cgroup: make cgroup_path() not print double slashes
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8
PM
32#include <linux/errno.h>
33#include <linux/fs.h>
2ce9738b 34#include <linux/init_task.h>
ddbcc7e8
PM
35#include <linux/kernel.h>
36#include <linux/list.h>
37#include <linux/mm.h>
38#include <linux/mutex.h>
39#include <linux/mount.h>
40#include <linux/pagemap.h>
a424316c 41#include <linux/proc_fs.h>
ddbcc7e8
PM
42#include <linux/rcupdate.h>
43#include <linux/sched.h>
817929ec 44#include <linux/backing-dev.h>
ddbcc7e8
PM
45#include <linux/seq_file.h>
46#include <linux/slab.h>
47#include <linux/magic.h>
48#include <linux/spinlock.h>
49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
e6a1105b 52#include <linux/module.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
3f8206d4 56#include <linux/namei.h>
096b7fe0 57#include <linux/pid_namespace.h>
2c6ab6d2 58#include <linux/idr.h>
d1d9fd33 59#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
60#include <linux/eventfd.h>
61#include <linux/poll.h>
081aa458 62#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 63#include <linux/kthread.h>
846c7bb0 64
60063497 65#include <linux/atomic.h>
ddbcc7e8 66
28b4c27b
TH
67/* css deactivation bias, makes css->refcnt negative to deny new trygets */
68#define CSS_DEACT_BIAS INT_MIN
69
e25e2cbb
TH
70/*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
2219449a
TH
86#ifdef CONFIG_PROVE_RCU
87DEFINE_MUTEX(cgroup_mutex);
88EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for task_subsys_state_check() */
89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
91#endif
92
e25e2cbb 93static DEFINE_MUTEX(cgroup_root_mutex);
81a6a5cd 94
aae8aab4
BB
95/*
96 * Generate an array of cgroup subsystem pointers. At boot time, this is
be45c900 97 * populated with the built in subsystems, and modular subsystems are
aae8aab4
BB
98 * registered after that. The mutable section of this array is protected by
99 * cgroup_mutex.
100 */
80f4c877 101#define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
5fc0b025 102#define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
aae8aab4 103static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
104#include <linux/cgroup_subsys.h>
105};
106
c6d57f33
PM
107#define MAX_CGROUP_ROOT_NAMELEN 64
108
ddbcc7e8
PM
109/*
110 * A cgroupfs_root represents the root of a cgroup hierarchy,
111 * and may be associated with a superblock to form an active
112 * hierarchy
113 */
114struct cgroupfs_root {
115 struct super_block *sb;
116
117 /*
118 * The bitmask of subsystems intended to be attached to this
119 * hierarchy
120 */
a1a71b45 121 unsigned long subsys_mask;
ddbcc7e8 122
2c6ab6d2
PM
123 /* Unique id for this hierarchy. */
124 int hierarchy_id;
125
ddbcc7e8 126 /* The bitmask of subsystems currently attached to this hierarchy */
a1a71b45 127 unsigned long actual_subsys_mask;
ddbcc7e8
PM
128
129 /* A list running through the attached subsystems */
130 struct list_head subsys_list;
131
132 /* The root cgroup for this hierarchy */
133 struct cgroup top_cgroup;
134
135 /* Tracks how many cgroups are currently defined in hierarchy.*/
136 int number_of_cgroups;
137
e5f6a860 138 /* A list running through the active hierarchies */
ddbcc7e8
PM
139 struct list_head root_list;
140
b0ca5a84
TH
141 /* All cgroups on this root, cgroup_mutex protected */
142 struct list_head allcg_list;
143
ddbcc7e8
PM
144 /* Hierarchy-specific flags */
145 unsigned long flags;
81a6a5cd 146
0a950f65
TH
147 /* IDs for cgroups in this hierarchy */
148 struct ida cgroup_ida;
149
e788e066 150 /* The path to use for release notifications. */
81a6a5cd 151 char release_agent_path[PATH_MAX];
c6d57f33
PM
152
153 /* The name for this hierarchy - may be empty */
154 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
155};
156
ddbcc7e8
PM
157/*
158 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
159 * subsystems that are otherwise unattached - it never has more than a
160 * single cgroup, and all tasks are part of that cgroup.
161 */
162static struct cgroupfs_root rootnode;
163
05ef1d7c
TH
164/*
165 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
166 */
167struct cfent {
168 struct list_head node;
169 struct dentry *dentry;
170 struct cftype *type;
171};
172
38460b48
KH
173/*
174 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
175 * cgroup_subsys->use_id != 0.
176 */
177#define CSS_ID_MAX (65535)
178struct css_id {
179 /*
180 * The css to which this ID points. This pointer is set to valid value
181 * after cgroup is populated. If cgroup is removed, this will be NULL.
182 * This pointer is expected to be RCU-safe because destroy()
e9316080
TH
183 * is called after synchronize_rcu(). But for safe use, css_tryget()
184 * should be used for avoiding race.
38460b48 185 */
2c392b8c 186 struct cgroup_subsys_state __rcu *css;
38460b48
KH
187 /*
188 * ID of this css.
189 */
190 unsigned short id;
191 /*
192 * Depth in hierarchy which this ID belongs to.
193 */
194 unsigned short depth;
195 /*
196 * ID is freed by RCU. (and lookup routine is RCU safe.)
197 */
198 struct rcu_head rcu_head;
199 /*
200 * Hierarchy of CSS ID belongs to.
201 */
202 unsigned short stack[0]; /* Array of Length (depth+1) */
203};
204
0dea1168 205/*
25985edc 206 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
207 */
208struct cgroup_event {
209 /*
210 * Cgroup which the event belongs to.
211 */
212 struct cgroup *cgrp;
213 /*
214 * Control file which the event associated.
215 */
216 struct cftype *cft;
217 /*
218 * eventfd to signal userspace about the event.
219 */
220 struct eventfd_ctx *eventfd;
221 /*
222 * Each of these stored in a list by the cgroup.
223 */
224 struct list_head list;
225 /*
226 * All fields below needed to unregister event when
227 * userspace closes eventfd.
228 */
229 poll_table pt;
230 wait_queue_head_t *wqh;
231 wait_queue_t wait;
232 struct work_struct remove;
233};
38460b48 234
ddbcc7e8
PM
235/* The list of hierarchy roots */
236
237static LIST_HEAD(roots);
817929ec 238static int root_count;
ddbcc7e8 239
2c6ab6d2
PM
240static DEFINE_IDA(hierarchy_ida);
241static int next_hierarchy_id;
242static DEFINE_SPINLOCK(hierarchy_id_lock);
243
ddbcc7e8
PM
244/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
245#define dummytop (&rootnode.top_cgroup)
246
65dff759
LZ
247static struct cgroup_name root_cgroup_name = { .name = "/" };
248
ddbcc7e8 249/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
250 * check for fork/exit handlers to call. This avoids us having to do
251 * extra work in the fork/exit path if none of the subsystems need to
252 * be called.
ddbcc7e8 253 */
8947f9d5 254static int need_forkexit_callback __read_mostly;
ddbcc7e8 255
42809dd4 256static int cgroup_destroy_locked(struct cgroup *cgrp);
879a3d9d
G
257static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
258 struct cftype cfts[], bool is_add);
42809dd4 259
8e3bbf42
SQ
260static int css_unbias_refcnt(int refcnt)
261{
262 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
263}
264
28b4c27b
TH
265/* the current nr of refs, always >= 0 whether @css is deactivated or not */
266static int css_refcnt(struct cgroup_subsys_state *css)
267{
268 int v = atomic_read(&css->refcnt);
269
8e3bbf42 270 return css_unbias_refcnt(v);
28b4c27b
TH
271}
272
ddbcc7e8 273/* convenient tests for these bits */
bd89aabc 274inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 275{
bd89aabc 276 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
277}
278
78574cf9
LZ
279/**
280 * cgroup_is_descendant - test ancestry
281 * @cgrp: the cgroup to be tested
282 * @ancestor: possible ancestor of @cgrp
283 *
284 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
285 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
286 * and @ancestor are accessible.
287 */
288bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
289{
290 while (cgrp) {
291 if (cgrp == ancestor)
292 return true;
293 cgrp = cgrp->parent;
294 }
295 return false;
296}
297EXPORT_SYMBOL_GPL(cgroup_is_descendant);
298
ddbcc7e8
PM
299/* bits in struct cgroupfs_root flags field */
300enum {
03b1cde6
AR
301 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
302 ROOT_XATTR, /* supports extended attributes */
ddbcc7e8
PM
303};
304
e9685a03 305static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
306{
307 const int bits =
bd89aabc
PM
308 (1 << CGRP_RELEASABLE) |
309 (1 << CGRP_NOTIFY_ON_RELEASE);
310 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
311}
312
e9685a03 313static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 314{
bd89aabc 315 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
316}
317
ddbcc7e8
PM
318/*
319 * for_each_subsys() allows you to iterate on each subsystem attached to
320 * an active hierarchy
321 */
322#define for_each_subsys(_root, _ss) \
323list_for_each_entry(_ss, &_root->subsys_list, sibling)
324
e5f6a860
LZ
325/* for_each_active_root() allows you to iterate across the active hierarchies */
326#define for_each_active_root(_root) \
ddbcc7e8
PM
327list_for_each_entry(_root, &roots, root_list)
328
f6ea9372
TH
329static inline struct cgroup *__d_cgrp(struct dentry *dentry)
330{
331 return dentry->d_fsdata;
332}
333
05ef1d7c 334static inline struct cfent *__d_cfe(struct dentry *dentry)
f6ea9372
TH
335{
336 return dentry->d_fsdata;
337}
338
05ef1d7c
TH
339static inline struct cftype *__d_cft(struct dentry *dentry)
340{
341 return __d_cfe(dentry)->type;
342}
343
7ae1bad9
TH
344/**
345 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
346 * @cgrp: the cgroup to be checked for liveness
347 *
47cfcd09
TH
348 * On success, returns true; the mutex should be later unlocked. On
349 * failure returns false with no lock held.
7ae1bad9 350 */
b9777cf8 351static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
352{
353 mutex_lock(&cgroup_mutex);
354 if (cgroup_is_removed(cgrp)) {
355 mutex_unlock(&cgroup_mutex);
356 return false;
357 }
358 return true;
359}
7ae1bad9 360
81a6a5cd
PM
361/* the list of cgroups eligible for automatic release. Protected by
362 * release_list_lock */
363static LIST_HEAD(release_list);
cdcc136f 364static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
365static void cgroup_release_agent(struct work_struct *work);
366static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 367static void check_for_release(struct cgroup *cgrp);
81a6a5cd 368
817929ec
PM
369/* Link structure for associating css_set objects with cgroups */
370struct cg_cgroup_link {
371 /*
372 * List running through cg_cgroup_links associated with a
373 * cgroup, anchored on cgroup->css_sets
374 */
bd89aabc 375 struct list_head cgrp_link_list;
7717f7ba 376 struct cgroup *cgrp;
817929ec
PM
377 /*
378 * List running through cg_cgroup_links pointing at a
379 * single css_set object, anchored on css_set->cg_links
380 */
381 struct list_head cg_link_list;
382 struct css_set *cg;
383};
384
385/* The default css_set - used by init and its children prior to any
386 * hierarchies being mounted. It contains a pointer to the root state
387 * for each subsystem. Also used to anchor the list of css_sets. Not
388 * reference-counted, to improve performance when child cgroups
389 * haven't been created.
390 */
391
392static struct css_set init_css_set;
393static struct cg_cgroup_link init_css_set_link;
394
e6a1105b
BB
395static int cgroup_init_idr(struct cgroup_subsys *ss,
396 struct cgroup_subsys_state *css);
38460b48 397
817929ec
PM
398/* css_set_lock protects the list of css_set objects, and the
399 * chain of tasks off each css_set. Nests outside task->alloc_lock
400 * due to cgroup_iter_start() */
401static DEFINE_RWLOCK(css_set_lock);
402static int css_set_count;
403
7717f7ba
PM
404/*
405 * hash table for cgroup groups. This improves the performance to find
406 * an existing css_set. This hash doesn't (currently) take into
407 * account cgroups in empty hierarchies.
408 */
472b1053 409#define CSS_SET_HASH_BITS 7
0ac801fe 410static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 411
0ac801fe 412static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053
LZ
413{
414 int i;
0ac801fe 415 unsigned long key = 0UL;
472b1053
LZ
416
417 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
0ac801fe
LZ
418 key += (unsigned long)css[i];
419 key = (key >> 16) ^ key;
472b1053 420
0ac801fe 421 return key;
472b1053
LZ
422}
423
817929ec
PM
424/* We don't maintain the lists running through each css_set to its
425 * task until after the first call to cgroup_iter_start(). This
426 * reduces the fork()/exit() overhead for people who have cgroups
427 * compiled into their kernel but not actually in use */
8947f9d5 428static int use_task_css_set_links __read_mostly;
817929ec 429
2c6ab6d2 430static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 431{
71cbb949
KM
432 struct cg_cgroup_link *link;
433 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
434 /*
435 * Ensure that the refcount doesn't hit zero while any readers
436 * can see it. Similar to atomic_dec_and_lock(), but for an
437 * rwlock
438 */
439 if (atomic_add_unless(&cg->refcount, -1, 1))
440 return;
441 write_lock(&css_set_lock);
442 if (!atomic_dec_and_test(&cg->refcount)) {
443 write_unlock(&css_set_lock);
444 return;
445 }
81a6a5cd 446
2c6ab6d2 447 /* This css_set is dead. unlink it and release cgroup refcounts */
0ac801fe 448 hash_del(&cg->hlist);
2c6ab6d2
PM
449 css_set_count--;
450
451 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
452 cg_link_list) {
453 struct cgroup *cgrp = link->cgrp;
454 list_del(&link->cg_link_list);
455 list_del(&link->cgrp_link_list);
71b5707e
LZ
456
457 /*
458 * We may not be holding cgroup_mutex, and if cgrp->count is
459 * dropped to 0 the cgroup can be destroyed at any time, hence
460 * rcu_read_lock is used to keep it alive.
461 */
462 rcu_read_lock();
bd89aabc
PM
463 if (atomic_dec_and_test(&cgrp->count) &&
464 notify_on_release(cgrp)) {
81a6a5cd 465 if (taskexit)
bd89aabc
PM
466 set_bit(CGRP_RELEASABLE, &cgrp->flags);
467 check_for_release(cgrp);
81a6a5cd 468 }
71b5707e 469 rcu_read_unlock();
2c6ab6d2
PM
470
471 kfree(link);
81a6a5cd 472 }
2c6ab6d2
PM
473
474 write_unlock(&css_set_lock);
30088ad8 475 kfree_rcu(cg, rcu_head);
b4f48b63
PM
476}
477
817929ec
PM
478/*
479 * refcounted get/put for css_set objects
480 */
481static inline void get_css_set(struct css_set *cg)
482{
146aa1bd 483 atomic_inc(&cg->refcount);
817929ec
PM
484}
485
486static inline void put_css_set(struct css_set *cg)
487{
146aa1bd 488 __put_css_set(cg, 0);
817929ec
PM
489}
490
81a6a5cd
PM
491static inline void put_css_set_taskexit(struct css_set *cg)
492{
146aa1bd 493 __put_css_set(cg, 1);
81a6a5cd
PM
494}
495
7717f7ba
PM
496/*
497 * compare_css_sets - helper function for find_existing_css_set().
498 * @cg: candidate css_set being tested
499 * @old_cg: existing css_set for a task
500 * @new_cgrp: cgroup that's being entered by the task
501 * @template: desired set of css pointers in css_set (pre-calculated)
502 *
503 * Returns true if "cg" matches "old_cg" except for the hierarchy
504 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
505 */
506static bool compare_css_sets(struct css_set *cg,
507 struct css_set *old_cg,
508 struct cgroup *new_cgrp,
509 struct cgroup_subsys_state *template[])
510{
511 struct list_head *l1, *l2;
512
513 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
514 /* Not all subsystems matched */
515 return false;
516 }
517
518 /*
519 * Compare cgroup pointers in order to distinguish between
520 * different cgroups in heirarchies with no subsystems. We
521 * could get by with just this check alone (and skip the
522 * memcmp above) but on most setups the memcmp check will
523 * avoid the need for this more expensive check on almost all
524 * candidates.
525 */
526
527 l1 = &cg->cg_links;
528 l2 = &old_cg->cg_links;
529 while (1) {
530 struct cg_cgroup_link *cgl1, *cgl2;
531 struct cgroup *cg1, *cg2;
532
533 l1 = l1->next;
534 l2 = l2->next;
535 /* See if we reached the end - both lists are equal length. */
536 if (l1 == &cg->cg_links) {
537 BUG_ON(l2 != &old_cg->cg_links);
538 break;
539 } else {
540 BUG_ON(l2 == &old_cg->cg_links);
541 }
542 /* Locate the cgroups associated with these links. */
543 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
544 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
545 cg1 = cgl1->cgrp;
546 cg2 = cgl2->cgrp;
547 /* Hierarchies should be linked in the same order. */
548 BUG_ON(cg1->root != cg2->root);
549
550 /*
551 * If this hierarchy is the hierarchy of the cgroup
552 * that's changing, then we need to check that this
553 * css_set points to the new cgroup; if it's any other
554 * hierarchy, then this css_set should point to the
555 * same cgroup as the old css_set.
556 */
557 if (cg1->root == new_cgrp->root) {
558 if (cg1 != new_cgrp)
559 return false;
560 } else {
561 if (cg1 != cg2)
562 return false;
563 }
564 }
565 return true;
566}
567
817929ec
PM
568/*
569 * find_existing_css_set() is a helper for
570 * find_css_set(), and checks to see whether an existing
472b1053 571 * css_set is suitable.
817929ec
PM
572 *
573 * oldcg: the cgroup group that we're using before the cgroup
574 * transition
575 *
bd89aabc 576 * cgrp: the cgroup that we're moving into
817929ec
PM
577 *
578 * template: location in which to build the desired set of subsystem
579 * state objects for the new cgroup group
580 */
817929ec
PM
581static struct css_set *find_existing_css_set(
582 struct css_set *oldcg,
bd89aabc 583 struct cgroup *cgrp,
817929ec 584 struct cgroup_subsys_state *template[])
b4f48b63
PM
585{
586 int i;
bd89aabc 587 struct cgroupfs_root *root = cgrp->root;
472b1053 588 struct css_set *cg;
0ac801fe 589 unsigned long key;
817929ec 590
aae8aab4
BB
591 /*
592 * Build the set of subsystem state objects that we want to see in the
593 * new css_set. while subsystems can change globally, the entries here
594 * won't change, so no need for locking.
595 */
817929ec 596 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
a1a71b45 597 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
598 /* Subsystem is in this hierarchy. So we want
599 * the subsystem state from the new
600 * cgroup */
bd89aabc 601 template[i] = cgrp->subsys[i];
817929ec
PM
602 } else {
603 /* Subsystem is not in this hierarchy, so we
604 * don't want to change the subsystem state */
605 template[i] = oldcg->subsys[i];
606 }
607 }
608
0ac801fe 609 key = css_set_hash(template);
b67bfe0d 610 hash_for_each_possible(css_set_table, cg, hlist, key) {
7717f7ba
PM
611 if (!compare_css_sets(cg, oldcg, cgrp, template))
612 continue;
613
614 /* This css_set matches what we need */
615 return cg;
472b1053 616 }
817929ec
PM
617
618 /* No existing cgroup group matched */
619 return NULL;
620}
621
36553434
LZ
622static void free_cg_links(struct list_head *tmp)
623{
624 struct cg_cgroup_link *link;
625 struct cg_cgroup_link *saved_link;
626
627 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
628 list_del(&link->cgrp_link_list);
629 kfree(link);
630 }
631}
632
817929ec
PM
633/*
634 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 635 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
636 * success or a negative error
637 */
817929ec
PM
638static int allocate_cg_links(int count, struct list_head *tmp)
639{
640 struct cg_cgroup_link *link;
641 int i;
642 INIT_LIST_HEAD(tmp);
643 for (i = 0; i < count; i++) {
644 link = kmalloc(sizeof(*link), GFP_KERNEL);
645 if (!link) {
36553434 646 free_cg_links(tmp);
817929ec
PM
647 return -ENOMEM;
648 }
bd89aabc 649 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
650 }
651 return 0;
652}
653
c12f65d4
LZ
654/**
655 * link_css_set - a helper function to link a css_set to a cgroup
656 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
657 * @cg: the css_set to be linked
658 * @cgrp: the destination cgroup
659 */
660static void link_css_set(struct list_head *tmp_cg_links,
661 struct css_set *cg, struct cgroup *cgrp)
662{
663 struct cg_cgroup_link *link;
664
665 BUG_ON(list_empty(tmp_cg_links));
666 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
667 cgrp_link_list);
668 link->cg = cg;
7717f7ba 669 link->cgrp = cgrp;
2c6ab6d2 670 atomic_inc(&cgrp->count);
c12f65d4 671 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
672 /*
673 * Always add links to the tail of the list so that the list
674 * is sorted by order of hierarchy creation
675 */
676 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
677}
678
817929ec
PM
679/*
680 * find_css_set() takes an existing cgroup group and a
681 * cgroup object, and returns a css_set object that's
682 * equivalent to the old group, but with the given cgroup
683 * substituted into the appropriate hierarchy. Must be called with
684 * cgroup_mutex held
685 */
817929ec 686static struct css_set *find_css_set(
bd89aabc 687 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
688{
689 struct css_set *res;
690 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
691
692 struct list_head tmp_cg_links;
817929ec 693
7717f7ba 694 struct cg_cgroup_link *link;
0ac801fe 695 unsigned long key;
472b1053 696
817929ec
PM
697 /* First see if we already have a cgroup group that matches
698 * the desired set */
7e9abd89 699 read_lock(&css_set_lock);
bd89aabc 700 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
701 if (res)
702 get_css_set(res);
7e9abd89 703 read_unlock(&css_set_lock);
817929ec
PM
704
705 if (res)
706 return res;
707
708 res = kmalloc(sizeof(*res), GFP_KERNEL);
709 if (!res)
710 return NULL;
711
712 /* Allocate all the cg_cgroup_link objects that we'll need */
713 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
714 kfree(res);
715 return NULL;
716 }
717
146aa1bd 718 atomic_set(&res->refcount, 1);
817929ec
PM
719 INIT_LIST_HEAD(&res->cg_links);
720 INIT_LIST_HEAD(&res->tasks);
472b1053 721 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
722
723 /* Copy the set of subsystem state objects generated in
724 * find_existing_css_set() */
725 memcpy(res->subsys, template, sizeof(res->subsys));
726
727 write_lock(&css_set_lock);
728 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
729 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
730 struct cgroup *c = link->cgrp;
731 if (c->root == cgrp->root)
732 c = cgrp;
733 link_css_set(&tmp_cg_links, res, c);
734 }
817929ec
PM
735
736 BUG_ON(!list_empty(&tmp_cg_links));
737
817929ec 738 css_set_count++;
472b1053
LZ
739
740 /* Add this cgroup group to the hash table */
0ac801fe
LZ
741 key = css_set_hash(res->subsys);
742 hash_add(css_set_table, &res->hlist, key);
472b1053 743
817929ec
PM
744 write_unlock(&css_set_lock);
745
746 return res;
b4f48b63
PM
747}
748
7717f7ba
PM
749/*
750 * Return the cgroup for "task" from the given hierarchy. Must be
751 * called with cgroup_mutex held.
752 */
753static struct cgroup *task_cgroup_from_root(struct task_struct *task,
754 struct cgroupfs_root *root)
755{
756 struct css_set *css;
757 struct cgroup *res = NULL;
758
759 BUG_ON(!mutex_is_locked(&cgroup_mutex));
760 read_lock(&css_set_lock);
761 /*
762 * No need to lock the task - since we hold cgroup_mutex the
763 * task can't change groups, so the only thing that can happen
764 * is that it exits and its css is set back to init_css_set.
