* how many elements the above list has */
3767 int length;
24528255
LZ
3768 /* each of these stored in a list by its cgroup */
3769 struct list_head links;
3770 /* pointer to the cgroup we belong to, for list removal purposes */
3771 struct cgroup *owner;
b1a21367
TH
3772 /* for delayed destruction */
3773 struct delayed_work destroy_dwork;
24528255
LZ
3774};
3775
d1d9fd33
BB
3776/*
3777 * The following two functions "fix" the issue where there are more pids
3778 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3779 * TODO: replace with a kernel-wide solution to this problem
3780 */
3781#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3782static void *pidlist_allocate(int count)
3783{
3784 if (PIDLIST_TOO_LARGE(count))
3785 return vmalloc(count * sizeof(pid_t));
3786 else
3787 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3788}
b1a21367 3789
d1d9fd33
BB
3790static void pidlist_free(void *p)
3791{
58794514 3792 kvfree(p);
d1d9fd33 3793}
d1d9fd33 3794
b1a21367
TH
3795/*
3796 * Used to destroy all pidlists lingering waiting for destroy timer. None
3797 * should be left afterwards.
3798 */
3799static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3800{
3801 struct cgroup_pidlist *l, *tmp_l;
3802
3803 mutex_lock(&cgrp->pidlist_mutex);
3804 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3805 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3806 mutex_unlock(&cgrp->pidlist_mutex);
3807
3808 flush_workqueue(cgroup_pidlist_destroy_wq);
3809 BUG_ON(!list_empty(&cgrp->pidlists));
3810}
3811
3812static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3813{
3814 struct delayed_work *dwork = to_delayed_work(work);
3815 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3816 destroy_dwork);
3817 struct cgroup_pidlist *tofree = NULL;
3818
3819 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3820
3821 /*
04502365
TH
3822 * Destroy iff we didn't get queued again. The state won't change
3823 * as destroy_dwork can only be queued while locked.
b1a21367 3824 */
04502365 3825 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3826 list_del(&l->links);
3827 pidlist_free(l->list);
3828 put_pid_ns(l->key.ns);
3829 tofree = l;
3830 }
3831
b1a21367
TH
3832 mutex_unlock(&l->owner->pidlist_mutex);
3833 kfree(tofree);
3834}
3835
bbcb81d0 3836/*
102a775e 3837 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3838 * Returns the number of unique elements.
bbcb81d0 3839 */
6ee211ad 3840static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3841{
102a775e 3842 int src, dest = 1;
102a775e
BB
3843
3844 /*
3845 * we presume the 0th element is unique, so i starts at 1. trivial
3846 * edge cases first; no work needs to be done for either
3847 */
3848 if (length == 0 || length == 1)
3849 return length;
3850 /* src and dest walk down the list; dest counts unique elements */
3851 for (src = 1; src < length; src++) {
3852 /* find next unique element */
3853 while (list[src] == list[src-1]) {
3854 src++;
3855 if (src == length)
3856 goto after;
3857 }
3858 /* dest always points to where the next unique element goes */
3859 list[dest] = list[src];
3860 dest++;
3861 }
3862after:
102a775e
BB
3863 return dest;
3864}
3865
afb2bc14
TH
3866/*
3867 * The two pid files - task and cgroup.procs - guaranteed that the result
3868 * is sorted, which forced this whole pidlist fiasco. As pid order is
3869 * different per namespace, each namespace needs differently sorted list,
3870 * making it impossible to use, for example, single rbtree of member tasks
3871 * sorted by task pointer. As pidlists can be fairly large, allocating one
3872 * per open file is dangerous, so cgroup had to implement shared pool of
3873 * pidlists keyed by cgroup and namespace.
3874 *
3875 * All this extra complexity was caused by the original implementation
3876 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
3877 * want to do away with it. Explicitly scramble sort order if on the
3878 * default hierarchy so that no such expectation exists in the new
3879 * interface.
afb2bc14
TH
3880 *
3881 * Scrambling is done by swapping every two consecutive bits, which is
3882 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3883 */
3884static pid_t pid_fry(pid_t pid)
3885{
3886 unsigned a = pid & 0x55555555;
3887 unsigned b = pid & 0xAAAAAAAA;
3888
3889 return (a << 1) | (b >> 1);
3890}
3891
3892static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3893{
aa6ec29b 3894 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3895 return pid_fry(pid);
3896 else
3897 return pid;
3898}
3899
102a775e
BB
3900static int cmppid(const void *a, const void *b)
3901{
3902 return *(pid_t *)a - *(pid_t *)b;
3903}
3904
afb2bc14
TH
3905static int fried_cmppid(const void *a, const void *b)
3906{
3907 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3908}
3909
e6b81710
TH
3910static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3911 enum cgroup_filetype type)
3912{
3913 struct cgroup_pidlist *l;
3914 /* don't need task_nsproxy() if we're looking at ourself */
3915 struct pid_namespace *ns = task_active_pid_ns(current);
3916
3917 lockdep_assert_held(&cgrp->pidlist_mutex);
3918
3919 list_for_each_entry(l, &cgrp->pidlists, links)
3920 if (l->key.type == type && l->key.ns == ns)
3921 return l;
3922 return NULL;
3923}
3924
72a8cb30
BB
3925/*
3926 * find the appropriate pidlist for our purpose (given procs vs tasks)
3927 * returns with the lock on that pidlist already held, and takes care
3928 * of the use count, or returns NULL with no locks held if we're out of
3929 * memory.
3930 */
e6b81710
TH
3931static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3932 enum cgroup_filetype type)
72a8cb30
BB
3933{
3934 struct cgroup_pidlist *l;
b70cc5fd 3935
e6b81710
TH
3936 lockdep_assert_held(&cgrp->pidlist_mutex);
3937
3938 l = cgroup_pidlist_find(cgrp, type);
3939 if (l)
3940 return l;
3941
72a8cb30 3942 /* entry not found; create a new one */
f4f4be2b 3943 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3944 if (!l)
72a8cb30 3945 return l;
e6b81710 3946
b1a21367 3947 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3948 l->key.type = type;
e6b81710
TH
3949 /* don't need task_nsproxy() if we're looking at ourself */
3950 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3951 l->owner = cgrp;
3952 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3953 return l;
3954}
3955
102a775e
BB
3956/*
3957 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3958 */
72a8cb30
BB
3959static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3960 struct cgroup_pidlist **lp)
102a775e
BB
3961{
3962 pid_t *array;
3963 int length;
3964 int pid, n = 0; /* used for populating the array */
72ec7029 3965 struct css_task_iter it;
817929ec 3966 struct task_struct *tsk;
102a775e
BB
3967 struct cgroup_pidlist *l;
3968
4bac00d1
TH
3969 lockdep_assert_held(&cgrp->pidlist_mutex);
3970
102a775e
BB
3971 /*
3972 * If cgroup gets more users after we read count, we won't have
3973 * enough space - tough. This race is indistinguishable to the
3974 * caller from the case that the additional cgroup users didn't
3975 * show up until sometime later on.
