cgroup: factor out css_set_move_task()
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
ed3d261b
JP
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
ddbcc7e8 31#include <linux/cgroup.h>
2ce9738b 32#include <linux/cred.h>
c6d57f33 33#include <linux/ctype.h>
ddbcc7e8 34#include <linux/errno.h>
2ce9738b 35#include <linux/init_task.h>
ddbcc7e8
PM
36#include <linux/kernel.h>
37#include <linux/list.h>
c9482a5b 38#include <linux/magic.h>
ddbcc7e8
PM
39#include <linux/mm.h>
40#include <linux/mutex.h>
41#include <linux/mount.h>
42#include <linux/pagemap.h>
a424316c 43#include <linux/proc_fs.h>
ddbcc7e8
PM
44#include <linux/rcupdate.h>
45#include <linux/sched.h>
ddbcc7e8 46#include <linux/slab.h>
ddbcc7e8 47#include <linux/spinlock.h>
96d365e0 48#include <linux/rwsem.h>
1ed13287 49#include <linux/percpu-rwsem.h>
ddbcc7e8 50#include <linux/string.h>
bbcb81d0 51#include <linux/sort.h>
81a6a5cd 52#include <linux/kmod.h>
846c7bb0
BS
53#include <linux/delayacct.h>
54#include <linux/cgroupstats.h>
0ac801fe 55#include <linux/hashtable.h>
096b7fe0 56#include <linux/pid_namespace.h>
2c6ab6d2 57#include <linux/idr.h>
d1d9fd33 58#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
c4c27fbd 59#include <linux/kthread.h>
776f02fa 60#include <linux/delay.h>
846c7bb0 61
60063497 62#include <linux/atomic.h>
ddbcc7e8 63
b1a21367
TH
64/*
65 * pidlists linger the following amount before being destroyed. The goal
66 * is avoiding frequent destruction in the middle of consecutive read calls
67 * Expiring in the middle is a performance problem not a correctness one.
68 * 1 sec should be enough.
69 */
70#define CGROUP_PIDLIST_DESTROY_DELAY HZ
71
8d7e6fb0
TH
72#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
73 MAX_CFTYPE_NAME + 2)
74
e25e2cbb
TH
75/*
76 * cgroup_mutex is the master lock. Any modification to cgroup or its
77 * hierarchy must be performed while holding it.
78 *
0e1d768f
TH
79 * css_set_rwsem protects task->cgroups pointer, the list of css_set
80 * objects, and the chain of tasks off each css_set.
e25e2cbb 81 *
0e1d768f
TH
82 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
83 * cgroup.h can use them for lockdep annotations.
e25e2cbb 84 */
2219449a
TH
85#ifdef CONFIG_PROVE_RCU
86DEFINE_MUTEX(cgroup_mutex);
0e1d768f
TH
87DECLARE_RWSEM(css_set_rwsem);
88EXPORT_SYMBOL_GPL(cgroup_mutex);
89EXPORT_SYMBOL_GPL(css_set_rwsem);
2219449a 90#else
81a6a5cd 91static DEFINE_MUTEX(cgroup_mutex);
0e1d768f 92static DECLARE_RWSEM(css_set_rwsem);
2219449a
TH
93#endif
94
6fa4918d 95/*
15a4c835
TH
96 * Protects cgroup_idr and css_idr so that IDs can be released without
97 * grabbing cgroup_mutex.
6fa4918d
TH
98 */
99static DEFINE_SPINLOCK(cgroup_idr_lock);
100
69e943b7
TH
101/*
102 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
103 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 */
105static DEFINE_SPINLOCK(release_agent_path_lock);
81a6a5cd 106
1ed13287
TH
107struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108
8353da1f 109#define cgroup_assert_mutex_or_rcu_locked() \
f78f5b90
PM
110 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
111 !lockdep_is_held(&cgroup_mutex), \
8353da1f 112 "cgroup_mutex or RCU read lock required");
780cd8b3 113
e5fca243
TH
114/*
115 * cgroup destruction makes heavy use of work items and there can be a lot
116 * of concurrent destructions. Use a separate workqueue so that cgroup
117 * destruction work items don't end up filling up max_active of system_wq
118 * which may lead to deadlock.
119 */
120static struct workqueue_struct *cgroup_destroy_wq;
121
b1a21367
TH
122/*
123 * pidlist destructions need to be flushed on cgroup destruction. Use a
124 * separate workqueue as flush domain.
125 */
126static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127
3ed80a62 128/* generate an array of cgroup subsystem pointers */
073219e9 129#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
3ed80a62 130static struct cgroup_subsys *cgroup_subsys[] = {
ddbcc7e8
PM
131#include <linux/cgroup_subsys.h>
132};
073219e9
TH
133#undef SUBSYS
134
135/* array of cgroup subsystem names */
136#define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
137static const char *cgroup_subsys_name[] = {
ddbcc7e8
PM
138#include <linux/cgroup_subsys.h>
139};
073219e9 140#undef SUBSYS
ddbcc7e8 141
49d1dc4b
TH
142/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143#define SUBSYS(_x) \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
145 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
147 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
148#include <linux/cgroup_subsys.h>
149#undef SUBSYS
150
151#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
152static struct static_key_true *cgroup_subsys_enabled_key[] = {
153#include <linux/cgroup_subsys.h>
154};
155#undef SUBSYS
156
157#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
158static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
159#include <linux/cgroup_subsys.h>
160};
161#undef SUBSYS
162
ddbcc7e8 163/*
3dd06ffa 164 * The default hierarchy, reserved for the subsystems that are otherwise
9871bf95
TH
165 * unattached - it never has more than a single cgroup, and all tasks are
166 * part of that cgroup.
ddbcc7e8 167 */
a2dd4247 168struct cgroup_root cgrp_dfl_root;
d0ec4230 169EXPORT_SYMBOL_GPL(cgrp_dfl_root);
9871bf95 170
a2dd4247
TH
171/*
172 * The default hierarchy always exists but is hidden until mounted for the
173 * first time. This is for backward compatibility.
174 */
175static bool cgrp_dfl_root_visible;
ddbcc7e8 176
a8ddc821
TH
177/*
178 * Set by the boot param of the same name and makes subsystems with NULL
179 * ->dfl_files to use ->legacy_files on the default hierarchy.
180 */
181static bool cgroup_legacy_files_on_dfl;
182
5533e011 183/* some controllers are not supported in the default hierarchy */
8ab456ac 184static unsigned long cgrp_dfl_root_inhibit_ss_mask;
5533e011 185
ddbcc7e8
PM
186/* The list of hierarchy roots */
187
9871bf95
TH
188static LIST_HEAD(cgroup_roots);
189static int cgroup_root_count;
ddbcc7e8 190
3417ae1f 191/* hierarchy ID allocation and mapping, protected by cgroup_mutex */
1a574231 192static DEFINE_IDR(cgroup_hierarchy_idr);
2c6ab6d2 193
794611a1 194/*
0cb51d71
TH
195 * Assign a monotonically increasing serial number to csses. It guarantees
196 * cgroups with bigger numbers are newer than those with smaller numbers.
197 * Also, as csses are always appended to the parent's ->children list, it
198 * guarantees that sibling csses are always sorted in the ascending serial
199 * number order on the list. Protected by cgroup_mutex.
794611a1 200 */
0cb51d71 201static u64 css_serial_nr_next = 1;
794611a1 202
cb4a3167
AS
203/*
204 * These bitmask flags indicate whether tasks in the fork and exit paths have
205 * fork/exit handlers to call. This avoids us having to do extra work in the
206 * fork/exit path to check which subsystems have fork/exit callbacks.
ddbcc7e8 207 */
cb4a3167
AS
208static unsigned long have_fork_callback __read_mostly;
209static unsigned long have_exit_callback __read_mostly;
ddbcc7e8 210
7e47682e
AS
211/* Ditto for the can_fork callback. */
212static unsigned long have_canfork_callback __read_mostly;
213
a14c6874
TH
214static struct cftype cgroup_dfl_base_files[];
215static struct cftype cgroup_legacy_base_files[];
628f7cd4 216
3dd06ffa 217static int rebind_subsystems(struct cgroup_root *dst_root,
8ab456ac 218 unsigned long ss_mask);
42809dd4 219static int cgroup_destroy_locked(struct cgroup *cgrp);
f63070d3
TH
220static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
221 bool visible);
9d755d33 222static void css_release(struct percpu_ref *ref);
f8f22e53 223static void kill_css(struct cgroup_subsys_state *css);
4df8dc90
TH
224static int cgroup_addrm_files(struct cgroup_subsys_state *css,
225 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 226 bool is_add);
42809dd4 227
fc5ed1e9
TH
228/**
229 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
230 * @ssid: subsys ID of interest
231 *
232 * cgroup_subsys_enabled() can only be used with literal subsys names which
233 * is fine for individual subsystems but unsuitable for cgroup core. This
234 * is slower static_key_enabled() based test indexed by @ssid.
235 */
236static bool cgroup_ssid_enabled(int ssid)
237{
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239}
240
9e10a130
TH
241/**
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
244 *
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
249 *
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
252 *
253 * List of changed behaviors:
254 *
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
257 *
258 * - When mounting an existing superblock, mount options should match.
259 *
260 * - Remount is disallowed.
261 *
262 * - rename(2) is disallowed.
263 *
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
266 *
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
269 *
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
272 *
273 * - "cgroup.clone_children" is removed.
274 *
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
279 *
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
283 *
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
286 *
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
289 *
290 * - blkcg: blk-throttle becomes properly hierarchical.
291 *
292 * - debug: disallowed on the default hierarchy.
293 */
294static bool cgroup_on_dfl(const struct cgroup *cgrp)
295{
296 return cgrp->root == &cgrp_dfl_root;
297}
298
6fa4918d
TH
299/* IDR wrappers which synchronize using cgroup_idr_lock */
300static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
302{
303 int ret;
304
305 idr_preload(gfp_mask);
54504e97 306 spin_lock_bh(&cgroup_idr_lock);
cf780b7d 307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_WAIT);
54504e97 308 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
309 idr_preload_end();
310 return ret;
311}
312
313static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
314{
315 void *ret;
316
54504e97 317 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 318 ret = idr_replace(idr, ptr, id);
54504e97 319 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
320 return ret;
321}
322
323static void cgroup_idr_remove(struct idr *idr, int id)
324{
54504e97 325 spin_lock_bh(&cgroup_idr_lock);
6fa4918d 326 idr_remove(idr, id);
54504e97 327 spin_unlock_bh(&cgroup_idr_lock);
6fa4918d
TH
328}
329
d51f39b0
TH
330static struct cgroup *cgroup_parent(struct cgroup *cgrp)
331{
332 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
333
334 if (parent_css)
335 return container_of(parent_css, struct cgroup, self);
336 return NULL;
337}
338
95109b62
TH
339/**
340 * cgroup_css - obtain a cgroup's css for the specified subsystem
341 * @cgrp: the cgroup of interest
9d800df1 342 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
95109b62 343 *
ca8bdcaf
TH
344 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
345 * function must be called either under cgroup_mutex or rcu_read_lock() and
346 * the caller is responsible for pinning the returned css if it wants to
347 * keep accessing it outside the said locks. This function may return
348 * %NULL if @cgrp doesn't have @subsys_id enabled.
95109b62
TH
349 */
350static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
ca8bdcaf 351 struct cgroup_subsys *ss)
95109b62 352{
ca8bdcaf 353 if (ss)
aec25020 354 return rcu_dereference_check(cgrp->subsys[ss->id],
ace2bee8 355 lockdep_is_held(&cgroup_mutex));
ca8bdcaf 356 else
9d800df1 357 return &cgrp->self;
95109b62 358}
42809dd4 359
aec3dfcb
TH
360/**
361 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
362 * @cgrp: the cgroup of interest
9d800df1 363 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
aec3dfcb 364 *
d0f702e6 365 * Similar to cgroup_css() but returns the effective css, which is defined
aec3dfcb
TH
366 * as the matching css of the nearest ancestor including self which has @ss
367 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
368 * function is guaranteed to return non-NULL css.
369 */
370static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
371 struct cgroup_subsys *ss)
372{
373 lockdep_assert_held(&cgroup_mutex);
374
375 if (!ss)
9d800df1 376 return &cgrp->self;
aec3dfcb
TH
377
378 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
379 return NULL;
380
eeecbd19
TH
381 /*
382 * This function is used while updating css associations and thus
383 * can't test the csses directly. Use ->child_subsys_mask.
384 */
d51f39b0
TH
385 while (cgroup_parent(cgrp) &&
386 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
387 cgrp = cgroup_parent(cgrp);
aec3dfcb
TH
388
389 return cgroup_css(cgrp, ss);
95109b62 390}
42809dd4 391
eeecbd19
TH
392/**
393 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
394 * @cgrp: the cgroup of interest
395 * @ss: the subsystem of interest
396 *
397 * Find and get the effective css of @cgrp for @ss. The effective css is
398 * defined as the matching css of the nearest ancestor including self which
399 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
400 * the root css is returned, so this function always returns a valid css.
401 * The returned css must be put using css_put().
402 */
403struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
404 struct cgroup_subsys *ss)
405{
406 struct cgroup_subsys_state *css;
407
408 rcu_read_lock();
409
410 do {
411 css = cgroup_css(cgrp, ss);
412
413 if (css && css_tryget_online(css))
414 goto out_unlock;
415 cgrp = cgroup_parent(cgrp);
416 } while (cgrp);
417
418 css = init_css_set.subsys[ss->id];
419 css_get(css);
420out_unlock:
421 rcu_read_unlock();
422 return css;
423}
424
ddbcc7e8 425/* convenient tests for these bits */
54766d4a 426static inline bool cgroup_is_dead(const struct cgroup *cgrp)
ddbcc7e8 427{
184faf32 428 return !(cgrp->self.flags & CSS_ONLINE);
ddbcc7e8
PM
429}
430
052c3f3a
TH
431static void cgroup_get(struct cgroup *cgrp)
432{
433 WARN_ON_ONCE(cgroup_is_dead(cgrp));
434 css_get(&cgrp->self);
435}
436
437static bool cgroup_tryget(struct cgroup *cgrp)
438{
439 return css_tryget(&cgrp->self);
440}
441
442static void cgroup_put(struct cgroup *cgrp)
443{
444 css_put(&cgrp->self);
445}
446
b4168640 447struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
59f5296b 448{
2bd59d48 449 struct cgroup *cgrp = of->kn->parent->priv;
b4168640 450 struct cftype *cft = of_cft(of);
2bd59d48
TH
451
452 /*
453 * This is open and unprotected implementation of cgroup_css().
454 * seq_css() is only called from a kernfs file operation which has
455 * an active reference on the file. Because all the subsystem
456 * files are drained before a css is disassociated with a cgroup,
457 * the matching css from the cgroup's subsys table is guaranteed to
458 * be and stay valid until the enclosing operation is complete.
459 */
460 if (cft->ss)
461 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
462 else
9d800df1 463 return &cgrp->self;
59f5296b 464}
b4168640 465EXPORT_SYMBOL_GPL(of_css);
59f5296b 466
78574cf9
LZ
467/**
468 * cgroup_is_descendant - test ancestry
469 * @cgrp: the cgroup to be tested
470 * @ancestor: possible ancestor of @cgrp
471 *
472 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
473 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
474 * and @ancestor are accessible.
475 */
476bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
477{
478 while (cgrp) {
479 if (cgrp == ancestor)
480 return true;
d51f39b0 481 cgrp = cgroup_parent(cgrp);
78574cf9
LZ
482 }
483 return false;
484}
ddbcc7e8 485
e9685a03 486static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 487{
bd89aabc 488 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
489}
490
1c6727af
TH
491/**
492 * for_each_css - iterate all css's of a cgroup
493 * @css: the iteration cursor
494 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
495 * @cgrp: the target cgroup to iterate css's of
496 *
aec3dfcb 497 * Should be called under cgroup_[tree_]mutex.
1c6727af
TH
498 */
499#define for_each_css(css, ssid, cgrp) \
500 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
501 if (!((css) = rcu_dereference_check( \
502 (cgrp)->subsys[(ssid)], \
503 lockdep_is_held(&cgroup_mutex)))) { } \
504 else
505
aec3dfcb
TH
506/**
507 * for_each_e_css - iterate all effective css's of a cgroup
508 * @css: the iteration cursor
509 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
510 * @cgrp: the target cgroup to iterate css's of
511 *
512 * Should be called under cgroup_[tree_]mutex.
513 */
514#define for_each_e_css(css, ssid, cgrp) \
515 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
516 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
517 ; \
518 else
519
30159ec7 520/**
3ed80a62 521 * for_each_subsys - iterate all enabled cgroup subsystems
30159ec7 522 * @ss: the iteration cursor
780cd8b3 523 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
30159ec7 524 */
780cd8b3 525#define for_each_subsys(ss, ssid) \
3ed80a62
TH
526 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
527 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
30159ec7 528
cb4a3167
AS
529/**
530 * for_each_subsys_which - filter for_each_subsys with a bitmask
531 * @ss: the iteration cursor
532 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
533 * @ss_maskp: a pointer to the bitmask
534 *
535 * The block will only run for cases where the ssid-th bit (1 << ssid) of
536 * mask is set to 1.
537 */
538#define for_each_subsys_which(ss, ssid, ss_maskp) \
539 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
4a705c5c 540 (ssid) = 0; \
cb4a3167
AS
541 else \
542 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
543 if (((ss) = cgroup_subsys[ssid]) && false) \
544 break; \
545 else
546
985ed670
TH
547/* iterate across the hierarchies */
548#define for_each_root(root) \
5549c497 549 list_for_each_entry((root), &cgroup_roots, root_list)
ddbcc7e8 550
f8f22e53
TH
551/* iterate over child cgrps, lock should be held throughout iteration */
552#define cgroup_for_each_live_child(child, cgrp) \
d5c419b6 553 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
8353da1f 554 if (({ lockdep_assert_held(&cgroup_mutex); \
f8f22e53
TH
555 cgroup_is_dead(child); })) \
556 ; \
557 else
7ae1bad9 558
81a6a5cd 559static void cgroup_release_agent(struct work_struct *work);
bd89aabc 560static void check_for_release(struct cgroup *cgrp);
81a6a5cd 561
69d0206c
TH
562/*
563 * A cgroup can be associated with multiple css_sets as different tasks may
564 * belong to different cgroups on different hierarchies. In the other
565 * direction, a css_set is naturally associated with multiple cgroups.
566 * This M:N relationship is represented by the following link structure
567 * which exists for each association and allows traversing the associations
568 * from both sides.
569 */
570struct cgrp_cset_link {
571 /* the cgroup and css_set this link associates */
572 struct cgroup *cgrp;
573 struct css_set *cset;
574
575 /* list of cgrp_cset_links anchored at cgrp->cset_links */
576 struct list_head cset_link;
577
578 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
579 struct list_head cgrp_link;
817929ec
PM
580};
581
172a2c06
TH
582/*
583 * The default css_set - used by init and its children prior to any
817929ec
PM
584 * hierarchies being mounted. It contains a pointer to the root state
585 * for each subsystem. Also used to anchor the list of css_sets. Not
586 * reference-counted, to improve performance when child cgroups
587 * haven't been created.
588 */
5024ae29 589struct css_set init_css_set = {
172a2c06
TH
590 .refcount = ATOMIC_INIT(1),
591 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
592 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
593 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
594 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
595 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
596};
817929ec 597
172a2c06 598static int css_set_count = 1; /* 1 for init_css_set */
817929ec 599
0de0942d
TH
600/**
601 * css_set_populated - does a css_set contain any tasks?
602 * @cset: target css_set
603 */
604static bool css_set_populated(struct css_set *cset)
605{
606 lockdep_assert_held(&css_set_rwsem);
607
608 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
609}
610
842b597e
TH
611/**
612 * cgroup_update_populated - updated populated count of a cgroup
613 * @cgrp: the target cgroup
614 * @populated: inc or dec populated count
615 *
0de0942d
TH
616 * One of the css_sets associated with @cgrp is either getting its first
617 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
618 * count is propagated towards root so that a given cgroup's populated_cnt
619 * is zero iff the cgroup and all its descendants don't contain any tasks.
842b597e
TH
620 *
621 * @cgrp's interface file "cgroup.populated" is zero if
622 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
623 * changes from or to zero, userland is notified that the content of the
624 * interface file has changed. This can be used to detect when @cgrp and
625 * its descendants become populated or empty.
626 */
627static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
628{
629 lockdep_assert_held(&css_set_rwsem);
630
631 do {
632 bool trigger;
633
634 if (populated)
635 trigger = !cgrp->populated_cnt++;
636 else
637 trigger = !--cgrp->populated_cnt;
638
639 if (!trigger)
640 break;
641
ad2ed2b3 642 check_for_release(cgrp);
6f60eade
TH
643 cgroup_file_notify(&cgrp->events_file);
644
d51f39b0 645 cgrp = cgroup_parent(cgrp);
842b597e
TH
646 } while (cgrp);
647}
648
0de0942d
TH
649/**
650 * css_set_update_populated - update populated state of a css_set
651 * @cset: target css_set
652 * @populated: whether @cset is populated or depopulated
653 *
654 * @cset is either getting the first task or losing the last. Update the
655 * ->populated_cnt of all associated cgroups accordingly.
656 */
657static void css_set_update_populated(struct css_set *cset, bool populated)
658{
659 struct cgrp_cset_link *link;
660
661 lockdep_assert_held(&css_set_rwsem);
662
663 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
664 cgroup_update_populated(link->cgrp, populated);
665}
666
f6d7d049
TH
667/**
668 * css_set_move_task - move a task from one css_set to another
669 * @task: task being moved
670 * @from_cset: css_set @task currently belongs to (may be NULL)
671 * @to_cset: new css_set @task is being moved to (may be NULL)
672 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
673 *
674 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
675 * css_set, @from_cset can be NULL. If @task is being disassociated
676 * instead of moved, @to_cset can be NULL.
677 *
678 * This function automatically handles populated_cnt updates but the caller
679 * is responsible for managing @from_cset and @to_cset's reference counts.
680 */
681static void css_set_move_task(struct task_struct *task,
682 struct css_set *from_cset, struct css_set *to_cset,
683 bool use_mg_tasks)
684{
685 lockdep_assert_held(&css_set_rwsem);
686
687 if (from_cset) {
688 WARN_ON_ONCE(list_empty(&task->cg_list));
689 list_del_init(&task->cg_list);
690 if (!css_set_populated(from_cset))
691 css_set_update_populated(from_cset, false);
692 } else {
693 WARN_ON_ONCE(!list_empty(&task->cg_list));
694 }
695
696 if (to_cset) {
697 /*
698 * We are synchronized through cgroup_threadgroup_rwsem
699 * against PF_EXITING setting such that we can't race
700 * against cgroup_exit() changing the css_set to
701 * init_css_set and dropping the old one.
702 */
703 WARN_ON_ONCE(task->flags & PF_EXITING);
704
705 if (!css_set_populated(to_cset))
706 css_set_update_populated(to_cset, true);
707 rcu_assign_pointer(task->cgroups, to_cset);
708 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
709 &to_cset->tasks);
710 }
711}
712
7717f7ba
PM
713/*
714 * hash table for cgroup groups. This improves the performance to find
715 * an existing css_set. This hash doesn't (currently) take into
716 * account cgroups in empty hierarchies.