765 */
766 css = task->cgroups;
767 if (css == &init_css_set) {
768 res = &root->top_cgroup;
769 } else {
770 struct cg_cgroup_link *link;
771 list_for_each_entry(link, &css->cg_links, cg_link_list) {
772 struct cgroup *c = link->cgrp;
773 if (c->root == root) {
774 res = c;
775 break;
776 }
777 }
778 }
779 read_unlock(&css_set_lock);
780 BUG_ON(!res);
781 return res;
782}
783
ddbcc7e8
PM
784/*
785 * There is one global cgroup mutex. We also require taking
786 * task_lock() when dereferencing a task's cgroup subsys pointers.
787 * See "The task_lock() exception", at the end of this comment.
788 *
789 * A task must hold cgroup_mutex to modify cgroups.
790 *
791 * Any task can increment and decrement the count field without lock.
792 * So in general, code holding cgroup_mutex can't rely on the count
793 * field not changing. However, if the count goes to zero, then only
956db3ca 794 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
795 * means that no tasks are currently attached, therefore there is no
796 * way a task attached to that cgroup can fork (the other way to
797 * increment the count). So code holding cgroup_mutex can safely
798 * assume that if the count is zero, it will stay zero. Similarly, if
799 * a task holds cgroup_mutex on a cgroup with zero count, it
800 * knows that the cgroup won't be removed, as cgroup_rmdir()
801 * needs that mutex.
802 *
ddbcc7e8
PM
803 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
804 * (usually) take cgroup_mutex. These are the two most performance
805 * critical pieces of code here. The exception occurs on cgroup_exit(),
806 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
807 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
808 * to the release agent with the name of the cgroup (path relative to
809 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
810 *
811 * A cgroup can only be deleted if both its 'count' of using tasks
812 * is zero, and its list of 'children' cgroups is empty. Since all
813 * tasks in the system use _some_ cgroup, and since there is always at
814 * least one task in the system (init, pid == 1), therefore, top_cgroup
815 * always has either children cgroups and/or using tasks. So we don't
816 * need a special hack to ensure that top_cgroup cannot be deleted.
817 *
818 * The task_lock() exception
819 *
820 * The need for this exception arises from the action of
d0b2fdd2 821 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 822 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
823 * several performance critical places that need to reference
824 * task->cgroup without the expense of grabbing a system global
825 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 826 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
827 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
828 * the task_struct routinely used for such matters.
829 *
830 * P.S. One more locking exception. RCU is used to guard the
956db3ca 831 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
832 */
833
ddbcc7e8
PM
834/*
835 * A couple of forward declarations required, due to cyclic reference loop:
836 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
837 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
838 * -> cgroup_mkdir.
839 */
840
18bb1db3 841static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
00cd8dd3 842static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
ddbcc7e8 843static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
13af07df
AR
844static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
845 unsigned long subsys_mask);
6e1d5dcc 846static const struct inode_operations cgroup_dir_inode_operations;
828c0950 847static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
848
849static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 850 .name = "cgroup",
e4ad08fe 851 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 852};
ddbcc7e8 853
38460b48
KH
854static int alloc_css_id(struct cgroup_subsys *ss,
855 struct cgroup *parent, struct cgroup *child);
856
a5e7ed32 857static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
ddbcc7e8
PM
858{
859 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
860
861 if (inode) {
85fe4025 862 inode->i_ino = get_next_ino();
ddbcc7e8 863 inode->i_mode = mode;
76aac0e9
DH
864 inode->i_uid = current_fsuid();
865 inode->i_gid = current_fsgid();
ddbcc7e8
PM
866 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
867 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
868 }
869 return inode;
870}
871
65dff759
LZ
872static struct cgroup_name *cgroup_alloc_name(struct dentry *dentry)
873{
874 struct cgroup_name *name;
875
876 name = kmalloc(sizeof(*name) + dentry->d_name.len + 1, GFP_KERNEL);
877 if (!name)
878 return NULL;
879 strcpy(name->name, dentry->d_name.name);
880 return name;
881}
882
be445626
LZ
883static void cgroup_free_fn(struct work_struct *work)
884{
885 struct cgroup *cgrp = container_of(work, struct cgroup, free_work);
886 struct cgroup_subsys *ss;
887
888 mutex_lock(&cgroup_mutex);
889 /*
890 * Release the subsystem state objects.
891 */
892 for_each_subsys(cgrp->root, ss)
893 ss->css_free(cgrp);
894
895 cgrp->root->number_of_cgroups--;
896 mutex_unlock(&cgroup_mutex);
897
415cf07a
LZ
898 /*
899 * We get a ref to the parent's dentry, and put the ref when
900 * this cgroup is being freed, so it's guaranteed that the
901 * parent won't be destroyed before its children.
902 */
903 dput(cgrp->parent->dentry);
904
be445626
LZ
905 /*
906 * Drop the active superblock reference that we took when we
907 * created the cgroup
908 */
909 deactivate_super(cgrp->root->sb);
910
911 /*
912 * if we're getting rid of the cgroup, refcount should ensure
913 * that there are no pidlists left.
914 */
915 BUG_ON(!list_empty(&cgrp->pidlists));
916
917 simple_xattrs_free(&cgrp->xattrs);
918
919 ida_simple_remove(&cgrp->root->cgroup_ida, cgrp->id);
65dff759 920 kfree(rcu_dereference_raw(cgrp->name));
be445626
LZ
921 kfree(cgrp);
922}
923
924static void cgroup_free_rcu(struct rcu_head *head)
925{
926 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
927
928 schedule_work(&cgrp->free_work);
929}
930
ddbcc7e8
PM
931static void cgroup_diput(struct dentry *dentry, struct inode *inode)
932{
933 /* is dentry a directory ? if so, kfree() associated cgroup */
934 if (S_ISDIR(inode->i_mode)) {
bd89aabc 935 struct cgroup *cgrp = dentry->d_fsdata;
be445626 936
bd89aabc 937 BUG_ON(!(cgroup_is_removed(cgrp)));
be445626 938 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
05ef1d7c
TH
939 } else {
940 struct cfent *cfe = __d_cfe(dentry);
941 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
03b1cde6 942 struct cftype *cft = cfe->type;
05ef1d7c
TH
943
944 WARN_ONCE(!list_empty(&cfe->node) &&
945 cgrp != &cgrp->root->top_cgroup,
946 "cfe still linked for %s\n", cfe->type->name);
947 kfree(cfe);
03b1cde6 948 simple_xattrs_free(&cft->xattrs);
ddbcc7e8
PM
949 }
950 iput(inode);
951}
952
c72a04e3
AV
953static int cgroup_delete(const struct dentry *d)
954{
955 return 1;
956}
957
ddbcc7e8
PM
958static void remove_dir(struct dentry *d)
959{
960 struct dentry *parent = dget(d->d_parent);
961
962 d_delete(d);
963 simple_rmdir(parent->d_inode, d);
964 dput(parent);
965}
966
2739d3cc 967static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c
TH
968{
969 struct cfent *cfe;
970
971 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
972 lockdep_assert_held(&cgroup_mutex);
973
2739d3cc
LZ
974 /*
975 * If we're doing cleanup due to failure of cgroup_create(),
976 * the corresponding @cfe may not exist.
977 */
05ef1d7c
TH
978 list_for_each_entry(cfe, &cgrp->files, node) {
979 struct dentry *d = cfe->dentry;
980
981 if (cft && cfe->type != cft)
982 continue;
983
984 dget(d);
985 d_delete(d);
ce27e317 986 simple_unlink(cgrp->dentry->d_inode, d);
05ef1d7c
TH
987 list_del_init(&cfe->node);
988 dput(d);
989
2739d3cc 990 break;
ddbcc7e8 991 }
05ef1d7c
TH
992}
993
13af07df
AR
994/**
995 * cgroup_clear_directory - selective removal of base and subsystem files
996 * @dir: directory containing the files
997 * @base_files: true if the base files should be removed
998 * @subsys_mask: mask of the subsystem ids whose files should be removed
999 */
1000static void cgroup_clear_directory(struct dentry *dir, bool base_files,
1001 unsigned long subsys_mask)
05ef1d7c
TH
1002{
1003 struct cgroup *cgrp = __d_cgrp(dir);
13af07df 1004 struct cgroup_subsys *ss;
05ef1d7c 1005
13af07df
AR
1006 for_each_subsys(cgrp->root, ss) {
1007 struct cftype_set *set;
1008 if (!test_bit(ss->subsys_id, &subsys_mask))
1009 continue;
1010 list_for_each_entry(set, &ss->cftsets, node)
879a3d9d 1011 cgroup_addrm_files(cgrp, NULL, set->cfts, false);
13af07df
AR
1012 }
1013 if (base_files) {
1014 while (!list_empty(&cgrp->files))
1015 cgroup_rm_file(cgrp, NULL);
1016 }
ddbcc7e8
PM
1017}
1018
1019/*
1020 * NOTE : the dentry must have been dget()'ed
1021 */
1022static void cgroup_d_remove_dir(struct dentry *dentry)
1023{
2fd6b7f5 1024 struct dentry *parent;
13af07df 1025 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2fd6b7f5 1026
a1a71b45 1027 cgroup_clear_directory(dentry, true, root->subsys_mask);
ddbcc7e8 1028
2fd6b7f5
NP
1029 parent = dentry->d_parent;
1030 spin_lock(&parent->d_lock);
3ec762ad 1031 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 1032 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
1033 spin_unlock(&dentry->d_lock);
1034 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
1035 remove_dir(dentry);
1036}
1037
aae8aab4 1038/*
cf5d5941
BB
1039 * Call with cgroup_mutex held. Drops reference counts on modules, including
1040 * any duplicate ones that parse_cgroupfs_options took. If this function
1041 * returns an error, no reference counts are touched.
aae8aab4 1042 */
ddbcc7e8 1043static int rebind_subsystems(struct cgroupfs_root *root,
a1a71b45 1044 unsigned long final_subsys_mask)
ddbcc7e8 1045{
a1a71b45 1046 unsigned long added_mask, removed_mask;
bd89aabc 1047 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1048 int i;
1049
aae8aab4 1050 BUG_ON(!mutex_is_locked(&cgroup_mutex));
e25e2cbb 1051 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
aae8aab4 1052
a1a71b45
AR
1053 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1054 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
ddbcc7e8
PM
1055 /* Check that any added subsystems are currently free */
1056 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 1057 unsigned long bit = 1UL << i;
ddbcc7e8 1058 struct cgroup_subsys *ss = subsys[i];
a1a71b45 1059 if (!(bit & added_mask))
ddbcc7e8 1060 continue;
aae8aab4
BB
1061 /*
1062 * Nobody should tell us to do a subsys that doesn't exist:
1063 * parse_cgroupfs_options should catch that case and refcounts
1064 * ensure that subsystems won't disappear once selected.
1065 */
1066 BUG_ON(ss == NULL);
ddbcc7e8
PM
1067 if (ss->root != &rootnode) {
1068 /* Subsystem isn't free */
1069 return -EBUSY;
1070 }
1071 }
1072
1073 /* Currently we don't handle adding/removing subsystems when
1074 * any child cgroups exist. This is theoretically supportable
1075 * but involves complex error handling, so it's being left until
1076 * later */
307257cf 1077 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
1078 return -EBUSY;
1079
1080 /* Process each subsystem */
1081 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1082 struct cgroup_subsys *ss = subsys[i];
1083 unsigned long bit = 1UL << i;
a1a71b45 1084 if (bit & added_mask) {
ddbcc7e8 1085 /* We're binding this subsystem to this hierarchy */
aae8aab4 1086 BUG_ON(ss == NULL);
bd89aabc 1087 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1088 BUG_ON(!dummytop->subsys[i]);
1089 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
bd89aabc
PM
1090 cgrp->subsys[i] = dummytop->subsys[i];
1091 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 1092 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 1093 ss->root = root;
26d5bbe5
TH
1094 if (ss->bind)
1095 ss->bind(cgrp);
cf5d5941 1096 /* refcount was already taken, and we're keeping it */
a1a71b45 1097 } else if (bit & removed_mask) {
ddbcc7e8 1098 /* We're removing this subsystem */
aae8aab4 1099 BUG_ON(ss == NULL);
bd89aabc
PM
1100 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1101 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
26d5bbe5
TH
1102 if (ss->bind)
1103 ss->bind(dummytop);
ddbcc7e8 1104 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1105 cgrp->subsys[i] = NULL;
b2aa30f7 1106 subsys[i]->root = &rootnode;
33a68ac1 1107 list_move(&ss->sibling, &rootnode.subsys_list);
cf5d5941
BB
1108 /* subsystem is now free - drop reference on module */
1109 module_put(ss->module);
a1a71b45 1110 } else if (bit & final_subsys_mask) {
ddbcc7e8 1111 /* Subsystem state should already exist */
aae8aab4 1112 BUG_ON(ss == NULL);
bd89aabc 1113 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1114 /*
1115 * a refcount was taken, but we already had one, so
1116 * drop the extra reference.
1117 */
1118 module_put(ss->module);
1119#ifdef CONFIG_MODULE_UNLOAD
1120 BUG_ON(ss->module && !module_refcount(ss->module));
1121#endif
ddbcc7e8
PM
1122 } else {
1123 /* Subsystem state shouldn't exist */
bd89aabc 1124 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1125 }
1126 }
a1a71b45 1127 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
ddbcc7e8
PM
1128
1129 return 0;
1130}
1131
34c80b1d 1132static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
ddbcc7e8 1133{
34c80b1d 1134 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
ddbcc7e8
PM
1135 struct cgroup_subsys *ss;
1136
e25e2cbb 1137 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1138 for_each_subsys(root, ss)
1139 seq_printf(seq, ",%s", ss->name);
1140 if (test_bit(ROOT_NOPREFIX, &root->flags))
1141 seq_puts(seq, ",noprefix");
03b1cde6
AR
1142 if (test_bit(ROOT_XATTR, &root->flags))
1143 seq_puts(seq, ",xattr");
81a6a5cd
PM
1144 if (strlen(root->release_agent_path))
1145 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
2260e7fc 1146 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1147 seq_puts(seq, ",clone_children");
c6d57f33
PM
1148 if (strlen(root->name))
1149 seq_printf(seq, ",name=%s", root->name);
e25e2cbb 1150 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1151 return 0;
1152}
1153
1154struct cgroup_sb_opts {
a1a71b45 1155 unsigned long subsys_mask;
ddbcc7e8 1156 unsigned long flags;
81a6a5cd 1157 char *release_agent;
2260e7fc 1158 bool cpuset_clone_children;
c6d57f33 1159 char *name;
2c6ab6d2
PM
1160 /* User explicitly requested empty subsystem */
1161 bool none;
c6d57f33
PM
1162
1163 struct cgroupfs_root *new_root;
2c6ab6d2 1164
ddbcc7e8
PM
1165};
1166
aae8aab4
BB
1167/*
1168 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1169 * with cgroup_mutex held to protect the subsys[] array. This function takes
1170 * refcounts on subsystems to be used, unless it returns error, in which case
1171 * no refcounts are taken.
aae8aab4 1172 */
cf5d5941 1173static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1174{
32a8cf23
DL
1175 char *token, *o = data;
1176 bool all_ss = false, one_ss = false;
f9ab5b5b 1177 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1178 int i;
1179 bool module_pin_failed = false;
f9ab5b5b 1180
aae8aab4
BB
1181 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1182
f9ab5b5b
LZ
1183#ifdef CONFIG_CPUSETS
1184 mask = ~(1UL << cpuset_subsys_id);
1185#endif
ddbcc7e8 1186
c6d57f33 1187 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1188
1189 while ((token = strsep(&o, ",")) != NULL) {
1190 if (!*token)
1191 return -EINVAL;
32a8cf23 1192 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1193 /* Explicitly have no subsystems */
1194 opts->none = true;
32a8cf23
DL
1195 continue;
1196 }
1197 if (!strcmp(token, "all")) {
1198 /* Mutually exclusive option 'all' + subsystem name */
1199 if (one_ss)
1200 return -EINVAL;
1201 all_ss = true;
1202 continue;
1203 }
1204 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1205 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1206 continue;
1207 }
1208 if (!strcmp(token, "clone_children")) {
2260e7fc 1209 opts->cpuset_clone_children = true;
32a8cf23
DL
1210 continue;
1211 }
03b1cde6
AR
1212 if (!strcmp(token, "xattr")) {
1213 set_bit(ROOT_XATTR, &opts->flags);
1214 continue;
1215 }
32a8cf23 1216 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1217 /* Specifying two release agents is forbidden */
1218 if (opts->release_agent)
1219 return -EINVAL;
c6d57f33 1220 opts->release_agent =
e400c285 1221 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1222 if (!opts->release_agent)
1223 return -ENOMEM;
32a8cf23
DL
1224 continue;
1225 }
1226 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1227 const char *name = token + 5;
1228 /* Can't specify an empty name */
1229 if (!strlen(name))
1230 return -EINVAL;
1231 /* Must match [\w.-]+ */
1232 for (i = 0; i < strlen(name); i++) {
1233 char c = name[i];
1234 if (isalnum(c))
1235 continue;
1236 if ((c == '.') || (c == '-') || (c == '_'))
1237 continue;
1238 return -EINVAL;
1239 }
1240 /* Specifying two names is forbidden */
1241 if (opts->name)
1242 return -EINVAL;
1243 opts->name = kstrndup(name,
e400c285 1244 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1245 GFP_KERNEL);
1246 if (!opts->name)
1247 return -ENOMEM;
32a8cf23
DL
1248
1249 continue;
1250 }
1251
1252 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1253 struct cgroup_subsys *ss = subsys[i];
1254 if (ss == NULL)
1255 continue;
1256 if (strcmp(token, ss->name))
1257 continue;
1258 if (ss->disabled)
1259 continue;
1260
1261 /* Mutually exclusive option 'all' + subsystem name */
1262 if (all_ss)
1263 return -EINVAL;
a1a71b45 1264 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1265 one_ss = true;
1266
1267 break;
1268 }
1269 if (i == CGROUP_SUBSYS_COUNT)
1270 return -ENOENT;
1271 }
1272
1273 /*
1274 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1275 * otherwise if 'none', 'name=' and a subsystem name options
1276 * were not specified, let's default to 'all'
32a8cf23 1277 */
0d19ea86 1278 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
32a8cf23
DL
1279 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1280 struct cgroup_subsys *ss = subsys[i];
1281 if (ss == NULL)
1282 continue;
1283 if (ss->disabled)
1284 continue;
a1a71b45 1285 set_bit(i, &opts->subsys_mask);
ddbcc7e8
PM
1286 }
1287 }
1288
2c6ab6d2
PM
1289 /* Consistency checks */
1290
f9ab5b5b
LZ
1291 /*
1292 * Option noprefix was introduced just for backward compatibility
1293 * with the old cpuset, so we allow noprefix only if mounting just
1294 * the cpuset subsystem.
1295 */
1296 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
a1a71b45 1297 (opts->subsys_mask & mask))
f9ab5b5b
LZ
1298 return -EINVAL;
1299
2c6ab6d2
PM
1300
1301 /* Can't specify "none" and some subsystems */
a1a71b45 1302 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1303 return -EINVAL;
1304
1305 /*
1306 * We either have to specify by name or by subsystems. (So all
1307 * empty hierarchies must have a name).
1308 */
a1a71b45 1309 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1310 return -EINVAL;
1311
cf5d5941
BB
1312 /*
1313 * Grab references on all the modules we'll need, so the subsystems
1314 * don't dance around before rebind_subsystems attaches them. This may
1315 * take duplicate reference counts on a subsystem that's already used,
1316 * but rebind_subsystems handles this case.
1317 */
be45c900 1318 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1319 unsigned long bit = 1UL << i;
1320
a1a71b45 1321 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1322 continue;
1323 if (!try_module_get(subsys[i]->module)) {
1324 module_pin_failed = true;
1325 break;
1326 }
1327 }
1328 if (module_pin_failed) {
1329 /*
1330 * oops, one of the modules was going away. this means that we
1331 * raced with a module_delete call, and to the user this is
1332 * essentially a "subsystem doesn't exist" case.
1333 */
be45c900 1334 for (i--; i >= 0; i--) {
cf5d5941
BB
1335 /* drop refcounts only on the ones we took */
1336 unsigned long bit = 1UL << i;
1337
a1a71b45 1338 if (!(bit & opts->subsys_mask))
cf5d5941
BB
1339 continue;
1340 module_put(subsys[i]->module);
1341 }
1342 return -ENOENT;
1343 }
1344
ddbcc7e8
PM
1345 return 0;
1346}
1347
a1a71b45 1348static void drop_parsed_module_refcounts(unsigned long subsys_mask)
cf5d5941
BB
1349{
1350 int i;
be45c900 1351 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
cf5d5941
BB
1352 unsigned long bit = 1UL << i;
1353
a1a71b45 1354 if (!(bit & subsys_mask))
cf5d5941
BB
1355 continue;
1356 module_put(subsys[i]->module);
1357 }
1358}
1359
ddbcc7e8
PM
1360static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1361{
1362 int ret = 0;
1363 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1364 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1365 struct cgroup_sb_opts opts;
a1a71b45 1366 unsigned long added_mask, removed_mask;
ddbcc7e8 1367
bd89aabc 1368 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8 1369 mutex_lock(&cgroup_mutex);
e25e2cbb 1370 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1371
1372 /* See what subsystems are wanted */
1373 ret = parse_cgroupfs_options(data, &opts);
1374 if (ret)
1375 goto out_unlock;
1376
a1a71b45 1377 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
8b5a5a9d
TH
1378 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1379 task_tgid_nr(current), current->comm);
1380
a1a71b45
AR
1381 added_mask = opts.subsys_mask & ~root->subsys_mask;
1382 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1383
cf5d5941
BB
1384 /* Don't allow flags or name to change at remount */
1385 if (opts.flags != root->flags ||
1386 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1387 ret = -EINVAL;
a1a71b45 1388 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1389 goto out_unlock;
1390 }
1391
7083d037
G
1392 /*
1393 * Clear out the files of subsystems that should be removed, do
1394 * this before rebind_subsystems, since rebind_subsystems may
1395 * change this hierarchy's subsys_list.
