Merge branch 'cgroup/for-3.14-fixes' into cgroup/for-3.15
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
2ce9738b 30#include <linux/cred.h>
c6d57f33 31#include <linux/ctype.h>
ddbcc7e8 32#include <linux/errno.h>
2ce9738b 33#include <linux/init_task.h>
ddbcc7e8
PM
34#include <linux/kernel.h>
35#include <linux/list.h>
36#include <linux/mm.h>
37#include <linux/mutex.h>
38#include <linux/mount.h>
39#include <linux/pagemap.h>
a424316c 40#include <linux/proc_fs.h>
ddbcc7e8
PM
41#include <linux/rcupdate.h>
42#include <linux/sched.h>
ddbcc7e8 43#include <linux/slab.h>
ddbcc7e8 44#include <linux/spinlock.h>
96d365e0 45#include <linux/rwsem.h>
ddbcc7e8 46#include <linux/string.h>
bbcb81d0 47#include <linux/sort.h>
81a6a5cd 48#include <linux/kmod.h>
846c7bb0
BS
49#include <linux/delayacct.h>
50#include <linux/cgroupstats.h>
0ac801fe 51#include <linux/hashtable.h>
096b7fe0 52#include <linux/pid_namespace.h>
2c6ab6d2 53#include <linux/idr.h>
d1d9fd33 54#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
081aa458 55#include <linux/flex_array.h> /* used in cgroup_attach_task */
c4c27fbd 56#include <linux/kthread.h>
776f02fa 57#include <linux/delay.h>
846c7bb0 58
60063497 59#include <linux/atomic.h>
ddbcc7e8 60
b1a21367
TH
61/*
62 * pidlists linger the following amount before being destroyed. The goal
63 * is avoiding frequent destruction in the middle of consecutive read calls
64 * Expiring in the middle is a performance problem not a correctness one.
65 * 1 sec should be enough.
66 */
67#define CGROUP_PIDLIST_DESTROY_DELAY HZ
68
8d7e6fb0
TH
69#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
70 MAX_CFTYPE_NAME + 2)
71
ace2bee8
TH
72/*
73 * cgroup_tree_mutex nests above cgroup_mutex and protects cftypes, file
74 * creation/removal and hierarchy changing operations including cgroup
75 * creation, removal, css association and controller rebinding. This outer
76 * lock is needed mainly to resolve the circular dependency between kernfs
77 * active ref and cgroup_mutex. cgroup_tree_mutex nests above both.
78 */
79static DEFINE_MUTEX(cgroup_tree_mutex);
80
e25e2cbb
TH
81/*
82 * cgroup_mutex is the master lock. Any modification to cgroup or its
83 * hierarchy must be performed while holding it.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
8af01f56 87EXPORT_SYMBOL_GPL(cgroup_mutex); /* only for lockdep */
2219449a 88#else
81a6a5cd 89static DEFINE_MUTEX(cgroup_mutex);
2219449a
TH
90#endif
91
69e943b7
TH
92/*
93 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
94 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
95 */
96static DEFINE_SPINLOCK(release_agent_path_lock);
97
ace2bee8 98#define cgroup_assert_mutexes_or_rcu_locked() \
87fb54f1 99 rcu_lockdep_assert(rcu_read_lock_held() || \
ace2bee8 100 lockdep_is_held(&cgroup_tree_mutex) || \
87fb54f1 101 lockdep_is_held(&cgroup_mutex), \
ace2bee8 102 "cgroup_[tree_]mutex or RCU read lock required");
87fb54f1 103
e5fca243
TH
104/*
105 * cgroup destruction makes heavy use of work items and there can be a lot
106 * of concurrent destructions. Use a separate workqueue so that cgroup
107 * destruction work items don't end up filling up max_active of system_wq
108 * which may lead to deadlock.
109 */
110static struct workqueue_struct *cgroup_destroy_wq;
111
b1a21367
TH
112/*
113 * pidlist destructions need to be flushed on cgroup destruction. Use a
114 * separate workqueue as flush domain.
115 */
116static struct workqueue_struct *cgroup_pidlist_destroy_wq;
117
3ed80a62 118/* generate an array of cgroup subsystem pointers */
073219e9 119#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 120static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
121#include <linux/cgroup_subsys.h>
122};
073219e9
TH
123#undef SUBSYS
124
125/* array of cgroup subsystem names */
126#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
127static const char *cgroup_subsys_name[] = {
128#include <linux/cgroup_subsys.h>
129};
130#undef SUBSYS
ddbcc7e8 131
ddbcc7e8 132/*
9871bf95
TH
133 * The dummy hierarchy, reserved for the subsystems that are otherwise
134 * unattached - it never has more than a single cgroup, and all tasks are
135 * part of that cgroup.
ddbcc7e8 136 */
9871bf95
TH
137static struct cgroupfs_root cgroup_dummy_root;
138
139/* dummy_top is a shorthand for the dummy hierarchy's top cgroup */
140static struct cgroup * const cgroup_dummy_top = &cgroup_dummy_root.top_cgroup;
ddbcc7e8
PM
141
142/* The list of hierarchy roots */
143
9871bf95
TH
144static LIST_HEAD(cgroup_roots);
145static int cgroup_root_count;
ddbcc7e8 146
3417ae1f 147/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 148static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 149
794611a1
LZ
150/*
151 * Assign a monotonically increasing serial number to cgroups. It
152 * guarantees cgroups with bigger numbers are newer than those with smaller
153 * numbers. Also, as cgroups are always appended to the parent's
154 * ->children list, it guarantees that sibling cgroups are always sorted in
00356bd5
TH
155 * the ascending serial number order on the list. Protected by
156 * cgroup_mutex.
794611a1 157 */
00356bd5 158static u64 cgroup_serial_nr_next = 1;
794611a1 159
ddbcc7e8 160/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
161 * check for fork/exit handlers to call. This avoids us having to do
162 * extra work in the fork/exit path if none of the subsystems need to
163 * be called.
ddbcc7e8 164 */
8947f9d5 165static int need_forkexit_callback __read_mostly;
ddbcc7e8 166
628f7cd4
TH
167static struct cftype cgroup_base_files[];
168
59f5296b 169static void cgroup_put(struct cgroup *cgrp);
f2e85d57
TH
170static int rebind_subsystems(struct cgroupfs_root *root,
171 unsigned long added_mask, unsigned removed_mask);
f20104de 172static void cgroup_destroy_css_killed(struct cgroup *cgrp);
42809dd4 173static int cgroup_destroy_locked(struct cgroup *cgrp);
2bb566cb
TH
174static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
175 bool is_add);
b1a21367 176static void cgroup_pidlist_destroy_all(struct cgroup *cgrp);
42809dd4 177
95109b62
TH
178/**
179 * cgroup_css - obtain a cgroup's css for the specified subsystem
180 * @cgrp: the cgroup of interest
ca8bdcaf 181 * @ss: the subsystem of interest (%NULL returns the dummy_css)
95109b62 182 *
ca8bdcaf
TH
183 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
184 * function must be called either under cgroup_mutex or rcu_read_lock() and
185 * the caller is responsible for pinning the returned css if it wants to
186 * keep accessing it outside the said locks. This function may return
187 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
188 */
189static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 190 struct cgroup_subsys *ss)
95109b62 191{
ca8bdcaf 192 if (ss)
aec25020 193 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8
TH
194 lockdep_is_held(&cgroup_tree_mutex) ||
195 lockdep_is_held(&cgroup_mutex));
ca8bdcaf
TH
196 else
197 return &cgrp->dummy_css;
95109b62 198}
42809dd4 199
ddbcc7e8 200/* convenient tests for these bits */
54766d4a 201static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 202{
54766d4a 203 return test_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8
PM
204}
205
59f5296b
TH
206struct cgroup_subsys_state *seq_css(struct seq_file *seq)
207{
2bd59d48
TH
208 struct kernfs_open_file *of = seq->private;
209 struct cgroup *cgrp = of->kn->parent->priv;
210 struct cftype *cft = seq_cft(seq);
211
212 /*
213 * This is open and unprotected implementation of cgroup_css().
214 * seq_css() is only called from a kernfs file operation which has
215 * an active reference on the file. Because all the subsystem
216 * files are drained before a css is disassociated with a cgroup,
217 * the matching css from the cgroup's subsys table is guaranteed to
218 * be and stay valid until the enclosing operation is complete.
219 */
220 if (cft->ss)
221 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
222 else
223 return &cgrp->dummy_css;
59f5296b
TH
224}
225EXPORT_SYMBOL_GPL(seq_css);
226
78574cf9
LZ
227/**
228 * cgroup_is_descendant - test ancestry
229 * @cgrp: the cgroup to be tested
230 * @ancestor: possible ancestor of @cgrp
231 *
232 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
233 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
234 * and @ancestor are accessible.
235 */
236bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
237{
238 while (cgrp) {
239 if (cgrp == ancestor)
240 return true;
241 cgrp = cgrp->parent;
242 }
243 return false;
244}
ddbcc7e8 245
e9685a03 246static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
247{
248 const int bits =
bd89aabc
PM
249 (1 << CGRP_RELEASABLE) |
250 (1 << CGRP_NOTIFY_ON_RELEASE);
251 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
252}
253
e9685a03 254static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 255{
bd89aabc 256 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
257}
258
1c6727af
TH
259/**
260 * for_each_css - iterate all css's of a cgroup
261 * @css: the iteration cursor
262 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
263 * @cgrp: the target cgroup to iterate css's of
264 *
265 * Should be called under cgroup_mutex.
266 */
267#define for_each_css(css, ssid, cgrp) \
268 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
269 if (!((css) = rcu_dereference_check( \
270 (cgrp)->subsys[(ssid)], \
ace2bee8 271 lockdep_is_held(&cgroup_tree_mutex) || \
1c6727af
TH
272 lockdep_is_held(&cgroup_mutex)))) { } \
273 else
274
30159ec7 275/**
3ed80a62 276 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 277 * @ss: the iteration cursor
780cd8b3 278 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 279 */
780cd8b3 280#define for_each_subsys(ss, ssid) \
3ed80a62
TH
281 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
282 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 283
5549c497
TH
284/* iterate across the active hierarchies */
285#define for_each_active_root(root) \
286 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 287
7ae1bad9
TH
288/**
289 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
290 * @cgrp: the cgroup to be checked for liveness
291 *
47cfcd09
TH
292 * On success, returns true; the mutex should be later unlocked. On
293 * failure returns false with no lock held.
7ae1bad9 294 */
b9777cf8 295static bool cgroup_lock_live_group(struct cgroup *cgrp)
7ae1bad9
TH
296{
297 mutex_lock(&cgroup_mutex);
54766d4a 298 if (cgroup_is_dead(cgrp)) {
7ae1bad9
TH
299 mutex_unlock(&cgroup_mutex);
300 return false;
301 }
302 return true;
303}
7ae1bad9 304
81a6a5cd
PM
305/* the list of cgroups eligible for automatic release. Protected by
306 * release_list_lock */
307static LIST_HEAD(release_list);
cdcc136f 308static DEFINE_RAW_SPINLOCK(release_list_lock);
81a6a5cd
PM
309static void cgroup_release_agent(struct work_struct *work);
310static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 311static void check_for_release(struct cgroup *cgrp);
81a6a5cd 312
69d0206c
TH
313/*
314 * A cgroup can be associated with multiple css_sets as different tasks may
315 * belong to different cgroups on different hierarchies. In the other
316 * direction, a css_set is naturally associated with multiple cgroups.
317 * This M:N relationship is represented by the following link structure
318 * which exists for each association and allows traversing the associations
319 * from both sides.
320 */
321struct cgrp_cset_link {
322 /* the cgroup and css_set this link associates */
323 struct cgroup *cgrp;
324 struct css_set *cset;
325
326 /* list of cgrp_cset_links anchored at cgrp->cset_links */
327 struct list_head cset_link;
328
329 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
330 struct list_head cgrp_link;
817929ec
PM
331};
332
333/* The default css_set - used by init and its children prior to any
334 * hierarchies being mounted. It contains a pointer to the root state
335 * for each subsystem. Also used to anchor the list of css_sets. Not
336 * reference-counted, to improve performance when child cgroups
337 * haven't been created.
338 */
339
340static struct css_set init_css_set;
69d0206c 341static struct cgrp_cset_link init_cgrp_cset_link;
817929ec 342
0942eeee 343/*
96d365e0
TH
344 * css_set_rwsem protects the list of css_set objects, and the chain of
345 * tasks off each css_set.
0942eeee 346 */
96d365e0 347static DECLARE_RWSEM(css_set_rwsem);
817929ec
PM
348static int css_set_count;
349
7717f7ba
PM
350/*
351 * hash table for cgroup groups. This improves the performance to find
352 * an existing css_set. This hash doesn't (currently) take into
353 * account cgroups in empty hierarchies.
354 */
472b1053 355#define CSS_SET_HASH_BITS 7
0ac801fe 356static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 357
0ac801fe 358static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 359{
0ac801fe 360 unsigned long key = 0UL;
30159ec7
TH
361 struct cgroup_subsys *ss;
362 int i;
472b1053 363
30159ec7 364 for_each_subsys(ss, i)
0ac801fe
LZ
365 key += (unsigned long)css[i];
366 key = (key >> 16) ^ key;
472b1053 367
0ac801fe 368 return key;
472b1053
LZ
369}
370
89c5509b 371static void put_css_set_locked(struct css_set *cset, bool taskexit)
b4f48b63 372{
69d0206c 373 struct cgrp_cset_link *link, *tmp_link;
5abb8855 374
89c5509b
TH
375 lockdep_assert_held(&css_set_rwsem);
376
377 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 378 return;
81a6a5cd 379
2c6ab6d2 380 /* This css_set is dead. unlink it and release cgroup refcounts */
5abb8855 381 hash_del(&cset->hlist);
2c6ab6d2
PM
382 css_set_count--;
383
69d0206c 384 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
2c6ab6d2 385 struct cgroup *cgrp = link->cgrp;
5abb8855 386
69d0206c
TH
387 list_del(&link->cset_link);
388 list_del(&link->cgrp_link);
71b5707e 389
96d365e0 390 /* @cgrp can't go away while we're holding css_set_rwsem */
6f3d828f 391 if (list_empty(&cgrp->cset_links) && notify_on_release(cgrp)) {
81a6a5cd 392 if (taskexit)
bd89aabc
PM
393 set_bit(CGRP_RELEASABLE, &cgrp->flags);
394 check_for_release(cgrp);
81a6a5cd 395 }
2c6ab6d2
PM
396
397 kfree(link);
81a6a5cd 398 }
2c6ab6d2 399
5abb8855 400 kfree_rcu(cset, rcu_head);
b4f48b63
PM
401}
402
89c5509b
TH
403static void put_css_set(struct css_set *cset, bool taskexit)
404{
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cset->refcount, -1, 1))
411 return;
412
413 down_write(&css_set_rwsem);
414 put_css_set_locked(cset, taskexit);
415 up_write(&css_set_rwsem);
416}
417
817929ec
PM
418/*
419 * refcounted get/put for css_set objects
420 */
5abb8855 421static inline void get_css_set(struct css_set *cset)
817929ec 422{
5abb8855 423 atomic_inc(&cset->refcount);
817929ec
PM
424}
425
b326f9d0 426/**
7717f7ba 427 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
428 * @cset: candidate css_set being tested
429 * @old_cset: existing css_set for a task
7717f7ba
PM
430 * @new_cgrp: cgroup that's being entered by the task
431 * @template: desired set of css pointers in css_set (pre-calculated)
432 *
6f4b7e63 433 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
434 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
435 */
5abb8855
TH
436static bool compare_css_sets(struct css_set *cset,
437 struct css_set *old_cset,
7717f7ba
PM
438 struct cgroup *new_cgrp,
439 struct cgroup_subsys_state *template[])
440{
441 struct list_head *l1, *l2;
442
5abb8855 443 if (memcmp(template, cset->subsys, sizeof(cset->subsys))) {
7717f7ba
PM
444 /* Not all subsystems matched */
445 return false;
446 }
447
448 /*
449 * Compare cgroup pointers in order to distinguish between
450 * different cgroups in heirarchies with no subsystems. We
451 * could get by with just this check alone (and skip the
452 * memcmp above) but on most setups the memcmp check will
453 * avoid the need for this more expensive check on almost all
454 * candidates.
455 */
456
69d0206c
TH
457 l1 = &cset->cgrp_links;
458 l2 = &old_cset->cgrp_links;
7717f7ba 459 while (1) {
69d0206c 460 struct cgrp_cset_link *link1, *link2;
5abb8855 461 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
462
463 l1 = l1->next;
464 l2 = l2->next;
465 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
466 if (l1 == &cset->cgrp_links) {
467 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
468 break;
469 } else {
69d0206c 470 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
471 }
472 /* Locate the cgroups associated with these links. */
69d0206c
TH
473 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
474 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
475 cgrp1 = link1->cgrp;
476 cgrp2 = link2->cgrp;
7717f7ba 477 /* Hierarchies should be linked in the same order. */
5abb8855 478 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
479
480 /*
481 * If this hierarchy is the hierarchy of the cgroup
482 * that's changing, then we need to check that this
483 * css_set points to the new cgroup; if it's any other
484 * hierarchy, then this css_set should point to the
485 * same cgroup as the old css_set.
486 */
5abb8855
TH
487 if (cgrp1->root == new_cgrp->root) {
488 if (cgrp1 != new_cgrp)
7717f7ba
PM
489 return false;
490 } else {
5abb8855 491 if (cgrp1 != cgrp2)
7717f7ba
PM
492 return false;
493 }
494 }
495 return true;
496}
497
b326f9d0
TH
498/**
499 * find_existing_css_set - init css array and find the matching css_set
500 * @old_cset: the css_set that we're using before the cgroup transition
501 * @cgrp: the cgroup that we're moving into
502 * @template: out param for the new set of csses, should be clear on entry
817929ec 503 */
5abb8855
TH
504static struct css_set *find_existing_css_set(struct css_set *old_cset,
505 struct cgroup *cgrp,
506 struct cgroup_subsys_state *template[])
b4f48b63 507{
bd89aabc 508 struct cgroupfs_root *root = cgrp->root;
30159ec7 509 struct cgroup_subsys *ss;
5abb8855 510 struct css_set *cset;
0ac801fe 511 unsigned long key;
b326f9d0 512 int i;
817929ec 513
aae8aab4
BB
514 /*
515 * Build the set of subsystem state objects that we want to see in the
516 * new css_set. while subsystems can change globally, the entries here
517 * won't change, so no need for locking.
518 */
30159ec7 519 for_each_subsys(ss, i) {
a1a71b45 520 if (root->subsys_mask & (1UL << i)) {
817929ec
PM
521 /* Subsystem is in this hierarchy. So we want
522 * the subsystem state from the new
523 * cgroup */
ca8bdcaf 524 template[i] = cgroup_css(cgrp, ss);
817929ec
PM
525 } else {
526 /* Subsystem is not in this hierarchy, so we
527 * don't want to change the subsystem state */
5abb8855 528 template[i] = old_cset->subsys[i];
817929ec
PM
529 }
530 }
531
0ac801fe 532 key = css_set_hash(template);
5abb8855
TH
533 hash_for_each_possible(css_set_table, cset, hlist, key) {
534 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
535 continue;
536
537 /* This css_set matches what we need */
5abb8855 538 return cset;
472b1053 539 }
817929ec
PM
540
541 /* No existing cgroup group matched */
542 return NULL;
543}
544
69d0206c 545static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 546{
69d0206c 547 struct cgrp_cset_link *link, *tmp_link;
36553434 548
69d0206c
TH
549 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
550 list_del(&link->cset_link);
36553434
LZ
551 kfree(link);
552 }
553}
554
69d0206c
TH
555/**
556 * allocate_cgrp_cset_links - allocate cgrp_cset_links
557 * @count: the number of links to allocate
558 * @tmp_links: list_head the allocated links are put on
559 *
560 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
561 * through ->cset_link. Returns 0 on success or -errno.
817929ec 562 */
69d0206c 563static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 564{
69d0206c 565 struct cgrp_cset_link *link;
817929ec 566 int i;
69d0206c
TH
567
568 INIT_LIST_HEAD(tmp_links);
569
817929ec 570 for (i = 0; i < count; i++) {
f4f4be2b 571 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 572 if (!link) {
69d0206c 573 free_cgrp_cset_links(tmp_links);
817929ec
PM
574 return -ENOMEM;
575 }
69d0206c 576 list_add(&link->cset_link, tmp_links);
817929ec
PM
577 }
578 return 0;
579}
580
c12f65d4
LZ
581/**
582 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 583 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 584 * @cset: the css_set to be linked
c12f65d4
LZ
585 * @cgrp: the destination cgroup
586 */
69d0206c
TH
587static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
588 struct cgroup *cgrp)
c12f65d4 589{
69d0206c 590 struct cgrp_cset_link *link;
c12f65d4 591
69d0206c
TH
592 BUG_ON(list_empty(tmp_links));
593 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
594 link->cset = cset;
7717f7ba 595 link->cgrp = cgrp;
69d0206c 596 list_move(&link->cset_link, &cgrp->cset_links);
7717f7ba
PM
597 /*
598 * Always add links to the tail of the list so that the list
599 * is sorted by order of hierarchy creation
600 */
69d0206c 601 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
c12f65d4
LZ
602}
603
b326f9d0
TH
604/**
605 * find_css_set - return a new css_set with one cgroup updated
606 * @old_cset: the baseline css_set
607 * @cgrp: the cgroup to be updated
608 *
609 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
610 * substituted into the appropriate hierarchy.