3976 */
3977 length = cgroup_task_count(cgrp);
d1d9fd33 3978 array = pidlist_allocate(length);
102a775e
BB
3979 if (!array)
3980 return -ENOMEM;
3981 /* now, populate the array */
9d800df1 3982 css_task_iter_start(&cgrp->self, &it);
72ec7029 3983 while ((tsk = css_task_iter_next(&it))) {
102a775e 3984 if (unlikely(n == length))
817929ec 3985 break;
102a775e 3986 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3987 if (type == CGROUP_FILE_PROCS)
3988 pid = task_tgid_vnr(tsk);
3989 else
3990 pid = task_pid_vnr(tsk);
102a775e
BB
3991 if (pid > 0) /* make sure to only use valid results */
3992 array[n++] = pid;
817929ec 3993 }
72ec7029 3994 css_task_iter_end(&it);
102a775e
BB
3995 length = n;
3996 /* now sort & (if procs) strip out duplicates */
aa6ec29b 3997 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
3998 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3999 else
4000 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4001 if (type == CGROUP_FILE_PROCS)
6ee211ad 4002 length = pidlist_uniq(array, length);
e6b81710 4003
e6b81710 4004 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4005 if (!l) {
d1d9fd33 4006 pidlist_free(array);
72a8cb30 4007 return -ENOMEM;
102a775e 4008 }
e6b81710
TH
4009
4010 /* store array, freeing old if necessary */
d1d9fd33 4011 pidlist_free(l->list);
102a775e
BB
4012 l->list = array;
4013 l->length = length;
72a8cb30 4014 *lp = l;
102a775e 4015 return 0;
bbcb81d0
PM
4016}
4017
846c7bb0 4018/**
a043e3b2 4019 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4020 * @stats: cgroupstats to fill information into
4021 * @dentry: A dentry entry belonging to the cgroup for which stats have
4022 * been requested.
a043e3b2
LZ
4023 *
4024 * Build and fill cgroupstats so that taskstats can export it to user
4025 * space.
846c7bb0
BS
4026 */
4027int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4028{
2bd59d48 4029 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4030 struct cgroup *cgrp;
72ec7029 4031 struct css_task_iter it;
846c7bb0 4032 struct task_struct *tsk;
33d283be 4033
2bd59d48
TH
4034 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4035 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4036 kernfs_type(kn) != KERNFS_DIR)
4037 return -EINVAL;
4038
bad34660
LZ
4039 mutex_lock(&cgroup_mutex);
4040
846c7bb0 4041 /*
2bd59d48 4042 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4043 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4044 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4045 */
2bd59d48
TH
4046 rcu_read_lock();
4047 cgrp = rcu_dereference(kn->priv);
bad34660 4048 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4049 rcu_read_unlock();
bad34660 4050 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4051 return -ENOENT;
4052 }
bad34660 4053 rcu_read_unlock();
846c7bb0 4054
9d800df1 4055 css_task_iter_start(&cgrp->self, &it);
72ec7029 4056 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4057 switch (tsk->state) {
4058 case TASK_RUNNING:
4059 stats->nr_running++;
4060 break;
4061 case TASK_INTERRUPTIBLE:
4062 stats->nr_sleeping++;
4063 break;
4064 case TASK_UNINTERRUPTIBLE:
4065 stats->nr_uninterruptible++;
4066 break;
4067 case TASK_STOPPED:
4068 stats->nr_stopped++;
4069 break;
4070 default:
4071 if (delayacct_is_task_waiting_on_io(tsk))
4072 stats->nr_io_wait++;
4073 break;
4074 }
4075 }
72ec7029 4076 css_task_iter_end(&it);
846c7bb0 4077
bad34660 4078 mutex_unlock(&cgroup_mutex);
2bd59d48 4079 return 0;
846c7bb0
BS
4080}
4081
8f3ff208 4082
bbcb81d0 4083/*
102a775e 4084 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4085 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4086 * in the cgroup->l->list array.
bbcb81d0 4087 */
cc31edce 4088
102a775e 4089static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4090{
cc31edce
PM
4091 /*
4092 * Initially we receive a position value that corresponds to
4093 * one more than the last pid shown (or 0 on the first call or
4094 * after a seek to the start). Use a binary-search to find the
4095 * next pid to display, if any
4096 */
2bd59d48 4097 struct kernfs_open_file *of = s->private;
7da11279 4098 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4099 struct cgroup_pidlist *l;
7da11279 4100 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4101 int index = 0, pid = *pos;
4bac00d1
TH
4102 int *iter, ret;
4103
4104 mutex_lock(&cgrp->pidlist_mutex);
4105
4106 /*
5d22444f 4107 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4108 * after open. If the matching pidlist is around, we can use that.
5d22444f 4109 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4110 * could already have been destroyed.
4111 */
5d22444f
TH
4112 if (of->priv)
4113 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4114
4115 /*
4116 * Either this is the first start() after open or the matching
4117 * pidlist has been destroyed inbetween. Create a new one.
4118 */
5d22444f
TH
4119 if (!of->priv) {
4120 ret = pidlist_array_load(cgrp, type,
4121 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4122 if (ret)
4123 return ERR_PTR(ret);
4124 }
5d22444f 4125 l = of->priv;
cc31edce 4126
cc31edce 4127 if (pid) {
102a775e 4128 int end = l->length;
20777766 4129
cc31edce
PM
4130 while (index < end) {
4131 int mid = (index + end) / 2;
afb2bc14 4132 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4133 index = mid;
4134 break;
afb2bc14 4135 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4136 index = mid + 1;
4137 else
4138 end = mid;
4139 }
4140 }
4141 /* If we're off the end of the array, we're done */
102a775e 4142 if (index >= l->length)
cc31edce
PM
4143 return NULL;
4144 /* Update the abstract position to be the actual pid that we found */
102a775e 4145 iter = l->list + index;
afb2bc14 4146 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4147 return iter;
4148}
4149
102a775e 4150static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4151{
2bd59d48 4152 struct kernfs_open_file *of = s->private;
5d22444f 4153 struct cgroup_pidlist *l = of->priv;
62236858 4154
5d22444f
TH
4155 if (l)
4156 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4157 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4158 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4159}
4160
102a775e 4161static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4162{
2bd59d48 4163 struct kernfs_open_file *of = s->private;
5d22444f 4164 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4165 pid_t *p = v;
4166 pid_t *end = l->list + l->length;
cc31edce
PM
4167 /*
4168 * Advance to the next pid in the array. If this goes off the
4169 * end, we're done
4170 */
4171 p++;
4172 if (p >= end) {
4173 return NULL;
4174 } else {
7da11279 4175 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4176 return p;
4177 }
4178}
4179
102a775e 4180static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4181{
94ff212d
JP
4182 seq_printf(s, "%d\n", *(int *)v);
4183
4184 return 0;
cc31edce 4185}
bbcb81d0 4186
182446d0
TH
4187static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4188 struct cftype *cft)
81a6a5cd 4189{
182446d0 4190 return notify_on_release(css->cgroup);
81a6a5cd
PM
4191}
4192
182446d0
TH
4193static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4194 struct cftype *cft, u64 val)
6379c106 4195{
6379c106 4196 if (val)
182446d0 4197 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4198 else
182446d0 4199 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4200 return 0;
4201}
4202
182446d0
TH
4203static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4204 struct cftype *cft)
97978e6d 4205{
182446d0 4206 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4207}
4208
182446d0
TH