717 */
472b1053 718#define CSS_SET_HASH_BITS 7
0ac801fe 719static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
472b1053 720
0ac801fe 721static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
472b1053 722{
0ac801fe 723 unsigned long key = 0UL;
30159ec7
TH
724 struct cgroup_subsys *ss;
725 int i;
472b1053 726
30159ec7 727 for_each_subsys(ss, i)
0ac801fe
LZ
728 key += (unsigned long)css[i];
729 key = (key >> 16) ^ key;
472b1053 730
0ac801fe 731 return key;
472b1053
LZ
732}
733
a25eb52e 734static void put_css_set_locked(struct css_set *cset)
b4f48b63 735{
69d0206c 736 struct cgrp_cset_link *link, *tmp_link;
2d8f243a
TH
737 struct cgroup_subsys *ss;
738 int ssid;
5abb8855 739
89c5509b
TH
740 lockdep_assert_held(&css_set_rwsem);
741
742 if (!atomic_dec_and_test(&cset->refcount))
146aa1bd 743 return;
81a6a5cd 744
2c6ab6d2 745 /* This css_set is dead. unlink it and release cgroup refcounts */
2d8f243a
TH
746 for_each_subsys(ss, ssid)
747 list_del(&cset->e_cset_node[ssid]);
5abb8855 748 hash_del(&cset->hlist);
2c6ab6d2
PM
749 css_set_count--;
750
69d0206c 751 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
69d0206c
TH
752 list_del(&link->cset_link);
753 list_del(&link->cgrp_link);
2ceb231b
TH
754 if (cgroup_parent(link->cgrp))
755 cgroup_put(link->cgrp);
2c6ab6d2 756 kfree(link);
81a6a5cd 757 }
2c6ab6d2 758
5abb8855 759 kfree_rcu(cset, rcu_head);
b4f48b63
PM
760}
761
a25eb52e 762static void put_css_set(struct css_set *cset)
89c5509b
TH
763{
764 /*
765 * Ensure that the refcount doesn't hit zero while any readers
766 * can see it. Similar to atomic_dec_and_lock(), but for an
767 * rwlock
768 */
769 if (atomic_add_unless(&cset->refcount, -1, 1))
770 return;
771
772 down_write(&css_set_rwsem);
a25eb52e 773 put_css_set_locked(cset);
89c5509b
TH
774 up_write(&css_set_rwsem);
775}
776
817929ec
PM
777/*
778 * refcounted get/put for css_set objects
779 */
5abb8855 780static inline void get_css_set(struct css_set *cset)
817929ec 781{
5abb8855 782 atomic_inc(&cset->refcount);
817929ec
PM
783}
784
b326f9d0 785/**
7717f7ba 786 * compare_css_sets - helper function for find_existing_css_set().
5abb8855
TH
787 * @cset: candidate css_set being tested
788 * @old_cset: existing css_set for a task
7717f7ba
PM
789 * @new_cgrp: cgroup that's being entered by the task
790 * @template: desired set of css pointers in css_set (pre-calculated)
791 *
6f4b7e63 792 * Returns true if "cset" matches "old_cset" except for the hierarchy
7717f7ba
PM
793 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
794 */
5abb8855
TH
795static bool compare_css_sets(struct css_set *cset,
796 struct css_set *old_cset,
7717f7ba
PM
797 struct cgroup *new_cgrp,
798 struct cgroup_subsys_state *template[])
799{
800 struct list_head *l1, *l2;
801
aec3dfcb
TH
802 /*
803 * On the default hierarchy, there can be csets which are
804 * associated with the same set of cgroups but different csses.
805 * Let's first ensure that csses match.
806 */
807 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
7717f7ba 808 return false;
7717f7ba
PM
809
810 /*
811 * Compare cgroup pointers in order to distinguish between
aec3dfcb
TH
812 * different cgroups in hierarchies. As different cgroups may
813 * share the same effective css, this comparison is always
814 * necessary.
7717f7ba 815 */
69d0206c
TH
816 l1 = &cset->cgrp_links;
817 l2 = &old_cset->cgrp_links;
7717f7ba 818 while (1) {
69d0206c 819 struct cgrp_cset_link *link1, *link2;
5abb8855 820 struct cgroup *cgrp1, *cgrp2;
7717f7ba
PM
821
822 l1 = l1->next;
823 l2 = l2->next;
824 /* See if we reached the end - both lists are equal length. */
69d0206c
TH
825 if (l1 == &cset->cgrp_links) {
826 BUG_ON(l2 != &old_cset->cgrp_links);
7717f7ba
PM
827 break;
828 } else {
69d0206c 829 BUG_ON(l2 == &old_cset->cgrp_links);
7717f7ba
PM
830 }
831 /* Locate the cgroups associated with these links. */
69d0206c
TH
832 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
833 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
834 cgrp1 = link1->cgrp;
835 cgrp2 = link2->cgrp;
7717f7ba 836 /* Hierarchies should be linked in the same order. */
5abb8855 837 BUG_ON(cgrp1->root != cgrp2->root);
7717f7ba
PM
838
839 /*
840 * If this hierarchy is the hierarchy of the cgroup
841 * that's changing, then we need to check that this
842 * css_set points to the new cgroup; if it's any other
843 * hierarchy, then this css_set should point to the
844 * same cgroup as the old css_set.
845 */
5abb8855
TH
846 if (cgrp1->root == new_cgrp->root) {
847 if (cgrp1 != new_cgrp)
7717f7ba
PM
848 return false;
849 } else {
5abb8855 850 if (cgrp1 != cgrp2)
7717f7ba
PM
851 return false;
852 }
853 }
854 return true;
855}
856
b326f9d0
TH
857/**
858 * find_existing_css_set - init css array and find the matching css_set
859 * @old_cset: the css_set that we're using before the cgroup transition
860 * @cgrp: the cgroup that we're moving into
861 * @template: out param for the new set of csses, should be clear on entry
817929ec 862 */
5abb8855
TH
863static struct css_set *find_existing_css_set(struct css_set *old_cset,
864 struct cgroup *cgrp,
865 struct cgroup_subsys_state *template[])
b4f48b63 866{
3dd06ffa 867 struct cgroup_root *root = cgrp->root;
30159ec7 868 struct cgroup_subsys *ss;
5abb8855 869 struct css_set *cset;
0ac801fe 870 unsigned long key;
b326f9d0 871 int i;
817929ec 872
aae8aab4
BB
873 /*
874 * Build the set of subsystem state objects that we want to see in the
875 * new css_set. while subsystems can change globally, the entries here
876 * won't change, so no need for locking.
877 */
30159ec7 878 for_each_subsys(ss, i) {
f392e51c 879 if (root->subsys_mask & (1UL << i)) {
aec3dfcb
TH
880 /*
881 * @ss is in this hierarchy, so we want the
882 * effective css from @cgrp.
883 */
884 template[i] = cgroup_e_css(cgrp, ss);
817929ec 885 } else {
aec3dfcb
TH
886 /*
887 * @ss is not in this hierarchy, so we don't want
888 * to change the css.
889 */
5abb8855 890 template[i] = old_cset->subsys[i];
817929ec
PM
891 }
892 }
893
0ac801fe 894 key = css_set_hash(template);
5abb8855
TH
895 hash_for_each_possible(css_set_table, cset, hlist, key) {
896 if (!compare_css_sets(cset, old_cset, cgrp, template))
7717f7ba
PM
897 continue;
898
899 /* This css_set matches what we need */
5abb8855 900 return cset;
472b1053 901 }
817929ec
PM
902
903 /* No existing cgroup group matched */
904 return NULL;
905}
906
69d0206c 907static void free_cgrp_cset_links(struct list_head *links_to_free)
36553434 908{
69d0206c 909 struct cgrp_cset_link *link, *tmp_link;
36553434 910
69d0206c
TH
911 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
912 list_del(&link->cset_link);
36553434
LZ
913 kfree(link);
914 }
915}
916
69d0206c
TH
917/**
918 * allocate_cgrp_cset_links - allocate cgrp_cset_links
919 * @count: the number of links to allocate
920 * @tmp_links: list_head the allocated links are put on
921 *
922 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
923 * through ->cset_link. Returns 0 on success or -errno.
817929ec 924 */
69d0206c 925static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
817929ec 926{
69d0206c 927 struct cgrp_cset_link *link;
817929ec 928 int i;
69d0206c
TH
929
930 INIT_LIST_HEAD(tmp_links);
931
817929ec 932 for (i = 0; i < count; i++) {
f4f4be2b 933 link = kzalloc(sizeof(*link), GFP_KERNEL);
817929ec 934 if (!link) {
69d0206c 935 free_cgrp_cset_links(tmp_links);
817929ec
PM
936 return -ENOMEM;
937 }
69d0206c 938 list_add(&link->cset_link, tmp_links);
817929ec
PM
939 }
940 return 0;
941}
942
c12f65d4
LZ
943/**
944 * link_css_set - a helper function to link a css_set to a cgroup
69d0206c 945 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
5abb8855 946 * @cset: the css_set to be linked
c12f65d4
LZ
947 * @cgrp: the destination cgroup
948 */
69d0206c
TH
949static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
950 struct cgroup *cgrp)
c12f65d4 951{
69d0206c 952 struct cgrp_cset_link *link;
c12f65d4 953
69d0206c 954 BUG_ON(list_empty(tmp_links));
6803c006
TH
955
956 if (cgroup_on_dfl(cgrp))
957 cset->dfl_cgrp = cgrp;
958
69d0206c
TH
959 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
960 link->cset = cset;
7717f7ba 961 link->cgrp = cgrp;
842b597e 962
7717f7ba 963 /*
389b9c1b
TH
964 * Always add links to the tail of the lists so that the lists are
965 * in choronological order.
7717f7ba 966 */
389b9c1b 967 list_move_tail(&link->cset_link, &cgrp->cset_links);
69d0206c 968 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
2ceb231b
TH
969
970 if (cgroup_parent(cgrp))
971 cgroup_get(cgrp);
c12f65d4
LZ
972}
973
b326f9d0
TH
974/**
975 * find_css_set - return a new css_set with one cgroup updated
976 * @old_cset: the baseline css_set
977 * @cgrp: the cgroup to be updated
978 *
979 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
980 * substituted into the appropriate hierarchy.
817929ec 981 */
5abb8855
TH
982static struct css_set *find_css_set(struct css_set *old_cset,
983 struct cgroup *cgrp)
817929ec 984{
b326f9d0 985 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
5abb8855 986 struct css_set *cset;
69d0206c
TH
987 struct list_head tmp_links;
988 struct cgrp_cset_link *link;
2d8f243a 989 struct cgroup_subsys *ss;
0ac801fe 990 unsigned long key;
2d8f243a 991 int ssid;
472b1053 992
b326f9d0
TH
993 lockdep_assert_held(&cgroup_mutex);
994
817929ec
PM
995 /* First see if we already have a cgroup group that matches
996 * the desired set */
96d365e0 997 down_read(&css_set_rwsem);
5abb8855
TH
998 cset = find_existing_css_set(old_cset, cgrp, template);
999 if (cset)
1000 get_css_set(cset);
96d365e0 1001 up_read(&css_set_rwsem);
817929ec 1002
5abb8855
TH
1003 if (cset)
1004 return cset;
817929ec 1005
f4f4be2b 1006 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
5abb8855 1007 if (!cset)
817929ec
PM
1008 return NULL;
1009
69d0206c 1010 /* Allocate all the cgrp_cset_link objects that we'll need */
9871bf95 1011 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
5abb8855 1012 kfree(cset);
817929ec
PM
1013 return NULL;
1014 }
1015
5abb8855 1016 atomic_set(&cset->refcount, 1);
69d0206c 1017 INIT_LIST_HEAD(&cset->cgrp_links);
5abb8855 1018 INIT_LIST_HEAD(&cset->tasks);
c7561128 1019 INIT_LIST_HEAD(&cset->mg_tasks);
1958d2d5 1020 INIT_LIST_HEAD(&cset->mg_preload_node);
b3dc094e 1021 INIT_LIST_HEAD(&cset->mg_node);
5abb8855 1022 INIT_HLIST_NODE(&cset->hlist);
817929ec
PM
1023
1024 /* Copy the set of subsystem state objects generated in
1025 * find_existing_css_set() */
5abb8855 1026 memcpy(cset->subsys, template, sizeof(cset->subsys));
817929ec 1027
96d365e0 1028 down_write(&css_set_rwsem);
817929ec 1029 /* Add reference counts and links from the new css_set. */
69d0206c 1030 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
7717f7ba 1031 struct cgroup *c = link->cgrp;
69d0206c 1032
7717f7ba
PM
1033 if (c->root == cgrp->root)
1034 c = cgrp;
69d0206c 1035 link_css_set(&tmp_links, cset, c);
7717f7ba 1036 }
817929ec 1037
69d0206c 1038 BUG_ON(!list_empty(&tmp_links));
817929ec 1039
817929ec 1040 css_set_count++;
472b1053 1041
2d8f243a 1042 /* Add @cset to the hash table */
5abb8855
TH
1043 key = css_set_hash(cset->subsys);
1044 hash_add(css_set_table, &cset->hlist, key);
472b1053 1045
2d8f243a
TH
1046 for_each_subsys(ss, ssid)
1047 list_add_tail(&cset->e_cset_node[ssid],
1048 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1049
96d365e0 1050 up_write(&css_set_rwsem);
817929ec 1051
5abb8855 1052 return cset;
b4f48b63
PM
1053}
1054
3dd06ffa 1055static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
7717f7ba 1056{
3dd06ffa 1057 struct cgroup *root_cgrp = kf_root->kn->priv;
2bd59d48 1058
3dd06ffa 1059 return root_cgrp->root;
2bd59d48
TH
1060}
1061
3dd06ffa 1062static int cgroup_init_root_id(struct cgroup_root *root)
f2e85d57
TH
1063{
1064 int id;
1065
1066 lockdep_assert_held(&cgroup_mutex);
1067
985ed670 1068 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
f2e85d57
TH
1069 if (id < 0)
1070 return id;
1071
1072 root->hierarchy_id = id;
1073 return 0;
1074}
1075
3dd06ffa 1076static void cgroup_exit_root_id(struct cgroup_root *root)
f2e85d57
TH
1077{
1078 lockdep_assert_held(&cgroup_mutex);
1079
1080 if (root->hierarchy_id) {
1081 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1082 root->hierarchy_id = 0;
1083 }
1084}
1085
3dd06ffa 1086static void cgroup_free_root(struct cgroup_root *root)
f2e85d57
TH
1087{
1088 if (root) {
d0f702e6 1089 /* hierarchy ID should already have been released */
f2e85d57
TH
1090 WARN_ON_ONCE(root->hierarchy_id);
1091
1092 idr_destroy(&root->cgroup_idr);
1093 kfree(root);
1094 }
1095}
1096
3dd06ffa 1097static void cgroup_destroy_root(struct cgroup_root *root)
59f5296b 1098{
3dd06ffa 1099 struct cgroup *cgrp = &root->cgrp;
f2e85d57 1100 struct cgrp_cset_link *link, *tmp_link;
f2e85d57 1101
2bd59d48 1102 mutex_lock(&cgroup_mutex);
f2e85d57 1103
776f02fa 1104 BUG_ON(atomic_read(&root->nr_cgrps));
d5c419b6 1105 BUG_ON(!list_empty(&cgrp->self.children));
f2e85d57 1106
f2e85d57 1107 /* Rebind all subsystems back to the default hierarchy */
f392e51c 1108 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
7717f7ba 1109
7717f7ba 1110 /*
f2e85d57
TH
1111 * Release all the links from cset_links to this hierarchy's
1112 * root cgroup
7717f7ba 1113 */
96d365e0 1114 down_write(&css_set_rwsem);
f2e85d57
TH
1115
1116 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1117 list_del(&link->cset_link);
1118 list_del(&link->cgrp_link);
1119 kfree(link);
1120 }
96d365e0 1121 up_write(&css_set_rwsem);
f2e85d57
TH
1122
1123 if (!list_empty(&root->root_list)) {
1124 list_del(&root->root_list);
1125 cgroup_root_count--;
1126 }
1127
1128 cgroup_exit_root_id(root);
1129
1130 mutex_unlock(&cgroup_mutex);
f2e85d57 1131
2bd59d48 1132 kernfs_destroy_root(root->kf_root);
f2e85d57
TH
1133 cgroup_free_root(root);
1134}
1135
ceb6a081
TH
1136/* look up cgroup associated with given css_set on the specified hierarchy */
1137static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
3dd06ffa 1138 struct cgroup_root *root)
7717f7ba 1139{
7717f7ba
PM
1140 struct cgroup *res = NULL;
1141
96d365e0
TH
1142 lockdep_assert_held(&cgroup_mutex);
1143 lockdep_assert_held(&css_set_rwsem);
1144
5abb8855 1145 if (cset == &init_css_set) {
3dd06ffa 1146 res = &root->cgrp;
7717f7ba 1147 } else {
69d0206c
TH
1148 struct cgrp_cset_link *link;
1149
1150 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 1151 struct cgroup *c = link->cgrp;
69d0206c 1152
7717f7ba
PM
1153 if (c->root == root) {
1154 res = c;
1155 break;
1156 }
1157 }
1158 }
96d365e0 1159
7717f7ba
PM
1160 BUG_ON(!res);
1161 return res;
1162}
1163
ddbcc7e8 1164/*
ceb6a081
TH
1165 * Return the cgroup for "task" from the given hierarchy. Must be
1166 * called with cgroup_mutex and css_set_rwsem held.
1167 */
1168static struct cgroup *task_cgroup_from_root(struct task_struct *task,
3dd06ffa 1169 struct cgroup_root *root)
ceb6a081
TH
1170{
1171 /*
1172 * No need to lock the task - since we hold cgroup_mutex the
1173 * task can't change groups, so the only thing that can happen
1174 * is that it exits and its css is set back to init_css_set.
1175 */
1176 return cset_cgroup_from_root(task_css_set(task), root);
1177}
1178
ddbcc7e8 1179/*
ddbcc7e8
PM
1180 * A task must hold cgroup_mutex to modify cgroups.
1181 *
1182 * Any task can increment and decrement the count field without lock.
1183 * So in general, code holding cgroup_mutex can't rely on the count
1184 * field not changing. However, if the count goes to zero, then only
956db3ca 1185 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
1186 * means that no tasks are currently attached, therefore there is no
1187 * way a task attached to that cgroup can fork (the other way to
1188 * increment the count). So code holding cgroup_mutex can safely
1189 * assume that if the count is zero, it will stay zero. Similarly, if
1190 * a task holds cgroup_mutex on a cgroup with zero count, it
1191 * knows that the cgroup won't be removed, as cgroup_rmdir()
1192 * needs that mutex.
1193 *
ddbcc7e8
PM
1194 * A cgroup can only be deleted if both its 'count' of using tasks
1195 * is zero, and its list of 'children' cgroups is empty. Since all
1196 * tasks in the system use _some_ cgroup, and since there is always at
3dd06ffa 1197 * least one task in the system (init, pid == 1), therefore, root cgroup
ddbcc7e8 1198 * always has either children cgroups and/or using tasks. So we don't
3dd06ffa 1199 * need a special hack to ensure that root cgroup cannot be deleted.
ddbcc7e8
PM
1200 *
1201 * P.S. One more locking exception. RCU is used to guard the
956db3ca 1202 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
1203 */
1204
2bd59d48 1205static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
828c0950 1206static const struct file_operations proc_cgroupstats_operations;
a424316c 1207
8d7e6fb0
TH
1208static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1209 char *buf)
ddbcc7e8 1210{
3e1d2eed
TH
1211 struct cgroup_subsys *ss = cft->ss;
1212
8d7e6fb0
TH
1213 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1214 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1215 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
3e1d2eed
TH
1216 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1217 cft->name);
8d7e6fb0
TH
1218 else
1219 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1220 return buf;
ddbcc7e8
PM
1221}
1222
f2e85d57
TH
1223/**
1224 * cgroup_file_mode - deduce file mode of a control file
1225 * @cft: the control file in question
1226 *
7dbdb199 1227 * S_IRUGO for read, S_IWUSR for write.
f2e85d57
TH
1228 */
1229static umode_t cgroup_file_mode(const struct cftype *cft)
65dff759 1230{
f2e85d57 1231 umode_t mode = 0;
65dff759 1232
f2e85d57
TH
1233 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1234 mode |= S_IRUGO;
1235
7dbdb199
TH
1236 if (cft->write_u64 || cft->write_s64 || cft->write) {
1237 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1238 mode |= S_IWUGO;
1239 else
1240 mode |= S_IWUSR;
1241 }
f2e85d57
TH
1242
1243 return mode;
65dff759
LZ
1244}
1245
af0ba678 1246/**
0f060deb 1247 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
af0ba678 1248 * @cgrp: the target cgroup
0f060deb 1249 * @subtree_control: the new subtree_control mask to consider
af0ba678
TH
1250 *
1251 * On the default hierarchy, a subsystem may request other subsystems to be
1252 * enabled together through its ->depends_on mask. In such cases, more
1253 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1254 *
0f060deb
TH
1255 * This function calculates which subsystems need to be enabled if
1256 * @subtree_control is to be applied to @cgrp. The returned mask is always
1257 * a superset of @subtree_control and follows the usual hierarchy rules.
af0ba678 1258 */
8ab456ac
AS
1259static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1260 unsigned long subtree_control)
667c2491 1261{
af0ba678 1262 struct cgroup *parent = cgroup_parent(cgrp);
8ab456ac 1263 unsigned long cur_ss_mask = subtree_control;
af0ba678
TH
1264 struct cgroup_subsys *ss;
1265 int ssid;
1266
1267 lockdep_assert_held(&cgroup_mutex);
1268
0f060deb
TH
1269 if (!cgroup_on_dfl(cgrp))
1270 return cur_ss_mask;
af0ba678
TH
1271
1272 while (true) {
8ab456ac 1273 unsigned long new_ss_mask = cur_ss_mask;
af0ba678 1274
a966a4ed
AS
1275 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1276 new_ss_mask |= ss->depends_on;
af0ba678
TH
1277
1278 /*
1279 * Mask out subsystems which aren't available. This can
1280 * happen only if some depended-upon subsystems were bound
1281 * to non-default hierarchies.
1282 */
1283 if (parent)
1284 new_ss_mask &= parent->child_subsys_mask;
1285 else
1286 new_ss_mask &= cgrp->root->subsys_mask;
1287
1288 if (new_ss_mask == cur_ss_mask)
1289 break;
1290 cur_ss_mask = new_ss_mask;
1291 }
1292
0f060deb
TH
1293 return cur_ss_mask;
1294}
1295
1296/**
1297 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1298 * @cgrp: the target cgroup
1299 *
1300 * Update @cgrp->child_subsys_mask according to the current
1301 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1302 */
1303static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1304{
1305 cgrp->child_subsys_mask =
1306 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
667c2491
TH
1307}
1308
a9746d8d
TH
1309/**
1310 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1311 * @kn: the kernfs_node being serviced
1312 *
1313 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1314 * the method finishes if locking succeeded. Note that once this function
1315 * returns the cgroup returned by cgroup_kn_lock_live() may become
1316 * inaccessible any time. If the caller intends to continue to access the
1317 * cgroup, it should pin it before invoking this function.
1318 */
1319static void cgroup_kn_unlock(struct kernfs_node *kn)
ddbcc7e8 1320{
a9746d8d
TH
1321 struct cgroup *cgrp;
1322
1323 if (kernfs_type(kn) == KERNFS_DIR)
1324 cgrp = kn->priv;
1325 else
1326 cgrp = kn->parent->priv;
1327
1328 mutex_unlock(&cgroup_mutex);
a9746d8d
TH
1329
1330 kernfs_unbreak_active_protection(kn);
1331 cgroup_put(cgrp);
ddbcc7e8
PM
1332}
1333
a9746d8d
TH
1334/**
1335 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1336 * @kn: the kernfs_node being serviced
1337 *
1338 * This helper is to be used by a cgroup kernfs method currently servicing
1339 * @kn. It breaks the active protection, performs cgroup locking and
1340 * verifies that the associated cgroup is alive. Returns the cgroup if
1341 * alive; otherwise, %NULL. A successful return should be undone by a
1342 * matching cgroup_kn_unlock() invocation.
1343 *
1344 * Any cgroup kernfs method implementation which requires locking the
1345 * associated cgroup should use this helper. It avoids nesting cgroup
1346 * locking under kernfs active protection and allows all kernfs operations
1347 * including self-removal.
1348 */
1349static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
05ef1d7c 1350{
a9746d8d
TH
1351 struct cgroup *cgrp;
1352
1353 if (kernfs_type(kn) == KERNFS_DIR)
1354 cgrp = kn->priv;
1355 else
1356 cgrp = kn->parent->priv;
05ef1d7c 1357
2739d3cc 1358 /*
01f6474c 1359 * We're gonna grab cgroup_mutex which nests outside kernfs
a9746d8d
TH
1360 * active_ref. cgroup liveliness check alone provides enough
1361 * protection against removal. Ensure @cgrp stays accessible and
1362 * break the active_ref protection.