817929ec 611 */
5abb8855
TH
612static struct css_set *find_css_set(struct css_set *old_cset,
613 struct cgroup *cgrp)
817929ec 614{
b326f9d0 615 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 616 struct css_set *cset;
69d0206c
TH
617 struct list_head tmp_links;
618 struct cgrp_cset_link *link;
0ac801fe 619 unsigned long key;
472b1053 620
b326f9d0
TH
621 lockdep_assert_held(&cgroup_mutex);
622
817929ec
PM
623 /* First see if we already have a cgroup group that matches
624 * the desired set */
96d365e0 625 down_read(&css_set_rwsem);
5abb8855
TH
626 cset = find_existing_css_set(old_cset, cgrp, template);
627 if (cset)
628 get_css_set(cset);
96d365e0 629 up_read(&css_set_rwsem);
817929ec 630
5abb8855
TH
631 if (cset)
632 return cset;
817929ec 633
f4f4be2b 634 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 635 if (!cset)
817929ec
PM
636 return NULL;
637
69d0206c 638 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 639 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 640 kfree(cset);
817929ec
PM
641 return NULL;
642 }
643
5abb8855 644 atomic_set(&cset->refcount, 1);
69d0206c 645 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855
TH
646 INIT_LIST_HEAD(&cset->tasks);
647 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
648
649 /* Copy the set of subsystem state objects generated in
650 * find_existing_css_set() */
5abb8855 651 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 652
96d365e0 653 down_write(&css_set_rwsem);
817929ec 654 /* Add reference counts and links from the new css_set. */
69d0206c 655 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 656 struct cgroup *c = link->cgrp;
69d0206c 657
7717f7ba
PM
658 if (c->root == cgrp->root)
659 c = cgrp;
69d0206c 660 link_css_set(&tmp_links, cset, c);
7717f7ba 661 }
817929ec 662
69d0206c 663 BUG_ON(!list_empty(&tmp_links));
817929ec 664
817929ec 665 css_set_count++;
472b1053
LZ
666
667 /* Add this cgroup group to the hash table */
5abb8855
TH
668 key = css_set_hash(cset->subsys);
669 hash_add(css_set_table, &cset->hlist, key);
472b1053 670
96d365e0 671 up_write(&css_set_rwsem);
817929ec 672
5abb8855 673 return cset;
b4f48b63
PM
674}
675
2bd59d48
TH
676static struct cgroupfs_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
677{
678 struct cgroup *top_cgrp = kf_root->kn->priv;
679
680 return top_cgrp->root;
681}
682
f2e85d57
TH
683static int cgroup_init_root_id(struct cgroupfs_root *root, int start, int end)
684{
685 int id;
686
687 lockdep_assert_held(&cgroup_mutex);
688
689 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, start, end,
690 GFP_KERNEL);
691 if (id < 0)
692 return id;
693
694 root->hierarchy_id = id;
695 return 0;
696}
697
698static void cgroup_exit_root_id(struct cgroupfs_root *root)
699{
700 lockdep_assert_held(&cgroup_mutex);
701
702 if (root->hierarchy_id) {
703 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
704 root->hierarchy_id = 0;
705 }
706}
707
708static void cgroup_free_root(struct cgroupfs_root *root)
709{
710 if (root) {
711 /* hierarhcy ID shoulid already have been released */
712 WARN_ON_ONCE(root->hierarchy_id);
713
714 idr_destroy(&root->cgroup_idr);
715 kfree(root);
716 }
717}
718
776f02fa 719static void cgroup_destroy_root(struct cgroupfs_root *root)
59f5296b 720{
f2e85d57
TH
721 struct cgroup *cgrp = &root->top_cgroup;
722 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 723
2bd59d48 724 mutex_lock(&cgroup_tree_mutex);
2bd59d48 725 mutex_lock(&cgroup_mutex);
f2e85d57 726
776f02fa 727 BUG_ON(atomic_read(&root->nr_cgrps));
f2e85d57
TH
728 BUG_ON(!list_empty(&cgrp->children));
729
f2e85d57 730 /* Rebind all subsystems back to the default hierarchy */
35585573 731 WARN_ON(rebind_subsystems(root, 0, root->subsys_mask));
f2e85d57
TH
732
733 /*
734 * Release all the links from cset_links to this hierarchy's
735 * root cgroup
736 */
96d365e0 737 down_write(&css_set_rwsem);
f2e85d57
TH
738
739 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
740 list_del(&link->cset_link);
741 list_del(&link->cgrp_link);
742 kfree(link);
743 }
96d365e0 744 up_write(&css_set_rwsem);
f2e85d57
TH
745
746 if (!list_empty(&root->root_list)) {
747 list_del(&root->root_list);
748 cgroup_root_count--;
749 }
750
751 cgroup_exit_root_id(root);
752
753 mutex_unlock(&cgroup_mutex);
754 mutex_unlock(&cgroup_tree_mutex);
f2e85d57 755
2bd59d48 756 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
757 cgroup_free_root(root);
758}
759
7717f7ba
PM
760/*
761 * Return the cgroup for "task" from the given hierarchy. Must be
96d365e0 762 * called with cgroup_mutex and css_set_rwsem held.
7717f7ba
PM
763 */
764static struct cgroup *task_cgroup_from_root(struct task_struct *task,
765 struct cgroupfs_root *root)
766{
5abb8855 767 struct css_set *cset;
7717f7ba
PM
768 struct cgroup *res = NULL;
769
96d365e0
TH
770 lockdep_assert_held(&cgroup_mutex);
771 lockdep_assert_held(&css_set_rwsem);
772
7717f7ba
PM
773 /*
774 * No need to lock the task - since we hold cgroup_mutex the
775 * task can't change groups, so the only thing that can happen
776 * is that it exits and its css is set back to init_css_set.
777 */
a8ad805c 778 cset = task_css_set(task);
5abb8855 779 if (cset == &init_css_set) {
7717f7ba
PM
780 res = &root->top_cgroup;
781 } else {
69d0206c
TH
782 struct cgrp_cset_link *link;
783
784 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 785 struct cgroup *c = link->cgrp;
69d0206c 786
7717f7ba
PM
787 if (c->root == root) {
788 res = c;
789 break;
790 }
791 }
792 }
96d365e0 793
7717f7ba
PM
794 BUG_ON(!res);
795 return res;
796}
797
ddbcc7e8
PM
798/*
799 * There is one global cgroup mutex. We also require taking
800 * task_lock() when dereferencing a task's cgroup subsys pointers.
801 * See "The task_lock() exception", at the end of this comment.
802 *
803 * A task must hold cgroup_mutex to modify cgroups.
804 *
805 * Any task can increment and decrement the count field without lock.
806 * So in general, code holding cgroup_mutex can't rely on the count
807 * field not changing. However, if the count goes to zero, then only
956db3ca 808 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
809 * means that no tasks are currently attached, therefore there is no
810 * way a task attached to that cgroup can fork (the other way to
811 * increment the count). So code holding cgroup_mutex can safely
812 * assume that if the count is zero, it will stay zero. Similarly, if
813 * a task holds cgroup_mutex on a cgroup with zero count, it
814 * knows that the cgroup won't be removed, as cgroup_rmdir()
815 * needs that mutex.
816 *
ddbcc7e8
PM
817 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
818 * (usually) take cgroup_mutex. These are the two most performance
819 * critical pieces of code here. The exception occurs on cgroup_exit(),
820 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
821 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
822 * to the release agent with the name of the cgroup (path relative to
823 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
824 *
825 * A cgroup can only be deleted if both its 'count' of using tasks
826 * is zero, and its list of 'children' cgroups is empty. Since all
827 * tasks in the system use _some_ cgroup, and since there is always at
828 * least one task in the system (init, pid == 1), therefore, top_cgroup
829 * always has either children cgroups and/or using tasks. So we don't
830 * need a special hack to ensure that top_cgroup cannot be deleted.
831 *
832 * The task_lock() exception
833 *
834 * The need for this exception arises from the action of
d0b2fdd2 835 * cgroup_attach_task(), which overwrites one task's cgroup pointer with
a043e3b2 836 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
837 * several performance critical places that need to reference
838 * task->cgroup without the expense of grabbing a system global
839 * mutex. Therefore except as noted below, when dereferencing or, as
d0b2fdd2 840 * in cgroup_attach_task(), modifying a task's cgroup pointer we use
ddbcc7e8
PM
841 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
842 * the task_struct routinely used for such matters.
843 *
844 * P.S. One more locking exception. RCU is used to guard the
956db3ca 845 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
846 */
847
628f7cd4 848static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask);
2bd59d48 849static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 850static const struct file_operations proc_cgroupstats_operations;
a424316c 851
8d7e6fb0
TH
852static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
853 char *buf)
854{
855 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
856 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
857 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
858 cft->ss->name, cft->name);
859 else
860 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
861 return buf;
862}
863
f2e85d57
TH
864/**
865 * cgroup_file_mode - deduce file mode of a control file
866 * @cft: the control file in question
867 *
868 * returns cft->mode if ->mode is not 0
869 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
870 * returns S_IRUGO if it has only a read handler
871 * returns S_IWUSR if it has only a write hander
872 */
873static umode_t cgroup_file_mode(const struct cftype *cft)
874{
875 umode_t mode = 0;
876
877 if (cft->mode)
878 return cft->mode;
879
880 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
881 mode |= S_IRUGO;
882
883 if (cft->write_u64 || cft->write_s64 || cft->write_string ||
884 cft->trigger)
885 mode |= S_IWUSR;
886
887 return mode;
888}
889
be445626
LZ
890static void cgroup_free_fn(struct work_struct *work)
891{
ea15f8cc 892 struct cgroup *cgrp = container_of(work, struct cgroup, destroy_work);
be445626 893
3c9c825b 894 atomic_dec(&cgrp->root->nr_cgrps);
b1a21367 895 cgroup_pidlist_destroy_all(cgrp);
be445626 896
776f02fa
TH
897 if (cgrp->parent) {
898 /*
899 * We get a ref to the parent, and put the ref when this
900 * cgroup is being freed, so it's guaranteed that the
901 * parent won't be destroyed before its children.
902 */
903 cgroup_put(cgrp->parent);
904 kernfs_put(cgrp->kn);
905 kfree(cgrp);
906 } else {
907 /*
908 * This is top cgroup's refcnt reaching zero, which
909 * indicates that the root should be released.
910 */
911 cgroup_destroy_root(cgrp->root);
912 }
be445626
LZ
913}
914
915static void cgroup_free_rcu(struct rcu_head *head)
916{
917 struct cgroup *cgrp = container_of(head, struct cgroup, rcu_head);
918
ea15f8cc 919 INIT_WORK(&cgrp->destroy_work, cgroup_free_fn);
e5fca243 920 queue_work(cgroup_destroy_wq, &cgrp->destroy_work);
be445626
LZ
921}
922
59f5296b
TH
923static void cgroup_get(struct cgroup *cgrp)
924{
2bd59d48
TH
925 WARN_ON_ONCE(cgroup_is_dead(cgrp));
926 WARN_ON_ONCE(atomic_read(&cgrp->refcnt) <= 0);
927 atomic_inc(&cgrp->refcnt);
ddbcc7e8
PM
928}
929
59f5296b
TH
930static void cgroup_put(struct cgroup *cgrp)
931{
2bd59d48
TH
932 if (!atomic_dec_and_test(&cgrp->refcnt))
933 return;
776f02fa 934 if (WARN_ON_ONCE(cgrp->parent && !cgroup_is_dead(cgrp)))
2bd59d48 935 return;
59f5296b 936
2bd59d48
TH
937 /*
938 * XXX: cgrp->id is only used to look up css's. As cgroup and
939 * css's lifetimes will be decoupled, it should be made
940 * per-subsystem and moved to css->id so that lookups are
941 * successful until the target css is released.
942 */
943 mutex_lock(&cgroup_mutex);
944 idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
945 mutex_unlock(&cgroup_mutex);
946 cgrp->id = -1;
ddbcc7e8 947
2bd59d48 948 call_rcu(&cgrp->rcu_head, cgroup_free_rcu);
ddbcc7e8
PM
949}
950
2739d3cc 951static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 952{
2bd59d48 953 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 954
ace2bee8 955 lockdep_assert_held(&cgroup_tree_mutex);
2bd59d48 956 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
957}
958
13af07df 959/**
628f7cd4 960 * cgroup_clear_dir - remove subsys files in a cgroup directory
8f89140a 961 * @cgrp: target cgroup
13af07df
AR
962 * @subsys_mask: mask of the subsystem ids whose files should be removed
963 */
628f7cd4 964static void cgroup_clear_dir(struct cgroup *cgrp, unsigned long subsys_mask)
05ef1d7c 965{
13af07df 966 struct cgroup_subsys *ss;
b420ba7d 967 int i;
05ef1d7c 968
b420ba7d 969 for_each_subsys(ss, i) {
0adb0704 970 struct cftype *cfts;
b420ba7d
TH
971
972 if (!test_bit(i, &subsys_mask))
13af07df 973 continue;
0adb0704
TH
974 list_for_each_entry(cfts, &ss->cfts, node)
975 cgroup_addrm_files(cgrp, cfts, false);
13af07df 976 }
ddbcc7e8
PM
977}
978
ddbcc7e8 979static int rebind_subsystems(struct cgroupfs_root *root,
a8a648c4 980 unsigned long added_mask, unsigned removed_mask)
ddbcc7e8 981{
bd89aabc 982 struct cgroup *cgrp = &root->top_cgroup;
30159ec7 983 struct cgroup_subsys *ss;
3126121f 984 int i, ret;
ddbcc7e8 985
ace2bee8
TH
986 lockdep_assert_held(&cgroup_tree_mutex);
987 lockdep_assert_held(&cgroup_mutex);
aae8aab4 988
ddbcc7e8 989 /* Check that any added subsystems are currently free */
3ed80a62
TH
990 for_each_subsys(ss, i)
991 if ((added_mask & (1 << i)) && ss->root != &cgroup_dummy_root)
992 return -EBUSY;
ddbcc7e8 993
3126121f
TH
994 ret = cgroup_populate_dir(cgrp, added_mask);
995 if (ret)
3ed80a62 996 return ret;
3126121f
TH
997
998 /*
999 * Nothing can fail from this point on. Remove files for the
1000 * removed subsystems and rebind each subsystem.
1001 */
4ac06017 1002 mutex_unlock(&cgroup_mutex);
3126121f 1003 cgroup_clear_dir(cgrp, removed_mask);
4ac06017 1004 mutex_lock(&cgroup_mutex);
ddbcc7e8 1005
30159ec7 1006 for_each_subsys(ss, i) {
ddbcc7e8 1007 unsigned long bit = 1UL << i;
30159ec7 1008
a1a71b45 1009 if (bit & added_mask) {
ddbcc7e8 1010 /* We're binding this subsystem to this hierarchy */
ca8bdcaf
TH
1011 BUG_ON(cgroup_css(cgrp, ss));
1012 BUG_ON(!cgroup_css(cgroup_dummy_top, ss));
1013 BUG_ON(cgroup_css(cgroup_dummy_top, ss)->cgroup != cgroup_dummy_top);
a8a648c4 1014
73e80ed8 1015 rcu_assign_pointer(cgrp->subsys[i],
ca8bdcaf
TH
1016 cgroup_css(cgroup_dummy_top, ss));
1017 cgroup_css(cgrp, ss)->cgroup = cgrp;
a8a648c4 1018
b2aa30f7 1019 ss->root = root;
ddbcc7e8 1020 if (ss->bind)
ca8bdcaf 1021 ss->bind(cgroup_css(cgrp, ss));
a8a648c4 1022
cf5d5941 1023 /* refcount was already taken, and we're keeping it */
a8a648c4 1024 root->subsys_mask |= bit;
a1a71b45 1025 } else if (bit & removed_mask) {
ddbcc7e8 1026 /* We're removing this subsystem */
ca8bdcaf
TH
1027 BUG_ON(cgroup_css(cgrp, ss) != cgroup_css(cgroup_dummy_top, ss));
1028 BUG_ON(cgroup_css(cgrp, ss)->cgroup != cgrp);
a8a648c4 1029
ddbcc7e8 1030 if (ss->bind)
ca8bdcaf 1031 ss->bind(cgroup_css(cgroup_dummy_top, ss));
73e80ed8 1032
ca8bdcaf 1033 cgroup_css(cgroup_dummy_top, ss)->cgroup = cgroup_dummy_top;
73e80ed8
TH
1034 RCU_INIT_POINTER(cgrp->subsys[i], NULL);
1035
9871bf95 1036 cgroup_subsys[i]->root = &cgroup_dummy_root;
a8a648c4 1037 root->subsys_mask &= ~bit;
ddbcc7e8
PM
1038 }
1039 }
ddbcc7e8 1040
2bd59d48 1041 kernfs_activate(cgrp->kn);
ddbcc7e8
PM
1042 return 0;
1043}
1044
2bd59d48
TH
1045static int cgroup_show_options(struct seq_file *seq,
1046 struct kernfs_root *kf_root)
ddbcc7e8 1047{
2bd59d48 1048 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1049 struct cgroup_subsys *ss;
b85d2040 1050 int ssid;
ddbcc7e8 1051
b85d2040
TH
1052 for_each_subsys(ss, ssid)
1053 if (root->subsys_mask & (1 << ssid))
1054 seq_printf(seq, ",%s", ss->name);
873fe09e
TH
1055 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR)
1056 seq_puts(seq, ",sane_behavior");
93438629 1057 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1058 seq_puts(seq, ",noprefix");
93438629 1059 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1060 seq_puts(seq, ",xattr");
69e943b7
TH
1061
1062 spin_lock(&release_agent_path_lock);
81a6a5cd
PM
1063 if (strlen(root->release_agent_path))
1064 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
69e943b7
TH
1065 spin_unlock(&release_agent_path_lock);
1066
2260e7fc 1067 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags))
97978e6d 1068 seq_puts(seq, ",clone_children");
c6d57f33
PM
1069 if (strlen(root->name))
1070 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1071 return 0;
1072}
1073
1074struct cgroup_sb_opts {
a1a71b45 1075 unsigned long subsys_mask;
ddbcc7e8 1076 unsigned long flags;
81a6a5cd 1077 char *release_agent;
2260e7fc 1078 bool cpuset_clone_children;
c6d57f33 1079 char *name;
2c6ab6d2
PM
1080 /* User explicitly requested empty subsystem */
1081 bool none;
ddbcc7e8
PM
1082};
1083
aae8aab4 1084/*
9871bf95
TH
1085 * Convert a hierarchy specifier into a bitmask of subsystems and
1086 * flags. Call with cgroup_mutex held to protect the cgroup_subsys[]
1087 * array. This function takes refcounts on subsystems to be used, unless it
1088 * returns error, in which case no refcounts are taken.
aae8aab4 1089 */
cf5d5941 1090static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1091{
32a8cf23
DL
1092 char *token, *o = data;
1093 bool all_ss = false, one_ss = false;
f9ab5b5b 1094 unsigned long mask = (unsigned long)-1;
30159ec7
TH
1095 struct cgroup_subsys *ss;
1096 int i;
f9ab5b5b 1097
aae8aab4
BB
1098 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1099
f9ab5b5b 1100#ifdef CONFIG_CPUSETS
073219e9 1101 mask = ~(1UL << cpuset_cgrp_id);
f9ab5b5b 1102#endif
ddbcc7e8 1103
c6d57f33 1104 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1105
1106 while ((token = strsep(&o, ",")) != NULL) {
1107 if (!*token)
1108 return -EINVAL;
32a8cf23 1109 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1110 /* Explicitly have no subsystems */
1111 opts->none = true;
32a8cf23
DL
1112 continue;
1113 }
1114 if (!strcmp(token, "all")) {
1115 /* Mutually exclusive option 'all' + subsystem name */
1116 if (one_ss)
1117 return -EINVAL;
1118 all_ss = true;
1119 continue;
1120 }
873fe09e
TH
1121 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1122 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1123 continue;
1124 }
32a8cf23 1125 if (!strcmp(token, "noprefix")) {
93438629 1126 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1127 continue;
1128 }
1129 if (!strcmp(token, "clone_children")) {
2260e7fc 1130 opts->cpuset_clone_children = true;
32a8cf23
DL
1131 continue;
1132 }
03b1cde6 1133 if (!strcmp(token, "xattr")) {
93438629 1134 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1135 continue;
1136 }
32a8cf23 1137 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1138 /* Specifying two release agents is forbidden */
1139 if (opts->release_agent)
1140 return -EINVAL;
c6d57f33 1141 opts->release_agent =
e400c285 1142 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1143 if (!opts->release_agent)
1144 return -ENOMEM;
32a8cf23
DL
1145 continue;
1146 }
1147 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1148 const char *name = token + 5;
1149 /* Can't specify an empty name */
1150 if (!strlen(name))
1151 return -EINVAL;
1152 /* Must match [\w.-]+ */
1153 for (i = 0; i < strlen(name); i++) {
1154 char c = name[i];
1155 if (isalnum(c))
1156 continue;
1157 if ((c == '.') || (c == '-') || (c == '_'))
1158 continue;
1159 return -EINVAL;
1160 }
1161 /* Specifying two names is forbidden */
1162 if (opts->name)
1163 return -EINVAL;
1164 opts->name = kstrndup(name,
e400c285 1165 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1166 GFP_KERNEL);
1167 if (!opts->name)
1168 return -ENOMEM;
32a8cf23
DL
1169
1170 continue;
1171 }
1172
30159ec7 1173 for_each_subsys(ss, i) {
32a8cf23
DL
1174 if (strcmp(token, ss->name))
1175 continue;
1176 if (ss->disabled)
1177 continue;
1178
1179 /* Mutually exclusive option 'all' + subsystem name */
1180 if (all_ss)
1181 return -EINVAL;
a1a71b45 1182 set_bit(i, &opts->subsys_mask);
32a8cf23
DL
1183 one_ss = true;
1184
1185 break;
1186 }
1187 if (i == CGROUP_SUBSYS_COUNT)
1188 return -ENOENT;
1189 }
1190
1191 /*
1192 * If the 'all' option was specified select all the subsystems,
0d19ea86
LZ
1193 * otherwise if 'none', 'name=' and a subsystem name options
1194 * were not specified, let's default to 'all'
32a8cf23 1195 */
30159ec7
TH
1196 if (all_ss || (!one_ss && !opts->none && !opts->name))
1197 for_each_subsys(ss, i)
1198 if (!ss->disabled)
1199 set_bit(i, &opts->subsys_mask);
ddbcc7e8 1200
2c6ab6d2
PM
1201 /* Consistency checks */
1202
873fe09e
TH
1203 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1204 pr_warning("cgroup: sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1205
d3ba07c3
TH
1206 if ((opts->flags & (CGRP_ROOT_NOPREFIX | CGRP_ROOT_XATTR)) ||
1207 opts->cpuset_clone_children || opts->release_agent ||
1208 opts->name) {
1209 pr_err("cgroup: sane_behavior: noprefix, xattr, clone_children, release_agent and name are not allowed\n");
873fe09e
TH
1210 return -EINVAL;
1211 }
873fe09e
TH
1212 }
1213
f9ab5b5b
LZ
1214 /*
1215 * Option noprefix was introduced just for backward compatibility
1216 * with the old cpuset, so we allow noprefix only if mounting just
1217 * the cpuset subsystem.
