epoll: fix use-after-free in eventpoll_release_file
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
ddbcc7e8 49#include <linux/string.h>
bbcb81d0 50#include <linux/sort.h>
81a6a5cd 51#include <linux/kmod.h>
846c7bb0
BS
52#include <linux/delayacct.h>
53#include <linux/cgroupstats.h>
0ac801fe 54#include <linux/hashtable.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 58#include <linux/kthread.h>
776f02fa 59#include <linux/delay.h>
846c7bb0 60
60063497 61#include <linux/atomic.h>
ddbcc7e8 62
b1a21367
TH
63/*
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
68 */
69#define CGROUP_PIDLIST_DESTROY_DELAY HZ
70
8d7e6fb0
TH
71#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
73
e25e2cbb
TH
74/*
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
77 *
0e1d768f
TH
78 * css_set_rwsem protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
e25e2cbb 80 *
0e1d768f
TH
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
e25e2cbb 83 */
2219449a
TH
84#ifdef CONFIG_PROVE_RCU
85DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
86DECLARE_RWSEM(css_set_rwsem);
87EXPORT_SYMBOL_GPL(cgroup_mutex);
88EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 89#else
81a6a5cd 90static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 91static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
92#endif
93
6fa4918d 94/*
15a4c835
TH
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
6fa4918d
TH
97 */
98static DEFINE_SPINLOCK(cgroup_idr_lock);
99
69e943b7
TH
100/*
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
103 */
104static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 105
8353da1f 106#define cgroup_assert_mutex_or_rcu_locked() \
87fb54f1
TH
107 rcu_lockdep_assert(rcu_read_lock_held() || \
108 lockdep_is_held(&cgroup_mutex), \
8353da1f 109 "cgroup_mutex or RCU read lock required");
780cd8b3 110
e5fca243
TH
111/*
112 * cgroup destruction makes heavy use of work items and there can be a lot
113 * of concurrent destructions. Use a separate workqueue so that cgroup
114 * destruction work items don't end up filling up max_active of system_wq
115 * which may lead to deadlock.
116 */
117static struct workqueue_struct *cgroup_destroy_wq;
118
b1a21367
TH
119/*
120 * pidlist destructions need to be flushed on cgroup destruction. Use a
121 * separate workqueue as flush domain.
122 */
123static struct workqueue_struct *cgroup_pidlist_destroy_wq;
124
3ed80a62 125/* generate an array of cgroup subsystem pointers */
073219e9 126#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 127static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
128#include <linux/cgroup_subsys.h>
129};
073219e9
TH
130#undef SUBSYS
131
132/* array of cgroup subsystem names */
133#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
134static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
135#include <linux/cgroup_subsys.h>
136};
073219e9 137#undef SUBSYS
ddbcc7e8 138
ddbcc7e8 139/*
3dd06ffa 140 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
141 * unattached - it never has more than a single cgroup, and all tasks are
142 * part of that cgroup.
ddbcc7e8 143 */
a2dd4247 144struct cgroup_root cgrp_dfl_root;
9871bf95 145
a2dd4247
TH
146/*
147 * The default hierarchy always exists but is hidden until mounted for the
148 * first time. This is for backward compatibility.
149 */
150static bool cgrp_dfl_root_visible;
ddbcc7e8 151
5533e011
TH
152/* some controllers are not supported in the default hierarchy */
153static const unsigned int cgrp_dfl_root_inhibit_ss_mask = 0
154#ifdef CONFIG_CGROUP_DEBUG
155 | (1 << debug_cgrp_id)
156#endif
157 ;
158
ddbcc7e8
PM
159/* The list of hierarchy roots */
160
9871bf95
TH
161static LIST_HEAD(cgroup_roots);
162static int cgroup_root_count;
ddbcc7e8 163
3417ae1f 164/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 165static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 166
794611a1 167/*
0cb51d71
TH
168 * Assign a monotonically increasing serial number to csses. It guarantees
169 * cgroups with bigger numbers are newer than those with smaller numbers.
170 * Also, as csses are always appended to the parent's ->children list, it
171 * guarantees that sibling csses are always sorted in the ascending serial
172 * number order on the list. Protected by cgroup_mutex.
794611a1 173 */
0cb51d71 174static u64 css_serial_nr_next = 1;
794611a1 175
ddbcc7e8 176/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
177 * check for fork/exit handlers to call. This avoids us having to do
178 * extra work in the fork/exit path if none of the subsystems need to
179 * be called.
ddbcc7e8 180 */
8947f9d5 181static int need_forkexit_callback __read_mostly;
ddbcc7e8 182
628f7cd4
TH
183static struct cftype cgroup_base_files[];
184
59f5296b 185static void cgroup_put(struct cgroup *cgrp);
3dd06ffa 186static int rebind_subsystems(struct cgroup_root *dst_root,
69dfa00c 187 unsigned int ss_mask);
42809dd4 188static int cgroup_destroy_locked(struct cgroup *cgrp);
f8f22e53 189static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss);
9d755d33 190static void css_release(struct percpu_ref *ref);
f8f22e53 191static void kill_css(struct cgroup_subsys_state *css);
2bb566cb
TH
192static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
193 bool is_add);
b1a21367 194static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 195
6fa4918d
TH
196/* IDR wrappers which synchronize using cgroup_idr_lock */
197static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
198 gfp_t gfp_mask)
199{
200 int ret;
201
202 idr_preload(gfp_mask);
54504e97 203 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 204 ret = idr_alloc(idr, ptr, start, end, gfp_mask);
54504e97 205 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
206 idr_preload_end();
207 return ret;
208}
209
210static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
211{
212 void *ret;
213
54504e97 214 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 215 ret = idr_replace(idr, ptr, id);
54504e97 216 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
217 return ret;
218}
219
220static void cgroup_idr_remove(struct idr *idr, int id)
221{
54504e97 222 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 223 idr_remove(idr, id);
54504e97 224 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
225}
226
d51f39b0
TH
227static struct cgroup *cgroup_parent(struct cgroup *cgrp)
228{
229 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
230
231 if (parent_css)
232 return container_of(parent_css, struct cgroup, self);
233 return NULL;
234}
235
95109b62
TH
236/**
237 * cgroup_css - obtain a cgroup's css for the specified subsystem
238 * @cgrp: the cgroup of interest
9d800df1 239 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 240 *
ca8bdcaf
TH
241 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
242 * function must be called either under cgroup_mutex or rcu_read_lock() and
243 * the caller is responsible for pinning the returned css if it wants to
244 * keep accessing it outside the said locks. This function may return
245 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
246 */
247static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 248 struct cgroup_subsys *ss)
95109b62 249{
ca8bdcaf 250 if (ss)
aec25020 251 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 252 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 253 else
9d800df1 254 return &cgrp->self;
95109b62 255}
42809dd4 256
aec3dfcb
TH
257/**
258 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
259 * @cgrp: the cgroup of interest
9d800df1 260 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb
TH
261 *
262 * Similar to cgroup_css() but returns the effctive css, which is defined
263 * as the matching css of the nearest ancestor including self which has @ss
264 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
265 * function is guaranteed to return non-NULL css.
266 */
267static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
268 struct cgroup_subsys *ss)
269{
270 lockdep_assert_held(&cgroup_mutex);
271
272 if (!ss)
9d800df1 273 return &cgrp->self;
aec3dfcb
TH
274
275 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
276 return NULL;
277
d51f39b0
TH
278 while (cgroup_parent(cgrp) &&
279 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
280 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
281
282 return cgroup_css(cgrp, ss);
95109b62 283}
42809dd4 284
ddbcc7e8 285/* convenient tests for these bits */
54766d4a 286static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 287{
184faf32 288 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
289}
290
b4168640 291struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 292{
2bd59d48 293 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 294 struct cftype *cft = of_cft(of);
2bd59d48
TH
295
296 /*
297 * This is open and unprotected implementation of cgroup_css().
298 * seq_css() is only called from a kernfs file operation which has
299 * an active reference on the file. Because all the subsystem
300 * files are drained before a css is disassociated with a cgroup,
301 * the matching css from the cgroup's subsys table is guaranteed to
302 * be and stay valid until the enclosing operation is complete.
303 */
304 if (cft->ss)
305 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
306 else
9d800df1 307 return &cgrp->self;
59f5296b 308}
b4168640 309EXPORT_SYMBOL_GPL(of_css);
59f5296b 310
78574cf9
LZ
311/**
312 * cgroup_is_descendant - test ancestry
313 * @cgrp: the cgroup to be tested
314 * @ancestor: possible ancestor of @cgrp
315 *
316 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
317 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
318 * and @ancestor are accessible.
319 */
320bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
321{
322 while (cgrp) {
323 if (cgrp == ancestor)
324 return true;
d51f39b0 325 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
326 }
327 return false;
328}
ddbcc7e8 329
e9685a03 330static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
331{
332 const int bits =
bd89aabc
PM
333 (1 << CGRP_RELEASABLE) |
334 (1 << CGRP_NOTIFY_ON_RELEASE);
335 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
336}
337
e9685a03 338static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 339{
bd89aabc 340 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
341}
342
1c6727af
TH
343/**
344 * for_each_css - iterate all css's of a cgroup
345 * @css: the iteration cursor
346 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
347 * @cgrp: the target cgroup to iterate css's of
348 *
aec3dfcb 349 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
350 */
351#define for_each_css(css, ssid, cgrp) \
352 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
353 if (!((css) = rcu_dereference_check( \
354 (cgrp)->subsys[(ssid)], \
355 lockdep_is_held(&cgroup_mutex)))) { } \
356 else
357
aec3dfcb
TH
358/**
359 * for_each_e_css - iterate all effective css's of a cgroup
360 * @css: the iteration cursor
361 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
362 * @cgrp: the target cgroup to iterate css's of
363 *
364 * Should be called under cgroup_[tree_]mutex.
365 */
366#define for_each_e_css(css, ssid, cgrp) \
367 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
368 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
369 ; \
370 else
371
30159ec7 372/**
3ed80a62 373 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 374 * @ss: the iteration cursor
780cd8b3 375 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 376 */
780cd8b3 377#define for_each_subsys(ss, ssid) \
3ed80a62
TH
378 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
379 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 380
985ed670
TH
381/* iterate across the hierarchies */
382#define for_each_root(root) \
5549c497 383 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 384
f8f22e53
TH
385/* iterate over child cgrps, lock should be held throughout iteration */
386#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 387 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 388 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
389 cgroup_is_dead(child); })) \
390 ; \
391 else
7ae1bad9 392
81a6a5cd
PM
393/* the list of cgroups eligible for automatic release. Protected by
394 * release_list_lock */
395static LIST_HEAD(release_list);
cdcc136f 396static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
397static void cgroup_release_agent(struct work_struct *work);
398static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 399static void check_for_release(struct cgroup *cgrp);
81a6a5cd 400
69d0206c
TH
401/*
402 * A cgroup can be associated with multiple css_sets as different tasks may
403 * belong to different cgroups on different hierarchies. In the other
404 * direction, a css_set is naturally associated with multiple cgroups.
405 * This M:N relationship is represented by the following link structure
406 * which exists for each association and allows traversing the associations
407 * from both sides.
408 */
409struct cgrp_cset_link {
410 /* the cgroup and css_set this link associates */
411 struct cgroup *cgrp;
412 struct css_set *cset;
413
414 /* list of cgrp_cset_links anchored at cgrp->cset_links */
415 struct list_head cset_link;
416
417 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
418 struct list_head cgrp_link;
817929ec
PM
419};
420
172a2c06
TH
421/*
422 * The default css_set - used by init and its children prior to any
817929ec
PM
423 * hierarchies being mounted. It contains a pointer to the root state
424 * for each subsystem. Also used to anchor the list of css_sets. Not
425 * reference-counted, to improve performance when child cgroups
426 * haven't been created.
427 */
5024ae29 428struct css_set init_css_set = {
172a2c06
TH
429 .refcount = ATOMIC_INIT(1),
430 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
431 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
432 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
433 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
434 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
435};
817929ec 436
172a2c06 437static int css_set_count = 1; /* 1 for init_css_set */
817929ec 438
842b597e
TH
439/**
440 * cgroup_update_populated - updated populated count of a cgroup
441 * @cgrp: the target cgroup
442 * @populated: inc or dec populated count
443 *
444 * @cgrp is either getting the first task (css_set) or losing the last.
445 * Update @cgrp->populated_cnt accordingly. The count is propagated
446 * towards root so that a given cgroup's populated_cnt is zero iff the
447 * cgroup and all its descendants are empty.
448 *
449 * @cgrp's interface file "cgroup.populated" is zero if
450 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
451 * changes from or to zero, userland is notified that the content of the
452 * interface file has changed. This can be used to detect when @cgrp and
453 * its descendants become populated or empty.
454 */
455static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
456{
457 lockdep_assert_held(&css_set_rwsem);
458
459 do {
460 bool trigger;
461
462 if (populated)
463 trigger = !cgrp->populated_cnt++;
464 else
465 trigger = !--cgrp->populated_cnt;
466
467 if (!trigger)
468 break;
469
470 if (cgrp->populated_kn)
471 kernfs_notify(cgrp->populated_kn);
d51f39b0 472 cgrp = cgroup_parent(cgrp);
842b597e
TH
473 } while (cgrp);
474}
475
7717f7ba
PM
476/*
477 * hash table for cgroup groups. This improves the performance to find
478 * an existing css_set. This hash doesn't (currently) take into
479 * account cgroups in empty hierarchies.
480 */
472b1053 481#define CSS_SET_HASH_BITS 7
0ac801fe 482static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 483
0ac801fe 484static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 485{
0ac801fe 486 unsigned long key = 0UL;
30159ec7
TH
487 struct cgroup_subsys *ss;
488 int i;
472b1053 489
30159ec7 490 for_each_subsys(ss, i)
0ac801fe
LZ
491 key += (unsigned long)css[i];
492 key = (key >> 16) ^ key;
472b1053 493
0ac801fe 494 return key;
472b1053
LZ
495}
496
89c5509b 497static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 498{
69d0206c 499 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
500 struct cgroup_subsys *ss;
501 int ssid;
5abb8855 502
89c5509b
TH
503 lockdep_assert_held(&css_set_rwsem);
504
505 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 506 return;
81a6a5cd 507
2c6ab6d2 508 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
509 for_each_subsys(ss, ssid)
510 list_del(&cset->e_cset_node[ssid]);
5abb8855 511 hash_del(&cset->hlist);
2c6ab6d2
PM
512 css_set_count--;
513
69d0206c 514 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 515 struct cgroup *cgrp = link->cgrp;
5abb8855 516
69d0206c
TH
517 list_del(&link->cset_link);
518 list_del(&link->cgrp_link);
71b5707e 519
96d365e0 520 /* @cgrp can't go away while we're holding css_set_rwsem */
842b597e
TH
521 if (list_empty(&cgrp->cset_links)) {
522 cgroup_update_populated(cgrp, false);
523 if (notify_on_release(cgrp)) {
524 if (taskexit)
525 set_bit(CGRP_RELEASABLE, &cgrp->flags);
526 check_for_release(cgrp);
527 }
81a6a5cd 528 }
2c6ab6d2
PM
529
530 kfree(link);
81a6a5cd 531 }
2c6ab6d2 532
5abb8855 533 kfree_rcu(cset, rcu_head);
b4f48b63
PM
534}
535
89c5509b
TH
536static void put_css_set(struct css_set *cset, bool taskexit)
537{
538 /*
539 * Ensure that the refcount doesn't hit zero while any readers
540 * can see it. Similar to atomic_dec_and_lock(), but for an
541 * rwlock
542 */
543 if (atomic_add_unless(&cset->refcount, -1, 1))
544 return;
545
546 down_write(&css_set_rwsem);
547 put_css_set_locked(cset, taskexit);
548 up_write(&css_set_rwsem);
549}
550
817929ec
PM
551/*
552 * refcounted get/put for css_set objects
553 */
5abb8855 554static inline void get_css_set(struct css_set *cset)
817929ec 555{
5abb8855 556 atomic_inc(&cset->refcount);
817929ec
PM
557}
558
b326f9d0 559/**
7717f7ba 560 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
561 * @cset: candidate css_set being tested
562 * @old_cset: existing css_set for a task
7717f7ba
PM
563 * @new_cgrp: cgroup that's being entered by the task
564 * @template: desired set of css pointers in css_set (pre-calculated)
565 *
6f4b7e63 566 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
567 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
568 */
5abb8855
TH
569static bool compare_css_sets(struct css_set *cset,
570 struct css_set *old_cset,
7717f7ba
PM
571 struct cgroup *new_cgrp,
572 struct cgroup_subsys_state *template[])
573{
574 struct list_head *l1, *l2;
575
aec3dfcb
TH
576 /*
577 * On the default hierarchy, there can be csets which are
578 * associated with the same set of cgroups but different csses.
579 * Let's first ensure that csses match.
580 */
581 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 582 return false;
7717f7ba
PM
583
584 /*
585 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
586 * different cgroups in hierarchies. As different cgroups may
587 * share the same effective css, this comparison is always
588 * necessary.
7717f7ba 589 */
69d0206c
TH
590 l1 = &cset->cgrp_links;
591 l2 = &old_cset->cgrp_links;
7717f7ba 592 while (1) {
69d0206c 593 struct cgrp_cset_link *link1, *link2;
5abb8855 594 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
595
596 l1 = l1->next;
597 l2 = l2->next;
598 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
599 if (l1 == &cset->cgrp_links) {
600 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
601 break;
602 } else {
69d0206c 603 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
604 }
605 /* Locate the cgroups associated with these links. */
69d0206c
TH
606 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
607 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
608 cgrp1 = link1->cgrp;
609 cgrp2 = link2->cgrp;
7717f7ba 610 /* Hierarchies should be linked in the same order. */
5abb8855 611 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
612
613 /*
614 * If this hierarchy is the hierarchy of the cgroup
615 * that's changing, then we need to check that this
616 * css_set points to the new cgroup; if it's any other
617 * hierarchy, then this css_set should point to the
618 * same cgroup as the old css_set.
619 */
5abb8855
TH
620 if (cgrp1->root == new_cgrp->root) {
621 if (cgrp1 != new_cgrp)
7717f7ba
PM
622 return false;
623 } else {
5abb8855 624 if (cgrp1 != cgrp2)
7717f7ba
PM
625 return false;
626 }
627 }
628 return true;
629}
630
b326f9d0
TH
631/**
632 * find_existing_css_set - init css array and find the matching css_set
633 * @old_cset: the css_set that we're using before the cgroup transition
634 * @cgrp: the cgroup that we're moving into
635 * @template: out param for the new set of csses, should be clear on entry
817929ec 636 */
5abb8855
TH
637static struct css_set *find_existing_css_set(struct css_set *old_cset,
638 struct cgroup *cgrp,
639 struct cgroup_subsys_state *template[])
b4f48b63 640{
3dd06ffa 641 struct cgroup_root *root = cgrp->root;
30159ec7 642 struct cgroup_subsys *ss;
5abb8855 643 struct css_set *cset;
0ac801fe 644 unsigned long key;
b326f9d0 645 int i;
817929ec 646
aae8aab4
BB
647 /*
648 * Build the set of subsystem state objects that we want to see in the
649 * new css_set. while subsystems can change globally, the entries here
650 * won't change, so no need for locking.
651 */
30159ec7 652 for_each_subsys(ss, i) {
f392e51c 653 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
654 /*
655 * @ss is in this hierarchy, so we want the
656 * effective css from @cgrp.
657 */
658 template[i] = cgroup_e_css(cgrp, ss);
817929ec 659 } else {
aec3dfcb
TH
660 /*
661 * @ss is not in this hierarchy, so we don't want
662 * to change the css.
663 */
5abb8855 664 template[i] = old_cset->subsys[i];
817929ec
PM
665 }
666 }
667
0ac801fe 668 key = css_set_hash(template);
5abb8855
TH
669 hash_for_each_possible(css_set_table, cset, hlist, key) {
670 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
671 continue;
672
673 /* This css_set matches what we need */
5abb8855 674 return cset;
472b1053 675 }
817929ec
PM
676
677 /* No existing cgroup group matched */
678 return NULL;
679}
680
69d0206c 681static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 682{
69d0206c 683 struct cgrp_cset_link *link, *tmp_link;
36553434 684
69d0206c
TH
685 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
686 list_del(&link->cset_link);
36553434
LZ
687 kfree(link);
688 }
689}
690
69d0206c
TH
691/**
692 * allocate_cgrp_cset_links - allocate cgrp_cset_links
693 * @count: the number of links to allocate
694 * @tmp_links: list_head the allocated links are put on
695 *
696 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
697 * through ->cset_link. Returns 0 on success or -errno.
817929ec 698 */
69d0206c 699static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 700{
69d0206c 701 struct cgrp_cset_link *link;
817929ec 702 int i;
69d0206c
TH
703
704 INIT_LIST_HEAD(tmp_links);
705
817929ec 706 for (i = 0; i < count; i++) {
f4f4be2b 707 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 708 if (!link) {
69d0206c 709 free_cgrp_cset_links(tmp_links);
817929ec
PM
710 return -ENOMEM;
711 }
69d0206c 712 list_add(&link->cset_link, tmp_links);
817929ec
PM
713 }
714 return 0;
715}
716
c12f65d4
LZ
717/**
718 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 719 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 720 * @cset: the css_set to be linked
c12f65d4
LZ
721 * @cgrp: the destination cgroup
722 */
69d0206c
TH
723static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
724 struct cgroup *cgrp)
c12f65d4 725{
69d0206c 726 struct cgrp_cset_link *link;
c12f65d4 727
69d0206c 728 BUG_ON(list_empty(tmp_links));
6803c006
TH
729
730 if (cgroup_on_dfl(cgrp))
731 cset->dfl_cgrp = cgrp;
732
69d0206c
TH
733 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
734 link->cset = cset;
7717f7ba 735 link->cgrp = cgrp;
842b597e
TH
736
737 if (list_empty(&cgrp->cset_links))
738 cgroup_update_populated(cgrp, true);
69d0206c 739 list_move(&link->cset_link, &cgrp->cset_links);
842b597e 740
7717f7ba
PM
741 /*
742 * Always add links to the tail of the list so that the list
743 * is sorted by order of hierarchy creation
744 */
69d0206c 745 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
746}
747
b326f9d0
TH
748/**
749 * find_css_set - return a new css_set with one cgroup updated
750 * @old_cset: the baseline css_set
751 * @cgrp: the cgroup to be updated
752 *
753 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
754 * substituted into the appropriate hierarchy.