4209static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4210 struct cftype *cft, u64 val)
97978e6d
DL
4211{
4212 if (val)
182446d0 4213 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4214 else
182446d0 4215 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4216 return 0;
4217}
4218
a14c6874
TH
4219/* cgroup core interface files for the default hierarchy */
4220static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4221 {
d5c56ced 4222 .name = "cgroup.procs",
6612f05b
TH
4223 .seq_start = cgroup_pidlist_start,
4224 .seq_next = cgroup_pidlist_next,
4225 .seq_stop = cgroup_pidlist_stop,
4226 .seq_show = cgroup_pidlist_show,
5d22444f 4227 .private = CGROUP_FILE_PROCS,
acbef755 4228 .write = cgroup_procs_write,
74a1166d 4229 .mode = S_IRUGO | S_IWUSR,
102a775e 4230 },
f8f22e53
TH
4231 {
4232 .name = "cgroup.controllers",
a14c6874 4233 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4234 .seq_show = cgroup_root_controllers_show,
4235 },
4236 {
4237 .name = "cgroup.controllers",
a14c6874 4238 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4239 .seq_show = cgroup_controllers_show,
4240 },
4241 {
4242 .name = "cgroup.subtree_control",
f8f22e53 4243 .seq_show = cgroup_subtree_control_show,
451af504 4244 .write = cgroup_subtree_control_write,
f8f22e53 4245 },
842b597e
TH
4246 {
4247 .name = "cgroup.populated",
a14c6874 4248 .flags = CFTYPE_NOT_ON_ROOT,
842b597e
TH
4249 .seq_show = cgroup_populated_show,
4250 },
a14c6874
TH
4251 { } /* terminate */
4252};
d5c56ced 4253
a14c6874
TH
4254/* cgroup core interface files for the legacy hierarchies */
4255static struct cftype cgroup_legacy_base_files[] = {
4256 {
4257 .name = "cgroup.procs",
4258 .seq_start = cgroup_pidlist_start,
4259 .seq_next = cgroup_pidlist_next,
4260 .seq_stop = cgroup_pidlist_stop,
4261 .seq_show = cgroup_pidlist_show,
4262 .private = CGROUP_FILE_PROCS,
4263 .write = cgroup_procs_write,
4264 .mode = S_IRUGO | S_IWUSR,
4265 },
4266 {
4267 .name = "cgroup.clone_children",
4268 .read_u64 = cgroup_clone_children_read,
4269 .write_u64 = cgroup_clone_children_write,
4270 },
4271 {
4272 .name = "cgroup.sane_behavior",
4273 .flags = CFTYPE_ONLY_ON_ROOT,
4274 .seq_show = cgroup_sane_behavior_show,
4275 },
d5c56ced
TH
4276 {
4277 .name = "tasks",
6612f05b
TH
4278 .seq_start = cgroup_pidlist_start,
4279 .seq_next = cgroup_pidlist_next,
4280 .seq_stop = cgroup_pidlist_stop,
4281 .seq_show = cgroup_pidlist_show,
5d22444f 4282 .private = CGROUP_FILE_TASKS,
acbef755 4283 .write = cgroup_tasks_write,
d5c56ced
TH
4284 .mode = S_IRUGO | S_IWUSR,
4285 },
4286 {
4287 .name = "notify_on_release",
d5c56ced
TH
4288 .read_u64 = cgroup_read_notify_on_release,
4289 .write_u64 = cgroup_write_notify_on_release,
4290 },
6e6ff25b
TH
4291 {
4292 .name = "release_agent",
a14c6874 4293 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4294 .seq_show = cgroup_release_agent_show,
451af504 4295 .write = cgroup_release_agent_write,
5f469907 4296 .max_write_len = PATH_MAX - 1,
6e6ff25b 4297 },
db0416b6 4298 { } /* terminate */
bbcb81d0
PM
4299};
4300
13af07df 4301/**
628f7cd4 4302 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4303 * @cgrp: target cgroup
13af07df 4304 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4305 *
4306 * On failure, no file is added.
13af07df 4307 */
8ab456ac 4308static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 4309{
ddbcc7e8 4310 struct cgroup_subsys *ss;
b420ba7d 4311 int i, ret = 0;
bbcb81d0 4312
8e3f6541 4313 /* process cftsets of each subsystem */
b420ba7d 4314 for_each_subsys(ss, i) {
0adb0704 4315 struct cftype *cfts;
b420ba7d 4316
69dfa00c 4317 if (!(subsys_mask & (1 << i)))
13af07df 4318 continue;
8e3f6541 4319
0adb0704
TH
4320 list_for_each_entry(cfts, &ss->cfts, node) {
4321 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4322 if (ret < 0)
4323 goto err;
4324 }
ddbcc7e8 4325 }
ddbcc7e8 4326 return 0;
bee55099
TH
4327err:
4328 cgroup_clear_dir(cgrp, subsys_mask);
4329 return ret;
ddbcc7e8
PM
4330}
4331
0c21ead1
TH
4332/*
4333 * css destruction is four-stage process.
4334 *
4335 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4336 * Implemented in kill_css().
4337 *
4338 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4339 * and thus css_tryget_online() is guaranteed to fail, the css can be
4340 * offlined by invoking offline_css(). After offlining, the base ref is
4341 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4342 *
4343 * 3. When the percpu_ref reaches zero, the only possible remaining
4344 * accessors are inside RCU read sections. css_release() schedules the
4345 * RCU callback.
4346 *
4347 * 4. After the grace period, the css can be freed. Implemented in
4348 * css_free_work_fn().
4349 *
4350 * It is actually hairier because both step 2 and 4 require process context
4351 * and thus involve punting to css->destroy_work adding two additional
4352 * steps to the already complex sequence.
4353 */
35ef10da 4354static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4355{
4356 struct cgroup_subsys_state *css =
35ef10da 4357 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4358 struct cgroup_subsys *ss = css->ss;
0c21ead1 4359 struct cgroup *cgrp = css->cgroup;
48ddbe19 4360
9a1049da
TH
4361 percpu_ref_exit(&css->refcnt);
4362
01e58659 4363 if (ss) {
9d755d33 4364 /* css free path */
01e58659
VD
4365 int id = css->id;
4366
9d755d33
TH
4367 if (css->parent)
4368 css_put(css->parent);
0ae78e0b 4369
01e58659
VD
4370 ss->css_free(css);
4371 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4372 cgroup_put(cgrp);
4373 } else {
4374 /* cgroup free path */
4375 atomic_dec(&cgrp->root->nr_cgrps);
4376 cgroup_pidlist_destroy_all(cgrp);
971ff493 4377 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4378
d51f39b0 4379 if (cgroup_parent(cgrp)) {
9d755d33
TH
4380 /*
4381 * We get a ref to the parent, and put the ref when
4382 * this cgroup is being freed, so it's guaranteed
4383 * that the parent won't be destroyed before its
4384 * children.
4385 */
d51f39b0 4386 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4387 kernfs_put(cgrp->kn);
4388 kfree(cgrp);
4389 } else {
4390 /*
4391 * This is root cgroup's refcnt reaching zero,
4392 * which indicates that the root should be
4393 * released.
4394 */
4395 cgroup_destroy_root(cgrp->root);
4396 }
4397 }
48ddbe19
TH
4398}
4399
0c21ead1 4400static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4401{
4402 struct cgroup_subsys_state *css =
0c21ead1 4403 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4404
35ef10da 4405 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4406 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4407}
4408
25e15d83 4409static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4410{
4411 struct cgroup_subsys_state *css =
25e15d83 4412 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4413 struct cgroup_subsys *ss = css->ss;
9d755d33 4414 struct cgroup *cgrp = css->cgroup;
15a4c835 4415
1fed1b2e
TH
4416 mutex_lock(&cgroup_mutex);
4417
de3f0341 4418 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4419 list_del_rcu(&css->sibling);
4420
9d755d33
TH
4421 if (ss) {
4422 /* css release path */
01e58659 4423 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4424 if (ss->css_released)
4425 ss->css_released(css);
9d755d33
TH
4426 } else {
4427 /* cgroup release path */
9d755d33
TH
4428 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4429 cgrp->id = -1;
a4189487
LZ
4430
4431 /*
4432 * There are two control paths which try to determine
4433 * cgroup from dentry without going through kernfs -
4434 * cgroupstats_build() and css_tryget_online_from_dir().
4435 * Those are supported by RCU protecting clearing of
4436 * cgrp->kn->priv backpointer.