1218 */
93438629 1219 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1220 return -EINVAL;
1221
2c6ab6d2
PM
1222
1223 /* Can't specify "none" and some subsystems */
a1a71b45 1224 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1225 return -EINVAL;
1226
1227 /*
1228 * We either have to specify by name or by subsystems. (So all
1229 * empty hierarchies must have a name).
1230 */
a1a71b45 1231 if (!opts->subsys_mask && !opts->name)
ddbcc7e8
PM
1232 return -EINVAL;
1233
1234 return 0;
1235}
1236
2bd59d48 1237static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1238{
1239 int ret = 0;
2bd59d48 1240 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1241 struct cgroup_sb_opts opts;
a1a71b45 1242 unsigned long added_mask, removed_mask;
ddbcc7e8 1243
873fe09e
TH
1244 if (root->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1245 pr_err("cgroup: sane_behavior: remount is not allowed\n");
1246 return -EINVAL;
1247 }
1248
ace2bee8 1249 mutex_lock(&cgroup_tree_mutex);
ddbcc7e8
PM
1250 mutex_lock(&cgroup_mutex);
1251
1252 /* See what subsystems are wanted */
1253 ret = parse_cgroupfs_options(data, &opts);
1254 if (ret)
1255 goto out_unlock;
1256
a8a648c4 1257 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
8b5a5a9d
TH
1258 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1259 task_tgid_nr(current), current->comm);
1260
a1a71b45
AR
1261 added_mask = opts.subsys_mask & ~root->subsys_mask;
1262 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1263
cf5d5941 1264 /* Don't allow flags or name to change at remount */
0ce6cba3 1265 if (((opts.flags ^ root->flags) & CGRP_ROOT_OPTION_MASK) ||
cf5d5941 1266 (opts.name && strcmp(opts.name, root->name))) {
0ce6cba3
TH
1267 pr_err("cgroup: option or name mismatch, new: 0x%lx \"%s\", old: 0x%lx \"%s\"\n",
1268 opts.flags & CGRP_ROOT_OPTION_MASK, opts.name ?: "",
1269 root->flags & CGRP_ROOT_OPTION_MASK, root->name);
c6d57f33
PM
1270 ret = -EINVAL;
1271 goto out_unlock;
1272 }
1273
f172e67c 1274 /* remounting is not allowed for populated hierarchies */
3c9c825b 1275 if (!list_empty(&root->top_cgroup.children)) {
f172e67c 1276 ret = -EBUSY;
0670e08b 1277 goto out_unlock;
cf5d5941 1278 }
ddbcc7e8 1279
a8a648c4 1280 ret = rebind_subsystems(root, added_mask, removed_mask);
3126121f 1281 if (ret)
0670e08b 1282 goto out_unlock;
ddbcc7e8 1283
69e943b7
TH
1284 if (opts.release_agent) {
1285 spin_lock(&release_agent_path_lock);
81a6a5cd 1286 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1287 spin_unlock(&release_agent_path_lock);
1288 }
ddbcc7e8 1289 out_unlock:
66bdc9cf 1290 kfree(opts.release_agent);
c6d57f33 1291 kfree(opts.name);
ddbcc7e8 1292 mutex_unlock(&cgroup_mutex);
ace2bee8 1293 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
1294 return ret;
1295}
1296
afeb0f9f
TH
1297/*
1298 * To reduce the fork() overhead for systems that are not actually using
1299 * their cgroups capability, we don't maintain the lists running through
1300 * each css_set to its tasks until we see the list actually used - in other
1301 * words after the first mount.
1302 */
1303static bool use_task_css_set_links __read_mostly;
1304
1305static void cgroup_enable_task_cg_lists(void)
1306{
1307 struct task_struct *p, *g;
1308
96d365e0 1309 down_write(&css_set_rwsem);
afeb0f9f
TH
1310
1311 if (use_task_css_set_links)
1312 goto out_unlock;
1313
1314 use_task_css_set_links = true;
1315
1316 /*
1317 * We need tasklist_lock because RCU is not safe against
1318 * while_each_thread(). Besides, a forking task that has passed
1319 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1320 * is not guaranteed to have its child immediately visible in the
1321 * tasklist if we walk through it with RCU.
1322 */
1323 read_lock(&tasklist_lock);
1324 do_each_thread(g, p) {
1325 task_lock(p);
1326
1327 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1328 task_css_set(p) != &init_css_set);
1329
1330 /*
1331 * We should check if the process is exiting, otherwise
1332 * it will race with cgroup_exit() in that the list
1333 * entry won't be deleted though the process has exited.
f153ad11
TH
1334 * Do it while holding siglock so that we don't end up
1335 * racing against cgroup_exit().
afeb0f9f 1336 */
f153ad11 1337 spin_lock_irq(&p->sighand->siglock);
afeb0f9f
TH
1338 if (!(p->flags & PF_EXITING))
1339 list_add(&p->cg_list, &task_css_set(p)->tasks);
f153ad11 1340 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1341
1342 task_unlock(p);
1343 } while_each_thread(g, p);
1344 read_unlock(&tasklist_lock);
1345out_unlock:
96d365e0 1346 up_write(&css_set_rwsem);
afeb0f9f
TH
1347}
1348
cc31edce
PM
1349static void init_cgroup_housekeeping(struct cgroup *cgrp)
1350{
2bd59d48 1351 atomic_set(&cgrp->refcnt, 1);
cc31edce
PM
1352 INIT_LIST_HEAD(&cgrp->sibling);
1353 INIT_LIST_HEAD(&cgrp->children);
69d0206c 1354 INIT_LIST_HEAD(&cgrp->cset_links);
cc31edce 1355 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1356 INIT_LIST_HEAD(&cgrp->pidlists);
1357 mutex_init(&cgrp->pidlist_mutex);
67f4c36f 1358 cgrp->dummy_css.cgroup = cgrp;
cc31edce 1359}
c6d57f33 1360
ddbcc7e8
PM
1361static void init_cgroup_root(struct cgroupfs_root *root)
1362{
bd89aabc 1363 struct cgroup *cgrp = &root->top_cgroup;
b0ca5a84 1364
ddbcc7e8 1365 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1366 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1367 cgrp->root = root;
cc31edce 1368 init_cgroup_housekeeping(cgrp);
4e96ee8e 1369 idr_init(&root->cgroup_idr);
ddbcc7e8
PM
1370}
1371
c6d57f33
PM
1372static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1373{
1374 struct cgroupfs_root *root;
1375
a1a71b45 1376 if (!opts->subsys_mask && !opts->none)
2bd59d48 1377 return ERR_PTR(-EINVAL);
c6d57f33
PM
1378
1379 root = kzalloc(sizeof(*root), GFP_KERNEL);
1380 if (!root)
1381 return ERR_PTR(-ENOMEM);
1382
1383 init_cgroup_root(root);
2c6ab6d2 1384
c6d57f33
PM
1385 root->flags = opts->flags;
1386 if (opts->release_agent)
1387 strcpy(root->release_agent_path, opts->release_agent);
1388 if (opts->name)
1389 strcpy(root->name, opts->name);
2260e7fc
TH
1390 if (opts->cpuset_clone_children)
1391 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1392 return root;
1393}
1394
35585573 1395static int cgroup_setup_root(struct cgroupfs_root *root, unsigned long ss_mask)
d427dfeb
TH
1396{
1397 LIST_HEAD(tmp_links);
d427dfeb 1398 struct cgroup *root_cgrp = &root->top_cgroup;
d427dfeb 1399 struct css_set *cset;
d427dfeb
TH
1400 int i, ret;
1401
1402 lockdep_assert_held(&cgroup_tree_mutex);
1403 lockdep_assert_held(&cgroup_mutex);
d427dfeb
TH
1404
1405 ret = idr_alloc(&root->cgroup_idr, root_cgrp, 0, 1, GFP_KERNEL);
1406 if (ret < 0)
2bd59d48 1407 goto out;
d427dfeb
TH
1408 root_cgrp->id = ret;
1409
d427dfeb 1410 /*
96d365e0 1411 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1412 * but that's OK - it can only be increased by someone holding
1413 * cgroup_lock, and that's us. The worst that can happen is that we
1414 * have some link structures left over
1415 */
1416 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1417 if (ret)
2bd59d48 1418 goto out;
d427dfeb
TH
1419
1420 /* ID 0 is reserved for dummy root, 1 for unified hierarchy */
1421 ret = cgroup_init_root_id(root, 2, 0);
1422 if (ret)
2bd59d48 1423 goto out;
d427dfeb 1424
2bd59d48
TH
1425 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1426 KERNFS_ROOT_CREATE_DEACTIVATED,
1427 root_cgrp);
1428 if (IS_ERR(root->kf_root)) {
1429 ret = PTR_ERR(root->kf_root);
1430 goto exit_root_id;
1431 }
1432 root_cgrp->kn = root->kf_root->kn;
d427dfeb
TH
1433
1434 ret = cgroup_addrm_files(root_cgrp, cgroup_base_files, true);
1435 if (ret)
2bd59d48 1436 goto destroy_root;
d427dfeb 1437
35585573 1438 ret = rebind_subsystems(root, ss_mask, 0);
d427dfeb 1439 if (ret)
2bd59d48 1440 goto destroy_root;
d427dfeb
TH
1441
1442 /*
1443 * There must be no failure case after here, since rebinding takes
1444 * care of subsystems' refcounts, which are explicitly dropped in
1445 * the failure exit path.
1446 */
1447 list_add(&root->root_list, &cgroup_roots);
1448 cgroup_root_count++;
1449
1450 /*
1451 * Link the top cgroup in this hierarchy into all the css_set
1452 * objects.
1453 */
96d365e0 1454 down_write(&css_set_rwsem);
d427dfeb
TH
1455 hash_for_each(css_set_table, i, cset, hlist)
1456 link_css_set(&tmp_links, cset, root_cgrp);
96d365e0 1457 up_write(&css_set_rwsem);
d427dfeb
TH
1458
1459 BUG_ON(!list_empty(&root_cgrp->children));
3c9c825b 1460 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
d427dfeb 1461
2bd59d48 1462 kernfs_activate(root_cgrp->kn);
d427dfeb 1463 ret = 0;
2bd59d48 1464 goto out;
d427dfeb 1465
2bd59d48
TH
1466destroy_root:
1467 kernfs_destroy_root(root->kf_root);
1468 root->kf_root = NULL;
1469exit_root_id:
d427dfeb 1470 cgroup_exit_root_id(root);
2bd59d48 1471out:
d427dfeb
TH
1472 free_cgrp_cset_links(&tmp_links);
1473 return ret;
1474}
1475
f7e83571 1476static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1477 int flags, const char *unused_dev_name,
f7e83571 1478 void *data)
ddbcc7e8 1479{
2bd59d48 1480 struct cgroupfs_root *root;
ddbcc7e8 1481 struct cgroup_sb_opts opts;
2bd59d48 1482 struct dentry *dentry;
8e30e2b8 1483 int ret;
56fde9e0
TH
1484
1485 /*
1486 * The first time anyone tries to mount a cgroup, enable the list
1487 * linking each css_set to its tasks and fix up all existing tasks.
1488 */
1489 if (!use_task_css_set_links)
1490 cgroup_enable_task_cg_lists();
776f02fa 1491retry:
8e30e2b8 1492 mutex_lock(&cgroup_tree_mutex);
aae8aab4 1493 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1494
1495 /* First find the desired set of subsystems */
ddbcc7e8 1496 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1497 if (ret)
8e30e2b8 1498 goto out_unlock;
ddbcc7e8 1499
2bd59d48
TH
1500 /* look for a matching existing root */
1501 for_each_active_root(root) {
1502 bool name_match = false;
ddbcc7e8 1503
2bd59d48
TH
1504 /*
1505 * If we asked for a name then it must match. Also, if
1506 * name matches but sybsys_mask doesn't, we should fail.
1507 * Remember whether name matched.
1508 */
1509 if (opts.name) {
1510 if (strcmp(opts.name, root->name))
1511 continue;
1512 name_match = true;
1513 }
ddbcc7e8 1514
c6d57f33 1515 /*
2bd59d48
TH
1516 * If we asked for subsystems (or explicitly for no
1517 * subsystems) then they must match.
c6d57f33 1518 */
2bd59d48
TH
1519 if ((opts.subsys_mask || opts.none) &&
1520 (opts.subsys_mask != root->subsys_mask)) {
1521 if (!name_match)
1522 continue;
1523 ret = -EBUSY;
1524 goto out_unlock;
1525 }
873fe09e 1526
c7ba8287 1527 if ((root->flags ^ opts.flags) & CGRP_ROOT_OPTION_MASK) {
2a0ff3fb
JL
1528 if ((root->flags | opts.flags) & CGRP_ROOT_SANE_BEHAVIOR) {
1529 pr_err("cgroup: sane_behavior: new mount options should match the existing superblock\n");
1530 ret = -EINVAL;
8e30e2b8 1531 goto out_unlock;
2a0ff3fb
JL
1532 } else {
1533 pr_warning("cgroup: new mount options do not match the existing superblock, will be ignored\n");
1534 }
873fe09e 1535 }
2bd59d48 1536
776f02fa
TH
1537 /*
1538 * A root's lifetime is governed by its top cgroup. Zero
1539 * ref indicate that the root is being destroyed. Wait for
1540 * destruction to complete so that the subsystems are free.
1541 * We can use wait_queue for the wait but this path is
1542 * super cold. Let's just sleep for a bit and retry.
1543 */
1544 if (!atomic_inc_not_zero(&root->top_cgroup.refcnt)) {
1545 mutex_unlock(&cgroup_mutex);
1546 mutex_unlock(&cgroup_tree_mutex);
6534fd6c
LZ
1547 kfree(opts.release_agent);
1548 kfree(opts.name);
776f02fa
TH
1549 msleep(10);
1550 goto retry;
1551 }
1552
1553 ret = 0;
2bd59d48 1554 goto out_unlock;
ddbcc7e8
PM
1555 }
1556
2bd59d48
TH
1557 /* no such thing, create a new one */
1558 root = cgroup_root_from_opts(&opts);
1559 if (IS_ERR(root)) {
1560 ret = PTR_ERR(root);
1561 goto out_unlock;
1562 }
1563
35585573 1564 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
1565 if (ret)
1566 cgroup_free_root(root);
1567
8e30e2b8 1568out_unlock:
e25e2cbb 1569 mutex_unlock(&cgroup_mutex);
ace2bee8 1570 mutex_unlock(&cgroup_tree_mutex);
8e30e2b8 1571
c6d57f33
PM
1572 kfree(opts.release_agent);
1573 kfree(opts.name);
8e30e2b8 1574
2bd59d48 1575 if (ret)
8e30e2b8 1576 return ERR_PTR(ret);
2bd59d48
TH
1577
1578 dentry = kernfs_mount(fs_type, flags, root->kf_root);
1579 if (IS_ERR(dentry))
776f02fa 1580 cgroup_put(&root->top_cgroup);
2bd59d48
TH
1581 return dentry;
1582}
1583
1584static void cgroup_kill_sb(struct super_block *sb)
1585{
1586 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
1587 struct cgroupfs_root *root = cgroup_root_from_kf(kf_root);
1588
776f02fa 1589 cgroup_put(&root->top_cgroup);
2bd59d48 1590 kernfs_kill_sb(sb);
ddbcc7e8
PM
1591}
1592
ddbcc7e8
PM
1593static struct file_system_type cgroup_fs_type = {
1594 .name = "cgroup",
f7e83571 1595 .mount = cgroup_mount,
ddbcc7e8
PM
1596 .kill_sb = cgroup_kill_sb,
1597};
1598
676db4af
GK
1599static struct kobject *cgroup_kobj;
1600
857a2beb 1601/**
913ffdb5 1602 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 1603 * @task: target task
857a2beb
TH
1604 * @buf: the buffer to write the path into
1605 * @buflen: the length of the buffer
1606 *
913ffdb5
TH
1607 * Determine @task's cgroup on the first (the one with the lowest non-zero
1608 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
1609 * function grabs cgroup_mutex and shouldn't be used inside locks used by
1610 * cgroup controller callbacks.
1611 *
e61734c5 1612 * Return value is the same as kernfs_path().
857a2beb 1613 */
e61734c5 1614char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb
TH
1615{
1616 struct cgroupfs_root *root;
913ffdb5 1617 struct cgroup *cgrp;
e61734c5
TH
1618 int hierarchy_id = 1;
1619 char *path = NULL;
857a2beb
TH
1620
1621 mutex_lock(&cgroup_mutex);
96d365e0 1622 down_read(&css_set_rwsem);
857a2beb 1623
913ffdb5
TH
1624 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
1625
857a2beb
TH
1626 if (root) {
1627 cgrp = task_cgroup_from_root(task, root);
e61734c5 1628 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
1629 } else {
1630 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
1631 if (strlcpy(buf, "/", buflen) < buflen)
1632 path = buf;
857a2beb
TH
1633 }
1634
96d365e0 1635 up_read(&css_set_rwsem);
857a2beb 1636 mutex_unlock(&cgroup_mutex);
e61734c5 1637 return path;
857a2beb 1638}
913ffdb5 1639EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 1640
2f7ee569
TH
1641/*
1642 * Control Group taskset
1643 */
134d3373
TH
1644struct task_and_cgroup {
1645 struct task_struct *task;
1646 struct cgroup *cgrp;
6f4b7e63 1647 struct css_set *cset;
134d3373
TH
1648};
1649
2f7ee569
TH
1650struct cgroup_taskset {
1651 struct task_and_cgroup single;
1652 struct flex_array *tc_array;
1653 int tc_array_len;
1654 int idx;
2f7ee569
TH
1655};
1656
1657/**
1658 * cgroup_taskset_first - reset taskset and return the first task
1659 * @tset: taskset of interest
1660 *
1661 * @tset iteration is initialized and the first task is returned.
1662 */
1663struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1664{
1665 if (tset->tc_array) {
1666 tset->idx = 0;
1667 return cgroup_taskset_next(tset);
1668 } else {
2f7ee569
TH
1669 return tset->single.task;
1670 }
1671}
2f7ee569
TH
1672
1673/**
1674 * cgroup_taskset_next - iterate to the next task in taskset
1675 * @tset: taskset of interest
1676 *
1677 * Return the next task in @tset. Iteration must have been initialized
1678 * with cgroup_taskset_first().
1679 */
1680struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1681{
1682 struct task_and_cgroup *tc;
1683
1684 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1685 return NULL;
1686
1687 tc = flex_array_get(tset->tc_array, tset->idx++);
2f7ee569
TH
1688 return tc->task;
1689}
2f7ee569 1690
cb0f1fe9 1691/**
74a1166d 1692 * cgroup_task_migrate - move a task from one cgroup to another.
cb0f1fe9
TH
1693 * @old_cgrp; the cgroup @tsk is being migrated from
1694 * @tsk: the task being migrated
1695 * @new_cset: the new css_set @tsk is being attached to
74a1166d 1696 *
cb0f1fe9 1697 * Must be called with cgroup_mutex, threadgroup and css_set_rwsem locked.
74a1166d 1698 */
5abb8855
TH
1699static void cgroup_task_migrate(struct cgroup *old_cgrp,
1700 struct task_struct *tsk,
1701 struct css_set *new_cset)
74a1166d 1702{
5abb8855 1703 struct css_set *old_cset;
74a1166d 1704
cb0f1fe9
TH
1705 lockdep_assert_held(&cgroup_mutex);
1706 lockdep_assert_held(&css_set_rwsem);
1707
74a1166d 1708 /*
026085ef
MSB
1709 * We are synchronized through threadgroup_lock() against PF_EXITING
1710 * setting such that we can't race against cgroup_exit() changing the
1711 * css_set to init_css_set and dropping the old one.
74a1166d 1712 */
c84cdf75 1713 WARN_ON_ONCE(tsk->flags & PF_EXITING);
a8ad805c 1714 old_cset = task_css_set(tsk);
74a1166d 1715
74a1166d 1716 task_lock(tsk);
5abb8855 1717 rcu_assign_pointer(tsk->cgroups, new_cset);
74a1166d
BB
1718 task_unlock(tsk);
1719
56fde9e0 1720 list_move(&tsk->cg_list, &new_cset->tasks);
74a1166d
BB
1721
1722 /*
5abb8855
TH
1723 * We just gained a reference on old_cset by taking it from the
1724 * task. As trading it for new_cset is protected by cgroup_mutex,
1725 * we're safe to drop it here; it will be freed under RCU.