1396 */
1397 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1398
a1a71b45 1399 ret = rebind_subsystems(root, opts.subsys_mask);
cf5d5941 1400 if (ret) {
7083d037
G
1401 /* rebind_subsystems failed, re-populate the removed files */
1402 cgroup_populate_dir(cgrp, false, removed_mask);
a1a71b45 1403 drop_parsed_module_refcounts(opts.subsys_mask);
0670e08b 1404 goto out_unlock;
cf5d5941 1405 }
ddbcc7e8 1406
13af07df 1407 /* re-populate subsystem files */
a1a71b45 1408 cgroup_populate_dir(cgrp, false, added_mask);
ddbcc7e8 1409
81a6a5cd
PM
1410 if (opts.release_agent)
1411 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1412 out_unlock:
66bdc9cf 1413 kfree(opts.release_agent);
c6d57f33 1414 kfree(opts.name);
e25e2cbb 1415 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1416 mutex_unlock(&cgroup_mutex);
bd89aabc 1417 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1418 return ret;
1419}
1420
b87221de 1421static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1422 .statfs = simple_statfs,
1423 .drop_inode = generic_delete_inode,
1424 .show_options = cgroup_show_options,
1425 .remount_fs = cgroup_remount,
1426};
1427
cc31edce
PM
1428static void init_cgroup_housekeeping(struct cgroup *cgrp)
1429{
1430 INIT_LIST_HEAD(&cgrp->sibling);
1431 INIT_LIST_HEAD(&cgrp->children);
05ef1d7c 1432 INIT_LIST_HEAD(&cgrp->files);
cc31edce 1433 INIT_LIST_HEAD(&cgrp->css_sets);
2243076a 1434 INIT_LIST_HEAD(&cgrp->allcg_node);
cc31edce 1435 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30 1436 INIT_LIST_HEAD(&cgrp->pidlists);
be445626 1437 INIT_WORK(&cgrp->free_work, cgroup_free_fn);
72a8cb30 1438 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1439 INIT_LIST_HEAD(&cgrp->event_list);
1440 spin_lock_init(&cgrp->event_list_lock);
03b1cde6 1441 simple_xattrs_init(&cgrp->xattrs);
cc31edce 1442}
c6d57f33 1443
ddbcc7e8
PM
1444static void init_cgroup_root(struct cgroupfs_root *root)
1445{
bd89aabc 1446 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1447
ddbcc7e8
PM
1448 INIT_LIST_HEAD(&root->subsys_list);
1449 INIT_LIST_HEAD(&root->root_list);
b0ca5a84 1450 INIT_LIST_HEAD(&root->allcg_list);
ddbcc7e8 1451 root->number_of_cgroups = 1;
bd89aabc 1452 cgrp->root = root;
65dff759 1453 cgrp->name = &root_cgroup_name;
bd89aabc 1454 cgrp->top_cgroup = cgrp;
cc31edce 1455 init_cgroup_housekeeping(cgrp);
fddfb02a 1456 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
ddbcc7e8
PM
1457}
1458
2c6ab6d2
PM
1459static bool init_root_id(struct cgroupfs_root *root)
1460{
1461 int ret = 0;
1462
1463 do {
1464 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1465 return false;
1466 spin_lock(&hierarchy_id_lock);
1467 /* Try to allocate the next unused ID */
1468 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1469 &root->hierarchy_id);
1470 if (ret == -ENOSPC)
1471 /* Try again starting from 0 */
1472 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1473 if (!ret) {
1474 next_hierarchy_id = root->hierarchy_id + 1;
1475 } else if (ret != -EAGAIN) {
1476 /* Can only get here if the 31-bit IDR is full ... */
1477 BUG_ON(ret);
1478 }
1479 spin_unlock(&hierarchy_id_lock);
1480 } while (ret);
1481 return true;
1482}
1483
ddbcc7e8
PM
1484static int cgroup_test_super(struct super_block *sb, void *data)
1485{
c6d57f33 1486 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1487 struct cgroupfs_root *root = sb->s_fs_info;
1488
c6d57f33
PM
1489 /* If we asked for a name then it must match */
1490 if (opts->name && strcmp(opts->name, root->name))
1491 return 0;
ddbcc7e8 1492
2c6ab6d2
PM
1493 /*
1494 * If we asked for subsystems (or explicitly for no
1495 * subsystems) then they must match
1496 */
a1a71b45
AR
1497 if ((opts->subsys_mask || opts->none)
1498 && (opts->subsys_mask != root->subsys_mask))
ddbcc7e8
PM
1499 return 0;
1500
1501 return 1;
1502}
1503
c6d57f33
PM
1504static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1505{
1506 struct cgroupfs_root *root;
1507
a1a71b45 1508 if (!opts->subsys_mask && !opts->none)
c6d57f33
PM
1509 return NULL;
1510
1511 root = kzalloc(sizeof(*root), GFP_KERNEL);
1512 if (!root)
1513 return ERR_PTR(-ENOMEM);
1514
2c6ab6d2
PM
1515 if (!init_root_id(root)) {
1516 kfree(root);
1517 return ERR_PTR(-ENOMEM);
1518 }
c6d57f33 1519 init_cgroup_root(root);
2c6ab6d2 1520
a1a71b45 1521 root->subsys_mask = opts->subsys_mask;
c6d57f33 1522 root->flags = opts->flags;
0a950f65 1523 ida_init(&root->cgroup_ida);
c6d57f33
PM
1524 if (opts->release_agent)
1525 strcpy(root->release_agent_path, opts->release_agent);
1526 if (opts->name)
1527 strcpy(root->name, opts->name);
2260e7fc
TH
1528 if (opts->cpuset_clone_children)
1529 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1530 return root;
1531}
1532
2c6ab6d2
PM
1533static void cgroup_drop_root(struct cgroupfs_root *root)
1534{
1535 if (!root)
1536 return;
1537
1538 BUG_ON(!root->hierarchy_id);
1539 spin_lock(&hierarchy_id_lock);
1540 ida_remove(&hierarchy_ida, root->hierarchy_id);
1541 spin_unlock(&hierarchy_id_lock);
0a950f65 1542 ida_destroy(&root->cgroup_ida);
2c6ab6d2
PM
1543 kfree(root);
1544}
1545
ddbcc7e8
PM
1546static int cgroup_set_super(struct super_block *sb, void *data)
1547{
1548 int ret;
c6d57f33
PM
1549 struct cgroup_sb_opts *opts = data;
1550
1551 /* If we don't have a new root, we can't set up a new sb */
1552 if (!opts->new_root)
1553 return -EINVAL;
1554
a1a71b45 1555 BUG_ON(!opts->subsys_mask && !opts->none);
ddbcc7e8
PM
1556
1557 ret = set_anon_super(sb, NULL);
1558 if (ret)
1559 return ret;
1560
c6d57f33
PM
1561 sb->s_fs_info = opts->new_root;
1562 opts->new_root->sb = sb;
ddbcc7e8
PM
1563
1564 sb->s_blocksize = PAGE_CACHE_SIZE;
1565 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1566 sb->s_magic = CGROUP_SUPER_MAGIC;
1567 sb->s_op = &cgroup_ops;
1568
1569 return 0;
1570}
1571
1572static int cgroup_get_rootdir(struct super_block *sb)
1573{
0df6a63f
AV
1574 static const struct dentry_operations cgroup_dops = {
1575 .d_iput = cgroup_diput,
c72a04e3 1576 .d_delete = cgroup_delete,
0df6a63f
AV
1577 };
1578
ddbcc7e8
PM
1579 struct inode *inode =
1580 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
ddbcc7e8
PM
1581
1582 if (!inode)
1583 return -ENOMEM;
1584
ddbcc7e8
PM
1585 inode->i_fop = &simple_dir_operations;
1586 inode->i_op = &cgroup_dir_inode_operations;
1587 /* directories start off with i_nlink == 2 (for "." entry) */
1588 inc_nlink(inode);
48fde701
AV
1589 sb->s_root = d_make_root(inode);
1590 if (!sb->s_root)
ddbcc7e8 1591 return -ENOMEM;
0df6a63f
AV
1592 /* for everything else we want ->d_op set */
1593 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1594 return 0;
1595}
1596
f7e83571 1597static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1598 int flags, const char *unused_dev_name,
f7e83571 1599 void *data)
ddbcc7e8
PM
1600{
1601 struct cgroup_sb_opts opts;
c6d57f33 1602 struct cgroupfs_root *root;
ddbcc7e8
PM
1603 int ret = 0;
1604 struct super_block *sb;
c6d57f33 1605 struct cgroupfs_root *new_root;
e25e2cbb 1606 struct inode *inode;
ddbcc7e8
PM
1607
1608 /* First find the desired set of subsystems */
aae8aab4 1609 mutex_lock(&cgroup_mutex);
ddbcc7e8 1610 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1611 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1612 if (ret)
1613 goto out_err;
ddbcc7e8 1614
c6d57f33
PM
1615 /*
1616 * Allocate a new cgroup root. We may not need it if we're
1617 * reusing an existing hierarchy.
1618 */
1619 new_root = cgroup_root_from_opts(&opts);
1620 if (IS_ERR(new_root)) {
1621 ret = PTR_ERR(new_root);
cf5d5941 1622 goto drop_modules;
81a6a5cd 1623 }
c6d57f33 1624 opts.new_root = new_root;
ddbcc7e8 1625
c6d57f33 1626 /* Locate an existing or new sb for this hierarchy */
9249e17f 1627 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
ddbcc7e8 1628 if (IS_ERR(sb)) {
c6d57f33 1629 ret = PTR_ERR(sb);
2c6ab6d2 1630 cgroup_drop_root(opts.new_root);
cf5d5941 1631 goto drop_modules;
ddbcc7e8
PM
1632 }
1633
c6d57f33
PM
1634 root = sb->s_fs_info;
1635 BUG_ON(!root);
1636 if (root == opts.new_root) {
1637 /* We used the new root structure, so this is a new hierarchy */
1638 struct list_head tmp_cg_links;
c12f65d4 1639 struct cgroup *root_cgrp = &root->top_cgroup;
c6d57f33 1640 struct cgroupfs_root *existing_root;
2ce9738b 1641 const struct cred *cred;
28fd5dfc 1642 int i;
0ac801fe 1643 struct css_set *cg;
ddbcc7e8
PM
1644
1645 BUG_ON(sb->s_root != NULL);
1646
1647 ret = cgroup_get_rootdir(sb);
1648 if (ret)
1649 goto drop_new_super;
817929ec 1650 inode = sb->s_root->d_inode;
ddbcc7e8 1651
817929ec 1652 mutex_lock(&inode->i_mutex);
ddbcc7e8 1653 mutex_lock(&cgroup_mutex);
e25e2cbb 1654 mutex_lock(&cgroup_root_mutex);
ddbcc7e8 1655
e25e2cbb
TH
1656 /* Check for name clashes with existing mounts */
1657 ret = -EBUSY;
1658 if (strlen(root->name))
1659 for_each_active_root(existing_root)
1660 if (!strcmp(existing_root->name, root->name))
1661 goto unlock_drop;
c6d57f33 1662
817929ec
PM
1663 /*
1664 * We're accessing css_set_count without locking
1665 * css_set_lock here, but that's OK - it can only be
1666 * increased by someone holding cgroup_lock, and
1667 * that's us. The worst that can happen is that we
1668 * have some link structures left over
1669 */
1670 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
e25e2cbb
TH
1671 if (ret)
1672 goto unlock_drop;
817929ec 1673
a1a71b45 1674 ret = rebind_subsystems(root, root->subsys_mask);
ddbcc7e8 1675 if (ret == -EBUSY) {
c6d57f33 1676 free_cg_links(&tmp_cg_links);
e25e2cbb 1677 goto unlock_drop;
ddbcc7e8 1678 }
cf5d5941
BB
1679 /*
1680 * There must be no failure case after here, since rebinding
1681 * takes care of subsystems' refcounts, which are explicitly
1682 * dropped in the failure exit path.
1683 */
ddbcc7e8
PM
1684
1685 /* EBUSY should be the only error here */
1686 BUG_ON(ret);
1687
1688 list_add(&root->root_list, &roots);
817929ec 1689 root_count++;
ddbcc7e8 1690
c12f65d4 1691 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1692 root->top_cgroup.dentry = sb->s_root;
1693
817929ec
PM
1694 /* Link the top cgroup in this hierarchy into all
1695 * the css_set objects */
1696 write_lock(&css_set_lock);
b67bfe0d 1697 hash_for_each(css_set_table, i, cg, hlist)
0ac801fe 1698 link_css_set(&tmp_cg_links, cg, root_cgrp);
817929ec
PM
1699 write_unlock(&css_set_lock);
1700
1701 free_cg_links(&tmp_cg_links);
1702
c12f65d4 1703 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1704 BUG_ON(root->number_of_cgroups != 1);
1705
2ce9738b 1706 cred = override_creds(&init_cred);
a1a71b45 1707 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
2ce9738b 1708 revert_creds(cred);
e25e2cbb 1709 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8 1710 mutex_unlock(&cgroup_mutex);
34f77a90 1711 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1712 } else {
1713 /*
1714 * We re-used an existing hierarchy - the new root (if
1715 * any) is not needed
1716 */
2c6ab6d2 1717 cgroup_drop_root(opts.new_root);
cf5d5941 1718 /* no subsys rebinding, so refcounts don't change */
a1a71b45 1719 drop_parsed_module_refcounts(opts.subsys_mask);
ddbcc7e8
PM
1720 }
1721
c6d57f33
PM
1722 kfree(opts.release_agent);
1723 kfree(opts.name);
f7e83571 1724 return dget(sb->s_root);
ddbcc7e8 1725
e25e2cbb
TH
1726 unlock_drop:
1727 mutex_unlock(&cgroup_root_mutex);
1728 mutex_unlock(&cgroup_mutex);
1729 mutex_unlock(&inode->i_mutex);
ddbcc7e8 1730 drop_new_super:
6f5bbff9 1731 deactivate_locked_super(sb);
cf5d5941 1732 drop_modules:
a1a71b45 1733 drop_parsed_module_refcounts(opts.subsys_mask);
c6d57f33
PM
1734 out_err:
1735 kfree(opts.release_agent);
1736 kfree(opts.name);
f7e83571 1737 return ERR_PTR(ret);
ddbcc7e8
PM
1738}
1739
1740static void cgroup_kill_sb(struct super_block *sb) {
1741 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1742 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1743 int ret;
71cbb949
KM
1744 struct cg_cgroup_link *link;
1745 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1746
1747 BUG_ON(!root);
1748
1749 BUG_ON(root->number_of_cgroups != 1);
bd89aabc 1750 BUG_ON(!list_empty(&cgrp->children));
ddbcc7e8
PM
1751
1752 mutex_lock(&cgroup_mutex);
e25e2cbb 1753 mutex_lock(&cgroup_root_mutex);
ddbcc7e8
PM
1754
1755 /* Rebind all subsystems back to the default hierarchy */
1756 ret = rebind_subsystems(root, 0);
1757 /* Shouldn't be able to fail ... */
1758 BUG_ON(ret);
1759
817929ec
PM
1760 /*
1761 * Release all the links from css_sets to this hierarchy's
1762 * root cgroup
1763 */
1764 write_lock(&css_set_lock);
71cbb949
KM
1765
1766 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1767 cgrp_link_list) {
817929ec 1768 list_del(&link->cg_link_list);
bd89aabc 1769 list_del(&link->cgrp_link_list);
817929ec
PM
1770 kfree(link);
1771 }
1772 write_unlock(&css_set_lock);
1773
839ec545
PM
1774 if (!list_empty(&root->root_list)) {
1775 list_del(&root->root_list);
1776 root_count--;
1777 }
e5f6a860 1778
e25e2cbb 1779 mutex_unlock(&cgroup_root_mutex);
ddbcc7e8
PM
1780 mutex_unlock(&cgroup_mutex);
1781
03b1cde6
AR
1782 simple_xattrs_free(&cgrp->xattrs);
1783
ddbcc7e8 1784 kill_litter_super(sb);
2c6ab6d2 1785 cgroup_drop_root(root);
ddbcc7e8
PM
1786}
1787
1788static struct file_system_type cgroup_fs_type = {
1789 .name = "cgroup",
f7e83571 1790 .mount = cgroup_mount,
ddbcc7e8
PM
1791 .kill_sb = cgroup_kill_sb,
1792};
1793
676db4af
GK
1794static struct kobject *cgroup_kobj;
1795
a043e3b2
LZ
1796/**
1797 * cgroup_path - generate the path of a cgroup
1798 * @cgrp: the cgroup in question
1799 * @buf: the buffer to write the path into
1800 * @buflen: the length of the buffer
1801 *
65dff759
LZ
1802 * Writes path of cgroup into buf. Returns 0 on success, -errno on error.
1803 *
1804 * We can't generate cgroup path using dentry->d_name, as accessing
1805 * dentry->name must be protected by irq-unsafe dentry->d_lock or parent
1806 * inode's i_mutex, while on the other hand cgroup_path() can be called
1807 * with some irq-safe spinlocks held.
ddbcc7e8 1808 */
bd89aabc 1809int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8 1810{
65dff759 1811 int ret = -ENAMETOOLONG;
ddbcc7e8 1812 char *start;
febfcef6 1813
da1f296f
TH
1814 if (!cgrp->parent) {
1815 if (strlcpy(buf, "/", buflen) >= buflen)
1816 return -ENAMETOOLONG;
1817 return 0;
1818 }
1819
316eb661 1820 start = buf + buflen - 1;
316eb661 1821 *start = '\0';
9a9686b6 1822
65dff759 1823 rcu_read_lock();
da1f296f 1824 do {
65dff759
LZ
1825 const char *name = cgroup_name(cgrp);
1826 int len;
1827
1828 len = strlen(name);
ddbcc7e8 1829 if ((start -= len) < buf)
65dff759
LZ
1830 goto out;
1831 memcpy(start, name, len);
9a9686b6 1832
ddbcc7e8 1833 if (--start < buf)
65dff759 1834 goto out;
ddbcc7e8 1835 *start = '/';
65dff759
LZ
1836
1837 cgrp = cgrp->parent;
da1f296f 1838 } while (cgrp->parent);
65dff759 1839 ret = 0;
ddbcc7e8 1840 memmove(buf, start, buf + buflen - start);
65dff759
LZ
1841out:
1842 rcu_read_unlock();
1843 return ret;
ddbcc7e8 1844}
67523c48 1845EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1846
2f7ee569
TH
1847/*
1848 * Control Group taskset
1849 */
134d3373
TH
1850struct task_and_cgroup {
1851 struct task_struct *task;
1852 struct cgroup *cgrp;
61d1d219 1853 struct css_set *cg;
134d3373
TH
1854};
1855
2f7ee569
TH
1856struct cgroup_taskset {
1857 struct task_and_cgroup single;
1858 struct flex_array *tc_array;
1859 int tc_array_len;
1860 int idx;
1861 struct cgroup *cur_cgrp;
1862};
1863
1864/**
1865 * cgroup_taskset_first - reset taskset and return the first task
1866 * @tset: taskset of interest
1867 *
1868 * @tset iteration is initialized and the first task is returned.
1869 */
1870struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1871{
1872 if (tset->tc_array) {
1873 tset->idx = 0;
1874 return cgroup_taskset_next(tset);
1875 } else {
1876 tset->cur_cgrp = tset->single.cgrp;
1877 return tset->single.task;
1878 }
1879}
1880EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1881
1882/**
1883 * cgroup_taskset_next - iterate to the next task in taskset
1884 * @tset: taskset of interest
1885 *
1886 * Return the next task in @tset. Iteration must have been initialized
1887 * with cgroup_taskset_first().
1888 */
1889struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1890{
1891 struct task_and_cgroup *tc;
1892
1893 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1894 return NULL;
1895
1896 tc = flex_array_get(tset->tc_array, tset->idx++);
1897 tset->cur_cgrp = tc->cgrp;
1898 return tc->task;
1899}
1900EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1901
1902/**
1903 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1904 * @tset: taskset of interest
1905 *
1906 * Return the cgroup for the current (last returned) task of @tset. This
1907 * function must be preceded by either cgroup_taskset_first() or
1908 * cgroup_taskset_next().
1909 */
1910struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1911{
1912 return tset->cur_cgrp;
1913}
1914EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1915
1916/**
1917 * cgroup_taskset_size - return the number of tasks in taskset
1918 * @tset: taskset of interest
1919 */
1920int cgroup_taskset_size(struct cgroup_taskset *tset)
1921{
1922 return tset->tc_array ? tset->tc_array_len : 1;
1923}
1924EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1925
1926
74a1166d
BB
1927/*
1928 * cgroup_task_migrate - move a task from one cgroup to another.
1929 *
d0b2fdd2 1930 * Must be called with cgroup_mutex and threadgroup locked.
74a1166d 1931 */
1e2ccd1c 1932static void cgroup_task_migrate(struct cgroup *oldcgrp,
61d1d219 1933 struct task_struct *tsk, struct css_set *newcg)
74a1166d
BB
1934{
1935 struct css_set *oldcg;
74a1166d
BB
1936
1937 /*
026085ef
MSB
1938 * We are synchronized through threadgroup_lock() against PF_EXITING
1939 * setting such that we can't race against cgroup_exit() changing the
1940 * css_set to init_css_set and dropping the old one.
74a1166d 1941 */
c84cdf75 1942 WARN_ON_ONCE(tsk->flags & PF_EXITING);
74a1166d 1943 oldcg = tsk->cgroups;
74a1166d 1944
74a1166d 1945 task_lock(tsk);
74a1166d
BB
1946 rcu_assign_pointer(tsk->cgroups, newcg);
1947 task_unlock(tsk);
1948
1949 /* Update the css_set linked lists if we're using them */
1950 write_lock(&css_set_lock);
1951 if (!list_empty(&tsk->cg_list))
1952 list_move(&tsk->cg_list, &newcg->tasks);
1953 write_unlock(&css_set_lock);
1954
1955 /*
1956 * We just gained a reference on oldcg by taking it from the task. As
1957 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1958 * it here; it will be freed under RCU.
1959 */
74a1166d 1960 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1f5320d5 1961 put_css_set(oldcg);
74a1166d
BB
1962}
1963
74a1166d 1964/**
081aa458 1965 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1966 * @cgrp: the cgroup to attach to
081aa458
LZ
1967 * @tsk: the task or the leader of the threadgroup to be attached
1968 * @threadgroup: attach the whole threadgroup?
74a1166d 1969 *
257058ae 1970 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1971 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1972 */
47cfcd09
TH
1973static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk,
1974 bool threadgroup)
74a1166d
BB
1975{
1976 int retval, i, group_size;
1977 struct cgroup_subsys *ss, *failed_ss = NULL;
74a1166d
BB
1978 struct cgroupfs_root *root = cgrp->root;
1979 /* threadgroup list cursor and array */
081aa458 1980 struct task_struct *leader = tsk;
134d3373 1981 struct task_and_cgroup *tc;
d846687d 1982 struct flex_array *group;
2f7ee569 1983 struct cgroup_taskset tset = { };
74a1166d
BB
1984
1985 /*
1986 * step 0: in order to do expensive, possibly blocking operations for
1987 * every thread, we cannot iterate the thread group list, since it needs
1988 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1989 * group - group_rwsem prevents new threads from appearing, and if
1990 * threads exit, this will just be an over-estimate.
74a1166d 1991 */
081aa458
LZ
1992 if (threadgroup)
1993 group_size = get_nr_threads(tsk);
1994 else
1995 group_size = 1;
d846687d 1996 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1997 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1998 if (!group)
1999 return -ENOMEM;
d846687d 2000 /* pre-allocate to guarantee space while iterating in rcu read-side. */
3ac1707a 2001 retval = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
d846687d
BB
2002 if (retval)
2003 goto out_free_group_list;
74a1166d 2004
74a1166d 2005 i = 0;
fb5d2b4c
MSB
2006 /*
2007 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2008 * already PF_EXITING could be freed from underneath us unless we
2009 * take an rcu_read_lock.
2010 */
2011 rcu_read_lock();
74a1166d 2012 do {
134d3373
TH
2013 struct task_and_cgroup ent;
2014
cd3d0952
TH
2015 /* @tsk either already exited or can't exit until the end */
2016 if (tsk->flags & PF_EXITING)
2017 continue;
2018
74a1166d
BB
2019 /* as per above, nr_threads may decrease, but not increase. */
2020 BUG_ON(i >= group_size);
134d3373
TH
2021 ent.task = tsk;
2022 ent.cgrp = task_cgroup_from_root(tsk, root);
892a2b90
MSB
2023 /* nothing to do if this task is already in the cgroup */
2024 if (ent.cgrp == cgrp)
2025 continue;
61d1d219
MSB
2026 /*
2027 * saying GFP_ATOMIC has no effect here because we did prealloc
2028 * earlier, but it's good form to communicate our expectations.
2029 */
134d3373 2030 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
d846687d 2031 BUG_ON(retval != 0);
74a1166d 2032 i++;
081aa458
LZ
2033
2034 if (!threadgroup)
2035 break;
74a1166d 2036 } while_each_thread(leader, tsk);
fb5d2b4c 2037 rcu_read_unlock();
74a1166d
BB
2038 /* remember the number of threads in the array for later. */
2039 group_size = i;
2f7ee569
TH
2040 tset.tc_array = group;
2041 tset.tc_array_len = group_size;
74a1166d 2042
134d3373
TH
2043 /* methods shouldn't be called if no task is actually migrating */
2044 retval = 0;
892a2b90 2045 if (!group_size)
b07ef774 2046 goto out_free_group_list;
134d3373 2047
74a1166d
BB
2048 /*
2049 * step 1: check that we can legitimately attach to the cgroup.