2739d3cc 1363 */
aa32362f
LZ
1364 if (!cgroup_tryget(cgrp))
1365 return NULL;
a9746d8d
TH
1366 kernfs_break_active_protection(kn);
1367
2bd59d48 1368 mutex_lock(&cgroup_mutex);
05ef1d7c 1369
a9746d8d
TH
1370 if (!cgroup_is_dead(cgrp))
1371 return cgrp;
1372
1373 cgroup_kn_unlock(kn);
1374 return NULL;
ddbcc7e8 1375}
05ef1d7c 1376
2739d3cc 1377static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
05ef1d7c 1378{
2bd59d48 1379 char name[CGROUP_FILE_NAME_MAX];
05ef1d7c 1380
01f6474c 1381 lockdep_assert_held(&cgroup_mutex);
2bd59d48 1382 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
05ef1d7c
TH
1383}
1384
13af07df 1385/**
4df8dc90
TH
1386 * css_clear_dir - remove subsys files in a cgroup directory
1387 * @css: taget css
1388 * @cgrp_override: specify if target cgroup is different from css->cgroup
13af07df 1389 */
4df8dc90
TH
1390static void css_clear_dir(struct cgroup_subsys_state *css,
1391 struct cgroup *cgrp_override)
05ef1d7c 1392{
4df8dc90
TH
1393 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1394 struct cftype *cfts;
05ef1d7c 1395
4df8dc90
TH
1396 list_for_each_entry(cfts, &css->ss->cfts, node)
1397 cgroup_addrm_files(css, cgrp, cfts, false);
ddbcc7e8
PM
1398}
1399
ccdca218 1400/**
4df8dc90
TH
1401 * css_populate_dir - create subsys files in a cgroup directory
1402 * @css: target css
1403 * @cgrp_overried: specify if target cgroup is different from css->cgroup
ccdca218
TH
1404 *
1405 * On failure, no file is added.
1406 */
4df8dc90
TH
1407static int css_populate_dir(struct cgroup_subsys_state *css,
1408 struct cgroup *cgrp_override)
ccdca218 1409{
4df8dc90
TH
1410 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1411 struct cftype *cfts, *failed_cfts;
1412 int ret;
ccdca218 1413
4df8dc90
TH
1414 if (!css->ss) {
1415 if (cgroup_on_dfl(cgrp))
1416 cfts = cgroup_dfl_base_files;
1417 else
1418 cfts = cgroup_legacy_base_files;
ccdca218 1419
4df8dc90
TH
1420 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1421 }
ccdca218 1422
4df8dc90
TH
1423 list_for_each_entry(cfts, &css->ss->cfts, node) {
1424 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1425 if (ret < 0) {
1426 failed_cfts = cfts;
1427 goto err;
ccdca218
TH
1428 }
1429 }
1430 return 0;
1431err:
4df8dc90
TH
1432 list_for_each_entry(cfts, &css->ss->cfts, node) {
1433 if (cfts == failed_cfts)
1434 break;
1435 cgroup_addrm_files(css, cgrp, cfts, false);
1436 }
ccdca218
TH
1437 return ret;
1438}
1439
8ab456ac
AS
1440static int rebind_subsystems(struct cgroup_root *dst_root,
1441 unsigned long ss_mask)
ddbcc7e8 1442{
1ada4838 1443 struct cgroup *dcgrp = &dst_root->cgrp;
30159ec7 1444 struct cgroup_subsys *ss;
8ab456ac 1445 unsigned long tmp_ss_mask;
2d8f243a 1446 int ssid, i, ret;
ddbcc7e8 1447
ace2bee8 1448 lockdep_assert_held(&cgroup_mutex);
ddbcc7e8 1449
a966a4ed 1450 for_each_subsys_which(ss, ssid, &ss_mask) {
7fd8c565
TH
1451 /* if @ss has non-root csses attached to it, can't move */
1452 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
3ed80a62 1453 return -EBUSY;
1d5be6b2 1454
5df36032 1455 /* can't move between two non-dummy roots either */
7fd8c565 1456 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
5df36032 1457 return -EBUSY;
ddbcc7e8
PM
1458 }
1459
5533e011
TH
1460 /* skip creating root files on dfl_root for inhibited subsystems */
1461 tmp_ss_mask = ss_mask;
1462 if (dst_root == &cgrp_dfl_root)
1463 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1464
4df8dc90
TH
1465 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1466 struct cgroup *scgrp = &ss->root->cgrp;
1467 int tssid;
1468
1469 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1470 if (!ret)
1471 continue;
ddbcc7e8 1472
a2dd4247
TH
1473 /*
1474 * Rebinding back to the default root is not allowed to
1475 * fail. Using both default and non-default roots should
1476 * be rare. Moving subsystems back and forth even more so.
1477 * Just warn about it and continue.
1478 */
4df8dc90
TH
1479 if (dst_root == &cgrp_dfl_root) {
1480 if (cgrp_dfl_root_visible) {
1481 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1482 ret, ss_mask);
1483 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1484 }
1485 continue;
a2dd4247 1486 }
4df8dc90
TH
1487
1488 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1489 if (tssid == ssid)
1490 break;
1491 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1492 }
1493 return ret;
5df36032 1494 }
3126121f
TH
1495
1496 /*
1497 * Nothing can fail from this point on. Remove files for the
1498 * removed subsystems and rebind each subsystem.
1499 */
a966a4ed 1500 for_each_subsys_which(ss, ssid, &ss_mask) {
1ada4838
TH
1501 struct cgroup_root *src_root = ss->root;
1502 struct cgroup *scgrp = &src_root->cgrp;
1503 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
2d8f243a 1504 struct css_set *cset;
a8a648c4 1505
1ada4838 1506 WARN_ON(!css || cgroup_css(dcgrp, ss));
a8a648c4 1507
4df8dc90
TH
1508 css_clear_dir(css, NULL);
1509
1ada4838
TH
1510 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1511 rcu_assign_pointer(dcgrp->subsys[ssid], css);
5df36032 1512 ss->root = dst_root;
1ada4838 1513 css->cgroup = dcgrp;
73e80ed8 1514
2d8f243a
TH
1515 down_write(&css_set_rwsem);
1516 hash_for_each(css_set_table, i, cset, hlist)
1517 list_move_tail(&cset->e_cset_node[ss->id],
1ada4838 1518 &dcgrp->e_csets[ss->id]);
2d8f243a
TH
1519 up_write(&css_set_rwsem);
1520
f392e51c 1521 src_root->subsys_mask &= ~(1 << ssid);
1ada4838
TH
1522 scgrp->subtree_control &= ~(1 << ssid);
1523 cgroup_refresh_child_subsys_mask(scgrp);
f392e51c 1524
bd53d617 1525 /* default hierarchy doesn't enable controllers by default */
f392e51c 1526 dst_root->subsys_mask |= 1 << ssid;
49d1dc4b
TH
1527 if (dst_root == &cgrp_dfl_root) {
1528 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1529 } else {
1ada4838
TH
1530 dcgrp->subtree_control |= 1 << ssid;
1531 cgroup_refresh_child_subsys_mask(dcgrp);
49d1dc4b 1532 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
667c2491 1533 }
a8a648c4 1534
5df36032
TH
1535 if (ss->bind)
1536 ss->bind(css);
ddbcc7e8 1537 }
ddbcc7e8 1538
1ada4838 1539 kernfs_activate(dcgrp->kn);
ddbcc7e8
PM
1540 return 0;
1541}
1542
2bd59d48
TH
1543static int cgroup_show_options(struct seq_file *seq,
1544 struct kernfs_root *kf_root)
ddbcc7e8 1545{
3dd06ffa 1546 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1547 struct cgroup_subsys *ss;
b85d2040 1548 int ssid;
ddbcc7e8 1549
d98817d4
TH
1550 if (root != &cgrp_dfl_root)
1551 for_each_subsys(ss, ssid)
1552 if (root->subsys_mask & (1 << ssid))
61e57c0c 1553 seq_show_option(seq, ss->legacy_name, NULL);
93438629 1554 if (root->flags & CGRP_ROOT_NOPREFIX)
ddbcc7e8 1555 seq_puts(seq, ",noprefix");
93438629 1556 if (root->flags & CGRP_ROOT_XATTR)
03b1cde6 1557 seq_puts(seq, ",xattr");
69e943b7
TH
1558
1559 spin_lock(&release_agent_path_lock);
81a6a5cd 1560 if (strlen(root->release_agent_path))
a068acf2
KC
1561 seq_show_option(seq, "release_agent",
1562 root->release_agent_path);
69e943b7
TH
1563 spin_unlock(&release_agent_path_lock);
1564
3dd06ffa 1565 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
97978e6d 1566 seq_puts(seq, ",clone_children");
c6d57f33 1567 if (strlen(root->name))
a068acf2 1568 seq_show_option(seq, "name", root->name);
ddbcc7e8
PM
1569 return 0;
1570}
1571
1572struct cgroup_sb_opts {
8ab456ac 1573 unsigned long subsys_mask;
69dfa00c 1574 unsigned int flags;
81a6a5cd 1575 char *release_agent;
2260e7fc 1576 bool cpuset_clone_children;
c6d57f33 1577 char *name;
2c6ab6d2
PM
1578 /* User explicitly requested empty subsystem */
1579 bool none;
ddbcc7e8
PM
1580};
1581
cf5d5941 1582static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1583{
32a8cf23
DL
1584 char *token, *o = data;
1585 bool all_ss = false, one_ss = false;
8ab456ac 1586 unsigned long mask = -1UL;
30159ec7 1587 struct cgroup_subsys *ss;
7b9a6ba5 1588 int nr_opts = 0;
30159ec7 1589 int i;
f9ab5b5b
LZ
1590
1591#ifdef CONFIG_CPUSETS
69dfa00c 1592 mask = ~(1U << cpuset_cgrp_id);
f9ab5b5b 1593#endif
ddbcc7e8 1594
c6d57f33 1595 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1596
1597 while ((token = strsep(&o, ",")) != NULL) {
7b9a6ba5
TH
1598 nr_opts++;
1599
ddbcc7e8
PM
1600 if (!*token)
1601 return -EINVAL;
32a8cf23 1602 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1603 /* Explicitly have no subsystems */
1604 opts->none = true;
32a8cf23
DL
1605 continue;
1606 }
1607 if (!strcmp(token, "all")) {
1608 /* Mutually exclusive option 'all' + subsystem name */
1609 if (one_ss)
1610 return -EINVAL;
1611 all_ss = true;
1612 continue;
1613 }
873fe09e
TH
1614 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1615 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1616 continue;
1617 }
32a8cf23 1618 if (!strcmp(token, "noprefix")) {
93438629 1619 opts->flags |= CGRP_ROOT_NOPREFIX;
32a8cf23
DL
1620 continue;
1621 }
1622 if (!strcmp(token, "clone_children")) {
2260e7fc 1623 opts->cpuset_clone_children = true;
32a8cf23
DL
1624 continue;
1625 }
03b1cde6 1626 if (!strcmp(token, "xattr")) {
93438629 1627 opts->flags |= CGRP_ROOT_XATTR;
03b1cde6
AR
1628 continue;
1629 }
32a8cf23 1630 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1631 /* Specifying two release agents is forbidden */
1632 if (opts->release_agent)
1633 return -EINVAL;
c6d57f33 1634 opts->release_agent =
e400c285 1635 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1636 if (!opts->release_agent)
1637 return -ENOMEM;
32a8cf23
DL
1638 continue;
1639 }
1640 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1641 const char *name = token + 5;
1642 /* Can't specify an empty name */
1643 if (!strlen(name))
1644 return -EINVAL;
1645 /* Must match [\w.-]+ */
1646 for (i = 0; i < strlen(name); i++) {
1647 char c = name[i];
1648 if (isalnum(c))
1649 continue;
1650 if ((c == '.') || (c == '-') || (c == '_'))
1651 continue;
1652 return -EINVAL;
1653 }
1654 /* Specifying two names is forbidden */
1655 if (opts->name)
1656 return -EINVAL;
1657 opts->name = kstrndup(name,
e400c285 1658 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1659 GFP_KERNEL);
1660 if (!opts->name)
1661 return -ENOMEM;
32a8cf23
DL
1662
1663 continue;
1664 }
1665
30159ec7 1666 for_each_subsys(ss, i) {
3e1d2eed 1667 if (strcmp(token, ss->legacy_name))
32a8cf23 1668 continue;
fc5ed1e9 1669 if (!cgroup_ssid_enabled(i))
32a8cf23
DL
1670 continue;
1671
1672 /* Mutually exclusive option 'all' + subsystem name */
1673 if (all_ss)
1674 return -EINVAL;
69dfa00c 1675 opts->subsys_mask |= (1 << i);
32a8cf23
DL
1676 one_ss = true;
1677
1678 break;
1679 }
1680 if (i == CGROUP_SUBSYS_COUNT)
1681 return -ENOENT;
1682 }
1683
873fe09e 1684 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
ed3d261b 1685 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
7b9a6ba5
TH
1686 if (nr_opts != 1) {
1687 pr_err("sane_behavior: no other mount options allowed\n");
873fe09e
TH
1688 return -EINVAL;
1689 }
7b9a6ba5 1690 return 0;
873fe09e
TH
1691 }
1692
7b9a6ba5
TH
1693 /*
1694 * If the 'all' option was specified select all the subsystems,
1695 * otherwise if 'none', 'name=' and a subsystem name options were
1696 * not specified, let's default to 'all'
1697 */
1698 if (all_ss || (!one_ss && !opts->none && !opts->name))
1699 for_each_subsys(ss, i)
fc5ed1e9 1700 if (cgroup_ssid_enabled(i))
7b9a6ba5
TH
1701 opts->subsys_mask |= (1 << i);
1702
1703 /*
1704 * We either have to specify by name or by subsystems. (So all
1705 * empty hierarchies must have a name).
1706 */
1707 if (!opts->subsys_mask && !opts->name)
1708 return -EINVAL;
1709
f9ab5b5b
LZ
1710 /*
1711 * Option noprefix was introduced just for backward compatibility
1712 * with the old cpuset, so we allow noprefix only if mounting just
1713 * the cpuset subsystem.
1714 */
93438629 1715 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
f9ab5b5b
LZ
1716 return -EINVAL;
1717
2c6ab6d2 1718 /* Can't specify "none" and some subsystems */
a1a71b45 1719 if (opts->subsys_mask && opts->none)
2c6ab6d2
PM
1720 return -EINVAL;
1721
ddbcc7e8
PM
1722 return 0;
1723}
1724
2bd59d48 1725static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
ddbcc7e8
PM
1726{
1727 int ret = 0;
3dd06ffa 1728 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
ddbcc7e8 1729 struct cgroup_sb_opts opts;
8ab456ac 1730 unsigned long added_mask, removed_mask;
ddbcc7e8 1731
aa6ec29b
TH
1732 if (root == &cgrp_dfl_root) {
1733 pr_err("remount is not allowed\n");
873fe09e
TH
1734 return -EINVAL;
1735 }
1736
ddbcc7e8
PM
1737 mutex_lock(&cgroup_mutex);
1738
1739 /* See what subsystems are wanted */
1740 ret = parse_cgroupfs_options(data, &opts);
1741 if (ret)
1742 goto out_unlock;
1743
f392e51c 1744 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
ed3d261b 1745 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
a2a1f9ea 1746 task_tgid_nr(current), current->comm);
8b5a5a9d 1747
f392e51c
TH
1748 added_mask = opts.subsys_mask & ~root->subsys_mask;
1749 removed_mask = root->subsys_mask & ~opts.subsys_mask;
13af07df 1750
cf5d5941 1751 /* Don't allow flags or name to change at remount */
7450e90b 1752 if ((opts.flags ^ root->flags) ||
cf5d5941 1753 (opts.name && strcmp(opts.name, root->name))) {
69dfa00c 1754 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
7450e90b 1755 opts.flags, opts.name ?: "", root->flags, root->name);
c6d57f33
PM
1756 ret = -EINVAL;
1757 goto out_unlock;
1758 }
1759
f172e67c 1760 /* remounting is not allowed for populated hierarchies */
d5c419b6 1761 if (!list_empty(&root->cgrp.self.children)) {
f172e67c 1762 ret = -EBUSY;
0670e08b 1763 goto out_unlock;
cf5d5941 1764 }
ddbcc7e8 1765
5df36032 1766 ret = rebind_subsystems(root, added_mask);
3126121f 1767 if (ret)
0670e08b 1768 goto out_unlock;
ddbcc7e8 1769
3dd06ffa 1770 rebind_subsystems(&cgrp_dfl_root, removed_mask);
5df36032 1771
69e943b7
TH
1772 if (opts.release_agent) {
1773 spin_lock(&release_agent_path_lock);
81a6a5cd 1774 strcpy(root->release_agent_path, opts.release_agent);
69e943b7
TH
1775 spin_unlock(&release_agent_path_lock);
1776 }
ddbcc7e8 1777 out_unlock:
66bdc9cf 1778 kfree(opts.release_agent);
c6d57f33 1779 kfree(opts.name);
ddbcc7e8 1780 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
1781 return ret;
1782}
1783
afeb0f9f
TH
1784/*
1785 * To reduce the fork() overhead for systems that are not actually using
1786 * their cgroups capability, we don't maintain the lists running through
1787 * each css_set to its tasks until we see the list actually used - in other
1788 * words after the first mount.
1789 */
1790static bool use_task_css_set_links __read_mostly;
1791
1792static void cgroup_enable_task_cg_lists(void)
1793{
1794 struct task_struct *p, *g;
1795
96d365e0 1796 down_write(&css_set_rwsem);
afeb0f9f
TH
1797
1798 if (use_task_css_set_links)
1799 goto out_unlock;
1800
1801 use_task_css_set_links = true;
1802
1803 /*
1804 * We need tasklist_lock because RCU is not safe against
1805 * while_each_thread(). Besides, a forking task that has passed
1806 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1807 * is not guaranteed to have its child immediately visible in the
1808 * tasklist if we walk through it with RCU.
1809 */
1810 read_lock(&tasklist_lock);
1811 do_each_thread(g, p) {
afeb0f9f
TH
1812 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1813 task_css_set(p) != &init_css_set);
1814
1815 /*
1816 * We should check if the process is exiting, otherwise
1817 * it will race with cgroup_exit() in that the list
1818 * entry won't be deleted though the process has exited.
f153ad11
TH
1819 * Do it while holding siglock so that we don't end up
1820 * racing against cgroup_exit().
afeb0f9f 1821 */
f153ad11 1822 spin_lock_irq(&p->sighand->siglock);
eaf797ab
TH
1823 if (!(p->flags & PF_EXITING)) {
1824 struct css_set *cset = task_css_set(p);
1825
0de0942d
TH
1826 if (!css_set_populated(cset))
1827 css_set_update_populated(cset, true);
389b9c1b 1828 list_add_tail(&p->cg_list, &cset->tasks);
eaf797ab
TH
1829 get_css_set(cset);
1830 }
f153ad11 1831 spin_unlock_irq(&p->sighand->siglock);
afeb0f9f
TH
1832 } while_each_thread(g, p);
1833 read_unlock(&tasklist_lock);
1834out_unlock:
96d365e0 1835 up_write(&css_set_rwsem);
afeb0f9f 1836}
ddbcc7e8 1837
cc31edce
PM
1838static void init_cgroup_housekeeping(struct cgroup *cgrp)
1839{
2d8f243a
TH
1840 struct cgroup_subsys *ss;
1841 int ssid;
1842
d5c419b6
TH
1843 INIT_LIST_HEAD(&cgrp->self.sibling);
1844 INIT_LIST_HEAD(&cgrp->self.children);
6f60eade 1845 INIT_LIST_HEAD(&cgrp->self.files);
69d0206c 1846 INIT_LIST_HEAD(&cgrp->cset_links);
72a8cb30
BB
1847 INIT_LIST_HEAD(&cgrp->pidlists);
1848 mutex_init(&cgrp->pidlist_mutex);
9d800df1 1849 cgrp->self.cgroup = cgrp;
184faf32 1850 cgrp->self.flags |= CSS_ONLINE;
2d8f243a
TH
1851
1852 for_each_subsys(ss, ssid)
1853 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
f8f22e53
TH
1854
1855 init_waitqueue_head(&cgrp->offline_waitq);
971ff493 1856 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
cc31edce 1857}
c6d57f33 1858
3dd06ffa 1859static void init_cgroup_root(struct cgroup_root *root,
172a2c06 1860 struct cgroup_sb_opts *opts)
ddbcc7e8 1861{
3dd06ffa 1862 struct cgroup *cgrp = &root->cgrp;
b0ca5a84 1863
ddbcc7e8 1864 INIT_LIST_HEAD(&root->root_list);
3c9c825b 1865 atomic_set(&root->nr_cgrps, 1);
bd89aabc 1866 cgrp->root = root;
cc31edce 1867 init_cgroup_housekeeping(cgrp);
4e96ee8e 1868 idr_init(&root->cgroup_idr);
c6d57f33 1869
c6d57f33
PM
1870 root->flags = opts->flags;
1871 if (opts->release_agent)
1872 strcpy(root->release_agent_path, opts->release_agent);
1873 if (opts->name)
1874 strcpy(root->name, opts->name);
2260e7fc 1875 if (opts->cpuset_clone_children)
3dd06ffa 1876 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
c6d57f33
PM
1877}
1878
8ab456ac 1879static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
2c6ab6d2 1880{
d427dfeb 1881 LIST_HEAD(tmp_links);
3dd06ffa 1882 struct cgroup *root_cgrp = &root->cgrp;
d427dfeb 1883 struct css_set *cset;
d427dfeb 1884 int i, ret;
2c6ab6d2 1885
d427dfeb 1886 lockdep_assert_held(&cgroup_mutex);
c6d57f33 1887
cf780b7d 1888 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
d427dfeb 1889 if (ret < 0)
2bd59d48 1890 goto out;
d427dfeb 1891 root_cgrp->id = ret;
c6d57f33 1892
2aad2a86
TH
1893 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1894 GFP_KERNEL);
9d755d33
TH
1895 if (ret)
1896 goto out;
1897
d427dfeb 1898 /*
96d365e0 1899 * We're accessing css_set_count without locking css_set_rwsem here,
d427dfeb
TH
1900 * but that's OK - it can only be increased by someone holding
1901 * cgroup_lock, and that's us. The worst that can happen is that we
1902 * have some link structures left over
1903 */
1904 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1905 if (ret)
9d755d33 1906 goto cancel_ref;
ddbcc7e8 1907
985ed670 1908 ret = cgroup_init_root_id(root);
ddbcc7e8 1909 if (ret)
9d755d33 1910 goto cancel_ref;
ddbcc7e8 1911
2bd59d48
TH
1912 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1913 KERNFS_ROOT_CREATE_DEACTIVATED,
1914 root_cgrp);
1915 if (IS_ERR(root->kf_root)) {
1916 ret = PTR_ERR(root->kf_root);
1917 goto exit_root_id;
1918 }
1919 root_cgrp->kn = root->kf_root->kn;
ddbcc7e8 1920
4df8dc90 1921 ret = css_populate_dir(&root_cgrp->self, NULL);
d427dfeb 1922 if (ret)
2bd59d48 1923 goto destroy_root;
ddbcc7e8 1924
5df36032 1925 ret = rebind_subsystems(root, ss_mask);
d427dfeb 1926 if (ret)
2bd59d48 1927 goto destroy_root;
ddbcc7e8 1928
d427dfeb
TH
1929 /*
1930 * There must be no failure case after here, since rebinding takes
1931 * care of subsystems' refcounts, which are explicitly dropped in
1932 * the failure exit path.
1933 */
1934 list_add(&root->root_list, &cgroup_roots);
1935 cgroup_root_count++;
0df6a63f 1936
d427dfeb 1937 /*
3dd06ffa 1938 * Link the root cgroup in this hierarchy into all the css_set
d427dfeb
TH
1939 * objects.