74a1166d 1726 */
5abb8855 1727 set_bit(CGRP_RELEASABLE, &old_cgrp->flags);
cb0f1fe9 1728 put_css_set_locked(old_cset, false);
74a1166d
BB
1729}
1730
a043e3b2 1731/**
081aa458 1732 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
74a1166d 1733 * @cgrp: the cgroup to attach to
9db8de37 1734 * @leader: the task or the leader of the threadgroup to be attached
081aa458 1735 * @threadgroup: attach the whole threadgroup?
74a1166d 1736 *
257058ae 1737 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
081aa458 1738 * task_lock of @tsk or each thread in the threadgroup individually in turn.
74a1166d 1739 */
9db8de37 1740static int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *leader,
47cfcd09 1741 bool threadgroup)
74a1166d 1742{
9db8de37 1743 int ret, i, group_size;
74a1166d 1744 struct cgroupfs_root *root = cgrp->root;
1c6727af 1745 struct cgroup_subsys_state *css, *failed_css = NULL;
74a1166d 1746 /* threadgroup list cursor and array */
9db8de37 1747 struct task_struct *task;
134d3373 1748 struct task_and_cgroup *tc;
d846687d 1749 struct flex_array *group;
2f7ee569 1750 struct cgroup_taskset tset = { };
74a1166d
BB
1751
1752 /*
1753 * step 0: in order to do expensive, possibly blocking operations for
1754 * every thread, we cannot iterate the thread group list, since it needs
1755 * rcu or tasklist locked. instead, build an array of all threads in the
257058ae
TH
1756 * group - group_rwsem prevents new threads from appearing, and if
1757 * threads exit, this will just be an over-estimate.
74a1166d 1758 */
081aa458 1759 if (threadgroup)
9db8de37 1760 group_size = get_nr_threads(leader);
081aa458
LZ
1761 else
1762 group_size = 1;
d846687d 1763 /* flex_array supports very large thread-groups better than kmalloc. */
134d3373 1764 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
74a1166d
BB
1765 if (!group)
1766 return -ENOMEM;
d846687d 1767 /* pre-allocate to guarantee space while iterating in rcu read-side. */
9db8de37
TH
1768 ret = flex_array_prealloc(group, 0, group_size, GFP_KERNEL);
1769 if (ret)
d846687d 1770 goto out_free_group_list;
74a1166d 1771
74a1166d 1772 i = 0;
fb5d2b4c
MSB
1773 /*
1774 * Prevent freeing of tasks while we take a snapshot. Tasks that are
1775 * already PF_EXITING could be freed from underneath us unless we
1776 * take an rcu_read_lock.
1777 */
96d365e0 1778 down_read(&css_set_rwsem);
fb5d2b4c 1779 rcu_read_lock();
9db8de37 1780 task = leader;
74a1166d 1781 do {
134d3373
TH
1782 struct task_and_cgroup ent;
1783
9db8de37
TH
1784 /* @task either already exited or can't exit until the end */
1785 if (task->flags & PF_EXITING)
ea84753c 1786 goto next;
cd3d0952 1787
74a1166d
BB
1788 /* as per above, nr_threads may decrease, but not increase. */
1789 BUG_ON(i >= group_size);
9db8de37
TH
1790 ent.task = task;
1791 ent.cgrp = task_cgroup_from_root(task, root);
892a2b90
MSB
1792 /* nothing to do if this task is already in the cgroup */
1793 if (ent.cgrp == cgrp)
ea84753c 1794 goto next;
61d1d219
MSB
1795 /*
1796 * saying GFP_ATOMIC has no effect here because we did prealloc
1797 * earlier, but it's good form to communicate our expectations.
1798 */
9db8de37
TH
1799 ret = flex_array_put(group, i, &ent, GFP_ATOMIC);
1800 BUG_ON(ret != 0);
74a1166d 1801 i++;
ea84753c 1802 next:
081aa458
LZ
1803 if (!threadgroup)
1804 break;
9db8de37 1805 } while_each_thread(leader, task);
fb5d2b4c 1806 rcu_read_unlock();
96d365e0 1807 up_read(&css_set_rwsem);
74a1166d
BB
1808 /* remember the number of threads in the array for later. */
1809 group_size = i;
2f7ee569
TH
1810 tset.tc_array = group;
1811 tset.tc_array_len = group_size;
74a1166d 1812
134d3373 1813 /* methods shouldn't be called if no task is actually migrating */
9db8de37 1814 ret = 0;
892a2b90 1815 if (!group_size)
b07ef774 1816 goto out_free_group_list;
134d3373 1817
74a1166d
BB
1818 /*
1819 * step 1: check that we can legitimately attach to the cgroup.
1820 */
1c6727af
TH
1821 for_each_css(css, i, cgrp) {
1822 if (css->ss->can_attach) {
9db8de37
TH
1823 ret = css->ss->can_attach(css, &tset);
1824 if (ret) {
1c6727af 1825 failed_css = css;
74a1166d
BB
1826 goto out_cancel_attach;
1827 }
1828 }
74a1166d
BB
1829 }
1830
1831 /*
1832 * step 2: make sure css_sets exist for all threads to be migrated.
1833 * we use find_css_set, which allocates a new one if necessary.
1834 */
74a1166d 1835 for (i = 0; i < group_size; i++) {
a8ad805c
TH
1836 struct css_set *old_cset;
1837
134d3373 1838 tc = flex_array_get(group, i);
a8ad805c 1839 old_cset = task_css_set(tc->task);
6f4b7e63
LZ
1840 tc->cset = find_css_set(old_cset, cgrp);
1841 if (!tc->cset) {
9db8de37 1842 ret = -ENOMEM;
61d1d219 1843 goto out_put_css_set_refs;
74a1166d
BB
1844 }
1845 }
1846
1847 /*
494c167c
TH
1848 * step 3: now that we're guaranteed success wrt the css_sets,
1849 * proceed to move all tasks to the new cgroup. There are no
1850 * failure cases after here, so this is the commit point.
74a1166d 1851 */
cb0f1fe9 1852 down_write(&css_set_rwsem);
74a1166d 1853 for (i = 0; i < group_size; i++) {
134d3373 1854 tc = flex_array_get(group, i);
6f4b7e63 1855 cgroup_task_migrate(tc->cgrp, tc->task, tc->cset);
74a1166d 1856 }
cb0f1fe9 1857 up_write(&css_set_rwsem);
74a1166d
BB
1858 /* nothing is sensitive to fork() after this point. */
1859
1860 /*
494c167c 1861 * step 4: do subsystem attach callbacks.
74a1166d 1862 */
1c6727af
TH
1863 for_each_css(css, i, cgrp)
1864 if (css->ss->attach)
1865 css->ss->attach(css, &tset);
74a1166d
BB
1866
1867 /*
1868 * step 5: success! and cleanup
1869 */
9db8de37 1870 ret = 0;
61d1d219 1871out_put_css_set_refs:
9db8de37 1872 if (ret) {
61d1d219
MSB
1873 for (i = 0; i < group_size; i++) {
1874 tc = flex_array_get(group, i);
6f4b7e63 1875 if (!tc->cset)
61d1d219 1876 break;
89c5509b 1877 put_css_set(tc->cset, false);
61d1d219 1878 }
74a1166d
BB
1879 }
1880out_cancel_attach:
9db8de37 1881 if (ret) {
1c6727af
TH
1882 for_each_css(css, i, cgrp) {
1883 if (css == failed_css)
74a1166d 1884 break;
1c6727af
TH
1885 if (css->ss->cancel_attach)
1886 css->ss->cancel_attach(css, &tset);
74a1166d
BB
1887 }
1888 }
74a1166d 1889out_free_group_list:
d846687d 1890 flex_array_free(group);
9db8de37 1891 return ret;
74a1166d
BB
1892}
1893
1894/*
1895 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952
TH
1896 * function to attach either it or all tasks in its threadgroup. Will lock
1897 * cgroup_mutex and threadgroup; may take task_lock of task.
bbcb81d0 1898 */
74a1166d 1899static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
bbcb81d0 1900{
bbcb81d0 1901 struct task_struct *tsk;
c69e8d9c 1902 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1903 int ret;
1904
74a1166d
BB
1905 if (!cgroup_lock_live_group(cgrp))
1906 return -ENODEV;
1907
b78949eb
MSB
1908retry_find_task:
1909 rcu_read_lock();
bbcb81d0 1910 if (pid) {
73507f33 1911 tsk = find_task_by_vpid(pid);
74a1166d
BB
1912 if (!tsk) {
1913 rcu_read_unlock();
dd4b0a46 1914 ret = -ESRCH;
b78949eb 1915 goto out_unlock_cgroup;
bbcb81d0 1916 }
74a1166d
BB
1917 /*
1918 * even if we're attaching all tasks in the thread group, we
1919 * only need to check permissions on one of them.
1920 */
c69e8d9c 1921 tcred = __task_cred(tsk);
14a590c3
EB
1922 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
1923 !uid_eq(cred->euid, tcred->uid) &&
1924 !uid_eq(cred->euid, tcred->suid)) {
c69e8d9c 1925 rcu_read_unlock();
b78949eb
MSB
1926 ret = -EACCES;
1927 goto out_unlock_cgroup;
bbcb81d0 1928 }
b78949eb
MSB
1929 } else
1930 tsk = current;
cd3d0952
TH
1931
1932 if (threadgroup)
b78949eb 1933 tsk = tsk->group_leader;
c4c27fbd
MG
1934
1935 /*
14a40ffc 1936 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
1937 * trapped in a cpuset, or RT worker may be born in a cgroup
1938 * with no rt_runtime allocated. Just say no.
1939 */
14a40ffc 1940 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd
MG
1941 ret = -EINVAL;
1942 rcu_read_unlock();
1943 goto out_unlock_cgroup;
1944 }
1945
b78949eb
MSB
1946 get_task_struct(tsk);
1947 rcu_read_unlock();
1948
1949 threadgroup_lock(tsk);
1950 if (threadgroup) {
1951 if (!thread_group_leader(tsk)) {
1952 /*
1953 * a race with de_thread from another thread's exec()
1954 * may strip us of our leadership, if this happens,
1955 * there is no choice but to throw this task away and
1956 * try again; this is
1957 * "double-double-toil-and-trouble-check locking".
1958 */
1959 threadgroup_unlock(tsk);
1960 put_task_struct(tsk);
1961 goto retry_find_task;
1962 }
081aa458
LZ
1963 }
1964
1965 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
1966
cd3d0952
TH
1967 threadgroup_unlock(tsk);
1968
bbcb81d0 1969 put_task_struct(tsk);
b78949eb 1970out_unlock_cgroup:
47cfcd09 1971 mutex_unlock(&cgroup_mutex);
bbcb81d0
PM
1972 return ret;
1973}
1974
7ae1bad9
TH
1975/**
1976 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1977 * @from: attach to all cgroups of a given task
1978 * @tsk: the task to be attached
1979 */
1980int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1981{
1982 struct cgroupfs_root *root;
1983 int retval = 0;
1984
47cfcd09 1985 mutex_lock(&cgroup_mutex);
7ae1bad9 1986 for_each_active_root(root) {
96d365e0
TH
1987 struct cgroup *from_cgrp;
1988
1989 down_read(&css_set_rwsem);
1990 from_cgrp = task_cgroup_from_root(from, root);
1991 up_read(&css_set_rwsem);
7ae1bad9 1992
6f4b7e63 1993 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
1994 if (retval)
1995 break;
1996 }
47cfcd09 1997 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
1998
1999 return retval;
2000}
2001EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2002
182446d0
TH
2003static int cgroup_tasks_write(struct cgroup_subsys_state *css,
2004 struct cftype *cft, u64 pid)
74a1166d 2005{
182446d0 2006 return attach_task_by_pid(css->cgroup, pid, false);
74a1166d
BB
2007}
2008
182446d0
TH
2009static int cgroup_procs_write(struct cgroup_subsys_state *css,
2010 struct cftype *cft, u64 tgid)
af351026 2011{
182446d0 2012 return attach_task_by_pid(css->cgroup, tgid, true);
af351026
PM
2013}
2014
182446d0
TH
2015static int cgroup_release_agent_write(struct cgroup_subsys_state *css,
2016 struct cftype *cft, const char *buffer)
e788e066 2017{
5f469907
TH
2018 struct cgroupfs_root *root = css->cgroup->root;
2019
2020 BUILD_BUG_ON(sizeof(root->release_agent_path) < PATH_MAX);
182446d0 2021 if (!cgroup_lock_live_group(css->cgroup))
e788e066 2022 return -ENODEV;
69e943b7 2023 spin_lock(&release_agent_path_lock);
5f469907
TH
2024 strlcpy(root->release_agent_path, buffer,
2025 sizeof(root->release_agent_path));
69e943b7 2026 spin_unlock(&release_agent_path_lock);
47cfcd09 2027 mutex_unlock(&cgroup_mutex);
e788e066
PM
2028 return 0;
2029}
2030
2da8ca82 2031static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2032{
2da8ca82 2033 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2034
e788e066
PM
2035 if (!cgroup_lock_live_group(cgrp))
2036 return -ENODEV;
2037 seq_puts(seq, cgrp->root->release_agent_path);
2038 seq_putc(seq, '\n');
47cfcd09 2039 mutex_unlock(&cgroup_mutex);
e788e066
PM
2040 return 0;
2041}
2042
2da8ca82 2043static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2044{
2da8ca82
TH
2045 struct cgroup *cgrp = seq_css(seq)->cgroup;
2046
2047 seq_printf(seq, "%d\n", cgroup_sane_behavior(cgrp));
e788e066
PM
2048 return 0;
2049}
2050
2bd59d48
TH
2051static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
2052 size_t nbytes, loff_t off)
355e0c48 2053{
2bd59d48
TH
2054 struct cgroup *cgrp = of->kn->parent->priv;
2055 struct cftype *cft = of->kn->priv;
2056 struct cgroup_subsys_state *css;
a742c59d 2057 int ret;
355e0c48 2058
2bd59d48
TH
2059 /*
2060 * kernfs guarantees that a file isn't deleted with operations in
2061 * flight, which means that the matching css is and stays alive and
2062 * doesn't need to be pinned. The RCU locking is not necessary
2063 * either. It's just for the convenience of using cgroup_css().
2064 */
2065 rcu_read_lock();
2066 css = cgroup_css(cgrp, cft->ss);
2067 rcu_read_unlock();
a742c59d
TH
2068
2069 if (cft->write_string) {
2070 ret = cft->write_string(css, cft, strstrip(buf));
2071 } else if (cft->write_u64) {
2072 unsigned long long v;
2073 ret = kstrtoull(buf, 0, &v);
2074 if (!ret)
2075 ret = cft->write_u64(css, cft, v);
2076 } else if (cft->write_s64) {
2077 long long v;
2078 ret = kstrtoll(buf, 0, &v);
2079 if (!ret)
2080 ret = cft->write_s64(css, cft, v);
2081 } else if (cft->trigger) {
2082 ret = cft->trigger(css, (unsigned int)cft->private);
e73d2c61 2083 } else {
a742c59d 2084 ret = -EINVAL;
e73d2c61 2085 }
2bd59d48 2086
a742c59d 2087 return ret ?: nbytes;
355e0c48
PM
2088}
2089
6612f05b 2090static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 2091{
2bd59d48 2092 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
2093}
2094
6612f05b 2095static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 2096{
2bd59d48 2097 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
2098}
2099
6612f05b 2100static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 2101{
2bd59d48 2102 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
2103}
2104
91796569 2105static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 2106{
7da11279
TH
2107 struct cftype *cft = seq_cft(m);
2108 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 2109
2da8ca82
TH
2110 if (cft->seq_show)
2111 return cft->seq_show(m, arg);
e73d2c61 2112
f4c753b7 2113 if (cft->read_u64)
896f5199
TH
2114 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
2115 else if (cft->read_s64)
2116 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
2117 else
2118 return -EINVAL;
2119 return 0;
91796569
PM
2120}
2121
2bd59d48
TH
2122static struct kernfs_ops cgroup_kf_single_ops = {
2123 .atomic_write_len = PAGE_SIZE,
2124 .write = cgroup_file_write,
2125 .seq_show = cgroup_seqfile_show,
91796569
PM
2126};
2127
2bd59d48
TH
2128static struct kernfs_ops cgroup_kf_ops = {
2129 .atomic_write_len = PAGE_SIZE,
2130 .write = cgroup_file_write,
2131 .seq_start = cgroup_seqfile_start,
2132 .seq_next = cgroup_seqfile_next,
2133 .seq_stop = cgroup_seqfile_stop,
2134 .seq_show = cgroup_seqfile_show,
2135};
ddbcc7e8
PM
2136
2137/*
2138 * cgroup_rename - Only allow simple rename of directories in place.
2139 */
2bd59d48
TH
2140static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
2141 const char *new_name_str)
ddbcc7e8 2142{
2bd59d48 2143 struct cgroup *cgrp = kn->priv;
2bd59d48 2144 int ret;
65dff759 2145
2bd59d48 2146 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 2147 return -ENOTDIR;
2bd59d48 2148 if (kn->parent != new_parent)
ddbcc7e8 2149 return -EIO;
65dff759 2150
6db8e85c
TH
2151 /*
2152 * This isn't a proper migration and its usefulness is very
2153 * limited. Disallow if sane_behavior.
2154 */
2155 if (cgroup_sane_behavior(cgrp))
2156 return -EPERM;
2157
2bd59d48
TH
2158 mutex_lock(&cgroup_tree_mutex);
2159 mutex_lock(&cgroup_mutex);
2160
2161 ret = kernfs_rename(kn, new_parent, new_name_str);
65dff759 2162
2bd59d48
TH
2163 mutex_unlock(&cgroup_mutex);
2164 mutex_unlock(&cgroup_tree_mutex);
2bd59d48 2165 return ret;
ddbcc7e8
PM
2166}
2167
2bb566cb 2168static int cgroup_add_file(struct cgroup *cgrp, struct cftype *cft)
ddbcc7e8 2169{
8d7e6fb0 2170 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
2171 struct kernfs_node *kn;
2172 struct lock_class_key *key = NULL;
05ef1d7c 2173
2bd59d48
TH
2174#ifdef CONFIG_DEBUG_LOCK_ALLOC
2175 key = &cft->lockdep_key;
2176#endif
2177 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
2178 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
2179 NULL, false, key);
430af8ad 2180 return PTR_ERR_OR_ZERO(kn);
ddbcc7e8
PM
2181}
2182
b1f28d31
TH
2183/**
2184 * cgroup_addrm_files - add or remove files to a cgroup directory
2185 * @cgrp: the target cgroup
b1f28d31
TH
2186 * @cfts: array of cftypes to be added
2187 * @is_add: whether to add or remove
2188 *
2189 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
2bb566cb
TH
2190 * For removals, this function never fails. If addition fails, this
2191 * function doesn't remove files already added. The caller is responsible
2192 * for cleaning up.
b1f28d31 2193 */
2bb566cb
TH
2194static int cgroup_addrm_files(struct cgroup *cgrp, struct cftype cfts[],
2195 bool is_add)
ddbcc7e8 2196{
03b1cde6 2197 struct cftype *cft;
b1f28d31
TH
2198 int ret;
2199
ace2bee8 2200 lockdep_assert_held(&cgroup_tree_mutex);
db0416b6
TH
2201
2202 for (cft = cfts; cft->name[0] != '\0'; cft++) {
f33fddc2 2203 /* does cft->flags tell us to skip this file on @cgrp? */
873fe09e
TH
2204 if ((cft->flags & CFTYPE_INSANE) && cgroup_sane_behavior(cgrp))
2205 continue;
f33fddc2
G
2206 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2207 continue;
2208 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2209 continue;
2210
2739d3cc 2211 if (is_add) {
2bb566cb 2212 ret = cgroup_add_file(cgrp, cft);
b1f28d31 2213 if (ret) {
2739d3cc 2214 pr_warn("cgroup_addrm_files: failed to add %s, err=%d\n",
b1f28d31
TH
2215 cft->name, ret);
2216 return ret;
2217 }
2739d3cc
LZ
2218 } else {
2219 cgroup_rm_file(cgrp, cft);
db0416b6 2220 }
ddbcc7e8 2221 }
b1f28d31 2222 return 0;
ddbcc7e8
PM
2223}
2224
21a2d343 2225static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
2226{
2227 LIST_HEAD(pending);
2bb566cb 2228 struct cgroup_subsys *ss = cfts[0].ss;
492eb21b 2229 struct cgroup *root = &ss->root->top_cgroup;
492eb21b 2230 struct cgroup_subsys_state *css;
9ccece80 2231 int ret = 0;
8e3f6541 2232
21a2d343 2233 lockdep_assert_held(&cgroup_tree_mutex);
4ac06017 2234
21a2d343
TH
2235 /* don't bother if @ss isn't attached */
2236 if (ss->root == &cgroup_dummy_root)
9ccece80 2237 return 0;
e8c82d20 2238
e8c82d20 2239 /* add/rm files for all cgroups created before */
ca8bdcaf 2240 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
2241 struct cgroup *cgrp = css->cgroup;
2242
e8c82d20
LZ
2243 if (cgroup_is_dead(cgrp))
2244 continue;
2245
21a2d343 2246 ret = cgroup_addrm_files(cgrp, cfts, is_add);
9ccece80
TH
2247 if (ret)
2248 break;
8e3f6541 2249 }
21a2d343
TH
2250
2251 if (is_add && !ret)
2252 kernfs_activate(root->kn);
9ccece80 2253 return ret;
8e3f6541
TH
2254}
2255
2da440a2
TH
2256static void cgroup_exit_cftypes(struct cftype *cfts)
2257{
2258 struct cftype *cft;
2259
2bd59d48
TH
2260 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2261 /* free copy for custom atomic_write_len, see init_cftypes() */
2262 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
2263 kfree(cft->kf_ops);
2264 cft->kf_ops = NULL;
2da440a2 2265 cft->ss = NULL;
2bd59d48 2266 }
2da440a2
TH
2267}
2268
2bd59d48 2269static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
2270{
2271 struct cftype *cft;
2272
2bd59d48
TH
2273 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2274 struct kernfs_ops *kf_ops;
2275
0adb0704
TH
2276 WARN_ON(cft->ss || cft->kf_ops);
2277
2bd59d48
TH
2278 if (cft->seq_start)
2279 kf_ops = &cgroup_kf_ops;
2280 else
2281 kf_ops = &cgroup_kf_single_ops;
2282
2283 /*
2284 * Ugh... if @cft wants a custom max_write_len, we need to
2285 * make a copy of kf_ops to set its atomic_write_len.