4437 */
4438 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4439 }
d3daf28d 4440
1fed1b2e
TH
4441 mutex_unlock(&cgroup_mutex);
4442
0c21ead1 4443 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4444}
4445
d3daf28d
TH
4446static void css_release(struct percpu_ref *ref)
4447{
4448 struct cgroup_subsys_state *css =
4449 container_of(ref, struct cgroup_subsys_state, refcnt);
4450
25e15d83
TH
4451 INIT_WORK(&css->destroy_work, css_release_work_fn);
4452 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4453}
4454
ddfcadab
TH
4455static void init_and_link_css(struct cgroup_subsys_state *css,
4456 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4457{
0cb51d71
TH
4458 lockdep_assert_held(&cgroup_mutex);
4459
ddfcadab
TH
4460 cgroup_get(cgrp);
4461
d5c419b6 4462 memset(css, 0, sizeof(*css));
bd89aabc 4463 css->cgroup = cgrp;
72c97e54 4464 css->ss = ss;
d5c419b6
TH
4465 INIT_LIST_HEAD(&css->sibling);
4466 INIT_LIST_HEAD(&css->children);
0cb51d71 4467 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4468
d51f39b0
TH
4469 if (cgroup_parent(cgrp)) {
4470 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4471 css_get(css->parent);
ddfcadab 4472 }
48ddbe19 4473
ca8bdcaf 4474 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4475}
4476
2a4ac633 4477/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4478static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4479{
623f926b 4480 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4481 int ret = 0;
4482
a31f2d3f
TH
4483 lockdep_assert_held(&cgroup_mutex);
4484
92fb9748 4485 if (ss->css_online)
eb95419b 4486 ret = ss->css_online(css);
ae7f164a 4487 if (!ret) {
eb95419b 4488 css->flags |= CSS_ONLINE;
aec25020 4489 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4490 }
b1929db4 4491 return ret;
a31f2d3f
TH
4492}
4493
2a4ac633 4494/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4495static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4496{
623f926b 4497 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4498
4499 lockdep_assert_held(&cgroup_mutex);
4500
4501 if (!(css->flags & CSS_ONLINE))
4502 return;
4503
d7eeac19 4504 if (ss->css_offline)
eb95419b 4505 ss->css_offline(css);
a31f2d3f 4506
eb95419b 4507 css->flags &= ~CSS_ONLINE;
e3297803 4508 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4509
4510 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4511}
4512
c81c925a
TH
4513/**
4514 * create_css - create a cgroup_subsys_state
4515 * @cgrp: the cgroup new css will be associated with
4516 * @ss: the subsys of new css
f63070d3 4517 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4518 *
4519 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4520 * css is online and installed in @cgrp with all interface files created if
4521 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4522 */
f63070d3
TH
4523static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4524 bool visible)
c81c925a 4525{
d51f39b0 4526 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4527 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4528 struct cgroup_subsys_state *css;
4529 int err;
4530
c81c925a
TH
4531 lockdep_assert_held(&cgroup_mutex);
4532
1fed1b2e 4533 css = ss->css_alloc(parent_css);
c81c925a
TH
4534 if (IS_ERR(css))
4535 return PTR_ERR(css);
4536
ddfcadab 4537 init_and_link_css(css, ss, cgrp);
a2bed820 4538
2aad2a86 4539 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4540 if (err)
3eb59ec6 4541 goto err_free_css;
c81c925a 4542
15a4c835
TH
4543 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4544 if (err < 0)
4545 goto err_free_percpu_ref;
4546 css->id = err;
c81c925a 4547
f63070d3
TH
4548 if (visible) {
4549 err = cgroup_populate_dir(cgrp, 1 << ss->id);
4550 if (err)
4551 goto err_free_id;
4552 }
15a4c835
TH
4553
4554 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4555 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4556 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4557
4558 err = online_css(css);
4559 if (err)
1fed1b2e 4560 goto err_list_del;
94419627 4561
c81c925a 4562 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4563 cgroup_parent(parent)) {
ed3d261b 4564 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4565 current->comm, current->pid, ss->name);
c81c925a 4566 if (!strcmp(ss->name, "memory"))
ed3d261b 4567 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4568 ss->warned_broken_hierarchy = true;
4569 }
4570
4571 return 0;
4572
1fed1b2e
TH
4573err_list_del:
4574 list_del_rcu(&css->sibling);
32d01dc7 4575 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4576err_free_id:
4577 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4578err_free_percpu_ref:
9a1049da 4579 percpu_ref_exit(&css->refcnt);
3eb59ec6 4580err_free_css:
a2bed820 4581 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4582 return err;
4583}
4584
b3bfd983
TH
4585static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4586 umode_t mode)
ddbcc7e8 4587{
a9746d8d
TH
4588 struct cgroup *parent, *cgrp;
4589 struct cgroup_root *root;
ddbcc7e8 4590 struct cgroup_subsys *ss;
2bd59d48 4591 struct kernfs_node *kn;
a14c6874 4592 struct cftype *base_files;
b3bfd983 4593 int ssid, ret;
ddbcc7e8 4594
71b1fb5c
AC
4595 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4596 */
4597 if (strchr(name, '\n'))
4598 return -EINVAL;
4599
a9746d8d
TH
4600 parent = cgroup_kn_lock_live(parent_kn);
4601 if (!parent)
4602 return -ENODEV;
4603 root = parent->root;
ddbcc7e8 4604
0a950f65 4605 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4606 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4607 if (!cgrp) {
4608 ret = -ENOMEM;
4609 goto out_unlock;
0ab02ca8
LZ
4610 }
4611
2aad2a86 4612 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4613 if (ret)
4614 goto out_free_cgrp;
4615
0ab02ca8
LZ
4616 /*
4617 * Temporarily set the pointer to NULL, so idr_find() won't return
4618 * a half-baked cgroup.
4619 */
6fa4918d 4620 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4621 if (cgrp->id < 0) {
ba0f4d76 4622 ret = -ENOMEM;
9d755d33 4623 goto out_cancel_ref;
976c06bc
TH
4624 }
4625
cc31edce 4626 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4627
9d800df1 4628 cgrp->self.parent = &parent->self;
ba0f4d76 4629 cgrp->root = root;
ddbcc7e8 4630
b6abdb0e
LZ
4631 if (notify_on_release(parent))
4632 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4633
2260e7fc
TH
4634 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4635 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4636
2bd59d48 4637 /* create the directory */
e61734c5 4638 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4639 if (IS_ERR(kn)) {
ba0f4d76
TH
4640 ret = PTR_ERR(kn);
4641 goto out_free_id;
2bd59d48
TH
4642 }
4643 cgrp->kn = kn;
ddbcc7e8 4644
4e139afc 4645 /*
6f30558f
TH
4646 * This extra ref will be put in cgroup_free_fn() and guarantees
4647 * that @cgrp->kn is always accessible.
4e139afc 4648 */
6f30558f 4649 kernfs_get(kn);
ddbcc7e8 4650
0cb51d71 4651 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4652
4e139afc 4653 /* allocation complete, commit to creation */
d5c419b6 4654 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4655 atomic_inc(&root->nr_cgrps);
59f5296b 4656 cgroup_get(parent);
415cf07a 4657
0d80255e
TH
4658 /*
4659 * @cgrp is now fully operational. If something fails after this
4660 * point, it'll be released via the normal destruction path.