1940 */
96d365e0 1941 down_write(&css_set_rwsem);
0de0942d 1942 hash_for_each(css_set_table, i, cset, hlist) {
d427dfeb 1943 link_css_set(&tmp_links, cset, root_cgrp);
0de0942d
TH
1944 if (css_set_populated(cset))
1945 cgroup_update_populated(root_cgrp, true);
1946 }
96d365e0 1947 up_write(&css_set_rwsem);
ddbcc7e8 1948
d5c419b6 1949 BUG_ON(!list_empty(&root_cgrp->self.children));
3c9c825b 1950 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
ddbcc7e8 1951
2bd59d48 1952 kernfs_activate(root_cgrp->kn);
d427dfeb 1953 ret = 0;
2bd59d48 1954 goto out;
d427dfeb 1955
2bd59d48
TH
1956destroy_root:
1957 kernfs_destroy_root(root->kf_root);
1958 root->kf_root = NULL;
1959exit_root_id:
d427dfeb 1960 cgroup_exit_root_id(root);
9d755d33 1961cancel_ref:
9a1049da 1962 percpu_ref_exit(&root_cgrp->self.refcnt);
2bd59d48 1963out:
d427dfeb
TH
1964 free_cgrp_cset_links(&tmp_links);
1965 return ret;
ddbcc7e8
PM
1966}
1967
f7e83571 1968static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1969 int flags, const char *unused_dev_name,
f7e83571 1970 void *data)
ddbcc7e8 1971{
3a32bd72 1972 struct super_block *pinned_sb = NULL;
970317aa 1973 struct cgroup_subsys *ss;
3dd06ffa 1974 struct cgroup_root *root;
ddbcc7e8 1975 struct cgroup_sb_opts opts;
2bd59d48 1976 struct dentry *dentry;
8e30e2b8 1977 int ret;
970317aa 1978 int i;
c6b3d5bc 1979 bool new_sb;
ddbcc7e8 1980
56fde9e0
TH
1981 /*
1982 * The first time anyone tries to mount a cgroup, enable the list
1983 * linking each css_set to its tasks and fix up all existing tasks.
1984 */
1985 if (!use_task_css_set_links)
1986 cgroup_enable_task_cg_lists();
e37a06f1 1987
aae8aab4 1988 mutex_lock(&cgroup_mutex);
8e30e2b8
TH
1989
1990 /* First find the desired set of subsystems */
ddbcc7e8 1991 ret = parse_cgroupfs_options(data, &opts);
c6d57f33 1992 if (ret)
8e30e2b8 1993 goto out_unlock;
a015edd2 1994
2bd59d48 1995 /* look for a matching existing root */
7b9a6ba5 1996 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
a2dd4247
TH
1997 cgrp_dfl_root_visible = true;
1998 root = &cgrp_dfl_root;
1999 cgroup_get(&root->cgrp);
2000 ret = 0;
2001 goto out_unlock;
ddbcc7e8
PM
2002 }
2003
970317aa
LZ
2004 /*
2005 * Destruction of cgroup root is asynchronous, so subsystems may
2006 * still be dying after the previous unmount. Let's drain the
2007 * dying subsystems. We just need to ensure that the ones
2008 * unmounted previously finish dying and don't care about new ones
2009 * starting. Testing ref liveliness is good enough.
2010 */
2011 for_each_subsys(ss, i) {
2012 if (!(opts.subsys_mask & (1 << i)) ||
2013 ss->root == &cgrp_dfl_root)
2014 continue;
2015
2016 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2017 mutex_unlock(&cgroup_mutex);
2018 msleep(10);
2019 ret = restart_syscall();
2020 goto out_free;
2021 }
2022 cgroup_put(&ss->root->cgrp);
2023 }
2024
985ed670 2025 for_each_root(root) {
2bd59d48 2026 bool name_match = false;
3126121f 2027
3dd06ffa 2028 if (root == &cgrp_dfl_root)
985ed670 2029 continue;
3126121f 2030
cf5d5941 2031 /*
2bd59d48
TH
2032 * If we asked for a name then it must match. Also, if
2033 * name matches but sybsys_mask doesn't, we should fail.
2034 * Remember whether name matched.
cf5d5941 2035 */
2bd59d48
TH
2036 if (opts.name) {
2037 if (strcmp(opts.name, root->name))
2038 continue;
2039 name_match = true;
2040 }
ddbcc7e8 2041
c6d57f33 2042 /*
2bd59d48
TH
2043 * If we asked for subsystems (or explicitly for no
2044 * subsystems) then they must match.
c6d57f33 2045 */
2bd59d48 2046 if ((opts.subsys_mask || opts.none) &&
f392e51c 2047 (opts.subsys_mask != root->subsys_mask)) {
2bd59d48
TH
2048 if (!name_match)
2049 continue;
2050 ret = -EBUSY;
2051 goto out_unlock;
2052 }
873fe09e 2053
7b9a6ba5
TH
2054 if (root->flags ^ opts.flags)
2055 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
ddbcc7e8 2056
776f02fa 2057 /*
3a32bd72
LZ
2058 * We want to reuse @root whose lifetime is governed by its
2059 * ->cgrp. Let's check whether @root is alive and keep it
2060 * that way. As cgroup_kill_sb() can happen anytime, we
2061 * want to block it by pinning the sb so that @root doesn't
2062 * get killed before mount is complete.
2063 *
2064 * With the sb pinned, tryget_live can reliably indicate
2065 * whether @root can be reused. If it's being killed,
2066 * drain it. We can use wait_queue for the wait but this
2067 * path is super cold. Let's just sleep a bit and retry.
776f02fa 2068 */
3a32bd72
LZ
2069 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2070 if (IS_ERR(pinned_sb) ||
2071 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
776f02fa 2072 mutex_unlock(&cgroup_mutex);
3a32bd72
LZ
2073 if (!IS_ERR_OR_NULL(pinned_sb))
2074 deactivate_super(pinned_sb);
776f02fa 2075 msleep(10);
a015edd2
TH
2076 ret = restart_syscall();
2077 goto out_free;
776f02fa 2078 }
ddbcc7e8 2079
776f02fa 2080 ret = 0;
2bd59d48 2081 goto out_unlock;
ddbcc7e8 2082 }
ddbcc7e8 2083
817929ec 2084 /*
172a2c06
TH
2085 * No such thing, create a new one. name= matching without subsys
2086 * specification is allowed for already existing hierarchies but we
2087 * can't create new one without subsys specification.
817929ec 2088 */
172a2c06
TH
2089 if (!opts.subsys_mask && !opts.none) {
2090 ret = -EINVAL;
2091 goto out_unlock;
817929ec 2092 }
817929ec 2093
172a2c06
TH
2094 root = kzalloc(sizeof(*root), GFP_KERNEL);
2095 if (!root) {
2096 ret = -ENOMEM;
2bd59d48 2097 goto out_unlock;
839ec545 2098 }
e5f6a860 2099
172a2c06
TH
2100 init_cgroup_root(root, &opts);
2101
35585573 2102 ret = cgroup_setup_root(root, opts.subsys_mask);
2bd59d48
TH
2103 if (ret)
2104 cgroup_free_root(root);
fa3ca07e 2105
8e30e2b8 2106out_unlock:
ddbcc7e8 2107 mutex_unlock(&cgroup_mutex);
a015edd2 2108out_free:
c6d57f33
PM
2109 kfree(opts.release_agent);
2110 kfree(opts.name);
03b1cde6 2111
2bd59d48 2112 if (ret)
8e30e2b8 2113 return ERR_PTR(ret);
2bd59d48 2114
c9482a5b
JZ
2115 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2116 CGROUP_SUPER_MAGIC, &new_sb);
c6b3d5bc 2117 if (IS_ERR(dentry) || !new_sb)
3dd06ffa 2118 cgroup_put(&root->cgrp);
3a32bd72
LZ
2119
2120 /*
2121 * If @pinned_sb, we're reusing an existing root and holding an
2122 * extra ref on its sb. Mount is complete. Put the extra ref.
2123 */
2124 if (pinned_sb) {
2125 WARN_ON(new_sb);
2126 deactivate_super(pinned_sb);
2127 }
2128
2bd59d48
TH
2129 return dentry;
2130}
2131
2132static void cgroup_kill_sb(struct super_block *sb)
2133{
2134 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
3dd06ffa 2135 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2bd59d48 2136
9d755d33
TH
2137 /*
2138 * If @root doesn't have any mounts or children, start killing it.
2139 * This prevents new mounts by disabling percpu_ref_tryget_live().
2140 * cgroup_mount() may wait for @root's release.
1f779fb2
LZ
2141 *
2142 * And don't kill the default root.
9d755d33 2143 */
3c606d35 2144 if (!list_empty(&root->cgrp.self.children) ||
1f779fb2 2145 root == &cgrp_dfl_root)
9d755d33
TH
2146 cgroup_put(&root->cgrp);
2147 else
2148 percpu_ref_kill(&root->cgrp.self.refcnt);
2149
2bd59d48 2150 kernfs_kill_sb(sb);
ddbcc7e8
PM
2151}
2152
2153static struct file_system_type cgroup_fs_type = {
2154 .name = "cgroup",
f7e83571 2155 .mount = cgroup_mount,
ddbcc7e8
PM
2156 .kill_sb = cgroup_kill_sb,
2157};
2158
857a2beb 2159/**
913ffdb5 2160 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
857a2beb 2161 * @task: target task
857a2beb
TH
2162 * @buf: the buffer to write the path into
2163 * @buflen: the length of the buffer
2164 *
913ffdb5
TH
2165 * Determine @task's cgroup on the first (the one with the lowest non-zero
2166 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2167 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2168 * cgroup controller callbacks.
2169 *
e61734c5 2170 * Return value is the same as kernfs_path().
857a2beb 2171 */
e61734c5 2172char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
857a2beb 2173{
3dd06ffa 2174 struct cgroup_root *root;
913ffdb5 2175 struct cgroup *cgrp;
e61734c5
TH
2176 int hierarchy_id = 1;
2177 char *path = NULL;
857a2beb
TH
2178
2179 mutex_lock(&cgroup_mutex);
96d365e0 2180 down_read(&css_set_rwsem);
857a2beb 2181
913ffdb5
TH
2182 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2183
857a2beb
TH
2184 if (root) {
2185 cgrp = task_cgroup_from_root(task, root);
e61734c5 2186 path = cgroup_path(cgrp, buf, buflen);
913ffdb5
TH
2187 } else {
2188 /* if no hierarchy exists, everyone is in "/" */
e61734c5
TH
2189 if (strlcpy(buf, "/", buflen) < buflen)
2190 path = buf;
857a2beb
TH
2191 }
2192
96d365e0 2193 up_read(&css_set_rwsem);
857a2beb 2194 mutex_unlock(&cgroup_mutex);
e61734c5 2195 return path;
857a2beb 2196}
913ffdb5 2197EXPORT_SYMBOL_GPL(task_cgroup_path);
857a2beb 2198
b3dc094e 2199/* used to track tasks and other necessary states during migration */
2f7ee569 2200struct cgroup_taskset {
b3dc094e
TH
2201 /* the src and dst cset list running through cset->mg_node */
2202 struct list_head src_csets;
2203 struct list_head dst_csets;
2204
2205 /*
2206 * Fields for cgroup_taskset_*() iteration.
2207 *
2208 * Before migration is committed, the target migration tasks are on
2209 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2210 * the csets on ->dst_csets. ->csets point to either ->src_csets
2211 * or ->dst_csets depending on whether migration is committed.
2212 *
2213 * ->cur_csets and ->cur_task point to the current task position
2214 * during iteration.
2215 */
2216 struct list_head *csets;
2217 struct css_set *cur_cset;
2218 struct task_struct *cur_task;
2f7ee569
TH
2219};
2220
adaae5dc
TH
2221#define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2222 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2223 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2224 .csets = &tset.src_csets, \
2225}
2226
2227/**
2228 * cgroup_taskset_add - try to add a migration target task to a taskset
2229 * @task: target task
2230 * @tset: target taskset
2231 *
2232 * Add @task, which is a migration target, to @tset. This function becomes
2233 * noop if @task doesn't need to be migrated. @task's css_set should have
2234 * been added as a migration source and @task->cg_list will be moved from
2235 * the css_set's tasks list to mg_tasks one.
2236 */
2237static void cgroup_taskset_add(struct task_struct *task,
2238 struct cgroup_taskset *tset)
2239{
2240 struct css_set *cset;
2241
2242 lockdep_assert_held(&css_set_rwsem);
2243
2244 /* @task either already exited or can't exit until the end */
2245 if (task->flags & PF_EXITING)
2246 return;
2247
2248 /* leave @task alone if post_fork() hasn't linked it yet */
2249 if (list_empty(&task->cg_list))
2250 return;
2251
2252 cset = task_css_set(task);
2253 if (!cset->mg_src_cgrp)
2254 return;
2255
2256 list_move_tail(&task->cg_list, &cset->mg_tasks);
2257 if (list_empty(&cset->mg_node))
2258 list_add_tail(&cset->mg_node, &tset->src_csets);
2259 if (list_empty(&cset->mg_dst_cset->mg_node))
2260 list_move_tail(&cset->mg_dst_cset->mg_node,
2261 &tset->dst_csets);
2262}
2263
2f7ee569
TH
2264/**
2265 * cgroup_taskset_first - reset taskset and return the first task
2266 * @tset: taskset of interest
2267 *
2268 * @tset iteration is initialized and the first task is returned.
2269 */
2270struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2271{
b3dc094e
TH
2272 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2273 tset->cur_task = NULL;
2274
2275 return cgroup_taskset_next(tset);
2f7ee569 2276}
2f7ee569
TH
2277
2278/**
2279 * cgroup_taskset_next - iterate to the next task in taskset
2280 * @tset: taskset of interest
2281 *
2282 * Return the next task in @tset. Iteration must have been initialized
2283 * with cgroup_taskset_first().
2284 */
2285struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2286{
b3dc094e
TH
2287 struct css_set *cset = tset->cur_cset;
2288 struct task_struct *task = tset->cur_task;
2f7ee569 2289
b3dc094e
TH
2290 while (&cset->mg_node != tset->csets) {
2291 if (!task)
2292 task = list_first_entry(&cset->mg_tasks,
2293 struct task_struct, cg_list);
2294 else
2295 task = list_next_entry(task, cg_list);
2f7ee569 2296
b3dc094e
TH
2297 if (&task->cg_list != &cset->mg_tasks) {
2298 tset->cur_cset = cset;
2299 tset->cur_task = task;
2300 return task;
2301 }
2f7ee569 2302
b3dc094e
TH
2303 cset = list_next_entry(cset, mg_node);
2304 task = NULL;
2305 }
2f7ee569 2306
b3dc094e 2307 return NULL;
2f7ee569 2308}
2f7ee569 2309
adaae5dc
TH
2310/**
2311 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2312 * @tset: taget taskset
2313 * @dst_cgrp: destination cgroup
2314 *
2315 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2316 * ->can_attach callbacks fails and guarantees that either all or none of
2317 * the tasks in @tset are migrated. @tset is consumed regardless of
2318 * success.
2319 */
2320static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2321 struct cgroup *dst_cgrp)
2322{
2323 struct cgroup_subsys_state *css, *failed_css = NULL;
2324 struct task_struct *task, *tmp_task;
2325 struct css_set *cset, *tmp_cset;
2326 int i, ret;
2327
2328 /* methods shouldn't be called if no task is actually migrating */
2329 if (list_empty(&tset->src_csets))
2330 return 0;
2331
2332 /* check that we can legitimately attach to the cgroup */
2333 for_each_e_css(css, i, dst_cgrp) {
2334 if (css->ss->can_attach) {
2335 ret = css->ss->can_attach(css, tset);
2336 if (ret) {
2337 failed_css = css;
2338 goto out_cancel_attach;
2339 }
2340 }
2341 }
2342
2343 /*
2344 * Now that we're guaranteed success, proceed to move all tasks to
2345 * the new cgroup. There are no failure cases after here, so this
2346 * is the commit point.
2347 */
2348 down_write(&css_set_rwsem);
2349 list_for_each_entry(cset, &tset->src_csets, mg_node) {
f6d7d049
TH
2350 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2351 struct css_set *from_cset = task_css_set(task);
2352 struct css_set *to_cset = cset->mg_dst_cset;
2353
2354 get_css_set(to_cset);
2355 css_set_move_task(task, from_cset, to_cset, true);
2356 put_css_set_locked(from_cset);
2357 }
adaae5dc
TH
2358 }
2359 up_write(&css_set_rwsem);
2360
2361 /*
2362 * Migration is committed, all target tasks are now on dst_csets.
2363 * Nothing is sensitive to fork() after this point. Notify
2364 * controllers that migration is complete.
2365 */
2366 tset->csets = &tset->dst_csets;
2367
2368 for_each_e_css(css, i, dst_cgrp)
2369 if (css->ss->attach)
2370 css->ss->attach(css, tset);
2371
2372 ret = 0;
2373 goto out_release_tset;
2374
2375out_cancel_attach:
2376 for_each_e_css(css, i, dst_cgrp) {
2377 if (css == failed_css)
2378 break;
2379 if (css->ss->cancel_attach)
2380 css->ss->cancel_attach(css, tset);
2381 }
2382out_release_tset:
2383 down_write(&css_set_rwsem);
2384 list_splice_init(&tset->dst_csets, &tset->src_csets);
2385 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2386 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2387 list_del_init(&cset->mg_node);
2388 }
2389 up_write(&css_set_rwsem);
2390 return ret;
2391}
2392
a043e3b2 2393/**
1958d2d5
TH
2394 * cgroup_migrate_finish - cleanup after attach
2395 * @preloaded_csets: list of preloaded css_sets
74a1166d 2396 *
1958d2d5
TH
2397 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2398 * those functions for details.
74a1166d 2399 */
1958d2d5 2400static void cgroup_migrate_finish(struct list_head *preloaded_csets)
74a1166d 2401{
1958d2d5 2402 struct css_set *cset, *tmp_cset;
74a1166d 2403
1958d2d5
TH
2404 lockdep_assert_held(&cgroup_mutex);
2405
2406 down_write(&css_set_rwsem);
2407 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2408 cset->mg_src_cgrp = NULL;
2409 cset->mg_dst_cset = NULL;
2410 list_del_init(&cset->mg_preload_node);
a25eb52e 2411 put_css_set_locked(cset);
1958d2d5
TH
2412 }
2413 up_write(&css_set_rwsem);
2414}
2415
2416/**
2417 * cgroup_migrate_add_src - add a migration source css_set
2418 * @src_cset: the source css_set to add
2419 * @dst_cgrp: the destination cgroup
2420 * @preloaded_csets: list of preloaded css_sets
2421 *
2422 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2423 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2424 * up by cgroup_migrate_finish().
2425 *
1ed13287
TH
2426 * This function may be called without holding cgroup_threadgroup_rwsem
2427 * even if the target is a process. Threads may be created and destroyed
2428 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2429 * into play and the preloaded css_sets are guaranteed to cover all
2430 * migrations.
1958d2d5
TH
2431 */
2432static void cgroup_migrate_add_src(struct css_set *src_cset,
2433 struct cgroup *dst_cgrp,
2434 struct list_head *preloaded_csets)
2435{
2436 struct cgroup *src_cgrp;
2437
2438 lockdep_assert_held(&cgroup_mutex);
2439 lockdep_assert_held(&css_set_rwsem);
2440
2441 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2442
1958d2d5
TH
2443 if (!list_empty(&src_cset->mg_preload_node))
2444 return;
2445
2446 WARN_ON(src_cset->mg_src_cgrp);
2447 WARN_ON(!list_empty(&src_cset->mg_tasks));
2448 WARN_ON(!list_empty(&src_cset->mg_node));
2449
2450 src_cset->mg_src_cgrp = src_cgrp;
2451 get_css_set(src_cset);
2452 list_add(&src_cset->mg_preload_node, preloaded_csets);
2453}
2454
2455/**
2456 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
f817de98 2457 * @dst_cgrp: the destination cgroup (may be %NULL)
1958d2d5
TH
2458 * @preloaded_csets: list of preloaded source css_sets
2459 *
2460 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2461 * have been preloaded to @preloaded_csets. This function looks up and
f817de98
TH
2462 * pins all destination css_sets, links each to its source, and append them
2463 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2464 * source css_set is assumed to be its cgroup on the default hierarchy.
1958d2d5
TH
2465 *
2466 * This function must be called after cgroup_migrate_add_src() has been
2467 * called on each migration source css_set. After migration is performed
2468 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2469 * @preloaded_csets.
2470 */
2471static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2472 struct list_head *preloaded_csets)
2473{
2474 LIST_HEAD(csets);
f817de98 2475 struct css_set *src_cset, *tmp_cset;
1958d2d5
TH
2476
2477 lockdep_assert_held(&cgroup_mutex);
2478
f8f22e53
TH
2479 /*
2480 * Except for the root, child_subsys_mask must be zero for a cgroup
2481 * with tasks so that child cgroups don't compete against tasks.
2482 */
d51f39b0 2483 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
f8f22e53
TH
2484 dst_cgrp->child_subsys_mask)
2485 return -EBUSY;
2486
1958d2d5 2487 /* look up the dst cset for each src cset and link it to src */
f817de98 2488 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
1958d2d5
TH
2489 struct css_set *dst_cset;
2490
f817de98
TH
2491 dst_cset = find_css_set(src_cset,
2492 dst_cgrp ?: src_cset->dfl_cgrp);
1958d2d5
TH
2493 if (!dst_cset)
2494 goto err;
2495
2496 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
f817de98
TH
2497
2498 /*
2499 * If src cset equals dst, it's noop. Drop the src.
2500 * cgroup_migrate() will skip the cset too. Note that we
2501 * can't handle src == dst as some nodes are used by both.
2502 */
2503 if (src_cset == dst_cset) {
2504 src_cset->mg_src_cgrp = NULL;
2505 list_del_init(&src_cset->mg_preload_node);
a25eb52e
ZL
2506 put_css_set(src_cset);
2507 put_css_set(dst_cset);
f817de98
TH
2508 continue;
2509 }
2510
1958d2d5
TH
2511 src_cset->mg_dst_cset = dst_cset;
2512
2513 if (list_empty(&dst_cset->mg_preload_node))
2514 list_add(&dst_cset->mg_preload_node, &csets);
2515 else
a25eb52e 2516 put_css_set(dst_cset);
1958d2d5
TH
2517 }
2518
f817de98 2519 list_splice_tail(&csets, preloaded_csets);
1958d2d5
TH
2520 return 0;
2521err:
2522 cgroup_migrate_finish(&csets);
2523 return -ENOMEM;
2524}
2525
2526/**
2527 * cgroup_migrate - migrate a process or task to a cgroup
1958d2d5
TH
2528 * @leader: the leader of the process or the task to migrate
2529 * @threadgroup: whether @leader points to the whole process or a single task
9af2ec45 2530 * @cgrp: the destination cgroup
1958d2d5
TH
2531 *
2532 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
1ed13287 2533 * process, the caller must be holding cgroup_threadgroup_rwsem. The
1958d2d5
TH
2534 * caller is also responsible for invoking cgroup_migrate_add_src() and
2535 * cgroup_migrate_prepare_dst() on the targets before invoking this
2536 * function and following up with cgroup_migrate_finish().
2537 *
2538 * As long as a controller's ->can_attach() doesn't fail, this function is
2539 * guaranteed to succeed. This means that, excluding ->can_attach()
2540 * failure, when migrating multiple targets, the success or failure can be
2541 * decided for all targets by invoking group_migrate_prepare_dst() before
2542 * actually starting migrating.
2543 */
9af2ec45
TH
2544static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2545 struct cgroup *cgrp)
74a1166d 2546{
adaae5dc
TH
2547 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2548 struct task_struct *task;
74a1166d 2549
fb5d2b4c
MSB
2550 /*
2551 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2552 * already PF_EXITING could be freed from underneath us unless we
2553 * take an rcu_read_lock.
2554 */
b3dc094e 2555 down_write(&css_set_rwsem);
fb5d2b4c 2556 rcu_read_lock();
9db8de37 2557 task = leader;
74a1166d 2558 do {
adaae5dc 2559 cgroup_taskset_add(task, &tset);
081aa458
LZ
2560 if (!threadgroup)
2561 break;
9db8de37 2562 } while_each_thread(leader, task);
fb5d2b4c 2563 rcu_read_unlock();
b3dc094e 2564 up_write(&css_set_rwsem);
74a1166d 2565
adaae5dc 2566 return cgroup_taskset_migrate(&tset, cgrp);
74a1166d
BB
2567}
2568
1958d2d5
TH
2569/**
2570 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2571 * @dst_cgrp: the cgroup to attach to
2572 * @leader: the task or the leader of the threadgroup to be attached
2573 * @threadgroup: attach the whole threadgroup?