2286 */
2287 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
2288 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
2289 if (!kf_ops) {
2290 cgroup_exit_cftypes(cfts);
2291 return -ENOMEM;
2292 }
2293 kf_ops->atomic_write_len = cft->max_write_len;
2294 }
2295
2296 cft->kf_ops = kf_ops;
2da440a2 2297 cft->ss = ss;
2bd59d48
TH
2298 }
2299
2300 return 0;
2da440a2
TH
2301}
2302
21a2d343
TH
2303static int cgroup_rm_cftypes_locked(struct cftype *cfts)
2304{
2305 lockdep_assert_held(&cgroup_tree_mutex);
2306
2307 if (!cfts || !cfts[0].ss)
2308 return -ENOENT;
2309
2310 list_del(&cfts->node);
2311 cgroup_apply_cftypes(cfts, false);
2312 cgroup_exit_cftypes(cfts);
2313 return 0;
2314}
2315
80b13586
TH
2316/**
2317 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2318 * @cfts: zero-length name terminated array of cftypes
2319 *
2320 * Unregister @cfts. Files described by @cfts are removed from all
2321 * existing cgroups and all future cgroups won't have them either. This
2322 * function can be called anytime whether @cfts' subsys is attached or not.
2323 *
2324 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2325 * registered.
2326 */
2327int cgroup_rm_cftypes(struct cftype *cfts)
2328{
21a2d343 2329 int ret;
80b13586 2330
21a2d343
TH
2331 mutex_lock(&cgroup_tree_mutex);
2332 ret = cgroup_rm_cftypes_locked(cfts);
2333 mutex_unlock(&cgroup_tree_mutex);
2334 return ret;
80b13586
TH
2335}
2336
8e3f6541
TH
2337/**
2338 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2339 * @ss: target cgroup subsystem
2340 * @cfts: zero-length name terminated array of cftypes
2341 *
2342 * Register @cfts to @ss. Files described by @cfts are created for all
2343 * existing cgroups to which @ss is attached and all future cgroups will
2344 * have them too. This function can be called anytime whether @ss is
2345 * attached or not.
2346 *
2347 * Returns 0 on successful registration, -errno on failure. Note that this
2348 * function currently returns 0 as long as @cfts registration is successful
2349 * even if some file creation attempts on existing cgroups fail.
2350 */
03b1cde6 2351int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 2352{
9ccece80 2353 int ret;
8e3f6541 2354
dc5736ed
LZ
2355 if (!cfts || cfts[0].name[0] == '\0')
2356 return 0;
2357
2bd59d48
TH
2358 ret = cgroup_init_cftypes(ss, cfts);
2359 if (ret)
2360 return ret;
2bb566cb 2361
21a2d343
TH
2362 mutex_lock(&cgroup_tree_mutex);
2363
0adb0704 2364 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 2365 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 2366 if (ret)
21a2d343
TH
2367 cgroup_rm_cftypes_locked(cfts);
2368
2369 mutex_unlock(&cgroup_tree_mutex);
9ccece80 2370 return ret;
8e3f6541 2371}
8e3f6541 2372
a043e3b2
LZ
2373/**
2374 * cgroup_task_count - count the number of tasks in a cgroup.
2375 * @cgrp: the cgroup in question
2376 *
2377 * Return the number of tasks in the cgroup.
2378 */
07bc356e 2379static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2380{
2381 int count = 0;
69d0206c 2382 struct cgrp_cset_link *link;
817929ec 2383
96d365e0 2384 down_read(&css_set_rwsem);
69d0206c
TH
2385 list_for_each_entry(link, &cgrp->cset_links, cset_link)
2386 count += atomic_read(&link->cset->refcount);
96d365e0 2387 up_read(&css_set_rwsem);
bbcb81d0
PM
2388 return count;
2389}
2390
53fa5261 2391/**
492eb21b
TH
2392 * css_next_child - find the next child of a given css
2393 * @pos_css: the current position (%NULL to initiate traversal)
2394 * @parent_css: css whose children to walk
53fa5261 2395 *
492eb21b 2396 * This function returns the next child of @parent_css and should be called
87fb54f1
TH
2397 * under either cgroup_mutex or RCU read lock. The only requirement is
2398 * that @parent_css and @pos_css are accessible. The next sibling is
2399 * guaranteed to be returned regardless of their states.
53fa5261 2400 */
492eb21b
TH
2401struct cgroup_subsys_state *
2402css_next_child(struct cgroup_subsys_state *pos_css,
2403 struct cgroup_subsys_state *parent_css)
53fa5261 2404{
492eb21b
TH
2405 struct cgroup *pos = pos_css ? pos_css->cgroup : NULL;
2406 struct cgroup *cgrp = parent_css->cgroup;
53fa5261
TH
2407 struct cgroup *next;
2408
ace2bee8 2409 cgroup_assert_mutexes_or_rcu_locked();
53fa5261
TH
2410
2411 /*
2412 * @pos could already have been removed. Once a cgroup is removed,
2413 * its ->sibling.next is no longer updated when its next sibling
ea15f8cc
TH
2414 * changes. As CGRP_DEAD assertion is serialized and happens
2415 * before the cgroup is taken off the ->sibling list, if we see it
2416 * unasserted, it's guaranteed that the next sibling hasn't
2417 * finished its grace period even if it's already removed, and thus
2418 * safe to dereference from this RCU critical section. If
2419 * ->sibling.next is inaccessible, cgroup_is_dead() is guaranteed
2420 * to be visible as %true here.
3b287a50
TH
2421 *
2422 * If @pos is dead, its next pointer can't be dereferenced;
2423 * however, as each cgroup is given a monotonically increasing
2424 * unique serial number and always appended to the sibling list,
2425 * the next one can be found by walking the parent's children until
2426 * we see a cgroup with higher serial number than @pos's. While
2427 * this path can be slower, it's taken only when either the current
2428 * cgroup is removed or iteration and removal race.
53fa5261 2429 */
3b287a50
TH
2430 if (!pos) {
2431 next = list_entry_rcu(cgrp->children.next, struct cgroup, sibling);
2432 } else if (likely(!cgroup_is_dead(pos))) {
53fa5261 2433 next = list_entry_rcu(pos->sibling.next, struct cgroup, sibling);
3b287a50
TH
2434 } else {
2435 list_for_each_entry_rcu(next, &cgrp->children, sibling)
2436 if (next->serial_nr > pos->serial_nr)
2437 break;
53fa5261
TH
2438 }
2439
492eb21b
TH
2440 if (&next->sibling == &cgrp->children)
2441 return NULL;
2442
ca8bdcaf 2443 return cgroup_css(next, parent_css->ss);
53fa5261 2444}
53fa5261 2445
574bd9f7 2446/**
492eb21b 2447 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 2448 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2449 * @root: css whose descendants to walk
574bd9f7 2450 *
492eb21b 2451 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
2452 * to visit for pre-order traversal of @root's descendants. @root is
2453 * included in the iteration and the first node to be visited.
75501a6d 2454 *
87fb54f1
TH
2455 * While this function requires cgroup_mutex or RCU read locking, it
2456 * doesn't require the whole traversal to be contained in a single critical
2457 * section. This function will return the correct next descendant as long
2458 * as both @pos and @root are accessible and @pos is a descendant of @root.
574bd9f7 2459 */
492eb21b
TH
2460struct cgroup_subsys_state *
2461css_next_descendant_pre(struct cgroup_subsys_state *pos,
2462 struct cgroup_subsys_state *root)
574bd9f7 2463{
492eb21b 2464 struct cgroup_subsys_state *next;
574bd9f7 2465
ace2bee8 2466 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2467
bd8815a6 2468 /* if first iteration, visit @root */
7805d000 2469 if (!pos)
bd8815a6 2470 return root;
574bd9f7
TH
2471
2472 /* visit the first child if exists */
492eb21b 2473 next = css_next_child(NULL, pos);
574bd9f7
TH
2474 if (next)
2475 return next;
2476
2477 /* no child, visit my or the closest ancestor's next sibling */
492eb21b
TH
2478 while (pos != root) {
2479 next = css_next_child(pos, css_parent(pos));
75501a6d 2480 if (next)
574bd9f7 2481 return next;
492eb21b 2482 pos = css_parent(pos);
7805d000 2483 }
574bd9f7
TH
2484
2485 return NULL;
2486}
574bd9f7 2487
12a9d2fe 2488/**
492eb21b
TH
2489 * css_rightmost_descendant - return the rightmost descendant of a css
2490 * @pos: css of interest
12a9d2fe 2491 *
492eb21b
TH
2492 * Return the rightmost descendant of @pos. If there's no descendant, @pos
2493 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 2494 * subtree of @pos.
75501a6d 2495 *
87fb54f1
TH
2496 * While this function requires cgroup_mutex or RCU read locking, it
2497 * doesn't require the whole traversal to be contained in a single critical
2498 * section. This function will return the correct rightmost descendant as
2499 * long as @pos is accessible.
12a9d2fe 2500 */
492eb21b
TH
2501struct cgroup_subsys_state *
2502css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 2503{
492eb21b 2504 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 2505
ace2bee8 2506 cgroup_assert_mutexes_or_rcu_locked();
12a9d2fe
TH
2507
2508 do {
2509 last = pos;
2510 /* ->prev isn't RCU safe, walk ->next till the end */
2511 pos = NULL;
492eb21b 2512 css_for_each_child(tmp, last)
12a9d2fe
TH
2513 pos = tmp;
2514 } while (pos);
2515
2516 return last;
2517}
12a9d2fe 2518
492eb21b
TH
2519static struct cgroup_subsys_state *
2520css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 2521{
492eb21b 2522 struct cgroup_subsys_state *last;
574bd9f7
TH
2523
2524 do {
2525 last = pos;
492eb21b 2526 pos = css_next_child(NULL, pos);
574bd9f7
TH
2527 } while (pos);
2528
2529 return last;
2530}
2531
2532/**
492eb21b 2533 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 2534 * @pos: the current position (%NULL to initiate traversal)
492eb21b 2535 * @root: css whose descendants to walk
574bd9f7 2536 *
492eb21b 2537 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
2538 * to visit for post-order traversal of @root's descendants. @root is
2539 * included in the iteration and the last node to be visited.
75501a6d 2540 *
87fb54f1
TH
2541 * While this function requires cgroup_mutex or RCU read locking, it
2542 * doesn't require the whole traversal to be contained in a single critical
2543 * section. This function will return the correct next descendant as long
2544 * as both @pos and @cgroup are accessible and @pos is a descendant of
2545 * @cgroup.
574bd9f7 2546 */
492eb21b
TH
2547struct cgroup_subsys_state *
2548css_next_descendant_post(struct cgroup_subsys_state *pos,
2549 struct cgroup_subsys_state *root)
574bd9f7 2550{
492eb21b 2551 struct cgroup_subsys_state *next;
574bd9f7 2552
ace2bee8 2553 cgroup_assert_mutexes_or_rcu_locked();
574bd9f7 2554
58b79a91
TH
2555 /* if first iteration, visit leftmost descendant which may be @root */
2556 if (!pos)
2557 return css_leftmost_descendant(root);
574bd9f7 2558
bd8815a6
TH
2559 /* if we visited @root, we're done */
2560 if (pos == root)
2561 return NULL;
2562
574bd9f7 2563 /* if there's an unvisited sibling, visit its leftmost descendant */
492eb21b 2564 next = css_next_child(pos, css_parent(pos));
75501a6d 2565 if (next)
492eb21b 2566 return css_leftmost_descendant(next);
574bd9f7
TH
2567
2568 /* no sibling left, visit parent */
bd8815a6 2569 return css_parent(pos);
574bd9f7 2570}
574bd9f7 2571
0942eeee 2572/**
72ec7029 2573 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
2574 * @it: the iterator to advance
2575 *
2576 * Advance @it to the next css_set to walk.
d515876e 2577 */
72ec7029 2578static void css_advance_task_iter(struct css_task_iter *it)
d515876e
TH
2579{
2580 struct list_head *l = it->cset_link;
2581 struct cgrp_cset_link *link;
2582 struct css_set *cset;
2583
2584 /* Advance to the next non-empty css_set */
2585 do {
2586 l = l->next;
72ec7029 2587 if (l == &it->origin_css->cgroup->cset_links) {
d515876e
TH
2588 it->cset_link = NULL;
2589 return;
2590 }
2591 link = list_entry(l, struct cgrp_cset_link, cset_link);
2592 cset = link->cset;
2593 } while (list_empty(&cset->tasks));
2594 it->cset_link = l;
2595 it->task = cset->tasks.next;
2596}
2597
0942eeee 2598/**
72ec7029
TH
2599 * css_task_iter_start - initiate task iteration
2600 * @css: the css to walk tasks of
0942eeee
TH
2601 * @it: the task iterator to use
2602 *
72ec7029
TH
2603 * Initiate iteration through the tasks of @css. The caller can call
2604 * css_task_iter_next() to walk through the tasks until the function
2605 * returns NULL. On completion of iteration, css_task_iter_end() must be
2606 * called.
0942eeee
TH
2607 *
2608 * Note that this function acquires a lock which is released when the
2609 * iteration finishes. The caller can't sleep while iteration is in
2610 * progress.
2611 */
72ec7029
TH
2612void css_task_iter_start(struct cgroup_subsys_state *css,
2613 struct css_task_iter *it)
96d365e0 2614 __acquires(css_set_rwsem)
817929ec 2615{
56fde9e0
TH
2616 /* no one should try to iterate before mounting cgroups */
2617 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 2618
96d365e0 2619 down_read(&css_set_rwsem);
c59cd3d8 2620
72ec7029
TH
2621 it->origin_css = css;
2622 it->cset_link = &css->cgroup->cset_links;
c59cd3d8 2623
72ec7029 2624 css_advance_task_iter(it);
817929ec
PM
2625}
2626
0942eeee 2627/**
72ec7029 2628 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
2629 * @it: the task iterator being iterated
2630 *
2631 * The "next" function for task iteration. @it should have been
72ec7029
TH
2632 * initialized via css_task_iter_start(). Returns NULL when the iteration
2633 * reaches the end.
0942eeee 2634 */
72ec7029 2635struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
2636{
2637 struct task_struct *res;
2638 struct list_head *l = it->task;
69d0206c 2639 struct cgrp_cset_link *link;
817929ec
PM
2640
2641 /* If the iterator cg is NULL, we have no tasks */
69d0206c 2642 if (!it->cset_link)
817929ec
PM
2643 return NULL;
2644 res = list_entry(l, struct task_struct, cg_list);
2645 /* Advance iterator to find next entry */
2646 l = l->next;
69d0206c
TH
2647 link = list_entry(it->cset_link, struct cgrp_cset_link, cset_link);
2648 if (l == &link->cset->tasks) {
0942eeee
TH
2649 /*
2650 * We reached the end of this task list - move on to the
2651 * next cgrp_cset_link.
2652 */
72ec7029 2653 css_advance_task_iter(it);
817929ec
PM
2654 } else {
2655 it->task = l;
2656 }
2657 return res;
2658}
2659
0942eeee 2660/**
72ec7029 2661 * css_task_iter_end - finish task iteration
0942eeee
TH
2662 * @it: the task iterator to finish
2663 *
72ec7029 2664 * Finish task iteration started by css_task_iter_start().
0942eeee 2665 */
72ec7029 2666void css_task_iter_end(struct css_task_iter *it)
96d365e0 2667 __releases(css_set_rwsem)
817929ec 2668{
96d365e0 2669 up_read(&css_set_rwsem);
817929ec
PM
2670}
2671
8cc99345
TH
2672/**
2673 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
2674 * @to: cgroup to which the tasks will be moved
2675 * @from: cgroup in which the tasks currently reside
2676 */
2677int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
2678{
e406d1cf
TH
2679 struct css_task_iter it;
2680 struct task_struct *task;
2681 int ret = 0;
2682
2683 do {
2684 css_task_iter_start(&from->dummy_css, &it);
2685 task = css_task_iter_next(&it);
2686 if (task)
2687 get_task_struct(task);
2688 css_task_iter_end(&it);
2689
2690 if (task) {
2691 mutex_lock(&cgroup_mutex);
2692 ret = cgroup_attach_task(to, task, false);
2693 mutex_unlock(&cgroup_mutex);
2694 put_task_struct(task);
2695 }
2696 } while (task && !ret);
2697
2698 return ret;
8cc99345
TH
2699}
2700
bbcb81d0 2701/*
102a775e 2702 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2703 *
2704 * Reading this file can return large amounts of data if a cgroup has
2705 * *lots* of attached tasks. So it may need several calls to read(),
2706 * but we cannot guarantee that the information we produce is correct
2707 * unless we produce it entirely atomically.
2708 *
bbcb81d0 2709 */
bbcb81d0 2710
24528255
LZ
2711/* which pidlist file are we talking about? */
2712enum cgroup_filetype {
2713 CGROUP_FILE_PROCS,
2714 CGROUP_FILE_TASKS,
2715};
2716
2717/*
2718 * A pidlist is a list of pids that virtually represents the contents of one
2719 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
2720 * a pair (one each for procs, tasks) for each pid namespace that's relevant
2721 * to the cgroup.
2722 */
2723struct cgroup_pidlist {
2724 /*
2725 * used to find which pidlist is wanted. doesn't change as long as
2726 * this particular list stays in the list.
2727 */
2728 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
2729 /* array of xids */
2730 pid_t *list;
2731 /* how many elements the above list has */
2732 int length;
24528255
LZ
2733 /* each of these stored in a list by its cgroup */
2734 struct list_head links;
2735 /* pointer to the cgroup we belong to, for list removal purposes */
2736 struct cgroup *owner;
b1a21367
TH
2737 /* for delayed destruction */
2738 struct delayed_work destroy_dwork;
24528255
LZ
2739};
2740
d1d9fd33
BB
2741/*
2742 * The following two functions "fix" the issue where there are more pids
2743 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2744 * TODO: replace with a kernel-wide solution to this problem
2745 */
2746#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2747static void *pidlist_allocate(int count)
2748{
2749 if (PIDLIST_TOO_LARGE(count))
2750 return vmalloc(count * sizeof(pid_t));
2751 else
2752 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2753}
b1a21367 2754
d1d9fd33
BB
2755static void pidlist_free(void *p)
2756{
2757 if (is_vmalloc_addr(p))
2758 vfree(p);
2759 else
2760 kfree(p);
2761}
d1d9fd33 2762
b1a21367
TH
2763/*
2764 * Used to destroy all pidlists lingering waiting for destroy timer. None
2765 * should be left afterwards.
2766 */
2767static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
2768{
2769 struct cgroup_pidlist *l, *tmp_l;
2770
2771 mutex_lock(&cgrp->pidlist_mutex);
2772 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
2773 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
2774 mutex_unlock(&cgrp->pidlist_mutex);
2775
2776 flush_workqueue(cgroup_pidlist_destroy_wq);
2777 BUG_ON(!list_empty(&cgrp->pidlists));
2778}
2779
2780static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
2781{
2782 struct delayed_work *dwork = to_delayed_work(work);
2783 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
2784 destroy_dwork);
2785 struct cgroup_pidlist *tofree = NULL;
2786
2787 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
2788
2789 /*
04502365
TH
2790 * Destroy iff we didn't get queued again. The state won't change
2791 * as destroy_dwork can only be queued while locked.
b1a21367 2792 */
04502365 2793 if (!delayed_work_pending(dwork)) {
b1a21367
TH
2794 list_del(&l->links);
2795 pidlist_free(l->list);
2796 put_pid_ns(l->key.ns);
2797 tofree = l;
2798 }
2799
b1a21367
TH
2800 mutex_unlock(&l->owner->pidlist_mutex);
2801 kfree(tofree);
2802}
2803
bbcb81d0 2804/*
102a775e 2805 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 2806 * Returns the number of unique elements.
bbcb81d0 2807 */
6ee211ad 2808static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 2809{
102a775e 2810 int src, dest = 1;
102a775e
BB
2811
2812 /*
2813 * we presume the 0th element is unique, so i starts at 1. trivial
2814 * edge cases first; no work needs to be done for either
2815 */
2816 if (length == 0 || length == 1)
2817 return length;
2818 /* src and dest walk down the list; dest counts unique elements */
2819 for (src = 1; src < length; src++) {
2820 /* find next unique element */
2821 while (list[src] == list[src-1]) {
2822 src++;
2823 if (src == length)
2824 goto after;
2825 }
2826 /* dest always points to where the next unique element goes */
2827 list[dest] = list[src];
2828 dest++;
2829 }
2830after:
102a775e
BB
2831 return dest;
2832}
2833
afb2bc14
TH
2834/*
2835 * The two pid files - task and cgroup.procs - guaranteed that the result
2836 * is sorted, which forced this whole pidlist fiasco. As pid order is
2837 * different per namespace, each namespace needs differently sorted list,
2838 * making it impossible to use, for example, single rbtree of member tasks
2839 * sorted by task pointer. As pidlists can be fairly large, allocating one
2840 * per open file is dangerous, so cgroup had to implement shared pool of
2841 * pidlists keyed by cgroup and namespace.
2842 *
2843 * All this extra complexity was caused by the original implementation
2844 * committing to an entirely unnecessary property. In the long term, we
2845 * want to do away with it. Explicitly scramble sort order if
2846 * sane_behavior so that no such expectation exists in the new interface.