817929ec 755 */
5abb8855
TH
756static struct css_set *find_css_set(struct css_set *old_cset,
757 struct cgroup *cgrp)
817929ec 758{
b326f9d0 759 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 760 struct css_set *cset;
69d0206c
TH
761 struct list_head tmp_links;
762 struct cgrp_cset_link *link;
2d8f243a 763 struct cgroup_subsys *ss;
0ac801fe 764 unsigned long key;
2d8f243a 765 int ssid;
472b1053 766
b326f9d0
TH
767 lockdep_assert_held(&cgroup_mutex);
768
817929ec
PM
769 /* First see if we already have a cgroup group that matches
770 * the desired set */
96d365e0 771 down_read(&css_set_rwsem);
5abb8855
TH
772 cset = find_existing_css_set(old_cset, cgrp, template);
773 if (cset)
774 get_css_set(cset);
96d365e0 775 up_read(&css_set_rwsem);
817929ec 776
5abb8855
TH
777 if (cset)
778 return cset;
817929ec 779
f4f4be2b 780 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 781 if (!cset)
817929ec
PM
782 return NULL;
783
69d0206c 784 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 785 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 786 kfree(cset);
817929ec
PM
787 return NULL;
788 }
789
5abb8855 790 atomic_set(&cset->refcount, 1);
69d0206c 791 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 792 INIT_LIST_HEAD(&cset->tasks);
c7561128 793 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 794 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 795 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 796 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
797
798 /* Copy the set of subsystem state objects generated in
799 * find_existing_css_set() */
5abb8855 800 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 801
96d365e0 802 down_write(&css_set_rwsem);
817929ec 803 /* Add reference counts and links from the new css_set. */
69d0206c 804 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 805 struct cgroup *c = link->cgrp;
69d0206c 806
7717f7ba
PM
807 if (c->root == cgrp->root)
808 c = cgrp;
69d0206c 809 link_css_set(&tmp_links, cset, c);
7717f7ba 810 }
817929ec 811
69d0206c 812 BUG_ON(!list_empty(&tmp_links));
817929ec 813
817929ec 814 css_set_count++;
472b1053 815
2d8f243a 816 /* Add @cset to the hash table */
5abb8855
TH
817 key = css_set_hash(cset->subsys);
818 hash_add(css_set_table, &cset->hlist, key);
472b1053 819
2d8f243a
TH
820 for_each_subsys(ss, ssid)
821 list_add_tail(&cset->e_cset_node[ssid],
822 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
823
96d365e0 824 up_write(&css_set_rwsem);
817929ec 825
5abb8855 826 return cset;
b4f48b63
PM
827}
828
3dd06ffa 829static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 830{
3dd06ffa 831 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 832
3dd06ffa 833 return root_cgrp->root;
2bd59d48
TH
834}
835
3dd06ffa 836static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
837{
838 int id;
839
840 lockdep_assert_held(&cgroup_mutex);
841
985ed670 842 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
843 if (id < 0)
844 return id;
845
846 root->hierarchy_id = id;
847 return 0;
848}
849
3dd06ffa 850static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
851{
852 lockdep_assert_held(&cgroup_mutex);
853
854 if (root->hierarchy_id) {
855 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
856 root->hierarchy_id = 0;
857 }
858}
859
3dd06ffa 860static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
861{
862 if (root) {
863 /* hierarhcy ID shoulid already have been released */
864 WARN_ON_ONCE(root->hierarchy_id);
865
866 idr_destroy(&root->cgroup_idr);
867 kfree(root);
868 }
869}
870
3dd06ffa 871static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 872{
3dd06ffa 873 struct cgroup *cgrp = &root->cgrp;
f2e85d57 874 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 875
2bd59d48 876 mutex_lock(&cgroup_mutex);
f2e85d57 877
776f02fa 878 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 879 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 880
f2e85d57 881 /* Rebind all subsystems back to the default hierarchy */
f392e51c 882 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 883
7717f7ba 884 /*
f2e85d57
TH
885 * Release all the links from cset_links to this hierarchy's
886 * root cgroup
7717f7ba 887 */
96d365e0 888 down_write(&css_set_rwsem);
f2e85d57
TH
889
890 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
891 list_del(&link->cset_link);
892 list_del(&link->cgrp_link);
893 kfree(link);
894 }
96d365e0 895 up_write(&css_set_rwsem);
f2e85d57
TH
896
897 if (!list_empty(&root->root_list)) {
898 list_del(&root->root_list);
899 cgroup_root_count--;
900 }
901
902 cgroup_exit_root_id(root);
903
904 mutex_unlock(&cgroup_mutex);
f2e85d57 905
2bd59d48 906 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
907 cgroup_free_root(root);
908}
909
ceb6a081
TH
910/* look up cgroup associated with given css_set on the specified hierarchy */
911static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 912 struct cgroup_root *root)
7717f7ba 913{
7717f7ba
PM
914 struct cgroup *res = NULL;
915
96d365e0
TH
916 lockdep_assert_held(&cgroup_mutex);
917 lockdep_assert_held(&css_set_rwsem);
918
5abb8855 919 if (cset == &init_css_set) {
3dd06ffa 920 res = &root->cgrp;
7717f7ba 921 } else {
69d0206c
TH
922 struct cgrp_cset_link *link;
923
924 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 925 struct cgroup *c = link->cgrp;
69d0206c 926
7717f7ba
PM
927 if (c->root == root) {
928 res = c;
929 break;
930 }
931 }
932 }
96d365e0 933
7717f7ba
PM
934 BUG_ON(!res);
935 return res;
936}
937
ddbcc7e8 938/*
ceb6a081
TH
939 * Return the cgroup for "task" from the given hierarchy. Must be
940 * called with cgroup_mutex and css_set_rwsem held.
941 */
942static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 943 struct cgroup_root *root)
ceb6a081
TH
944{
945 /*
946 * No need to lock the task - since we hold cgroup_mutex the
947 * task can't change groups, so the only thing that can happen
948 * is that it exits and its css is set back to init_css_set.
949 */
950 return cset_cgroup_from_root(task_css_set(task), root);
951}
952
ddbcc7e8 953/*
ddbcc7e8
PM
954 * A task must hold cgroup_mutex to modify cgroups.
955 *
956 * Any task can increment and decrement the count field without lock.
957 * So in general, code holding cgroup_mutex can't rely on the count
958 * field not changing. However, if the count goes to zero, then only
956db3ca 959 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
960 * means that no tasks are currently attached, therefore there is no
961 * way a task attached to that cgroup can fork (the other way to
962 * increment the count). So code holding cgroup_mutex can safely
963 * assume that if the count is zero, it will stay zero. Similarly, if
964 * a task holds cgroup_mutex on a cgroup with zero count, it
965 * knows that the cgroup won't be removed, as cgroup_rmdir()
966 * needs that mutex.
967 *
ddbcc7e8
PM
968 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
969 * (usually) take cgroup_mutex. These are the two most performance
970 * critical pieces of code here. The exception occurs on cgroup_exit(),
971 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
972 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
973 * to the release agent with the name of the cgroup (path relative to
974 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
975 *
976 * A cgroup can only be deleted if both its 'count' of using tasks
977 * is zero, and its list of 'children' cgroups is empty. Since all
978 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 979 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 980 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 981 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
982 *
983 * P.S. One more locking exception. RCU is used to guard the
956db3ca 984 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
985 */
986
69dfa00c 987static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask);
2bd59d48 988static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 989static const struct file_operations proc_cgroupstats_operations;
a424316c 990
8d7e6fb0
TH
991static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
992 char *buf)
ddbcc7e8 993{
8d7e6fb0
TH
994 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
995 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
996 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
997 cft->ss->name, cft->name);
998 else
999 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1000 return buf;
ddbcc7e8
PM
1001}
1002
f2e85d57
TH
1003/**
1004 * cgroup_file_mode - deduce file mode of a control file
1005 * @cft: the control file in question
1006 *
1007 * returns cft->mode if ->mode is not 0
1008 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1009 * returns S_IRUGO if it has only a read handler
1010 * returns S_IWUSR if it has only a write hander
1011 */
1012static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1013{
f2e85d57 1014 umode_t mode = 0;
65dff759 1015
f2e85d57
TH
1016 if (cft->mode)
1017 return cft->mode;
1018
1019 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1020 mode |= S_IRUGO;
1021
6770c64e 1022 if (cft->write_u64 || cft->write_s64 || cft->write)
f2e85d57
TH
1023 mode |= S_IWUSR;
1024
1025 return mode;
65dff759
LZ
1026}
1027
59f5296b 1028static void cgroup_get(struct cgroup *cgrp)
be445626 1029{
2bd59d48 1030 WARN_ON_ONCE(cgroup_is_dead(cgrp));
9d755d33 1031 css_get(&cgrp->self);
be445626
LZ
1032}
1033
59f5296b 1034static void cgroup_put(struct cgroup *cgrp)
be445626 1035{
9d755d33 1036 css_put(&cgrp->self);
be445626
LZ
1037}
1038
a9746d8d
TH
1039/**
1040 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1041 * @kn: the kernfs_node being serviced
1042 *
1043 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1044 * the method finishes if locking succeeded. Note that once this function
1045 * returns the cgroup returned by cgroup_kn_lock_live() may become
1046 * inaccessible any time. If the caller intends to continue to access the
1047 * cgroup, it should pin it before invoking this function.
1048 */
1049static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1050{
a9746d8d
TH
1051 struct cgroup *cgrp;
1052
1053 if (kernfs_type(kn) == KERNFS_DIR)
1054 cgrp = kn->priv;
1055 else
1056 cgrp = kn->parent->priv;
1057
1058 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1059
1060 kernfs_unbreak_active_protection(kn);
1061 cgroup_put(cgrp);
ddbcc7e8
PM
1062}
1063
a9746d8d
TH
1064/**
1065 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1066 * @kn: the kernfs_node being serviced
1067 *
1068 * This helper is to be used by a cgroup kernfs method currently servicing
1069 * @kn. It breaks the active protection, performs cgroup locking and
1070 * verifies that the associated cgroup is alive. Returns the cgroup if
1071 * alive; otherwise, %NULL. A successful return should be undone by a
1072 * matching cgroup_kn_unlock() invocation.
1073 *
1074 * Any cgroup kernfs method implementation which requires locking the
1075 * associated cgroup should use this helper. It avoids nesting cgroup
1076 * locking under kernfs active protection and allows all kernfs operations
1077 * including self-removal.
1078 */
1079static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1080{
a9746d8d
TH
1081 struct cgroup *cgrp;
1082
1083 if (kernfs_type(kn) == KERNFS_DIR)
1084 cgrp = kn->priv;
1085 else
1086 cgrp = kn->parent->priv;
05ef1d7c 1087
2739d3cc 1088 /*
01f6474c 1089 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1090 * active_ref. cgroup liveliness check alone provides enough
1091 * protection against removal. Ensure @cgrp stays accessible and
1092 * break the active_ref protection.
2739d3cc 1093 */
a9746d8d
TH
1094 cgroup_get(cgrp);
1095 kernfs_break_active_protection(kn);
1096
2bd59d48 1097 mutex_lock(&cgroup_mutex);
05ef1d7c 1098
a9746d8d
TH
1099 if (!cgroup_is_dead(cgrp))
1100 return cgrp;
1101
1102 cgroup_kn_unlock(kn);
1103 return NULL;
ddbcc7e8 1104}
05ef1d7c 1105
2739d3cc 1106static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1107{
2bd59d48 1108 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1109
01f6474c 1110 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1111 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1112}
1113
13af07df 1114/**
628f7cd4 1115 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 1116 * @cgrp: target cgroup
13af07df
AR
1117 * @subsys_mask: mask of the subsystem ids whose files should be removed
1118 */
69dfa00c 1119static void cgroup_clear_dir(struct cgroup *cgrp, unsigned int subsys_mask)
05ef1d7c 1120{
13af07df 1121 struct cgroup_subsys *ss;
b420ba7d 1122 int i;
05ef1d7c 1123
b420ba7d 1124 for_each_subsys(ss, i) {
0adb0704 1125 struct cftype *cfts;
b420ba7d 1126
69dfa00c 1127 if (!(subsys_mask & (1 << i)))
13af07df 1128 continue;
0adb0704
TH
1129 list_for_each_entry(cfts, &ss->cfts, node)
1130 cgroup_addrm_files(cgrp, cfts, false);
13af07df 1131 }
ddbcc7e8
PM
1132}
1133
69dfa00c 1134static int rebind_subsystems(struct cgroup_root *dst_root, unsigned int ss_mask)
ddbcc7e8 1135{
30159ec7 1136 struct cgroup_subsys *ss;
5533e011 1137 unsigned int tmp_ss_mask;
2d8f243a 1138 int ssid, i, ret;
ddbcc7e8 1139
ace2bee8 1140 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1141
5df36032
TH
1142 for_each_subsys(ss, ssid) {
1143 if (!(ss_mask & (1 << ssid)))
1144 continue;
aae8aab4 1145
7fd8c565
TH
1146 /* if @ss has non-root csses attached to it, can't move */
1147 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1148 return -EBUSY;
1d5be6b2 1149
5df36032 1150 /* can't move between two non-dummy roots either */
7fd8c565 1151 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1152 return -EBUSY;
ddbcc7e8
PM
1153 }
1154
5533e011
TH
1155 /* skip creating root files on dfl_root for inhibited subsystems */
1156 tmp_ss_mask = ss_mask;
1157 if (dst_root == &cgrp_dfl_root)
1158 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1159
1160 ret = cgroup_populate_dir(&dst_root->cgrp, tmp_ss_mask);
a2dd4247
TH
1161 if (ret) {
1162 if (dst_root != &cgrp_dfl_root)
5df36032 1163 return ret;
ddbcc7e8 1164
a2dd4247
TH
1165 /*
1166 * Rebinding back to the default root is not allowed to
1167 * fail. Using both default and non-default roots should
1168 * be rare. Moving subsystems back and forth even more so.
1169 * Just warn about it and continue.
1170 */
1171 if (cgrp_dfl_root_visible) {
69dfa00c 1172 pr_warn("failed to create files (%d) while rebinding 0x%x to default root\n",
a2a1f9ea 1173 ret, ss_mask);
ed3d261b 1174 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
a2dd4247 1175 }
5df36032 1176 }
3126121f
TH
1177
1178 /*
1179 * Nothing can fail from this point on. Remove files for the
1180 * removed subsystems and rebind each subsystem.
1181 */
5df36032 1182 for_each_subsys(ss, ssid)
a2dd4247 1183 if (ss_mask & (1 << ssid))
3dd06ffa 1184 cgroup_clear_dir(&ss->root->cgrp, 1 << ssid);
a8a648c4 1185
5df36032 1186 for_each_subsys(ss, ssid) {
3dd06ffa 1187 struct cgroup_root *src_root;
5df36032 1188 struct cgroup_subsys_state *css;
2d8f243a 1189 struct css_set *cset;
a8a648c4 1190
5df36032
TH
1191 if (!(ss_mask & (1 << ssid)))
1192 continue;
a8a648c4 1193
5df36032 1194 src_root = ss->root;
3dd06ffa 1195 css = cgroup_css(&src_root->cgrp, ss);
a8a648c4 1196
3dd06ffa 1197 WARN_ON(!css || cgroup_css(&dst_root->cgrp, ss));
73e80ed8 1198
3dd06ffa
TH
1199 RCU_INIT_POINTER(src_root->cgrp.subsys[ssid], NULL);
1200 rcu_assign_pointer(dst_root->cgrp.subsys[ssid], css);
5df36032 1201 ss->root = dst_root;
3dd06ffa 1202 css->cgroup = &dst_root->cgrp;
73e80ed8 1203
2d8f243a
TH
1204 down_write(&css_set_rwsem);
1205 hash_for_each(css_set_table, i, cset, hlist)
1206 list_move_tail(&cset->e_cset_node[ss->id],
1207 &dst_root->cgrp.e_csets[ss->id]);
1208 up_write(&css_set_rwsem);
1209
f392e51c
TH
1210 src_root->subsys_mask &= ~(1 << ssid);
1211 src_root->cgrp.child_subsys_mask &= ~(1 << ssid);
1212
bd53d617 1213 /* default hierarchy doesn't enable controllers by default */
f392e51c 1214 dst_root->subsys_mask |= 1 << ssid;
bd53d617
TH
1215 if (dst_root != &cgrp_dfl_root)
1216 dst_root->cgrp.child_subsys_mask |= 1 << ssid;
a8a648c4 1217
5df36032
TH
1218 if (ss->bind)
1219 ss->bind(css);
ddbcc7e8 1220 }
ddbcc7e8 1221
a2dd4247 1222 kernfs_activate(dst_root->cgrp.kn);
ddbcc7e8
PM
1223 return 0;
1224}
1225
2bd59d48
TH
1226static int cgroup_show_options(struct seq_file *seq,
1227 struct kernfs_root *kf_root)
ddbcc7e8 1228{
3dd06ffa 1229 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1230 struct cgroup_subsys *ss;
b85d2040 1231 int ssid;
ddbcc7e8 1232
b85d2040 1233 for_each_subsys(ss, ssid)
f392e51c 1234 if (root->subsys_mask & (1 << ssid))
b85d2040 1235 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1236 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1237 seq_puts(seq, ",sane_behavior");
93438629 1238 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1239 seq_puts(seq, ",noprefix");
93438629 1240 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1241 seq_puts(seq, ",xattr");
69e943b7
TH
1242
1243 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1244 if (strlen(root->release_agent_path))
1245 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1246 spin_unlock(&release_agent_path_lock);
1247
3dd06ffa 1248 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1249 seq_puts(seq, ",clone_children");
c6d57f33
PM
1250 if (strlen(root->name))
1251 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1252 return 0;
1253}
1254
1255struct cgroup_sb_opts {
69dfa00c
TH
1256 unsigned int subsys_mask;
1257 unsigned int flags;
81a6a5cd 1258 char *release_agent;
2260e7fc 1259 bool cpuset_clone_children;
c6d57f33 1260 char *name;
2c6ab6d2
PM
1261 /* User explicitly requested empty subsystem */
1262 bool none;
ddbcc7e8
PM
1263};
1264
cf5d5941 1265static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1266{
32a8cf23
DL
1267 char *token, *o = data;
1268 bool all_ss = false, one_ss = false;
69dfa00c 1269 unsigned int mask = -1U;
30159ec7
TH
1270 struct cgroup_subsys *ss;
1271 int i;
f9ab5b5b
LZ
1272
1273#ifdef CONFIG_CPUSETS
69dfa00c 1274 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1275#endif
ddbcc7e8 1276
c6d57f33 1277 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1278
1279 while ((token = strsep(&o, ",")) != NULL) {
1280 if (!*token)
1281 return -EINVAL;
32a8cf23 1282 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1283 /* Explicitly have no subsystems */
1284 opts->none = true;
32a8cf23
DL
1285 continue;
1286 }
1287 if (!strcmp(token, "all")) {
1288 /* Mutually exclusive option 'all' + subsystem name */
1289 if (one_ss)
1290 return -EINVAL;
1291 all_ss = true;
1292 continue;
1293 }
873fe09e
TH
1294 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1295 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1296 continue;
1297 }
32a8cf23 1298 if (!strcmp(token, "noprefix")) {
93438629 1299 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1300 continue;
1301 }
1302 if (!strcmp(token, "clone_children")) {
2260e7fc 1303 opts->cpuset_clone_children = true;
32a8cf23
DL
1304 continue;
1305 }
03b1cde6 1306 if (!strcmp(token, "xattr")) {
93438629 1307 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1308 continue;
1309 }
32a8cf23 1310 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1311 /* Specifying two release agents is forbidden */
1312 if (opts->release_agent)
1313 return -EINVAL;
c6d57f33 1314 opts->release_agent =
e400c285 1315 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1316 if (!opts->release_agent)
1317 return -ENOMEM;
32a8cf23
DL
1318 continue;
1319 }
1320 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1321 const char *name = token + 5;
1322 /* Can't specify an empty name */
1323 if (!strlen(name))
1324 return -EINVAL;
1325 /* Must match [\w.-]+ */
1326 for (i = 0; i < strlen(name); i++) {
1327 char c = name[i];
1328 if (isalnum(c))
1329 continue;
1330 if ((c == '.') || (c == '-') || (c == '_'))
1331 continue;
1332 return -EINVAL;
1333 }
1334 /* Specifying two names is forbidden */
1335 if (opts->name)
1336 return -EINVAL;
1337 opts->name = kstrndup(name,
e400c285 1338 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1339 GFP_KERNEL);
1340 if (!opts->name)
1341 return -ENOMEM;
32a8cf23
DL
1342
1343 continue;
1344 }
1345
30159ec7 1346 for_each_subsys(ss, i) {
32a8cf23
DL
1347 if (strcmp(token, ss->name))
1348 continue;
1349 if (ss->disabled)
1350 continue;
1351
1352 /* Mutually exclusive option 'all' + subsystem name */
1353 if (all_ss)
1354 return -EINVAL;
69dfa00c 1355 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1356 one_ss = true;
1357
1358 break;
1359 }
1360 if (i == CGROUP_SUBSYS_COUNT)
1361 return -ENOENT;
1362 }
1363
2c6ab6d2
PM
1364 /* Consistency checks */
1365
873fe09e 1366 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1367 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
873fe09e 1368
d3ba07c3
TH
1369 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1370 opts->cpuset_clone_children || opts->release_agent ||
1371 opts->name) {
ed3d261b 1372 pr_err("sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1373 return -EINVAL;
1374 }
a2dd4247
TH
1375 } else {
1376 /*
1377 * If the 'all' option was specified select all the
1378 * subsystems, otherwise if 'none', 'name=' and a subsystem
1379 * name options were not specified, let's default to 'all'
1380 */
1381 if (all_ss || (!one_ss && !opts->none && !opts->name))
1382 for_each_subsys(ss, i)
1383 if (!ss->disabled)
69dfa00c 1384 opts->subsys_mask |= (1 << i);
873fe09e 1385
a2dd4247
TH
1386 /*
1387 * We either have to specify by name or by subsystems. (So
1388 * all empty hierarchies must have a name).
1389 */
1390 if (!opts->subsys_mask && !opts->name)
873fe09e 1391 return -EINVAL;
873fe09e
TH
1392 }
1393
f9ab5b5b
LZ
1394 /*
1395 * Option noprefix was introduced just for backward compatibility
1396 * with the old cpuset, so we allow noprefix only if mounting just
1397 * the cpuset subsystem.
1398 */
93438629 1399 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1400 return -EINVAL;
1401
2c6ab6d2
PM
1402
1403 /* Can't specify "none" and some subsystems */
a1a71b45 1404 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1405 return -EINVAL;
1406
ddbcc7e8
PM
1407 return 0;
1408}
1409
2bd59d48 1410static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1411{
1412 int ret = 0;
3dd06ffa 1413 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1414 struct cgroup_sb_opts opts;
69dfa00c 1415 unsigned int added_mask, removed_mask;
ddbcc7e8 1416
873fe09e 1417 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1418 pr_err("sane_behavior: remount is not allowed\n");
873fe09e
TH
1419 return -EINVAL;
1420 }
1421
ddbcc7e8
PM
1422 mutex_lock(&cgroup_mutex);
1423
1424 /* See what subsystems are wanted */
1425 ret = parse_cgroupfs_options(data, &opts);
1426 if (ret)
1427 goto out_unlock;
1428
f392e51c 1429 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1430 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1431 task_tgid_nr(current), current->comm);
8b5a5a9d 1432
f392e51c
TH
1433 added_mask = opts.subsys_mask & ~root->subsys_mask;
1434 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1435
cf5d5941 1436 /* Don't allow flags or name to change at remount */
0ce6cba3 1437 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1438 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1439 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
0ce6cba3
TH
1440 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1441 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1442 ret = -EINVAL;
1443 goto out_unlock;
1444 }
1445
f172e67c 1446 /* remounting is not allowed for populated hierarchies */
d5c419b6 1447 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1448 ret = -EBUSY;
0670e08b 1449 goto out_unlock;
cf5d5941 1450 }
ddbcc7e8 1451
5df36032 1452 ret = rebind_subsystems(root, added_mask);
3126121f 1453 if (ret)
0670e08b 1454 goto out_unlock;
ddbcc7e8 1455
3dd06ffa 1456 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1457
69e943b7
TH
1458 if (opts.release_agent) {
1459 spin_lock(&release_agent_path_lock);
81a6a5cd 1460 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1461 spin_unlock(&release_agent_path_lock);
1462 }
ddbcc7e8 1463 out_unlock:
66bdc9cf 1464 kfree(opts.release_agent);
c6d57f33 1465 kfree(opts.name);
ddbcc7e8 1466 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1467 return ret;
1468}
1469
afeb0f9f
TH
1470/*
1471 * To reduce the fork() overhead for systems that are not actually using
1472 * their cgroups capability, we don't maintain the lists running through
1473 * each css_set to its tasks until we see the list actually used - in other
1474 * words after the first mount.