2574 *
1ed13287 2575 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
1958d2d5
TH
2576 */
2577static int cgroup_attach_task(struct cgroup *dst_cgrp,
2578 struct task_struct *leader, bool threadgroup)
2579{
2580 LIST_HEAD(preloaded_csets);
2581 struct task_struct *task;
2582 int ret;
2583
2584 /* look up all src csets */
2585 down_read(&css_set_rwsem);
2586 rcu_read_lock();
2587 task = leader;
2588 do {
2589 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2590 &preloaded_csets);
2591 if (!threadgroup)
2592 break;
2593 } while_each_thread(leader, task);
2594 rcu_read_unlock();
2595 up_read(&css_set_rwsem);
2596
2597 /* prepare dst csets and commit */
2598 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2599 if (!ret)
9af2ec45 2600 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
1958d2d5
TH
2601
2602 cgroup_migrate_finish(&preloaded_csets);
2603 return ret;
74a1166d
BB
2604}
2605
187fe840
TH
2606static int cgroup_procs_write_permission(struct task_struct *task,
2607 struct cgroup *dst_cgrp,
2608 struct kernfs_open_file *of)
dedf22e9
TH
2609{
2610 const struct cred *cred = current_cred();
2611 const struct cred *tcred = get_task_cred(task);
2612 int ret = 0;
2613
2614 /*
2615 * even if we're attaching all tasks in the thread group, we only
2616 * need to check permissions on one of them.
2617 */
2618 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2619 !uid_eq(cred->euid, tcred->uid) &&
2620 !uid_eq(cred->euid, tcred->suid))
2621 ret = -EACCES;
2622
187fe840
TH
2623 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2624 struct super_block *sb = of->file->f_path.dentry->d_sb;
2625 struct cgroup *cgrp;
2626 struct inode *inode;
2627
2628 down_read(&css_set_rwsem);
2629 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2630 up_read(&css_set_rwsem);
2631
2632 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2633 cgrp = cgroup_parent(cgrp);
2634
2635 ret = -ENOMEM;
6f60eade 2636 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
187fe840
TH
2637 if (inode) {
2638 ret = inode_permission(inode, MAY_WRITE);
2639 iput(inode);
2640 }
2641 }
2642
dedf22e9
TH
2643 put_cred(tcred);
2644 return ret;
2645}
2646
74a1166d
BB
2647/*
2648 * Find the task_struct of the task to attach by vpid and pass it along to the
cd3d0952 2649 * function to attach either it or all tasks in its threadgroup. Will lock
0e1d768f 2650 * cgroup_mutex and threadgroup.
bbcb81d0 2651 */
acbef755
TH
2652static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2653 size_t nbytes, loff_t off, bool threadgroup)
bbcb81d0 2654{
bbcb81d0 2655 struct task_struct *tsk;
e76ecaee 2656 struct cgroup *cgrp;
acbef755 2657 pid_t pid;
bbcb81d0
PM
2658 int ret;
2659
acbef755
TH
2660 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2661 return -EINVAL;
2662
e76ecaee
TH
2663 cgrp = cgroup_kn_lock_live(of->kn);
2664 if (!cgrp)
74a1166d
BB
2665 return -ENODEV;
2666
3014dde7 2667 percpu_down_write(&cgroup_threadgroup_rwsem);
b78949eb 2668 rcu_read_lock();
bbcb81d0 2669 if (pid) {
73507f33 2670 tsk = find_task_by_vpid(pid);
74a1166d 2671 if (!tsk) {
dd4b0a46 2672 ret = -ESRCH;
3014dde7 2673 goto out_unlock_rcu;
bbcb81d0 2674 }
dedf22e9 2675 } else {
b78949eb 2676 tsk = current;
dedf22e9 2677 }
cd3d0952
TH
2678
2679 if (threadgroup)
b78949eb 2680 tsk = tsk->group_leader;
c4c27fbd
MG
2681
2682 /*
14a40ffc 2683 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
c4c27fbd
MG
2684 * trapped in a cpuset, or RT worker may be born in a cgroup
2685 * with no rt_runtime allocated. Just say no.
2686 */
14a40ffc 2687 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
c4c27fbd 2688 ret = -EINVAL;
3014dde7 2689 goto out_unlock_rcu;
c4c27fbd
MG
2690 }
2691
b78949eb
MSB
2692 get_task_struct(tsk);
2693 rcu_read_unlock();
2694
187fe840 2695 ret = cgroup_procs_write_permission(tsk, cgrp, of);
dedf22e9
TH
2696 if (!ret)
2697 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
081aa458 2698
f9f9e7b7 2699 put_task_struct(tsk);
3014dde7
TH
2700 goto out_unlock_threadgroup;
2701
2702out_unlock_rcu:
2703 rcu_read_unlock();
2704out_unlock_threadgroup:
2705 percpu_up_write(&cgroup_threadgroup_rwsem);
e76ecaee 2706 cgroup_kn_unlock(of->kn);
acbef755 2707 return ret ?: nbytes;
bbcb81d0
PM
2708}
2709
7ae1bad9
TH
2710/**
2711 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2712 * @from: attach to all cgroups of a given task
2713 * @tsk: the task to be attached
2714 */
2715int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2716{
3dd06ffa 2717 struct cgroup_root *root;
7ae1bad9
TH
2718 int retval = 0;
2719
47cfcd09 2720 mutex_lock(&cgroup_mutex);
985ed670 2721 for_each_root(root) {
96d365e0
TH
2722 struct cgroup *from_cgrp;
2723
3dd06ffa 2724 if (root == &cgrp_dfl_root)
985ed670
TH
2725 continue;
2726
96d365e0
TH
2727 down_read(&css_set_rwsem);
2728 from_cgrp = task_cgroup_from_root(from, root);
2729 up_read(&css_set_rwsem);
7ae1bad9 2730
6f4b7e63 2731 retval = cgroup_attach_task(from_cgrp, tsk, false);
7ae1bad9
TH
2732 if (retval)
2733 break;
2734 }
47cfcd09 2735 mutex_unlock(&cgroup_mutex);
7ae1bad9
TH
2736
2737 return retval;
2738}
2739EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2740
acbef755
TH
2741static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2742 char *buf, size_t nbytes, loff_t off)
74a1166d 2743{
acbef755 2744 return __cgroup_procs_write(of, buf, nbytes, off, false);
74a1166d
BB
2745}
2746
acbef755
TH
2747static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2748 char *buf, size_t nbytes, loff_t off)
af351026 2749{
acbef755 2750 return __cgroup_procs_write(of, buf, nbytes, off, true);
af351026
PM
2751}
2752
451af504
TH
2753static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2754 char *buf, size_t nbytes, loff_t off)
e788e066 2755{
e76ecaee 2756 struct cgroup *cgrp;
5f469907 2757
e76ecaee 2758 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
5f469907 2759
e76ecaee
TH
2760 cgrp = cgroup_kn_lock_live(of->kn);
2761 if (!cgrp)
e788e066 2762 return -ENODEV;
69e943b7 2763 spin_lock(&release_agent_path_lock);
e76ecaee
TH
2764 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2765 sizeof(cgrp->root->release_agent_path));
69e943b7 2766 spin_unlock(&release_agent_path_lock);
e76ecaee 2767 cgroup_kn_unlock(of->kn);
451af504 2768 return nbytes;
e788e066
PM
2769}
2770
2da8ca82 2771static int cgroup_release_agent_show(struct seq_file *seq, void *v)
e788e066 2772{
2da8ca82 2773 struct cgroup *cgrp = seq_css(seq)->cgroup;
182446d0 2774
46cfeb04 2775 spin_lock(&release_agent_path_lock);
e788e066 2776 seq_puts(seq, cgrp->root->release_agent_path);
46cfeb04 2777 spin_unlock(&release_agent_path_lock);
e788e066 2778 seq_putc(seq, '\n');
e788e066
PM
2779 return 0;
2780}
2781
2da8ca82 2782static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
873fe09e 2783{
c1d5d42e 2784 seq_puts(seq, "0\n");
e788e066
PM
2785 return 0;
2786}
2787
8ab456ac 2788static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
355e0c48 2789{
f8f22e53
TH
2790 struct cgroup_subsys *ss;
2791 bool printed = false;
2792 int ssid;
a742c59d 2793
a966a4ed
AS
2794 for_each_subsys_which(ss, ssid, &ss_mask) {
2795 if (printed)
2796 seq_putc(seq, ' ');
2797 seq_printf(seq, "%s", ss->name);
2798 printed = true;
e73d2c61 2799 }
f8f22e53
TH
2800 if (printed)
2801 seq_putc(seq, '\n');
355e0c48
PM
2802}
2803
f8f22e53
TH
2804/* show controllers which are currently attached to the default hierarchy */
2805static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
db3b1497 2806{
f8f22e53
TH
2807 struct cgroup *cgrp = seq_css(seq)->cgroup;
2808
5533e011
TH
2809 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2810 ~cgrp_dfl_root_inhibit_ss_mask);
f8f22e53 2811 return 0;
db3b1497
PM
2812}
2813
f8f22e53
TH
2814/* show controllers which are enabled from the parent */
2815static int cgroup_controllers_show(struct seq_file *seq, void *v)
ddbcc7e8 2816{
f8f22e53
TH
2817 struct cgroup *cgrp = seq_css(seq)->cgroup;
2818
667c2491 2819 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
f8f22e53 2820 return 0;
ddbcc7e8
PM
2821}
2822
f8f22e53
TH
2823/* show controllers which are enabled for a given cgroup's children */
2824static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
ddbcc7e8 2825{
f8f22e53
TH
2826 struct cgroup *cgrp = seq_css(seq)->cgroup;
2827
667c2491 2828 cgroup_print_ss_mask(seq, cgrp->subtree_control);
f8f22e53
TH
2829 return 0;
2830}
2831
2832/**
2833 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2834 * @cgrp: root of the subtree to update csses for
2835 *
2836 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2837 * css associations need to be updated accordingly. This function looks up
2838 * all css_sets which are attached to the subtree, creates the matching
2839 * updated css_sets and migrates the tasks to the new ones.
2840 */
2841static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2842{
2843 LIST_HEAD(preloaded_csets);
10265075 2844 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
f8f22e53
TH
2845 struct cgroup_subsys_state *css;
2846 struct css_set *src_cset;
2847 int ret;
2848
f8f22e53
TH
2849 lockdep_assert_held(&cgroup_mutex);
2850
3014dde7
TH
2851 percpu_down_write(&cgroup_threadgroup_rwsem);
2852
f8f22e53
TH
2853 /* look up all csses currently attached to @cgrp's subtree */
2854 down_read(&css_set_rwsem);
2855 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2856 struct cgrp_cset_link *link;
2857
2858 /* self is not affected by child_subsys_mask change */
2859 if (css->cgroup == cgrp)
2860 continue;
2861
2862 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2863 cgroup_migrate_add_src(link->cset, cgrp,
2864 &preloaded_csets);
2865 }
2866 up_read(&css_set_rwsem);
2867
2868 /* NULL dst indicates self on default hierarchy */
2869 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2870 if (ret)
2871 goto out_finish;
2872
10265075 2873 down_write(&css_set_rwsem);
f8f22e53 2874 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
10265075 2875 struct task_struct *task, *ntask;
f8f22e53
TH
2876
2877 /* src_csets precede dst_csets, break on the first dst_cset */
2878 if (!src_cset->mg_src_cgrp)
2879 break;
2880
10265075
TH
2881 /* all tasks in src_csets need to be migrated */
2882 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2883 cgroup_taskset_add(task, &tset);
f8f22e53 2884 }
10265075 2885 up_write(&css_set_rwsem);
f8f22e53 2886
10265075 2887 ret = cgroup_taskset_migrate(&tset, cgrp);
f8f22e53
TH
2888out_finish:
2889 cgroup_migrate_finish(&preloaded_csets);
3014dde7 2890 percpu_up_write(&cgroup_threadgroup_rwsem);
f8f22e53
TH
2891 return ret;
2892}
2893
2894/* change the enabled child controllers for a cgroup in the default hierarchy */
451af504
TH
2895static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2896 char *buf, size_t nbytes,
2897 loff_t off)
f8f22e53 2898{
8ab456ac
AS
2899 unsigned long enable = 0, disable = 0;
2900 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
a9746d8d 2901 struct cgroup *cgrp, *child;
f8f22e53 2902 struct cgroup_subsys *ss;
451af504 2903 char *tok;
f8f22e53
TH
2904 int ssid, ret;
2905
2906 /*
d37167ab
TH
2907 * Parse input - space separated list of subsystem names prefixed
2908 * with either + or -.
f8f22e53 2909 */
451af504
TH
2910 buf = strstrip(buf);
2911 while ((tok = strsep(&buf, " "))) {
a966a4ed
AS
2912 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2913
d37167ab
TH
2914 if (tok[0] == '\0')
2915 continue;
a966a4ed 2916 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
fc5ed1e9
TH
2917 if (!cgroup_ssid_enabled(ssid) ||
2918 strcmp(tok + 1, ss->name))
f8f22e53
TH
2919 continue;
2920
2921 if (*tok == '+') {
7d331fa9
TH
2922 enable |= 1 << ssid;
2923 disable &= ~(1 << ssid);
f8f22e53 2924 } else if (*tok == '-') {
7d331fa9
TH
2925 disable |= 1 << ssid;
2926 enable &= ~(1 << ssid);
f8f22e53
TH
2927 } else {
2928 return -EINVAL;
2929 }
2930 break;
2931 }
2932 if (ssid == CGROUP_SUBSYS_COUNT)
2933 return -EINVAL;
2934 }
2935
a9746d8d
TH
2936 cgrp = cgroup_kn_lock_live(of->kn);
2937 if (!cgrp)
2938 return -ENODEV;
f8f22e53
TH
2939
2940 for_each_subsys(ss, ssid) {
2941 if (enable & (1 << ssid)) {
667c2491 2942 if (cgrp->subtree_control & (1 << ssid)) {
f8f22e53
TH
2943 enable &= ~(1 << ssid);
2944 continue;
2945 }
2946
c29adf24
TH
2947 /* unavailable or not enabled on the parent? */
2948 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2949 (cgroup_parent(cgrp) &&
667c2491 2950 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
c29adf24
TH
2951 ret = -ENOENT;
2952 goto out_unlock;
2953 }
f8f22e53 2954 } else if (disable & (1 << ssid)) {
667c2491 2955 if (!(cgrp->subtree_control & (1 << ssid))) {
f8f22e53
TH
2956 disable &= ~(1 << ssid);
2957 continue;
2958 }
2959
2960 /* a child has it enabled? */
2961 cgroup_for_each_live_child(child, cgrp) {
667c2491 2962 if (child->subtree_control & (1 << ssid)) {
f8f22e53 2963 ret = -EBUSY;
ddab2b6e 2964 goto out_unlock;
f8f22e53
TH
2965 }
2966 }
2967 }
2968 }
2969
2970 if (!enable && !disable) {
2971 ret = 0;
ddab2b6e 2972 goto out_unlock;
f8f22e53
TH
2973 }
2974
2975 /*
667c2491 2976 * Except for the root, subtree_control must be zero for a cgroup
f8f22e53
TH
2977 * with tasks so that child cgroups don't compete against tasks.
2978 */
d51f39b0 2979 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
f8f22e53
TH
2980 ret = -EBUSY;
2981 goto out_unlock;
2982 }
2983
2984 /*
f63070d3
TH
2985 * Update subsys masks and calculate what needs to be done. More
2986 * subsystems than specified may need to be enabled or disabled
2987 * depending on subsystem dependencies.
2988 */
755bf5ee
TH
2989 old_sc = cgrp->subtree_control;
2990 old_ss = cgrp->child_subsys_mask;
2991 new_sc = (old_sc | enable) & ~disable;
2992 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
f63070d3 2993
755bf5ee
TH
2994 css_enable = ~old_ss & new_ss;
2995 css_disable = old_ss & ~new_ss;
f63070d3
TH
2996 enable |= css_enable;
2997 disable |= css_disable;
c29adf24 2998
db6e3053
TH
2999 /*
3000 * Because css offlining is asynchronous, userland might try to
3001 * re-enable the same controller while the previous instance is
3002 * still around. In such cases, wait till it's gone using
3003 * offline_waitq.
3004 */
a966a4ed 3005 for_each_subsys_which(ss, ssid, &css_enable) {
db6e3053
TH
3006 cgroup_for_each_live_child(child, cgrp) {
3007 DEFINE_WAIT(wait);
3008
3009 if (!cgroup_css(child, ss))
3010 continue;
3011
3012 cgroup_get(child);
3013 prepare_to_wait(&child->offline_waitq, &wait,
3014 TASK_UNINTERRUPTIBLE);
3015 cgroup_kn_unlock(of->kn);
3016 schedule();
3017 finish_wait(&child->offline_waitq, &wait);
3018 cgroup_put(child);
3019
3020 return restart_syscall();
3021 }
3022 }
3023
755bf5ee
TH
3024 cgrp->subtree_control = new_sc;
3025 cgrp->child_subsys_mask = new_ss;
3026
f63070d3
TH
3027 /*
3028 * Create new csses or make the existing ones visible. A css is
3029 * created invisible if it's being implicitly enabled through
3030 * dependency. An invisible css is made visible when the userland
3031 * explicitly enables it.
f8f22e53
TH
3032 */
3033 for_each_subsys(ss, ssid) {
3034 if (!(enable & (1 << ssid)))
3035 continue;
3036
3037 cgroup_for_each_live_child(child, cgrp) {
f63070d3
TH
3038 if (css_enable & (1 << ssid))
3039 ret = create_css(child, ss,
3040 cgrp->subtree_control & (1 << ssid));
3041 else
4df8dc90
TH
3042 ret = css_populate_dir(cgroup_css(child, ss),
3043 NULL);
f8f22e53
TH
3044 if (ret)
3045 goto err_undo_css;
3046 }
3047 }
3048
c29adf24
TH
3049 /*
3050 * At this point, cgroup_e_css() results reflect the new csses
3051 * making the following cgroup_update_dfl_csses() properly update
3052 * css associations of all tasks in the subtree.
3053 */
f8f22e53
TH
3054 ret = cgroup_update_dfl_csses(cgrp);
3055 if (ret)
3056 goto err_undo_css;
3057
f63070d3
TH
3058 /*
3059 * All tasks are migrated out of disabled csses. Kill or hide
3060 * them. A css is hidden when the userland requests it to be
b4536f0c
TH
3061 * disabled while other subsystems are still depending on it. The
3062 * css must not actively control resources and be in the vanilla
3063 * state if it's made visible again later. Controllers which may
3064 * be depended upon should provide ->css_reset() for this purpose.
f63070d3 3065 */
f8f22e53
TH
3066 for_each_subsys(ss, ssid) {
3067 if (!(disable & (1 << ssid)))
3068 continue;
3069
f63070d3 3070 cgroup_for_each_live_child(child, cgrp) {
b4536f0c
TH
3071 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3072
3073 if (css_disable & (1 << ssid)) {
3074 kill_css(css);
3075 } else {
4df8dc90 3076 css_clear_dir(css, NULL);
b4536f0c
TH
3077 if (ss->css_reset)
3078 ss->css_reset(css);
3079 }
f63070d3 3080 }
f8f22e53
TH
3081 }
3082
56c807ba
TH
3083 /*
3084 * The effective csses of all the descendants (excluding @cgrp) may
3085 * have changed. Subsystems can optionally subscribe to this event
3086 * by implementing ->css_e_css_changed() which is invoked if any of
3087 * the effective csses seen from the css's cgroup may have changed.
3088 */
3089 for_each_subsys(ss, ssid) {
3090 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3091 struct cgroup_subsys_state *css;
3092
3093 if (!ss->css_e_css_changed || !this_css)
3094 continue;
3095
3096 css_for_each_descendant_pre(css, this_css)
3097 if (css != this_css)
3098 ss->css_e_css_changed(css);
3099 }
3100
f8f22e53
TH
3101 kernfs_activate(cgrp->kn);
3102 ret = 0;
3103out_unlock:
a9746d8d 3104 cgroup_kn_unlock(of->kn);
451af504 3105 return ret ?: nbytes;
f8f22e53
TH
3106
3107err_undo_css:
755bf5ee
TH
3108 cgrp->subtree_control = old_sc;
3109 cgrp->child_subsys_mask = old_ss;
f8f22e53
TH
3110
3111 for_each_subsys(ss, ssid) {
3112 if (!(enable & (1 << ssid)))
3113 continue;
3114
3115 cgroup_for_each_live_child(child, cgrp) {
3116 struct cgroup_subsys_state *css = cgroup_css(child, ss);
f63070d3
TH
3117
3118 if (!css)
3119 continue;
3120
3121 if (css_enable & (1 << ssid))
f8f22e53 3122 kill_css(css);
f63070d3 3123 else
4df8dc90 3124 css_clear_dir(css, NULL);
f8f22e53
TH
3125 }
3126 }
3127 goto out_unlock;
3128}
3129
4a07c222 3130static int cgroup_events_show(struct seq_file *seq, void *v)
842b597e 3131{
4a07c222 3132 seq_printf(seq, "populated %d\n",
27bd4dbb 3133 cgroup_is_populated(seq_css(seq)->cgroup));
842b597e
TH
3134 return 0;
3135}
3136
2bd59d48
TH
3137static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3138 size_t nbytes, loff_t off)
355e0c48 3139{
2bd59d48
TH
3140 struct cgroup *cgrp = of->kn->parent->priv;
3141 struct cftype *cft = of->kn->priv;
3142 struct cgroup_subsys_state *css;
a742c59d 3143 int ret;
355e0c48 3144
b4168640
TH
3145 if (cft->write)
3146 return cft->write(of, buf, nbytes, off);
3147
2bd59d48
TH
3148 /*
3149 * kernfs guarantees that a file isn't deleted with operations in
3150 * flight, which means that the matching css is and stays alive and
3151 * doesn't need to be pinned. The RCU locking is not necessary
3152 * either. It's just for the convenience of using cgroup_css().
3153 */
3154 rcu_read_lock();
3155 css = cgroup_css(cgrp, cft->ss);
3156 rcu_read_unlock();
a742c59d 3157
451af504 3158 if (cft->write_u64) {
a742c59d
TH
3159 unsigned long long v;
3160 ret = kstrtoull(buf, 0, &v);
3161 if (!ret)
3162 ret = cft->write_u64(css, cft, v);
3163 } else if (cft->write_s64) {
3164 long long v;
3165 ret = kstrtoll(buf, 0, &v);
3166 if (!ret)
3167 ret = cft->write_s64(css, cft, v);
e73d2c61 3168 } else {
a742c59d 3169 ret = -EINVAL;
e73d2c61 3170 }
2bd59d48 3171
a742c59d 3172 return ret ?: nbytes;
355e0c48
PM
3173}
3174
6612f05b 3175static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
db3b1497 3176{
2bd59d48 3177 return seq_cft(seq)->seq_start(seq, ppos);
db3b1497
PM
3178}
3179
6612f05b 3180static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
ddbcc7e8 3181{
2bd59d48 3182 return seq_cft(seq)->seq_next(seq, v, ppos);
ddbcc7e8
PM
3183}
3184
6612f05b 3185static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
ddbcc7e8 3186{
2bd59d48 3187 seq_cft(seq)->seq_stop(seq, v);
ddbcc7e8
PM
3188}
3189
91796569 3190static int cgroup_seqfile_show(struct seq_file *m, void *arg)
e73d2c61 3191{
7da11279
TH
3192 struct cftype *cft = seq_cft(m);
3193 struct cgroup_subsys_state *css = seq_css(m);
e73d2c61 3194
2da8ca82
TH
3195 if (cft->seq_show)
3196 return cft->seq_show(m, arg);
e73d2c61 3197
f4c753b7 3198 if (cft->read_u64)
896f5199
TH
3199 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3200 else if (cft->read_s64)
3201 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3202 else
3203 return -EINVAL;
3204 return 0;
91796569
PM
3205}
3206
2bd59d48
TH
3207static struct kernfs_ops cgroup_kf_single_ops = {
3208 .atomic_write_len = PAGE_SIZE,
3209 .write = cgroup_file_write,
3210 .seq_show = cgroup_seqfile_show,
91796569
PM
3211};
3212
2bd59d48
TH
3213static struct kernfs_ops cgroup_kf_ops = {
3214 .atomic_write_len = PAGE_SIZE,
3215 .write = cgroup_file_write,
3216 .seq_start = cgroup_seqfile_start,
3217 .seq_next = cgroup_seqfile_next,
3218 .seq_stop = cgroup_seqfile_stop,
3219 .seq_show = cgroup_seqfile_show,
3220};
ddbcc7e8
PM
3221
3222/*
3223 * cgroup_rename - Only allow simple rename of directories in place.