2050 */
2051 for_each_subsys(root, ss) {
2052 if (ss->can_attach) {
761b3ef5 2053 retval = ss->can_attach(cgrp, &tset);
74a1166d
BB
2054 if (retval) {
2055 failed_ss = ss;
2056 goto out_cancel_attach;
2057 }
2058 }
74a1166d
BB
2059 }
2060
2061 /*
2062 * step 2: make sure css_sets exist for all threads to be migrated.
2063 * we use find_css_set, which allocates a new one if necessary.
2064 */
74a1166d 2065 for (i = 0; i < group_size; i++) {
134d3373 2066 tc = flex_array_get(group, i);
61d1d219
MSB
2067 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2068 if (!tc->cg) {
2069 retval = -ENOMEM;
2070 goto out_put_css_set_refs;
74a1166d
BB
2071 }
2072 }
2073
2074 /*
494c167c
TH
2075 * step 3: now that we're guaranteed success wrt the css_sets,
2076 * proceed to move all tasks to the new cgroup. There are no
2077 * failure cases after here, so this is the commit point.
74a1166d 2078 */
74a1166d 2079 for (i = 0; i < group_size; i++) {
134d3373 2080 tc = flex_array_get(group, i);
1e2ccd1c 2081 cgroup_task_migrate(tc->cgrp, tc->task, tc->cg);
74a1166d
BB
2082 }
2083 /* nothing is sensitive to fork() after this point. */
2084
2085 /*
494c167c 2086 * step 4: do subsystem attach callbacks.
74a1166d
BB
2087 */
2088 for_each_subsys(root, ss) {
2089 if (ss->attach)
761b3ef5 2090 ss->attach(cgrp, &tset);
74a1166d
BB
2091 }
2092
2093 /*
2094 * step 5: success! and cleanup
2095 */
74a1166d 2096 retval = 0;
61d1d219
MSB
2097out_put_css_set_refs:
2098 if (retval) {
2099 for (i = 0; i < group_size; i++) {
2100 tc = flex_array_get(group, i);
2101 if (!tc->cg)
2102 break;
2103 put_css_set(tc->cg);
2104 }
74a1166d
BB
2105 }
2106out_cancel_attach:
74a1166d
BB
2107 if (retval) {
2108 for_each_subsys(root, ss) {
494c167c 2109 if (ss == failed_ss)
74a1166d 2110 break;
74a1166d 2111 if (ss->cancel_attach)
761b3ef5 2112 ss->cancel_attach(cgrp, &tset);
74a1166d
BB
2113 }
2114 }
74a1166d 2115out_free_group_list:
d846687d 2116 flex_array_free(group);
74a1166d
BB
2117 return retval;
2118}
2119
2120/*
2121 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
2122 * function to attach either it or all tasks in its threadgroup. Will lock
2123 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 2124 */
74a1166d 2125static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 2126{
bbcb81d0 2127 struct task_struct *tsk;
c69e8d9c 2128 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
2129 int ret;
2130
74a1166d
BB
2131 if (!cgroup_lock_live_group(cgrp))
2132 return -ENODEV;
2133
b78949eb
MSB
2134retry_find_task:
2135 rcu_read_lock();
bbcb81d0 2136 if (pid) {
73507f33 2137 tsk = find_task_by_vpid(pid);
74a1166d
BB
2138 if (!tsk) {
2139 rcu_read_unlock();
b78949eb
MSB
2140 ret= -ESRCH;
2141 goto out_unlock_cgroup;
bbcb81d0 2142 }
74a1166d
BB
2143 /*
2144 * even if we're attaching all tasks in the thread group, we
2145 * only need to check permissions on one of them.
2146 */
c69e8d9c 2147 tcred = __task_cred(tsk);
14a590c3
EB
2148 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2149 !uid_eq(cred->euid, tcred->uid) &&
2150 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2151 rcu_read_unlock();
b78949eb
MSB
2152 ret = -EACCES;
2153 goto out_unlock_cgroup;
bbcb81d0 2154 }
b78949eb
MSB
2155 } else
2156 tsk = current;
cd3d0952
TH
2157
2158 if (threadgroup)
b78949eb 2159 tsk = tsk->group_leader;
c4c27fbd
MG
2160
2161 /*
2162 * Workqueue threads may acquire PF_THREAD_BOUND and become
2163 * trapped in a cpuset, or RT worker may be born in a cgroup
2164 * with no rt_runtime allocated. Just say no.
2165 */
2166 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2167 ret = -EINVAL;
2168 rcu_read_unlock();
2169 goto out_unlock_cgroup;
2170 }
2171
b78949eb
MSB
2172 get_task_struct(tsk);
2173 rcu_read_unlock();
2174
2175 threadgroup_lock(tsk);
2176 if (threadgroup) {
2177 if (!thread_group_leader(tsk)) {
2178 /*
2179 * a race with de_thread from another thread's exec()
2180 * may strip us of our leadership, if this happens,
2181 * there is no choice but to throw this task away and
2182 * try again; this is
2183 * "double-double-toil-and-trouble-check locking".
2184 */
2185 threadgroup_unlock(tsk);
2186 put_task_struct(tsk);
2187 goto retry_find_task;
2188 }
081aa458
LZ
2189 }
2190
2191 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2192
cd3d0952
TH
2193 threadgroup_unlock(tsk);
2194
bbcb81d0 2195 put_task_struct(tsk);
b78949eb 2196out_unlock_cgroup:
47cfcd09 2197 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
2198 return ret;
2199}
2200
7ae1bad9
TH
2201/**
2202 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2203 * @from: attach to all cgroups of a given task
2204 * @tsk: the task to be attached
2205 */
2206int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2207{
2208 struct cgroupfs_root *root;
2209 int retval = 0;
2210
47cfcd09 2211 mutex_lock(&cgroup_mutex);
7ae1bad9
TH
2212 for_each_active_root(root) {
2213 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2214
2215 retval = cgroup_attach_task(from_cg, tsk, false);
2216 if (retval)
2217 break;
2218 }
47cfcd09 2219 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2220
2221 return retval;
2222}
2223EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2224
af351026 2225static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
74a1166d
BB
2226{
2227 return attach_task_by_pid(cgrp, pid, false);
2228}
2229
2230static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
af351026 2231{
b78949eb 2232 return attach_task_by_pid(cgrp, tgid, true);
af351026
PM
2233}
2234
e788e066
PM
2235static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2236 const char *buffer)
2237{
2238 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
2239 if (strlen(buffer) >= PATH_MAX)
2240 return -EINVAL;
e788e066
PM
2241 if (!cgroup_lock_live_group(cgrp))
2242 return -ENODEV;
e25e2cbb 2243 mutex_lock(&cgroup_root_mutex);
e788e066 2244 strcpy(cgrp->root->release_agent_path, buffer);
e25e2cbb 2245 mutex_unlock(&cgroup_root_mutex);
47cfcd09 2246 mutex_unlock(&cgroup_mutex);
e788e066
PM
2247 return 0;
2248}
2249
2250static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2251 struct seq_file *seq)
2252{
2253 if (!cgroup_lock_live_group(cgrp))
2254 return -ENODEV;
2255 seq_puts(seq, cgrp->root->release_agent_path);
2256 seq_putc(seq, '\n');
47cfcd09 2257 mutex_unlock(&cgroup_mutex);
e788e066
PM
2258 return 0;
2259}
2260
84eea842
PM
2261/* A buffer size big enough for numbers or short strings */
2262#define CGROUP_LOCAL_BUFFER_SIZE 64
2263
e73d2c61 2264static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
2265 struct file *file,
2266 const char __user *userbuf,
2267 size_t nbytes, loff_t *unused_ppos)
355e0c48 2268{
84eea842 2269 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 2270 int retval = 0;
355e0c48
PM
2271 char *end;
2272
2273 if (!nbytes)
2274 return -EINVAL;
2275 if (nbytes >= sizeof(buffer))
2276 return -E2BIG;
2277 if (copy_from_user(buffer, userbuf, nbytes))
2278 return -EFAULT;
2279
2280 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 2281 if (cft->write_u64) {
478988d3 2282 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
2283 if (*end)
2284 return -EINVAL;
2285 retval = cft->write_u64(cgrp, cft, val);
2286 } else {
478988d3 2287 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
2288 if (*end)
2289 return -EINVAL;
2290 retval = cft->write_s64(cgrp, cft, val);
2291 }
355e0c48
PM
2292 if (!retval)
2293 retval = nbytes;
2294 return retval;
2295}
2296
db3b1497
PM
2297static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2298 struct file *file,
2299 const char __user *userbuf,
2300 size_t nbytes, loff_t *unused_ppos)
2301{
84eea842 2302 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2303 int retval = 0;
2304 size_t max_bytes = cft->max_write_len;
2305 char *buffer = local_buffer;
2306
2307 if (!max_bytes)
2308 max_bytes = sizeof(local_buffer) - 1;
2309 if (nbytes >= max_bytes)
2310 return -E2BIG;
2311 /* Allocate a dynamic buffer if we need one */
2312 if (nbytes >= sizeof(local_buffer)) {
2313 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2314 if (buffer == NULL)
2315 return -ENOMEM;
2316 }
5a3eb9f6
LZ
2317 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2318 retval = -EFAULT;
2319 goto out;
2320 }
db3b1497
PM
2321
2322 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2323 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2324 if (!retval)
2325 retval = nbytes;
5a3eb9f6 2326out:
db3b1497
PM
2327 if (buffer != local_buffer)
2328 kfree(buffer);
2329 return retval;
2330}
2331
ddbcc7e8
PM
2332static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2333 size_t nbytes, loff_t *ppos)
2334{
2335 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2336 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2337
75139b82 2338 if (cgroup_is_removed(cgrp))
ddbcc7e8 2339 return -ENODEV;
355e0c48 2340 if (cft->write)
bd89aabc 2341 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2342 if (cft->write_u64 || cft->write_s64)
2343 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2344 if (cft->write_string)
2345 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2346 if (cft->trigger) {
2347 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2348 return ret ? ret : nbytes;
2349 }
355e0c48 2350 return -EINVAL;
ddbcc7e8
PM
2351}
2352
f4c753b7
PM
2353static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2354 struct file *file,
2355 char __user *buf, size_t nbytes,
2356 loff_t *ppos)
ddbcc7e8 2357{
84eea842 2358 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2359 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2360 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2361
2362 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2363}
2364
e73d2c61
PM
2365static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 char __user *buf, size_t nbytes,
2368 loff_t *ppos)
2369{
84eea842 2370 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2371 s64 val = cft->read_s64(cgrp, cft);
2372 int len = sprintf(tmp, "%lld\n", (long long) val);
2373
2374 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2375}
2376
ddbcc7e8
PM
2377static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2378 size_t nbytes, loff_t *ppos)
2379{
2380 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2381 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2382
75139b82 2383 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2384 return -ENODEV;
2385
2386 if (cft->read)
bd89aabc 2387 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2388 if (cft->read_u64)
2389 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2390 if (cft->read_s64)
2391 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2392 return -EINVAL;
2393}
2394
91796569
PM
2395/*
2396 * seqfile ops/methods for returning structured data. Currently just
2397 * supports string->u64 maps, but can be extended in future.
2398 */
2399
2400struct cgroup_seqfile_state {
2401 struct cftype *cft;
2402 struct cgroup *cgroup;
2403};
2404
2405static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2406{
2407 struct seq_file *sf = cb->state;
2408 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2409}
2410
2411static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2412{
2413 struct cgroup_seqfile_state *state = m->private;
2414 struct cftype *cft = state->cft;
29486df3
SH
2415 if (cft->read_map) {
2416 struct cgroup_map_cb cb = {
2417 .fill = cgroup_map_add,
2418 .state = m,
2419 };
2420 return cft->read_map(state->cgroup, cft, &cb);
2421 }
2422 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2423}
2424
96930a63 2425static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2426{
2427 struct seq_file *seq = file->private_data;
2428 kfree(seq->private);
2429 return single_release(inode, file);
2430}
2431
828c0950 2432static const struct file_operations cgroup_seqfile_operations = {
91796569 2433 .read = seq_read,
e788e066 2434 .write = cgroup_file_write,
91796569
PM
2435 .llseek = seq_lseek,
2436 .release = cgroup_seqfile_release,
2437};
2438
ddbcc7e8
PM
2439static int cgroup_file_open(struct inode *inode, struct file *file)
2440{
2441 int err;
2442 struct cftype *cft;
2443
2444 err = generic_file_open(inode, file);
2445 if (err)
2446 return err;
ddbcc7e8 2447 cft = __d_cft(file->f_dentry);
75139b82 2448
29486df3 2449 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2450 struct cgroup_seqfile_state *state =
2451 kzalloc(sizeof(*state), GFP_USER);
2452 if (!state)
2453 return -ENOMEM;
2454 state->cft = cft;
2455 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2456 file->f_op = &cgroup_seqfile_operations;
2457 err = single_open(file, cgroup_seqfile_show, state);
2458 if (err < 0)
2459 kfree(state);
2460 } else if (cft->open)
ddbcc7e8
PM
2461 err = cft->open(inode, file);
2462 else
2463 err = 0;
2464
2465 return err;
2466}
2467
2468static int cgroup_file_release(struct inode *inode, struct file *file)
2469{
2470 struct cftype *cft = __d_cft(file->f_dentry);
2471 if (cft->release)
2472 return cft->release(inode, file);
2473 return 0;
2474}
2475
2476/*
2477 * cgroup_rename - Only allow simple rename of directories in place.
2478 */
2479static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2480 struct inode *new_dir, struct dentry *new_dentry)
2481{
65dff759
LZ
2482 int ret;
2483 struct cgroup_name *name, *old_name;
2484 struct cgroup *cgrp;
2485
2486 /*
2487 * It's convinient to use parent dir's i_mutex to protected
2488 * cgrp->name.
2489 */
2490 lockdep_assert_held(&old_dir->i_mutex);
2491
ddbcc7e8
PM
2492 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2493 return -ENOTDIR;
2494 if (new_dentry->d_inode)
2495 return -EEXIST;
2496 if (old_dir != new_dir)
2497 return -EIO;
65dff759
LZ
2498
2499 cgrp = __d_cgrp(old_dentry);
2500
2501 name = cgroup_alloc_name(new_dentry);
2502 if (!name)
2503 return -ENOMEM;
2504
2505 ret = simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2506 if (ret) {
2507 kfree(name);
2508 return ret;
2509 }
2510
2511 old_name = cgrp->name;
2512 rcu_assign_pointer(cgrp->name, name);
2513
2514 kfree_rcu(old_name, rcu_head);
2515 return 0;
ddbcc7e8
PM
2516}
2517
03b1cde6
AR
2518static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2519{
2520 if (S_ISDIR(dentry->d_inode->i_mode))
2521 return &__d_cgrp(dentry)->xattrs;
2522 else
2523 return &__d_cft(dentry)->xattrs;
2524}
2525
2526static inline int xattr_enabled(struct dentry *dentry)
2527{
2528 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2529 return test_bit(ROOT_XATTR, &root->flags);
2530}
2531
2532static bool is_valid_xattr(const char *name)
2533{
2534 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2535 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2536 return true;
2537 return false;
2538}
2539
2540static int cgroup_setxattr(struct dentry *dentry, const char *name,
2541 const void *val, size_t size, int flags)
2542{
2543 if (!xattr_enabled(dentry))
2544 return -EOPNOTSUPP;
2545 if (!is_valid_xattr(name))
2546 return -EINVAL;
2547 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2548}
2549
2550static int cgroup_removexattr(struct dentry *dentry, const char *name)
2551{
2552 if (!xattr_enabled(dentry))
2553 return -EOPNOTSUPP;
2554 if (!is_valid_xattr(name))
2555 return -EINVAL;
2556 return simple_xattr_remove(__d_xattrs(dentry), name);
2557}
2558
2559static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2560 void *buf, size_t size)
2561{
2562 if (!xattr_enabled(dentry))
2563 return -EOPNOTSUPP;
2564 if (!is_valid_xattr(name))
2565 return -EINVAL;
2566 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2567}
2568
2569static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2570{
2571 if (!xattr_enabled(dentry))
2572 return -EOPNOTSUPP;
2573 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2574}
2575
828c0950 2576static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2577 .read = cgroup_file_read,
2578 .write = cgroup_file_write,
2579 .llseek = generic_file_llseek,
2580 .open = cgroup_file_open,
2581 .release = cgroup_file_release,
2582};
2583
03b1cde6
AR
2584static const struct inode_operations cgroup_file_inode_operations = {
2585 .setxattr = cgroup_setxattr,
2586 .getxattr = cgroup_getxattr,
2587 .listxattr = cgroup_listxattr,
2588 .removexattr = cgroup_removexattr,
2589};
2590
6e1d5dcc 2591static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2592 .lookup = cgroup_lookup,
ddbcc7e8
PM
2593 .mkdir = cgroup_mkdir,
2594 .rmdir = cgroup_rmdir,
2595 .rename = cgroup_rename,
03b1cde6
AR
2596 .setxattr = cgroup_setxattr,
2597 .getxattr = cgroup_getxattr,
2598 .listxattr = cgroup_listxattr,
2599 .removexattr = cgroup_removexattr,
ddbcc7e8
PM
2600};
2601
00cd8dd3 2602static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
c72a04e3
AV
2603{
2604 if (dentry->d_name.len > NAME_MAX)
2605 return ERR_PTR(-ENAMETOOLONG);
2606 d_add(dentry, NULL);
2607 return NULL;
2608}
2609
0dea1168
KS
2610/*
2611 * Check if a file is a control file
2612 */
2613static inline struct cftype *__file_cft(struct file *file)
2614{
496ad9aa 2615 if (file_inode(file)->i_fop != &cgroup_file_operations)
0dea1168
KS
2616 return ERR_PTR(-EINVAL);
2617 return __d_cft(file->f_dentry);
2618}
2619
a5e7ed32 2620static int cgroup_create_file(struct dentry *dentry, umode_t mode,
5adcee1d
NP
2621 struct super_block *sb)
2622{
ddbcc7e8
PM
2623 struct inode *inode;
2624
2625 if (!dentry)
2626 return -ENOENT;
2627 if (dentry->d_inode)
2628 return -EEXIST;
2629
2630 inode = cgroup_new_inode(mode, sb);
2631 if (!inode)
2632 return -ENOMEM;
2633
2634 if (S_ISDIR(mode)) {
2635 inode->i_op = &cgroup_dir_inode_operations;
2636 inode->i_fop = &simple_dir_operations;
2637
2638 /* start off with i_nlink == 2 (for "." entry) */
2639 inc_nlink(inode);
28fd6f30 2640 inc_nlink(dentry->d_parent->d_inode);
ddbcc7e8 2641
b8a2df6a
TH
2642 /*
2643 * Control reaches here with cgroup_mutex held.
2644 * @inode->i_mutex should nest outside cgroup_mutex but we
2645 * want to populate it immediately without releasing
2646 * cgroup_mutex. As @inode isn't visible to anyone else
2647 * yet, trylock will always succeed without affecting
2648 * lockdep checks.
2649 */
2650 WARN_ON_ONCE(!mutex_trylock(&inode->i_mutex));
ddbcc7e8
PM
2651 } else if (S_ISREG(mode)) {
2652 inode->i_size = 0;
2653 inode->i_fop = &cgroup_file_operations;
03b1cde6 2654 inode->i_op = &cgroup_file_inode_operations;
ddbcc7e8 2655 }
ddbcc7e8
PM
2656 d_instantiate(dentry, inode);
2657 dget(dentry); /* Extra count - pin the dentry in core */
2658 return 0;
2659}
2660
099fca32
LZ
2661/**
2662 * cgroup_file_mode - deduce file mode of a control file
2663 * @cft: the control file in question
2664 *
2665 * returns cft->mode if ->mode is not 0
2666 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2667 * returns S_IRUGO if it has only a read handler
2668 * returns S_IWUSR if it has only a write hander
2669 */
a5e7ed32 2670static umode_t cgroup_file_mode(const struct cftype *cft)
099fca32 2671{
a5e7ed32 2672 umode_t mode = 0;
099fca32
LZ
2673
2674 if (cft->mode)
2675 return cft->mode;
2676
2677 if (cft->read || cft->read_u64 || cft->read_s64 ||
2678 cft->read_map || cft->read_seq_string)
2679 mode |= S_IRUGO;
2680
2681 if (cft->write || cft->write_u64 || cft->write_s64 ||
2682 cft->write_string || cft->trigger)
2683 mode |= S_IWUSR;
2684
2685 return mode;
2686}
2687
db0416b6 2688static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2689 struct cftype *cft)
ddbcc7e8 2690{
bd89aabc 2691 struct dentry *dir = cgrp->dentry;
05ef1d7c 2692 struct cgroup *parent = __d_cgrp(dir);
ddbcc7e8 2693 struct dentry *dentry;
05ef1d7c 2694 struct cfent *cfe;
ddbcc7e8 2695 int error;
a5e7ed32 2696 umode_t mode;
ddbcc7e8 2697 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
8e3f6541 2698
03b1cde6
AR
2699 simple_xattrs_init(&cft->xattrs);
2700
bd89aabc 2701 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2702 strcpy(name, subsys->name);
2703 strcat(name, ".");
2704 }
2705 strcat(name, cft->name);
05ef1d7c 2706
ddbcc7e8 2707 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
05ef1d7c
TH
2708
2709 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2710 if (!cfe)
2711 return -ENOMEM;
2712
ddbcc7e8 2713 dentry = lookup_one_len(name, dir, strlen(name));
05ef1d7c 2714 if (IS_ERR(dentry)) {
ddbcc7e8 2715 error = PTR_ERR(dentry);
05ef1d7c
TH
2716 goto out;
2717 }
2718
2719 mode = cgroup_file_mode(cft);
2720 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2721 if (!error) {
2722 cfe->type = (void *)cft;
2723 cfe->dentry = dentry;
2724 dentry->d_fsdata = cfe;
2725 list_add_tail(&cfe->node, &parent->files);
2726 cfe = NULL;
2727 }
2728 dput(dentry);
2729out:
2730 kfree(cfe);
ddbcc7e8
PM
2731 return error;
2732}
2733
79578621 2734static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
03b1cde6 2735 struct cftype cfts[], bool is_add)
ddbcc7e8 2736{
03b1cde6 2737 struct cftype *cft;
db0416b6
TH
2738 int err, ret = 0;
2739
2740 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2
G
2741 /* does cft->flags tell us to skip this file on @cgrp? */
2742 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2743 continue;
2744 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2745 continue;
2746
2739d3cc 2747 if (is_add) {
79578621 2748 err = cgroup_add_file(cgrp, subsys, cft);
2739d3cc
LZ
2749 if (err)
2750 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
2751 cft->name, err);
db0416b6 2752 ret = err;
2739d3cc
LZ
2753 } else {
2754 cgroup_rm_file(cgrp, cft);
db0416b6 2755 }
ddbcc7e8 2756 }
db0416b6 2757 return ret;
ddbcc7e8
PM
2758}
2759
8e3f6541
TH
2760static DEFINE_MUTEX(cgroup_cft_mutex);
2761
2762static void cgroup_cfts_prepare(void)
2763 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2764{
2765 /*
2766 * Thanks to the entanglement with vfs inode locking, we can't walk
2767 * the existing cgroups under cgroup_mutex and create files.
2768 * Instead, we increment reference on all cgroups and build list of
2769 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2770 * exclusive access to the field.
2771 */
2772 mutex_lock(&cgroup_cft_mutex);
2773 mutex_lock(&cgroup_mutex);
2774}
2775
2776static void cgroup_cfts_commit(struct cgroup_subsys *ss,
03b1cde6 2777 struct cftype *cfts, bool is_add)
8e3f6541
TH
2778 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2779{
2780 LIST_HEAD(pending);
2781 struct cgroup *cgrp, *n;
8e3f6541
TH
2782
2783 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2784 if (cfts && ss->root != &rootnode) {
2785 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2786 dget(cgrp->dentry);
2787 list_add_tail(&cgrp->cft_q_node, &pending);
2788 }
2789 }
2790
2791 mutex_unlock(&cgroup_mutex);
2792
2793 /*
2794 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2795 * files for all cgroups which were created before.