1475 */
1476static bool use_task_css_set_links __read_mostly;
1477
1478static void cgroup_enable_task_cg_lists(void)
1479{
1480 struct task_struct *p, *g;
1481
96d365e0 1482 down_write(&css_set_rwsem);
afeb0f9f
TH
1483
1484 if (use_task_css_set_links)
1485 goto out_unlock;
1486
1487 use_task_css_set_links = true;
1488
1489 /*
1490 * We need tasklist_lock because RCU is not safe against
1491 * while_each_thread(). Besides, a forking task that has passed
1492 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1493 * is not guaranteed to have its child immediately visible in the
1494 * tasklist if we walk through it with RCU.
1495 */
1496 read_lock(&tasklist_lock);
1497 do_each_thread(g, p) {
afeb0f9f
TH
1498 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1499 task_css_set(p) != &init_css_set);
1500
1501 /*
1502 * We should check if the process is exiting, otherwise
1503 * it will race with cgroup_exit() in that the list
1504 * entry won't be deleted though the process has exited.
f153ad11
TH
1505 * Do it while holding siglock so that we don't end up
1506 * racing against cgroup_exit().
afeb0f9f 1507 */
f153ad11 1508 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1509 if (!(p->flags & PF_EXITING)) {
1510 struct css_set *cset = task_css_set(p);
1511
1512 list_add(&p->cg_list, &cset->tasks);
1513 get_css_set(cset);
1514 }
f153ad11 1515 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1516 } while_each_thread(g, p);
1517 read_unlock(&tasklist_lock);
1518out_unlock:
96d365e0 1519 up_write(&css_set_rwsem);
afeb0f9f 1520}
ddbcc7e8 1521
cc31edce
PM
1522static void init_cgroup_housekeeping(struct cgroup *cgrp)
1523{
2d8f243a
TH
1524 struct cgroup_subsys *ss;
1525 int ssid;
1526
d5c419b6
TH
1527 INIT_LIST_HEAD(&cgrp->self.sibling);
1528 INIT_LIST_HEAD(&cgrp->self.children);
69d0206c 1529 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1530 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1531 INIT_LIST_HEAD(&cgrp->pidlists);
1532 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1533 cgrp->self.cgroup = cgrp;
184faf32 1534 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1535
1536 for_each_subsys(ss, ssid)
1537 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1538
1539 init_waitqueue_head(&cgrp->offline_waitq);
cc31edce 1540}
c6d57f33 1541
3dd06ffa 1542static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1543 struct cgroup_sb_opts *opts)
ddbcc7e8 1544{
3dd06ffa 1545 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1546
ddbcc7e8 1547 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1548 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1549 cgrp->root = root;
cc31edce 1550 init_cgroup_housekeeping(cgrp);
4e96ee8e 1551 idr_init(&root->cgroup_idr);
c6d57f33 1552
c6d57f33
PM
1553 root->flags = opts->flags;
1554 if (opts->release_agent)
1555 strcpy(root->release_agent_path, opts->release_agent);
1556 if (opts->name)
1557 strcpy(root->name, opts->name);
2260e7fc 1558 if (opts->cpuset_clone_children)
3dd06ffa 1559 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1560}
1561
69dfa00c 1562static int cgroup_setup_root(struct cgroup_root *root, unsigned int ss_mask)
2c6ab6d2 1563{
d427dfeb 1564 LIST_HEAD(tmp_links);
3dd06ffa 1565 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1566 struct css_set *cset;
d427dfeb 1567 int i, ret;
2c6ab6d2 1568
d427dfeb 1569 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1570
6fa4918d 1571 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_NOWAIT);
d427dfeb 1572 if (ret < 0)
2bd59d48 1573 goto out;
d427dfeb 1574 root_cgrp->id = ret;
c6d57f33 1575
9d755d33
TH
1576 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release);
1577 if (ret)
1578 goto out;
1579
d427dfeb 1580 /*
96d365e0 1581 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1582 * but that's OK - it can only be increased by someone holding
1583 * cgroup_lock, and that's us. The worst that can happen is that we
1584 * have some link structures left over
1585 */
1586 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1587 if (ret)
9d755d33 1588 goto cancel_ref;
ddbcc7e8 1589
985ed670 1590 ret = cgroup_init_root_id(root);
ddbcc7e8 1591 if (ret)
9d755d33 1592 goto cancel_ref;
ddbcc7e8 1593
2bd59d48
TH
1594 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1595 KERNFS_ROOT_CREATE_DEACTIVATED,
1596 root_cgrp);
1597 if (IS_ERR(root->kf_root)) {
1598 ret = PTR_ERR(root->kf_root);
1599 goto exit_root_id;
1600 }
1601 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1602
d427dfeb
TH
1603 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1604 if (ret)
2bd59d48 1605 goto destroy_root;
ddbcc7e8 1606
5df36032 1607 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1608 if (ret)
2bd59d48 1609 goto destroy_root;
ddbcc7e8 1610
d427dfeb
TH
1611 /*
1612 * There must be no failure case after here, since rebinding takes
1613 * care of subsystems' refcounts, which are explicitly dropped in
1614 * the failure exit path.
1615 */
1616 list_add(&root->root_list, &cgroup_roots);
1617 cgroup_root_count++;
0df6a63f 1618
d427dfeb 1619 /*
3dd06ffa 1620 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1621 * objects.
1622 */
96d365e0 1623 down_write(&css_set_rwsem);
d427dfeb
TH
1624 hash_for_each(css_set_table, i, cset, hlist)
1625 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1626 up_write(&css_set_rwsem);
ddbcc7e8 1627
d5c419b6 1628 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1629 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1630
2bd59d48 1631 kernfs_activate(root_cgrp->kn);
d427dfeb 1632 ret = 0;
2bd59d48 1633 goto out;
d427dfeb 1634
2bd59d48
TH
1635destroy_root:
1636 kernfs_destroy_root(root->kf_root);
1637 root->kf_root = NULL;
1638exit_root_id:
d427dfeb 1639 cgroup_exit_root_id(root);
9d755d33
TH
1640cancel_ref:
1641 percpu_ref_cancel_init(&root_cgrp->self.refcnt);
2bd59d48 1642out:
d427dfeb
TH
1643 free_cgrp_cset_links(&tmp_links);
1644 return ret;
ddbcc7e8
PM
1645}
1646
f7e83571 1647static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1648 int flags, const char *unused_dev_name,
f7e83571 1649 void *data)
ddbcc7e8 1650{
3dd06ffa 1651 struct cgroup_root *root;
ddbcc7e8 1652 struct cgroup_sb_opts opts;
2bd59d48 1653 struct dentry *dentry;
8e30e2b8 1654 int ret;
c6b3d5bc 1655 bool new_sb;
ddbcc7e8 1656
56fde9e0
TH
1657 /*
1658 * The first time anyone tries to mount a cgroup, enable the list
1659 * linking each css_set to its tasks and fix up all existing tasks.
1660 */
1661 if (!use_task_css_set_links)
1662 cgroup_enable_task_cg_lists();
e37a06f1 1663
aae8aab4 1664 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1665
1666 /* First find the desired set of subsystems */
ddbcc7e8 1667 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1668 if (ret)
8e30e2b8 1669 goto out_unlock;
a015edd2 1670
2bd59d48 1671 /* look for a matching existing root */
a2dd4247
TH
1672 if (!opts.subsys_mask && !opts.none && !opts.name) {
1673 cgrp_dfl_root_visible = true;
1674 root = &cgrp_dfl_root;
1675 cgroup_get(&root->cgrp);
1676 ret = 0;
1677 goto out_unlock;
ddbcc7e8
PM
1678 }
1679
985ed670 1680 for_each_root(root) {
2bd59d48 1681 bool name_match = false;
3126121f 1682
3dd06ffa 1683 if (root == &cgrp_dfl_root)
985ed670 1684 continue;
3126121f 1685
cf5d5941 1686 /*
2bd59d48
TH
1687 * If we asked for a name then it must match. Also, if
1688 * name matches but sybsys_mask doesn't, we should fail.
1689 * Remember whether name matched.
cf5d5941 1690 */
2bd59d48
TH
1691 if (opts.name) {
1692 if (strcmp(opts.name, root->name))
1693 continue;
1694 name_match = true;
1695 }
ddbcc7e8 1696
c6d57f33 1697 /*
2bd59d48
TH
1698 * If we asked for subsystems (or explicitly for no
1699 * subsystems) then they must match.
c6d57f33 1700 */
2bd59d48 1701 if ((opts.subsys_mask || opts.none) &&
f392e51c 1702 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
1703 if (!name_match)
1704 continue;
1705 ret = -EBUSY;
1706 goto out_unlock;
1707 }
873fe09e 1708
c7ba8287 1709 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb 1710 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1711 pr_err("sane_behavior: new mount options should match the existing superblock\n");
2a0ff3fb 1712 ret = -EINVAL;
8e30e2b8 1713 goto out_unlock;
2a0ff3fb 1714 } else {
ed3d261b 1715 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2a0ff3fb 1716 }
873fe09e 1717 }
ddbcc7e8 1718
776f02fa 1719 /*
9d755d33
TH
1720 * A root's lifetime is governed by its root cgroup.
1721 * tryget_live failure indicate that the root is being
1722 * destroyed. Wait for destruction to complete so that the
1723 * subsystems are free. We can use wait_queue for the wait
1724 * but this path is super cold. Let's just sleep for a bit
1725 * and retry.
776f02fa 1726 */
9d755d33 1727 if (!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 1728 mutex_unlock(&cgroup_mutex);
776f02fa 1729 msleep(10);
a015edd2
TH
1730 ret = restart_syscall();
1731 goto out_free;
776f02fa 1732 }
ddbcc7e8 1733
776f02fa 1734 ret = 0;
2bd59d48 1735 goto out_unlock;
ddbcc7e8 1736 }
ddbcc7e8 1737
817929ec 1738 /*
172a2c06
TH
1739 * No such thing, create a new one. name= matching without subsys
1740 * specification is allowed for already existing hierarchies but we
1741 * can't create new one without subsys specification.
817929ec 1742 */
172a2c06
TH
1743 if (!opts.subsys_mask && !opts.none) {
1744 ret = -EINVAL;
1745 goto out_unlock;
817929ec 1746 }
817929ec 1747
172a2c06
TH
1748 root = kzalloc(sizeof(*root), GFP_KERNEL);
1749 if (!root) {
1750 ret = -ENOMEM;
2bd59d48 1751 goto out_unlock;
839ec545 1752 }
e5f6a860 1753
172a2c06
TH
1754 init_cgroup_root(root, &opts);
1755
35585573 1756 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1757 if (ret)
1758 cgroup_free_root(root);
fa3ca07e 1759
8e30e2b8 1760out_unlock:
ddbcc7e8 1761 mutex_unlock(&cgroup_mutex);
a015edd2 1762out_free:
c6d57f33
PM
1763 kfree(opts.release_agent);
1764 kfree(opts.name);
03b1cde6 1765
2bd59d48 1766 if (ret)
8e30e2b8 1767 return ERR_PTR(ret);
2bd59d48 1768
c9482a5b
JZ
1769 dentry = kernfs_mount(fs_type, flags, root->kf_root,
1770 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 1771 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 1772 cgroup_put(&root->cgrp);
2bd59d48
TH
1773 return dentry;
1774}
1775
1776static void cgroup_kill_sb(struct super_block *sb)
1777{
1778 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 1779 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 1780
9d755d33
TH
1781 /*
1782 * If @root doesn't have any mounts or children, start killing it.
1783 * This prevents new mounts by disabling percpu_ref_tryget_live().
1784 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
1785 *
1786 * And don't kill the default root.
9d755d33 1787 */
1f779fb2
LZ
1788 if (css_has_online_children(&root->cgrp.self) ||
1789 root == &cgrp_dfl_root)
9d755d33
TH
1790 cgroup_put(&root->cgrp);
1791 else
1792 percpu_ref_kill(&root->cgrp.self.refcnt);
1793
2bd59d48 1794 kernfs_kill_sb(sb);
ddbcc7e8
PM
1795}
1796
1797static struct file_system_type cgroup_fs_type = {
1798 .name = "cgroup",
f7e83571 1799 .mount = cgroup_mount,
ddbcc7e8
PM
1800 .kill_sb = cgroup_kill_sb,
1801};
1802
676db4af
GK
1803static struct kobject *cgroup_kobj;
1804
857a2beb 1805/**
913ffdb5 1806 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1807 * @task: target task
857a2beb
TH
1808 * @buf: the buffer to write the path into
1809 * @buflen: the length of the buffer
1810 *
913ffdb5
TH
1811 * Determine @task's cgroup on the first (the one with the lowest non-zero
1812 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1813 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1814 * cgroup controller callbacks.
1815 *
e61734c5 1816 * Return value is the same as kernfs_path().
857a2beb 1817 */
e61734c5 1818char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 1819{
3dd06ffa 1820 struct cgroup_root *root;
913ffdb5 1821 struct cgroup *cgrp;
e61734c5
TH
1822 int hierarchy_id = 1;
1823 char *path = NULL;
857a2beb
TH
1824
1825 mutex_lock(&cgroup_mutex);
96d365e0 1826 down_read(&css_set_rwsem);
857a2beb 1827
913ffdb5
TH
1828 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1829
857a2beb
TH
1830 if (root) {
1831 cgrp = task_cgroup_from_root(task, root);
e61734c5 1832 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1833 } else {
1834 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1835 if (strlcpy(buf, "/", buflen) < buflen)
1836 path = buf;
857a2beb
TH
1837 }
1838
96d365e0 1839 up_read(&css_set_rwsem);
857a2beb 1840 mutex_unlock(&cgroup_mutex);
e61734c5 1841 return path;
857a2beb 1842}
913ffdb5 1843EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1844
b3dc094e 1845/* used to track tasks and other necessary states during migration */
2f7ee569 1846struct cgroup_taskset {
b3dc094e
TH
1847 /* the src and dst cset list running through cset->mg_node */
1848 struct list_head src_csets;
1849 struct list_head dst_csets;
1850
1851 /*
1852 * Fields for cgroup_taskset_*() iteration.
1853 *
1854 * Before migration is committed, the target migration tasks are on
1855 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
1856 * the csets on ->dst_csets. ->csets point to either ->src_csets
1857 * or ->dst_csets depending on whether migration is committed.
1858 *
1859 * ->cur_csets and ->cur_task point to the current task position
1860 * during iteration.
1861 */
1862 struct list_head *csets;
1863 struct css_set *cur_cset;
1864 struct task_struct *cur_task;
2f7ee569
TH
1865};
1866
1867/**
1868 * cgroup_taskset_first - reset taskset and return the first task
1869 * @tset: taskset of interest
1870 *
1871 * @tset iteration is initialized and the first task is returned.
1872 */
1873struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1874{
b3dc094e
TH
1875 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
1876 tset->cur_task = NULL;
1877
1878 return cgroup_taskset_next(tset);
2f7ee569 1879}
2f7ee569
TH
1880
1881/**
1882 * cgroup_taskset_next - iterate to the next task in taskset
1883 * @tset: taskset of interest
1884 *
1885 * Return the next task in @tset. Iteration must have been initialized
1886 * with cgroup_taskset_first().
1887 */
1888struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1889{
b3dc094e
TH
1890 struct css_set *cset = tset->cur_cset;
1891 struct task_struct *task = tset->cur_task;
2f7ee569 1892
b3dc094e
TH
1893 while (&cset->mg_node != tset->csets) {
1894 if (!task)
1895 task = list_first_entry(&cset->mg_tasks,
1896 struct task_struct, cg_list);
1897 else
1898 task = list_next_entry(task, cg_list);
2f7ee569 1899
b3dc094e
TH
1900 if (&task->cg_list != &cset->mg_tasks) {
1901 tset->cur_cset = cset;
1902 tset->cur_task = task;
1903 return task;
1904 }
2f7ee569 1905
b3dc094e
TH
1906 cset = list_next_entry(cset, mg_node);
1907 task = NULL;
1908 }
2f7ee569 1909
b3dc094e 1910 return NULL;
2f7ee569 1911}
2f7ee569 1912
cb0f1fe9 1913/**
74a1166d 1914 * cgroup_task_migrate - move a task from one cgroup to another.
60106946 1915 * @old_cgrp: the cgroup @tsk is being migrated from
cb0f1fe9
TH
1916 * @tsk: the task being migrated
1917 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1918 *
cb0f1fe9 1919 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1920 */
5abb8855
TH
1921static void cgroup_task_migrate(struct cgroup *old_cgrp,
1922 struct task_struct *tsk,
1923 struct css_set *new_cset)
74a1166d 1924{
5abb8855 1925 struct css_set *old_cset;
74a1166d 1926
cb0f1fe9
TH
1927 lockdep_assert_held(&cgroup_mutex);
1928 lockdep_assert_held(&css_set_rwsem);
1929
74a1166d 1930 /*
026085ef
MSB
1931 * We are synchronized through threadgroup_lock() against PF_EXITING
1932 * setting such that we can't race against cgroup_exit() changing the
1933 * css_set to init_css_set and dropping the old one.
74a1166d 1934 */
c84cdf75 1935 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1936 old_cset = task_css_set(tsk);
74a1166d 1937
b3dc094e 1938 get_css_set(new_cset);
5abb8855 1939 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d 1940
1b9aba49
TH
1941 /*
1942 * Use move_tail so that cgroup_taskset_first() still returns the
1943 * leader after migration. This works because cgroup_migrate()
1944 * ensures that the dst_cset of the leader is the first on the
1945 * tset's dst_csets list.
1946 */
1947 list_move_tail(&tsk->cg_list, &new_cset->mg_tasks);
74a1166d
BB
1948
1949 /*
5abb8855
TH
1950 * We just gained a reference on old_cset by taking it from the
1951 * task. As trading it for new_cset is protected by cgroup_mutex,
1952 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1953 */
5abb8855 1954 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1955 put_css_set_locked(old_cset, false);
74a1166d
BB
1956}
1957
a043e3b2 1958/**
1958d2d5
TH
1959 * cgroup_migrate_finish - cleanup after attach
1960 * @preloaded_csets: list of preloaded css_sets
74a1166d 1961 *
1958d2d5
TH
1962 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
1963 * those functions for details.
74a1166d 1964 */
1958d2d5 1965static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 1966{
1958d2d5 1967 struct css_set *cset, *tmp_cset;
74a1166d 1968
1958d2d5
TH
1969 lockdep_assert_held(&cgroup_mutex);
1970
1971 down_write(&css_set_rwsem);
1972 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
1973 cset->mg_src_cgrp = NULL;
1974 cset->mg_dst_cset = NULL;
1975 list_del_init(&cset->mg_preload_node);
1976 put_css_set_locked(cset, false);
1977 }
1978 up_write(&css_set_rwsem);
1979}
1980
1981/**
1982 * cgroup_migrate_add_src - add a migration source css_set
1983 * @src_cset: the source css_set to add
1984 * @dst_cgrp: the destination cgroup
1985 * @preloaded_csets: list of preloaded css_sets
1986 *
1987 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
1988 * @src_cset and add it to @preloaded_csets, which should later be cleaned
1989 * up by cgroup_migrate_finish().
1990 *
1991 * This function may be called without holding threadgroup_lock even if the
1992 * target is a process. Threads may be created and destroyed but as long
1993 * as cgroup_mutex is not dropped, no new css_set can be put into play and
1994 * the preloaded css_sets are guaranteed to cover all migrations.
1995 */
1996static void cgroup_migrate_add_src(struct css_set *src_cset,
1997 struct cgroup *dst_cgrp,
1998 struct list_head *preloaded_csets)
1999{
2000 struct cgroup *src_cgrp;
2001
2002 lockdep_assert_held(&cgroup_mutex);
2003 lockdep_assert_held(&css_set_rwsem);
2004
2005 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2006
1958d2d5
TH
2007 if (!list_empty(&src_cset->mg_preload_node))
2008 return;
2009
2010 WARN_ON(src_cset->mg_src_cgrp);
2011 WARN_ON(!list_empty(&src_cset->mg_tasks));
2012 WARN_ON(!list_empty(&src_cset->mg_node));
2013
2014 src_cset->mg_src_cgrp = src_cgrp;
2015 get_css_set(src_cset);
2016 list_add(&src_cset->mg_preload_node, preloaded_csets);
2017}
2018
2019/**
2020 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2021 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2022 * @preloaded_csets: list of preloaded source css_sets
2023 *
2024 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2025 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2026 * pins all destination css_sets, links each to its source, and append them
2027 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2028 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2029 *
2030 * This function must be called after cgroup_migrate_add_src() has been
2031 * called on each migration source css_set. After migration is performed
2032 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2033 * @preloaded_csets.
2034 */
2035static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2036 struct list_head *preloaded_csets)
2037{
2038 LIST_HEAD(csets);
f817de98 2039 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2040
2041 lockdep_assert_held(&cgroup_mutex);
2042
f8f22e53
TH
2043 /*
2044 * Except for the root, child_subsys_mask must be zero for a cgroup
2045 * with tasks so that child cgroups don't compete against tasks.
2046 */
d51f39b0 2047 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2048 dst_cgrp->child_subsys_mask)
2049 return -EBUSY;
2050
1958d2d5 2051 /* look up the dst cset for each src cset and link it to src */
f817de98 2052 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2053 struct css_set *dst_cset;
2054
f817de98
TH
2055 dst_cset = find_css_set(src_cset,
2056 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2057 if (!dst_cset)
2058 goto err;
2059
2060 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2061
2062 /*
2063 * If src cset equals dst, it's noop. Drop the src.
2064 * cgroup_migrate() will skip the cset too. Note that we
2065 * can't handle src == dst as some nodes are used by both.