3224 */
2bd59d48
TH
3225static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3226 const char *new_name_str)
ddbcc7e8 3227{
2bd59d48 3228 struct cgroup *cgrp = kn->priv;
65dff759 3229 int ret;
65dff759 3230
2bd59d48 3231 if (kernfs_type(kn) != KERNFS_DIR)
ddbcc7e8 3232 return -ENOTDIR;
2bd59d48 3233 if (kn->parent != new_parent)
ddbcc7e8 3234 return -EIO;
65dff759 3235
6db8e85c
TH
3236 /*
3237 * This isn't a proper migration and its usefulness is very
aa6ec29b 3238 * limited. Disallow on the default hierarchy.
6db8e85c 3239 */
aa6ec29b 3240 if (cgroup_on_dfl(cgrp))
6db8e85c 3241 return -EPERM;
099fca32 3242
e1b2dc17 3243 /*
8353da1f 3244 * We're gonna grab cgroup_mutex which nests outside kernfs
e1b2dc17 3245 * active_ref. kernfs_rename() doesn't require active_ref
8353da1f 3246 * protection. Break them before grabbing cgroup_mutex.
e1b2dc17
TH
3247 */
3248 kernfs_break_active_protection(new_parent);
3249 kernfs_break_active_protection(kn);
099fca32 3250
2bd59d48 3251 mutex_lock(&cgroup_mutex);
099fca32 3252
2bd59d48 3253 ret = kernfs_rename(kn, new_parent, new_name_str);
099fca32 3254
2bd59d48 3255 mutex_unlock(&cgroup_mutex);
e1b2dc17
TH
3256
3257 kernfs_unbreak_active_protection(kn);
3258 kernfs_unbreak_active_protection(new_parent);
2bd59d48 3259 return ret;
099fca32
LZ
3260}
3261
49957f8e
TH
3262/* set uid and gid of cgroup dirs and files to that of the creator */
3263static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3264{
3265 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3266 .ia_uid = current_fsuid(),
3267 .ia_gid = current_fsgid(), };
3268
3269 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3270 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3271 return 0;
3272
3273 return kernfs_setattr(kn, &iattr);
3274}
3275
4df8dc90
TH
3276static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3277 struct cftype *cft)
ddbcc7e8 3278{
8d7e6fb0 3279 char name[CGROUP_FILE_NAME_MAX];
2bd59d48
TH
3280 struct kernfs_node *kn;
3281 struct lock_class_key *key = NULL;
49957f8e 3282 int ret;
05ef1d7c 3283
2bd59d48
TH
3284#ifdef CONFIG_DEBUG_LOCK_ALLOC
3285 key = &cft->lockdep_key;
3286#endif
3287 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3288 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
dfeb0750 3289 NULL, key);
49957f8e
TH
3290 if (IS_ERR(kn))
3291 return PTR_ERR(kn);
3292
3293 ret = cgroup_kn_set_ugid(kn);
f8f22e53 3294 if (ret) {
49957f8e 3295 kernfs_remove(kn);
f8f22e53
TH
3296 return ret;
3297 }
3298
6f60eade
TH
3299 if (cft->file_offset) {
3300 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3301
3302 kernfs_get(kn);
3303 cfile->kn = kn;
3304 list_add(&cfile->node, &css->files);
3305 }
3306
f8f22e53 3307 return 0;
ddbcc7e8
PM
3308}
3309
b1f28d31
TH
3310/**
3311 * cgroup_addrm_files - add or remove files to a cgroup directory
4df8dc90
TH
3312 * @css: the target css
3313 * @cgrp: the target cgroup (usually css->cgroup)
b1f28d31
TH
3314 * @cfts: array of cftypes to be added
3315 * @is_add: whether to add or remove
3316 *
3317 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
6732ed85 3318 * For removals, this function never fails.
b1f28d31 3319 */
4df8dc90
TH
3320static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3321 struct cgroup *cgrp, struct cftype cfts[],
2bb566cb 3322 bool is_add)
ddbcc7e8 3323{
6732ed85 3324 struct cftype *cft, *cft_end = NULL;
b1f28d31
TH
3325 int ret;
3326
01f6474c 3327 lockdep_assert_held(&cgroup_mutex);
db0416b6 3328
6732ed85
TH
3329restart:
3330 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
f33fddc2 3331 /* does cft->flags tell us to skip this file on @cgrp? */
05ebb6e6 3332 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
8cbbf2c9 3333 continue;
05ebb6e6 3334 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
873fe09e 3335 continue;
d51f39b0 3336 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
f33fddc2 3337 continue;
d51f39b0 3338 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
f33fddc2
G
3339 continue;
3340
2739d3cc 3341 if (is_add) {
4df8dc90 3342 ret = cgroup_add_file(css, cgrp, cft);
b1f28d31 3343 if (ret) {
ed3d261b
JP
3344 pr_warn("%s: failed to add %s, err=%d\n",
3345 __func__, cft->name, ret);
6732ed85
TH
3346 cft_end = cft;
3347 is_add = false;
3348 goto restart;
b1f28d31 3349 }
2739d3cc
LZ
3350 } else {
3351 cgroup_rm_file(cgrp, cft);
db0416b6 3352 }
ddbcc7e8 3353 }
b1f28d31 3354 return 0;
ddbcc7e8
PM
3355}
3356
21a2d343 3357static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
8e3f6541
TH
3358{
3359 LIST_HEAD(pending);
2bb566cb 3360 struct cgroup_subsys *ss = cfts[0].ss;
3dd06ffa 3361 struct cgroup *root = &ss->root->cgrp;
492eb21b 3362 struct cgroup_subsys_state *css;
9ccece80 3363 int ret = 0;
8e3f6541 3364
01f6474c 3365 lockdep_assert_held(&cgroup_mutex);
e8c82d20 3366
e8c82d20 3367 /* add/rm files for all cgroups created before */
ca8bdcaf 3368 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
492eb21b
TH
3369 struct cgroup *cgrp = css->cgroup;
3370
e8c82d20
LZ
3371 if (cgroup_is_dead(cgrp))
3372 continue;
3373
4df8dc90 3374 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
9ccece80
TH
3375 if (ret)
3376 break;
8e3f6541 3377 }
21a2d343
TH
3378
3379 if (is_add && !ret)
3380 kernfs_activate(root->kn);
9ccece80 3381 return ret;
8e3f6541
TH
3382}
3383
2da440a2 3384static void cgroup_exit_cftypes(struct cftype *cfts)
8e3f6541 3385{
2bb566cb 3386 struct cftype *cft;
8e3f6541 3387
2bd59d48
TH
3388 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3389 /* free copy for custom atomic_write_len, see init_cftypes() */
3390 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3391 kfree(cft->kf_ops);
3392 cft->kf_ops = NULL;
2da440a2 3393 cft->ss = NULL;
a8ddc821
TH
3394
3395 /* revert flags set by cgroup core while adding @cfts */
05ebb6e6 3396 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
2bd59d48 3397 }
2da440a2
TH
3398}
3399
2bd59d48 3400static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2da440a2
TH
3401{
3402 struct cftype *cft;
3403
2bd59d48
TH
3404 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3405 struct kernfs_ops *kf_ops;
3406
0adb0704
TH
3407 WARN_ON(cft->ss || cft->kf_ops);
3408
2bd59d48
TH
3409 if (cft->seq_start)
3410 kf_ops = &cgroup_kf_ops;
3411 else
3412 kf_ops = &cgroup_kf_single_ops;
3413
3414 /*
3415 * Ugh... if @cft wants a custom max_write_len, we need to
3416 * make a copy of kf_ops to set its atomic_write_len.
3417 */
3418 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3419 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3420 if (!kf_ops) {
3421 cgroup_exit_cftypes(cfts);
3422 return -ENOMEM;
3423 }
3424 kf_ops->atomic_write_len = cft->max_write_len;
3425 }
8e3f6541 3426
2bd59d48 3427 cft->kf_ops = kf_ops;
2bb566cb 3428 cft->ss = ss;
2bd59d48 3429 }
2bb566cb 3430
2bd59d48 3431 return 0;
2da440a2
TH
3432}
3433
21a2d343
TH
3434static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3435{
01f6474c 3436 lockdep_assert_held(&cgroup_mutex);
21a2d343
TH
3437
3438 if (!cfts || !cfts[0].ss)
3439 return -ENOENT;
3440
3441 list_del(&cfts->node);
3442 cgroup_apply_cftypes(cfts, false);
3443 cgroup_exit_cftypes(cfts);
3444 return 0;
8e3f6541 3445}
8e3f6541 3446
79578621
TH
3447/**
3448 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
79578621
TH
3449 * @cfts: zero-length name terminated array of cftypes
3450 *
2bb566cb
TH
3451 * Unregister @cfts. Files described by @cfts are removed from all
3452 * existing cgroups and all future cgroups won't have them either. This
3453 * function can be called anytime whether @cfts' subsys is attached or not.
79578621
TH
3454 *
3455 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2bb566cb 3456 * registered.
79578621 3457 */
2bb566cb 3458int cgroup_rm_cftypes(struct cftype *cfts)
79578621 3459{
21a2d343 3460 int ret;
79578621 3461
01f6474c 3462 mutex_lock(&cgroup_mutex);
21a2d343 3463 ret = cgroup_rm_cftypes_locked(cfts);
01f6474c 3464 mutex_unlock(&cgroup_mutex);
21a2d343 3465 return ret;
80b13586
TH
3466}
3467
8e3f6541
TH
3468/**
3469 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3470 * @ss: target cgroup subsystem
3471 * @cfts: zero-length name terminated array of cftypes
3472 *
3473 * Register @cfts to @ss. Files described by @cfts are created for all
3474 * existing cgroups to which @ss is attached and all future cgroups will
3475 * have them too. This function can be called anytime whether @ss is
3476 * attached or not.
3477 *
3478 * Returns 0 on successful registration, -errno on failure. Note that this
3479 * function currently returns 0 as long as @cfts registration is successful
3480 * even if some file creation attempts on existing cgroups fail.
3481 */
2cf669a5 3482static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
8e3f6541 3483{
9ccece80 3484 int ret;
8e3f6541 3485
fc5ed1e9 3486 if (!cgroup_ssid_enabled(ss->id))
c731ae1d
LZ
3487 return 0;
3488
dc5736ed
LZ
3489 if (!cfts || cfts[0].name[0] == '\0')
3490 return 0;
2bb566cb 3491
2bd59d48
TH
3492 ret = cgroup_init_cftypes(ss, cfts);
3493 if (ret)
3494 return ret;
79578621 3495
01f6474c 3496 mutex_lock(&cgroup_mutex);
21a2d343 3497
0adb0704 3498 list_add_tail(&cfts->node, &ss->cfts);
21a2d343 3499 ret = cgroup_apply_cftypes(cfts, true);
9ccece80 3500 if (ret)
21a2d343 3501 cgroup_rm_cftypes_locked(cfts);
79578621 3502
01f6474c 3503 mutex_unlock(&cgroup_mutex);
9ccece80 3504 return ret;
79578621
TH
3505}
3506
a8ddc821
TH
3507/**
3508 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3509 * @ss: target cgroup subsystem
3510 * @cfts: zero-length name terminated array of cftypes
3511 *
3512 * Similar to cgroup_add_cftypes() but the added files are only used for
3513 * the default hierarchy.
3514 */
3515int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3516{
3517 struct cftype *cft;
3518
3519 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
05ebb6e6 3520 cft->flags |= __CFTYPE_ONLY_ON_DFL;
a8ddc821
TH
3521 return cgroup_add_cftypes(ss, cfts);
3522}
3523
3524/**
3525 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3526 * @ss: target cgroup subsystem
3527 * @cfts: zero-length name terminated array of cftypes
3528 *
3529 * Similar to cgroup_add_cftypes() but the added files are only used for
3530 * the legacy hierarchies.
3531 */
2cf669a5
TH
3532int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3533{
a8ddc821
TH
3534 struct cftype *cft;
3535
fa8137be
VG
3536 /*
3537 * If legacy_flies_on_dfl, we want to show the legacy files on the
3538 * dfl hierarchy but iff the target subsystem hasn't been updated
3539 * for the dfl hierarchy yet.
3540 */
3541 if (!cgroup_legacy_files_on_dfl ||
3542 ss->dfl_cftypes != ss->legacy_cftypes) {
3543 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3544 cft->flags |= __CFTYPE_NOT_ON_DFL;
3545 }
3546
2cf669a5
TH
3547 return cgroup_add_cftypes(ss, cfts);
3548}
3549
a043e3b2
LZ
3550/**
3551 * cgroup_task_count - count the number of tasks in a cgroup.
3552 * @cgrp: the cgroup in question
3553 *
3554 * Return the number of tasks in the cgroup.
3555 */
07bc356e 3556static int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
3557{
3558 int count = 0;
69d0206c 3559 struct cgrp_cset_link *link;
817929ec 3560
96d365e0 3561 down_read(&css_set_rwsem);
69d0206c
TH
3562 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3563 count += atomic_read(&link->cset->refcount);
96d365e0 3564 up_read(&css_set_rwsem);
bbcb81d0
PM
3565 return count;
3566}
3567
53fa5261 3568/**
492eb21b 3569 * css_next_child - find the next child of a given css
c2931b70
TH
3570 * @pos: the current position (%NULL to initiate traversal)
3571 * @parent: css whose children to walk
53fa5261 3572 *
c2931b70 3573 * This function returns the next child of @parent and should be called
87fb54f1 3574 * under either cgroup_mutex or RCU read lock. The only requirement is
c2931b70
TH
3575 * that @parent and @pos are accessible. The next sibling is guaranteed to
3576 * be returned regardless of their states.
3577 *
3578 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3579 * css which finished ->css_online() is guaranteed to be visible in the
3580 * future iterations and will stay visible until the last reference is put.
3581 * A css which hasn't finished ->css_online() or already finished
3582 * ->css_offline() may show up during traversal. It's each subsystem's
3583 * responsibility to synchronize against on/offlining.
53fa5261 3584 */
c2931b70
TH
3585struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3586 struct cgroup_subsys_state *parent)
53fa5261 3587{
c2931b70 3588 struct cgroup_subsys_state *next;
53fa5261 3589
8353da1f 3590 cgroup_assert_mutex_or_rcu_locked();
53fa5261
TH
3591
3592 /*
de3f0341
TH
3593 * @pos could already have been unlinked from the sibling list.
3594 * Once a cgroup is removed, its ->sibling.next is no longer
3595 * updated when its next sibling changes. CSS_RELEASED is set when
3596 * @pos is taken off list, at which time its next pointer is valid,
3597 * and, as releases are serialized, the one pointed to by the next
3598 * pointer is guaranteed to not have started release yet. This
3599 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3600 * critical section, the one pointed to by its next pointer is
3601 * guaranteed to not have finished its RCU grace period even if we
3602 * have dropped rcu_read_lock() inbetween iterations.
3b287a50 3603 *
de3f0341
TH
3604 * If @pos has CSS_RELEASED set, its next pointer can't be
3605 * dereferenced; however, as each css is given a monotonically
3606 * increasing unique serial number and always appended to the
3607 * sibling list, the next one can be found by walking the parent's
3608 * children until the first css with higher serial number than
3609 * @pos's. While this path can be slower, it happens iff iteration
3610 * races against release and the race window is very small.
53fa5261 3611 */
3b287a50 3612 if (!pos) {
c2931b70
TH
3613 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3614 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3615 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3b287a50 3616 } else {
c2931b70 3617 list_for_each_entry_rcu(next, &parent->children, sibling)
3b287a50
TH
3618 if (next->serial_nr > pos->serial_nr)
3619 break;
53fa5261
TH
3620 }
3621
3b281afb
TH
3622 /*
3623 * @next, if not pointing to the head, can be dereferenced and is
c2931b70 3624 * the next sibling.
3b281afb 3625 */
c2931b70
TH
3626 if (&next->sibling != &parent->children)
3627 return next;
3b281afb 3628 return NULL;
53fa5261 3629}
53fa5261 3630
574bd9f7 3631/**
492eb21b 3632 * css_next_descendant_pre - find the next descendant for pre-order walk
574bd9f7 3633 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3634 * @root: css whose descendants to walk
574bd9f7 3635 *
492eb21b 3636 * To be used by css_for_each_descendant_pre(). Find the next descendant
bd8815a6
TH
3637 * to visit for pre-order traversal of @root's descendants. @root is
3638 * included in the iteration and the first node to be visited.
75501a6d 3639 *
87fb54f1
TH
3640 * While this function requires cgroup_mutex or RCU read locking, it
3641 * doesn't require the whole traversal to be contained in a single critical
3642 * section. This function will return the correct next descendant as long
3643 * as both @pos and @root are accessible and @pos is a descendant of @root.
c2931b70
TH
3644 *
3645 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3646 * css which finished ->css_online() is guaranteed to be visible in the
3647 * future iterations and will stay visible until the last reference is put.
3648 * A css which hasn't finished ->css_online() or already finished
3649 * ->css_offline() may show up during traversal. It's each subsystem's
3650 * responsibility to synchronize against on/offlining.
574bd9f7 3651 */
492eb21b
TH
3652struct cgroup_subsys_state *
3653css_next_descendant_pre(struct cgroup_subsys_state *pos,
3654 struct cgroup_subsys_state *root)
574bd9f7 3655{
492eb21b 3656 struct cgroup_subsys_state *next;
574bd9f7 3657
8353da1f 3658 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3659
bd8815a6 3660 /* if first iteration, visit @root */
7805d000 3661 if (!pos)
bd8815a6 3662 return root;
574bd9f7
TH
3663
3664 /* visit the first child if exists */
492eb21b 3665 next = css_next_child(NULL, pos);
574bd9f7
TH
3666 if (next)
3667 return next;
3668
3669 /* no child, visit my or the closest ancestor's next sibling */
492eb21b 3670 while (pos != root) {
5c9d535b 3671 next = css_next_child(pos, pos->parent);
75501a6d 3672 if (next)
574bd9f7 3673 return next;
5c9d535b 3674 pos = pos->parent;
7805d000 3675 }
574bd9f7
TH
3676
3677 return NULL;
3678}
574bd9f7 3679
12a9d2fe 3680/**
492eb21b
TH
3681 * css_rightmost_descendant - return the rightmost descendant of a css
3682 * @pos: css of interest
12a9d2fe 3683 *
492eb21b
TH
3684 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3685 * is returned. This can be used during pre-order traversal to skip
12a9d2fe 3686 * subtree of @pos.
75501a6d 3687 *
87fb54f1
TH
3688 * While this function requires cgroup_mutex or RCU read locking, it
3689 * doesn't require the whole traversal to be contained in a single critical
3690 * section. This function will return the correct rightmost descendant as
3691 * long as @pos is accessible.
12a9d2fe 3692 */
492eb21b
TH
3693struct cgroup_subsys_state *
3694css_rightmost_descendant(struct cgroup_subsys_state *pos)
12a9d2fe 3695{
492eb21b 3696 struct cgroup_subsys_state *last, *tmp;
12a9d2fe 3697
8353da1f 3698 cgroup_assert_mutex_or_rcu_locked();
12a9d2fe
TH
3699
3700 do {
3701 last = pos;
3702 /* ->prev isn't RCU safe, walk ->next till the end */
3703 pos = NULL;
492eb21b 3704 css_for_each_child(tmp, last)
12a9d2fe
TH
3705 pos = tmp;
3706 } while (pos);
3707
3708 return last;
3709}
12a9d2fe 3710
492eb21b
TH
3711static struct cgroup_subsys_state *
3712css_leftmost_descendant(struct cgroup_subsys_state *pos)
574bd9f7 3713{
492eb21b 3714 struct cgroup_subsys_state *last;
574bd9f7
TH
3715
3716 do {
3717 last = pos;
492eb21b 3718 pos = css_next_child(NULL, pos);
574bd9f7
TH
3719 } while (pos);
3720
3721 return last;
3722}
3723
3724/**
492eb21b 3725 * css_next_descendant_post - find the next descendant for post-order walk
574bd9f7 3726 * @pos: the current position (%NULL to initiate traversal)
492eb21b 3727 * @root: css whose descendants to walk
574bd9f7 3728 *
492eb21b 3729 * To be used by css_for_each_descendant_post(). Find the next descendant
bd8815a6
TH
3730 * to visit for post-order traversal of @root's descendants. @root is
3731 * included in the iteration and the last node to be visited.
75501a6d 3732 *
87fb54f1
TH
3733 * While this function requires cgroup_mutex or RCU read locking, it
3734 * doesn't require the whole traversal to be contained in a single critical
3735 * section. This function will return the correct next descendant as long
3736 * as both @pos and @cgroup are accessible and @pos is a descendant of
3737 * @cgroup.
c2931b70
TH
3738 *
3739 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3740 * css which finished ->css_online() is guaranteed to be visible in the
3741 * future iterations and will stay visible until the last reference is put.
3742 * A css which hasn't finished ->css_online() or already finished
3743 * ->css_offline() may show up during traversal. It's each subsystem's
3744 * responsibility to synchronize against on/offlining.
574bd9f7 3745 */
492eb21b
TH
3746struct cgroup_subsys_state *
3747css_next_descendant_post(struct cgroup_subsys_state *pos,
3748 struct cgroup_subsys_state *root)
574bd9f7 3749{
492eb21b 3750 struct cgroup_subsys_state *next;
574bd9f7 3751
8353da1f 3752 cgroup_assert_mutex_or_rcu_locked();
574bd9f7 3753
58b79a91
TH
3754 /* if first iteration, visit leftmost descendant which may be @root */
3755 if (!pos)
3756 return css_leftmost_descendant(root);
574bd9f7 3757
bd8815a6
TH
3758 /* if we visited @root, we're done */
3759 if (pos == root)
3760 return NULL;
3761
574bd9f7 3762 /* if there's an unvisited sibling, visit its leftmost descendant */
5c9d535b 3763 next = css_next_child(pos, pos->parent);
75501a6d 3764 if (next)
492eb21b 3765 return css_leftmost_descendant(next);
574bd9f7
TH
3766
3767 /* no sibling left, visit parent */
5c9d535b 3768 return pos->parent;
574bd9f7 3769}
574bd9f7 3770
f3d46500
TH
3771/**
3772 * css_has_online_children - does a css have online children
3773 * @css: the target css
3774 *
3775 * Returns %true if @css has any online children; otherwise, %false. This
3776 * function can be called from any context but the caller is responsible
3777 * for synchronizing against on/offlining as necessary.