2796 */
2797 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2798 struct inode *inode = cgrp->dentry->d_inode;
2799
2800 mutex_lock(&inode->i_mutex);
2801 mutex_lock(&cgroup_mutex);
2802 if (!cgroup_is_removed(cgrp))
79578621 2803 cgroup_addrm_files(cgrp, ss, cfts, is_add);
8e3f6541
TH
2804 mutex_unlock(&cgroup_mutex);
2805 mutex_unlock(&inode->i_mutex);
2806
2807 list_del_init(&cgrp->cft_q_node);
2808 dput(cgrp->dentry);
2809 }
2810
2811 mutex_unlock(&cgroup_cft_mutex);
2812}
2813
2814/**
2815 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2816 * @ss: target cgroup subsystem
2817 * @cfts: zero-length name terminated array of cftypes
2818 *
2819 * Register @cfts to @ss. Files described by @cfts are created for all
2820 * existing cgroups to which @ss is attached and all future cgroups will
2821 * have them too. This function can be called anytime whether @ss is
2822 * attached or not.
2823 *
2824 * Returns 0 on successful registration, -errno on failure. Note that this
2825 * function currently returns 0 as long as @cfts registration is successful
2826 * even if some file creation attempts on existing cgroups fail.
2827 */
03b1cde6 2828int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541
TH
2829{
2830 struct cftype_set *set;
2831
2832 set = kzalloc(sizeof(*set), GFP_KERNEL);
2833 if (!set)
2834 return -ENOMEM;
2835
2836 cgroup_cfts_prepare();
2837 set->cfts = cfts;
2838 list_add_tail(&set->node, &ss->cftsets);
79578621 2839 cgroup_cfts_commit(ss, cfts, true);
8e3f6541
TH
2840
2841 return 0;
2842}
2843EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2844
79578621
TH
2845/**
2846 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2847 * @ss: target cgroup subsystem
2848 * @cfts: zero-length name terminated array of cftypes
2849 *
2850 * Unregister @cfts from @ss. Files described by @cfts are removed from
2851 * all existing cgroups to which @ss is attached and all future cgroups
2852 * won't have them either. This function can be called anytime whether @ss
2853 * is attached or not.
2854 *
2855 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2856 * registered with @ss.
2857 */
03b1cde6 2858int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
79578621
TH
2859{
2860 struct cftype_set *set;
2861
2862 cgroup_cfts_prepare();
2863
2864 list_for_each_entry(set, &ss->cftsets, node) {
2865 if (set->cfts == cfts) {
2866 list_del_init(&set->node);
2867 cgroup_cfts_commit(ss, cfts, false);
2868 return 0;
2869 }
2870 }
2871
2872 cgroup_cfts_commit(ss, NULL, false);
2873 return -ENOENT;
2874}
2875
a043e3b2
LZ
2876/**
2877 * cgroup_task_count - count the number of tasks in a cgroup.
2878 * @cgrp: the cgroup in question
2879 *
2880 * Return the number of tasks in the cgroup.
2881 */
bd89aabc 2882int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2883{
2884 int count = 0;
71cbb949 2885 struct cg_cgroup_link *link;
817929ec
PM
2886
2887 read_lock(&css_set_lock);
71cbb949 2888 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2889 count += atomic_read(&link->cg->refcount);
817929ec
PM
2890 }
2891 read_unlock(&css_set_lock);
bbcb81d0
PM
2892 return count;
2893}
2894
817929ec
PM
2895/*
2896 * Advance a list_head iterator. The iterator should be positioned at
2897 * the start of a css_set
2898 */
bd89aabc 2899static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2900 struct cgroup_iter *it)
817929ec
PM
2901{
2902 struct list_head *l = it->cg_link;
2903 struct cg_cgroup_link *link;
2904 struct css_set *cg;
2905
2906 /* Advance to the next non-empty css_set */
2907 do {
2908 l = l->next;
bd89aabc 2909 if (l == &cgrp->css_sets) {
817929ec
PM
2910 it->cg_link = NULL;
2911 return;
2912 }
bd89aabc 2913 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2914 cg = link->cg;
2915 } while (list_empty(&cg->tasks));
2916 it->cg_link = l;
2917 it->task = cg->tasks.next;
2918}
2919
31a7df01
CW
2920/*
2921 * To reduce the fork() overhead for systems that are not actually
2922 * using their cgroups capability, we don't maintain the lists running
2923 * through each css_set to its tasks until we see the list actually
2924 * used - in other words after the first call to cgroup_iter_start().
31a7df01 2925 */
3df91fe3 2926static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2927{
2928 struct task_struct *p, *g;
2929 write_lock(&css_set_lock);
2930 use_task_css_set_links = 1;
3ce3230a
FW
2931 /*
2932 * We need tasklist_lock because RCU is not safe against
2933 * while_each_thread(). Besides, a forking task that has passed
2934 * cgroup_post_fork() without seeing use_task_css_set_links = 1
2935 * is not guaranteed to have its child immediately visible in the
2936 * tasklist if we walk through it with RCU.
2937 */
2938 read_lock(&tasklist_lock);
31a7df01
CW
2939 do_each_thread(g, p) {
2940 task_lock(p);
0e04388f
LZ
2941 /*
2942 * We should check if the process is exiting, otherwise
2943 * it will race with cgroup_exit() in that the list
2944 * entry won't be deleted though the process has exited.
2945 */
2946 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2947 list_add(&p->cg_list, &p->cgroups->tasks);
2948 task_unlock(p);
2949 } while_each_thread(g, p);
3ce3230a 2950 read_unlock(&tasklist_lock);
31a7df01
CW
2951 write_unlock(&css_set_lock);
2952}
2953
574bd9f7
TH
2954/**
2955 * cgroup_next_descendant_pre - find the next descendant for pre-order walk
2956 * @pos: the current position (%NULL to initiate traversal)
2957 * @cgroup: cgroup whose descendants to walk
2958 *
2959 * To be used by cgroup_for_each_descendant_pre(). Find the next
2960 * descendant to visit for pre-order traversal of @cgroup's descendants.
2961 */
2962struct cgroup *cgroup_next_descendant_pre(struct cgroup *pos,
2963 struct cgroup *cgroup)
2964{
2965 struct cgroup *next;
2966
2967 WARN_ON_ONCE(!rcu_read_lock_held());
2968
2969 /* if first iteration, pretend we just visited @cgroup */
2970 if (!pos) {
2971 if (list_empty(&cgroup->children))
2972 return NULL;
2973 pos = cgroup;
2974 }
2975
2976 /* visit the first child if exists */
2977 next = list_first_or_null_rcu(&pos->children, struct cgroup, sibling);
2978 if (next)
2979 return next;
2980
2981 /* no child, visit my or the closest ancestor's next sibling */
2982 do {
2983 next = list_entry_rcu(pos->sibling.next, struct cgroup,
2984 sibling);
2985 if (&next->sibling != &pos->parent->children)
2986 return next;
2987
2988 pos = pos->parent;
2989 } while (pos != cgroup);
2990
2991 return NULL;
2992}
2993EXPORT_SYMBOL_GPL(cgroup_next_descendant_pre);
2994
12a9d2fe
TH
2995/**
2996 * cgroup_rightmost_descendant - return the rightmost descendant of a cgroup
2997 * @pos: cgroup of interest
2998 *
2999 * Return the rightmost descendant of @pos. If there's no descendant,
3000 * @pos is returned. This can be used during pre-order traversal to skip
3001 * subtree of @pos.
3002 */
3003struct cgroup *cgroup_rightmost_descendant(struct cgroup *pos)
3004{
3005 struct cgroup *last, *tmp;
3006
3007 WARN_ON_ONCE(!rcu_read_lock_held());
3008
3009 do {
3010 last = pos;
3011 /* ->prev isn't RCU safe, walk ->next till the end */
3012 pos = NULL;
3013 list_for_each_entry_rcu(tmp, &last->children, sibling)
3014 pos = tmp;
3015 } while (pos);
3016
3017 return last;
3018}
3019EXPORT_SYMBOL_GPL(cgroup_rightmost_descendant);
3020
574bd9f7
TH
3021static struct cgroup *cgroup_leftmost_descendant(struct cgroup *pos)
3022{
3023 struct cgroup *last;
3024
3025 do {
3026 last = pos;
3027 pos = list_first_or_null_rcu(&pos->children, struct cgroup,
3028 sibling);
3029 } while (pos);
3030
3031 return last;
3032}
3033
3034/**
3035 * cgroup_next_descendant_post - find the next descendant for post-order walk
3036 * @pos: the current position (%NULL to initiate traversal)
3037 * @cgroup: cgroup whose descendants to walk
3038 *
3039 * To be used by cgroup_for_each_descendant_post(). Find the next
3040 * descendant to visit for post-order traversal of @cgroup's descendants.
3041 */
3042struct cgroup *cgroup_next_descendant_post(struct cgroup *pos,
3043 struct cgroup *cgroup)
3044{
3045 struct cgroup *next;
3046
3047 WARN_ON_ONCE(!rcu_read_lock_held());
3048
3049 /* if first iteration, visit the leftmost descendant */
3050 if (!pos) {
3051 next = cgroup_leftmost_descendant(cgroup);
3052 return next != cgroup ? next : NULL;
3053 }
3054
3055 /* if there's an unvisited sibling, visit its leftmost descendant */
3056 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3057 if (&next->sibling != &pos->parent->children)
3058 return cgroup_leftmost_descendant(next);
3059
3060 /* no sibling left, visit parent */
3061 next = pos->parent;
3062 return next != cgroup ? next : NULL;
3063}
3064EXPORT_SYMBOL_GPL(cgroup_next_descendant_post);
3065
bd89aabc 3066void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3067 __acquires(css_set_lock)
817929ec
PM
3068{
3069 /*
3070 * The first time anyone tries to iterate across a cgroup,
3071 * we need to enable the list linking each css_set to its
3072 * tasks, and fix up all existing tasks.
3073 */
31a7df01
CW
3074 if (!use_task_css_set_links)
3075 cgroup_enable_task_cg_lists();
3076
817929ec 3077 read_lock(&css_set_lock);
bd89aabc
PM
3078 it->cg_link = &cgrp->css_sets;
3079 cgroup_advance_iter(cgrp, it);
817929ec
PM
3080}
3081
bd89aabc 3082struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
3083 struct cgroup_iter *it)
3084{
3085 struct task_struct *res;
3086 struct list_head *l = it->task;
2019f634 3087 struct cg_cgroup_link *link;
817929ec
PM
3088
3089 /* If the iterator cg is NULL, we have no tasks */
3090 if (!it->cg_link)
3091 return NULL;
3092 res = list_entry(l, struct task_struct, cg_list);
3093 /* Advance iterator to find next entry */
3094 l = l->next;
2019f634
LJ
3095 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3096 if (l == &link->cg->tasks) {
817929ec
PM
3097 /* We reached the end of this task list - move on to
3098 * the next cg_cgroup_link */
bd89aabc 3099 cgroup_advance_iter(cgrp, it);
817929ec
PM
3100 } else {
3101 it->task = l;
3102 }
3103 return res;
3104}
3105
bd89aabc 3106void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
c6ca5750 3107 __releases(css_set_lock)
817929ec
PM
3108{
3109 read_unlock(&css_set_lock);
3110}
3111
31a7df01
CW
3112static inline int started_after_time(struct task_struct *t1,
3113 struct timespec *time,
3114 struct task_struct *t2)
3115{
3116 int start_diff = timespec_compare(&t1->start_time, time);
3117 if (start_diff > 0) {
3118 return 1;
3119 } else if (start_diff < 0) {
3120 return 0;
3121 } else {
3122 /*
3123 * Arbitrarily, if two processes started at the same
3124 * time, we'll say that the lower pointer value
3125 * started first. Note that t2 may have exited by now
3126 * so this may not be a valid pointer any longer, but
3127 * that's fine - it still serves to distinguish
3128 * between two tasks started (effectively) simultaneously.
3129 */
3130 return t1 > t2;
3131 }
3132}
3133
3134/*
3135 * This function is a callback from heap_insert() and is used to order
3136 * the heap.
3137 * In this case we order the heap in descending task start time.
3138 */
3139static inline int started_after(void *p1, void *p2)
3140{
3141 struct task_struct *t1 = p1;
3142 struct task_struct *t2 = p2;
3143 return started_after_time(t1, &t2->start_time, t2);
3144}
3145
3146/**
3147 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3148 * @scan: struct cgroup_scanner containing arguments for the scan
3149 *
3150 * Arguments include pointers to callback functions test_task() and
3151 * process_task().
3152 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3153 * and if it returns true, call process_task() for it also.
3154 * The test_task pointer may be NULL, meaning always true (select all tasks).
3155 * Effectively duplicates cgroup_iter_{start,next,end}()
3156 * but does not lock css_set_lock for the call to process_task().
3157 * The struct cgroup_scanner may be embedded in any structure of the caller's
3158 * creation.
3159 * It is guaranteed that process_task() will act on every task that
3160 * is a member of the cgroup for the duration of this call. This
3161 * function may or may not call process_task() for tasks that exit
3162 * or move to a different cgroup during the call, or are forked or
3163 * move into the cgroup during the call.
3164 *
3165 * Note that test_task() may be called with locks held, and may in some
3166 * situations be called multiple times for the same task, so it should
3167 * be cheap.
3168 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3169 * pre-allocated and will be used for heap operations (and its "gt" member will
3170 * be overwritten), else a temporary heap will be used (allocation of which
3171 * may cause this function to fail).
3172 */
3173int cgroup_scan_tasks(struct cgroup_scanner *scan)
3174{
3175 int retval, i;
3176 struct cgroup_iter it;
3177 struct task_struct *p, *dropped;
3178 /* Never dereference latest_task, since it's not refcounted */
3179 struct task_struct *latest_task = NULL;
3180 struct ptr_heap tmp_heap;
3181 struct ptr_heap *heap;
3182 struct timespec latest_time = { 0, 0 };
3183
3184 if (scan->heap) {
3185 /* The caller supplied our heap and pre-allocated its memory */
3186 heap = scan->heap;
3187 heap->gt = &started_after;
3188 } else {
3189 /* We need to allocate our own heap memory */
3190 heap = &tmp_heap;
3191 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3192 if (retval)
3193 /* cannot allocate the heap */
3194 return retval;
3195 }
3196
3197 again:
3198 /*
3199 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3200 * to determine which are of interest, and using the scanner's
3201 * "process_task" callback to process any of them that need an update.
3202 * Since we don't want to hold any locks during the task updates,
3203 * gather tasks to be processed in a heap structure.
3204 * The heap is sorted by descending task start time.
3205 * If the statically-sized heap fills up, we overflow tasks that
3206 * started later, and in future iterations only consider tasks that
3207 * started after the latest task in the previous pass. This
3208 * guarantees forward progress and that we don't miss any tasks.
3209 */
3210 heap->size = 0;
3211 cgroup_iter_start(scan->cg, &it);
3212 while ((p = cgroup_iter_next(scan->cg, &it))) {
3213 /*
3214 * Only affect tasks that qualify per the caller's callback,
3215 * if he provided one
3216 */
3217 if (scan->test_task && !scan->test_task(p, scan))
3218 continue;
3219 /*
3220 * Only process tasks that started after the last task
3221 * we processed
3222 */
3223 if (!started_after_time(p, &latest_time, latest_task))
3224 continue;
3225 dropped = heap_insert(heap, p);
3226 if (dropped == NULL) {
3227 /*
3228 * The new task was inserted; the heap wasn't
3229 * previously full
3230 */
3231 get_task_struct(p);
3232 } else if (dropped != p) {
3233 /*
3234 * The new task was inserted, and pushed out a
3235 * different task
3236 */
3237 get_task_struct(p);
3238 put_task_struct(dropped);
3239 }
3240 /*
3241 * Else the new task was newer than anything already in
3242 * the heap and wasn't inserted
3243 */
3244 }
3245 cgroup_iter_end(scan->cg, &it);
3246
3247 if (heap->size) {
3248 for (i = 0; i < heap->size; i++) {
4fe91d51 3249 struct task_struct *q = heap->ptrs[i];
31a7df01 3250 if (i == 0) {
4fe91d51
PJ
3251 latest_time = q->start_time;
3252 latest_task = q;
31a7df01
CW
3253 }
3254 /* Process the task per the caller's callback */
4fe91d51
PJ
3255 scan->process_task(q, scan);
3256 put_task_struct(q);
31a7df01
CW
3257 }
3258 /*
3259 * If we had to process any tasks at all, scan again
3260 * in case some of them were in the middle of forking
3261 * children that didn't get processed.
3262 * Not the most efficient way to do it, but it avoids
3263 * having to take callback_mutex in the fork path
3264 */
3265 goto again;
3266 }
3267 if (heap == &tmp_heap)
3268 heap_free(&tmp_heap);
3269 return 0;
3270}
3271
8cc99345
TH
3272static void cgroup_transfer_one_task(struct task_struct *task,
3273 struct cgroup_scanner *scan)
3274{
3275 struct cgroup *new_cgroup = scan->data;
3276
47cfcd09 3277 mutex_lock(&cgroup_mutex);
8cc99345 3278 cgroup_attach_task(new_cgroup, task, false);
47cfcd09 3279 mutex_unlock(&cgroup_mutex);
8cc99345
TH
3280}
3281
3282/**
3283 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3284 * @to: cgroup to which the tasks will be moved
3285 * @from: cgroup in which the tasks currently reside
3286 */
3287int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3288{
3289 struct cgroup_scanner scan;
3290
3291 scan.cg = from;
3292 scan.test_task = NULL; /* select all tasks in cgroup */
3293 scan.process_task = cgroup_transfer_one_task;
3294 scan.heap = NULL;
3295 scan.data = to;
3296
3297 return cgroup_scan_tasks(&scan);
3298}
3299
bbcb81d0 3300/*
102a775e 3301 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3302 *
3303 * Reading this file can return large amounts of data if a cgroup has
3304 * *lots* of attached tasks. So it may need several calls to read(),
3305 * but we cannot guarantee that the information we produce is correct
3306 * unless we produce it entirely atomically.
3307 *
bbcb81d0 3308 */
bbcb81d0 3309
24528255
LZ
3310/* which pidlist file are we talking about? */
3311enum cgroup_filetype {
3312 CGROUP_FILE_PROCS,
3313 CGROUP_FILE_TASKS,
3314};
3315
3316/*
3317 * A pidlist is a list of pids that virtually represents the contents of one
3318 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3319 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3320 * to the cgroup.
3321 */
3322struct cgroup_pidlist {
3323 /*
3324 * used to find which pidlist is wanted. doesn't change as long as
3325 * this particular list stays in the list.
3326 */
3327 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3328 /* array of xids */
3329 pid_t *list;
3330 /* how many elements the above list has */
3331 int length;
3332 /* how many files are using the current array */
3333 int use_count;
3334 /* each of these stored in a list by its cgroup */
3335 struct list_head links;
3336 /* pointer to the cgroup we belong to, for list removal purposes */
3337 struct cgroup *owner;
3338 /* protects the other fields */
3339 struct rw_semaphore mutex;
3340};
3341
d1d9fd33
BB
3342/*
3343 * The following two functions "fix" the issue where there are more pids
3344 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3345 * TODO: replace with a kernel-wide solution to this problem
3346 */
3347#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3348static void *pidlist_allocate(int count)
3349{
3350 if (PIDLIST_TOO_LARGE(count))
3351 return vmalloc(count * sizeof(pid_t));
3352 else
3353 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3354}
3355static void pidlist_free(void *p)
3356{
3357 if (is_vmalloc_addr(p))
3358 vfree(p);
3359 else
3360 kfree(p);
3361}
d1d9fd33 3362
bbcb81d0 3363/*
102a775e 3364 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3365 * Returns the number of unique elements.
bbcb81d0 3366 */
6ee211ad 3367static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3368{
102a775e 3369 int src, dest = 1;
102a775e
BB
3370
3371 /*
3372 * we presume the 0th element is unique, so i starts at 1. trivial
3373 * edge cases first; no work needs to be done for either
3374 */
3375 if (length == 0 || length == 1)
3376 return length;
3377 /* src and dest walk down the list; dest counts unique elements */
3378 for (src = 1; src < length; src++) {
3379 /* find next unique element */
3380 while (list[src] == list[src-1]) {
3381 src++;
3382 if (src == length)
3383 goto after;
3384 }
3385 /* dest always points to where the next unique element goes */
3386 list[dest] = list[src];
3387 dest++;
3388 }
3389after:
102a775e
BB
3390 return dest;
3391}
3392
3393static int cmppid(const void *a, const void *b)
3394{
3395 return *(pid_t *)a - *(pid_t *)b;
3396}
3397
72a8cb30
BB
3398/*
3399 * find the appropriate pidlist for our purpose (given procs vs tasks)
3400 * returns with the lock on that pidlist already held, and takes care
3401 * of the use count, or returns NULL with no locks held if we're out of
3402 * memory.
3403 */
3404static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3405 enum cgroup_filetype type)
3406{
3407 struct cgroup_pidlist *l;
3408 /* don't need task_nsproxy() if we're looking at ourself */
17cf22c3 3409 struct pid_namespace *ns = task_active_pid_ns(current);
b70cc5fd 3410
72a8cb30
BB
3411 /*
3412 * We can't drop the pidlist_mutex before taking the l->mutex in case
3413 * the last ref-holder is trying to remove l from the list at the same
3414 * time. Holding the pidlist_mutex precludes somebody taking whichever
3415 * list we find out from under us - compare release_pid_array().
3416 */
3417 mutex_lock(&cgrp->pidlist_mutex);
3418 list_for_each_entry(l, &cgrp->pidlists, links) {
3419 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
3420 /* make sure l doesn't vanish out from under us */
3421 down_write(&l->mutex);
3422 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3423 return l;
3424 }
3425 }
3426 /* entry not found; create a new one */
3427 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3428 if (!l) {
3429 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
3430 return l;
3431 }
3432 init_rwsem(&l->mutex);
3433 down_write(&l->mutex);
3434 l->key.type = type;
b70cc5fd 3435 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
3436 l->use_count = 0; /* don't increment here */
3437 l->list = NULL;
3438 l->owner = cgrp;
3439 list_add(&l->links, &cgrp->pidlists);
3440 mutex_unlock(&cgrp->pidlist_mutex);
3441 return l;
3442}
3443
102a775e
BB
3444/*
3445 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3446 */
72a8cb30
BB
3447static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3448 struct cgroup_pidlist **lp)
102a775e
BB
3449{
3450 pid_t *array;
3451 int length;
3452 int pid, n = 0; /* used for populating the array */
817929ec
PM
3453 struct cgroup_iter it;
3454 struct task_struct *tsk;
102a775e
BB
3455 struct cgroup_pidlist *l;
3456
3457 /*
3458 * If cgroup gets more users after we read count, we won't have
3459 * enough space - tough. This race is indistinguishable to the
3460 * caller from the case that the additional cgroup users didn't
3461 * show up until sometime later on.
3462 */
3463 length = cgroup_task_count(cgrp);
d1d9fd33 3464 array = pidlist_allocate(length);
102a775e
BB
3465 if (!array)
3466 return -ENOMEM;
3467 /* now, populate the array */
bd89aabc
PM
3468 cgroup_iter_start(cgrp, &it);
3469 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 3470 if (unlikely(n == length))
817929ec 3471 break;
102a775e 3472 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3473 if (type == CGROUP_FILE_PROCS)
3474 pid = task_tgid_vnr(tsk);
3475 else
3476 pid = task_pid_vnr(tsk);
102a775e
BB
3477 if (pid > 0) /* make sure to only use valid results */
3478 array[n++] = pid;
817929ec 3479 }
bd89aabc 3480 cgroup_iter_end(cgrp, &it);
102a775e
BB
3481 length = n;
3482 /* now sort & (if procs) strip out duplicates */
3483 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3484 if (type == CGROUP_FILE_PROCS)
6ee211ad 3485 length = pidlist_uniq(array, length);
72a8cb30
BB
3486 l = cgroup_pidlist_find(cgrp, type);
3487 if (!l) {
d1d9fd33 3488 pidlist_free(array);
72a8cb30 3489 return -ENOMEM;
102a775e 3490 }
72a8cb30 3491 /* store array, freeing old if necessary - lock already held */
d1d9fd33 3492 pidlist_free(l->list);
102a775e
BB
3493 l->list = array;
3494 l->length = length;
3495 l->use_count++;
3496 up_write(&l->mutex);
72a8cb30 3497 *lp = l;
102a775e 3498 return 0;
bbcb81d0
PM
3499}
3500
846c7bb0 3501/**
a043e3b2 3502 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3503 * @stats: cgroupstats to fill information into
3504 * @dentry: A dentry entry belonging to the cgroup for which stats have
3505 * been requested.
a043e3b2
LZ
3506 *
3507 * Build and fill cgroupstats so that taskstats can export it to user
3508 * space.