2066 */
2067 if (src_cset == dst_cset) {
2068 src_cset->mg_src_cgrp = NULL;
2069 list_del_init(&src_cset->mg_preload_node);
2070 put_css_set(src_cset, false);
2071 put_css_set(dst_cset, false);
2072 continue;
2073 }
2074
1958d2d5
TH
2075 src_cset->mg_dst_cset = dst_cset;
2076
2077 if (list_empty(&dst_cset->mg_preload_node))
2078 list_add(&dst_cset->mg_preload_node, &csets);
2079 else
2080 put_css_set(dst_cset, false);
2081 }
2082
f817de98 2083 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2084 return 0;
2085err:
2086 cgroup_migrate_finish(&csets);
2087 return -ENOMEM;
2088}
2089
2090/**
2091 * cgroup_migrate - migrate a process or task to a cgroup
2092 * @cgrp: the destination cgroup
2093 * @leader: the leader of the process or the task to migrate
2094 * @threadgroup: whether @leader points to the whole process or a single task
2095 *
2096 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2097 * process, the caller must be holding threadgroup_lock of @leader. The
2098 * caller is also responsible for invoking cgroup_migrate_add_src() and
2099 * cgroup_migrate_prepare_dst() on the targets before invoking this
2100 * function and following up with cgroup_migrate_finish().
2101 *
2102 * As long as a controller's ->can_attach() doesn't fail, this function is
2103 * guaranteed to succeed. This means that, excluding ->can_attach()
2104 * failure, when migrating multiple targets, the success or failure can be
2105 * decided for all targets by invoking group_migrate_prepare_dst() before
2106 * actually starting migrating.
2107 */
2108static int cgroup_migrate(struct cgroup *cgrp, struct task_struct *leader,
2109 bool threadgroup)
74a1166d 2110{
b3dc094e
TH
2111 struct cgroup_taskset tset = {
2112 .src_csets = LIST_HEAD_INIT(tset.src_csets),
2113 .dst_csets = LIST_HEAD_INIT(tset.dst_csets),
2114 .csets = &tset.src_csets,
2115 };
1c6727af 2116 struct cgroup_subsys_state *css, *failed_css = NULL;
b3dc094e
TH
2117 struct css_set *cset, *tmp_cset;
2118 struct task_struct *task, *tmp_task;
2119 int i, ret;
74a1166d 2120
fb5d2b4c
MSB
2121 /*
2122 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2123 * already PF_EXITING could be freed from underneath us unless we
2124 * take an rcu_read_lock.
2125 */
b3dc094e 2126 down_write(&css_set_rwsem);
fb5d2b4c 2127 rcu_read_lock();
9db8de37 2128 task = leader;
74a1166d 2129 do {
9db8de37
TH
2130 /* @task either already exited or can't exit until the end */
2131 if (task->flags & PF_EXITING)
ea84753c 2132 goto next;
134d3373 2133
eaf797ab
TH
2134 /* leave @task alone if post_fork() hasn't linked it yet */
2135 if (list_empty(&task->cg_list))
ea84753c 2136 goto next;
cd3d0952 2137
b3dc094e 2138 cset = task_css_set(task);
1958d2d5 2139 if (!cset->mg_src_cgrp)
ea84753c 2140 goto next;
b3dc094e 2141
61d1d219 2142 /*
1b9aba49
TH
2143 * cgroup_taskset_first() must always return the leader.
2144 * Take care to avoid disturbing the ordering.
61d1d219 2145 */
1b9aba49
TH
2146 list_move_tail(&task->cg_list, &cset->mg_tasks);
2147 if (list_empty(&cset->mg_node))
2148 list_add_tail(&cset->mg_node, &tset.src_csets);
2149 if (list_empty(&cset->mg_dst_cset->mg_node))
2150 list_move_tail(&cset->mg_dst_cset->mg_node,
2151 &tset.dst_csets);
ea84753c 2152 next:
081aa458
LZ
2153 if (!threadgroup)
2154 break;
9db8de37 2155 } while_each_thread(leader, task);
fb5d2b4c 2156 rcu_read_unlock();
b3dc094e 2157 up_write(&css_set_rwsem);
74a1166d 2158
134d3373 2159 /* methods shouldn't be called if no task is actually migrating */
b3dc094e
TH
2160 if (list_empty(&tset.src_csets))
2161 return 0;
134d3373 2162
1958d2d5 2163 /* check that we can legitimately attach to the cgroup */
aec3dfcb 2164 for_each_e_css(css, i, cgrp) {
1c6727af 2165 if (css->ss->can_attach) {
9db8de37
TH
2166 ret = css->ss->can_attach(css, &tset);
2167 if (ret) {
1c6727af 2168 failed_css = css;
74a1166d
BB
2169 goto out_cancel_attach;
2170 }
2171 }
74a1166d
BB
2172 }
2173
2174 /*
1958d2d5
TH
2175 * Now that we're guaranteed success, proceed to move all tasks to
2176 * the new cgroup. There are no failure cases after here, so this
2177 * is the commit point.
74a1166d 2178 */
cb0f1fe9 2179 down_write(&css_set_rwsem);
b3dc094e
TH
2180 list_for_each_entry(cset, &tset.src_csets, mg_node) {
2181 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list)
2182 cgroup_task_migrate(cset->mg_src_cgrp, task,
2183 cset->mg_dst_cset);
74a1166d 2184 }
cb0f1fe9 2185 up_write(&css_set_rwsem);
74a1166d
BB
2186
2187 /*
1958d2d5
TH
2188 * Migration is committed, all target tasks are now on dst_csets.
2189 * Nothing is sensitive to fork() after this point. Notify
2190 * controllers that migration is complete.
74a1166d 2191 */
1958d2d5 2192 tset.csets = &tset.dst_csets;
74a1166d 2193
aec3dfcb 2194 for_each_e_css(css, i, cgrp)
1c6727af
TH
2195 if (css->ss->attach)
2196 css->ss->attach(css, &tset);
74a1166d 2197
9db8de37 2198 ret = 0;
b3dc094e
TH
2199 goto out_release_tset;
2200
74a1166d 2201out_cancel_attach:
aec3dfcb 2202 for_each_e_css(css, i, cgrp) {
b3dc094e
TH
2203 if (css == failed_css)
2204 break;
2205 if (css->ss->cancel_attach)
2206 css->ss->cancel_attach(css, &tset);
74a1166d 2207 }
b3dc094e
TH
2208out_release_tset:
2209 down_write(&css_set_rwsem);
2210 list_splice_init(&tset.dst_csets, &tset.src_csets);
2211 list_for_each_entry_safe(cset, tmp_cset, &tset.src_csets, mg_node) {
1b9aba49 2212 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
b3dc094e 2213 list_del_init(&cset->mg_node);
b3dc094e
TH
2214 }
2215 up_write(&css_set_rwsem);
9db8de37 2216 return ret;
74a1166d
BB
2217}
2218
1958d2d5
TH
2219/**
2220 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2221 * @dst_cgrp: the cgroup to attach to
2222 * @leader: the task or the leader of the threadgroup to be attached
2223 * @threadgroup: attach the whole threadgroup?
2224 *
0e1d768f 2225 * Call holding cgroup_mutex and threadgroup_lock of @leader.
1958d2d5
TH
2226 */
2227static int cgroup_attach_task(struct cgroup *dst_cgrp,
2228 struct task_struct *leader, bool threadgroup)
2229{
2230 LIST_HEAD(preloaded_csets);
2231 struct task_struct *task;
2232 int ret;
2233
2234 /* look up all src csets */
2235 down_read(&css_set_rwsem);
2236 rcu_read_lock();
2237 task = leader;
2238 do {
2239 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2240 &preloaded_csets);
2241 if (!threadgroup)
2242 break;
2243 } while_each_thread(leader, task);
2244 rcu_read_unlock();
2245 up_read(&css_set_rwsem);
2246
2247 /* prepare dst csets and commit */
2248 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2249 if (!ret)
2250 ret = cgroup_migrate(dst_cgrp, leader, threadgroup);
2251
2252 cgroup_migrate_finish(&preloaded_csets);
2253 return ret;
74a1166d
BB
2254}
2255
2256/*
2257 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2258 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2259 * cgroup_mutex and threadgroup.
bbcb81d0 2260 */
acbef755
TH
2261static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2262 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2263{
bbcb81d0 2264 struct task_struct *tsk;
c69e8d9c 2265 const struct cred *cred = current_cred(), *tcred;
e76ecaee 2266 struct cgroup *cgrp;
acbef755 2267 pid_t pid;
bbcb81d0
PM
2268 int ret;
2269
acbef755
TH
2270 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2271 return -EINVAL;
2272
e76ecaee
TH
2273 cgrp = cgroup_kn_lock_live(of->kn);
2274 if (!cgrp)
74a1166d
BB
2275 return -ENODEV;
2276
b78949eb
MSB
2277retry_find_task:
2278 rcu_read_lock();
bbcb81d0 2279 if (pid) {
73507f33 2280 tsk = find_task_by_vpid(pid);
74a1166d
BB
2281 if (!tsk) {
2282 rcu_read_unlock();
dd4b0a46 2283 ret = -ESRCH;
b78949eb 2284 goto out_unlock_cgroup;
bbcb81d0 2285 }
74a1166d
BB
2286 /*
2287 * even if we're attaching all tasks in the thread group, we
2288 * only need to check permissions on one of them.
2289 */
c69e8d9c 2290 tcred = __task_cred(tsk);
14a590c3
EB
2291 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2292 !uid_eq(cred->euid, tcred->uid) &&
2293 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 2294 rcu_read_unlock();
b78949eb
MSB
2295 ret = -EACCES;
2296 goto out_unlock_cgroup;
bbcb81d0 2297 }
b78949eb
MSB
2298 } else
2299 tsk = current;
cd3d0952
TH
2300
2301 if (threadgroup)
b78949eb 2302 tsk = tsk->group_leader;
c4c27fbd
MG
2303
2304 /*
14a40ffc 2305 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2306 * trapped in a cpuset, or RT worker may be born in a cgroup
2307 * with no rt_runtime allocated. Just say no.
2308 */
14a40ffc 2309 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
2310 ret = -EINVAL;
2311 rcu_read_unlock();
2312 goto out_unlock_cgroup;
2313 }
2314
b78949eb
MSB
2315 get_task_struct(tsk);
2316 rcu_read_unlock();
2317
2318 threadgroup_lock(tsk);
2319 if (threadgroup) {
2320 if (!thread_group_leader(tsk)) {
2321 /*
2322 * a race with de_thread from another thread's exec()
2323 * may strip us of our leadership, if this happens,
2324 * there is no choice but to throw this task away and
2325 * try again; this is
2326 * "double-double-toil-and-trouble-check locking".
2327 */
2328 threadgroup_unlock(tsk);
2329 put_task_struct(tsk);
2330 goto retry_find_task;
2331 }
081aa458
LZ
2332 }
2333
2334 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2335
cd3d0952
TH
2336 threadgroup_unlock(tsk);
2337
bbcb81d0 2338 put_task_struct(tsk);
b78949eb 2339out_unlock_cgroup:
e76ecaee 2340 cgroup_kn_unlock(of->kn);
acbef755 2341 return ret ?: nbytes;
bbcb81d0
PM
2342}
2343
7ae1bad9
TH
2344/**
2345 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2346 * @from: attach to all cgroups of a given task
2347 * @tsk: the task to be attached
2348 */
2349int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2350{
3dd06ffa 2351 struct cgroup_root *root;
7ae1bad9
TH
2352 int retval = 0;
2353
47cfcd09 2354 mutex_lock(&cgroup_mutex);
985ed670 2355 for_each_root(root) {
96d365e0
TH
2356 struct cgroup *from_cgrp;
2357
3dd06ffa 2358 if (root == &cgrp_dfl_root)
985ed670
TH
2359 continue;
2360
96d365e0
TH
2361 down_read(&css_set_rwsem);
2362 from_cgrp = task_cgroup_from_root(from, root);
2363 up_read(&css_set_rwsem);
7ae1bad9 2364
6f4b7e63 2365 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2366 if (retval)
2367 break;
2368 }
47cfcd09 2369 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2370
2371 return retval;
2372}
2373EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2374
acbef755
TH
2375static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2376 char *buf, size_t nbytes, loff_t off)
74a1166d 2377{
acbef755 2378 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2379}
2380
acbef755
TH
2381static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2382 char *buf, size_t nbytes, loff_t off)
af351026 2383{
acbef755 2384 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2385}
2386
451af504
TH
2387static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2388 char *buf, size_t nbytes, loff_t off)
e788e066 2389{
e76ecaee 2390 struct cgroup *cgrp;
5f469907 2391
e76ecaee 2392 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2393
e76ecaee
TH
2394 cgrp = cgroup_kn_lock_live(of->kn);
2395 if (!cgrp)
e788e066 2396 return -ENODEV;
69e943b7 2397 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2398 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2399 sizeof(cgrp->root->release_agent_path));
69e943b7 2400 spin_unlock(&release_agent_path_lock);
e76ecaee 2401 cgroup_kn_unlock(of->kn);
451af504 2402 return nbytes;
e788e066
PM
2403}
2404
2da8ca82 2405static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2406{
2da8ca82 2407 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2408
46cfeb04 2409 spin_lock(&release_agent_path_lock);
e788e066 2410 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2411 spin_unlock(&release_agent_path_lock);
e788e066 2412 seq_putc(seq, '\n');
e788e066
PM
2413 return 0;
2414}
2415
2da8ca82 2416static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2417{
2da8ca82
TH
2418 struct cgroup *cgrp = seq_css(seq)->cgroup;
2419
2420 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2421 return 0;
2422}
2423
f8f22e53 2424static void cgroup_print_ss_mask(struct seq_file *seq, unsigned int ss_mask)
355e0c48 2425{
f8f22e53
TH
2426 struct cgroup_subsys *ss;
2427 bool printed = false;
2428 int ssid;
a742c59d 2429
f8f22e53
TH
2430 for_each_subsys(ss, ssid) {
2431 if (ss_mask & (1 << ssid)) {
2432 if (printed)
2433 seq_putc(seq, ' ');
2434 seq_printf(seq, "%s", ss->name);
2435 printed = true;
2436 }
e73d2c61 2437 }
f8f22e53
TH
2438 if (printed)
2439 seq_putc(seq, '\n');
355e0c48
PM
2440}
2441
f8f22e53
TH
2442/* show controllers which are currently attached to the default hierarchy */
2443static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2444{
f8f22e53
TH
2445 struct cgroup *cgrp = seq_css(seq)->cgroup;
2446
5533e011
TH
2447 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2448 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2449 return 0;
db3b1497
PM
2450}
2451
f8f22e53
TH
2452/* show controllers which are enabled from the parent */
2453static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2454{
f8f22e53
TH
2455 struct cgroup *cgrp = seq_css(seq)->cgroup;
2456
d51f39b0 2457 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->child_subsys_mask);
f8f22e53 2458 return 0;
ddbcc7e8
PM
2459}
2460
f8f22e53
TH
2461/* show controllers which are enabled for a given cgroup's children */
2462static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2463{
f8f22e53
TH
2464 struct cgroup *cgrp = seq_css(seq)->cgroup;
2465
2466 cgroup_print_ss_mask(seq, cgrp->child_subsys_mask);
2467 return 0;
2468}
2469
2470/**
2471 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2472 * @cgrp: root of the subtree to update csses for
2473 *
2474 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2475 * css associations need to be updated accordingly. This function looks up
2476 * all css_sets which are attached to the subtree, creates the matching
2477 * updated css_sets and migrates the tasks to the new ones.
2478 */
2479static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2480{
2481 LIST_HEAD(preloaded_csets);
2482 struct cgroup_subsys_state *css;
2483 struct css_set *src_cset;
2484 int ret;
2485
f8f22e53
TH
2486 lockdep_assert_held(&cgroup_mutex);
2487
2488 /* look up all csses currently attached to @cgrp's subtree */
2489 down_read(&css_set_rwsem);
2490 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2491 struct cgrp_cset_link *link;
2492
2493 /* self is not affected by child_subsys_mask change */
2494 if (css->cgroup == cgrp)
2495 continue;
2496
2497 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2498 cgroup_migrate_add_src(link->cset, cgrp,
2499 &preloaded_csets);
2500 }
2501 up_read(&css_set_rwsem);
2502
2503 /* NULL dst indicates self on default hierarchy */
2504 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2505 if (ret)
2506 goto out_finish;
2507
2508 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2509 struct task_struct *last_task = NULL, *task;
2510
2511 /* src_csets precede dst_csets, break on the first dst_cset */
2512 if (!src_cset->mg_src_cgrp)
2513 break;
2514
2515 /*
2516 * All tasks in src_cset need to be migrated to the
2517 * matching dst_cset. Empty it process by process. We
2518 * walk tasks but migrate processes. The leader might even
2519 * belong to a different cset but such src_cset would also
2520 * be among the target src_csets because the default
2521 * hierarchy enforces per-process membership.
2522 */
2523 while (true) {
2524 down_read(&css_set_rwsem);
2525 task = list_first_entry_or_null(&src_cset->tasks,
2526 struct task_struct, cg_list);
2527 if (task) {
2528 task = task->group_leader;
2529 WARN_ON_ONCE(!task_css_set(task)->mg_src_cgrp);
2530 get_task_struct(task);
2531 }
2532 up_read(&css_set_rwsem);
2533
2534 if (!task)
2535 break;
2536
2537 /* guard against possible infinite loop */
2538 if (WARN(last_task == task,
2539 "cgroup: update_dfl_csses failed to make progress, aborting in inconsistent state\n"))
2540 goto out_finish;
2541 last_task = task;
2542
2543 threadgroup_lock(task);
2544 /* raced against de_thread() from another thread? */
2545 if (!thread_group_leader(task)) {
2546 threadgroup_unlock(task);
2547 put_task_struct(task);
2548 continue;
2549 }
2550
2551 ret = cgroup_migrate(src_cset->dfl_cgrp, task, true);
2552
2553 threadgroup_unlock(task);
2554 put_task_struct(task);
2555
2556 if (WARN(ret, "cgroup: failed to update controllers for the default hierarchy (%d), further operations may crash or hang\n", ret))
2557 goto out_finish;
2558 }
2559 }
2560
2561out_finish:
2562 cgroup_migrate_finish(&preloaded_csets);
2563 return ret;
2564}
2565
2566/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2567static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2568 char *buf, size_t nbytes,
2569 loff_t off)
f8f22e53 2570{
7d331fa9 2571 unsigned int enable = 0, disable = 0;
a9746d8d 2572 struct cgroup *cgrp, *child;
f8f22e53 2573 struct cgroup_subsys *ss;
451af504 2574 char *tok;
f8f22e53
TH
2575 int ssid, ret;
2576
2577 /*
d37167ab
TH
2578 * Parse input - space separated list of subsystem names prefixed
2579 * with either + or -.
f8f22e53 2580 */
451af504
TH
2581 buf = strstrip(buf);
2582 while ((tok = strsep(&buf, " "))) {
d37167ab
TH
2583 if (tok[0] == '\0')
2584 continue;
f8f22e53 2585 for_each_subsys(ss, ssid) {
5533e011
TH
2586 if (ss->disabled || strcmp(tok + 1, ss->name) ||
2587 ((1 << ss->id) & cgrp_dfl_root_inhibit_ss_mask))
f8f22e53
TH
2588 continue;
2589
2590 if (*tok == '+') {
7d331fa9
TH
2591 enable |= 1 << ssid;
2592 disable &= ~(1 << ssid);
f8f22e53 2593 } else if (*tok == '-') {
7d331fa9
TH
2594 disable |= 1 << ssid;
2595 enable &= ~(1 << ssid);
f8f22e53
TH
2596 } else {
2597 return -EINVAL;
2598 }
2599 break;
2600 }
2601 if (ssid == CGROUP_SUBSYS_COUNT)
2602 return -EINVAL;
2603 }
2604
a9746d8d
TH
2605 cgrp = cgroup_kn_lock_live(of->kn);
2606 if (!cgrp)
2607 return -ENODEV;
f8f22e53
TH
2608
2609 for_each_subsys(ss, ssid) {
2610 if (enable & (1 << ssid)) {
2611 if (cgrp->child_subsys_mask & (1 << ssid)) {
2612 enable &= ~(1 << ssid);
2613 continue;
2614 }
2615
2616 /*
2617 * Because css offlining is asynchronous, userland
2618 * might try to re-enable the same controller while
2619 * the previous instance is still around. In such
2620 * cases, wait till it's gone using offline_waitq.
2621 */
2622 cgroup_for_each_live_child(child, cgrp) {
0cee8b77 2623 DEFINE_WAIT(wait);
f8f22e53
TH
2624
2625 if (!cgroup_css(child, ss))
2626 continue;
2627
0cee8b77 2628 cgroup_get(child);
f8f22e53
TH
2629 prepare_to_wait(&child->offline_waitq, &wait,
2630 TASK_UNINTERRUPTIBLE);
a9746d8d 2631 cgroup_kn_unlock(of->kn);
f8f22e53
TH
2632 schedule();
2633 finish_wait(&child->offline_waitq, &wait);
0cee8b77 2634 cgroup_put(child);
7d331fa9 2635
a9746d8d 2636 return restart_syscall();
f8f22e53
TH
2637 }
2638
2639 /* unavailable or not enabled on the parent? */
2640 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
d51f39b0
TH
2641 (cgroup_parent(cgrp) &&
2642 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ssid)))) {
f8f22e53 2643 ret = -ENOENT;
ddab2b6e 2644 goto out_unlock;
f8f22e53
TH
2645 }
2646 } else if (disable & (1 << ssid)) {
2647 if (!(cgrp->child_subsys_mask & (1 << ssid))) {
2648 disable &= ~(1 << ssid);
2649 continue;
2650 }
2651
2652 /* a child has it enabled? */
2653 cgroup_for_each_live_child(child, cgrp) {
2654 if (child->child_subsys_mask & (1 << ssid)) {
2655 ret = -EBUSY;
ddab2b6e 2656 goto out_unlock;
f8f22e53
TH
2657 }
2658 }
2659 }
2660 }
2661
2662 if (!enable && !disable) {
2663 ret = 0;
ddab2b6e 2664 goto out_unlock;
f8f22e53
TH
2665 }
2666
2667 /*
2668 * Except for the root, child_subsys_mask must be zero for a cgroup
2669 * with tasks so that child cgroups don't compete against tasks.
2670 */
d51f39b0 2671 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2672 ret = -EBUSY;
2673 goto out_unlock;
2674 }
2675
2676 /*
2677 * Create csses for enables and update child_subsys_mask. This
2678 * changes cgroup_e_css() results which in turn makes the
2679 * subsequent cgroup_update_dfl_csses() associate all tasks in the
2680 * subtree to the updated csses.