3778 */
3779bool css_has_online_children(struct cgroup_subsys_state *css)
cbc125ef 3780{
f3d46500
TH
3781 struct cgroup_subsys_state *child;
3782 bool ret = false;
cbc125ef
TH
3783
3784 rcu_read_lock();
f3d46500 3785 css_for_each_child(child, css) {
99bae5f9 3786 if (child->flags & CSS_ONLINE) {
f3d46500
TH
3787 ret = true;
3788 break;
cbc125ef
TH
3789 }
3790 }
3791 rcu_read_unlock();
f3d46500 3792 return ret;
574bd9f7 3793}
574bd9f7 3794
0942eeee 3795/**
72ec7029 3796 * css_advance_task_iter - advance a task itererator to the next css_set
0942eeee
TH
3797 * @it: the iterator to advance
3798 *
3799 * Advance @it to the next css_set to walk.
d515876e 3800 */
72ec7029 3801static void css_advance_task_iter(struct css_task_iter *it)
d515876e 3802{
0f0a2b4f 3803 struct list_head *l = it->cset_pos;
d515876e
TH
3804 struct cgrp_cset_link *link;
3805 struct css_set *cset;
3806
3807 /* Advance to the next non-empty css_set */
3808 do {
3809 l = l->next;
0f0a2b4f
TH
3810 if (l == it->cset_head) {
3811 it->cset_pos = NULL;
d515876e
TH
3812 return;
3813 }
3ebb2b6e
TH
3814
3815 if (it->ss) {
3816 cset = container_of(l, struct css_set,
3817 e_cset_node[it->ss->id]);
3818 } else {
3819 link = list_entry(l, struct cgrp_cset_link, cset_link);
3820 cset = link->cset;
3821 }
0de0942d 3822 } while (!css_set_populated(cset));
c7561128 3823
0f0a2b4f 3824 it->cset_pos = l;
c7561128
TH
3825
3826 if (!list_empty(&cset->tasks))
0f0a2b4f 3827 it->task_pos = cset->tasks.next;
c7561128 3828 else
0f0a2b4f
TH
3829 it->task_pos = cset->mg_tasks.next;
3830
3831 it->tasks_head = &cset->tasks;
3832 it->mg_tasks_head = &cset->mg_tasks;
d515876e
TH
3833}
3834
0942eeee 3835/**
72ec7029
TH
3836 * css_task_iter_start - initiate task iteration
3837 * @css: the css to walk tasks of
0942eeee
TH
3838 * @it: the task iterator to use
3839 *
72ec7029
TH
3840 * Initiate iteration through the tasks of @css. The caller can call
3841 * css_task_iter_next() to walk through the tasks until the function
3842 * returns NULL. On completion of iteration, css_task_iter_end() must be
3843 * called.
0942eeee
TH
3844 *
3845 * Note that this function acquires a lock which is released when the
3846 * iteration finishes. The caller can't sleep while iteration is in
3847 * progress.
3848 */
72ec7029
TH
3849void css_task_iter_start(struct cgroup_subsys_state *css,
3850 struct css_task_iter *it)
96d365e0 3851 __acquires(css_set_rwsem)
817929ec 3852{
56fde9e0
TH
3853 /* no one should try to iterate before mounting cgroups */
3854 WARN_ON_ONCE(!use_task_css_set_links);
31a7df01 3855
96d365e0 3856 down_read(&css_set_rwsem);
c59cd3d8 3857
3ebb2b6e
TH
3858 it->ss = css->ss;
3859
3860 if (it->ss)
3861 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3862 else
3863 it->cset_pos = &css->cgroup->cset_links;
3864
0f0a2b4f 3865 it->cset_head = it->cset_pos;
c59cd3d8 3866
72ec7029 3867 css_advance_task_iter(it);
817929ec
PM
3868}
3869
0942eeee 3870/**
72ec7029 3871 * css_task_iter_next - return the next task for the iterator
0942eeee
TH
3872 * @it: the task iterator being iterated
3873 *
3874 * The "next" function for task iteration. @it should have been
72ec7029
TH
3875 * initialized via css_task_iter_start(). Returns NULL when the iteration
3876 * reaches the end.
0942eeee 3877 */
72ec7029 3878struct task_struct *css_task_iter_next(struct css_task_iter *it)
817929ec
PM
3879{
3880 struct task_struct *res;
0f0a2b4f 3881 struct list_head *l = it->task_pos;
817929ec
PM
3882
3883 /* If the iterator cg is NULL, we have no tasks */
0f0a2b4f 3884 if (!it->cset_pos)
817929ec
PM
3885 return NULL;
3886 res = list_entry(l, struct task_struct, cg_list);
c7561128
TH
3887
3888 /*
3889 * Advance iterator to find next entry. cset->tasks is consumed
3890 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3891 * next cset.
3892 */
817929ec 3893 l = l->next;
c7561128 3894
0f0a2b4f
TH
3895 if (l == it->tasks_head)
3896 l = it->mg_tasks_head->next;
c7561128 3897
0f0a2b4f 3898 if (l == it->mg_tasks_head)
72ec7029 3899 css_advance_task_iter(it);
c7561128 3900 else
0f0a2b4f 3901 it->task_pos = l;
c7561128 3902
817929ec
PM
3903 return res;
3904}
3905
0942eeee 3906/**
72ec7029 3907 * css_task_iter_end - finish task iteration
0942eeee
TH
3908 * @it: the task iterator to finish
3909 *
72ec7029 3910 * Finish task iteration started by css_task_iter_start().
0942eeee 3911 */
72ec7029 3912void css_task_iter_end(struct css_task_iter *it)
96d365e0 3913 __releases(css_set_rwsem)
31a7df01 3914{
96d365e0 3915 up_read(&css_set_rwsem);
31a7df01
CW
3916}
3917
3918/**
8cc99345
TH
3919 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3920 * @to: cgroup to which the tasks will be moved
3921 * @from: cgroup in which the tasks currently reside
31a7df01 3922 *
eaf797ab
TH
3923 * Locking rules between cgroup_post_fork() and the migration path
3924 * guarantee that, if a task is forking while being migrated, the new child
3925 * is guaranteed to be either visible in the source cgroup after the
3926 * parent's migration is complete or put into the target cgroup. No task
3927 * can slip out of migration through forking.
31a7df01 3928 */
8cc99345 3929int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
31a7df01 3930{
952aaa12
TH
3931 LIST_HEAD(preloaded_csets);
3932 struct cgrp_cset_link *link;
72ec7029 3933 struct css_task_iter it;
e406d1cf 3934 struct task_struct *task;
952aaa12 3935 int ret;
31a7df01 3936
952aaa12 3937 mutex_lock(&cgroup_mutex);
31a7df01 3938
952aaa12
TH
3939 /* all tasks in @from are being moved, all csets are source */
3940 down_read(&css_set_rwsem);
3941 list_for_each_entry(link, &from->cset_links, cset_link)
3942 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3943 up_read(&css_set_rwsem);
31a7df01 3944
952aaa12
TH
3945 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3946 if (ret)
3947 goto out_err;
8cc99345 3948
952aaa12
TH
3949 /*
3950 * Migrate tasks one-by-one until @form is empty. This fails iff
3951 * ->can_attach() fails.
3952 */
e406d1cf 3953 do {
9d800df1 3954 css_task_iter_start(&from->self, &it);
e406d1cf
TH
3955 task = css_task_iter_next(&it);
3956 if (task)
3957 get_task_struct(task);
3958 css_task_iter_end(&it);
3959
3960 if (task) {
9af2ec45 3961 ret = cgroup_migrate(task, false, to);
e406d1cf
TH
3962 put_task_struct(task);
3963 }
3964 } while (task && !ret);
952aaa12
TH
3965out_err:
3966 cgroup_migrate_finish(&preloaded_csets);
47cfcd09 3967 mutex_unlock(&cgroup_mutex);
e406d1cf 3968 return ret;
8cc99345
TH
3969}
3970
bbcb81d0 3971/*
102a775e 3972 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
3973 *
3974 * Reading this file can return large amounts of data if a cgroup has
3975 * *lots* of attached tasks. So it may need several calls to read(),
3976 * but we cannot guarantee that the information we produce is correct
3977 * unless we produce it entirely atomically.
3978 *
bbcb81d0 3979 */
bbcb81d0 3980
24528255
LZ
3981/* which pidlist file are we talking about? */
3982enum cgroup_filetype {
3983 CGROUP_FILE_PROCS,
3984 CGROUP_FILE_TASKS,
3985};
3986
3987/*
3988 * A pidlist is a list of pids that virtually represents the contents of one
3989 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3990 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3991 * to the cgroup.
3992 */
3993struct cgroup_pidlist {
3994 /*
3995 * used to find which pidlist is wanted. doesn't change as long as
3996 * this particular list stays in the list.
3997 */
3998 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3999 /* array of xids */
4000 pid_t *list;
4001 /* how many elements the above list has */
4002 int length;
24528255
LZ
4003 /* each of these stored in a list by its cgroup */
4004 struct list_head links;
4005 /* pointer to the cgroup we belong to, for list removal purposes */
4006 struct cgroup *owner;
b1a21367
TH
4007 /* for delayed destruction */
4008 struct delayed_work destroy_dwork;
24528255
LZ
4009};
4010
d1d9fd33
BB
4011/*
4012 * The following two functions "fix" the issue where there are more pids
4013 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4014 * TODO: replace with a kernel-wide solution to this problem
4015 */
4016#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4017static void *pidlist_allocate(int count)
4018{
4019 if (PIDLIST_TOO_LARGE(count))
4020 return vmalloc(count * sizeof(pid_t));
4021 else
4022 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4023}
b1a21367 4024
d1d9fd33
BB
4025static void pidlist_free(void *p)
4026{
58794514 4027 kvfree(p);
d1d9fd33 4028}
d1d9fd33 4029
b1a21367
TH
4030/*
4031 * Used to destroy all pidlists lingering waiting for destroy timer. None
4032 * should be left afterwards.
4033 */
4034static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4035{
4036 struct cgroup_pidlist *l, *tmp_l;
4037
4038 mutex_lock(&cgrp->pidlist_mutex);
4039 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4040 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4041 mutex_unlock(&cgrp->pidlist_mutex);
4042
4043 flush_workqueue(cgroup_pidlist_destroy_wq);
4044 BUG_ON(!list_empty(&cgrp->pidlists));
4045}
4046
4047static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4048{
4049 struct delayed_work *dwork = to_delayed_work(work);
4050 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4051 destroy_dwork);
4052 struct cgroup_pidlist *tofree = NULL;
4053
4054 mutex_lock(&l->owner->pidlist_mutex);
b1a21367
TH
4055
4056 /*
04502365
TH
4057 * Destroy iff we didn't get queued again. The state won't change
4058 * as destroy_dwork can only be queued while locked.
b1a21367 4059 */
04502365 4060 if (!delayed_work_pending(dwork)) {
b1a21367
TH
4061 list_del(&l->links);
4062 pidlist_free(l->list);
4063 put_pid_ns(l->key.ns);
4064 tofree = l;
4065 }
4066
b1a21367
TH
4067 mutex_unlock(&l->owner->pidlist_mutex);
4068 kfree(tofree);
4069}
4070
bbcb81d0 4071/*
102a775e 4072 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
6ee211ad 4073 * Returns the number of unique elements.
bbcb81d0 4074 */
6ee211ad 4075static int pidlist_uniq(pid_t *list, int length)
bbcb81d0 4076{
102a775e 4077 int src, dest = 1;
102a775e
BB
4078
4079 /*
4080 * we presume the 0th element is unique, so i starts at 1. trivial
4081 * edge cases first; no work needs to be done for either
4082 */
4083 if (length == 0 || length == 1)
4084 return length;
4085 /* src and dest walk down the list; dest counts unique elements */
4086 for (src = 1; src < length; src++) {
4087 /* find next unique element */
4088 while (list[src] == list[src-1]) {
4089 src++;
4090 if (src == length)
4091 goto after;
4092 }
4093 /* dest always points to where the next unique element goes */
4094 list[dest] = list[src];
4095 dest++;
4096 }
4097after:
102a775e
BB
4098 return dest;
4099}
4100
afb2bc14
TH
4101/*
4102 * The two pid files - task and cgroup.procs - guaranteed that the result
4103 * is sorted, which forced this whole pidlist fiasco. As pid order is
4104 * different per namespace, each namespace needs differently sorted list,
4105 * making it impossible to use, for example, single rbtree of member tasks
4106 * sorted by task pointer. As pidlists can be fairly large, allocating one
4107 * per open file is dangerous, so cgroup had to implement shared pool of
4108 * pidlists keyed by cgroup and namespace.
4109 *
4110 * All this extra complexity was caused by the original implementation
4111 * committing to an entirely unnecessary property. In the long term, we
aa6ec29b
TH
4112 * want to do away with it. Explicitly scramble sort order if on the
4113 * default hierarchy so that no such expectation exists in the new
4114 * interface.
afb2bc14
TH
4115 *
4116 * Scrambling is done by swapping every two consecutive bits, which is
4117 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4118 */
4119static pid_t pid_fry(pid_t pid)
4120{
4121 unsigned a = pid & 0x55555555;
4122 unsigned b = pid & 0xAAAAAAAA;
4123
4124 return (a << 1) | (b >> 1);
4125}
4126
4127static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4128{
aa6ec29b 4129 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4130 return pid_fry(pid);
4131 else
4132 return pid;
4133}
4134
102a775e
BB
4135static int cmppid(const void *a, const void *b)
4136{
4137 return *(pid_t *)a - *(pid_t *)b;
4138}
4139
afb2bc14
TH
4140static int fried_cmppid(const void *a, const void *b)
4141{
4142 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4143}
4144
e6b81710
TH
4145static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4146 enum cgroup_filetype type)
4147{
4148 struct cgroup_pidlist *l;
4149 /* don't need task_nsproxy() if we're looking at ourself */
4150 struct pid_namespace *ns = task_active_pid_ns(current);
4151
4152 lockdep_assert_held(&cgrp->pidlist_mutex);
4153
4154 list_for_each_entry(l, &cgrp->pidlists, links)
4155 if (l->key.type == type && l->key.ns == ns)
4156 return l;
4157 return NULL;
4158}
4159
72a8cb30
BB
4160/*
4161 * find the appropriate pidlist for our purpose (given procs vs tasks)
4162 * returns with the lock on that pidlist already held, and takes care
4163 * of the use count, or returns NULL with no locks held if we're out of
4164 * memory.
4165 */
e6b81710
TH
4166static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4167 enum cgroup_filetype type)
72a8cb30
BB
4168{
4169 struct cgroup_pidlist *l;
b70cc5fd 4170
e6b81710
TH
4171 lockdep_assert_held(&cgrp->pidlist_mutex);
4172
4173 l = cgroup_pidlist_find(cgrp, type);
4174 if (l)
4175 return l;
4176
72a8cb30 4177 /* entry not found; create a new one */
f4f4be2b 4178 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
e6b81710 4179 if (!l)
72a8cb30 4180 return l;
e6b81710 4181
b1a21367 4182 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
72a8cb30 4183 l->key.type = type;
e6b81710
TH
4184 /* don't need task_nsproxy() if we're looking at ourself */
4185 l->key.ns = get_pid_ns(task_active_pid_ns(current));
72a8cb30
BB
4186 l->owner = cgrp;
4187 list_add(&l->links, &cgrp->pidlists);
72a8cb30
BB
4188 return l;
4189}
4190
102a775e
BB
4191/*
4192 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4193 */
72a8cb30
BB
4194static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4195 struct cgroup_pidlist **lp)
102a775e
BB
4196{
4197 pid_t *array;
4198 int length;
4199 int pid, n = 0; /* used for populating the array */
72ec7029 4200 struct css_task_iter it;
817929ec 4201 struct task_struct *tsk;
102a775e
BB
4202 struct cgroup_pidlist *l;
4203
4bac00d1
TH
4204 lockdep_assert_held(&cgrp->pidlist_mutex);
4205
102a775e
BB
4206 /*
4207 * If cgroup gets more users after we read count, we won't have
4208 * enough space - tough. This race is indistinguishable to the
4209 * caller from the case that the additional cgroup users didn't
4210 * show up until sometime later on.
4211 */
4212 length = cgroup_task_count(cgrp);
d1d9fd33 4213 array = pidlist_allocate(length);
102a775e
BB
4214 if (!array)
4215 return -ENOMEM;
4216 /* now, populate the array */
9d800df1 4217 css_task_iter_start(&cgrp->self, &it);
72ec7029 4218 while ((tsk = css_task_iter_next(&it))) {
102a775e 4219 if (unlikely(n == length))
817929ec 4220 break;
102a775e 4221 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
4222 if (type == CGROUP_FILE_PROCS)
4223 pid = task_tgid_vnr(tsk);
4224 else
4225 pid = task_pid_vnr(tsk);
102a775e
BB
4226 if (pid > 0) /* make sure to only use valid results */
4227 array[n++] = pid;
817929ec 4228 }
72ec7029 4229 css_task_iter_end(&it);
102a775e
BB
4230 length = n;
4231 /* now sort & (if procs) strip out duplicates */
aa6ec29b 4232 if (cgroup_on_dfl(cgrp))
afb2bc14
TH
4233 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4234 else
4235 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 4236 if (type == CGROUP_FILE_PROCS)
6ee211ad 4237 length = pidlist_uniq(array, length);
e6b81710 4238
e6b81710 4239 l = cgroup_pidlist_find_create(cgrp, type);
72a8cb30 4240 if (!l) {
d1d9fd33 4241 pidlist_free(array);
72a8cb30 4242 return -ENOMEM;
102a775e 4243 }
e6b81710
TH
4244
4245 /* store array, freeing old if necessary */
d1d9fd33 4246 pidlist_free(l->list);
102a775e
BB
4247 l->list = array;
4248 l->length = length;
72a8cb30 4249 *lp = l;
102a775e 4250 return 0;
bbcb81d0
PM
4251}
4252
846c7bb0 4253/**
a043e3b2 4254 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
4255 * @stats: cgroupstats to fill information into
4256 * @dentry: A dentry entry belonging to the cgroup for which stats have
4257 * been requested.
a043e3b2
LZ
4258 *
4259 * Build and fill cgroupstats so that taskstats can export it to user
4260 * space.
846c7bb0
BS
4261 */
4262int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4263{
2bd59d48 4264 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
bd89aabc 4265 struct cgroup *cgrp;
72ec7029 4266 struct css_task_iter it;
846c7bb0 4267 struct task_struct *tsk;
33d283be 4268
2bd59d48
TH
4269 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4270 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4271 kernfs_type(kn) != KERNFS_DIR)
4272 return -EINVAL;
4273
bad34660
LZ
4274 mutex_lock(&cgroup_mutex);
4275
846c7bb0 4276 /*
2bd59d48 4277 * We aren't being called from kernfs and there's no guarantee on
ec903c0c 4278 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
2bd59d48 4279 * @kn->priv is RCU safe. Let's do the RCU dancing.
846c7bb0 4280 */
2bd59d48
TH
4281 rcu_read_lock();
4282 cgrp = rcu_dereference(kn->priv);
bad34660 4283 if (!cgrp || cgroup_is_dead(cgrp)) {
2bd59d48 4284 rcu_read_unlock();
bad34660 4285 mutex_unlock(&cgroup_mutex);
2bd59d48
TH
4286 return -ENOENT;
4287 }
bad34660 4288 rcu_read_unlock();
846c7bb0 4289
9d800df1 4290 css_task_iter_start(&cgrp->self, &it);
72ec7029 4291 while ((tsk = css_task_iter_next(&it))) {
846c7bb0
BS
4292 switch (tsk->state) {
4293 case TASK_RUNNING:
4294 stats->nr_running++;
4295 break;
4296 case TASK_INTERRUPTIBLE:
4297 stats->nr_sleeping++;
4298 break;
4299 case TASK_UNINTERRUPTIBLE:
4300 stats->nr_uninterruptible++;
4301 break;
4302 case TASK_STOPPED:
4303 stats->nr_stopped++;
4304 break;
4305 default:
4306 if (delayacct_is_task_waiting_on_io(tsk))
4307 stats->nr_io_wait++;
4308 break;
4309 }
4310 }
72ec7029 4311 css_task_iter_end(&it);
846c7bb0 4312
bad34660 4313 mutex_unlock(&cgroup_mutex);
2bd59d48 4314 return 0;
846c7bb0
BS
4315}
4316
8f3ff208 4317
bbcb81d0 4318/*
102a775e 4319 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 4320 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 4321 * in the cgroup->l->list array.
bbcb81d0 4322 */
cc31edce 4323
102a775e 4324static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 4325{
cc31edce
PM
4326 /*
4327 * Initially we receive a position value that corresponds to
4328 * one more than the last pid shown (or 0 on the first call or
4329 * after a seek to the start). Use a binary-search to find the
4330 * next pid to display, if any
4331 */
2bd59d48 4332 struct kernfs_open_file *of = s->private;
7da11279 4333 struct cgroup *cgrp = seq_css(s)->cgroup;
4bac00d1 4334 struct cgroup_pidlist *l;
7da11279 4335 enum cgroup_filetype type = seq_cft(s)->private;
cc31edce 4336 int index = 0, pid = *pos;
4bac00d1
TH
4337 int *iter, ret;
4338
4339 mutex_lock(&cgrp->pidlist_mutex);
4340
4341 /*
5d22444f 4342 * !NULL @of->priv indicates that this isn't the first start()
4bac00d1 4343 * after open. If the matching pidlist is around, we can use that.
5d22444f 4344 * Look for it. Note that @of->priv can't be used directly. It
4bac00d1
TH
4345 * could already have been destroyed.
4346 */
5d22444f
TH
4347 if (of->priv)
4348 of->priv = cgroup_pidlist_find(cgrp, type);
4bac00d1
TH
4349
4350 /*
4351 * Either this is the first start() after open or the matching
4352 * pidlist has been destroyed inbetween. Create a new one.
4353 */
5d22444f
TH
4354 if (!of->priv) {
4355 ret = pidlist_array_load(cgrp, type,
4356 (struct cgroup_pidlist **)&of->priv);
4bac00d1
TH
4357 if (ret)
4358 return ERR_PTR(ret);
4359 }
5d22444f 4360 l = of->priv;
cc31edce 4361
cc31edce 4362 if (pid) {
102a775e 4363 int end = l->length;
20777766 4364
cc31edce
PM
4365 while (index < end) {
4366 int mid = (index + end) / 2;
afb2bc14 4367 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
cc31edce
PM
4368 index = mid;
4369 break;
afb2bc14 4370 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
cc31edce
PM
4371 index = mid + 1;
4372 else
4373 end = mid;
4374 }
4375 }
4376 /* If we're off the end of the array, we're done */
102a775e 4377 if (index >= l->length)
cc31edce
PM
4378 return NULL;
4379 /* Update the abstract position to be the actual pid that we found */
102a775e 4380 iter = l->list + index;
afb2bc14 4381 *pos = cgroup_pid_fry(cgrp, *iter);
cc31edce
PM
4382 return iter;
4383}
4384
102a775e 4385static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 4386{
2bd59d48 4387 struct kernfs_open_file *of = s->private;
5d22444f 4388 struct cgroup_pidlist *l = of->priv;
62236858 4389
5d22444f
TH
4390 if (l)
4391 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
04502365 4392 CGROUP_PIDLIST_DESTROY_DELAY);
7da11279 4393 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
cc31edce
PM
4394}
4395
102a775e 4396static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 4397{
2bd59d48 4398 struct kernfs_open_file *of = s->private;
5d22444f 4399 struct cgroup_pidlist *l = of->priv;
102a775e
BB
4400 pid_t *p = v;
4401 pid_t *end = l->list + l->length;
cc31edce
PM
4402 /*
4403 * Advance to the next pid in the array. If this goes off the
4404 * end, we're done
4405 */
4406 p++;
4407 if (p >= end) {
4408 return NULL;
4409 } else {
7da11279 4410 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
cc31edce
PM
4411 return p;
4412 }
4413}
4414
102a775e 4415static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce 4416{
94ff212d
JP
4417 seq_printf(s, "%d\n", *(int *)v);
4418
4419 return 0;
cc31edce 4420}
bbcb81d0 4421
182446d0
TH
4422static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4423 struct cftype *cft)
81a6a5cd 4424{
182446d0 4425 return notify_on_release(css->cgroup);
81a6a5cd
PM
4426}
4427
182446d0
TH
4428static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4429 struct cftype *cft, u64 val)
6379c106 4430{
6379c106 4431 if (val)
182446d0 4432 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106 4433 else
182446d0 4434 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
6379c106
PM
4435 return 0;
4436}
4437
182446d0
TH
4438static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4439 struct cftype *cft)
97978e6d 4440{
182446d0 4441 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4442}
4443
182446d0
TH
4444static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4445 struct cftype *cft, u64 val)
97978e6d
DL
4446{
4447 if (val)
182446d0 4448 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d 4449 else
182446d0 4450 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
97978e6d
DL
4451 return 0;
4452}
4453
a14c6874
TH
4454/* cgroup core interface files for the default hierarchy */
4455static struct cftype cgroup_dfl_base_files[] = {
81a6a5cd 4456 {
d5c56ced 4457 .name = "cgroup.procs",
6f60eade 4458 .file_offset = offsetof(struct cgroup, procs_file),
6612f05b
TH
4459 .seq_start = cgroup_pidlist_start,
4460 .seq_next = cgroup_pidlist_next,
4461 .seq_stop = cgroup_pidlist_stop,
4462 .seq_show = cgroup_pidlist_show,
5d22444f 4463 .private = CGROUP_FILE_PROCS,
acbef755 4464 .write = cgroup_procs_write,
102a775e 4465 },
f8f22e53
TH
4466 {
4467 .name = "cgroup.controllers",
a14c6874 4468 .flags = CFTYPE_ONLY_ON_ROOT,
f8f22e53
TH
4469 .seq_show = cgroup_root_controllers_show,
4470 },
4471 {
4472 .name = "cgroup.controllers",
a14c6874 4473 .flags = CFTYPE_NOT_ON_ROOT,
f8f22e53
TH
4474 .seq_show = cgroup_controllers_show,
4475 },
4476 {
4477 .name = "cgroup.subtree_control",
f8f22e53 4478 .seq_show = cgroup_subtree_control_show,
451af504 4479 .write = cgroup_subtree_control_write,
f8f22e53 4480 },
842b597e 4481 {
4a07c222 4482 .name = "cgroup.events",
a14c6874 4483 .flags = CFTYPE_NOT_ON_ROOT,
6f60eade 4484 .file_offset = offsetof(struct cgroup, events_file),
4a07c222 4485 .seq_show = cgroup_events_show,
842b597e 4486 },
a14c6874
TH
4487 { } /* terminate */
4488};
d5c56ced 4489
a14c6874
TH
4490/* cgroup core interface files for the legacy hierarchies */
4491static struct cftype cgroup_legacy_base_files[] = {
4492 {
4493 .name = "cgroup.procs",
4494 .seq_start = cgroup_pidlist_start,
4495 .seq_next = cgroup_pidlist_next,
4496 .seq_stop = cgroup_pidlist_stop,
4497 .seq_show = cgroup_pidlist_show,
4498 .private = CGROUP_FILE_PROCS,
4499 .write = cgroup_procs_write,
a14c6874
TH
4500 },
4501 {
4502 .name = "cgroup.clone_children",
4503 .read_u64 = cgroup_clone_children_read,
4504 .write_u64 = cgroup_clone_children_write,
4505 },
4506 {
4507 .name = "cgroup.sane_behavior",
4508 .flags = CFTYPE_ONLY_ON_ROOT,
4509 .seq_show = cgroup_sane_behavior_show,
4510 },
d5c56ced
TH
4511 {
4512 .name = "tasks",
6612f05b
TH
4513 .seq_start = cgroup_pidlist_start,
4514 .seq_next = cgroup_pidlist_next,
4515 .seq_stop = cgroup_pidlist_stop,
4516 .seq_show = cgroup_pidlist_show,
5d22444f 4517 .private = CGROUP_FILE_TASKS,
acbef755 4518 .write = cgroup_tasks_write,
d5c56ced
TH
4519 },
4520 {
4521 .name = "notify_on_release",
d5c56ced
TH
4522 .read_u64 = cgroup_read_notify_on_release,
4523 .write_u64 = cgroup_write_notify_on_release,
4524 },
6e6ff25b
TH
4525 {
4526 .name = "release_agent",
a14c6874 4527 .flags = CFTYPE_ONLY_ON_ROOT,
2da8ca82 4528 .seq_show = cgroup_release_agent_show,
451af504 4529 .write = cgroup_release_agent_write,
5f469907 4530 .max_write_len = PATH_MAX - 1,
6e6ff25b 4531 },
db0416b6 4532 { } /* terminate */
bbcb81d0
PM
4533};
4534
0c21ead1
TH
4535/*
4536 * css destruction is four-stage process.