4661 */
6fa4918d 4662 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4663
ba0f4d76
TH
4664 ret = cgroup_kn_set_ugid(kn);
4665 if (ret)
4666 goto out_destroy;
49957f8e 4667
a14c6874
TH
4668 if (cgroup_on_dfl(cgrp))
4669 base_files = cgroup_dfl_base_files;
4670 else
4671 base_files = cgroup_legacy_base_files;
4672
4673 ret = cgroup_addrm_files(cgrp, base_files, true);
ba0f4d76
TH
4674 if (ret)
4675 goto out_destroy;
628f7cd4 4676
9d403e99 4677 /* let's create and online css's */
b85d2040 4678 for_each_subsys(ss, ssid) {
f392e51c 4679 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4680 ret = create_css(cgrp, ss,
4681 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4682 if (ret)
4683 goto out_destroy;
b85d2040 4684 }
a8638030 4685 }
ddbcc7e8 4686
bd53d617
TH
4687 /*
4688 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4689 * subtree_control from the parent. Each is configured manually.
bd53d617 4690 */
667c2491
TH
4691 if (!cgroup_on_dfl(cgrp)) {
4692 cgrp->subtree_control = parent->subtree_control;
4693 cgroup_refresh_child_subsys_mask(cgrp);
4694 }
2bd59d48 4695
2bd59d48 4696 kernfs_activate(kn);
ddbcc7e8 4697
ba0f4d76
TH
4698 ret = 0;
4699 goto out_unlock;
ddbcc7e8 4700
ba0f4d76 4701out_free_id:
6fa4918d 4702 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4703out_cancel_ref:
9a1049da 4704 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4705out_free_cgrp:
bd89aabc 4706 kfree(cgrp);
ba0f4d76 4707out_unlock:
a9746d8d 4708 cgroup_kn_unlock(parent_kn);
ba0f4d76 4709 return ret;
4b8b47eb 4710
ba0f4d76 4711out_destroy:
4b8b47eb 4712 cgroup_destroy_locked(cgrp);
ba0f4d76 4713 goto out_unlock;
ddbcc7e8
PM
4714}
4715
223dbc38
TH
4716/*
4717 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4718 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4719 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4720 */
4721static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4722{
223dbc38
TH
4723 struct cgroup_subsys_state *css =
4724 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4725
f20104de 4726 mutex_lock(&cgroup_mutex);
09a503ea 4727 offline_css(css);
f20104de 4728 mutex_unlock(&cgroup_mutex);
09a503ea 4729
09a503ea 4730 css_put(css);
d3daf28d
TH
4731}
4732
223dbc38
TH
4733/* css kill confirmation processing requires process context, bounce */
4734static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4735{
4736 struct cgroup_subsys_state *css =
4737 container_of(ref, struct cgroup_subsys_state, refcnt);
4738
223dbc38 4739 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4740 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4741}
4742
f392e51c
TH
4743/**
4744 * kill_css - destroy a css
4745 * @css: css to destroy
4746 *
4747 * This function initiates destruction of @css by removing cgroup interface
4748 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4749 * asynchronously once css_tryget_online() is guaranteed to fail and when
4750 * the reference count reaches zero, @css will be released.
f392e51c
TH
4751 */
4752static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4753{
01f6474c 4754 lockdep_assert_held(&cgroup_mutex);
94419627 4755
2bd59d48
TH
4756 /*
4757 * This must happen before css is disassociated with its cgroup.
4758 * See seq_css() for details.
4759 */
aec25020 4760 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4761
edae0c33
TH
4762 /*
4763 * Killing would put the base ref, but we need to keep it alive
4764 * until after ->css_offline().
4765 */
4766 css_get(css);
4767
4768 /*
4769 * cgroup core guarantees that, by the time ->css_offline() is
4770 * invoked, no new css reference will be given out via
ec903c0c 4771 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4772 * proceed to offlining css's because percpu_ref_kill() doesn't
4773 * guarantee that the ref is seen as killed on all CPUs on return.
4774 *
4775 * Use percpu_ref_kill_and_confirm() to get notifications as each
4776 * css is confirmed to be seen as killed on all CPUs.
4777 */
4778 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4779}
4780
4781/**
4782 * cgroup_destroy_locked - the first stage of cgroup destruction
4783 * @cgrp: cgroup to be destroyed
4784 *
4785 * css's make use of percpu refcnts whose killing latency shouldn't be
4786 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4787 * guarantee that css_tryget_online() won't succeed by the time
4788 * ->css_offline() is invoked. To satisfy all the requirements,
4789 * destruction is implemented in the following two steps.
d3daf28d
TH
4790 *
4791 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4792 * userland visible parts and start killing the percpu refcnts of
4793 * css's. Set up so that the next stage will be kicked off once all
4794 * the percpu refcnts are confirmed to be killed.
4795 *
4796 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4797 * rest of destruction. Once all cgroup references are gone, the
4798 * cgroup is RCU-freed.
4799 *
4800 * This function implements s1. After this step, @cgrp is gone as far as
4801 * the userland is concerned and a new cgroup with the same name may be
4802 * created. As cgroup doesn't care about the names internally, this
4803 * doesn't cause any problem.
4804 */
42809dd4
TH
4805static int cgroup_destroy_locked(struct cgroup *cgrp)
4806 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4807{
2bd59d48 4808 struct cgroup_subsys_state *css;
ddd69148 4809 bool empty;
1c6727af 4810 int ssid;
ddbcc7e8 4811
42809dd4
TH
4812 lockdep_assert_held(&cgroup_mutex);
4813
ddd69148 4814 /*
96d365e0 4815 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4816 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4817 */
96d365e0 4818 down_read(&css_set_rwsem);
bb78a92f 4819 empty = list_empty(&cgrp->cset_links);
96d365e0 4820 up_read(&css_set_rwsem);
ddd69148 4821 if (!empty)
ddbcc7e8 4822 return -EBUSY;
a043e3b2 4823
bb78a92f 4824 /*
d5c419b6
TH
4825 * Make sure there's no live children. We can't test emptiness of
4826 * ->self.children as dead children linger on it while being
4827 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4828 */
f3d46500 4829 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4830 return -EBUSY;
4831
455050d2
TH
4832 /*
4833 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4834 * creation by disabling cgroup_lock_live_group().
455050d2 4835 */
184faf32 4836 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4837
249f3468 4838 /* initiate massacre of all css's */
1c6727af
TH
4839 for_each_css(css, ssid, cgrp)
4840 kill_css(css);
455050d2 4841
455050d2 4842 /*
01f6474c
TH
4843 * Remove @cgrp directory along with the base files. @cgrp has an
4844 * extra ref on its kn.
f20104de 4845 */
01f6474c 4846 kernfs_remove(cgrp->kn);
f20104de 4847
d51f39b0 4848 check_for_release(cgroup_parent(cgrp));
2bd59d48 4849
249f3468 4850 /* put the base reference */
9d755d33 4851 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4852
ea15f8cc
TH
4853 return 0;
4854};
4855
2bd59d48 4856static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4857{
a9746d8d 4858 struct cgroup *cgrp;
2bd59d48 4859 int ret = 0;
42809dd4 4860
a9746d8d
TH
4861 cgrp = cgroup_kn_lock_live(kn);
4862 if (!cgrp)
4863 return 0;
42809dd4 4864
a9746d8d 4865 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4866
a9746d8d 4867 cgroup_kn_unlock(kn);
42809dd4 4868 return ret;
8e3f6541
TH
4869}
4870
2bd59d48
TH
4871static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4872 .remount_fs = cgroup_remount,
4873 .show_options = cgroup_show_options,
4874 .mkdir = cgroup_mkdir,
4875 .rmdir = cgroup_rmdir,
4876 .rename = cgroup_rename,
4877};
4878
15a4c835 4879static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4880{
ddbcc7e8 4881 struct cgroup_subsys_state *css;
cfe36bde
DC
4882
4883 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4884
648bb56d
TH
4885 mutex_lock(&cgroup_mutex);
4886
15a4c835 4887 idr_init(&ss->css_idr);
0adb0704 4888 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4889
3dd06ffa
TH
4890 /* Create the root cgroup state for this subsystem */
4891 ss->root = &cgrp_dfl_root;
4892 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4893 /* We don't handle early failures gracefully */
4894 BUG_ON(IS_ERR(css));
ddfcadab 4895 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4896
4897 /*
4898 * Root csses are never destroyed and we can't initialize
4899 * percpu_ref during early init. Disable refcnting.