2681 */
2682 for_each_subsys(ss, ssid) {
2683 if (!(enable & (1 << ssid)))
2684 continue;
2685
2686 cgroup_for_each_live_child(child, cgrp) {
2687 ret = create_css(child, ss);
2688 if (ret)
2689 goto err_undo_css;
2690 }
2691 }
2692
2693 cgrp->child_subsys_mask |= enable;
2694 cgrp->child_subsys_mask &= ~disable;
2695
2696 ret = cgroup_update_dfl_csses(cgrp);
2697 if (ret)
2698 goto err_undo_css;
2699
2700 /* all tasks are now migrated away from the old csses, kill them */
2701 for_each_subsys(ss, ssid) {
2702 if (!(disable & (1 << ssid)))
2703 continue;
2704
2705 cgroup_for_each_live_child(child, cgrp)
2706 kill_css(cgroup_css(child, ss));
2707 }
2708
2709 kernfs_activate(cgrp->kn);
2710 ret = 0;
2711out_unlock:
a9746d8d 2712 cgroup_kn_unlock(of->kn);
451af504 2713 return ret ?: nbytes;
f8f22e53
TH
2714
2715err_undo_css:
2716 cgrp->child_subsys_mask &= ~enable;
2717 cgrp->child_subsys_mask |= disable;
2718
2719 for_each_subsys(ss, ssid) {
2720 if (!(enable & (1 << ssid)))
2721 continue;
2722
2723 cgroup_for_each_live_child(child, cgrp) {
2724 struct cgroup_subsys_state *css = cgroup_css(child, ss);
2725 if (css)
2726 kill_css(css);
2727 }
2728 }
2729 goto out_unlock;
2730}
2731
842b597e
TH
2732static int cgroup_populated_show(struct seq_file *seq, void *v)
2733{
2734 seq_printf(seq, "%d\n", (bool)seq_css(seq)->cgroup->populated_cnt);
2735 return 0;
2736}
2737
2bd59d48
TH
2738static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2739 size_t nbytes, loff_t off)
355e0c48 2740{
2bd59d48
TH
2741 struct cgroup *cgrp = of->kn->parent->priv;
2742 struct cftype *cft = of->kn->priv;
2743 struct cgroup_subsys_state *css;
a742c59d 2744 int ret;
355e0c48 2745
b4168640
TH
2746 if (cft->write)
2747 return cft->write(of, buf, nbytes, off);
2748
2bd59d48
TH
2749 /*
2750 * kernfs guarantees that a file isn't deleted with operations in
2751 * flight, which means that the matching css is and stays alive and
2752 * doesn't need to be pinned. The RCU locking is not necessary
2753 * either. It's just for the convenience of using cgroup_css().
2754 */
2755 rcu_read_lock();
2756 css = cgroup_css(cgrp, cft->ss);
2757 rcu_read_unlock();
a742c59d 2758
451af504 2759 if (cft->write_u64) {
a742c59d
TH
2760 unsigned long long v;
2761 ret = kstrtoull(buf, 0, &v);
2762 if (!ret)
2763 ret = cft->write_u64(css, cft, v);
2764 } else if (cft->write_s64) {
2765 long long v;
2766 ret = kstrtoll(buf, 0, &v);
2767 if (!ret)
2768 ret = cft->write_s64(css, cft, v);
e73d2c61 2769 } else {
a742c59d 2770 ret = -EINVAL;
e73d2c61 2771 }
2bd59d48 2772
a742c59d 2773 return ret ?: nbytes;
355e0c48
PM
2774}
2775
6612f05b 2776static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2777{
2bd59d48 2778 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2779}
2780
6612f05b 2781static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2782{
2bd59d48 2783 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2784}
2785
6612f05b 2786static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2787{
2bd59d48 2788 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2789}
2790
91796569 2791static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2792{
7da11279
TH
2793 struct cftype *cft = seq_cft(m);
2794 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2795
2da8ca82
TH
2796 if (cft->seq_show)
2797 return cft->seq_show(m, arg);
e73d2c61 2798
f4c753b7 2799 if (cft->read_u64)
896f5199
TH
2800 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2801 else if (cft->read_s64)
2802 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2803 else
2804 return -EINVAL;
2805 return 0;
91796569
PM
2806}
2807
2bd59d48
TH
2808static struct kernfs_ops cgroup_kf_single_ops = {
2809 .atomic_write_len = PAGE_SIZE,
2810 .write = cgroup_file_write,
2811 .seq_show = cgroup_seqfile_show,
91796569
PM
2812};
2813
2bd59d48
TH
2814static struct kernfs_ops cgroup_kf_ops = {
2815 .atomic_write_len = PAGE_SIZE,
2816 .write = cgroup_file_write,
2817 .seq_start = cgroup_seqfile_start,
2818 .seq_next = cgroup_seqfile_next,
2819 .seq_stop = cgroup_seqfile_stop,
2820 .seq_show = cgroup_seqfile_show,
2821};
ddbcc7e8
PM
2822
2823/*
2824 * cgroup_rename - Only allow simple rename of directories in place.
2825 */
2bd59d48
TH
2826static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2827 const char *new_name_str)
ddbcc7e8 2828{
2bd59d48 2829 struct cgroup *cgrp = kn->priv;
65dff759 2830 int ret;
65dff759 2831
2bd59d48 2832 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2833 return -ENOTDIR;
2bd59d48 2834 if (kn->parent != new_parent)
ddbcc7e8 2835 return -EIO;
65dff759 2836
6db8e85c
TH
2837 /*
2838 * This isn't a proper migration and its usefulness is very
2839 * limited. Disallow if sane_behavior.
2840 */
2841 if (cgroup_sane_behavior(cgrp))
2842 return -EPERM;
099fca32 2843
e1b2dc17 2844 /*
8353da1f 2845 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 2846 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 2847 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
2848 */
2849 kernfs_break_active_protection(new_parent);
2850 kernfs_break_active_protection(kn);
099fca32 2851
2bd59d48 2852 mutex_lock(&cgroup_mutex);
099fca32 2853
2bd59d48 2854 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 2855
2bd59d48 2856 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
2857
2858 kernfs_unbreak_active_protection(kn);
2859 kernfs_unbreak_active_protection(new_parent);
2bd59d48 2860 return ret;
099fca32
LZ
2861}
2862
49957f8e
TH
2863/* set uid and gid of cgroup dirs and files to that of the creator */
2864static int cgroup_kn_set_ugid(struct kernfs_node *kn)
2865{
2866 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
2867 .ia_uid = current_fsuid(),
2868 .ia_gid = current_fsgid(), };
2869
2870 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
2871 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
2872 return 0;
2873
2874 return kernfs_setattr(kn, &iattr);
2875}
2876
2bb566cb 2877static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2878{
8d7e6fb0 2879 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2880 struct kernfs_node *kn;
2881 struct lock_class_key *key = NULL;
49957f8e 2882 int ret;
05ef1d7c 2883
2bd59d48
TH
2884#ifdef CONFIG_DEBUG_LOCK_ALLOC
2885 key = &cft->lockdep_key;
2886#endif
2887 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2888 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2889 NULL, false, key);
49957f8e
TH
2890 if (IS_ERR(kn))
2891 return PTR_ERR(kn);
2892
2893 ret = cgroup_kn_set_ugid(kn);
f8f22e53 2894 if (ret) {
49957f8e 2895 kernfs_remove(kn);
f8f22e53
TH
2896 return ret;
2897 }
2898
b7fc5ad2 2899 if (cft->seq_show == cgroup_populated_show)
842b597e 2900 cgrp->populated_kn = kn;
f8f22e53 2901 return 0;
ddbcc7e8
PM
2902}
2903
b1f28d31
TH
2904/**
2905 * cgroup_addrm_files - add or remove files to a cgroup directory
2906 * @cgrp: the target cgroup
b1f28d31
TH
2907 * @cfts: array of cftypes to be added
2908 * @is_add: whether to add or remove
2909 *
2910 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2911 * For removals, this function never fails. If addition fails, this
2912 * function doesn't remove files already added. The caller is responsible
2913 * for cleaning up.
b1f28d31 2914 */
2bb566cb
TH
2915static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2916 bool is_add)
ddbcc7e8 2917{
03b1cde6 2918 struct cftype *cft;
b1f28d31
TH
2919 int ret;
2920
01f6474c 2921 lockdep_assert_held(&cgroup_mutex);
db0416b6
TH
2922
2923 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2924 /* does cft->flags tell us to skip this file on @cgrp? */
8cbbf2c9
TH
2925 if ((cft->flags & CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
2926 continue;
873fe09e
TH
2927 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2928 continue;
d51f39b0 2929 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 2930 continue;
d51f39b0 2931 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
2932 continue;
2933
2739d3cc 2934 if (is_add) {
2bb566cb 2935 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2936 if (ret) {
ed3d261b
JP
2937 pr_warn("%s: failed to add %s, err=%d\n",
2938 __func__, cft->name, ret);
b1f28d31
TH
2939 return ret;
2940 }
2739d3cc
LZ
2941 } else {
2942 cgroup_rm_file(cgrp, cft);
db0416b6 2943 }
ddbcc7e8 2944 }
b1f28d31 2945 return 0;
ddbcc7e8
PM
2946}
2947
21a2d343 2948static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2949{
2950 LIST_HEAD(pending);
2bb566cb 2951 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 2952 struct cgroup *root = &ss->root->cgrp;
492eb21b 2953 struct cgroup_subsys_state *css;
9ccece80 2954 int ret = 0;
8e3f6541 2955
01f6474c 2956 lockdep_assert_held(&cgroup_mutex);
e8c82d20 2957
e8c82d20 2958 /* add/rm files for all cgroups created before */
ca8bdcaf 2959 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2960 struct cgroup *cgrp = css->cgroup;
2961
e8c82d20
LZ
2962 if (cgroup_is_dead(cgrp))
2963 continue;
2964
21a2d343 2965 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2966 if (ret)
2967 break;
8e3f6541 2968 }
21a2d343
TH
2969
2970 if (is_add && !ret)
2971 kernfs_activate(root->kn);
9ccece80 2972 return ret;
8e3f6541
TH
2973}
2974
2da440a2 2975static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 2976{
2bb566cb 2977 struct cftype *cft;
8e3f6541 2978
2bd59d48
TH
2979 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2980 /* free copy for custom atomic_write_len, see init_cftypes() */
2981 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2982 kfree(cft->kf_ops);
2983 cft->kf_ops = NULL;
2da440a2 2984 cft->ss = NULL;
2bd59d48 2985 }
2da440a2
TH
2986}
2987
2bd59d48 2988static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2989{
2990 struct cftype *cft;
2991
2bd59d48
TH
2992 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2993 struct kernfs_ops *kf_ops;
2994
0adb0704
TH
2995 WARN_ON(cft->ss || cft->kf_ops);
2996
2bd59d48
TH
2997 if (cft->seq_start)
2998 kf_ops = &cgroup_kf_ops;
2999 else
3000 kf_ops = &cgroup_kf_single_ops;
3001
3002 /*
3003 * Ugh... if @cft wants a custom max_write_len, we need to
3004 * make a copy of kf_ops to set its atomic_write_len.
3005 */
3006 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3007 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3008 if (!kf_ops) {
3009 cgroup_exit_cftypes(cfts);
3010 return -ENOMEM;
3011 }
3012 kf_ops->atomic_write_len = cft->max_write_len;
3013 }
8e3f6541 3014
2bd59d48 3015 cft->kf_ops = kf_ops;
2bb566cb 3016 cft->ss = ss;
2bd59d48 3017 }
2bb566cb 3018
2bd59d48 3019 return 0;
2da440a2
TH
3020}
3021
21a2d343
TH
3022static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3023{
01f6474c 3024 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3025
3026 if (!cfts || !cfts[0].ss)
3027 return -ENOENT;
3028
3029 list_del(&cfts->node);
3030 cgroup_apply_cftypes(cfts, false);
3031 cgroup_exit_cftypes(cfts);
3032 return 0;
8e3f6541 3033}
8e3f6541 3034
79578621
TH
3035/**
3036 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3037 * @cfts: zero-length name terminated array of cftypes
3038 *
2bb566cb
TH
3039 * Unregister @cfts. Files described by @cfts are removed from all
3040 * existing cgroups and all future cgroups won't have them either. This
3041 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3042 *
3043 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3044 * registered.
79578621 3045 */
2bb566cb 3046int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3047{
21a2d343 3048 int ret;
79578621 3049
01f6474c 3050 mutex_lock(&cgroup_mutex);
21a2d343 3051 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3052 mutex_unlock(&cgroup_mutex);
21a2d343 3053 return ret;
80b13586
TH
3054}
3055
8e3f6541
TH
3056/**
3057 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3058 * @ss: target cgroup subsystem
3059 * @cfts: zero-length name terminated array of cftypes
3060 *
3061 * Register @cfts to @ss. Files described by @cfts are created for all
3062 * existing cgroups to which @ss is attached and all future cgroups will
3063 * have them too. This function can be called anytime whether @ss is
3064 * attached or not.
3065 *
3066 * Returns 0 on successful registration, -errno on failure. Note that this
3067 * function currently returns 0 as long as @cfts registration is successful
3068 * even if some file creation attempts on existing cgroups fail.
3069 */
03b1cde6 3070int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3071{
9ccece80 3072 int ret;
8e3f6541 3073
c731ae1d
LZ
3074 if (ss->disabled)
3075 return 0;
3076
dc5736ed
LZ
3077 if (!cfts || cfts[0].name[0] == '\0')
3078 return 0;
2bb566cb 3079
2bd59d48
TH
3080 ret = cgroup_init_cftypes(ss, cfts);
3081 if (ret)
3082 return ret;
79578621 3083
01f6474c 3084 mutex_lock(&cgroup_mutex);
21a2d343 3085
0adb0704 3086 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3087 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3088 if (ret)
21a2d343 3089 cgroup_rm_cftypes_locked(cfts);
79578621 3090
01f6474c 3091 mutex_unlock(&cgroup_mutex);
9ccece80 3092 return ret;
79578621
TH
3093}
3094
a043e3b2
LZ
3095/**
3096 * cgroup_task_count - count the number of tasks in a cgroup.
3097 * @cgrp: the cgroup in question
3098 *
3099 * Return the number of tasks in the cgroup.
3100 */
07bc356e 3101static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3102{
3103 int count = 0;
69d0206c 3104 struct cgrp_cset_link *link;
817929ec 3105
96d365e0 3106 down_read(&css_set_rwsem);
69d0206c
TH
3107 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3108 count += atomic_read(&link->cset->refcount);
96d365e0 3109 up_read(&css_set_rwsem);
bbcb81d0
PM
3110 return count;
3111}
3112
53fa5261 3113/**
492eb21b 3114 * css_next_child - find the next child of a given css
c2931b70
TH
3115 * @pos: the current position (%NULL to initiate traversal)
3116 * @parent: css whose children to walk
53fa5261 3117 *
c2931b70 3118 * This function returns the next child of @parent and should be called
87fb54f1 3119 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3120 * that @parent and @pos are accessible. The next sibling is guaranteed to
3121 * be returned regardless of their states.
3122 *
3123 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3124 * css which finished ->css_online() is guaranteed to be visible in the
3125 * future iterations and will stay visible until the last reference is put.
3126 * A css which hasn't finished ->css_online() or already finished
3127 * ->css_offline() may show up during traversal. It's each subsystem's
3128 * responsibility to synchronize against on/offlining.
53fa5261 3129 */
c2931b70
TH
3130struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3131 struct cgroup_subsys_state *parent)
53fa5261 3132{
c2931b70 3133 struct cgroup_subsys_state *next;
53fa5261 3134
8353da1f 3135 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3136
3137 /*
de3f0341
TH
3138 * @pos could already have been unlinked from the sibling list.
3139 * Once a cgroup is removed, its ->sibling.next is no longer
3140 * updated when its next sibling changes. CSS_RELEASED is set when
3141 * @pos is taken off list, at which time its next pointer is valid,
3142 * and, as releases are serialized, the one pointed to by the next
3143 * pointer is guaranteed to not have started release yet. This
3144 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3145 * critical section, the one pointed to by its next pointer is
3146 * guaranteed to not have finished its RCU grace period even if we
3147 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3148 *
de3f0341
TH
3149 * If @pos has CSS_RELEASED set, its next pointer can't be
3150 * dereferenced; however, as each css is given a monotonically
3151 * increasing unique serial number and always appended to the
3152 * sibling list, the next one can be found by walking the parent's
3153 * children until the first css with higher serial number than
3154 * @pos's. While this path can be slower, it happens iff iteration
3155 * races against release and the race window is very small.
53fa5261 3156 */
3b287a50 3157 if (!pos) {
c2931b70
TH
3158 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3159 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3160 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3161 } else {
c2931b70 3162 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3163 if (next->serial_nr > pos->serial_nr)
3164 break;
53fa5261
TH
3165 }
3166
3b281afb
TH
3167 /*
3168 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3169 * the next sibling.
3b281afb 3170 */
c2931b70
TH
3171 if (&next->sibling != &parent->children)
3172 return next;
3b281afb 3173 return NULL;
53fa5261 3174}
53fa5261 3175
574bd9f7 3176/**
492eb21b 3177 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3178 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3179 * @root: css whose descendants to walk
574bd9f7 3180 *
492eb21b 3181 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3182 * to visit for pre-order traversal of @root's descendants. @root is
3183 * included in the iteration and the first node to be visited.
75501a6d 3184 *
87fb54f1
TH
3185 * While this function requires cgroup_mutex or RCU read locking, it
3186 * doesn't require the whole traversal to be contained in a single critical
3187 * section. This function will return the correct next descendant as long
3188 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3189 *
3190 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3191 * css which finished ->css_online() is guaranteed to be visible in the
3192 * future iterations and will stay visible until the last reference is put.
3193 * A css which hasn't finished ->css_online() or already finished
3194 * ->css_offline() may show up during traversal. It's each subsystem's
3195 * responsibility to synchronize against on/offlining.
574bd9f7 3196 */
492eb21b
TH
3197struct cgroup_subsys_state *
3198css_next_descendant_pre(struct cgroup_subsys_state *pos,
3199 struct cgroup_subsys_state *root)
574bd9f7 3200{
492eb21b 3201 struct cgroup_subsys_state *next;
574bd9f7 3202
8353da1f 3203 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3204
bd8815a6 3205 /* if first iteration, visit @root */
7805d000 3206 if (!pos)
bd8815a6 3207 return root;
574bd9f7
TH
3208
3209 /* visit the first child if exists */
492eb21b 3210 next = css_next_child(NULL, pos);
574bd9f7
TH
3211 if (next)
3212 return next;
3213
3214 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3215 while (pos != root) {
5c9d535b 3216 next = css_next_child(pos, pos->parent);
75501a6d 3217 if (next)
574bd9f7 3218 return next;
5c9d535b 3219 pos = pos->parent;
7805d000 3220 }
574bd9f7
TH
3221
3222 return NULL;
3223}
574bd9f7 3224
12a9d2fe 3225/**
492eb21b
TH
3226 * css_rightmost_descendant - return the rightmost descendant of a css
3227 * @pos: css of interest
12a9d2fe 3228 *
492eb21b
TH
3229 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3230 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3231 * subtree of @pos.
75501a6d 3232 *
87fb54f1
TH
3233 * While this function requires cgroup_mutex or RCU read locking, it
3234 * doesn't require the whole traversal to be contained in a single critical
3235 * section. This function will return the correct rightmost descendant as
3236 * long as @pos is accessible.
12a9d2fe 3237 */
492eb21b
TH
3238struct cgroup_subsys_state *
3239css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3240{
492eb21b 3241 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3242
8353da1f 3243 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3244
3245 do {
3246 last = pos;
3247 /* ->prev isn't RCU safe, walk ->next till the end */
3248 pos = NULL;
492eb21b 3249 css_for_each_child(tmp, last)
12a9d2fe
TH
3250 pos = tmp;
3251 } while (pos);
3252
3253 return last;
3254}
12a9d2fe 3255
492eb21b
TH
3256static struct cgroup_subsys_state *
3257css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3258{
492eb21b 3259 struct cgroup_subsys_state *last;
574bd9f7
TH
3260
3261 do {
3262 last = pos;
492eb21b 3263 pos = css_next_child(NULL, pos);
574bd9f7
TH
3264 } while (pos);
3265
3266 return last;
3267}
3268
3269/**
492eb21b 3270 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3271 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3272 * @root: css whose descendants to walk
574bd9f7 3273 *
492eb21b 3274 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3275 * to visit for post-order traversal of @root's descendants. @root is
3276 * included in the iteration and the last node to be visited.
75501a6d 3277 *
87fb54f1
TH
3278 * While this function requires cgroup_mutex or RCU read locking, it
3279 * doesn't require the whole traversal to be contained in a single critical
3280 * section. This function will return the correct next descendant as long
3281 * as both @pos and @cgroup are accessible and @pos is a descendant of
3282 * @cgroup.
c2931b70
TH
3283 *
3284 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3285 * css which finished ->css_online() is guaranteed to be visible in the
3286 * future iterations and will stay visible until the last reference is put.
3287 * A css which hasn't finished ->css_online() or already finished
3288 * ->css_offline() may show up during traversal. It's each subsystem's
3289 * responsibility to synchronize against on/offlining.
574bd9f7 3290 */
492eb21b
TH
3291struct cgroup_subsys_state *
3292css_next_descendant_post(struct cgroup_subsys_state *pos,
3293 struct cgroup_subsys_state *root)
574bd9f7 3294{
492eb21b 3295 struct cgroup_subsys_state *next;
574bd9f7 3296
8353da1f 3297 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3298
58b79a91
TH
3299 /* if first iteration, visit leftmost descendant which may be @root */
3300 if (!pos)
3301 return css_leftmost_descendant(root);
574bd9f7 3302
bd8815a6
TH
3303 /* if we visited @root, we're done */
3304 if (pos == root)
3305 return NULL;
3306
574bd9f7 3307 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3308 next = css_next_child(pos, pos->parent);
75501a6d 3309 if (next)
492eb21b 3310 return css_leftmost_descendant(next);
574bd9f7
TH
3311
3312 /* no sibling left, visit parent */
5c9d535b 3313 return pos->parent;
574bd9f7 3314}
574bd9f7 3315
f3d46500
TH
3316/**
3317 * css_has_online_children - does a css have online children
3318 * @css: the target css
3319 *
3320 * Returns %true if @css has any online children; otherwise, %false. This
3321 * function can be called from any context but the caller is responsible
3322 * for synchronizing against on/offlining as necessary.
3323 */
3324bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3325{
f3d46500
TH
3326 struct cgroup_subsys_state *child;
3327 bool ret = false;
cbc125ef
TH
3328
3329 rcu_read_lock();
f3d46500
TH
3330 css_for_each_child(child, css) {
3331 if (css->flags & CSS_ONLINE) {
3332 ret = true;
3333 break;
cbc125ef
TH
3334 }
3335 }
3336 rcu_read_unlock();
f3d46500 3337 return ret;
574bd9f7 3338}
574bd9f7 3339
0942eeee 3340/**
72ec7029 3341 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3342 * @it: the iterator to advance
3343 *
3344 * Advance @it to the next css_set to walk.
d515876e 3345 */
72ec7029 3346static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3347{
0f0a2b4f 3348 struct list_head *l = it->cset_pos;
d515876e
TH
3349 struct cgrp_cset_link *link;
3350 struct css_set *cset;
3351
3352 /* Advance to the next non-empty css_set */
3353 do {
3354 l = l->next;
0f0a2b4f
TH
3355 if (l == it->cset_head) {
3356 it->cset_pos = NULL;
d515876e
TH
3357 return;
3358 }
3ebb2b6e
TH
3359
3360 if (it->ss) {
3361 cset = container_of(l, struct css_set,
3362 e_cset_node[it->ss->id]);
3363 } else {
3364 link = list_entry(l, struct cgrp_cset_link, cset_link);
3365 cset = link->cset;
3366 }
c7561128
TH
3367 } while (list_empty(&cset->tasks) && list_empty(&cset->mg_tasks));
3368
0f0a2b4f 3369 it->cset_pos = l;
c7561128
TH
3370
3371 if (!list_empty(&cset->tasks))
0f0a2b4f 3372 it->task_pos = cset->tasks.next;
c7561128 3373 else
0f0a2b4f
TH
3374 it->task_pos = cset->mg_tasks.next;
3375
3376 it->tasks_head = &cset->tasks;
3377 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3378}
3379
0942eeee 3380/**
72ec7029
TH
3381 * css_task_iter_start - initiate task iteration
3382 * @css: the css to walk tasks of
0942eeee
TH
3383 * @it: the task iterator to use
3384 *
72ec7029
TH
3385 * Initiate iteration through the tasks of @css. The caller can call
3386 * css_task_iter_next() to walk through the tasks until the function
3387 * returns NULL. On completion of iteration, css_task_iter_end() must be
3388 * called.