2847 *
2848 * Scrambling is done by swapping every two consecutive bits, which is
2849 * non-identity one-to-one mapping which disturbs sort order sufficiently.
2850 */
2851static pid_t pid_fry(pid_t pid)
2852{
2853 unsigned a = pid & 0x55555555;
2854 unsigned b = pid & 0xAAAAAAAA;
2855
2856 return (a << 1) | (b >> 1);
2857}
2858
2859static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
2860{
2861 if (cgroup_sane_behavior(cgrp))
2862 return pid_fry(pid);
2863 else
2864 return pid;
2865}
2866
102a775e
BB
2867static int cmppid(const void *a, const void *b)
2868{
2869 return *(pid_t *)a - *(pid_t *)b;
2870}
2871
afb2bc14
TH
2872static int fried_cmppid(const void *a, const void *b)
2873{
2874 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
2875}
2876
e6b81710
TH
2877static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2878 enum cgroup_filetype type)
2879{
2880 struct cgroup_pidlist *l;
2881 /* don't need task_nsproxy() if we're looking at ourself */
2882 struct pid_namespace *ns = task_active_pid_ns(current);
2883
2884 lockdep_assert_held(&cgrp->pidlist_mutex);
2885
2886 list_for_each_entry(l, &cgrp->pidlists, links)
2887 if (l->key.type == type && l->key.ns == ns)
2888 return l;
2889 return NULL;
2890}
2891
72a8cb30
BB
2892/*
2893 * find the appropriate pidlist for our purpose (given procs vs tasks)
2894 * returns with the lock on that pidlist already held, and takes care
2895 * of the use count, or returns NULL with no locks held if we're out of
2896 * memory.
2897 */
e6b81710
TH
2898static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
2899 enum cgroup_filetype type)
72a8cb30
BB
2900{
2901 struct cgroup_pidlist *l;
b70cc5fd 2902
e6b81710
TH
2903 lockdep_assert_held(&cgrp->pidlist_mutex);
2904
2905 l = cgroup_pidlist_find(cgrp, type);
2906 if (l)
2907 return l;
2908
72a8cb30 2909 /* entry not found; create a new one */
f4f4be2b 2910 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 2911 if (!l)
72a8cb30 2912 return l;
e6b81710 2913
b1a21367 2914 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 2915 l->key.type = type;
e6b81710
TH
2916 /* don't need task_nsproxy() if we're looking at ourself */
2917 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
2918 l->owner = cgrp;
2919 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
2920 return l;
2921}
2922
102a775e
BB
2923/*
2924 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2925 */
72a8cb30
BB
2926static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2927 struct cgroup_pidlist **lp)
102a775e
BB
2928{
2929 pid_t *array;
2930 int length;
2931 int pid, n = 0; /* used for populating the array */
72ec7029 2932 struct css_task_iter it;
817929ec 2933 struct task_struct *tsk;
102a775e
BB
2934 struct cgroup_pidlist *l;
2935
4bac00d1
TH
2936 lockdep_assert_held(&cgrp->pidlist_mutex);
2937
102a775e
BB
2938 /*
2939 * If cgroup gets more users after we read count, we won't have
2940 * enough space - tough. This race is indistinguishable to the
2941 * caller from the case that the additional cgroup users didn't
2942 * show up until sometime later on.
2943 */
2944 length = cgroup_task_count(cgrp);
d1d9fd33 2945 array = pidlist_allocate(length);
102a775e
BB
2946 if (!array)
2947 return -ENOMEM;
2948 /* now, populate the array */
72ec7029
TH
2949 css_task_iter_start(&cgrp->dummy_css, &it);
2950 while ((tsk = css_task_iter_next(&it))) {
102a775e 2951 if (unlikely(n == length))
817929ec 2952 break;
102a775e 2953 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2954 if (type == CGROUP_FILE_PROCS)
2955 pid = task_tgid_vnr(tsk);
2956 else
2957 pid = task_pid_vnr(tsk);
102a775e
BB
2958 if (pid > 0) /* make sure to only use valid results */
2959 array[n++] = pid;
817929ec 2960 }
72ec7029 2961 css_task_iter_end(&it);
102a775e
BB
2962 length = n;
2963 /* now sort & (if procs) strip out duplicates */
afb2bc14
TH
2964 if (cgroup_sane_behavior(cgrp))
2965 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
2966 else
2967 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2968 if (type == CGROUP_FILE_PROCS)
6ee211ad 2969 length = pidlist_uniq(array, length);
e6b81710 2970
e6b81710 2971 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 2972 if (!l) {
e6b81710 2973 mutex_unlock(&cgrp->pidlist_mutex);
d1d9fd33 2974 pidlist_free(array);
72a8cb30 2975 return -ENOMEM;
102a775e 2976 }
e6b81710
TH
2977
2978 /* store array, freeing old if necessary */
d1d9fd33 2979 pidlist_free(l->list);
102a775e
BB
2980 l->list = array;
2981 l->length = length;
72a8cb30 2982 *lp = l;
102a775e 2983 return 0;
bbcb81d0
PM
2984}
2985
846c7bb0 2986/**
a043e3b2 2987 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2988 * @stats: cgroupstats to fill information into
2989 * @dentry: A dentry entry belonging to the cgroup for which stats have
2990 * been requested.
a043e3b2
LZ
2991 *
2992 * Build and fill cgroupstats so that taskstats can export it to user
2993 * space.
846c7bb0
BS
2994 */
2995int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2996{
2bd59d48 2997 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 2998 struct cgroup *cgrp;
72ec7029 2999 struct css_task_iter it;
846c7bb0 3000 struct task_struct *tsk;
33d283be 3001
2bd59d48
TH
3002 /* it should be kernfs_node belonging to cgroupfs and is a directory */
3003 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
3004 kernfs_type(kn) != KERNFS_DIR)
3005 return -EINVAL;
3006
bad34660
LZ
3007 mutex_lock(&cgroup_mutex);
3008
846c7bb0 3009 /*
2bd59d48
TH
3010 * We aren't being called from kernfs and there's no guarantee on
3011 * @kn->priv's validity. For this and css_tryget_from_dir(),
3012 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 3013 */
2bd59d48
TH
3014 rcu_read_lock();
3015 cgrp = rcu_dereference(kn->priv);
bad34660 3016 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 3017 rcu_read_unlock();
bad34660 3018 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
3019 return -ENOENT;
3020 }
bad34660 3021 rcu_read_unlock();
846c7bb0 3022
72ec7029
TH
3023 css_task_iter_start(&cgrp->dummy_css, &it);
3024 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
3025 switch (tsk->state) {
3026 case TASK_RUNNING:
3027 stats->nr_running++;
3028 break;
3029 case TASK_INTERRUPTIBLE:
3030 stats->nr_sleeping++;
3031 break;
3032 case TASK_UNINTERRUPTIBLE:
3033 stats->nr_uninterruptible++;
3034 break;
3035 case TASK_STOPPED:
3036 stats->nr_stopped++;
3037 break;
3038 default:
3039 if (delayacct_is_task_waiting_on_io(tsk))
3040 stats->nr_io_wait++;
3041 break;
3042 }
3043 }
72ec7029 3044 css_task_iter_end(&it);
846c7bb0 3045
bad34660 3046 mutex_unlock(&cgroup_mutex);
2bd59d48 3047 return 0;
846c7bb0
BS
3048}
3049
8f3ff208 3050
bbcb81d0 3051/*
102a775e 3052 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 3053 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 3054 * in the cgroup->l->list array.
bbcb81d0 3055 */
cc31edce 3056
102a775e 3057static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 3058{
cc31edce
PM
3059 /*
3060 * Initially we receive a position value that corresponds to
3061 * one more than the last pid shown (or 0 on the first call or
3062 * after a seek to the start). Use a binary-search to find the
3063 * next pid to display, if any
3064 */
2bd59d48 3065 struct kernfs_open_file *of = s->private;
7da11279 3066 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 3067 struct cgroup_pidlist *l;
7da11279 3068 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 3069 int index = 0, pid = *pos;
4bac00d1
TH
3070 int *iter, ret;
3071
3072 mutex_lock(&cgrp->pidlist_mutex);
3073
3074 /*
5d22444f 3075 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 3076 * after open. If the matching pidlist is around, we can use that.
5d22444f 3077 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
3078 * could already have been destroyed.
3079 */
5d22444f
TH
3080 if (of->priv)
3081 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
3082
3083 /*
3084 * Either this is the first start() after open or the matching
3085 * pidlist has been destroyed inbetween. Create a new one.
3086 */
5d22444f
TH
3087 if (!of->priv) {
3088 ret = pidlist_array_load(cgrp, type,
3089 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
3090 if (ret)
3091 return ERR_PTR(ret);
3092 }
5d22444f 3093 l = of->priv;
cc31edce 3094
cc31edce 3095 if (pid) {
102a775e 3096 int end = l->length;
20777766 3097
cc31edce
PM
3098 while (index < end) {
3099 int mid = (index + end) / 2;
afb2bc14 3100 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
3101 index = mid;
3102 break;
afb2bc14 3103 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
3104 index = mid + 1;
3105 else
3106 end = mid;
3107 }
3108 }
3109 /* If we're off the end of the array, we're done */
102a775e 3110 if (index >= l->length)
cc31edce
PM
3111 return NULL;
3112 /* Update the abstract position to be the actual pid that we found */
102a775e 3113 iter = l->list + index;
afb2bc14 3114 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
3115 return iter;
3116}
3117
102a775e 3118static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 3119{
2bd59d48 3120 struct kernfs_open_file *of = s->private;
5d22444f 3121 struct cgroup_pidlist *l = of->priv;
62236858 3122
5d22444f
TH
3123 if (l)
3124 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 3125 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 3126 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
3127}
3128
102a775e 3129static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 3130{
2bd59d48 3131 struct kernfs_open_file *of = s->private;
5d22444f 3132 struct cgroup_pidlist *l = of->priv;
102a775e
BB
3133 pid_t *p = v;
3134 pid_t *end = l->list + l->length;
cc31edce
PM
3135 /*
3136 * Advance to the next pid in the array. If this goes off the
3137 * end, we're done
3138 */
3139 p++;
3140 if (p >= end) {
3141 return NULL;
3142 } else {
7da11279 3143 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
3144 return p;
3145 }
3146}
3147
102a775e 3148static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
3149{
3150 return seq_printf(s, "%d\n", *(int *)v);
3151}
bbcb81d0 3152
102a775e
BB
3153/*
3154 * seq_operations functions for iterating on pidlists through seq_file -
3155 * independent of whether it's tasks or procs
3156 */
3157static const struct seq_operations cgroup_pidlist_seq_operations = {
3158 .start = cgroup_pidlist_start,
3159 .stop = cgroup_pidlist_stop,
3160 .next = cgroup_pidlist_next,
3161 .show = cgroup_pidlist_show,
cc31edce
PM
3162};
3163
182446d0
TH
3164static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
3165 struct cftype *cft)
81a6a5cd 3166{
182446d0 3167 return notify_on_release(css->cgroup);
81a6a5cd
PM
3168}
3169
182446d0
TH
3170static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
3171 struct cftype *cft, u64 val)
6379c106 3172{
182446d0 3173 clear_bit(CGRP_RELEASABLE, &css->cgroup->flags);
6379c106 3174 if (val)
182446d0 3175 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 3176 else
182446d0 3177 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
3178 return 0;
3179}
3180
182446d0
TH
3181static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
3182 struct cftype *cft)
97978e6d 3183{
182446d0 3184 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3185}
3186
182446d0
TH
3187static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
3188 struct cftype *cft, u64 val)
97978e6d
DL
3189{
3190 if (val)
182446d0 3191 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 3192 else
182446d0 3193 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
3194 return 0;
3195}
3196
d5c56ced 3197static struct cftype cgroup_base_files[] = {
81a6a5cd 3198 {
d5c56ced 3199 .name = "cgroup.procs",
6612f05b
TH
3200 .seq_start = cgroup_pidlist_start,
3201 .seq_next = cgroup_pidlist_next,
3202 .seq_stop = cgroup_pidlist_stop,
3203 .seq_show = cgroup_pidlist_show,
5d22444f 3204 .private = CGROUP_FILE_PROCS,
74a1166d 3205 .write_u64 = cgroup_procs_write,
74a1166d 3206 .mode = S_IRUGO | S_IWUSR,
102a775e 3207 },
97978e6d
DL
3208 {
3209 .name = "cgroup.clone_children",
873fe09e 3210 .flags = CFTYPE_INSANE,
97978e6d
DL
3211 .read_u64 = cgroup_clone_children_read,
3212 .write_u64 = cgroup_clone_children_write,
3213 },
873fe09e
TH
3214 {
3215 .name = "cgroup.sane_behavior",
3216 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 3217 .seq_show = cgroup_sane_behavior_show,
873fe09e 3218 },
d5c56ced
TH
3219
3220 /*
3221 * Historical crazy stuff. These don't have "cgroup." prefix and
3222 * don't exist if sane_behavior. If you're depending on these, be
3223 * prepared to be burned.
3224 */
3225 {
3226 .name = "tasks",
3227 .flags = CFTYPE_INSANE, /* use "procs" instead */
6612f05b
TH
3228 .seq_start = cgroup_pidlist_start,
3229 .seq_next = cgroup_pidlist_next,
3230 .seq_stop = cgroup_pidlist_stop,
3231 .seq_show = cgroup_pidlist_show,
5d22444f 3232 .private = CGROUP_FILE_TASKS,
d5c56ced 3233 .write_u64 = cgroup_tasks_write,
d5c56ced
TH
3234 .mode = S_IRUGO | S_IWUSR,
3235 },
3236 {
3237 .name = "notify_on_release",
3238 .flags = CFTYPE_INSANE,
3239 .read_u64 = cgroup_read_notify_on_release,
3240 .write_u64 = cgroup_write_notify_on_release,
3241 },
6e6ff25b
TH
3242 {
3243 .name = "release_agent",
cc5943a7 3244 .flags = CFTYPE_INSANE | CFTYPE_ONLY_ON_ROOT,
2da8ca82 3245 .seq_show = cgroup_release_agent_show,
6e6ff25b 3246 .write_string = cgroup_release_agent_write,
5f469907 3247 .max_write_len = PATH_MAX - 1,
6e6ff25b 3248 },
db0416b6 3249 { } /* terminate */
bbcb81d0
PM
3250};
3251
13af07df 3252/**
628f7cd4 3253 * cgroup_populate_dir - create subsys files in a cgroup directory
13af07df 3254 * @cgrp: target cgroup
13af07df 3255 * @subsys_mask: mask of the subsystem ids whose files should be added
bee55099
TH
3256 *
3257 * On failure, no file is added.
13af07df 3258 */
628f7cd4 3259static int cgroup_populate_dir(struct cgroup *cgrp, unsigned long subsys_mask)
ddbcc7e8 3260{
ddbcc7e8 3261 struct cgroup_subsys *ss;
b420ba7d 3262 int i, ret = 0;
bbcb81d0 3263
8e3f6541 3264 /* process cftsets of each subsystem */
b420ba7d 3265 for_each_subsys(ss, i) {
0adb0704 3266 struct cftype *cfts;
b420ba7d
TH
3267
3268 if (!test_bit(i, &subsys_mask))
13af07df 3269 continue;
8e3f6541 3270
0adb0704
TH
3271 list_for_each_entry(cfts, &ss->cfts, node) {
3272 ret = cgroup_addrm_files(cgrp, cfts, true);
bee55099
TH
3273 if (ret < 0)
3274 goto err;
3275 }
ddbcc7e8 3276 }
ddbcc7e8 3277 return 0;
bee55099
TH
3278err:
3279 cgroup_clear_dir(cgrp, subsys_mask);
3280 return ret;
ddbcc7e8
PM
3281}
3282
0c21ead1
TH
3283/*
3284 * css destruction is four-stage process.
3285 *
3286 * 1. Destruction starts. Killing of the percpu_ref is initiated.
3287 * Implemented in kill_css().
3288 *
3289 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
3290 * and thus css_tryget() is guaranteed to fail, the css can be offlined
3291 * by invoking offline_css(). After offlining, the base ref is put.
3292 * Implemented in css_killed_work_fn().
3293 *
3294 * 3. When the percpu_ref reaches zero, the only possible remaining
3295 * accessors are inside RCU read sections. css_release() schedules the
3296 * RCU callback.
3297 *
3298 * 4. After the grace period, the css can be freed. Implemented in
3299 * css_free_work_fn().
3300 *
3301 * It is actually hairier because both step 2 and 4 require process context
3302 * and thus involve punting to css->destroy_work adding two additional
3303 * steps to the already complex sequence.
3304 */
35ef10da 3305static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
3306{
3307 struct cgroup_subsys_state *css =
35ef10da 3308 container_of(work, struct cgroup_subsys_state, destroy_work);
0c21ead1 3309 struct cgroup *cgrp = css->cgroup;
48ddbe19 3310
0ae78e0b
TH
3311 if (css->parent)
3312 css_put(css->parent);
3313
0c21ead1 3314 css->ss->css_free(css);
2bd59d48 3315 cgroup_put(cgrp);
48ddbe19
TH
3316}
3317
0c21ead1 3318static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
3319{
3320 struct cgroup_subsys_state *css =
0c21ead1 3321 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 3322
35ef10da 3323 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 3324 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
3325}
3326
d3daf28d
TH
3327static void css_release(struct percpu_ref *ref)
3328{
3329 struct cgroup_subsys_state *css =
3330 container_of(ref, struct cgroup_subsys_state, refcnt);
3331
aec25020 3332 rcu_assign_pointer(css->cgroup->subsys[css->ss->id], NULL);
0c21ead1 3333 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
3334}
3335
623f926b
TH
3336static void init_css(struct cgroup_subsys_state *css, struct cgroup_subsys *ss,
3337 struct cgroup *cgrp)
ddbcc7e8 3338{
bd89aabc 3339 css->cgroup = cgrp;
72c97e54 3340 css->ss = ss;
ddbcc7e8 3341 css->flags = 0;
0ae78e0b
TH
3342
3343 if (cgrp->parent)
ca8bdcaf 3344 css->parent = cgroup_css(cgrp->parent, ss);
0ae78e0b 3345 else
38b53aba 3346 css->flags |= CSS_ROOT;
48ddbe19 3347
ca8bdcaf 3348 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
3349}
3350
2a4ac633 3351/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 3352static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 3353{
623f926b 3354 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
3355 int ret = 0;
3356
ace2bee8 3357 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3358 lockdep_assert_held(&cgroup_mutex);
3359
92fb9748 3360 if (ss->css_online)
eb95419b 3361 ret = ss->css_online(css);
ae7f164a 3362 if (!ret) {
eb95419b 3363 css->flags |= CSS_ONLINE;
f20104de 3364 css->cgroup->nr_css++;
aec25020 3365 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 3366 }
b1929db4 3367 return ret;
a31f2d3f
TH
3368}
3369
2a4ac633 3370/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 3371static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 3372{
623f926b 3373 struct cgroup_subsys *ss = css->ss;
a31f2d3f 3374
ace2bee8 3375 lockdep_assert_held(&cgroup_tree_mutex);
a31f2d3f
TH
3376 lockdep_assert_held(&cgroup_mutex);
3377
3378 if (!(css->flags & CSS_ONLINE))
3379 return;
3380
d7eeac19 3381 if (ss->css_offline)
eb95419b 3382 ss->css_offline(css);
a31f2d3f 3383
eb95419b 3384 css->flags &= ~CSS_ONLINE;
09a503ea 3385 css->cgroup->nr_css--;
aec25020 3386 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], css);
a31f2d3f
TH
3387}
3388
c81c925a
TH
3389/**
3390 * create_css - create a cgroup_subsys_state
3391 * @cgrp: the cgroup new css will be associated with
3392 * @ss: the subsys of new css
3393 *
3394 * Create a new css associated with @cgrp - @ss pair. On success, the new
3395 * css is online and installed in @cgrp with all interface files created.
3396 * Returns 0 on success, -errno on failure.
3397 */
3398static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss)
3399{
3400 struct cgroup *parent = cgrp->parent;
3401 struct cgroup_subsys_state *css;
3402 int err;
3403
c81c925a
TH
3404 lockdep_assert_held(&cgroup_mutex);
3405
3406 css = ss->css_alloc(cgroup_css(parent, ss));
3407 if (IS_ERR(css))
3408 return PTR_ERR(css);
3409
3410 err = percpu_ref_init(&css->refcnt, css_release);
3411 if (err)
3412 goto err_free;
3413
3414 init_css(css, ss, cgrp);
3415
aec25020 3416 err = cgroup_populate_dir(cgrp, 1 << ss->id);
c81c925a
TH
3417 if (err)
3418 goto err_free;
3419
3420 err = online_css(css);
3421 if (err)
3422 goto err_free;
3423
59f5296b 3424 cgroup_get(cgrp);
c81c925a
TH
3425 css_get(css->parent);
3426
3427 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
3428 parent->parent) {
3429 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
3430 current->comm, current->pid, ss->name);
3431 if (!strcmp(ss->name, "memory"))
3432 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
3433 ss->warned_broken_hierarchy = true;
3434 }
3435
3436 return 0;
3437
3438err_free:
3439 percpu_ref_cancel_init(&css->refcnt);
3440 ss->css_free(css);
3441 return err;
3442}
3443
2bd59d48 3444/**
a043e3b2
LZ
3445 * cgroup_create - create a cgroup
3446 * @parent: cgroup that will be parent of the new cgroup
e61734c5 3447 * @name: name of the new cgroup
2bd59d48 3448 * @mode: mode to set on new cgroup
ddbcc7e8 3449 */
e61734c5 3450static long cgroup_create(struct cgroup *parent, const char *name,
2bd59d48 3451 umode_t mode)
ddbcc7e8 3452{
bd89aabc 3453 struct cgroup *cgrp;
ddbcc7e8 3454 struct cgroupfs_root *root = parent->root;
b58c8998 3455 int ssid, err;
ddbcc7e8 3456 struct cgroup_subsys *ss;
2bd59d48 3457 struct kernfs_node *kn;
ddbcc7e8 3458
0a950f65 3459 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc
PM
3460 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3461 if (!cgrp)
ddbcc7e8
PM
3462 return -ENOMEM;
3463
ace2bee8
TH
3464 mutex_lock(&cgroup_tree_mutex);
3465
976c06bc
TH
3466 /*
3467 * Only live parents can have children. Note that the liveliness
3468 * check isn't strictly necessary because cgroup_mkdir() and
3469 * cgroup_rmdir() are fully synchronized by i_mutex; however, do it
3470 * anyway so that locking is contained inside cgroup proper and we
3471 * don't get nasty surprises if we ever grow another caller.