4900 */
4901 css->flags |= CSS_NO_REF;
4902
15a4c835 4903 if (early) {
9395a450 4904 /* allocation can't be done safely during early init */
15a4c835
TH
4905 css->id = 1;
4906 } else {
4907 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4908 BUG_ON(css->id < 0);
4909 }
ddbcc7e8 4910
e8d55fde 4911 /* Update the init_css_set to contain a subsys
817929ec 4912 * pointer to this state - since the subsystem is
e8d55fde 4913 * newly registered, all tasks and hence the
3dd06ffa 4914 * init_css_set is in the subsystem's root cgroup. */
aec25020 4915 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4916
4917 need_forkexit_callback |= ss->fork || ss->exit;
4918
e8d55fde
LZ
4919 /* At system boot, before all subsystems have been
4920 * registered, no tasks have been forked, so we don't
4921 * need to invoke fork callbacks here. */
4922 BUG_ON(!list_empty(&init_task.tasks));
4923
ae7f164a 4924 BUG_ON(online_css(css));
a8638030 4925
cf5d5941
BB
4926 mutex_unlock(&cgroup_mutex);
4927}
cf5d5941 4928
ddbcc7e8 4929/**
a043e3b2
LZ
4930 * cgroup_init_early - cgroup initialization at system boot
4931 *
4932 * Initialize cgroups at system boot, and initialize any
4933 * subsystems that request early init.
ddbcc7e8
PM
4934 */
4935int __init cgroup_init_early(void)
4936{
7b9a6ba5 4937 static struct cgroup_sb_opts __initdata opts;
30159ec7 4938 struct cgroup_subsys *ss;
ddbcc7e8 4939 int i;
30159ec7 4940
3dd06ffa 4941 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4942 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4943
a4ea1cc9 4944 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4945
3ed80a62 4946 for_each_subsys(ss, i) {
aec25020 4947 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4948 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4949 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4950 ss->id, ss->name);
073219e9
TH
4951 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4952 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4953
aec25020 4954 ss->id = i;
073219e9 4955 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4956
4957 if (ss->early_init)
15a4c835 4958 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4959 }
4960 return 0;
4961}
4962
4963/**
a043e3b2
LZ
4964 * cgroup_init - cgroup initialization
4965 *
4966 * Register cgroup filesystem and /proc file, and initialize
4967 * any subsystems that didn't request early init.
ddbcc7e8
PM
4968 */
4969int __init cgroup_init(void)
4970{
30159ec7 4971 struct cgroup_subsys *ss;
0ac801fe 4972 unsigned long key;
172a2c06 4973 int ssid, err;
ddbcc7e8 4974
d59cfc09 4975 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
4976 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
4977 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 4978
54e7b4eb 4979 mutex_lock(&cgroup_mutex);
54e7b4eb 4980
82fe9b0d
TH
4981 /* Add init_css_set to the hash table */
4982 key = css_set_hash(init_css_set.subsys);
4983 hash_add(css_set_table, &init_css_set.hlist, key);
4984
3dd06ffa 4985 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4986
54e7b4eb
TH
4987 mutex_unlock(&cgroup_mutex);
4988
172a2c06 4989 for_each_subsys(ss, ssid) {
15a4c835
TH
4990 if (ss->early_init) {
4991 struct cgroup_subsys_state *css =
4992 init_css_set.subsys[ss->id];
4993
4994 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4995 GFP_KERNEL);
4996 BUG_ON(css->id < 0);
4997 } else {
4998 cgroup_init_subsys(ss, false);
4999 }
172a2c06 5000
2d8f243a
TH
5001 list_add_tail(&init_css_set.e_cset_node[ssid],
5002 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5003
5004 /*
c731ae1d
LZ
5005 * Setting dfl_root subsys_mask needs to consider the
5006 * disabled flag and cftype registration needs kmalloc,
5007 * both of which aren't available during early_init.
172a2c06 5008 */
a8ddc821
TH
5009 if (ss->disabled)
5010 continue;
5011
5012 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5013
5014 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5015 ss->dfl_cftypes = ss->legacy_cftypes;
5016
5de4fa13
TH
5017 if (!ss->dfl_cftypes)
5018 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5019
a8ddc821
TH
5020 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5021 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5022 } else {
5023 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5024 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5025 }
295458e6
VD
5026
5027 if (ss->bind)
5028 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5029 }
5030
676db4af 5031 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
5032 if (!cgroup_kobj)
5033 return -ENOMEM;
676db4af 5034
ddbcc7e8 5035 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
5036 if (err < 0) {
5037 kobject_put(cgroup_kobj);
2bd59d48 5038 return err;
676db4af 5039 }
ddbcc7e8 5040
46ae220b 5041 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5042 return 0;
ddbcc7e8 5043}
b4f48b63 5044
e5fca243
TH
5045static int __init cgroup_wq_init(void)
5046{
5047 /*
5048 * There isn't much point in executing destruction path in
5049 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5050 * Use 1 for @max_active.
e5fca243
TH
5051 *
5052 * We would prefer to do this in cgroup_init() above, but that
5053 * is called before init_workqueues(): so leave this until after.
5054 */
1a11533f 5055 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5056 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5057
5058 /*
5059 * Used to destroy pidlists and separate to serve as flush domain.
5060 * Cap @max_active to 1 too.
5061 */
5062 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5063 0, 1);
5064 BUG_ON(!cgroup_pidlist_destroy_wq);
5065
e5fca243
TH
5066 return 0;
5067}
5068core_initcall(cgroup_wq_init);
5069
a424316c
PM
5070/*
5071 * proc_cgroup_show()
5072 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5073 * - Used for /proc/<pid>/cgroup.
a424316c 5074 */
006f4ac4
ZL
5075int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5076 struct pid *pid, struct task_struct *tsk)
a424316c 5077{
e61734c5 5078 char *buf, *path;
a424316c 5079 int retval;
3dd06ffa 5080 struct cgroup_root *root;
a424316c
PM
5081
5082 retval = -ENOMEM;
e61734c5 5083 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5084 if (!buf)
5085 goto out;
5086
a424316c 5087 mutex_lock(&cgroup_mutex);
96d365e0 5088 down_read(&css_set_rwsem);
a424316c 5089
985ed670 5090 for_each_root(root) {
a424316c 5091 struct cgroup_subsys *ss;
bd89aabc 5092 struct cgroup *cgrp;
b85d2040 5093 int ssid, count = 0;
a424316c 5094
a2dd4247 5095 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5096 continue;
5097
2c6ab6d2 5098 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 5099 for_each_subsys(ss, ssid)
f392e51c 5100 if (root->subsys_mask & (1 << ssid))
b85d2040 5101 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
5102 if (strlen(root->name))
5103 seq_printf(m, "%sname=%s", count ? "," : "",
5104 root->name);
a424316c 5105 seq_putc(m, ':');
7717f7ba 5106 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5107 path = cgroup_path(cgrp, buf, PATH_MAX);
5108 if (!path) {
5109 retval = -ENAMETOOLONG;
a424316c 5110 goto out_unlock;
e61734c5
TH
5111 }
5112 seq_puts(m, path);
a424316c
PM
5113 seq_putc(m, '\n');
5114 }
5115
006f4ac4 5116 retval = 0;
a424316c 5117out_unlock:
96d365e0 5118 up_read(&css_set_rwsem);
a424316c 5119 mutex_unlock(&cgroup_mutex);
a424316c
PM
5120 kfree(buf);
5121out:
5122 return retval;
5123}
5124
a424316c
PM
5125/* Display information about each subsystem and each hierarchy */
5126static int proc_cgroupstats_show(struct seq_file *m, void *v)
5127{
30159ec7 5128 struct cgroup_subsys *ss;
a424316c 5129 int i;
a424316c 5130
8bab8dde 5131 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5132 /*
5133 * ideally we don't want subsystems moving around while we do this.