0942eeee
TH
3389 *
3390 * Note that this function acquires a lock which is released when the
3391 * iteration finishes. The caller can't sleep while iteration is in
3392 * progress.
3393 */
72ec7029
TH
3394void css_task_iter_start(struct cgroup_subsys_state *css,
3395 struct css_task_iter *it)
96d365e0 3396 __acquires(css_set_rwsem)
817929ec 3397{
56fde9e0
TH
3398 /* no one should try to iterate before mounting cgroups */
3399 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3400
96d365e0 3401 down_read(&css_set_rwsem);
c59cd3d8 3402
3ebb2b6e
TH
3403 it->ss = css->ss;
3404
3405 if (it->ss)
3406 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3407 else
3408 it->cset_pos = &css->cgroup->cset_links;
3409
0f0a2b4f 3410 it->cset_head = it->cset_pos;
c59cd3d8 3411
72ec7029 3412 css_advance_task_iter(it);
817929ec
PM
3413}
3414
0942eeee 3415/**
72ec7029 3416 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3417 * @it: the task iterator being iterated
3418 *
3419 * The "next" function for task iteration. @it should have been
72ec7029
TH
3420 * initialized via css_task_iter_start(). Returns NULL when the iteration
3421 * reaches the end.
0942eeee 3422 */
72ec7029 3423struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3424{
3425 struct task_struct *res;
0f0a2b4f 3426 struct list_head *l = it->task_pos;
817929ec
PM
3427
3428 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3429 if (!it->cset_pos)
817929ec
PM
3430 return NULL;
3431 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3432
3433 /*
3434 * Advance iterator to find next entry. cset->tasks is consumed
3435 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3436 * next cset.
3437 */
817929ec 3438 l = l->next;
c7561128 3439
0f0a2b4f
TH
3440 if (l == it->tasks_head)
3441 l = it->mg_tasks_head->next;
c7561128 3442
0f0a2b4f 3443 if (l == it->mg_tasks_head)
72ec7029 3444 css_advance_task_iter(it);
c7561128 3445 else
0f0a2b4f 3446 it->task_pos = l;
c7561128 3447
817929ec
PM
3448 return res;
3449}
3450
0942eeee 3451/**
72ec7029 3452 * css_task_iter_end - finish task iteration
0942eeee
TH
3453 * @it: the task iterator to finish
3454 *
72ec7029 3455 * Finish task iteration started by css_task_iter_start().
0942eeee 3456 */
72ec7029 3457void css_task_iter_end(struct css_task_iter *it)
96d365e0 3458 __releases(css_set_rwsem)
31a7df01 3459{
96d365e0 3460 up_read(&css_set_rwsem);
31a7df01
CW
3461}
3462
3463/**
8cc99345
TH
3464 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3465 * @to: cgroup to which the tasks will be moved
3466 * @from: cgroup in which the tasks currently reside
31a7df01 3467 *
eaf797ab
TH
3468 * Locking rules between cgroup_post_fork() and the migration path
3469 * guarantee that, if a task is forking while being migrated, the new child
3470 * is guaranteed to be either visible in the source cgroup after the
3471 * parent's migration is complete or put into the target cgroup. No task
3472 * can slip out of migration through forking.
31a7df01 3473 */
8cc99345 3474int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3475{
952aaa12
TH
3476 LIST_HEAD(preloaded_csets);
3477 struct cgrp_cset_link *link;
72ec7029 3478 struct css_task_iter it;
e406d1cf 3479 struct task_struct *task;
952aaa12 3480 int ret;
31a7df01 3481
952aaa12 3482 mutex_lock(&cgroup_mutex);
31a7df01 3483
952aaa12
TH
3484 /* all tasks in @from are being moved, all csets are source */
3485 down_read(&css_set_rwsem);
3486 list_for_each_entry(link, &from->cset_links, cset_link)
3487 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3488 up_read(&css_set_rwsem);
31a7df01 3489
952aaa12
TH
3490 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3491 if (ret)
3492 goto out_err;
8cc99345 3493
952aaa12
TH
3494 /*
3495 * Migrate tasks one-by-one until @form is empty. This fails iff
3496 * ->can_attach() fails.
3497 */
e406d1cf 3498 do {
9d800df1 3499 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3500 task = css_task_iter_next(&it);
3501 if (task)
3502 get_task_struct(task);
3503 css_task_iter_end(&it);
3504
3505 if (task) {
952aaa12 3506 ret = cgroup_migrate(to, task, false);
e406d1cf
TH
3507 put_task_struct(task);
3508 }
3509 } while (task && !ret);
952aaa12
TH
3510out_err:
3511 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3512 mutex_unlock(&cgroup_mutex);
e406d1cf 3513 return ret;
8cc99345
TH
3514}
3515
bbcb81d0 3516/*
102a775e 3517 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3518 *
3519 * Reading this file can return large amounts of data if a cgroup has
3520 * *lots* of attached tasks. So it may need several calls to read(),
3521 * but we cannot guarantee that the information we produce is correct
3522 * unless we produce it entirely atomically.
3523 *
bbcb81d0 3524 */
bbcb81d0 3525
24528255
LZ
3526/* which pidlist file are we talking about? */
3527enum cgroup_filetype {
3528 CGROUP_FILE_PROCS,
3529 CGROUP_FILE_TASKS,
3530};
3531
3532/*
3533 * A pidlist is a list of pids that virtually represents the contents of one
3534 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3535 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3536 * to the cgroup.
3537 */
3538struct cgroup_pidlist {
3539 /*
3540 * used to find which pidlist is wanted. doesn't change as long as
3541 * this particular list stays in the list.
3542 */
3543 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3544 /* array of xids */
3545 pid_t *list;
3546 /* how many elements the above list has */
3547 int length;
24528255
LZ
3548 /* each of these stored in a list by its cgroup */
3549 struct list_head links;
3550 /* pointer to the cgroup we belong to, for list removal purposes */
3551 struct cgroup *owner;
b1a21367
TH
3552 /* for delayed destruction */
3553 struct delayed_work destroy_dwork;
24528255
LZ
3554};
3555
d1d9fd33
BB
3556/*
3557 * The following two functions "fix" the issue where there are more pids
3558 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3559 * TODO: replace with a kernel-wide solution to this problem
3560 */
3561#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3562static void *pidlist_allocate(int count)
3563{
3564 if (PIDLIST_TOO_LARGE(count))
3565 return vmalloc(count * sizeof(pid_t));
3566 else
3567 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3568}
b1a21367 3569
d1d9fd33
BB
3570static void pidlist_free(void *p)
3571{
3572 if (is_vmalloc_addr(p))
3573 vfree(p);
3574 else
3575 kfree(p);
3576}
d1d9fd33 3577
b1a21367
TH
3578/*
3579 * Used to destroy all pidlists lingering waiting for destroy timer. None
3580 * should be left afterwards.
3581 */
3582static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
3583{
3584 struct cgroup_pidlist *l, *tmp_l;
3585
3586 mutex_lock(&cgrp->pidlist_mutex);
3587 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
3588 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
3589 mutex_unlock(&cgrp->pidlist_mutex);
3590
3591 flush_workqueue(cgroup_pidlist_destroy_wq);
3592 BUG_ON(!list_empty(&cgrp->pidlists));
3593}
3594
3595static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
3596{
3597 struct delayed_work *dwork = to_delayed_work(work);
3598 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
3599 destroy_dwork);
3600 struct cgroup_pidlist *tofree = NULL;
3601
3602 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
3603
3604 /*
04502365
TH
3605 * Destroy iff we didn't get queued again. The state won't change
3606 * as destroy_dwork can only be queued while locked.
b1a21367 3607 */
04502365 3608 if (!delayed_work_pending(dwork)) {
b1a21367
TH
3609 list_del(&l->links);
3610 pidlist_free(l->list);
3611 put_pid_ns(l->key.ns);
3612 tofree = l;
3613 }
3614
b1a21367
TH
3615 mutex_unlock(&l->owner->pidlist_mutex);
3616 kfree(tofree);
3617}
3618
bbcb81d0 3619/*
102a775e 3620 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 3621 * Returns the number of unique elements.
bbcb81d0 3622 */
6ee211ad 3623static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 3624{
102a775e 3625 int src, dest = 1;
102a775e
BB
3626
3627 /*
3628 * we presume the 0th element is unique, so i starts at 1. trivial
3629 * edge cases first; no work needs to be done for either
3630 */
3631 if (length == 0 || length == 1)
3632 return length;
3633 /* src and dest walk down the list; dest counts unique elements */
3634 for (src = 1; src < length; src++) {
3635 /* find next unique element */
3636 while (list[src] == list[src-1]) {
3637 src++;
3638 if (src == length)
3639 goto after;
3640 }
3641 /* dest always points to where the next unique element goes */
3642 list[dest] = list[src];
3643 dest++;
3644 }
3645after:
102a775e
BB
3646 return dest;
3647}
3648
afb2bc14
TH
3649/*
3650 * The two pid files - task and cgroup.procs - guaranteed that the result
3651 * is sorted, which forced this whole pidlist fiasco. As pid order is
3652 * different per namespace, each namespace needs differently sorted list,
3653 * making it impossible to use, for example, single rbtree of member tasks
3654 * sorted by task pointer. As pidlists can be fairly large, allocating one
3655 * per open file is dangerous, so cgroup had to implement shared pool of
3656 * pidlists keyed by cgroup and namespace.
3657 *
3658 * All this extra complexity was caused by the original implementation
3659 * committing to an entirely unnecessary property. In the long term, we
3660 * want to do away with it. Explicitly scramble sort order if
3661 * sane_behavior so that no such expectation exists in the new interface.
3662 *
3663 * Scrambling is done by swapping every two consecutive bits, which is
3664 * non-identity one-to-one mapping which disturbs sort order sufficiently.
3665 */
3666static pid_t pid_fry(pid_t pid)
3667{
3668 unsigned a = pid & 0x55555555;
3669 unsigned b = pid & 0xAAAAAAAA;
3670
3671 return (a << 1) | (b >> 1);
3672}
3673
3674static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
3675{
3676 if (cgroup_sane_behavior(cgrp))
3677 return pid_fry(pid);
3678 else
3679 return pid;
3680}
3681
102a775e
BB
3682static int cmppid(const void *a, const void *b)
3683{
3684 return *(pid_t *)a - *(pid_t *)b;
3685}
3686
afb2bc14
TH
3687static int fried_cmppid(const void *a, const void *b)
3688{
3689 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
3690}
3691
e6b81710
TH
3692static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3693 enum cgroup_filetype type)
3694{
3695 struct cgroup_pidlist *l;
3696 /* don't need task_nsproxy() if we're looking at ourself */
3697 struct pid_namespace *ns = task_active_pid_ns(current);
3698
3699 lockdep_assert_held(&cgrp->pidlist_mutex);
3700
3701 list_for_each_entry(l, &cgrp->pidlists, links)
3702 if (l->key.type == type && l->key.ns == ns)
3703 return l;
3704 return NULL;
3705}
3706
72a8cb30
BB
3707/*
3708 * find the appropriate pidlist for our purpose (given procs vs tasks)
3709 * returns with the lock on that pidlist already held, and takes care
3710 * of the use count, or returns NULL with no locks held if we're out of
3711 * memory.
3712 */
e6b81710
TH
3713static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
3714 enum cgroup_filetype type)
72a8cb30
BB
3715{
3716 struct cgroup_pidlist *l;
b70cc5fd 3717
e6b81710
TH
3718 lockdep_assert_held(&cgrp->pidlist_mutex);
3719
3720 l = cgroup_pidlist_find(cgrp, type);
3721 if (l)
3722 return l;
3723
72a8cb30 3724 /* entry not found; create a new one */
f4f4be2b 3725 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 3726 if (!l)
72a8cb30 3727 return l;
e6b81710 3728
b1a21367 3729 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 3730 l->key.type = type;
e6b81710
TH
3731 /* don't need task_nsproxy() if we're looking at ourself */
3732 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
3733 l->owner = cgrp;
3734 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
3735 return l;
3736}
3737
102a775e
BB
3738/*
3739 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3740 */
72a8cb30
BB
3741static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3742 struct cgroup_pidlist **lp)
102a775e
BB
3743{
3744 pid_t *array;
3745 int length;
3746 int pid, n = 0; /* used for populating the array */
72ec7029 3747 struct css_task_iter it;
817929ec 3748 struct task_struct *tsk;
102a775e
BB
3749 struct cgroup_pidlist *l;
3750
4bac00d1
TH
3751 lockdep_assert_held(&cgrp->pidlist_mutex);
3752
102a775e
BB
3753 /*
3754 * If cgroup gets more users after we read count, we won't have
3755 * enough space - tough. This race is indistinguishable to the
3756 * caller from the case that the additional cgroup users didn't
3757 * show up until sometime later on.
3758 */
3759 length = cgroup_task_count(cgrp);
d1d9fd33 3760 array = pidlist_allocate(length);
102a775e
BB
3761 if (!array)
3762 return -ENOMEM;
3763 /* now, populate the array */
9d800df1 3764 css_task_iter_start(&cgrp->self, &it);
72ec7029 3765 while ((tsk = css_task_iter_next(&it))) {
102a775e 3766 if (unlikely(n == length))
817929ec 3767 break;
102a775e 3768 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
3769 if (type == CGROUP_FILE_PROCS)
3770 pid = task_tgid_vnr(tsk);
3771 else
3772 pid = task_pid_vnr(tsk);
102a775e
BB
3773 if (pid > 0) /* make sure to only use valid results */
3774 array[n++] = pid;
817929ec 3775 }
72ec7029 3776 css_task_iter_end(&it);
102a775e
BB
3777 length = n;
3778 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
3779 if (cgroup_sane_behavior(cgrp))
3780 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
3781 else
3782 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 3783 if (type == CGROUP_FILE_PROCS)
6ee211ad 3784 length = pidlist_uniq(array, length);
e6b81710 3785
e6b81710 3786 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 3787 if (!l) {
e6b81710 3788 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 3789 pidlist_free(array);
72a8cb30 3790 return -ENOMEM;
102a775e 3791 }
e6b81710
TH
3792
3793 /* store array, freeing old if necessary */
d1d9fd33 3794 pidlist_free(l->list);
102a775e
BB
3795 l->list = array;
3796 l->length = length;
72a8cb30 3797 *lp = l;
102a775e 3798 return 0;
bbcb81d0
PM
3799}
3800
846c7bb0 3801/**
a043e3b2 3802 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
3803 * @stats: cgroupstats to fill information into
3804 * @dentry: A dentry entry belonging to the cgroup for which stats have
3805 * been requested.
a043e3b2
LZ
3806 *
3807 * Build and fill cgroupstats so that taskstats can export it to user
3808 * space.
846c7bb0
BS
3809 */
3810int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3811{
2bd59d48 3812 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 3813 struct cgroup *cgrp;
72ec7029 3814 struct css_task_iter it;
846c7bb0 3815 struct task_struct *tsk;
33d283be 3816
2bd59d48
TH
3817 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3818 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3819 kernfs_type(kn) != KERNFS_DIR)
3820 return -EINVAL;
3821
bad34660
LZ
3822 mutex_lock(&cgroup_mutex);
3823
846c7bb0 3824 /*
2bd59d48 3825 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 3826 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 3827 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3828 */
2bd59d48
TH
3829 rcu_read_lock();
3830 cgrp = rcu_dereference(kn->priv);
bad34660 3831 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3832 rcu_read_unlock();
bad34660 3833 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3834 return -ENOENT;
3835 }
bad34660 3836 rcu_read_unlock();
846c7bb0 3837
9d800df1 3838 css_task_iter_start(&cgrp->self, &it);
72ec7029 3839 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3840 switch (tsk->state) {
3841 case TASK_RUNNING:
3842 stats->nr_running++;
3843 break;
3844 case TASK_INTERRUPTIBLE:
3845 stats->nr_sleeping++;
3846 break;
3847 case TASK_UNINTERRUPTIBLE:
3848 stats->nr_uninterruptible++;
3849 break;
3850 case TASK_STOPPED:
3851 stats->nr_stopped++;
3852 break;
3853 default:
3854 if (delayacct_is_task_waiting_on_io(tsk))
3855 stats->nr_io_wait++;
3856 break;
3857 }
3858 }
72ec7029 3859 css_task_iter_end(&it);
846c7bb0 3860
bad34660 3861 mutex_unlock(&cgroup_mutex);
2bd59d48 3862 return 0;
846c7bb0
BS
3863}
3864
8f3ff208 3865
bbcb81d0 3866/*
102a775e 3867 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3868 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3869 * in the cgroup->l->list array.
bbcb81d0 3870 */
cc31edce 3871
102a775e 3872static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3873{
cc31edce
PM
3874 /*
3875 * Initially we receive a position value that corresponds to
3876 * one more than the last pid shown (or 0 on the first call or
3877 * after a seek to the start). Use a binary-search to find the
3878 * next pid to display, if any
3879 */
2bd59d48 3880 struct kernfs_open_file *of = s->private;
7da11279 3881 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3882 struct cgroup_pidlist *l;
7da11279 3883 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3884 int index = 0, pid = *pos;
4bac00d1
TH
3885 int *iter, ret;
3886
3887 mutex_lock(&cgrp->pidlist_mutex);
3888
3889 /*
5d22444f 3890 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3891 * after open. If the matching pidlist is around, we can use that.
5d22444f 3892 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3893 * could already have been destroyed.
3894 */
5d22444f
TH
3895 if (of->priv)
3896 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3897
3898 /*
3899 * Either this is the first start() after open or the matching
3900 * pidlist has been destroyed inbetween. Create a new one.
3901 */
5d22444f
TH
3902 if (!of->priv) {
3903 ret = pidlist_array_load(cgrp, type,
3904 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3905 if (ret)
3906 return ERR_PTR(ret);
3907 }
5d22444f 3908 l = of->priv;
cc31edce 3909
cc31edce 3910 if (pid) {
102a775e 3911 int end = l->length;
20777766 3912
cc31edce
PM
3913 while (index < end) {
3914 int mid = (index + end) / 2;
afb2bc14 3915 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3916 index = mid;
3917 break;
afb2bc14 3918 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3919 index = mid + 1;
3920 else
3921 end = mid;
3922 }
3923 }
3924 /* If we're off the end of the array, we're done */
102a775e 3925 if (index >= l->length)
cc31edce
PM
3926 return NULL;
3927 /* Update the abstract position to be the actual pid that we found */
102a775e 3928 iter = l->list + index;
afb2bc14 3929 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3930 return iter;
3931}
3932
102a775e 3933static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3934{
2bd59d48 3935 struct kernfs_open_file *of = s->private;
5d22444f 3936 struct cgroup_pidlist *l = of->priv;
62236858 3937
5d22444f
TH
3938 if (l)
3939 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3940 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3941 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3942}
3943
102a775e 3944static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3945{
2bd59d48 3946 struct kernfs_open_file *of = s->private;
5d22444f 3947 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3948 pid_t *p = v;
3949 pid_t *end = l->list + l->length;
cc31edce
PM
3950 /*
3951 * Advance to the next pid in the array. If this goes off the
3952 * end, we're done
3953 */
3954 p++;
3955 if (p >= end) {
3956 return NULL;
3957 } else {
7da11279 3958 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3959 return p;
3960 }
3961}
3962
102a775e 3963static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3964{
3965 return seq_printf(s, "%d\n", *(int *)v);
3966}
bbcb81d0 3967
182446d0
TH
3968static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3969 struct cftype *cft)
81a6a5cd 3970{
182446d0 3971 return notify_on_release(css->cgroup);
81a6a5cd
PM
3972}
3973
182446d0
TH
3974static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3975 struct cftype *cft, u64 val)
6379c106 3976{
182446d0 3977 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3978 if (val)
182446d0 3979 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3980 else
182446d0 3981 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3982 return 0;
3983}
3984
182446d0
TH
3985static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3986 struct cftype *cft)
97978e6d 3987{
182446d0 3988 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3989}
3990
182446d0
TH
3991static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3992 struct cftype *cft, u64 val)
97978e6d
DL
3993{
3994 if (val)
182446d0 3995 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3996 else
182446d0 3997 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3998 return 0;
3999}
4000
d5c56ced 4001static struct cftype cgroup_base_files[] = {
81a6a5cd 4002 {
d5c56ced 4003 .name = "cgroup.procs",
6612f05b
TH
4004 .seq_start = cgroup_pidlist_start,
4005 .seq_next = cgroup_pidlist_next,
4006 .seq_stop = cgroup_pidlist_stop,
4007 .seq_show = cgroup_pidlist_show,
5d22444f 4008 .private = CGROUP_FILE_PROCS,
acbef755 4009 .write = cgroup_procs_write,
74a1166d 4010 .mode = S_IRUGO | S_IWUSR,
102a775e 4011 },
97978e6d
DL
4012 {
4013 .name = "cgroup.clone_children",
873fe09e 4014 .flags = CFTYPE_INSANE,
97978e6d
DL
4015 .read_u64 = cgroup_clone_children_read,
4016 .write_u64 = cgroup_clone_children_write,
4017 },
873fe09e
TH
4018 {
4019 .name = "cgroup.sane_behavior",
4020 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4021 .seq_show = cgroup_sane_behavior_show,
873fe09e 4022 },
f8f22e53
TH
4023 {
4024 .name = "cgroup.controllers",
4025 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_ONLY_ON_ROOT,
4026 .seq_show = cgroup_root_controllers_show,
4027 },
4028 {
4029 .name = "cgroup.controllers",
4030 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4031 .seq_show = cgroup_controllers_show,
4032 },
4033 {
4034 .name = "cgroup.subtree_control",
4035 .flags = CFTYPE_ONLY_ON_DFL,
4036 .seq_show = cgroup_subtree_control_show,
451af504 4037 .write = cgroup_subtree_control_write,
f8f22e53 4038 },
842b597e
TH
4039 {
4040 .name = "cgroup.populated",
4041 .flags = CFTYPE_ONLY_ON_DFL | CFTYPE_NOT_ON_ROOT,
4042 .seq_show = cgroup_populated_show,
4043 },
d5c56ced
TH
4044
4045 /*
4046 * Historical crazy stuff. These don't have "cgroup." prefix and
4047 * don't exist if sane_behavior. If you're depending on these, be
4048 * prepared to be burned.