846c7bb0
BS
3509 */
3510int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3511{
3512 int ret = -EINVAL;
bd89aabc 3513 struct cgroup *cgrp;
846c7bb0
BS
3514 struct cgroup_iter it;
3515 struct task_struct *tsk;
33d283be 3516
846c7bb0 3517 /*
33d283be
LZ
3518 * Validate dentry by checking the superblock operations,
3519 * and make sure it's a directory.
846c7bb0 3520 */
33d283be
LZ
3521 if (dentry->d_sb->s_op != &cgroup_ops ||
3522 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
3523 goto err;
3524
3525 ret = 0;
bd89aabc 3526 cgrp = dentry->d_fsdata;
846c7bb0 3527
bd89aabc
PM
3528 cgroup_iter_start(cgrp, &it);
3529 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
3530 switch (tsk->state) {
3531 case TASK_RUNNING:
3532 stats->nr_running++;
3533 break;
3534 case TASK_INTERRUPTIBLE:
3535 stats->nr_sleeping++;
3536 break;
3537 case TASK_UNINTERRUPTIBLE:
3538 stats->nr_uninterruptible++;
3539 break;
3540 case TASK_STOPPED:
3541 stats->nr_stopped++;
3542 break;
3543 default:
3544 if (delayacct_is_task_waiting_on_io(tsk))
3545 stats->nr_io_wait++;
3546 break;
3547 }
3548 }
bd89aabc 3549 cgroup_iter_end(cgrp, &it);
846c7bb0 3550
846c7bb0
BS
3551err:
3552 return ret;
3553}
3554
8f3ff208 3555
bbcb81d0 3556/*
102a775e 3557 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3558 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3559 * in the cgroup->l->list array.
bbcb81d0 3560 */
cc31edce 3561
102a775e 3562static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3563{
cc31edce
PM
3564 /*
3565 * Initially we receive a position value that corresponds to
3566 * one more than the last pid shown (or 0 on the first call or
3567 * after a seek to the start). Use a binary-search to find the
3568 * next pid to display, if any
3569 */
102a775e 3570 struct cgroup_pidlist *l = s->private;
cc31edce
PM
3571 int index = 0, pid = *pos;
3572 int *iter;
3573
102a775e 3574 down_read(&l->mutex);
cc31edce 3575 if (pid) {
102a775e 3576 int end = l->length;
20777766 3577
cc31edce
PM
3578 while (index < end) {
3579 int mid = (index + end) / 2;
102a775e 3580 if (l->list[mid] == pid) {
cc31edce
PM
3581 index = mid;
3582 break;
102a775e 3583 } else if (l->list[mid] <= pid)
cc31edce
PM
3584 index = mid + 1;
3585 else
3586 end = mid;
3587 }
3588 }
3589 /* If we're off the end of the array, we're done */
102a775e 3590 if (index >= l->length)
cc31edce
PM
3591 return NULL;
3592 /* Update the abstract position to be the actual pid that we found */
102a775e 3593 iter = l->list + index;
cc31edce
PM
3594 *pos = *iter;
3595 return iter;
3596}
3597
102a775e 3598static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3599{
102a775e
BB
3600 struct cgroup_pidlist *l = s->private;
3601 up_read(&l->mutex);
cc31edce
PM
3602}
3603
102a775e 3604static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3605{
102a775e
BB
3606 struct cgroup_pidlist *l = s->private;
3607 pid_t *p = v;
3608 pid_t *end = l->list + l->length;
cc31edce
PM
3609 /*
3610 * Advance to the next pid in the array. If this goes off the
3611 * end, we're done
3612 */
3613 p++;
3614 if (p >= end) {
3615 return NULL;
3616 } else {
3617 *pos = *p;
3618 return p;
3619 }
3620}
3621
102a775e 3622static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3623{
3624 return seq_printf(s, "%d\n", *(int *)v);
3625}
bbcb81d0 3626
102a775e
BB
3627/*
3628 * seq_operations functions for iterating on pidlists through seq_file -
3629 * independent of whether it's tasks or procs
3630 */
3631static const struct seq_operations cgroup_pidlist_seq_operations = {
3632 .start = cgroup_pidlist_start,
3633 .stop = cgroup_pidlist_stop,
3634 .next = cgroup_pidlist_next,
3635 .show = cgroup_pidlist_show,
cc31edce
PM
3636};
3637
102a775e 3638static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 3639{
72a8cb30
BB
3640 /*
3641 * the case where we're the last user of this particular pidlist will
3642 * have us remove it from the cgroup's list, which entails taking the
3643 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3644 * pidlist_mutex, we have to take pidlist_mutex first.
3645 */
3646 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
3647 down_write(&l->mutex);
3648 BUG_ON(!l->use_count);
3649 if (!--l->use_count) {
72a8cb30
BB
3650 /* we're the last user if refcount is 0; remove and free */
3651 list_del(&l->links);
3652 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 3653 pidlist_free(l->list);
72a8cb30
BB
3654 put_pid_ns(l->key.ns);
3655 up_write(&l->mutex);
3656 kfree(l);
3657 return;
cc31edce 3658 }
72a8cb30 3659 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 3660 up_write(&l->mutex);
bbcb81d0
PM
3661}
3662
102a775e 3663static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 3664{
102a775e 3665 struct cgroup_pidlist *l;
cc31edce
PM
3666 if (!(file->f_mode & FMODE_READ))
3667 return 0;
102a775e
BB
3668 /*
3669 * the seq_file will only be initialized if the file was opened for
3670 * reading; hence we check if it's not null only in that case.
3671 */
3672 l = ((struct seq_file *)file->private_data)->private;
3673 cgroup_release_pid_array(l);
cc31edce
PM
3674 return seq_release(inode, file);
3675}
3676
102a775e 3677static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3678 .read = seq_read,
3679 .llseek = seq_lseek,
3680 .write = cgroup_file_write,
102a775e 3681 .release = cgroup_pidlist_release,
cc31edce
PM
3682};
3683
bbcb81d0 3684/*
102a775e
BB
3685 * The following functions handle opens on a file that displays a pidlist
3686 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3687 * in the cgroup.
bbcb81d0 3688 */
102a775e 3689/* helper function for the two below it */
72a8cb30 3690static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3691{
bd89aabc 3692 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3693 struct cgroup_pidlist *l;
cc31edce 3694 int retval;
bbcb81d0 3695
cc31edce 3696 /* Nothing to do for write-only files */
bbcb81d0
PM
3697 if (!(file->f_mode & FMODE_READ))
3698 return 0;
3699
102a775e 3700 /* have the array populated */
72a8cb30 3701 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3702 if (retval)
3703 return retval;
3704 /* configure file information */
3705 file->f_op = &cgroup_pidlist_operations;
cc31edce 3706
102a775e 3707 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3708 if (retval) {
102a775e 3709 cgroup_release_pid_array(l);
cc31edce 3710 return retval;
bbcb81d0 3711 }
102a775e 3712 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3713 return 0;
3714}
102a775e
BB
3715static int cgroup_tasks_open(struct inode *unused, struct file *file)
3716{
72a8cb30 3717 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3718}
3719static int cgroup_procs_open(struct inode *unused, struct file *file)
3720{
72a8cb30 3721 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3722}
bbcb81d0 3723
bd89aabc 3724static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3725 struct cftype *cft)
3726{
bd89aabc 3727 return notify_on_release(cgrp);
81a6a5cd
PM
3728}
3729
6379c106
PM
3730static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3731 struct cftype *cft,
3732 u64 val)
3733{
3734 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3735 if (val)
3736 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3737 else
3738 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3739 return 0;
3740}
3741
0dea1168
KS
3742/*
3743 * Unregister event and free resources.
3744 *
3745 * Gets called from workqueue.
3746 */
3747static void cgroup_event_remove(struct work_struct *work)
3748{
3749 struct cgroup_event *event = container_of(work, struct cgroup_event,
3750 remove);
3751 struct cgroup *cgrp = event->cgrp;
3752
810cbee4
LZ
3753 remove_wait_queue(event->wqh, &event->wait);
3754
0dea1168
KS
3755 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3756
810cbee4
LZ
3757 /* Notify userspace the event is going away. */
3758 eventfd_signal(event->eventfd, 1);
3759
0dea1168 3760 eventfd_ctx_put(event->eventfd);
0dea1168 3761 kfree(event);
a0a4db54 3762 dput(cgrp->dentry);
0dea1168
KS
3763}
3764
3765/*
3766 * Gets called on POLLHUP on eventfd when user closes it.
3767 *
3768 * Called with wqh->lock held and interrupts disabled.
3769 */
3770static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3771 int sync, void *key)
3772{
3773 struct cgroup_event *event = container_of(wait,
3774 struct cgroup_event, wait);
3775 struct cgroup *cgrp = event->cgrp;
3776 unsigned long flags = (unsigned long)key;
3777
3778 if (flags & POLLHUP) {
0dea1168 3779 /*
810cbee4
LZ
3780 * If the event has been detached at cgroup removal, we
3781 * can simply return knowing the other side will cleanup
3782 * for us.
3783 *
3784 * We can't race against event freeing since the other
3785 * side will require wqh->lock via remove_wait_queue(),
3786 * which we hold.
0dea1168 3787 */
810cbee4
LZ
3788 spin_lock(&cgrp->event_list_lock);
3789 if (!list_empty(&event->list)) {
3790 list_del_init(&event->list);
3791 /*
3792 * We are in atomic context, but cgroup_event_remove()
3793 * may sleep, so we have to call it in workqueue.
3794 */
3795 schedule_work(&event->remove);
3796 }
3797 spin_unlock(&cgrp->event_list_lock);
0dea1168
KS
3798 }
3799
3800 return 0;
3801}
3802
3803static void cgroup_event_ptable_queue_proc(struct file *file,
3804 wait_queue_head_t *wqh, poll_table *pt)
3805{
3806 struct cgroup_event *event = container_of(pt,
3807 struct cgroup_event, pt);
3808
3809 event->wqh = wqh;
3810 add_wait_queue(wqh, &event->wait);
3811}
3812
3813/*
3814 * Parse input and register new cgroup event handler.
3815 *
3816 * Input must be in format '<event_fd> <control_fd> <args>'.
3817 * Interpretation of args is defined by control file implementation.
3818 */
3819static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3820 const char *buffer)
3821{
3822 struct cgroup_event *event = NULL;
f169007b 3823 struct cgroup *cgrp_cfile;
0dea1168
KS
3824 unsigned int efd, cfd;
3825 struct file *efile = NULL;
3826 struct file *cfile = NULL;
3827 char *endp;
3828 int ret;
3829
3830 efd = simple_strtoul(buffer, &endp, 10);
3831 if (*endp != ' ')
3832 return -EINVAL;
3833 buffer = endp + 1;
3834
3835 cfd = simple_strtoul(buffer, &endp, 10);
3836 if ((*endp != ' ') && (*endp != '\0'))
3837 return -EINVAL;
3838 buffer = endp + 1;
3839
3840 event = kzalloc(sizeof(*event), GFP_KERNEL);
3841 if (!event)
3842 return -ENOMEM;
3843 event->cgrp = cgrp;
3844 INIT_LIST_HEAD(&event->list);
3845 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3846 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3847 INIT_WORK(&event->remove, cgroup_event_remove);
3848
3849 efile = eventfd_fget(efd);
3850 if (IS_ERR(efile)) {
3851 ret = PTR_ERR(efile);
3852 goto fail;
3853 }
3854
3855 event->eventfd = eventfd_ctx_fileget(efile);
3856 if (IS_ERR(event->eventfd)) {
3857 ret = PTR_ERR(event->eventfd);
3858 goto fail;
3859 }
3860
3861 cfile = fget(cfd);
3862 if (!cfile) {
3863 ret = -EBADF;
3864 goto fail;
3865 }
3866
3867 /* the process need read permission on control file */
3bfa784a 3868 /* AV: shouldn't we check that it's been opened for read instead? */
496ad9aa 3869 ret = inode_permission(file_inode(cfile), MAY_READ);
0dea1168
KS
3870 if (ret < 0)
3871 goto fail;
3872
3873 event->cft = __file_cft(cfile);
3874 if (IS_ERR(event->cft)) {
3875 ret = PTR_ERR(event->cft);
3876 goto fail;
3877 }
3878
f169007b
LZ
3879 /*
3880 * The file to be monitored must be in the same cgroup as
3881 * cgroup.event_control is.
3882 */
3883 cgrp_cfile = __d_cgrp(cfile->f_dentry->d_parent);
3884 if (cgrp_cfile != cgrp) {
3885 ret = -EINVAL;
3886 goto fail;
3887 }
3888
0dea1168
KS
3889 if (!event->cft->register_event || !event->cft->unregister_event) {
3890 ret = -EINVAL;
3891 goto fail;
3892 }
3893
3894 ret = event->cft->register_event(cgrp, event->cft,
3895 event->eventfd, buffer);
3896 if (ret)
3897 goto fail;
3898
a0a4db54
KS
3899 /*
3900 * Events should be removed after rmdir of cgroup directory, but before
3901 * destroying subsystem state objects. Let's take reference to cgroup
3902 * directory dentry to do that.
3903 */
3904 dget(cgrp->dentry);
3905
0dea1168
KS
3906 spin_lock(&cgrp->event_list_lock);
3907 list_add(&event->list, &cgrp->event_list);
3908 spin_unlock(&cgrp->event_list_lock);
3909
3910 fput(cfile);
3911 fput(efile);
3912
3913 return 0;
3914
3915fail:
3916 if (cfile)
3917 fput(cfile);
3918
3919 if (event && event->eventfd && !IS_ERR(event->eventfd))
3920 eventfd_ctx_put(event->eventfd);
3921
3922 if (!IS_ERR_OR_NULL(efile))
3923 fput(efile);
3924
3925 kfree(event);
3926
3927 return ret;
3928}
3929
97978e6d
DL
3930static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3931 struct cftype *cft)
3932{
2260e7fc 3933 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3934}
3935
3936static int cgroup_clone_children_write(struct cgroup *cgrp,
3937 struct cftype *cft,
3938 u64 val)
3939{
3940 if (val)
2260e7fc 3941 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3942 else
2260e7fc 3943 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d
DL
3944 return 0;
3945}
3946
bbcb81d0
PM
3947/*
3948 * for the common functions, 'private' gives the type of file
3949 */
102a775e
BB
3950/* for hysterical raisins, we can't put this on the older files */
3951#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3952static struct cftype files[] = {
3953 {
3954 .name = "tasks",
3955 .open = cgroup_tasks_open,
af351026 3956 .write_u64 = cgroup_tasks_write,
102a775e 3957 .release = cgroup_pidlist_release,
099fca32 3958 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3959 },
102a775e
BB
3960 {
3961 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3962 .open = cgroup_procs_open,
74a1166d 3963 .write_u64 = cgroup_procs_write,
102a775e 3964 .release = cgroup_pidlist_release,
74a1166d 3965 .mode = S_IRUGO | S_IWUSR,
102a775e 3966 },
81a6a5cd
PM
3967 {
3968 .name = "notify_on_release",
f4c753b7 3969 .read_u64 = cgroup_read_notify_on_release,
6379c106 3970 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3971 },
0dea1168
KS
3972 {
3973 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3974 .write_string = cgroup_write_event_control,
3975 .mode = S_IWUGO,
3976 },
97978e6d
DL
3977 {
3978 .name = "cgroup.clone_children",
3979 .read_u64 = cgroup_clone_children_read,
3980 .write_u64 = cgroup_clone_children_write,
3981 },
6e6ff25b
TH
3982 {
3983 .name = "release_agent",
3984 .flags = CFTYPE_ONLY_ON_ROOT,
3985 .read_seq_string = cgroup_release_agent_show,
3986 .write_string = cgroup_release_agent_write,
3987 .max_write_len = PATH_MAX,
3988 },
db0416b6 3989 { } /* terminate */
bbcb81d0
PM
3990};
3991
13af07df
AR
3992/**
3993 * cgroup_populate_dir - selectively creation of files in a directory
3994 * @cgrp: target cgroup
3995 * @base_files: true if the base files should be added
3996 * @subsys_mask: mask of the subsystem ids whose files should be added
3997 */
3998static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3999 unsigned long subsys_mask)
ddbcc7e8
PM
4000{
4001 int err;
4002 struct cgroup_subsys *ss;
4003
13af07df
AR
4004 if (base_files) {
4005 err = cgroup_addrm_files(cgrp, NULL, files, true);
4006 if (err < 0)
4007 return err;
4008 }
bbcb81d0 4009
8e3f6541 4010 /* process cftsets of each subsystem */
bd89aabc 4011 for_each_subsys(cgrp->root, ss) {
8e3f6541 4012 struct cftype_set *set;
13af07df
AR
4013 if (!test_bit(ss->subsys_id, &subsys_mask))
4014 continue;
8e3f6541 4015
db0416b6 4016 list_for_each_entry(set, &ss->cftsets, node)
79578621 4017 cgroup_addrm_files(cgrp, ss, set->cfts, true);
ddbcc7e8 4018 }
8e3f6541 4019
38460b48
KH
4020 /* This cgroup is ready now */
4021 for_each_subsys(cgrp->root, ss) {
4022 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4023 /*
4024 * Update id->css pointer and make this css visible from
4025 * CSS ID functions. This pointer will be dereferened
4026 * from RCU-read-side without locks.
4027 */
4028 if (css->id)
4029 rcu_assign_pointer(css->id->css, css);
4030 }
ddbcc7e8
PM
4031
4032 return 0;
4033}
4034
48ddbe19
TH
4035static void css_dput_fn(struct work_struct *work)
4036{
4037 struct cgroup_subsys_state *css =
4038 container_of(work, struct cgroup_subsys_state, dput_work);
5db9a4d9
TH
4039 struct dentry *dentry = css->cgroup->dentry;
4040 struct super_block *sb = dentry->d_sb;
48ddbe19 4041
5db9a4d9
TH
4042 atomic_inc(&sb->s_active);
4043 dput(dentry);
4044 deactivate_super(sb);
48ddbe19
TH
4045}
4046
ddbcc7e8
PM
4047static void init_cgroup_css(struct cgroup_subsys_state *css,
4048 struct cgroup_subsys *ss,
bd89aabc 4049 struct cgroup *cgrp)
ddbcc7e8 4050{
bd89aabc 4051 css->cgroup = cgrp;
e7c5ec91 4052 atomic_set(&css->refcnt, 1);
ddbcc7e8 4053 css->flags = 0;
38460b48 4054 css->id = NULL;
bd89aabc 4055 if (cgrp == dummytop)
38b53aba 4056 css->flags |= CSS_ROOT;
bd89aabc
PM
4057 BUG_ON(cgrp->subsys[ss->subsys_id]);
4058 cgrp->subsys[ss->subsys_id] = css;
48ddbe19
TH
4059
4060 /*
ed957793
TH
4061 * css holds an extra ref to @cgrp->dentry which is put on the last
4062 * css_put(). dput() requires process context, which css_put() may
4063 * be called without. @css->dput_work will be used to invoke
4064 * dput() asynchronously from css_put().
48ddbe19
TH
4065 */
4066 INIT_WORK(&css->dput_work, css_dput_fn);
ddbcc7e8
PM
4067}
4068
b1929db4
TH
4069/* invoke ->post_create() on a new CSS and mark it online if successful */
4070static int online_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
a31f2d3f 4071{
b1929db4
TH
4072 int ret = 0;
4073
a31f2d3f
TH
4074 lockdep_assert_held(&cgroup_mutex);
4075
92fb9748
TH
4076 if (ss->css_online)
4077 ret = ss->css_online(cgrp);
b1929db4
TH
4078 if (!ret)
4079 cgrp->subsys[ss->subsys_id]->flags |= CSS_ONLINE;
4080 return ret;
a31f2d3f
TH
4081}
4082
4083/* if the CSS is online, invoke ->pre_destory() on it and mark it offline */
4084static void offline_css(struct cgroup_subsys *ss, struct cgroup *cgrp)
4085 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
4086{
4087 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4088
4089 lockdep_assert_held(&cgroup_mutex);
4090
4091 if (!(css->flags & CSS_ONLINE))
4092 return;
4093
d7eeac19 4094 if (ss->css_offline)
92fb9748 4095 ss->css_offline(cgrp);
a31f2d3f
TH
4096
4097 cgrp->subsys[ss->subsys_id]->flags &= ~CSS_ONLINE;
4098}
4099
ddbcc7e8 4100/*
a043e3b2
LZ
4101 * cgroup_create - create a cgroup
4102 * @parent: cgroup that will be parent of the new cgroup
4103 * @dentry: dentry of the new cgroup
4104 * @mode: mode to set on new inode
ddbcc7e8 4105 *
a043e3b2 4106 * Must be called with the mutex on the parent inode held
ddbcc7e8 4107 */
ddbcc7e8 4108static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
a5e7ed32 4109 umode_t mode)
ddbcc7e8 4110{
bd89aabc 4111 struct cgroup *cgrp;
65dff759 4112 struct cgroup_name *name;
ddbcc7e8
PM
4113 struct cgroupfs_root *root = parent->root;
4114 int err = 0;
4115 struct cgroup_subsys *ss;
4116 struct super_block *sb = root->sb;
4117
0a950f65 4118 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
4119 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4120 if (!cgrp)
ddbcc7e8
PM
4121 return -ENOMEM;
4122
65dff759
LZ
4123 name = cgroup_alloc_name(dentry);
4124 if (!name)
4125 goto err_free_cgrp;
4126 rcu_assign_pointer(cgrp->name, name);
4127
0a950f65
TH
4128 cgrp->id = ida_simple_get(&root->cgroup_ida, 1, 0, GFP_KERNEL);
4129 if (cgrp->id < 0)
65dff759 4130 goto err_free_name;
0a950f65 4131
976c06bc
TH
4132 /*
4133 * Only live parents can have children. Note that the liveliness
4134 * check isn't strictly necessary because cgroup_mkdir() and
4135 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
4136 * anyway so that locking is contained inside cgroup proper and we
4137 * don't get nasty surprises if we ever grow another caller.
4138 */
4139 if (!cgroup_lock_live_group(parent)) {
4140 err = -ENODEV;
0a950f65 4141 goto err_free_id;
976c06bc
TH
4142 }
4143
ddbcc7e8
PM
4144 /* Grab a reference on the superblock so the hierarchy doesn't
4145 * get deleted on unmount if there are child cgroups. This
4146 * can be done outside cgroup_mutex, since the sb can't
4147 * disappear while someone has an open control file on the
4148 * fs */
4149 atomic_inc(&sb->s_active);
4150
cc31edce 4151 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4152
fe1c06ca
LZ
4153 dentry->d_fsdata = cgrp;
4154 cgrp->dentry = dentry;
4155
bd89aabc
PM
4156 cgrp->parent = parent;
4157 cgrp->root = parent->root;
4158 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 4159
b6abdb0e
LZ
4160 if (notify_on_release(parent))
4161 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4162
2260e7fc
TH
4163 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4164 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4165
ddbcc7e8 4166 for_each_subsys(root, ss) {
8c7f6edb 4167 struct cgroup_subsys_state *css;
4528fd05 4168
92fb9748 4169 css = ss->css_alloc(cgrp);
ddbcc7e8
PM
4170 if (IS_ERR(css)) {
4171 err = PTR_ERR(css);
4b8b47eb 4172 goto err_free_all;
ddbcc7e8 4173 }
bd89aabc 4174 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
4175 if (ss->use_id) {
4176 err = alloc_css_id(ss, parent, cgrp);
4177 if (err)
4b8b47eb 4178 goto err_free_all;
4528fd05 4179 }
ddbcc7e8
PM
4180 }
4181
4e139afc
TH
4182 /*
4183 * Create directory. cgroup_create_file() returns with the new
4184 * directory locked on success so that it can be populated without
4185 * dropping cgroup_mutex.