5134 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5135 * subsys/hierarchy state.
5136 */
a424316c 5137 mutex_lock(&cgroup_mutex);
30159ec7
TH
5138
5139 for_each_subsys(ss, i)
2c6ab6d2
PM
5140 seq_printf(m, "%s\t%d\t%d\t%d\n",
5141 ss->name, ss->root->hierarchy_id,
3c9c825b 5142 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 5143
a424316c
PM
5144 mutex_unlock(&cgroup_mutex);
5145 return 0;
5146}
5147
5148static int cgroupstats_open(struct inode *inode, struct file *file)
5149{
9dce07f1 5150 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5151}
5152
828c0950 5153static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5154 .open = cgroupstats_open,
5155 .read = seq_read,
5156 .llseek = seq_lseek,
5157 .release = single_release,
5158};
5159
b4f48b63 5160/**
eaf797ab 5161 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5162 * @child: pointer to task_struct of forking parent process.
b4f48b63 5163 *
eaf797ab
TH
5164 * A task is associated with the init_css_set until cgroup_post_fork()
5165 * attaches it to the parent's css_set. Empty cg_list indicates that
5166 * @child isn't holding reference to its css_set.
b4f48b63
PM
5167 */
5168void cgroup_fork(struct task_struct *child)
5169{
eaf797ab 5170 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5171 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5172}
5173
817929ec 5174/**
a043e3b2
LZ
5175 * cgroup_post_fork - called on a new task after adding it to the task list
5176 * @child: the task in question
5177 *
5edee61e
TH
5178 * Adds the task to the list running through its css_set if necessary and
5179 * call the subsystem fork() callbacks. Has to be after the task is
5180 * visible on the task list in case we race with the first call to
0942eeee 5181 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5182 * list.
a043e3b2 5183 */
817929ec
PM
5184void cgroup_post_fork(struct task_struct *child)
5185{
30159ec7 5186 struct cgroup_subsys *ss;
5edee61e
TH
5187 int i;
5188
3ce3230a 5189 /*
251f8c03 5190 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5191 * function sets use_task_css_set_links before grabbing
5192 * tasklist_lock and we just went through tasklist_lock to add
5193 * @child, it's guaranteed that either we see the set
5194 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5195 * @child during its iteration.
5196 *
5197 * If we won the race, @child is associated with %current's
5198 * css_set. Grabbing css_set_rwsem guarantees both that the
5199 * association is stable, and, on completion of the parent's
5200 * migration, @child is visible in the source of migration or
5201 * already in the destination cgroup. This guarantee is necessary
5202 * when implementing operations which need to migrate all tasks of
5203 * a cgroup to another.
5204 *
251f8c03 5205 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5206 * will remain in init_css_set. This is safe because all tasks are
5207 * in the init_css_set before cg_links is enabled and there's no
5208 * operation which transfers all tasks out of init_css_set.
3ce3230a 5209 */
817929ec 5210 if (use_task_css_set_links) {
eaf797ab
TH
5211 struct css_set *cset;
5212
96d365e0 5213 down_write(&css_set_rwsem);
0e1d768f 5214 cset = task_css_set(current);
eaf797ab
TH
5215 if (list_empty(&child->cg_list)) {
5216 rcu_assign_pointer(child->cgroups, cset);
5217 list_add(&child->cg_list, &cset->tasks);
5218 get_css_set(cset);
5219 }
96d365e0 5220 up_write(&css_set_rwsem);
817929ec 5221 }
5edee61e
TH
5222
5223 /*
5224 * Call ss->fork(). This must happen after @child is linked on
5225 * css_set; otherwise, @child might change state between ->fork()
5226 * and addition to css_set.
5227 */
5228 if (need_forkexit_callback) {
3ed80a62 5229 for_each_subsys(ss, i)
5edee61e
TH
5230 if (ss->fork)
5231 ss->fork(child);
5edee61e 5232 }
817929ec 5233}
5edee61e 5234
b4f48b63
PM
5235/**
5236 * cgroup_exit - detach cgroup from exiting task
5237 * @tsk: pointer to task_struct of exiting process
5238 *
5239 * Description: Detach cgroup from @tsk and release it.
5240 *
5241 * Note that cgroups marked notify_on_release force every task in
5242 * them to take the global cgroup_mutex mutex when exiting.
5243 * This could impact scaling on very large systems. Be reluctant to
5244 * use notify_on_release cgroups where very high task exit scaling
5245 * is required on large systems.
5246 *
0e1d768f
TH
5247 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5248 * call cgroup_exit() while the task is still competent to handle
5249 * notify_on_release(), then leave the task attached to the root cgroup in
5250 * each hierarchy for the remainder of its exit. No need to bother with
5251 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5252 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5253 */
1ec41830 5254void cgroup_exit(struct task_struct *tsk)
b4f48b63 5255{
30159ec7 5256 struct cgroup_subsys *ss;
5abb8855 5257 struct css_set *cset;
eaf797ab 5258 bool put_cset = false;
d41d5a01 5259 int i;
817929ec
PM
5260
5261 /*
0e1d768f
TH
5262 * Unlink from @tsk from its css_set. As migration path can't race
5263 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5264 */
5265 if (!list_empty(&tsk->cg_list)) {
96d365e0 5266 down_write(&css_set_rwsem);
0e1d768f 5267 list_del_init(&tsk->cg_list);
96d365e0 5268 up_write(&css_set_rwsem);
0e1d768f 5269 put_cset = true;
817929ec
PM
5270 }
5271
b4f48b63 5272 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5273 cset = task_css_set(tsk);
5274 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5275
1ec41830 5276 if (need_forkexit_callback) {
3ed80a62
TH
5277 /* see cgroup_post_fork() for details */
5278 for_each_subsys(ss, i) {
d41d5a01 5279 if (ss->exit) {
eb95419b
TH
5280 struct cgroup_subsys_state *old_css = cset->subsys[i];
5281 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5282
eb95419b 5283 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5284 }
5285 }
5286 }
d41d5a01 5287
eaf797ab 5288 if (put_cset)
a25eb52e 5289 put_css_set(cset);
b4f48b63 5290}
697f4161 5291
bd89aabc 5292static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5293{
a25eb52e 5294 if (notify_on_release(cgrp) && !cgroup_has_tasks(cgrp) &&
971ff493
ZL
5295 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5296 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5297}
5298
81a6a5cd
PM
5299/*
5300 * Notify userspace when a cgroup is released, by running the
5301 * configured release agent with the name of the cgroup (path
5302 * relative to the root of cgroup file system) as the argument.
5303 *
5304 * Most likely, this user command will try to rmdir this cgroup.
5305 *
5306 * This races with the possibility that some other task will be
5307 * attached to this cgroup before it is removed, or that some other
5308 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5309 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5310 * unused, and this cgroup will be reprieved from its death sentence,
5311 * to continue to serve a useful existence. Next time it's released,
5312 * we will get notified again, if it still has 'notify_on_release' set.
5313 *
5314 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5315 * means only wait until the task is successfully execve()'d. The
5316 * separate release agent task is forked by call_usermodehelper(),
5317 * then control in this thread returns here, without waiting for the
5318 * release agent task. We don't bother to wait because the caller of
5319 * this routine has no use for the exit status of the release agent
5320 * task, so no sense holding our caller up for that.