4049 */
4050 {
4051 .name = "tasks",
4052 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
4053 .seq_start = cgroup_pidlist_start,
4054 .seq_next = cgroup_pidlist_next,
4055 .seq_stop = cgroup_pidlist_stop,
4056 .seq_show = cgroup_pidlist_show,
5d22444f 4057 .private = CGROUP_FILE_TASKS,
acbef755 4058 .write = cgroup_tasks_write,
d5c56ced
TH
4059 .mode = S_IRUGO | S_IWUSR,
4060 },
4061 {
4062 .name = "notify_on_release",
4063 .flags = CFTYPE_INSANE,
4064 .read_u64 = cgroup_read_notify_on_release,
4065 .write_u64 = cgroup_write_notify_on_release,
4066 },
6e6ff25b
TH
4067 {
4068 .name = "release_agent",
cc5943a7 4069 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 4070 .seq_show = cgroup_release_agent_show,
451af504 4071 .write = cgroup_release_agent_write,
5f469907 4072 .max_write_len = PATH_MAX - 1,
6e6ff25b 4073 },
db0416b6 4074 { } /* terminate */
bbcb81d0
PM
4075};
4076
13af07df 4077/**
628f7cd4 4078 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 4079 * @cgrp: target cgroup
13af07df 4080 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
4081 *
4082 * On failure, no file is added.
13af07df 4083 */
69dfa00c 4084static int cgroup_populate_dir(struct cgroup *cgrp, unsigned int subsys_mask)
ddbcc7e8 4085{
ddbcc7e8 4086 struct cgroup_subsys *ss;
b420ba7d 4087 int i, ret = 0;
bbcb81d0 4088
8e3f6541 4089 /* process cftsets of each subsystem */
b420ba7d 4090 for_each_subsys(ss, i) {
0adb0704 4091 struct cftype *cfts;
b420ba7d 4092
69dfa00c 4093 if (!(subsys_mask & (1 << i)))
13af07df 4094 continue;
8e3f6541 4095
0adb0704
TH
4096 list_for_each_entry(cfts, &ss->cfts, node) {
4097 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
4098 if (ret < 0)
4099 goto err;
4100 }
ddbcc7e8 4101 }
ddbcc7e8 4102 return 0;
bee55099
TH
4103err:
4104 cgroup_clear_dir(cgrp, subsys_mask);
4105 return ret;
ddbcc7e8
PM
4106}
4107
0c21ead1
TH
4108/*
4109 * css destruction is four-stage process.
4110 *
4111 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4112 * Implemented in kill_css().
4113 *
4114 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4115 * and thus css_tryget_online() is guaranteed to fail, the css can be
4116 * offlined by invoking offline_css(). After offlining, the base ref is
4117 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4118 *
4119 * 3. When the percpu_ref reaches zero, the only possible remaining
4120 * accessors are inside RCU read sections. css_release() schedules the
4121 * RCU callback.
4122 *
4123 * 4. After the grace period, the css can be freed. Implemented in
4124 * css_free_work_fn().
4125 *
4126 * It is actually hairier because both step 2 and 4 require process context
4127 * and thus involve punting to css->destroy_work adding two additional
4128 * steps to the already complex sequence.
4129 */
35ef10da 4130static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4131{
4132 struct cgroup_subsys_state *css =
35ef10da 4133 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 4134 struct cgroup *cgrp = css->cgroup;
48ddbe19 4135
9d755d33
TH
4136 if (css->ss) {
4137 /* css free path */
4138 if (css->parent)
4139 css_put(css->parent);
0ae78e0b 4140
9d755d33
TH
4141 css->ss->css_free(css);
4142 cgroup_put(cgrp);
4143 } else {
4144 /* cgroup free path */
4145 atomic_dec(&cgrp->root->nr_cgrps);
4146 cgroup_pidlist_destroy_all(cgrp);
4147
d51f39b0 4148 if (cgroup_parent(cgrp)) {
9d755d33
TH
4149 /*
4150 * We get a ref to the parent, and put the ref when
4151 * this cgroup is being freed, so it's guaranteed
4152 * that the parent won't be destroyed before its
4153 * children.
4154 */
d51f39b0 4155 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4156 kernfs_put(cgrp->kn);
4157 kfree(cgrp);
4158 } else {
4159 /*
4160 * This is root cgroup's refcnt reaching zero,
4161 * which indicates that the root should be
4162 * released.
4163 */
4164 cgroup_destroy_root(cgrp->root);
4165 }
4166 }
48ddbe19
TH
4167}
4168
0c21ead1 4169static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4170{
4171 struct cgroup_subsys_state *css =
0c21ead1 4172 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4173
35ef10da 4174 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4175 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4176}
4177
25e15d83 4178static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4179{
4180 struct cgroup_subsys_state *css =
25e15d83 4181 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4182 struct cgroup_subsys *ss = css->ss;
9d755d33 4183 struct cgroup *cgrp = css->cgroup;
15a4c835 4184
1fed1b2e
TH
4185 mutex_lock(&cgroup_mutex);
4186
de3f0341 4187 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4188 list_del_rcu(&css->sibling);
4189
9d755d33
TH
4190 if (ss) {
4191 /* css release path */
4192 cgroup_idr_remove(&ss->css_idr, css->id);
4193 } else {
4194 /* cgroup release path */
9d755d33
TH
4195 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4196 cgrp->id = -1;
4197 }
d3daf28d 4198
1fed1b2e
TH
4199 mutex_unlock(&cgroup_mutex);
4200
0c21ead1 4201 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4202}
4203
d3daf28d
TH
4204static void css_release(struct percpu_ref *ref)
4205{
4206 struct cgroup_subsys_state *css =
4207 container_of(ref, struct cgroup_subsys_state, refcnt);
4208
25e15d83
TH
4209 INIT_WORK(&css->destroy_work, css_release_work_fn);
4210 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4211}
4212
ddfcadab
TH
4213static void init_and_link_css(struct cgroup_subsys_state *css,
4214 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4215{
0cb51d71
TH
4216 lockdep_assert_held(&cgroup_mutex);
4217
ddfcadab
TH
4218 cgroup_get(cgrp);
4219
d5c419b6 4220 memset(css, 0, sizeof(*css));
bd89aabc 4221 css->cgroup = cgrp;
72c97e54 4222 css->ss = ss;
d5c419b6
TH
4223 INIT_LIST_HEAD(&css->sibling);
4224 INIT_LIST_HEAD(&css->children);
0cb51d71 4225 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4226
d51f39b0
TH
4227 if (cgroup_parent(cgrp)) {
4228 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4229 css_get(css->parent);
ddfcadab 4230 }
48ddbe19 4231
ca8bdcaf 4232 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4233}
4234
2a4ac633 4235/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4236static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4237{
623f926b 4238 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4239 int ret = 0;
4240
a31f2d3f
TH
4241 lockdep_assert_held(&cgroup_mutex);
4242
92fb9748 4243 if (ss->css_online)
eb95419b 4244 ret = ss->css_online(css);
ae7f164a 4245 if (!ret) {
eb95419b 4246 css->flags |= CSS_ONLINE;
aec25020 4247 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4248 }
b1929db4 4249 return ret;
a31f2d3f
TH
4250}
4251
2a4ac633 4252/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4253static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4254{
623f926b 4255 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4256
4257 lockdep_assert_held(&cgroup_mutex);
4258
4259 if (!(css->flags & CSS_ONLINE))
4260 return;
4261
d7eeac19 4262 if (ss->css_offline)
eb95419b 4263 ss->css_offline(css);
a31f2d3f 4264
eb95419b 4265 css->flags &= ~CSS_ONLINE;
e3297803 4266 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4267
4268 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4269}
4270
c81c925a
TH
4271/**
4272 * create_css - create a cgroup_subsys_state
4273 * @cgrp: the cgroup new css will be associated with
4274 * @ss: the subsys of new css
4275 *
4276 * Create a new css associated with @cgrp - @ss pair. On success, the new
4277 * css is online and installed in @cgrp with all interface files created.
4278 * Returns 0 on success, -errno on failure.
4279 */
4280static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
4281{
d51f39b0 4282 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4283 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4284 struct cgroup_subsys_state *css;
4285 int err;
4286
c81c925a
TH
4287 lockdep_assert_held(&cgroup_mutex);
4288
1fed1b2e 4289 css = ss->css_alloc(parent_css);
c81c925a
TH
4290 if (IS_ERR(css))
4291 return PTR_ERR(css);
4292
ddfcadab 4293 init_and_link_css(css, ss, cgrp);
a2bed820 4294
c81c925a
TH
4295 err = percpu_ref_init(&css->refcnt, css_release);
4296 if (err)
3eb59ec6 4297 goto err_free_css;
c81c925a 4298
15a4c835
TH
4299 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_NOWAIT);
4300 if (err < 0)
4301 goto err_free_percpu_ref;
4302 css->id = err;
c81c925a 4303
aec25020 4304 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a 4305 if (err)
15a4c835
TH
4306 goto err_free_id;
4307
4308 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4309 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4310 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4311
4312 err = online_css(css);
4313 if (err)
1fed1b2e 4314 goto err_list_del;
94419627 4315
c81c925a 4316 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4317 cgroup_parent(parent)) {
ed3d261b 4318 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4319 current->comm, current->pid, ss->name);
c81c925a 4320 if (!strcmp(ss->name, "memory"))
ed3d261b 4321 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4322 ss->warned_broken_hierarchy = true;
4323 }
4324
4325 return 0;
4326
1fed1b2e
TH
4327err_list_del:
4328 list_del_rcu(&css->sibling);
32d01dc7 4329 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
15a4c835
TH
4330err_free_id:
4331 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4332err_free_percpu_ref:
c81c925a 4333 percpu_ref_cancel_init(&css->refcnt);
3eb59ec6 4334err_free_css:
a2bed820 4335 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4336 return err;
4337}
4338
b3bfd983
TH
4339static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4340 umode_t mode)
ddbcc7e8 4341{
a9746d8d
TH
4342 struct cgroup *parent, *cgrp;
4343 struct cgroup_root *root;
ddbcc7e8 4344 struct cgroup_subsys *ss;
2bd59d48 4345 struct kernfs_node *kn;
b3bfd983 4346 int ssid, ret;
ddbcc7e8 4347
a9746d8d
TH
4348 parent = cgroup_kn_lock_live(parent_kn);
4349 if (!parent)
4350 return -ENODEV;
4351 root = parent->root;
ddbcc7e8 4352
0a950f65 4353 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4354 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4355 if (!cgrp) {
4356 ret = -ENOMEM;
4357 goto out_unlock;
0ab02ca8
LZ
4358 }
4359
9d755d33
TH
4360 ret = percpu_ref_init(&cgrp->self.refcnt, css_release);
4361 if (ret)
4362 goto out_free_cgrp;
4363
0ab02ca8
LZ
4364 /*
4365 * Temporarily set the pointer to NULL, so idr_find() won't return
4366 * a half-baked cgroup.
4367 */
6fa4918d 4368 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_NOWAIT);
0ab02ca8 4369 if (cgrp->id < 0) {
ba0f4d76 4370 ret = -ENOMEM;
9d755d33 4371 goto out_cancel_ref;
976c06bc
TH
4372 }
4373
cc31edce 4374 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4375
9d800df1 4376 cgrp->self.parent = &parent->self;
ba0f4d76 4377 cgrp->root = root;
ddbcc7e8 4378
b6abdb0e
LZ
4379 if (notify_on_release(parent))
4380 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4381
2260e7fc
TH
4382 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4383 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4384
2bd59d48 4385 /* create the directory */
e61734c5 4386 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4387 if (IS_ERR(kn)) {
ba0f4d76
TH
4388 ret = PTR_ERR(kn);
4389 goto out_free_id;
2bd59d48
TH
4390 }
4391 cgrp->kn = kn;
ddbcc7e8 4392
4e139afc 4393 /*
6f30558f
TH
4394 * This extra ref will be put in cgroup_free_fn() and guarantees
4395 * that @cgrp->kn is always accessible.
4e139afc 4396 */
6f30558f 4397 kernfs_get(kn);
ddbcc7e8 4398
0cb51d71 4399 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4400
4e139afc 4401 /* allocation complete, commit to creation */
d5c419b6 4402 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4403 atomic_inc(&root->nr_cgrps);
59f5296b 4404 cgroup_get(parent);
415cf07a 4405
0d80255e
TH
4406 /*
4407 * @cgrp is now fully operational. If something fails after this
4408 * point, it'll be released via the normal destruction path.
4409 */
6fa4918d 4410 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4411
ba0f4d76
TH
4412 ret = cgroup_kn_set_ugid(kn);
4413 if (ret)
4414 goto out_destroy;
49957f8e 4415
ba0f4d76
TH
4416 ret = cgroup_addrm_files(cgrp, cgroup_base_files, true);
4417 if (ret)
4418 goto out_destroy;
628f7cd4 4419
9d403e99 4420 /* let's create and online css's */
b85d2040 4421 for_each_subsys(ss, ssid) {
f392e51c 4422 if (parent->child_subsys_mask & (1 << ssid)) {
ba0f4d76
TH
4423 ret = create_css(cgrp, ss);
4424 if (ret)
4425 goto out_destroy;
b85d2040 4426 }
a8638030 4427 }
ddbcc7e8 4428
bd53d617
TH
4429 /*
4430 * On the default hierarchy, a child doesn't automatically inherit
4431 * child_subsys_mask from the parent. Each is configured manually.
4432 */
4433 if (!cgroup_on_dfl(cgrp))
4434 cgrp->child_subsys_mask = parent->child_subsys_mask;
2bd59d48 4435
2bd59d48 4436 kernfs_activate(kn);
ddbcc7e8 4437
ba0f4d76
TH
4438 ret = 0;
4439 goto out_unlock;
ddbcc7e8 4440
ba0f4d76 4441out_free_id:
6fa4918d 4442 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33
TH
4443out_cancel_ref:
4444 percpu_ref_cancel_init(&cgrp->self.refcnt);
ba0f4d76 4445out_free_cgrp:
bd89aabc 4446 kfree(cgrp);
ba0f4d76 4447out_unlock:
a9746d8d 4448 cgroup_kn_unlock(parent_kn);
ba0f4d76 4449 return ret;
4b8b47eb 4450
ba0f4d76 4451out_destroy:
4b8b47eb 4452 cgroup_destroy_locked(cgrp);
ba0f4d76 4453 goto out_unlock;
ddbcc7e8
PM
4454}
4455
223dbc38
TH
4456/*
4457 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4458 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4459 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4460 */
4461static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4462{
223dbc38
TH
4463 struct cgroup_subsys_state *css =
4464 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4465
f20104de 4466 mutex_lock(&cgroup_mutex);
09a503ea 4467 offline_css(css);
f20104de 4468 mutex_unlock(&cgroup_mutex);
09a503ea 4469
09a503ea 4470 css_put(css);
d3daf28d
TH
4471}
4472
223dbc38
TH
4473/* css kill confirmation processing requires process context, bounce */
4474static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4475{
4476 struct cgroup_subsys_state *css =
4477 container_of(ref, struct cgroup_subsys_state, refcnt);
4478
223dbc38 4479 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4480 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4481}
4482
f392e51c
TH
4483/**
4484 * kill_css - destroy a css
4485 * @css: css to destroy
4486 *
4487 * This function initiates destruction of @css by removing cgroup interface
4488 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4489 * asynchronously once css_tryget_online() is guaranteed to fail and when
4490 * the reference count reaches zero, @css will be released.
f392e51c
TH
4491 */
4492static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4493{
01f6474c 4494 lockdep_assert_held(&cgroup_mutex);
94419627 4495
2bd59d48
TH
4496 /*
4497 * This must happen before css is disassociated with its cgroup.
4498 * See seq_css() for details.
4499 */
aec25020 4500 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 4501
edae0c33
TH
4502 /*
4503 * Killing would put the base ref, but we need to keep it alive
4504 * until after ->css_offline().
4505 */
4506 css_get(css);
4507
4508 /*
4509 * cgroup core guarantees that, by the time ->css_offline() is
4510 * invoked, no new css reference will be given out via
ec903c0c 4511 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4512 * proceed to offlining css's because percpu_ref_kill() doesn't
4513 * guarantee that the ref is seen as killed on all CPUs on return.
4514 *
4515 * Use percpu_ref_kill_and_confirm() to get notifications as each
4516 * css is confirmed to be seen as killed on all CPUs.
4517 */
4518 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4519}
4520
4521/**
4522 * cgroup_destroy_locked - the first stage of cgroup destruction
4523 * @cgrp: cgroup to be destroyed
4524 *
4525 * css's make use of percpu refcnts whose killing latency shouldn't be
4526 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4527 * guarantee that css_tryget_online() won't succeed by the time
4528 * ->css_offline() is invoked. To satisfy all the requirements,
4529 * destruction is implemented in the following two steps.
d3daf28d
TH
4530 *
4531 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4532 * userland visible parts and start killing the percpu refcnts of
4533 * css's. Set up so that the next stage will be kicked off once all
4534 * the percpu refcnts are confirmed to be killed.
4535 *
4536 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4537 * rest of destruction. Once all cgroup references are gone, the
4538 * cgroup is RCU-freed.
4539 *
4540 * This function implements s1. After this step, @cgrp is gone as far as
4541 * the userland is concerned and a new cgroup with the same name may be
4542 * created. As cgroup doesn't care about the names internally, this
4543 * doesn't cause any problem.
4544 */
42809dd4
TH
4545static int cgroup_destroy_locked(struct cgroup *cgrp)
4546 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 4547{
2bd59d48 4548 struct cgroup_subsys_state *css;
ddd69148 4549 bool empty;
1c6727af 4550 int ssid;
ddbcc7e8 4551
42809dd4
TH
4552 lockdep_assert_held(&cgroup_mutex);
4553
ddd69148 4554 /*
96d365e0 4555 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 4556 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 4557 */
96d365e0 4558 down_read(&css_set_rwsem);
bb78a92f 4559 empty = list_empty(&cgrp->cset_links);
96d365e0 4560 up_read(&css_set_rwsem);
ddd69148 4561 if (!empty)
ddbcc7e8 4562 return -EBUSY;
a043e3b2 4563
bb78a92f 4564 /*
d5c419b6
TH
4565 * Make sure there's no live children. We can't test emptiness of
4566 * ->self.children as dead children linger on it while being
4567 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 4568 */
f3d46500 4569 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
4570 return -EBUSY;
4571
455050d2
TH
4572 /*
4573 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 4574 * creation by disabling cgroup_lock_live_group().
455050d2 4575 */
184faf32 4576 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 4577
249f3468 4578 /* initiate massacre of all css's */
1c6727af
TH
4579 for_each_css(css, ssid, cgrp)
4580 kill_css(css);
455050d2 4581
184faf32 4582 /* CSS_ONLINE is clear, remove from ->release_list for the last time */
455050d2
TH
4583 raw_spin_lock(&release_list_lock);
4584 if (!list_empty(&cgrp->release_list))
4585 list_del_init(&cgrp->release_list);
4586 raw_spin_unlock(&release_list_lock);
4587
4588 /*
01f6474c
TH
4589 * Remove @cgrp directory along with the base files. @cgrp has an
4590 * extra ref on its kn.
f20104de 4591 */
01f6474c 4592 kernfs_remove(cgrp->kn);
f20104de 4593
d51f39b0
TH
4594 set_bit(CGRP_RELEASABLE, &cgroup_parent(cgrp)->flags);
4595 check_for_release(cgroup_parent(cgrp));
2bd59d48 4596
249f3468 4597 /* put the base reference */
9d755d33 4598 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 4599
ea15f8cc
TH
4600 return 0;
4601};
4602
2bd59d48 4603static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 4604{
a9746d8d 4605 struct cgroup *cgrp;
2bd59d48 4606 int ret = 0;
42809dd4 4607
a9746d8d
TH
4608 cgrp = cgroup_kn_lock_live(kn);
4609 if (!cgrp)
4610 return 0;
4611 cgroup_get(cgrp); /* for @kn->priv clearing */
42809dd4 4612
a9746d8d 4613 ret = cgroup_destroy_locked(cgrp);
2bb566cb 4614
a9746d8d 4615 cgroup_kn_unlock(kn);
8e3f6541
TH
4616
4617 /*
cfc79d5b
TH
4618 * There are two control paths which try to determine cgroup from
4619 * dentry without going through kernfs - cgroupstats_build() and
4620 * css_tryget_online_from_dir(). Those are supported by RCU
4621 * protecting clearing of cgrp->kn->priv backpointer, which should
4622 * happen after all files under it have been removed.
8e3f6541 4623 */
cfc79d5b
TH
4624 if (!ret)
4625 RCU_INIT_POINTER(*(void __rcu __force **)&kn->priv, NULL);
2bb566cb 4626
2bd59d48 4627 cgroup_put(cgrp);
42809dd4 4628 return ret;
8e3f6541
TH
4629}
4630
2bd59d48
TH
4631static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
4632 .remount_fs = cgroup_remount,
4633 .show_options = cgroup_show_options,
4634 .mkdir = cgroup_mkdir,
4635 .rmdir = cgroup_rmdir,
4636 .rename = cgroup_rename,
4637};
4638
15a4c835 4639static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 4640{
ddbcc7e8 4641 struct cgroup_subsys_state *css;
cfe36bde
DC
4642
4643 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 4644
648bb56d
TH
4645 mutex_lock(&cgroup_mutex);
4646
15a4c835 4647 idr_init(&ss->css_idr);
0adb0704 4648 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 4649
3dd06ffa
TH
4650 /* Create the root cgroup state for this subsystem */
4651 ss->root = &cgrp_dfl_root;
4652 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
4653 /* We don't handle early failures gracefully */
4654 BUG_ON(IS_ERR(css));
ddfcadab 4655 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
4656
4657 /*
4658 * Root csses are never destroyed and we can't initialize
4659 * percpu_ref during early init. Disable refcnting.