4186 */
28fd6f30 4187 err = cgroup_create_file(dentry, S_IFDIR | mode, sb);
ddbcc7e8 4188 if (err < 0)
4b8b47eb 4189 goto err_free_all;
4e139afc 4190 lockdep_assert_held(&dentry->d_inode->i_mutex);
ddbcc7e8 4191
4e139afc 4192 /* allocation complete, commit to creation */
4e139afc
TH
4193 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4194 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
4195 root->number_of_cgroups++;
28fd6f30 4196
b1929db4
TH
4197 /* each css holds a ref to the cgroup's dentry */
4198 for_each_subsys(root, ss)
ed957793 4199 dget(dentry);
48ddbe19 4200
415cf07a
LZ
4201 /* hold a ref to the parent's dentry */
4202 dget(parent->dentry);
4203
b1929db4
TH
4204 /* creation succeeded, notify subsystems */
4205 for_each_subsys(root, ss) {
4206 err = online_css(ss, cgrp);
4207 if (err)
4208 goto err_destroy;
1f869e87
GC
4209
4210 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4211 parent->parent) {
4212 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4213 current->comm, current->pid, ss->name);
4214 if (!strcmp(ss->name, "memory"))
4215 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4216 ss->warned_broken_hierarchy = true;
4217 }
a8638030
TH
4218 }
4219
a1a71b45 4220 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4b8b47eb
TH
4221 if (err)
4222 goto err_destroy;
ddbcc7e8
PM
4223
4224 mutex_unlock(&cgroup_mutex);
bd89aabc 4225 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
4226
4227 return 0;
4228
4b8b47eb 4229err_free_all:
ddbcc7e8 4230 for_each_subsys(root, ss) {
bd89aabc 4231 if (cgrp->subsys[ss->subsys_id])
92fb9748 4232 ss->css_free(cgrp);
ddbcc7e8 4233 }
ddbcc7e8 4234 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
4235 /* Release the reference count that we took on the superblock */
4236 deactivate_super(sb);
0a950f65
TH
4237err_free_id:
4238 ida_simple_remove(&root->cgroup_ida, cgrp->id);
65dff759
LZ
4239err_free_name:
4240 kfree(rcu_dereference_raw(cgrp->name));
4b8b47eb 4241err_free_cgrp:
bd89aabc 4242 kfree(cgrp);
ddbcc7e8 4243 return err;
4b8b47eb
TH
4244
4245err_destroy:
4246 cgroup_destroy_locked(cgrp);
4247 mutex_unlock(&cgroup_mutex);
4248 mutex_unlock(&dentry->d_inode->i_mutex);
4249 return err;
ddbcc7e8
PM
4250}
4251
18bb1db3 4252static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
ddbcc7e8
PM
4253{
4254 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4255
4256 /* the vfs holds inode->i_mutex already */
4257 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4258}
4259
42809dd4
TH
4260static int cgroup_destroy_locked(struct cgroup *cgrp)
4261 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4262{
42809dd4
TH
4263 struct dentry *d = cgrp->dentry;
4264 struct cgroup *parent = cgrp->parent;
4ab78683 4265 struct cgroup_event *event, *tmp;
ed957793 4266 struct cgroup_subsys *ss;
ddbcc7e8 4267
42809dd4
TH
4268 lockdep_assert_held(&d->d_inode->i_mutex);
4269 lockdep_assert_held(&cgroup_mutex);
4270
4271 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children))
ddbcc7e8 4272 return -EBUSY;
a043e3b2 4273
88703267 4274 /*
1a90dd50
TH
4275 * Block new css_tryget() by deactivating refcnt and mark @cgrp
4276 * removed. This makes future css_tryget() and child creation
4277 * attempts fail thus maintaining the removal conditions verified
4278 * above.
88703267 4279 */
ed957793
TH
4280 for_each_subsys(cgrp->root, ss) {
4281 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
88703267 4282
ed957793
TH
4283 WARN_ON(atomic_read(&css->refcnt) < 0);
4284 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
88703267 4285 }
1a90dd50 4286 set_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8 4287
a31f2d3f 4288 /* tell subsystems to initate destruction */
1a90dd50 4289 for_each_subsys(cgrp->root, ss)
a31f2d3f 4290 offline_css(ss, cgrp);
ed957793
TH
4291
4292 /*
ed957793
TH
4293 * Put all the base refs. Each css holds an extra reference to the
4294 * cgroup's dentry and cgroup removal proceeds regardless of css
4295 * refs. On the last put of each css, whenever that may be, the
4296 * extra dentry ref is put so that dentry destruction happens only
4297 * after all css's are released.
4298 */
e9316080
TH
4299 for_each_subsys(cgrp->root, ss)
4300 css_put(cgrp->subsys[ss->subsys_id]);
ddbcc7e8 4301
cdcc136f 4302 raw_spin_lock(&release_list_lock);
bd89aabc 4303 if (!list_empty(&cgrp->release_list))
8d258797 4304 list_del_init(&cgrp->release_list);
cdcc136f 4305 raw_spin_unlock(&release_list_lock);
999cd8a4 4306
999cd8a4 4307 /* delete this cgroup from parent->children */
eb6fd504 4308 list_del_rcu(&cgrp->sibling);
b0ca5a84
TH
4309 list_del_init(&cgrp->allcg_node);
4310
42809dd4 4311 dget(d);
ddbcc7e8
PM
4312 cgroup_d_remove_dir(d);
4313 dput(d);
ddbcc7e8 4314
bd89aabc 4315 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
4316 check_for_release(parent);
4317
4ab78683
KS
4318 /*
4319 * Unregister events and notify userspace.
4320 * Notify userspace about cgroup removing only after rmdir of cgroup
810cbee4 4321 * directory to avoid race between userspace and kernelspace.
4ab78683
KS
4322 */
4323 spin_lock(&cgrp->event_list_lock);
810cbee4 4324 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
9718ceb3 4325 list_del_init(&event->list);
4ab78683
KS
4326 schedule_work(&event->remove);
4327 }
810cbee4 4328 spin_unlock(&cgrp->event_list_lock);
4ab78683 4329
ddbcc7e8
PM
4330 return 0;
4331}
4332
42809dd4
TH
4333static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4334{
4335 int ret;
4336
4337 mutex_lock(&cgroup_mutex);
4338 ret = cgroup_destroy_locked(dentry->d_fsdata);
4339 mutex_unlock(&cgroup_mutex);
4340
4341 return ret;
4342}
4343
8e3f6541
TH
4344static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4345{
4346 INIT_LIST_HEAD(&ss->cftsets);
4347
4348 /*
4349 * base_cftset is embedded in subsys itself, no need to worry about
4350 * deregistration.
4351 */
4352 if (ss->base_cftypes) {
4353 ss->base_cftset.cfts = ss->base_cftypes;
4354 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4355 }
4356}
4357
06a11920 4358static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 4359{
ddbcc7e8 4360 struct cgroup_subsys_state *css;
cfe36bde
DC
4361
4362 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4363
648bb56d
TH
4364 mutex_lock(&cgroup_mutex);
4365
8e3f6541
TH
4366 /* init base cftset */
4367 cgroup_init_cftsets(ss);
4368
ddbcc7e8 4369 /* Create the top cgroup state for this subsystem */
33a68ac1 4370 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8 4371 ss->root = &rootnode;
92fb9748 4372 css = ss->css_alloc(dummytop);
ddbcc7e8
PM
4373 /* We don't handle early failures gracefully */
4374 BUG_ON(IS_ERR(css));
4375 init_cgroup_css(css, ss, dummytop);
4376
e8d55fde 4377 /* Update the init_css_set to contain a subsys
817929ec 4378 * pointer to this state - since the subsystem is
e8d55fde
LZ
4379 * newly registered, all tasks and hence the
4380 * init_css_set is in the subsystem's top cgroup. */
b48c6a80 4381 init_css_set.subsys[ss->subsys_id] = css;
ddbcc7e8
PM
4382
4383 need_forkexit_callback |= ss->fork || ss->exit;
4384
e8d55fde
LZ
4385 /* At system boot, before all subsystems have been
4386 * registered, no tasks have been forked, so we don't
4387 * need to invoke fork callbacks here. */
4388 BUG_ON(!list_empty(&init_task.tasks));
4389
ddbcc7e8 4390 ss->active = 1;
b1929db4 4391 BUG_ON(online_css(ss, dummytop));
a8638030 4392
648bb56d
TH
4393 mutex_unlock(&cgroup_mutex);
4394
e6a1105b
BB
4395 /* this function shouldn't be used with modular subsystems, since they
4396 * need to register a subsys_id, among other things */
4397 BUG_ON(ss->module);
4398}
4399
4400/**
4401 * cgroup_load_subsys: load and register a modular subsystem at runtime
4402 * @ss: the subsystem to load
4403 *
4404 * This function should be called in a modular subsystem's initcall. If the
88393161 4405 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
4406 * up for use. If the subsystem is built-in anyway, work is delegated to the
4407 * simpler cgroup_init_subsys.
4408 */
4409int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4410{
e6a1105b 4411 struct cgroup_subsys_state *css;
d19e19de 4412 int i, ret;
b67bfe0d 4413 struct hlist_node *tmp;
0ac801fe
LZ
4414 struct css_set *cg;
4415 unsigned long key;
e6a1105b
BB
4416
4417 /* check name and function validity */
4418 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
92fb9748 4419 ss->css_alloc == NULL || ss->css_free == NULL)
e6a1105b
BB
4420 return -EINVAL;
4421
4422 /*
4423 * we don't support callbacks in modular subsystems. this check is
4424 * before the ss->module check for consistency; a subsystem that could
4425 * be a module should still have no callbacks even if the user isn't
4426 * compiling it as one.
4427 */
4428 if (ss->fork || ss->exit)
4429 return -EINVAL;
4430
4431 /*
4432 * an optionally modular subsystem is built-in: we want to do nothing,
4433 * since cgroup_init_subsys will have already taken care of it.
4434 */
4435 if (ss->module == NULL) {
be45c900 4436 /* a sanity check */
e6a1105b
BB
4437 BUG_ON(subsys[ss->subsys_id] != ss);
4438 return 0;
4439 }
4440
8e3f6541
TH
4441 /* init base cftset */
4442 cgroup_init_cftsets(ss);
4443
e6a1105b 4444 mutex_lock(&cgroup_mutex);
8a8e04df 4445 subsys[ss->subsys_id] = ss;
e6a1105b
BB
4446
4447 /*
92fb9748
TH
4448 * no ss->css_alloc seems to need anything important in the ss
4449 * struct, so this can happen first (i.e. before the rootnode
4450 * attachment).
e6a1105b 4451 */
92fb9748 4452 css = ss->css_alloc(dummytop);
e6a1105b
BB
4453 if (IS_ERR(css)) {
4454 /* failure case - need to deassign the subsys[] slot. */
8a8e04df 4455 subsys[ss->subsys_id] = NULL;
e6a1105b
BB
4456 mutex_unlock(&cgroup_mutex);
4457 return PTR_ERR(css);
4458 }
4459
4460 list_add(&ss->sibling, &rootnode.subsys_list);
4461 ss->root = &rootnode;
4462
4463 /* our new subsystem will be attached to the dummy hierarchy. */
4464 init_cgroup_css(css, ss, dummytop);
4465 /* init_idr must be after init_cgroup_css because it sets css->id. */
4466 if (ss->use_id) {
d19e19de
TH
4467 ret = cgroup_init_idr(ss, css);
4468 if (ret)
4469 goto err_unload;
e6a1105b
BB
4470 }
4471
4472 /*
4473 * Now we need to entangle the css into the existing css_sets. unlike
4474 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4475 * will need a new pointer to it; done by iterating the css_set_table.
4476 * furthermore, modifying the existing css_sets will corrupt the hash
4477 * table state, so each changed css_set will need its hash recomputed.
4478 * this is all done under the css_set_lock.
4479 */
4480 write_lock(&css_set_lock);
b67bfe0d 4481 hash_for_each_safe(css_set_table, i, tmp, cg, hlist) {
0ac801fe
LZ
4482 /* skip entries that we already rehashed */
4483 if (cg->subsys[ss->subsys_id])
4484 continue;
4485 /* remove existing entry */
4486 hash_del(&cg->hlist);
4487 /* set new value */
4488 cg->subsys[ss->subsys_id] = css;
4489 /* recompute hash and restore entry */
4490 key = css_set_hash(cg->subsys);
b67bfe0d 4491 hash_add(css_set_table, &cg->hlist, key);
e6a1105b
BB
4492 }
4493 write_unlock(&css_set_lock);
4494
e6a1105b 4495 ss->active = 1;
b1929db4
TH
4496 ret = online_css(ss, dummytop);
4497 if (ret)
4498 goto err_unload;
a8638030 4499
e6a1105b
BB
4500 /* success! */
4501 mutex_unlock(&cgroup_mutex);
4502 return 0;
d19e19de
TH
4503
4504err_unload:
4505 mutex_unlock(&cgroup_mutex);
4506 /* @ss can't be mounted here as try_module_get() would fail */
4507 cgroup_unload_subsys(ss);
4508 return ret;
ddbcc7e8 4509}
e6a1105b 4510EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 4511
cf5d5941
BB
4512/**
4513 * cgroup_unload_subsys: unload a modular subsystem
4514 * @ss: the subsystem to unload
4515 *
4516 * This function should be called in a modular subsystem's exitcall. When this
4517 * function is invoked, the refcount on the subsystem's module will be 0, so
4518 * the subsystem will not be attached to any hierarchy.
4519 */
4520void cgroup_unload_subsys(struct cgroup_subsys *ss)
4521{
4522 struct cg_cgroup_link *link;
cf5d5941
BB
4523
4524 BUG_ON(ss->module == NULL);
4525
4526 /*
4527 * we shouldn't be called if the subsystem is in use, and the use of
4528 * try_module_get in parse_cgroupfs_options should ensure that it
4529 * doesn't start being used while we're killing it off.
4530 */
4531 BUG_ON(ss->root != &rootnode);
4532
4533 mutex_lock(&cgroup_mutex);
02ae7486 4534
a31f2d3f 4535 offline_css(ss, dummytop);
02ae7486
TH
4536 ss->active = 0;
4537
c897ff68 4538 if (ss->use_id)
02ae7486 4539 idr_destroy(&ss->idr);
02ae7486 4540
cf5d5941 4541 /* deassign the subsys_id */
cf5d5941
BB
4542 subsys[ss->subsys_id] = NULL;
4543
4544 /* remove subsystem from rootnode's list of subsystems */
8d258797 4545 list_del_init(&ss->sibling);
cf5d5941
BB
4546
4547 /*
4548 * disentangle the css from all css_sets attached to the dummytop. as
4549 * in loading, we need to pay our respects to the hashtable gods.
4550 */
4551 write_lock(&css_set_lock);
4552 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4553 struct css_set *cg = link->cg;
0ac801fe 4554 unsigned long key;
cf5d5941 4555
0ac801fe 4556 hash_del(&cg->hlist);
cf5d5941 4557 cg->subsys[ss->subsys_id] = NULL;
0ac801fe
LZ
4558 key = css_set_hash(cg->subsys);
4559 hash_add(css_set_table, &cg->hlist, key);
cf5d5941
BB
4560 }
4561 write_unlock(&css_set_lock);
4562
4563 /*
92fb9748
TH
4564 * remove subsystem's css from the dummytop and free it - need to
4565 * free before marking as null because ss->css_free needs the
4566 * cgrp->subsys pointer to find their state. note that this also
4567 * takes care of freeing the css_id.
cf5d5941 4568 */
92fb9748 4569 ss->css_free(dummytop);
cf5d5941
BB
4570 dummytop->subsys[ss->subsys_id] = NULL;
4571
4572 mutex_unlock(&cgroup_mutex);
4573}
4574EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4575
ddbcc7e8 4576/**
a043e3b2
LZ
4577 * cgroup_init_early - cgroup initialization at system boot
4578 *
4579 * Initialize cgroups at system boot, and initialize any
4580 * subsystems that request early init.
ddbcc7e8
PM
4581 */
4582int __init cgroup_init_early(void)
4583{
4584 int i;
146aa1bd 4585 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
4586 INIT_LIST_HEAD(&init_css_set.cg_links);
4587 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 4588 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 4589 css_set_count = 1;
ddbcc7e8 4590 init_cgroup_root(&rootnode);
817929ec
PM
4591 root_count = 1;
4592 init_task.cgroups = &init_css_set;
4593
4594 init_css_set_link.cg = &init_css_set;
7717f7ba 4595 init_css_set_link.cgrp = dummytop;
bd89aabc 4596 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
4597 &rootnode.top_cgroup.css_sets);
4598 list_add(&init_css_set_link.cg_link_list,
4599 &init_css_set.cg_links);
ddbcc7e8 4600
be45c900 4601 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
4602 struct cgroup_subsys *ss = subsys[i];
4603
be45c900
DW
4604 /* at bootup time, we don't worry about modular subsystems */
4605 if (!ss || ss->module)
4606 continue;
4607
ddbcc7e8
PM
4608 BUG_ON(!ss->name);
4609 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
92fb9748
TH
4610 BUG_ON(!ss->css_alloc);
4611 BUG_ON(!ss->css_free);
ddbcc7e8 4612 if (ss->subsys_id != i) {
cfe36bde 4613 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
4614 ss->name, ss->subsys_id);
4615 BUG();
4616 }
4617
4618 if (ss->early_init)
4619 cgroup_init_subsys(ss);
4620 }
4621 return 0;
4622}
4623
4624/**
a043e3b2
LZ
4625 * cgroup_init - cgroup initialization
4626 *
4627 * Register cgroup filesystem and /proc file, and initialize
4628 * any subsystems that didn't request early init.
ddbcc7e8
PM
4629 */
4630int __init cgroup_init(void)
4631{
4632 int err;
4633 int i;
0ac801fe 4634 unsigned long key;
a424316c
PM
4635
4636 err = bdi_init(&cgroup_backing_dev_info);
4637 if (err)
4638 return err;
ddbcc7e8 4639
be45c900 4640 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
ddbcc7e8 4641 struct cgroup_subsys *ss = subsys[i];
be45c900
DW
4642
4643 /* at bootup time, we don't worry about modular subsystems */
4644 if (!ss || ss->module)
4645 continue;
ddbcc7e8
PM
4646 if (!ss->early_init)
4647 cgroup_init_subsys(ss);
38460b48 4648 if (ss->use_id)
e6a1105b 4649 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
4650 }
4651
472b1053 4652 /* Add init_css_set to the hash table */
0ac801fe
LZ
4653 key = css_set_hash(init_css_set.subsys);
4654 hash_add(css_set_table, &init_css_set.hlist, key);
2c6ab6d2 4655 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
4656
4657 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4658 if (!cgroup_kobj) {
4659 err = -ENOMEM;
4660 goto out;
4661 }
4662
ddbcc7e8 4663 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4664 if (err < 0) {
4665 kobject_put(cgroup_kobj);
ddbcc7e8 4666 goto out;
676db4af 4667 }
ddbcc7e8 4668
46ae220b 4669 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4670
ddbcc7e8 4671out:
a424316c
PM
4672 if (err)
4673 bdi_destroy(&cgroup_backing_dev_info);
4674
ddbcc7e8
PM
4675 return err;
4676}
b4f48b63 4677
a424316c
PM
4678/*
4679 * proc_cgroup_show()
4680 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4681 * - Used for /proc/<pid>/cgroup.
4682 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4683 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4684 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4685 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4686 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4687 * cgroup to top_cgroup.
4688 */
4689
4690/* TODO: Use a proper seq_file iterator */
4691static int proc_cgroup_show(struct seq_file *m, void *v)
4692{
4693 struct pid *pid;
4694 struct task_struct *tsk;
4695 char *buf;
4696 int retval;
4697 struct cgroupfs_root *root;
4698
4699 retval = -ENOMEM;
4700 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4701 if (!buf)
4702 goto out;
4703
4704 retval = -ESRCH;
4705 pid = m->private;
4706 tsk = get_pid_task(pid, PIDTYPE_PID);
4707 if (!tsk)
4708 goto out_free;
4709
4710 retval = 0;
4711
4712 mutex_lock(&cgroup_mutex);
4713
e5f6a860 4714 for_each_active_root(root) {
a424316c 4715 struct cgroup_subsys *ss;
bd89aabc 4716 struct cgroup *cgrp;
a424316c
PM
4717 int count = 0;
4718
2c6ab6d2 4719 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4720 for_each_subsys(root, ss)
4721 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4722 if (strlen(root->name))
4723 seq_printf(m, "%sname=%s", count ? "," : "",
4724 root->name);
a424316c 4725 seq_putc(m, ':');
7717f7ba 4726 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4727 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4728 if (retval < 0)
4729 goto out_unlock;
4730 seq_puts(m, buf);
4731 seq_putc(m, '\n');
4732 }
4733
4734out_unlock:
4735 mutex_unlock(&cgroup_mutex);
4736 put_task_struct(tsk);
4737out_free:
4738 kfree(buf);
4739out:
4740 return retval;
4741}
4742
4743static int cgroup_open(struct inode *inode, struct file *file)
4744{
4745 struct pid *pid = PROC_I(inode)->pid;
4746 return single_open(file, proc_cgroup_show, pid);
4747}
4748
828c0950 4749const struct file_operations proc_cgroup_operations = {
a424316c
PM
4750 .open = cgroup_open,
4751 .read = seq_read,
4752 .llseek = seq_lseek,
4753 .release = single_release,
4754};
4755
4756/* Display information about each subsystem and each hierarchy */
4757static int proc_cgroupstats_show(struct seq_file *m, void *v)
4758{
4759 int i;
a424316c 4760
8bab8dde 4761 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4762 /*
4763 * ideally we don't want subsystems moving around while we do this.
4764 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4765 * subsys/hierarchy state.
4766 */
a424316c 4767 mutex_lock(&cgroup_mutex);
a424316c
PM
4768 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4769 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4770 if (ss == NULL)
4771 continue;
2c6ab6d2
PM
4772 seq_printf(m, "%s\t%d\t%d\t%d\n",
4773 ss->name, ss->root->hierarchy_id,
8bab8dde 4774 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4775 }
4776 mutex_unlock(&cgroup_mutex);
4777 return 0;
4778}
4779
4780static int cgroupstats_open(struct inode *inode, struct file *file)
4781{
9dce07f1 4782 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4783}
4784
828c0950 4785static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4786 .open = cgroupstats_open,
4787 .read = seq_read,
4788 .llseek = seq_lseek,
4789 .release = single_release,
4790};
4791
b4f48b63
PM
4792/**
4793 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4794 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4795 *
4796 * Description: A task inherits its parent's cgroup at fork().
4797 *
4798 * A pointer to the shared css_set was automatically copied in
4799 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4800 * it was not made under the protection of RCU or cgroup_mutex, so
4801 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4802 * have already changed current->cgroups, allowing the previously
4803 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4804 *
4805 * At the point that cgroup_fork() is called, 'current' is the parent
4806 * task, and the passed argument 'child' points to the child task.