81a6a5cd 5321 */
81a6a5cd
PM
5322static void cgroup_release_agent(struct work_struct *work)
5323{
971ff493
ZL
5324 struct cgroup *cgrp =
5325 container_of(work, struct cgroup, release_agent_work);
5326 char *pathbuf = NULL, *agentbuf = NULL, *path;
5327 char *argv[3], *envp[3];
5328
81a6a5cd 5329 mutex_lock(&cgroup_mutex);
971ff493
ZL
5330
5331 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5332 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5333 if (!pathbuf || !agentbuf)
5334 goto out;
5335
5336 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5337 if (!path)
5338 goto out;
5339
5340 argv[0] = agentbuf;
5341 argv[1] = path;
5342 argv[2] = NULL;
5343
5344 /* minimal command environment */
5345 envp[0] = "HOME=/";
5346 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5347 envp[2] = NULL;
5348
81a6a5cd 5349 mutex_unlock(&cgroup_mutex);
971ff493 5350 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5351 goto out_free;
971ff493 5352out:
81a6a5cd 5353 mutex_unlock(&cgroup_mutex);
3e2cd91a 5354out_free:
971ff493
ZL
5355 kfree(agentbuf);
5356 kfree(pathbuf);
81a6a5cd 5357}
8bab8dde
PM
5358
5359static int __init cgroup_disable(char *str)
5360{
30159ec7 5361 struct cgroup_subsys *ss;
8bab8dde 5362 char *token;
30159ec7 5363 int i;
8bab8dde
PM
5364
5365 while ((token = strsep(&str, ",")) != NULL) {
5366 if (!*token)
5367 continue;
be45c900 5368
3ed80a62 5369 for_each_subsys(ss, i) {
8bab8dde
PM
5370 if (!strcmp(token, ss->name)) {
5371 ss->disabled = 1;
5372 printk(KERN_INFO "Disabling %s control group"
5373 " subsystem\n", ss->name);
5374 break;
5375 }
5376 }
5377 }
5378 return 1;
5379}
5380__setup("cgroup_disable=", cgroup_disable);
38460b48 5381
a8ddc821
TH
5382static int __init cgroup_set_legacy_files_on_dfl(char *str)
5383{
5384 printk("cgroup: using legacy files on the default hierarchy\n");
5385 cgroup_legacy_files_on_dfl = true;
5386 return 0;
5387}
5388__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5389
b77d7b60 5390/**
ec903c0c 5391 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5392 * @dentry: directory dentry of interest
5393 * @ss: subsystem of interest
b77d7b60 5394 *
5a17f543
TH
5395 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5396 * to get the corresponding css and return it. If such css doesn't exist
5397 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5398 */
ec903c0c
TH
5399struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5400 struct cgroup_subsys *ss)
e5d1367f 5401{
2bd59d48
TH
5402 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5403 struct cgroup_subsys_state *css = NULL;
e5d1367f 5404 struct cgroup *cgrp;
e5d1367f 5405
35cf0836 5406 /* is @dentry a cgroup dir? */
2bd59d48
TH
5407 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5408 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5409 return ERR_PTR(-EBADF);
5410
5a17f543
TH
5411 rcu_read_lock();
5412
2bd59d48
TH
5413 /*
5414 * This path doesn't originate from kernfs and @kn could already
5415 * have been or be removed at any point. @kn->priv is RCU
a4189487 5416 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5417 */
5418 cgrp = rcu_dereference(kn->priv);
5419 if (cgrp)
5420 css = cgroup_css(cgrp, ss);
5a17f543 5421
ec903c0c 5422 if (!css || !css_tryget_online(css))
5a17f543
TH
5423 css = ERR_PTR(-ENOENT);
5424
5425 rcu_read_unlock();
5426 return css;
e5d1367f 5427}
e5d1367f 5428
1cb650b9
LZ
5429/**
5430 * css_from_id - lookup css by id
5431 * @id: the cgroup id
5432 * @ss: cgroup subsys to be looked into
5433 *
5434 * Returns the css if there's valid one with @id, otherwise returns NULL.
5435 * Should be called under rcu_read_lock().
5436 */
5437struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5438{
6fa4918d 5439 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5440 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5441}
5442
fe693435 5443#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5444static struct cgroup_subsys_state *
5445debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5446{
5447 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5448
5449 if (!css)
5450 return ERR_PTR(-ENOMEM);
5451
5452 return css;
5453}
5454
eb95419b 5455static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5456{
eb95419b 5457 kfree(css);
fe693435
PM
5458}
5459
182446d0
TH
5460static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5461 struct cftype *cft)
fe693435 5462{
182446d0 5463 return cgroup_task_count(css->cgroup);
fe693435
PM
5464}
5465
182446d0
TH
5466static u64 current_css_set_read(struct cgroup_subsys_state *css,
5467 struct cftype *cft)
fe693435
PM
5468{
5469 return (u64)(unsigned long)current->cgroups;
5470}
5471
182446d0 5472static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5473 struct cftype *cft)
fe693435
PM
5474{
5475 u64 count;
5476
5477 rcu_read_lock();
a8ad805c 5478 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5479 rcu_read_unlock();
5480 return count;
5481}
5482
2da8ca82 5483static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5484{
69d0206c 5485 struct cgrp_cset_link *link;
5abb8855 5486 struct css_set *cset;
e61734c5
TH
5487 char *name_buf;
5488
5489 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5490 if (!name_buf)
5491 return -ENOMEM;
7717f7ba 5492
96d365e0 5493 down_read(&css_set_rwsem);
7717f7ba 5494 rcu_read_lock();
5abb8855 5495 cset = rcu_dereference(current->cgroups);
69d0206c 5496 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5497 struct cgroup *c = link->cgrp;
7717f7ba 5498
a2dd4247 5499 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5500 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5501 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5502 }
5503 rcu_read_unlock();
96d365e0 5504 up_read(&css_set_rwsem);
e61734c5 5505 kfree(name_buf);
7717f7ba
PM
5506 return 0;
5507}
5508
5509#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5510static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5511{
2da8ca82 5512 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5513 struct cgrp_cset_link *link;
7717f7ba 5514
96d365e0 5515 down_read(&css_set_rwsem);
182446d0 5516 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5517 struct css_set *cset = link->cset;
7717f7ba
PM
5518 struct task_struct *task;
5519 int count = 0;
c7561128 5520
5abb8855 5521 seq_printf(seq, "css_set %p\n", cset);
c7561128 5522
5abb8855 5523 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5524 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5525 goto overflow;
5526 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5527 }
5528
5529 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5530 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5531 goto overflow;
5532 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5533 }
c7561128
TH
5534 continue;
5535 overflow:
5536 seq_puts(seq, " ...\n");
7717f7ba 5537 }
96d365e0 5538 up_read(&css_set_rwsem);
7717f7ba
PM
5539 return 0;
5540}
5541
182446d0 5542static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5543{
a25eb52e
ZL
5544 return (!cgroup_has_tasks(css->cgroup) &&
5545 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5546}
5547
5548static struct cftype debug_files[] = {
fe693435
PM
5549 {
5550 .name = "taskcount",
5551 .read_u64 = debug_taskcount_read,
5552 },
5553
5554 {
5555 .name = "current_css_set",
5556 .read_u64 = current_css_set_read,
5557 },
5558
5559 {
5560 .name = "current_css_set_refcount",
5561 .read_u64 = current_css_set_refcount_read,
5562 },
5563
7717f7ba
PM
5564 {
5565 .name = "current_css_set_cg_links",
2da8ca82 5566 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5567 },
5568
5569 {
5570 .name = "cgroup_css_links",
2da8ca82 5571 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5572 },
5573
fe693435
PM
5574 {
5575 .name = "releasable",
5576 .read_u64 = releasable_read,
5577 },
fe693435 5578
4baf6e33
TH
5579 { } /* terminate */
5580};
fe693435 5581
073219e9 5582struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5583 .css_alloc = debug_css_alloc,
5584 .css_free = debug_css_free,
5577964e 5585 .legacy_cftypes = debug_files,
fe693435
PM
5586};
5587#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.045276 seconds and 5 git commands to generate.