4660 */
4661 css->flags |= CSS_NO_REF;
4662
15a4c835 4663 if (early) {
9395a450 4664 /* allocation can't be done safely during early init */
15a4c835
TH
4665 css->id = 1;
4666 } else {
4667 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
4668 BUG_ON(css->id < 0);
4669 }
ddbcc7e8 4670
e8d55fde 4671 /* Update the init_css_set to contain a subsys
817929ec 4672 * pointer to this state - since the subsystem is
e8d55fde 4673 * newly registered, all tasks and hence the
3dd06ffa 4674 * init_css_set is in the subsystem's root cgroup. */
aec25020 4675 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
4676
4677 need_forkexit_callback |= ss->fork || ss->exit;
4678
e8d55fde
LZ
4679 /* At system boot, before all subsystems have been
4680 * registered, no tasks have been forked, so we don't
4681 * need to invoke fork callbacks here. */
4682 BUG_ON(!list_empty(&init_task.tasks));
4683
ae7f164a 4684 BUG_ON(online_css(css));
a8638030 4685
cf5d5941
BB
4686 mutex_unlock(&cgroup_mutex);
4687}
cf5d5941 4688
ddbcc7e8 4689/**
a043e3b2
LZ
4690 * cgroup_init_early - cgroup initialization at system boot
4691 *
4692 * Initialize cgroups at system boot, and initialize any
4693 * subsystems that request early init.
ddbcc7e8
PM
4694 */
4695int __init cgroup_init_early(void)
4696{
a2dd4247
TH
4697 static struct cgroup_sb_opts __initdata opts =
4698 { .flags = CGRP_ROOT_SANE_BEHAVIOR };
30159ec7 4699 struct cgroup_subsys *ss;
ddbcc7e8 4700 int i;
30159ec7 4701
3dd06ffa 4702 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
4703 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
4704
a4ea1cc9 4705 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 4706
3ed80a62 4707 for_each_subsys(ss, i) {
aec25020 4708 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
4709 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
4710 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 4711 ss->id, ss->name);
073219e9
TH
4712 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
4713 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
4714
aec25020 4715 ss->id = i;
073219e9 4716 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
4717
4718 if (ss->early_init)
15a4c835 4719 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
4720 }
4721 return 0;
4722}
4723
4724/**
a043e3b2
LZ
4725 * cgroup_init - cgroup initialization
4726 *
4727 * Register cgroup filesystem and /proc file, and initialize
4728 * any subsystems that didn't request early init.
ddbcc7e8
PM
4729 */
4730int __init cgroup_init(void)
4731{
30159ec7 4732 struct cgroup_subsys *ss;
0ac801fe 4733 unsigned long key;
172a2c06 4734 int ssid, err;
ddbcc7e8 4735
2bd59d48 4736 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
ddbcc7e8 4737
54e7b4eb 4738 mutex_lock(&cgroup_mutex);
54e7b4eb 4739
82fe9b0d
TH
4740 /* Add init_css_set to the hash table */
4741 key = css_set_hash(init_css_set.subsys);
4742 hash_add(css_set_table, &init_css_set.hlist, key);
4743
3dd06ffa 4744 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 4745
54e7b4eb
TH
4746 mutex_unlock(&cgroup_mutex);
4747
172a2c06 4748 for_each_subsys(ss, ssid) {
15a4c835
TH
4749 if (ss->early_init) {
4750 struct cgroup_subsys_state *css =
4751 init_css_set.subsys[ss->id];
4752
4753 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
4754 GFP_KERNEL);
4755 BUG_ON(css->id < 0);
4756 } else {
4757 cgroup_init_subsys(ss, false);
4758 }
172a2c06 4759
2d8f243a
TH
4760 list_add_tail(&init_css_set.e_cset_node[ssid],
4761 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
4762
4763 /*
c731ae1d
LZ
4764 * Setting dfl_root subsys_mask needs to consider the
4765 * disabled flag and cftype registration needs kmalloc,
4766 * both of which aren't available during early_init.
172a2c06 4767 */
c731ae1d
LZ
4768 if (!ss->disabled) {
4769 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
172a2c06 4770 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
c731ae1d 4771 }
676db4af
GK
4772 }
4773
676db4af 4774 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
4775 if (!cgroup_kobj)
4776 return -ENOMEM;
676db4af 4777
ddbcc7e8 4778 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
4779 if (err < 0) {
4780 kobject_put(cgroup_kobj);
2bd59d48 4781 return err;
676db4af 4782 }
ddbcc7e8 4783
46ae220b 4784 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 4785 return 0;
ddbcc7e8 4786}
b4f48b63 4787
e5fca243
TH
4788static int __init cgroup_wq_init(void)
4789{
4790 /*
4791 * There isn't much point in executing destruction path in
4792 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 4793 * Use 1 for @max_active.
e5fca243
TH
4794 *
4795 * We would prefer to do this in cgroup_init() above, but that
4796 * is called before init_workqueues(): so leave this until after.
4797 */
1a11533f 4798 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 4799 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
4800
4801 /*
4802 * Used to destroy pidlists and separate to serve as flush domain.
4803 * Cap @max_active to 1 too.
4804 */
4805 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
4806 0, 1);
4807 BUG_ON(!cgroup_pidlist_destroy_wq);
4808
e5fca243
TH
4809 return 0;
4810}
4811core_initcall(cgroup_wq_init);
4812
a424316c
PM
4813/*
4814 * proc_cgroup_show()
4815 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4816 * - Used for /proc/<pid>/cgroup.
a424316c
PM
4817 */
4818
4819/* TODO: Use a proper seq_file iterator */
8d8b97ba 4820int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4821{
4822 struct pid *pid;
4823 struct task_struct *tsk;
e61734c5 4824 char *buf, *path;
a424316c 4825 int retval;
3dd06ffa 4826 struct cgroup_root *root;
a424316c
PM
4827
4828 retval = -ENOMEM;
e61734c5 4829 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4830 if (!buf)
4831 goto out;
4832
4833 retval = -ESRCH;
4834 pid = m->private;
4835 tsk = get_pid_task(pid, PIDTYPE_PID);
4836 if (!tsk)
4837 goto out_free;
4838
4839 retval = 0;
4840
4841 mutex_lock(&cgroup_mutex);
96d365e0 4842 down_read(&css_set_rwsem);
a424316c 4843
985ed670 4844 for_each_root(root) {
a424316c 4845 struct cgroup_subsys *ss;
bd89aabc 4846 struct cgroup *cgrp;
b85d2040 4847 int ssid, count = 0;
a424316c 4848
a2dd4247 4849 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
4850 continue;
4851
2c6ab6d2 4852 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040 4853 for_each_subsys(ss, ssid)
f392e51c 4854 if (root->subsys_mask & (1 << ssid))
b85d2040 4855 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4856 if (strlen(root->name))
4857 seq_printf(m, "%sname=%s", count ? "," : "",
4858 root->name);
a424316c 4859 seq_putc(m, ':');
7717f7ba 4860 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4861 path = cgroup_path(cgrp, buf, PATH_MAX);
4862 if (!path) {
4863 retval = -ENAMETOOLONG;
a424316c 4864 goto out_unlock;
e61734c5
TH
4865 }
4866 seq_puts(m, path);
a424316c
PM
4867 seq_putc(m, '\n');
4868 }
4869
4870out_unlock:
96d365e0 4871 up_read(&css_set_rwsem);
a424316c
PM
4872 mutex_unlock(&cgroup_mutex);
4873 put_task_struct(tsk);
4874out_free:
4875 kfree(buf);
4876out:
4877 return retval;
4878}
4879
a424316c
PM
4880/* Display information about each subsystem and each hierarchy */
4881static int proc_cgroupstats_show(struct seq_file *m, void *v)
4882{
30159ec7 4883 struct cgroup_subsys *ss;
a424316c 4884 int i;
a424316c 4885
8bab8dde 4886 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4887 /*
4888 * ideally we don't want subsystems moving around while we do this.
4889 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4890 * subsys/hierarchy state.
4891 */
a424316c 4892 mutex_lock(&cgroup_mutex);
30159ec7
TH
4893
4894 for_each_subsys(ss, i)
2c6ab6d2
PM
4895 seq_printf(m, "%s\t%d\t%d\t%d\n",
4896 ss->name, ss->root->hierarchy_id,
3c9c825b 4897 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4898
a424316c
PM
4899 mutex_unlock(&cgroup_mutex);
4900 return 0;
4901}
4902
4903static int cgroupstats_open(struct inode *inode, struct file *file)
4904{
9dce07f1 4905 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4906}
4907
828c0950 4908static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4909 .open = cgroupstats_open,
4910 .read = seq_read,
4911 .llseek = seq_lseek,
4912 .release = single_release,
4913};
4914
b4f48b63 4915/**
eaf797ab 4916 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 4917 * @child: pointer to task_struct of forking parent process.
b4f48b63 4918 *
eaf797ab
TH
4919 * A task is associated with the init_css_set until cgroup_post_fork()
4920 * attaches it to the parent's css_set. Empty cg_list indicates that
4921 * @child isn't holding reference to its css_set.
b4f48b63
PM
4922 */
4923void cgroup_fork(struct task_struct *child)
4924{
eaf797ab 4925 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 4926 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4927}
4928
817929ec 4929/**
a043e3b2
LZ
4930 * cgroup_post_fork - called on a new task after adding it to the task list
4931 * @child: the task in question
4932 *
5edee61e
TH
4933 * Adds the task to the list running through its css_set if necessary and
4934 * call the subsystem fork() callbacks. Has to be after the task is
4935 * visible on the task list in case we race with the first call to
0942eeee 4936 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4937 * list.
a043e3b2 4938 */
817929ec
PM
4939void cgroup_post_fork(struct task_struct *child)
4940{
30159ec7 4941 struct cgroup_subsys *ss;
5edee61e
TH
4942 int i;
4943
3ce3230a 4944 /*
eaf797ab
TH
4945 * This may race against cgroup_enable_task_cg_links(). As that
4946 * function sets use_task_css_set_links before grabbing
4947 * tasklist_lock and we just went through tasklist_lock to add
4948 * @child, it's guaranteed that either we see the set
4949 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
4950 * @child during its iteration.
4951 *
4952 * If we won the race, @child is associated with %current's
4953 * css_set. Grabbing css_set_rwsem guarantees both that the
4954 * association is stable, and, on completion of the parent's
4955 * migration, @child is visible in the source of migration or
4956 * already in the destination cgroup. This guarantee is necessary
4957 * when implementing operations which need to migrate all tasks of
4958 * a cgroup to another.
4959 *
4960 * Note that if we lose to cgroup_enable_task_cg_links(), @child
4961 * will remain in init_css_set. This is safe because all tasks are
4962 * in the init_css_set before cg_links is enabled and there's no
4963 * operation which transfers all tasks out of init_css_set.
3ce3230a 4964 */
817929ec 4965 if (use_task_css_set_links) {
eaf797ab
TH
4966 struct css_set *cset;
4967
96d365e0 4968 down_write(&css_set_rwsem);
0e1d768f 4969 cset = task_css_set(current);
eaf797ab
TH
4970 if (list_empty(&child->cg_list)) {
4971 rcu_assign_pointer(child->cgroups, cset);
4972 list_add(&child->cg_list, &cset->tasks);
4973 get_css_set(cset);
4974 }
96d365e0 4975 up_write(&css_set_rwsem);
817929ec 4976 }
5edee61e
TH
4977
4978 /*
4979 * Call ss->fork(). This must happen after @child is linked on
4980 * css_set; otherwise, @child might change state between ->fork()
4981 * and addition to css_set.
4982 */
4983 if (need_forkexit_callback) {
3ed80a62 4984 for_each_subsys(ss, i)
5edee61e
TH
4985 if (ss->fork)
4986 ss->fork(child);
5edee61e 4987 }
817929ec 4988}
5edee61e 4989
b4f48b63
PM
4990/**
4991 * cgroup_exit - detach cgroup from exiting task
4992 * @tsk: pointer to task_struct of exiting process
4993 *
4994 * Description: Detach cgroup from @tsk and release it.
4995 *
4996 * Note that cgroups marked notify_on_release force every task in
4997 * them to take the global cgroup_mutex mutex when exiting.
4998 * This could impact scaling on very large systems. Be reluctant to
4999 * use notify_on_release cgroups where very high task exit scaling
5000 * is required on large systems.
5001 *
0e1d768f
TH
5002 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5003 * call cgroup_exit() while the task is still competent to handle
5004 * notify_on_release(), then leave the task attached to the root cgroup in
5005 * each hierarchy for the remainder of its exit. No need to bother with
5006 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5007 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5008 */
1ec41830 5009void cgroup_exit(struct task_struct *tsk)
b4f48b63 5010{
30159ec7 5011 struct cgroup_subsys *ss;
5abb8855 5012 struct css_set *cset;
eaf797ab 5013 bool put_cset = false;
d41d5a01 5014 int i;
817929ec
PM
5015
5016 /*
0e1d768f
TH
5017 * Unlink from @tsk from its css_set. As migration path can't race
5018 * with us, we can check cg_list without grabbing css_set_rwsem.
817929ec
PM
5019 */
5020 if (!list_empty(&tsk->cg_list)) {
96d365e0 5021 down_write(&css_set_rwsem);
0e1d768f 5022 list_del_init(&tsk->cg_list);
96d365e0 5023 up_write(&css_set_rwsem);
0e1d768f 5024 put_cset = true;
817929ec
PM
5025 }
5026
b4f48b63 5027 /* Reassign the task to the init_css_set. */
a8ad805c
TH
5028 cset = task_css_set(tsk);
5029 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5030
1ec41830 5031 if (need_forkexit_callback) {
3ed80a62
TH
5032 /* see cgroup_post_fork() for details */
5033 for_each_subsys(ss, i) {
d41d5a01 5034 if (ss->exit) {
eb95419b
TH
5035 struct cgroup_subsys_state *old_css = cset->subsys[i];
5036 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5037
eb95419b 5038 ss->exit(css, old_css, tsk);
d41d5a01
PZ
5039 }
5040 }
5041 }
d41d5a01 5042
eaf797ab
TH
5043 if (put_cset)
5044 put_css_set(cset, true);
b4f48b63 5045}
697f4161 5046
bd89aabc 5047static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5048{
f3d46500
TH
5049 if (cgroup_is_releasable(cgrp) && list_empty(&cgrp->cset_links) &&
5050 !css_has_online_children(&cgrp->self)) {
f50daa70
LZ
5051 /*
5052 * Control Group is currently removeable. If it's not
81a6a5cd 5053 * already queued for a userspace notification, queue
f50daa70
LZ
5054 * it now
5055 */
81a6a5cd 5056 int need_schedule_work = 0;
f50daa70 5057
cdcc136f 5058 raw_spin_lock(&release_list_lock);
54766d4a 5059 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
5060 list_empty(&cgrp->release_list)) {
5061 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
5062 need_schedule_work = 1;
5063 }
cdcc136f 5064 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5065 if (need_schedule_work)
5066 schedule_work(&release_agent_work);
5067 }
5068}
5069
81a6a5cd
PM
5070/*
5071 * Notify userspace when a cgroup is released, by running the
5072 * configured release agent with the name of the cgroup (path
5073 * relative to the root of cgroup file system) as the argument.
5074 *
5075 * Most likely, this user command will try to rmdir this cgroup.
5076 *
5077 * This races with the possibility that some other task will be
5078 * attached to this cgroup before it is removed, or that some other
5079 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5080 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5081 * unused, and this cgroup will be reprieved from its death sentence,
5082 * to continue to serve a useful existence. Next time it's released,
5083 * we will get notified again, if it still has 'notify_on_release' set.
5084 *
5085 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5086 * means only wait until the task is successfully execve()'d. The
5087 * separate release agent task is forked by call_usermodehelper(),
5088 * then control in this thread returns here, without waiting for the
5089 * release agent task. We don't bother to wait because the caller of
5090 * this routine has no use for the exit status of the release agent
5091 * task, so no sense holding our caller up for that.
81a6a5cd 5092 */
81a6a5cd
PM
5093static void cgroup_release_agent(struct work_struct *work)
5094{
5095 BUG_ON(work != &release_agent_work);
5096 mutex_lock(&cgroup_mutex);
cdcc136f 5097 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
5098 while (!list_empty(&release_list)) {
5099 char *argv[3], *envp[3];
5100 int i;
e61734c5 5101 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 5102 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
5103 struct cgroup,
5104 release_list);
bd89aabc 5105 list_del_init(&cgrp->release_list);
cdcc136f 5106 raw_spin_unlock(&release_list_lock);
e61734c5 5107 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
5108 if (!pathbuf)
5109 goto continue_free;
e61734c5
TH
5110 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5111 if (!path)
e788e066
PM
5112 goto continue_free;
5113 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5114 if (!agentbuf)
5115 goto continue_free;
81a6a5cd
PM
5116
5117 i = 0;
e788e066 5118 argv[i++] = agentbuf;
e61734c5 5119 argv[i++] = path;
81a6a5cd
PM
5120 argv[i] = NULL;
5121
5122 i = 0;
5123 /* minimal command environment */
5124 envp[i++] = "HOME=/";
5125 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5126 envp[i] = NULL;
5127
5128 /* Drop the lock while we invoke the usermode helper,
5129 * since the exec could involve hitting disk and hence
5130 * be a slow process */
5131 mutex_unlock(&cgroup_mutex);
5132 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 5133 mutex_lock(&cgroup_mutex);
e788e066
PM
5134 continue_free:
5135 kfree(pathbuf);
5136 kfree(agentbuf);
cdcc136f 5137 raw_spin_lock(&release_list_lock);
81a6a5cd 5138 }
cdcc136f 5139 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
5140 mutex_unlock(&cgroup_mutex);
5141}
8bab8dde
PM
5142
5143static int __init cgroup_disable(char *str)
5144{
30159ec7 5145 struct cgroup_subsys *ss;
8bab8dde 5146 char *token;
30159ec7 5147 int i;
8bab8dde
PM
5148
5149 while ((token = strsep(&str, ",")) != NULL) {
5150 if (!*token)
5151 continue;
be45c900 5152
3ed80a62 5153 for_each_subsys(ss, i) {
8bab8dde
PM
5154 if (!strcmp(token, ss->name)) {
5155 ss->disabled = 1;
5156 printk(KERN_INFO "Disabling %s control group"
5157 " subsystem\n", ss->name);
5158 break;
5159 }
5160 }
5161 }
5162 return 1;
5163}
5164__setup("cgroup_disable=", cgroup_disable);
38460b48 5165
b77d7b60 5166/**
ec903c0c 5167 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5168 * @dentry: directory dentry of interest
5169 * @ss: subsystem of interest
b77d7b60 5170 *
5a17f543
TH
5171 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5172 * to get the corresponding css and return it. If such css doesn't exist
5173 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5174 */
ec903c0c
TH
5175struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5176 struct cgroup_subsys *ss)
e5d1367f 5177{
2bd59d48
TH
5178 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5179 struct cgroup_subsys_state *css = NULL;
e5d1367f 5180 struct cgroup *cgrp;
e5d1367f 5181
35cf0836 5182 /* is @dentry a cgroup dir? */
2bd59d48
TH
5183 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5184 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5185 return ERR_PTR(-EBADF);
5186
5a17f543
TH
5187 rcu_read_lock();
5188
2bd59d48
TH
5189 /*
5190 * This path doesn't originate from kernfs and @kn could already
5191 * have been or be removed at any point. @kn->priv is RCU
cfc79d5b 5192 * protected for this access. See cgroup_rmdir() for details.
2bd59d48
TH
5193 */
5194 cgrp = rcu_dereference(kn->priv);
5195 if (cgrp)
5196 css = cgroup_css(cgrp, ss);
5a17f543 5197
ec903c0c 5198 if (!css || !css_tryget_online(css))
5a17f543
TH
5199 css = ERR_PTR(-ENOENT);
5200
5201 rcu_read_unlock();
5202 return css;
e5d1367f 5203}
e5d1367f 5204
1cb650b9
LZ
5205/**
5206 * css_from_id - lookup css by id
5207 * @id: the cgroup id
5208 * @ss: cgroup subsys to be looked into
5209 *
5210 * Returns the css if there's valid one with @id, otherwise returns NULL.
5211 * Should be called under rcu_read_lock().
5212 */
5213struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5214{
6fa4918d 5215 WARN_ON_ONCE(!rcu_read_lock_held());
15a4c835 5216 return idr_find(&ss->css_idr, id);
e5d1367f
SE
5217}
5218
fe693435 5219#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5220static struct cgroup_subsys_state *
5221debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5222{
5223 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5224
5225 if (!css)
5226 return ERR_PTR(-ENOMEM);
5227
5228 return css;
5229}
5230
eb95419b 5231static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5232{
eb95419b 5233 kfree(css);
fe693435
PM
5234}
5235
182446d0
TH
5236static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5237 struct cftype *cft)
fe693435 5238{
182446d0 5239 return cgroup_task_count(css->cgroup);
fe693435
PM
5240}
5241
182446d0
TH
5242static u64 current_css_set_read(struct cgroup_subsys_state *css,
5243 struct cftype *cft)
fe693435
PM
5244{
5245 return (u64)(unsigned long)current->cgroups;
5246}
5247
182446d0 5248static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5249 struct cftype *cft)
fe693435
PM
5250{
5251 u64 count;
5252
5253 rcu_read_lock();
a8ad805c 5254 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5255 rcu_read_unlock();
5256 return count;
5257}
5258
2da8ca82 5259static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5260{
69d0206c 5261 struct cgrp_cset_link *link;
5abb8855 5262 struct css_set *cset;
e61734c5
TH
5263 char *name_buf;
5264
5265 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5266 if (!name_buf)
5267 return -ENOMEM;
7717f7ba 5268
96d365e0 5269 down_read(&css_set_rwsem);
7717f7ba 5270 rcu_read_lock();
5abb8855 5271 cset = rcu_dereference(current->cgroups);
69d0206c 5272 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5273 struct cgroup *c = link->cgrp;
7717f7ba 5274
a2dd4247 5275 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5276 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5277 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5278 }
5279 rcu_read_unlock();
96d365e0 5280 up_read(&css_set_rwsem);
e61734c5 5281 kfree(name_buf);
7717f7ba
PM
5282 return 0;
5283}
5284
5285#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5286static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5287{
2da8ca82 5288 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5289 struct cgrp_cset_link *link;
7717f7ba 5290
96d365e0 5291 down_read(&css_set_rwsem);
182446d0 5292 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5293 struct css_set *cset = link->cset;
7717f7ba
PM
5294 struct task_struct *task;
5295 int count = 0;
c7561128 5296
5abb8855 5297 seq_printf(seq, "css_set %p\n", cset);
c7561128 5298
5abb8855 5299 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5300 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5301 goto overflow;
5302 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5303 }
5304
5305 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5306 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5307 goto overflow;
5308 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5309 }
c7561128
TH
5310 continue;
5311 overflow:
5312 seq_puts(seq, " ...\n");
7717f7ba 5313 }
96d365e0 5314 up_read(&css_set_rwsem);
7717f7ba
PM
5315 return 0;
5316}
5317
182446d0 5318static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5319{
182446d0 5320 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
5321}
5322
5323static struct cftype debug_files[] = {
fe693435
PM
5324 {
5325 .name = "taskcount",
5326 .read_u64 = debug_taskcount_read,
5327 },
5328
5329 {
5330 .name = "current_css_set",
5331 .read_u64 = current_css_set_read,
5332 },
5333
5334 {
5335 .name = "current_css_set_refcount",
5336 .read_u64 = current_css_set_refcount_read,
5337 },
5338
7717f7ba
PM
5339 {
5340 .name = "current_css_set_cg_links",
2da8ca82 5341 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5342 },
5343
5344 {
5345 .name = "cgroup_css_links",
2da8ca82 5346 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5347 },
5348
fe693435
PM
5349 {
5350 .name = "releasable",
5351 .read_u64 = releasable_read,
5352 },
fe693435 5353
4baf6e33
TH
5354 { } /* terminate */
5355};
fe693435 5356
073219e9 5357struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5358 .css_alloc = debug_css_alloc,
5359 .css_free = debug_css_free,
4baf6e33 5360 .base_cftypes = debug_files,
fe693435
PM
5361};
5362#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.943785 seconds and 5 git commands to generate.