3472 */
3473 if (!cgroup_lock_live_group(parent)) {
3474 err = -ENODEV;
ace2bee8 3475 goto err_unlock_tree;
0ab02ca8
LZ
3476 }
3477
3478 /*
3479 * Temporarily set the pointer to NULL, so idr_find() won't return
3480 * a half-baked cgroup.
3481 */
3482 cgrp->id = idr_alloc(&root->cgroup_idr, NULL, 1, 0, GFP_KERNEL);
3483 if (cgrp->id < 0) {
3484 err = -ENOMEM;
3485 goto err_unlock;
976c06bc
TH
3486 }
3487
cc31edce 3488 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3489
bd89aabc 3490 cgrp->parent = parent;
0ae78e0b 3491 cgrp->dummy_css.parent = &parent->dummy_css;
bd89aabc 3492 cgrp->root = parent->root;
ddbcc7e8 3493
b6abdb0e
LZ
3494 if (notify_on_release(parent))
3495 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3496
2260e7fc
TH
3497 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
3498 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 3499
2bd59d48 3500 /* create the directory */
e61734c5 3501 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48
TH
3502 if (IS_ERR(kn)) {
3503 err = PTR_ERR(kn);
0ab02ca8 3504 goto err_free_id;
2bd59d48
TH
3505 }
3506 cgrp->kn = kn;
ddbcc7e8 3507
6f30558f
TH
3508 /*
3509 * This extra ref will be put in cgroup_free_fn() and guarantees
3510 * that @cgrp->kn is always accessible.
3511 */
3512 kernfs_get(kn);
3513
00356bd5 3514 cgrp->serial_nr = cgroup_serial_nr_next++;
53fa5261 3515
4e139afc 3516 /* allocation complete, commit to creation */
4e139afc 3517 list_add_tail_rcu(&cgrp->sibling, &cgrp->parent->children);
3c9c825b 3518 atomic_inc(&root->nr_cgrps);
59f5296b 3519 cgroup_get(parent);
415cf07a 3520
0d80255e
TH
3521 /*
3522 * @cgrp is now fully operational. If something fails after this
3523 * point, it'll be released via the normal destruction path.
3524 */
4e96ee8e
LZ
3525 idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
3526
2bb566cb 3527 err = cgroup_addrm_files(cgrp, cgroup_base_files, true);
628f7cd4
TH
3528 if (err)
3529 goto err_destroy;
3530
9d403e99 3531 /* let's create and online css's */
b85d2040
TH
3532 for_each_subsys(ss, ssid) {
3533 if (root->subsys_mask & (1 << ssid)) {
3534 err = create_css(cgrp, ss);
3535 if (err)
3536 goto err_destroy;
3537 }
a8638030 3538 }
ddbcc7e8 3539
2bd59d48
TH
3540 kernfs_activate(kn);
3541
ddbcc7e8 3542 mutex_unlock(&cgroup_mutex);
ace2bee8 3543 mutex_unlock(&cgroup_tree_mutex);
ddbcc7e8
PM
3544
3545 return 0;
3546
0a950f65 3547err_free_id:
4e96ee8e 3548 idr_remove(&root->cgroup_idr, cgrp->id);
0ab02ca8
LZ
3549err_unlock:
3550 mutex_unlock(&cgroup_mutex);
ace2bee8
TH
3551err_unlock_tree:
3552 mutex_unlock(&cgroup_tree_mutex);
bd89aabc 3553 kfree(cgrp);
ddbcc7e8 3554 return err;
4b8b47eb
TH
3555
3556err_destroy:
3557 cgroup_destroy_locked(cgrp);
3558 mutex_unlock(&cgroup_mutex);
ace2bee8 3559 mutex_unlock(&cgroup_tree_mutex);
4b8b47eb 3560 return err;
ddbcc7e8
PM
3561}
3562
2bd59d48
TH
3563static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
3564 umode_t mode)
ddbcc7e8 3565{
2bd59d48 3566 struct cgroup *parent = parent_kn->priv;
ddbcc7e8 3567
2bd59d48 3568 return cgroup_create(parent, name, mode);
ddbcc7e8
PM
3569}
3570
223dbc38
TH
3571/*
3572 * This is called when the refcnt of a css is confirmed to be killed.
3573 * css_tryget() is now guaranteed to fail.
3574 */
3575static void css_killed_work_fn(struct work_struct *work)
d3daf28d 3576{
223dbc38
TH
3577 struct cgroup_subsys_state *css =
3578 container_of(work, struct cgroup_subsys_state, destroy_work);
3579 struct cgroup *cgrp = css->cgroup;
d3daf28d 3580
ace2bee8 3581 mutex_lock(&cgroup_tree_mutex);
f20104de
TH
3582 mutex_lock(&cgroup_mutex);
3583
09a503ea
TH
3584 /*
3585 * css_tryget() is guaranteed to fail now. Tell subsystems to
3586 * initate destruction.
3587 */
3588 offline_css(css);
3589
f20104de
TH
3590 /*
3591 * If @cgrp is marked dead, it's waiting for refs of all css's to
3592 * be disabled before proceeding to the second phase of cgroup
3593 * destruction. If we are the last one, kick it off.
3594 */
09a503ea 3595 if (!cgrp->nr_css && cgroup_is_dead(cgrp))
f20104de
TH
3596 cgroup_destroy_css_killed(cgrp);
3597
3598 mutex_unlock(&cgroup_mutex);
ace2bee8 3599 mutex_unlock(&cgroup_tree_mutex);
09a503ea
TH
3600
3601 /*
3602 * Put the css refs from kill_css(). Each css holds an extra
3603 * reference to the cgroup's dentry and cgroup removal proceeds
3604 * regardless of css refs. On the last put of each css, whenever
3605 * that may be, the extra dentry ref is put so that dentry
3606 * destruction happens only after all css's are released.
3607 */
3608 css_put(css);
d3daf28d
TH
3609}
3610
223dbc38
TH
3611/* css kill confirmation processing requires process context, bounce */
3612static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
3613{
3614 struct cgroup_subsys_state *css =
3615 container_of(ref, struct cgroup_subsys_state, refcnt);
3616
223dbc38 3617 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 3618 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
3619}
3620
edae0c33
TH
3621/**
3622 * kill_css - destroy a css
3623 * @css: css to destroy
3624 *
3c14f8b4
TH
3625 * This function initiates destruction of @css by removing cgroup interface
3626 * files and putting its base reference. ->css_offline() will be invoked
3627 * asynchronously once css_tryget() is guaranteed to fail and when the
3628 * reference count reaches zero, @css will be released.
edae0c33
TH
3629 */
3630static void kill_css(struct cgroup_subsys_state *css)
3631{
2bd59d48
TH
3632 /*
3633 * This must happen before css is disassociated with its cgroup.
3634 * See seq_css() for details.
3635 */
aec25020 3636 cgroup_clear_dir(css->cgroup, 1 << css->ss->id);
3c14f8b4 3637
edae0c33
TH
3638 /*
3639 * Killing would put the base ref, but we need to keep it alive
3640 * until after ->css_offline().
3641 */
3642 css_get(css);
3643
3644 /*
3645 * cgroup core guarantees that, by the time ->css_offline() is
3646 * invoked, no new css reference will be given out via
3647 * css_tryget(). We can't simply call percpu_ref_kill() and
3648 * proceed to offlining css's because percpu_ref_kill() doesn't
3649 * guarantee that the ref is seen as killed on all CPUs on return.
3650 *
3651 * Use percpu_ref_kill_and_confirm() to get notifications as each
3652 * css is confirmed to be seen as killed on all CPUs.
3653 */
3654 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
3655}
3656
3657/**
3658 * cgroup_destroy_locked - the first stage of cgroup destruction
3659 * @cgrp: cgroup to be destroyed
3660 *
3661 * css's make use of percpu refcnts whose killing latency shouldn't be
3662 * exposed to userland and are RCU protected. Also, cgroup core needs to
3663 * guarantee that css_tryget() won't succeed by the time ->css_offline() is
3664 * invoked. To satisfy all the requirements, destruction is implemented in
3665 * the following two steps.
3666 *
3667 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
3668 * userland visible parts and start killing the percpu refcnts of
3669 * css's. Set up so that the next stage will be kicked off once all
3670 * the percpu refcnts are confirmed to be killed.
3671 *
3672 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
3673 * rest of destruction. Once all cgroup references are gone, the
3674 * cgroup is RCU-freed.
3675 *
3676 * This function implements s1. After this step, @cgrp is gone as far as
3677 * the userland is concerned and a new cgroup with the same name may be
3678 * created. As cgroup doesn't care about the names internally, this
3679 * doesn't cause any problem.
3680 */
42809dd4
TH
3681static int cgroup_destroy_locked(struct cgroup *cgrp)
3682 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 3683{
bb78a92f 3684 struct cgroup *child;
2bd59d48 3685 struct cgroup_subsys_state *css;
ddd69148 3686 bool empty;
1c6727af 3687 int ssid;
ddbcc7e8 3688
ace2bee8 3689 lockdep_assert_held(&cgroup_tree_mutex);
42809dd4
TH
3690 lockdep_assert_held(&cgroup_mutex);
3691
ddd69148 3692 /*
96d365e0 3693 * css_set_rwsem synchronizes access to ->cset_links and prevents
89c5509b 3694 * @cgrp from being removed while put_css_set() is in progress.
ddd69148 3695 */
96d365e0 3696 down_read(&css_set_rwsem);
bb78a92f 3697 empty = list_empty(&cgrp->cset_links);
96d365e0 3698 up_read(&css_set_rwsem);
ddd69148 3699 if (!empty)
ddbcc7e8 3700 return -EBUSY;
a043e3b2 3701
bb78a92f
HD
3702 /*
3703 * Make sure there's no live children. We can't test ->children
3704 * emptiness as dead children linger on it while being destroyed;
3705 * otherwise, "rmdir parent/child parent" may fail with -EBUSY.
3706 */
3707 empty = true;
3708 rcu_read_lock();
3709 list_for_each_entry_rcu(child, &cgrp->children, sibling) {
3710 empty = cgroup_is_dead(child);
3711 if (!empty)
3712 break;
3713 }
3714 rcu_read_unlock();
3715 if (!empty)
3716 return -EBUSY;
3717
88703267 3718 /*
edae0c33
TH
3719 * Initiate massacre of all css's. cgroup_destroy_css_killed()
3720 * will be invoked to perform the rest of destruction once the
4ac06017
TH
3721 * percpu refs of all css's are confirmed to be killed. This
3722 * involves removing the subsystem's files, drop cgroup_mutex.
88703267 3723 */
4ac06017 3724 mutex_unlock(&cgroup_mutex);
1c6727af
TH
3725 for_each_css(css, ssid, cgrp)
3726 kill_css(css);
4ac06017 3727 mutex_lock(&cgroup_mutex);
455050d2
TH
3728
3729 /*
3730 * Mark @cgrp dead. This prevents further task migration and child
3731 * creation by disabling cgroup_lock_live_group(). Note that
492eb21b 3732 * CGRP_DEAD assertion is depended upon by css_next_child() to
455050d2 3733 * resume iteration after dropping RCU read lock. See
492eb21b 3734 * css_next_child() for details.
455050d2 3735 */
54766d4a 3736 set_bit(CGRP_DEAD, &cgrp->flags);
ddbcc7e8 3737
455050d2
TH
3738 /* CGRP_DEAD is set, remove from ->release_list for the last time */
3739 raw_spin_lock(&release_list_lock);
3740 if (!list_empty(&cgrp->release_list))
3741 list_del_init(&cgrp->release_list);
3742 raw_spin_unlock(&release_list_lock);
3743
3744 /*
f20104de
TH
3745 * If @cgrp has css's attached, the second stage of cgroup
3746 * destruction is kicked off from css_killed_work_fn() after the
3747 * refs of all attached css's are killed. If @cgrp doesn't have
3748 * any css, we kick it off here.
3749 */
3750 if (!cgrp->nr_css)
3751 cgroup_destroy_css_killed(cgrp);
3752
2bd59d48
TH
3753 /* remove @cgrp directory along with the base files */
3754 mutex_unlock(&cgroup_mutex);
3755
455050d2 3756 /*
2bd59d48
TH
3757 * There are two control paths which try to determine cgroup from
3758 * dentry without going through kernfs - cgroupstats_build() and
3759 * css_tryget_from_dir(). Those are supported by RCU protecting
3760 * clearing of cgrp->kn->priv backpointer, which should happen
3761 * after all files under it have been removed.
455050d2 3762 */
6f30558f 3763 kernfs_remove(cgrp->kn); /* @cgrp has an extra ref on its kn */
2bd59d48 3764 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
2bd59d48 3765
4ac06017 3766 mutex_lock(&cgroup_mutex);
455050d2 3767
ea15f8cc
TH
3768 return 0;
3769};
3770
d3daf28d 3771/**
f20104de 3772 * cgroup_destroy_css_killed - the second step of cgroup destruction
d3daf28d
TH
3773 * @work: cgroup->destroy_free_work
3774 *
3775 * This function is invoked from a work item for a cgroup which is being
09a503ea
TH
3776 * destroyed after all css's are offlined and performs the rest of
3777 * destruction. This is the second step of destruction described in the
3778 * comment above cgroup_destroy_locked().
d3daf28d 3779 */
f20104de 3780static void cgroup_destroy_css_killed(struct cgroup *cgrp)
ea15f8cc 3781{
ea15f8cc 3782 struct cgroup *parent = cgrp->parent;
ea15f8cc 3783
ace2bee8 3784 lockdep_assert_held(&cgroup_tree_mutex);
f20104de 3785 lockdep_assert_held(&cgroup_mutex);
ea15f8cc 3786
999cd8a4 3787 /* delete this cgroup from parent->children */
eb6fd504 3788 list_del_rcu(&cgrp->sibling);
ed957793 3789
59f5296b 3790 cgroup_put(cgrp);
ddbcc7e8 3791
bd89aabc 3792 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd 3793 check_for_release(parent);
ddbcc7e8
PM
3794}
3795
2bd59d48 3796static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 3797{
2bd59d48
TH
3798 struct cgroup *cgrp = kn->priv;
3799 int ret = 0;
3800
3801 /*
3802 * This is self-destruction but @kn can't be removed while this
3803 * callback is in progress. Let's break active protection. Once
3804 * the protection is broken, @cgrp can be destroyed at any point.
3805 * Pin it so that it stays accessible.
3806 */
3807 cgroup_get(cgrp);
3808 kernfs_break_active_protection(kn);
42809dd4 3809
ace2bee8 3810 mutex_lock(&cgroup_tree_mutex);
42809dd4 3811 mutex_lock(&cgroup_mutex);
2bd59d48
TH
3812
3813 /*
3814 * @cgrp might already have been destroyed while we're trying to
3815 * grab the mutexes.
3816 */
3817 if (!cgroup_is_dead(cgrp))
3818 ret = cgroup_destroy_locked(cgrp);
3819
42809dd4 3820 mutex_unlock(&cgroup_mutex);
ace2bee8 3821 mutex_unlock(&cgroup_tree_mutex);
42809dd4 3822
2bd59d48
TH
3823 kernfs_unbreak_active_protection(kn);
3824 cgroup_put(cgrp);
42809dd4
TH
3825 return ret;
3826}
3827
2bd59d48
TH
3828static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
3829 .remount_fs = cgroup_remount,
3830 .show_options = cgroup_show_options,
3831 .mkdir = cgroup_mkdir,
3832 .rmdir = cgroup_rmdir,
3833 .rename = cgroup_rename,
3834};
3835
06a11920 3836static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3837{
ddbcc7e8 3838 struct cgroup_subsys_state *css;
cfe36bde
DC
3839
3840 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 3841
ace2bee8 3842 mutex_lock(&cgroup_tree_mutex);
648bb56d
TH
3843 mutex_lock(&cgroup_mutex);
3844
0adb0704 3845 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 3846
ddbcc7e8 3847 /* Create the top cgroup state for this subsystem */
9871bf95 3848 ss->root = &cgroup_dummy_root;
ca8bdcaf 3849 css = ss->css_alloc(cgroup_css(cgroup_dummy_top, ss));
ddbcc7e8
PM
3850 /* We don't handle early failures gracefully */
3851 BUG_ON(IS_ERR(css));
623f926b 3852 init_css(css, ss, cgroup_dummy_top);
ddbcc7e8 3853
e8d55fde 3854 /* Update the init_css_set to contain a subsys
817929ec 3855 * pointer to this state - since the subsystem is
e8d55fde
LZ
3856 * newly registered, all tasks and hence the
3857 * init_css_set is in the subsystem's top cgroup. */
aec25020 3858 init_css_set.subsys[ss->id] = css;
ddbcc7e8
PM
3859
3860 need_forkexit_callback |= ss->fork || ss->exit;
3861
e8d55fde
LZ
3862 /* At system boot, before all subsystems have been
3863 * registered, no tasks have been forked, so we don't
3864 * need to invoke fork callbacks here. */
3865 BUG_ON(!list_empty(&init_task.tasks));
3866
ae7f164a 3867 BUG_ON(online_css(css));
a8638030 3868
648bb56d 3869 mutex_unlock(&cgroup_mutex);
ace2bee8 3870 mutex_unlock(&cgroup_tree_mutex);
e6a1105b
BB
3871}
3872
ddbcc7e8 3873/**
a043e3b2
LZ
3874 * cgroup_init_early - cgroup initialization at system boot
3875 *
3876 * Initialize cgroups at system boot, and initialize any
3877 * subsystems that request early init.
ddbcc7e8
PM
3878 */
3879int __init cgroup_init_early(void)
3880{
30159ec7 3881 struct cgroup_subsys *ss;
ddbcc7e8 3882 int i;
30159ec7 3883
146aa1bd 3884 atomic_set(&init_css_set.refcount, 1);
69d0206c 3885 INIT_LIST_HEAD(&init_css_set.cgrp_links);
817929ec 3886 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3887 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3888 css_set_count = 1;
9871bf95
TH
3889 init_cgroup_root(&cgroup_dummy_root);
3890 cgroup_root_count = 1;
a4ea1cc9 3891 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 3892
69d0206c 3893 init_cgrp_cset_link.cset = &init_css_set;
9871bf95
TH
3894 init_cgrp_cset_link.cgrp = cgroup_dummy_top;
3895 list_add(&init_cgrp_cset_link.cset_link, &cgroup_dummy_top->cset_links);
69d0206c 3896 list_add(&init_cgrp_cset_link.cgrp_link, &init_css_set.cgrp_links);
ddbcc7e8 3897
3ed80a62 3898 for_each_subsys(ss, i) {
aec25020 3899 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
3900 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
3901 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 3902 ss->id, ss->name);
073219e9
TH
3903 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
3904 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
3905
aec25020 3906 ss->id = i;
073219e9 3907 ss->name = cgroup_subsys_name[i];
ddbcc7e8
PM
3908
3909 if (ss->early_init)
3910 cgroup_init_subsys(ss);
3911 }
3912 return 0;
3913}
3914
3915/**
a043e3b2
LZ
3916 * cgroup_init - cgroup initialization
3917 *
3918 * Register cgroup filesystem and /proc file, and initialize
3919 * any subsystems that didn't request early init.
ddbcc7e8
PM
3920 */
3921int __init cgroup_init(void)
3922{
30159ec7 3923 struct cgroup_subsys *ss;
0ac801fe 3924 unsigned long key;
30159ec7 3925 int i, err;
a424316c 3926
2bd59d48 3927 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
2da440a2 3928
3ed80a62 3929 for_each_subsys(ss, i) {
ddbcc7e8
PM
3930 if (!ss->early_init)
3931 cgroup_init_subsys(ss);
de00ffa5
TH
3932
3933 /*
3934 * cftype registration needs kmalloc and can't be done
3935 * during early_init. Register base cftypes separately.
3936 */
3937 if (ss->base_cftypes)
3938 WARN_ON(cgroup_add_cftypes(ss, ss->base_cftypes));
ddbcc7e8
PM
3939 }
3940
fa3ca07e 3941 /* allocate id for the dummy hierarchy */
54e7b4eb 3942 mutex_lock(&cgroup_mutex);
54e7b4eb 3943
82fe9b0d
TH
3944 /* Add init_css_set to the hash table */
3945 key = css_set_hash(init_css_set.subsys);
3946 hash_add(css_set_table, &init_css_set.hlist, key);
3947
fc76df70 3948 BUG_ON(cgroup_init_root_id(&cgroup_dummy_root, 0, 1));
676db4af 3949
4e96ee8e
LZ
3950 err = idr_alloc(&cgroup_dummy_root.cgroup_idr, cgroup_dummy_top,
3951 0, 1, GFP_KERNEL);
3952 BUG_ON(err < 0);
3953
54e7b4eb
TH
3954 mutex_unlock(&cgroup_mutex);
3955
676db4af 3956 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
2bd59d48
TH
3957 if (!cgroup_kobj)
3958 return -ENOMEM;
676db4af 3959
ddbcc7e8 3960 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3961 if (err < 0) {
3962 kobject_put(cgroup_kobj);
2bd59d48 3963 return err;
676db4af 3964 }
ddbcc7e8 3965
46ae220b 3966 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 3967 return 0;
ddbcc7e8 3968}
b4f48b63 3969
e5fca243
TH
3970static int __init cgroup_wq_init(void)
3971{
3972 /*
3973 * There isn't much point in executing destruction path in
3974 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 3975 * Use 1 for @max_active.
e5fca243
TH
3976 *
3977 * We would prefer to do this in cgroup_init() above, but that
3978 * is called before init_workqueues(): so leave this until after.