4807 */
4808void cgroup_fork(struct task_struct *child)
4809{
9bb71308 4810 task_lock(current);
817929ec
PM
4811 child->cgroups = current->cgroups;
4812 get_css_set(child->cgroups);
9bb71308 4813 task_unlock(current);
817929ec 4814 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4815}
4816
817929ec 4817/**
a043e3b2
LZ
4818 * cgroup_post_fork - called on a new task after adding it to the task list
4819 * @child: the task in question
4820 *
5edee61e
TH
4821 * Adds the task to the list running through its css_set if necessary and
4822 * call the subsystem fork() callbacks. Has to be after the task is
4823 * visible on the task list in case we race with the first call to
4824 * cgroup_iter_start() - to guarantee that the new task ends up on its
4825 * list.
a043e3b2 4826 */
817929ec
PM
4827void cgroup_post_fork(struct task_struct *child)
4828{
5edee61e
TH
4829 int i;
4830
3ce3230a
FW
4831 /*
4832 * use_task_css_set_links is set to 1 before we walk the tasklist
4833 * under the tasklist_lock and we read it here after we added the child
4834 * to the tasklist under the tasklist_lock as well. If the child wasn't
4835 * yet in the tasklist when we walked through it from
4836 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4837 * should be visible now due to the paired locking and barriers implied
4838 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4839 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4840 * lock on fork.
4841 */
817929ec
PM
4842 if (use_task_css_set_links) {
4843 write_lock(&css_set_lock);
d8783832
TH
4844 task_lock(child);
4845 if (list_empty(&child->cg_list))
817929ec 4846 list_add(&child->cg_list, &child->cgroups->tasks);
d8783832 4847 task_unlock(child);
817929ec
PM
4848 write_unlock(&css_set_lock);
4849 }
5edee61e
TH
4850
4851 /*
4852 * Call ss->fork(). This must happen after @child is linked on
4853 * css_set; otherwise, @child might change state between ->fork()
4854 * and addition to css_set.
4855 */
4856 if (need_forkexit_callback) {
7d8e0bf5
LZ
4857 /*
4858 * fork/exit callbacks are supported only for builtin
4859 * subsystems, and the builtin section of the subsys
4860 * array is immutable, so we don't need to lock the
4861 * subsys array here. On the other hand, modular section
4862 * of the array can be freed at module unload, so we
4863 * can't touch that.
4864 */
4865 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
5edee61e
TH
4866 struct cgroup_subsys *ss = subsys[i];
4867
5edee61e
TH
4868 if (ss->fork)
4869 ss->fork(child);
4870 }
4871 }
817929ec 4872}
5edee61e 4873
b4f48b63
PM
4874/**
4875 * cgroup_exit - detach cgroup from exiting task
4876 * @tsk: pointer to task_struct of exiting process
a043e3b2 4877 * @run_callback: run exit callbacks?
b4f48b63
PM
4878 *
4879 * Description: Detach cgroup from @tsk and release it.
4880 *
4881 * Note that cgroups marked notify_on_release force every task in
4882 * them to take the global cgroup_mutex mutex when exiting.
4883 * This could impact scaling on very large systems. Be reluctant to
4884 * use notify_on_release cgroups where very high task exit scaling
4885 * is required on large systems.
4886 *
4887 * the_top_cgroup_hack:
4888 *
4889 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4890 *
4891 * We call cgroup_exit() while the task is still competent to
4892 * handle notify_on_release(), then leave the task attached to the
4893 * root cgroup in each hierarchy for the remainder of its exit.
4894 *
4895 * To do this properly, we would increment the reference count on
4896 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4897 * code we would add a second cgroup function call, to drop that
4898 * reference. This would just create an unnecessary hot spot on
4899 * the top_cgroup reference count, to no avail.
4900 *
4901 * Normally, holding a reference to a cgroup without bumping its
4902 * count is unsafe. The cgroup could go away, or someone could
4903 * attach us to a different cgroup, decrementing the count on
4904 * the first cgroup that we never incremented. But in this case,
4905 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4906 * which wards off any cgroup_attach_task() attempts, or task is a failed
4907 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4908 */
4909void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4910{
817929ec 4911 struct css_set *cg;
d41d5a01 4912 int i;
817929ec
PM
4913
4914 /*
4915 * Unlink from the css_set task list if necessary.
4916 * Optimistically check cg_list before taking
4917 * css_set_lock
4918 */
4919 if (!list_empty(&tsk->cg_list)) {
4920 write_lock(&css_set_lock);
4921 if (!list_empty(&tsk->cg_list))
8d258797 4922 list_del_init(&tsk->cg_list);
817929ec
PM
4923 write_unlock(&css_set_lock);
4924 }
4925
b4f48b63
PM
4926 /* Reassign the task to the init_css_set. */
4927 task_lock(tsk);
817929ec
PM
4928 cg = tsk->cgroups;
4929 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4930
4931 if (run_callbacks && need_forkexit_callback) {
7d8e0bf5
LZ
4932 /*
4933 * fork/exit callbacks are supported only for builtin
4934 * subsystems, see cgroup_post_fork() for details.
4935 */
4936 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
d41d5a01 4937 struct cgroup_subsys *ss = subsys[i];
be45c900 4938
d41d5a01
PZ
4939 if (ss->exit) {
4940 struct cgroup *old_cgrp =
4941 rcu_dereference_raw(cg->subsys[i])->cgroup;
4942 struct cgroup *cgrp = task_cgroup(tsk, i);
761b3ef5 4943 ss->exit(cgrp, old_cgrp, tsk);
d41d5a01
PZ
4944 }
4945 }
4946 }
b4f48b63 4947 task_unlock(tsk);
d41d5a01 4948
b5d646f5 4949 put_css_set_taskexit(cg);
b4f48b63 4950}
697f4161 4951
bd89aabc 4952static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4953{
4954 /* All of these checks rely on RCU to keep the cgroup
4955 * structure alive */
f50daa70
LZ
4956 if (cgroup_is_releasable(cgrp) &&
4957 !atomic_read(&cgrp->count) && list_empty(&cgrp->children)) {
4958 /*
4959 * Control Group is currently removeable. If it's not
81a6a5cd 4960 * already queued for a userspace notification, queue
f50daa70
LZ
4961 * it now
4962 */
81a6a5cd 4963 int need_schedule_work = 0;
f50daa70 4964
cdcc136f 4965 raw_spin_lock(&release_list_lock);
bd89aabc
PM
4966 if (!cgroup_is_removed(cgrp) &&
4967 list_empty(&cgrp->release_list)) {
4968 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4969 need_schedule_work = 1;
4970 }
cdcc136f 4971 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4972 if (need_schedule_work)
4973 schedule_work(&release_agent_work);
4974 }
4975}
4976
d7b9fff7 4977/* Caller must verify that the css is not for root cgroup */
28b4c27b
TH
4978bool __css_tryget(struct cgroup_subsys_state *css)
4979{
e9316080
TH
4980 while (true) {
4981 int t, v;
28b4c27b 4982
e9316080
TH
4983 v = css_refcnt(css);
4984 t = atomic_cmpxchg(&css->refcnt, v, v + 1);
4985 if (likely(t == v))
28b4c27b 4986 return true;
e9316080
TH
4987 else if (t < 0)
4988 return false;
28b4c27b 4989 cpu_relax();
e9316080 4990 }
28b4c27b
TH
4991}
4992EXPORT_SYMBOL_GPL(__css_tryget);
4993
4994/* Caller must verify that the css is not for root cgroup */
4995void __css_put(struct cgroup_subsys_state *css)
81a6a5cd 4996{
8e3bbf42 4997 int v;
28b4c27b 4998
8e3bbf42 4999 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
f50daa70 5000 if (v == 0)
ed957793 5001 schedule_work(&css->dput_work);
81a6a5cd 5002}
67523c48 5003EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
5004
5005/*
5006 * Notify userspace when a cgroup is released, by running the
5007 * configured release agent with the name of the cgroup (path
5008 * relative to the root of cgroup file system) as the argument.
5009 *
5010 * Most likely, this user command will try to rmdir this cgroup.
5011 *
5012 * This races with the possibility that some other task will be
5013 * attached to this cgroup before it is removed, or that some other
5014 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5015 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5016 * unused, and this cgroup will be reprieved from its death sentence,
5017 * to continue to serve a useful existence. Next time it's released,
5018 * we will get notified again, if it still has 'notify_on_release' set.
5019 *
5020 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5021 * means only wait until the task is successfully execve()'d. The
5022 * separate release agent task is forked by call_usermodehelper(),
5023 * then control in this thread returns here, without waiting for the
5024 * release agent task. We don't bother to wait because the caller of
5025 * this routine has no use for the exit status of the release agent
5026 * task, so no sense holding our caller up for that.
81a6a5cd 5027 */
81a6a5cd
PM
5028static void cgroup_release_agent(struct work_struct *work)
5029{
5030 BUG_ON(work != &release_agent_work);
5031 mutex_lock(&cgroup_mutex);
cdcc136f 5032 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5033 while (!list_empty(&release_list)) {
5034 char *argv[3], *envp[3];
5035 int i;
e788e066 5036 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 5037 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5038 struct cgroup,
5039 release_list);
bd89aabc 5040 list_del_init(&cgrp->release_list);
cdcc136f 5041 raw_spin_unlock(&release_list_lock);
81a6a5cd 5042 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
5043 if (!pathbuf)
5044 goto continue_free;
5045 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5046 goto continue_free;
5047 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5048 if (!agentbuf)
5049 goto continue_free;
81a6a5cd
PM
5050
5051 i = 0;
e788e066
PM
5052 argv[i++] = agentbuf;
5053 argv[i++] = pathbuf;
81a6a5cd
PM
5054 argv[i] = NULL;
5055
5056 i = 0;
5057 /* minimal command environment */
5058 envp[i++] = "HOME=/";
5059 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5060 envp[i] = NULL;
5061
5062 /* Drop the lock while we invoke the usermode helper,
5063 * since the exec could involve hitting disk and hence
5064 * be a slow process */
5065 mutex_unlock(&cgroup_mutex);
5066 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5067 mutex_lock(&cgroup_mutex);
e788e066
PM
5068 continue_free:
5069 kfree(pathbuf);
5070 kfree(agentbuf);
cdcc136f 5071 raw_spin_lock(&release_list_lock);
81a6a5cd 5072 }
cdcc136f 5073 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5074 mutex_unlock(&cgroup_mutex);
5075}
8bab8dde
PM
5076
5077static int __init cgroup_disable(char *str)
5078{
5079 int i;
5080 char *token;
5081
5082 while ((token = strsep(&str, ",")) != NULL) {
5083 if (!*token)
5084 continue;
be45c900 5085 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8bab8dde
PM
5086 struct cgroup_subsys *ss = subsys[i];
5087
be45c900
DW
5088 /*
5089 * cgroup_disable, being at boot time, can't
5090 * know about module subsystems, so we don't
5091 * worry about them.
5092 */
5093 if (!ss || ss->module)
5094 continue;
5095
8bab8dde
PM
5096 if (!strcmp(token, ss->name)) {
5097 ss->disabled = 1;
5098 printk(KERN_INFO "Disabling %s control group"
5099 " subsystem\n", ss->name);
5100 break;
5101 }
5102 }
5103 }
5104 return 1;
5105}
5106__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
5107
5108/*
5109 * Functons for CSS ID.
5110 */
5111
5112/*
5113 *To get ID other than 0, this should be called when !cgroup_is_removed().
5114 */
5115unsigned short css_id(struct cgroup_subsys_state *css)
5116{
7f0f1546
KH
5117 struct css_id *cssid;
5118
5119 /*
5120 * This css_id() can return correct value when somone has refcnt
5121 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5122 * it's unchanged until freed.
5123 */
28b4c27b 5124 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5125
5126 if (cssid)
5127 return cssid->id;
5128 return 0;
5129}
67523c48 5130EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
5131
5132unsigned short css_depth(struct cgroup_subsys_state *css)
5133{
7f0f1546
KH
5134 struct css_id *cssid;
5135
28b4c27b 5136 cssid = rcu_dereference_check(css->id, css_refcnt(css));
38460b48
KH
5137
5138 if (cssid)
5139 return cssid->depth;
5140 return 0;
5141}
67523c48 5142EXPORT_SYMBOL_GPL(css_depth);
38460b48 5143
747388d7
KH
5144/**
5145 * css_is_ancestor - test "root" css is an ancestor of "child"
5146 * @child: the css to be tested.
5147 * @root: the css supporsed to be an ancestor of the child.
5148 *
5149 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
91c63734 5150 * this function reads css->id, the caller must hold rcu_read_lock().
747388d7
KH
5151 * But, considering usual usage, the csses should be valid objects after test.
5152 * Assuming that the caller will do some action to the child if this returns
5153 * returns true, the caller must take "child";s reference count.
5154 * If "child" is valid object and this returns true, "root" is valid, too.
5155 */
5156
38460b48 5157bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 5158 const struct cgroup_subsys_state *root)
38460b48 5159{
747388d7
KH
5160 struct css_id *child_id;
5161 struct css_id *root_id;
38460b48 5162
747388d7 5163 child_id = rcu_dereference(child->id);
91c63734
JW
5164 if (!child_id)
5165 return false;
747388d7 5166 root_id = rcu_dereference(root->id);
91c63734
JW
5167 if (!root_id)
5168 return false;
5169 if (child_id->depth < root_id->depth)
5170 return false;
5171 if (child_id->stack[root_id->depth] != root_id->id)
5172 return false;
5173 return true;
38460b48
KH
5174}
5175
38460b48
KH
5176void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5177{
5178 struct css_id *id = css->id;
5179 /* When this is called before css_id initialization, id can be NULL */
5180 if (!id)
5181 return;
5182
5183 BUG_ON(!ss->use_id);
5184
5185 rcu_assign_pointer(id->css, NULL);
5186 rcu_assign_pointer(css->id, NULL);
42aee6c4 5187 spin_lock(&ss->id_lock);
38460b48 5188 idr_remove(&ss->idr, id->id);
42aee6c4 5189 spin_unlock(&ss->id_lock);
025cea99 5190 kfree_rcu(id, rcu_head);
38460b48 5191}
67523c48 5192EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
5193
5194/*
5195 * This is called by init or create(). Then, calls to this function are
5196 * always serialized (By cgroup_mutex() at create()).
5197 */
5198
5199static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5200{
5201 struct css_id *newid;
d228d9ec 5202 int ret, size;
38460b48
KH
5203
5204 BUG_ON(!ss->use_id);
5205
5206 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5207 newid = kzalloc(size, GFP_KERNEL);
5208 if (!newid)
5209 return ERR_PTR(-ENOMEM);
d228d9ec
TH
5210
5211 idr_preload(GFP_KERNEL);
42aee6c4 5212 spin_lock(&ss->id_lock);
38460b48 5213 /* Don't use 0. allocates an ID of 1-65535 */
d228d9ec 5214 ret = idr_alloc(&ss->idr, newid, 1, CSS_ID_MAX + 1, GFP_NOWAIT);
42aee6c4 5215 spin_unlock(&ss->id_lock);
d228d9ec 5216 idr_preload_end();
38460b48
KH
5217
5218 /* Returns error when there are no free spaces for new ID.*/
d228d9ec 5219 if (ret < 0)
38460b48 5220 goto err_out;
38460b48 5221
d228d9ec 5222 newid->id = ret;
38460b48
KH
5223 newid->depth = depth;
5224 return newid;
38460b48
KH
5225err_out:
5226 kfree(newid);
d228d9ec 5227 return ERR_PTR(ret);
38460b48
KH
5228
5229}
5230
e6a1105b
BB
5231static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5232 struct cgroup_subsys_state *rootcss)
38460b48
KH
5233{
5234 struct css_id *newid;
38460b48 5235
42aee6c4 5236 spin_lock_init(&ss->id_lock);
38460b48
KH
5237 idr_init(&ss->idr);
5238
38460b48
KH
5239 newid = get_new_cssid(ss, 0);
5240 if (IS_ERR(newid))
5241 return PTR_ERR(newid);
5242
5243 newid->stack[0] = newid->id;
5244 newid->css = rootcss;
5245 rootcss->id = newid;
5246 return 0;
5247}
5248
5249static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5250 struct cgroup *child)
5251{
5252 int subsys_id, i, depth = 0;
5253 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 5254 struct css_id *child_id, *parent_id;
38460b48
KH
5255
5256 subsys_id = ss->subsys_id;
5257 parent_css = parent->subsys[subsys_id];
5258 child_css = child->subsys[subsys_id];
38460b48 5259 parent_id = parent_css->id;
94b3dd0f 5260 depth = parent_id->depth + 1;
38460b48
KH
5261
5262 child_id = get_new_cssid(ss, depth);
5263 if (IS_ERR(child_id))
5264 return PTR_ERR(child_id);
5265
5266 for (i = 0; i < depth; i++)
5267 child_id->stack[i] = parent_id->stack[i];
5268 child_id->stack[depth] = child_id->id;
5269 /*
5270 * child_id->css pointer will be set after this cgroup is available
5271 * see cgroup_populate_dir()
5272 */
5273 rcu_assign_pointer(child_css->id, child_id);
5274
5275 return 0;
5276}
5277
5278/**
5279 * css_lookup - lookup css by id
5280 * @ss: cgroup subsys to be looked into.
5281 * @id: the id
5282 *
5283 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5284 * NULL if not. Should be called under rcu_read_lock()
5285 */
5286struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5287{
5288 struct css_id *cssid = NULL;
5289
5290 BUG_ON(!ss->use_id);
5291 cssid = idr_find(&ss->idr, id);
5292
5293 if (unlikely(!cssid))
5294 return NULL;
5295
5296 return rcu_dereference(cssid->css);
5297}
67523c48 5298EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
5299
5300/**
5301 * css_get_next - lookup next cgroup under specified hierarchy.
5302 * @ss: pointer to subsystem
5303 * @id: current position of iteration.
5304 * @root: pointer to css. search tree under this.
5305 * @foundid: position of found object.
5306 *
5307 * Search next css under the specified hierarchy of rootid. Calling under
5308 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5309 */
5310struct cgroup_subsys_state *
5311css_get_next(struct cgroup_subsys *ss, int id,
5312 struct cgroup_subsys_state *root, int *foundid)
5313{
5314 struct cgroup_subsys_state *ret = NULL;
5315 struct css_id *tmp;
5316 int tmpid;
5317 int rootid = css_id(root);
5318 int depth = css_depth(root);
5319
5320 if (!rootid)
5321 return NULL;
5322
5323 BUG_ON(!ss->use_id);
ca464d69
HD
5324 WARN_ON_ONCE(!rcu_read_lock_held());
5325
38460b48
KH
5326 /* fill start point for scan */
5327 tmpid = id;
5328 while (1) {
5329 /*
5330 * scan next entry from bitmap(tree), tmpid is updated after
5331 * idr_get_next().
5332 */
38460b48 5333 tmp = idr_get_next(&ss->idr, &tmpid);
38460b48
KH
5334 if (!tmp)
5335 break;
5336 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5337 ret = rcu_dereference(tmp->css);
5338 if (ret) {
5339 *foundid = tmpid;
5340 break;
5341 }
5342 }
5343 /* continue to scan from next id */
5344 tmpid = tmpid + 1;
5345 }
5346 return ret;
5347}
5348
e5d1367f
SE
5349/*
5350 * get corresponding css from file open on cgroupfs directory
5351 */
5352struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5353{
5354 struct cgroup *cgrp;
5355 struct inode *inode;
5356 struct cgroup_subsys_state *css;
5357
496ad9aa 5358 inode = file_inode(f);
e5d1367f
SE
5359 /* check in cgroup filesystem dir */
5360 if (inode->i_op != &cgroup_dir_inode_operations)
5361 return ERR_PTR(-EBADF);
5362
5363 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5364 return ERR_PTR(-EINVAL);
5365
5366 /* get cgroup */
5367 cgrp = __d_cgrp(f->f_dentry);
5368 css = cgrp->subsys[id];
5369 return css ? css : ERR_PTR(-ENOENT);
5370}
5371
fe693435 5372#ifdef CONFIG_CGROUP_DEBUG
92fb9748 5373static struct cgroup_subsys_state *debug_css_alloc(struct cgroup *cont)
fe693435
PM
5374{
5375 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5376
5377 if (!css)
5378 return ERR_PTR(-ENOMEM);
5379
5380 return css;
5381}
5382
92fb9748 5383static void debug_css_free(struct cgroup *cont)
fe693435
PM
5384{
5385 kfree(cont->subsys[debug_subsys_id]);
5386}
5387
5388static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5389{
5390 return atomic_read(&cont->count);
5391}
5392
5393static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5394{
5395 return cgroup_task_count(cont);
5396}
5397
5398static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5399{
5400 return (u64)(unsigned long)current->cgroups;
5401}
5402
5403static u64 current_css_set_refcount_read(struct cgroup *cont,
5404 struct cftype *cft)
5405{
5406 u64 count;
5407
5408 rcu_read_lock();
5409 count = atomic_read(&current->cgroups->refcount);
5410 rcu_read_unlock();
5411 return count;
5412}
5413
7717f7ba
PM
5414static int current_css_set_cg_links_read(struct cgroup *cont,
5415 struct cftype *cft,
5416 struct seq_file *seq)
5417{
5418 struct cg_cgroup_link *link;
5419 struct css_set *cg;
5420
5421 read_lock(&css_set_lock);
5422 rcu_read_lock();
5423 cg = rcu_dereference(current->cgroups);
5424 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5425 struct cgroup *c = link->cgrp;
5426 const char *name;
5427
5428 if (c->dentry)
5429 name = c->dentry->d_name.name;
5430 else
5431 name = "?";
2c6ab6d2
PM
5432 seq_printf(seq, "Root %d group %s\n",
5433 c->root->hierarchy_id, name);
7717f7ba
PM
5434 }
5435 rcu_read_unlock();
5436 read_unlock(&css_set_lock);
5437 return 0;
5438}
5439
5440#define MAX_TASKS_SHOWN_PER_CSS 25
5441static int cgroup_css_links_read(struct cgroup *cont,
5442 struct cftype *cft,
5443 struct seq_file *seq)
5444{
5445 struct cg_cgroup_link *link;
5446
5447 read_lock(&css_set_lock);
5448 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5449 struct css_set *cg = link->cg;
5450 struct task_struct *task;
5451 int count = 0;
5452 seq_printf(seq, "css_set %p\n", cg);
5453 list_for_each_entry(task, &cg->tasks, cg_list) {
5454 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5455 seq_puts(seq, " ...\n");
5456 break;
5457 } else {
5458 seq_printf(seq, " task %d\n",
5459 task_pid_vnr(task));
5460 }
5461 }
5462 }
5463 read_unlock(&css_set_lock);
5464 return 0;
5465}
5466
fe693435
PM
5467static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5468{
5469 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5470}
5471
5472static struct cftype debug_files[] = {
5473 {
5474 .name = "cgroup_refcount",
5475 .read_u64 = cgroup_refcount_read,
5476 },
5477 {
5478 .name = "taskcount",
5479 .read_u64 = debug_taskcount_read,
5480 },
5481
5482 {
5483 .name = "current_css_set",
5484 .read_u64 = current_css_set_read,
5485 },
5486
5487 {
5488 .name = "current_css_set_refcount",
5489 .read_u64 = current_css_set_refcount_read,
5490 },
5491
7717f7ba
PM
5492 {
5493 .name = "current_css_set_cg_links",
5494 .read_seq_string = current_css_set_cg_links_read,
5495 },
5496
5497 {
5498 .name = "cgroup_css_links",
5499 .read_seq_string = cgroup_css_links_read,
5500 },
5501
fe693435
PM
5502 {
5503 .name = "releasable",
5504 .read_u64 = releasable_read,
5505 },
fe693435 5506
4baf6e33
TH
5507 { } /* terminate */
5508};
fe693435
PM
5509
5510struct cgroup_subsys debug_subsys = {
5511 .name = "debug",
92fb9748
TH
5512 .css_alloc = debug_css_alloc,
5513 .css_free = debug_css_free,
fe693435 5514 .subsys_id = debug_subsys_id,
4baf6e33 5515 .base_cftypes = debug_files,
fe693435
PM
5516};
5517#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.801825 seconds and 5 git commands to generate.