3979 */
1a11533f 3980 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 3981 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
3982
3983 /*
3984 * Used to destroy pidlists and separate to serve as flush domain.
3985 * Cap @max_active to 1 too.
3986 */
3987 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
3988 0, 1);
3989 BUG_ON(!cgroup_pidlist_destroy_wq);
3990
e5fca243
TH
3991 return 0;
3992}
3993core_initcall(cgroup_wq_init);
3994
a424316c
PM
3995/*
3996 * proc_cgroup_show()
3997 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3998 * - Used for /proc/<pid>/cgroup.
3999 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4000 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4001 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4002 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4003 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4004 * cgroup to top_cgroup.
4005 */
4006
4007/* TODO: Use a proper seq_file iterator */
8d8b97ba 4008int proc_cgroup_show(struct seq_file *m, void *v)
a424316c
PM
4009{
4010 struct pid *pid;
4011 struct task_struct *tsk;
e61734c5 4012 char *buf, *path;
a424316c
PM
4013 int retval;
4014 struct cgroupfs_root *root;
4015
4016 retval = -ENOMEM;
e61734c5 4017 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
4018 if (!buf)
4019 goto out;
4020
4021 retval = -ESRCH;
4022 pid = m->private;
4023 tsk = get_pid_task(pid, PIDTYPE_PID);
4024 if (!tsk)
4025 goto out_free;
4026
4027 retval = 0;
4028
4029 mutex_lock(&cgroup_mutex);
96d365e0 4030 down_read(&css_set_rwsem);
a424316c 4031
e5f6a860 4032 for_each_active_root(root) {
a424316c 4033 struct cgroup_subsys *ss;
bd89aabc 4034 struct cgroup *cgrp;
b85d2040 4035 int ssid, count = 0;
a424316c 4036
2c6ab6d2 4037 seq_printf(m, "%d:", root->hierarchy_id);
b85d2040
TH
4038 for_each_subsys(ss, ssid)
4039 if (root->subsys_mask & (1 << ssid))
4040 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4041 if (strlen(root->name))
4042 seq_printf(m, "%sname=%s", count ? "," : "",
4043 root->name);
a424316c 4044 seq_putc(m, ':');
7717f7ba 4045 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
4046 path = cgroup_path(cgrp, buf, PATH_MAX);
4047 if (!path) {
4048 retval = -ENAMETOOLONG;
a424316c 4049 goto out_unlock;
e61734c5
TH
4050 }
4051 seq_puts(m, path);
a424316c
PM
4052 seq_putc(m, '\n');
4053 }
4054
4055out_unlock:
96d365e0 4056 up_read(&css_set_rwsem);
a424316c
PM
4057 mutex_unlock(&cgroup_mutex);
4058 put_task_struct(tsk);
4059out_free:
4060 kfree(buf);
4061out:
4062 return retval;
4063}
4064
a424316c
PM
4065/* Display information about each subsystem and each hierarchy */
4066static int proc_cgroupstats_show(struct seq_file *m, void *v)
4067{
30159ec7 4068 struct cgroup_subsys *ss;
a424316c 4069 int i;
a424316c 4070
8bab8dde 4071 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4072 /*
4073 * ideally we don't want subsystems moving around while we do this.
4074 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4075 * subsys/hierarchy state.
4076 */
a424316c 4077 mutex_lock(&cgroup_mutex);
30159ec7
TH
4078
4079 for_each_subsys(ss, i)
2c6ab6d2
PM
4080 seq_printf(m, "%s\t%d\t%d\t%d\n",
4081 ss->name, ss->root->hierarchy_id,
3c9c825b 4082 atomic_read(&ss->root->nr_cgrps), !ss->disabled);
30159ec7 4083
a424316c
PM
4084 mutex_unlock(&cgroup_mutex);
4085 return 0;
4086}
4087
4088static int cgroupstats_open(struct inode *inode, struct file *file)
4089{
9dce07f1 4090 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4091}
4092
828c0950 4093static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4094 .open = cgroupstats_open,
4095 .read = seq_read,
4096 .llseek = seq_lseek,
4097 .release = single_release,
4098};
4099
b4f48b63
PM
4100/**
4101 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4102 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4103 *
4104 * Description: A task inherits its parent's cgroup at fork().
4105 *
4106 * A pointer to the shared css_set was automatically copied in
4107 * fork.c by dup_task_struct(). However, we ignore that copy, since
9bb71308
TH
4108 * it was not made under the protection of RCU or cgroup_mutex, so
4109 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4110 * have already changed current->cgroups, allowing the previously
4111 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4112 *
4113 * At the point that cgroup_fork() is called, 'current' is the parent
4114 * task, and the passed argument 'child' points to the child task.
4115 */
4116void cgroup_fork(struct task_struct *child)
4117{
9bb71308 4118 task_lock(current);
a8ad805c 4119 get_css_set(task_css_set(current));
817929ec 4120 child->cgroups = current->cgroups;
9bb71308 4121 task_unlock(current);
817929ec 4122 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4123}
4124
817929ec 4125/**
a043e3b2
LZ
4126 * cgroup_post_fork - called on a new task after adding it to the task list
4127 * @child: the task in question
4128 *
5edee61e
TH
4129 * Adds the task to the list running through its css_set if necessary and
4130 * call the subsystem fork() callbacks. Has to be after the task is
4131 * visible on the task list in case we race with the first call to
0942eeee 4132 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 4133 * list.
a043e3b2 4134 */
817929ec
PM
4135void cgroup_post_fork(struct task_struct *child)
4136{
30159ec7 4137 struct cgroup_subsys *ss;
5edee61e
TH
4138 int i;
4139
3ce3230a
FW
4140 /*
4141 * use_task_css_set_links is set to 1 before we walk the tasklist
4142 * under the tasklist_lock and we read it here after we added the child
4143 * to the tasklist under the tasklist_lock as well. If the child wasn't
4144 * yet in the tasklist when we walked through it from
4145 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4146 * should be visible now due to the paired locking and barriers implied
4147 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4148 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4149 * lock on fork.
4150 */
817929ec 4151 if (use_task_css_set_links) {
96d365e0 4152 down_write(&css_set_rwsem);
d8783832
TH
4153 task_lock(child);
4154 if (list_empty(&child->cg_list))
a8ad805c 4155 list_add(&child->cg_list, &task_css_set(child)->tasks);
d8783832 4156 task_unlock(child);
96d365e0 4157 up_write(&css_set_rwsem);
817929ec 4158 }
5edee61e
TH
4159
4160 /*
4161 * Call ss->fork(). This must happen after @child is linked on
4162 * css_set; otherwise, @child might change state between ->fork()
4163 * and addition to css_set.
4164 */
4165 if (need_forkexit_callback) {
3ed80a62 4166 for_each_subsys(ss, i)
5edee61e
TH
4167 if (ss->fork)
4168 ss->fork(child);
5edee61e 4169 }
817929ec 4170}
5edee61e 4171
b4f48b63
PM
4172/**
4173 * cgroup_exit - detach cgroup from exiting task
4174 * @tsk: pointer to task_struct of exiting process
a043e3b2 4175 * @run_callback: run exit callbacks?
b4f48b63
PM
4176 *
4177 * Description: Detach cgroup from @tsk and release it.
4178 *
4179 * Note that cgroups marked notify_on_release force every task in
4180 * them to take the global cgroup_mutex mutex when exiting.
4181 * This could impact scaling on very large systems. Be reluctant to
4182 * use notify_on_release cgroups where very high task exit scaling
4183 * is required on large systems.
4184 *
4185 * the_top_cgroup_hack:
4186 *
4187 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4188 *
4189 * We call cgroup_exit() while the task is still competent to
4190 * handle notify_on_release(), then leave the task attached to the
4191 * root cgroup in each hierarchy for the remainder of its exit.
4192 *
4193 * To do this properly, we would increment the reference count on
4194 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4195 * code we would add a second cgroup function call, to drop that
4196 * reference. This would just create an unnecessary hot spot on
4197 * the top_cgroup reference count, to no avail.
4198 *
4199 * Normally, holding a reference to a cgroup without bumping its
4200 * count is unsafe. The cgroup could go away, or someone could
4201 * attach us to a different cgroup, decrementing the count on
4202 * the first cgroup that we never incremented. But in this case,
4203 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4204 * which wards off any cgroup_attach_task() attempts, or task is a failed
4205 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4206 */
4207void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4208{
30159ec7 4209 struct cgroup_subsys *ss;
5abb8855 4210 struct css_set *cset;
d41d5a01 4211 int i;
817929ec
PM
4212
4213 /*
96d365e0
TH
4214 * Unlink from the css_set task list if necessary. Optimistically
4215 * check cg_list before taking css_set_rwsem.
817929ec
PM
4216 */
4217 if (!list_empty(&tsk->cg_list)) {
96d365e0 4218 down_write(&css_set_rwsem);
817929ec 4219 if (!list_empty(&tsk->cg_list))
8d258797 4220 list_del_init(&tsk->cg_list);
96d365e0 4221 up_write(&css_set_rwsem);
817929ec
PM
4222 }
4223
b4f48b63
PM
4224 /* Reassign the task to the init_css_set. */
4225 task_lock(tsk);
a8ad805c
TH
4226 cset = task_css_set(tsk);
4227 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01
PZ
4228
4229 if (run_callbacks && need_forkexit_callback) {
3ed80a62
TH
4230 /* see cgroup_post_fork() for details */
4231 for_each_subsys(ss, i) {
d41d5a01 4232 if (ss->exit) {
eb95419b
TH
4233 struct cgroup_subsys_state *old_css = cset->subsys[i];
4234 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 4235
eb95419b 4236 ss->exit(css, old_css, tsk);
d41d5a01
PZ
4237 }
4238 }
4239 }
b4f48b63 4240 task_unlock(tsk);
d41d5a01 4241
89c5509b 4242 put_css_set(cset, true);
b4f48b63 4243}
697f4161 4244
bd89aabc 4245static void check_for_release(struct cgroup *cgrp)
81a6a5cd 4246{
f50daa70 4247 if (cgroup_is_releasable(cgrp) &&
6f3d828f 4248 list_empty(&cgrp->cset_links) && list_empty(&cgrp->children)) {
f50daa70
LZ
4249 /*
4250 * Control Group is currently removeable. If it's not
81a6a5cd 4251 * already queued for a userspace notification, queue
f50daa70
LZ
4252 * it now
4253 */
81a6a5cd 4254 int need_schedule_work = 0;
f50daa70 4255
cdcc136f 4256 raw_spin_lock(&release_list_lock);
54766d4a 4257 if (!cgroup_is_dead(cgrp) &&
bd89aabc
PM
4258 list_empty(&cgrp->release_list)) {
4259 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4260 need_schedule_work = 1;
4261 }
cdcc136f 4262 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4263 if (need_schedule_work)
4264 schedule_work(&release_agent_work);
4265 }
4266}
4267
81a6a5cd
PM
4268/*
4269 * Notify userspace when a cgroup is released, by running the
4270 * configured release agent with the name of the cgroup (path
4271 * relative to the root of cgroup file system) as the argument.
4272 *
4273 * Most likely, this user command will try to rmdir this cgroup.
4274 *
4275 * This races with the possibility that some other task will be
4276 * attached to this cgroup before it is removed, or that some other
4277 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4278 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4279 * unused, and this cgroup will be reprieved from its death sentence,
4280 * to continue to serve a useful existence. Next time it's released,
4281 * we will get notified again, if it still has 'notify_on_release' set.
4282 *
4283 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4284 * means only wait until the task is successfully execve()'d. The
4285 * separate release agent task is forked by call_usermodehelper(),
4286 * then control in this thread returns here, without waiting for the
4287 * release agent task. We don't bother to wait because the caller of
4288 * this routine has no use for the exit status of the release agent
4289 * task, so no sense holding our caller up for that.
81a6a5cd 4290 */
81a6a5cd
PM
4291static void cgroup_release_agent(struct work_struct *work)
4292{
4293 BUG_ON(work != &release_agent_work);
4294 mutex_lock(&cgroup_mutex);
cdcc136f 4295 raw_spin_lock(&release_list_lock);
81a6a5cd
PM
4296 while (!list_empty(&release_list)) {
4297 char *argv[3], *envp[3];
4298 int i;
e61734c5 4299 char *pathbuf = NULL, *agentbuf = NULL, *path;
bd89aabc 4300 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4301 struct cgroup,
4302 release_list);
bd89aabc 4303 list_del_init(&cgrp->release_list);
cdcc136f 4304 raw_spin_unlock(&release_list_lock);
e61734c5 4305 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
e788e066
PM
4306 if (!pathbuf)
4307 goto continue_free;
e61734c5
TH
4308 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
4309 if (!path)
e788e066
PM
4310 goto continue_free;
4311 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4312 if (!agentbuf)
4313 goto continue_free;
81a6a5cd
PM
4314
4315 i = 0;
e788e066 4316 argv[i++] = agentbuf;
e61734c5 4317 argv[i++] = path;
81a6a5cd
PM
4318 argv[i] = NULL;
4319
4320 i = 0;
4321 /* minimal command environment */
4322 envp[i++] = "HOME=/";
4323 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4324 envp[i] = NULL;
4325
4326 /* Drop the lock while we invoke the usermode helper,
4327 * since the exec could involve hitting disk and hence
4328 * be a slow process */
4329 mutex_unlock(&cgroup_mutex);
4330 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4331 mutex_lock(&cgroup_mutex);
e788e066
PM
4332 continue_free:
4333 kfree(pathbuf);
4334 kfree(agentbuf);
cdcc136f 4335 raw_spin_lock(&release_list_lock);
81a6a5cd 4336 }
cdcc136f 4337 raw_spin_unlock(&release_list_lock);
81a6a5cd
PM
4338 mutex_unlock(&cgroup_mutex);
4339}
8bab8dde
PM
4340
4341static int __init cgroup_disable(char *str)
4342{
30159ec7 4343 struct cgroup_subsys *ss;
8bab8dde 4344 char *token;
30159ec7 4345 int i;
8bab8dde
PM
4346
4347 while ((token = strsep(&str, ",")) != NULL) {
4348 if (!*token)
4349 continue;
be45c900 4350
3ed80a62 4351 for_each_subsys(ss, i) {
8bab8dde
PM
4352 if (!strcmp(token, ss->name)) {
4353 ss->disabled = 1;
4354 printk(KERN_INFO "Disabling %s control group"
4355 " subsystem\n", ss->name);
4356 break;
4357 }
4358 }
4359 }
4360 return 1;
4361}
4362__setup("cgroup_disable=", cgroup_disable);
38460b48 4363
b77d7b60 4364/**
5a17f543 4365 * css_tryget_from_dir - get corresponding css from the dentry of a cgroup dir
35cf0836
TH
4366 * @dentry: directory dentry of interest
4367 * @ss: subsystem of interest
b77d7b60 4368 *
5a17f543
TH
4369 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
4370 * to get the corresponding css and return it. If such css doesn't exist
4371 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 4372 */
5a17f543
TH
4373struct cgroup_subsys_state *css_tryget_from_dir(struct dentry *dentry,
4374 struct cgroup_subsys *ss)
e5d1367f 4375{
2bd59d48
TH
4376 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4377 struct cgroup_subsys_state *css = NULL;
e5d1367f 4378 struct cgroup *cgrp;
b77d7b60 4379
35cf0836 4380 /* is @dentry a cgroup dir? */
2bd59d48
TH
4381 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4382 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
4383 return ERR_PTR(-EBADF);
4384
5a17f543
TH
4385 rcu_read_lock();
4386
2bd59d48
TH
4387 /*
4388 * This path doesn't originate from kernfs and @kn could already
4389 * have been or be removed at any point. @kn->priv is RCU
4390 * protected for this access. See destroy_locked() for details.
4391 */
4392 cgrp = rcu_dereference(kn->priv);
4393 if (cgrp)
4394 css = cgroup_css(cgrp, ss);
5a17f543
TH
4395
4396 if (!css || !css_tryget(css))
4397 css = ERR_PTR(-ENOENT);
4398
4399 rcu_read_unlock();
4400 return css;
e5d1367f 4401}
e5d1367f 4402
1cb650b9
LZ
4403/**
4404 * css_from_id - lookup css by id
4405 * @id: the cgroup id
4406 * @ss: cgroup subsys to be looked into
4407 *
4408 * Returns the css if there's valid one with @id, otherwise returns NULL.
4409 * Should be called under rcu_read_lock().
4410 */
4411struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
4412{
4413 struct cgroup *cgrp;
4414
ace2bee8 4415 cgroup_assert_mutexes_or_rcu_locked();
1cb650b9
LZ
4416
4417 cgrp = idr_find(&ss->root->cgroup_idr, id);
4418 if (cgrp)
d1625964 4419 return cgroup_css(cgrp, ss);
1cb650b9 4420 return NULL;
e5d1367f
SE
4421}
4422
fe693435 4423#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
4424static struct cgroup_subsys_state *
4425debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
4426{
4427 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4428
4429 if (!css)
4430 return ERR_PTR(-ENOMEM);
4431
4432 return css;
4433}
4434
eb95419b 4435static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 4436{
eb95419b 4437 kfree(css);
fe693435
PM
4438}
4439
182446d0
TH
4440static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
4441 struct cftype *cft)
fe693435 4442{
182446d0 4443 return cgroup_task_count(css->cgroup);
fe693435
PM
4444}
4445
182446d0
TH
4446static u64 current_css_set_read(struct cgroup_subsys_state *css,
4447 struct cftype *cft)
fe693435
PM
4448{
4449 return (u64)(unsigned long)current->cgroups;
4450}
4451
182446d0 4452static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 4453 struct cftype *cft)
fe693435
PM
4454{
4455 u64 count;
4456
4457 rcu_read_lock();
a8ad805c 4458 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
4459 rcu_read_unlock();
4460 return count;
4461}
4462
2da8ca82 4463static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 4464{
69d0206c 4465 struct cgrp_cset_link *link;
5abb8855 4466 struct css_set *cset;
e61734c5
TH
4467 char *name_buf;
4468
4469 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
4470 if (!name_buf)
4471 return -ENOMEM;
7717f7ba 4472
96d365e0 4473 down_read(&css_set_rwsem);
7717f7ba 4474 rcu_read_lock();
5abb8855 4475 cset = rcu_dereference(current->cgroups);
69d0206c 4476 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 4477 struct cgroup *c = link->cgrp;
59f5296b
TH
4478 const char *name = "?";
4479
e61734c5
TH
4480 if (c != cgroup_dummy_top) {
4481 cgroup_name(c, name_buf, NAME_MAX + 1);
4482 name = name_buf;
4483 }
7717f7ba 4484
2c6ab6d2
PM
4485 seq_printf(seq, "Root %d group %s\n",
4486 c->root->hierarchy_id, name);
7717f7ba
PM
4487 }
4488 rcu_read_unlock();
96d365e0 4489 up_read(&css_set_rwsem);
e61734c5 4490 kfree(name_buf);
7717f7ba
PM
4491 return 0;
4492}
4493
4494#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 4495static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 4496{
2da8ca82 4497 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 4498 struct cgrp_cset_link *link;
7717f7ba 4499
96d365e0 4500 down_read(&css_set_rwsem);
182446d0 4501 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 4502 struct css_set *cset = link->cset;
7717f7ba
PM
4503 struct task_struct *task;
4504 int count = 0;
5abb8855
TH
4505 seq_printf(seq, "css_set %p\n", cset);
4506 list_for_each_entry(task, &cset->tasks, cg_list) {
7717f7ba
PM
4507 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4508 seq_puts(seq, " ...\n");
4509 break;
4510 } else {
4511 seq_printf(seq, " task %d\n",
4512 task_pid_vnr(task));
4513 }
4514 }
4515 }
96d365e0 4516 up_read(&css_set_rwsem);
7717f7ba
PM
4517 return 0;
4518}
4519
182446d0 4520static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 4521{
182446d0 4522 return test_bit(CGRP_RELEASABLE, &css->cgroup->flags);
fe693435
PM
4523}
4524
4525static struct cftype debug_files[] = {
fe693435
PM
4526 {
4527 .name = "taskcount",
4528 .read_u64 = debug_taskcount_read,
4529 },
4530
4531 {
4532 .name = "current_css_set",
4533 .read_u64 = current_css_set_read,
4534 },
4535
4536 {
4537 .name = "current_css_set_refcount",
4538 .read_u64 = current_css_set_refcount_read,
4539 },
4540
7717f7ba
PM
4541 {
4542 .name = "current_css_set_cg_links",
2da8ca82 4543 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
4544 },
4545
4546 {
4547 .name = "cgroup_css_links",
2da8ca82 4548 .seq_show = cgroup_css_links_read,
7717f7ba
PM
4549 },
4550
fe693435
PM
4551 {
4552 .name = "releasable",
4553 .read_u64 = releasable_read,
4554 },
fe693435 4555
4baf6e33
TH
4556 { } /* terminate */
4557};
fe693435 4558
073219e9 4559struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
4560 .css_alloc = debug_css_alloc,
4561 .css_free = debug_css_free,
4baf6e33 4562 .base_cftypes = debug_files,
fe693435
PM
4563};
4564#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.178029 seconds and 5 git commands to generate.