4537 *
4538 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4539 * Implemented in kill_css().
4540 *
4541 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
ec903c0c
TH
4542 * and thus css_tryget_online() is guaranteed to fail, the css can be
4543 * offlined by invoking offline_css(). After offlining, the base ref is
4544 * put. Implemented in css_killed_work_fn().
0c21ead1
TH
4545 *
4546 * 3. When the percpu_ref reaches zero, the only possible remaining
4547 * accessors are inside RCU read sections. css_release() schedules the
4548 * RCU callback.
4549 *
4550 * 4. After the grace period, the css can be freed. Implemented in
4551 * css_free_work_fn().
4552 *
4553 * It is actually hairier because both step 2 and 4 require process context
4554 * and thus involve punting to css->destroy_work adding two additional
4555 * steps to the already complex sequence.
4556 */
35ef10da 4557static void css_free_work_fn(struct work_struct *work)
48ddbe19
TH
4558{
4559 struct cgroup_subsys_state *css =
35ef10da 4560 container_of(work, struct cgroup_subsys_state, destroy_work);
01e58659 4561 struct cgroup_subsys *ss = css->ss;
0c21ead1 4562 struct cgroup *cgrp = css->cgroup;
6f60eade 4563 struct cgroup_file *cfile;
48ddbe19 4564
9a1049da
TH
4565 percpu_ref_exit(&css->refcnt);
4566
6f60eade
TH
4567 list_for_each_entry(cfile, &css->files, node)
4568 kernfs_put(cfile->kn);
4569
01e58659 4570 if (ss) {
9d755d33 4571 /* css free path */
01e58659
VD
4572 int id = css->id;
4573
9d755d33
TH
4574 if (css->parent)
4575 css_put(css->parent);
0ae78e0b 4576
01e58659
VD
4577 ss->css_free(css);
4578 cgroup_idr_remove(&ss->css_idr, id);
9d755d33
TH
4579 cgroup_put(cgrp);
4580 } else {
4581 /* cgroup free path */
4582 atomic_dec(&cgrp->root->nr_cgrps);
4583 cgroup_pidlist_destroy_all(cgrp);
971ff493 4584 cancel_work_sync(&cgrp->release_agent_work);
9d755d33 4585
d51f39b0 4586 if (cgroup_parent(cgrp)) {
9d755d33
TH
4587 /*
4588 * We get a ref to the parent, and put the ref when
4589 * this cgroup is being freed, so it's guaranteed
4590 * that the parent won't be destroyed before its
4591 * children.
4592 */
d51f39b0 4593 cgroup_put(cgroup_parent(cgrp));
9d755d33
TH
4594 kernfs_put(cgrp->kn);
4595 kfree(cgrp);
4596 } else {
4597 /*
4598 * This is root cgroup's refcnt reaching zero,
4599 * which indicates that the root should be
4600 * released.
4601 */
4602 cgroup_destroy_root(cgrp->root);
4603 }
4604 }
48ddbe19
TH
4605}
4606
0c21ead1 4607static void css_free_rcu_fn(struct rcu_head *rcu_head)
d3daf28d
TH
4608{
4609 struct cgroup_subsys_state *css =
0c21ead1 4610 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
d3daf28d 4611
35ef10da 4612 INIT_WORK(&css->destroy_work, css_free_work_fn);
e5fca243 4613 queue_work(cgroup_destroy_wq, &css->destroy_work);
48ddbe19
TH
4614}
4615
25e15d83 4616static void css_release_work_fn(struct work_struct *work)
d3daf28d
TH
4617{
4618 struct cgroup_subsys_state *css =
25e15d83 4619 container_of(work, struct cgroup_subsys_state, destroy_work);
15a4c835 4620 struct cgroup_subsys *ss = css->ss;
9d755d33 4621 struct cgroup *cgrp = css->cgroup;
15a4c835 4622
1fed1b2e
TH
4623 mutex_lock(&cgroup_mutex);
4624
de3f0341 4625 css->flags |= CSS_RELEASED;
1fed1b2e
TH
4626 list_del_rcu(&css->sibling);
4627
9d755d33
TH
4628 if (ss) {
4629 /* css release path */
01e58659 4630 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
7d172cc8
TH
4631 if (ss->css_released)
4632 ss->css_released(css);
9d755d33
TH
4633 } else {
4634 /* cgroup release path */
9d755d33
TH
4635 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4636 cgrp->id = -1;
a4189487
LZ
4637
4638 /*
4639 * There are two control paths which try to determine
4640 * cgroup from dentry without going through kernfs -
4641 * cgroupstats_build() and css_tryget_online_from_dir().
4642 * Those are supported by RCU protecting clearing of
4643 * cgrp->kn->priv backpointer.
4644 */
4645 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
9d755d33 4646 }
d3daf28d 4647
1fed1b2e
TH
4648 mutex_unlock(&cgroup_mutex);
4649
0c21ead1 4650 call_rcu(&css->rcu_head, css_free_rcu_fn);
d3daf28d
TH
4651}
4652
d3daf28d
TH
4653static void css_release(struct percpu_ref *ref)
4654{
4655 struct cgroup_subsys_state *css =
4656 container_of(ref, struct cgroup_subsys_state, refcnt);
4657
25e15d83
TH
4658 INIT_WORK(&css->destroy_work, css_release_work_fn);
4659 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4660}
4661
ddfcadab
TH
4662static void init_and_link_css(struct cgroup_subsys_state *css,
4663 struct cgroup_subsys *ss, struct cgroup *cgrp)
ddbcc7e8 4664{
0cb51d71
TH
4665 lockdep_assert_held(&cgroup_mutex);
4666
ddfcadab
TH
4667 cgroup_get(cgrp);
4668
d5c419b6 4669 memset(css, 0, sizeof(*css));
bd89aabc 4670 css->cgroup = cgrp;
72c97e54 4671 css->ss = ss;
d5c419b6
TH
4672 INIT_LIST_HEAD(&css->sibling);
4673 INIT_LIST_HEAD(&css->children);
6f60eade 4674 INIT_LIST_HEAD(&css->files);
0cb51d71 4675 css->serial_nr = css_serial_nr_next++;
0ae78e0b 4676
d51f39b0
TH
4677 if (cgroup_parent(cgrp)) {
4678 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
ddfcadab 4679 css_get(css->parent);
ddfcadab 4680 }
48ddbe19 4681
ca8bdcaf 4682 BUG_ON(cgroup_css(cgrp, ss));
ddbcc7e8
PM
4683}
4684
2a4ac633 4685/* invoke ->css_online() on a new CSS and mark it online if successful */
623f926b 4686static int online_css(struct cgroup_subsys_state *css)
a31f2d3f 4687{
623f926b 4688 struct cgroup_subsys *ss = css->ss;
b1929db4
TH
4689 int ret = 0;
4690
a31f2d3f
TH
4691 lockdep_assert_held(&cgroup_mutex);
4692
92fb9748 4693 if (ss->css_online)
eb95419b 4694 ret = ss->css_online(css);
ae7f164a 4695 if (!ret) {
eb95419b 4696 css->flags |= CSS_ONLINE;
aec25020 4697 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
ae7f164a 4698 }
b1929db4 4699 return ret;
a31f2d3f
TH
4700}
4701
2a4ac633 4702/* if the CSS is online, invoke ->css_offline() on it and mark it offline */
623f926b 4703static void offline_css(struct cgroup_subsys_state *css)
a31f2d3f 4704{
623f926b 4705 struct cgroup_subsys *ss = css->ss;
a31f2d3f
TH
4706
4707 lockdep_assert_held(&cgroup_mutex);
4708
4709 if (!(css->flags & CSS_ONLINE))
4710 return;
4711
d7eeac19 4712 if (ss->css_offline)
eb95419b 4713 ss->css_offline(css);
a31f2d3f 4714
eb95419b 4715 css->flags &= ~CSS_ONLINE;
e3297803 4716 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
f8f22e53
TH
4717
4718 wake_up_all(&css->cgroup->offline_waitq);
a31f2d3f
TH
4719}
4720
c81c925a
TH
4721/**
4722 * create_css - create a cgroup_subsys_state
4723 * @cgrp: the cgroup new css will be associated with
4724 * @ss: the subsys of new css
f63070d3 4725 * @visible: whether to create control knobs for the new css or not
c81c925a
TH
4726 *
4727 * Create a new css associated with @cgrp - @ss pair. On success, the new
f63070d3
TH
4728 * css is online and installed in @cgrp with all interface files created if
4729 * @visible. Returns 0 on success, -errno on failure.
c81c925a 4730 */
f63070d3
TH
4731static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4732 bool visible)
c81c925a 4733{
d51f39b0 4734 struct cgroup *parent = cgroup_parent(cgrp);
1fed1b2e 4735 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
c81c925a
TH
4736 struct cgroup_subsys_state *css;
4737 int err;
4738
c81c925a
TH
4739 lockdep_assert_held(&cgroup_mutex);
4740
1fed1b2e 4741 css = ss->css_alloc(parent_css);
c81c925a
TH
4742 if (IS_ERR(css))
4743 return PTR_ERR(css);
4744
ddfcadab 4745 init_and_link_css(css, ss, cgrp);
a2bed820 4746
2aad2a86 4747 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
c81c925a 4748 if (err)
3eb59ec6 4749 goto err_free_css;
c81c925a 4750
cf780b7d 4751 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
15a4c835
TH
4752 if (err < 0)
4753 goto err_free_percpu_ref;
4754 css->id = err;
c81c925a 4755
f63070d3 4756 if (visible) {
4df8dc90 4757 err = css_populate_dir(css, NULL);
f63070d3
TH
4758 if (err)
4759 goto err_free_id;
4760 }
15a4c835
TH
4761
4762 /* @css is ready to be brought online now, make it visible */
1fed1b2e 4763 list_add_tail_rcu(&css->sibling, &parent_css->children);
15a4c835 4764 cgroup_idr_replace(&ss->css_idr, css, css->id);
c81c925a
TH
4765
4766 err = online_css(css);
4767 if (err)
1fed1b2e 4768 goto err_list_del;
94419627 4769
c81c925a 4770 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
d51f39b0 4771 cgroup_parent(parent)) {
ed3d261b 4772 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
a2a1f9ea 4773 current->comm, current->pid, ss->name);
c81c925a 4774 if (!strcmp(ss->name, "memory"))
ed3d261b 4775 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
c81c925a
TH
4776 ss->warned_broken_hierarchy = true;
4777 }
4778
4779 return 0;
4780
1fed1b2e
TH
4781err_list_del:
4782 list_del_rcu(&css->sibling);
4df8dc90 4783 css_clear_dir(css, NULL);
15a4c835
TH
4784err_free_id:
4785 cgroup_idr_remove(&ss->css_idr, css->id);
3eb59ec6 4786err_free_percpu_ref:
9a1049da 4787 percpu_ref_exit(&css->refcnt);
3eb59ec6 4788err_free_css:
a2bed820 4789 call_rcu(&css->rcu_head, css_free_rcu_fn);
c81c925a
TH
4790 return err;
4791}
4792
b3bfd983
TH
4793static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4794 umode_t mode)
ddbcc7e8 4795{
a9746d8d
TH
4796 struct cgroup *parent, *cgrp;
4797 struct cgroup_root *root;
ddbcc7e8 4798 struct cgroup_subsys *ss;
2bd59d48 4799 struct kernfs_node *kn;
b3bfd983 4800 int ssid, ret;
ddbcc7e8 4801
71b1fb5c
AC
4802 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4803 */
4804 if (strchr(name, '\n'))
4805 return -EINVAL;
4806
a9746d8d
TH
4807 parent = cgroup_kn_lock_live(parent_kn);
4808 if (!parent)
4809 return -ENODEV;
4810 root = parent->root;
ddbcc7e8 4811
0a950f65 4812 /* allocate the cgroup and its ID, 0 is reserved for the root */
bd89aabc 4813 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
ba0f4d76
TH
4814 if (!cgrp) {
4815 ret = -ENOMEM;
4816 goto out_unlock;
0ab02ca8
LZ
4817 }
4818
2aad2a86 4819 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
9d755d33
TH
4820 if (ret)
4821 goto out_free_cgrp;
4822
0ab02ca8
LZ
4823 /*
4824 * Temporarily set the pointer to NULL, so idr_find() won't return
4825 * a half-baked cgroup.
4826 */
cf780b7d 4827 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
0ab02ca8 4828 if (cgrp->id < 0) {
ba0f4d76 4829 ret = -ENOMEM;
9d755d33 4830 goto out_cancel_ref;
976c06bc
TH
4831 }
4832
cc31edce 4833 init_cgroup_housekeeping(cgrp);
ddbcc7e8 4834
9d800df1 4835 cgrp->self.parent = &parent->self;
ba0f4d76 4836 cgrp->root = root;
ddbcc7e8 4837
b6abdb0e
LZ
4838 if (notify_on_release(parent))
4839 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4840
2260e7fc
TH
4841 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4842 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
97978e6d 4843
2bd59d48 4844 /* create the directory */
e61734c5 4845 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
2bd59d48 4846 if (IS_ERR(kn)) {
ba0f4d76
TH
4847 ret = PTR_ERR(kn);
4848 goto out_free_id;
2bd59d48
TH
4849 }
4850 cgrp->kn = kn;
ddbcc7e8 4851
4e139afc 4852 /*
6f30558f
TH
4853 * This extra ref will be put in cgroup_free_fn() and guarantees
4854 * that @cgrp->kn is always accessible.
4e139afc 4855 */
6f30558f 4856 kernfs_get(kn);
ddbcc7e8 4857
0cb51d71 4858 cgrp->self.serial_nr = css_serial_nr_next++;
53fa5261 4859
4e139afc 4860 /* allocation complete, commit to creation */
d5c419b6 4861 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
3c9c825b 4862 atomic_inc(&root->nr_cgrps);
59f5296b 4863 cgroup_get(parent);
415cf07a 4864
0d80255e
TH
4865 /*
4866 * @cgrp is now fully operational. If something fails after this
4867 * point, it'll be released via the normal destruction path.
4868 */
6fa4918d 4869 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4e96ee8e 4870
ba0f4d76
TH
4871 ret = cgroup_kn_set_ugid(kn);
4872 if (ret)
4873 goto out_destroy;
49957f8e 4874
4df8dc90 4875 ret = css_populate_dir(&cgrp->self, NULL);
ba0f4d76
TH
4876 if (ret)
4877 goto out_destroy;
628f7cd4 4878
9d403e99 4879 /* let's create and online css's */
b85d2040 4880 for_each_subsys(ss, ssid) {
f392e51c 4881 if (parent->child_subsys_mask & (1 << ssid)) {
f63070d3
TH
4882 ret = create_css(cgrp, ss,
4883 parent->subtree_control & (1 << ssid));
ba0f4d76
TH
4884 if (ret)
4885 goto out_destroy;
b85d2040 4886 }
a8638030 4887 }
ddbcc7e8 4888
bd53d617
TH
4889 /*
4890 * On the default hierarchy, a child doesn't automatically inherit
667c2491 4891 * subtree_control from the parent. Each is configured manually.
bd53d617 4892 */
667c2491
TH
4893 if (!cgroup_on_dfl(cgrp)) {
4894 cgrp->subtree_control = parent->subtree_control;
4895 cgroup_refresh_child_subsys_mask(cgrp);
4896 }
2bd59d48 4897
2bd59d48 4898 kernfs_activate(kn);
ddbcc7e8 4899
ba0f4d76
TH
4900 ret = 0;
4901 goto out_unlock;
ddbcc7e8 4902
ba0f4d76 4903out_free_id:
6fa4918d 4904 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
9d755d33 4905out_cancel_ref:
9a1049da 4906 percpu_ref_exit(&cgrp->self.refcnt);
ba0f4d76 4907out_free_cgrp:
bd89aabc 4908 kfree(cgrp);
ba0f4d76 4909out_unlock:
a9746d8d 4910 cgroup_kn_unlock(parent_kn);
ba0f4d76 4911 return ret;
4b8b47eb 4912
ba0f4d76 4913out_destroy:
4b8b47eb 4914 cgroup_destroy_locked(cgrp);
ba0f4d76 4915 goto out_unlock;
ddbcc7e8
PM
4916}
4917
223dbc38
TH
4918/*
4919 * This is called when the refcnt of a css is confirmed to be killed.
249f3468
TH
4920 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4921 * initate destruction and put the css ref from kill_css().
223dbc38
TH
4922 */
4923static void css_killed_work_fn(struct work_struct *work)
d3daf28d 4924{
223dbc38
TH
4925 struct cgroup_subsys_state *css =
4926 container_of(work, struct cgroup_subsys_state, destroy_work);
d3daf28d 4927
f20104de 4928 mutex_lock(&cgroup_mutex);
09a503ea 4929 offline_css(css);
f20104de 4930 mutex_unlock(&cgroup_mutex);
09a503ea 4931
09a503ea 4932 css_put(css);
d3daf28d
TH
4933}
4934
223dbc38
TH
4935/* css kill confirmation processing requires process context, bounce */
4936static void css_killed_ref_fn(struct percpu_ref *ref)
d3daf28d
TH
4937{
4938 struct cgroup_subsys_state *css =
4939 container_of(ref, struct cgroup_subsys_state, refcnt);
4940
223dbc38 4941 INIT_WORK(&css->destroy_work, css_killed_work_fn);
e5fca243 4942 queue_work(cgroup_destroy_wq, &css->destroy_work);
d3daf28d
TH
4943}
4944
f392e51c
TH
4945/**
4946 * kill_css - destroy a css
4947 * @css: css to destroy
4948 *
4949 * This function initiates destruction of @css by removing cgroup interface
4950 * files and putting its base reference. ->css_offline() will be invoked
ec903c0c
TH
4951 * asynchronously once css_tryget_online() is guaranteed to fail and when
4952 * the reference count reaches zero, @css will be released.
f392e51c
TH
4953 */
4954static void kill_css(struct cgroup_subsys_state *css)
edae0c33 4955{
01f6474c 4956 lockdep_assert_held(&cgroup_mutex);
94419627 4957
2bd59d48
TH
4958 /*
4959 * This must happen before css is disassociated with its cgroup.
4960 * See seq_css() for details.
4961 */
4df8dc90 4962 css_clear_dir(css, NULL);
3c14f8b4 4963
edae0c33
TH
4964 /*
4965 * Killing would put the base ref, but we need to keep it alive
4966 * until after ->css_offline().
4967 */
4968 css_get(css);
4969
4970 /*
4971 * cgroup core guarantees that, by the time ->css_offline() is
4972 * invoked, no new css reference will be given out via
ec903c0c 4973 * css_tryget_online(). We can't simply call percpu_ref_kill() and
edae0c33
TH
4974 * proceed to offlining css's because percpu_ref_kill() doesn't
4975 * guarantee that the ref is seen as killed on all CPUs on return.
4976 *
4977 * Use percpu_ref_kill_and_confirm() to get notifications as each
4978 * css is confirmed to be seen as killed on all CPUs.
4979 */
4980 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
d3daf28d
TH
4981}
4982
4983/**
4984 * cgroup_destroy_locked - the first stage of cgroup destruction
4985 * @cgrp: cgroup to be destroyed
4986 *
4987 * css's make use of percpu refcnts whose killing latency shouldn't be
4988 * exposed to userland and are RCU protected. Also, cgroup core needs to
ec903c0c
TH
4989 * guarantee that css_tryget_online() won't succeed by the time
4990 * ->css_offline() is invoked. To satisfy all the requirements,
4991 * destruction is implemented in the following two steps.
d3daf28d
TH
4992 *
4993 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
4994 * userland visible parts and start killing the percpu refcnts of
4995 * css's. Set up so that the next stage will be kicked off once all
4996 * the percpu refcnts are confirmed to be killed.
4997 *
4998 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
4999 * rest of destruction. Once all cgroup references are gone, the
5000 * cgroup is RCU-freed.
5001 *
5002 * This function implements s1. After this step, @cgrp is gone as far as
5003 * the userland is concerned and a new cgroup with the same name may be
5004 * created. As cgroup doesn't care about the names internally, this
5005 * doesn't cause any problem.
5006 */
42809dd4
TH
5007static int cgroup_destroy_locked(struct cgroup *cgrp)
5008 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
ddbcc7e8 5009{
2bd59d48 5010 struct cgroup_subsys_state *css;
1c6727af 5011 int ssid;
ddbcc7e8 5012
42809dd4
TH
5013 lockdep_assert_held(&cgroup_mutex);
5014
91486f61
TH
5015 /*
5016 * Only migration can raise populated from zero and we're already
5017 * holding cgroup_mutex.
5018 */
5019 if (cgroup_is_populated(cgrp))
ddbcc7e8 5020 return -EBUSY;
a043e3b2 5021
bb78a92f 5022 /*
d5c419b6
TH
5023 * Make sure there's no live children. We can't test emptiness of
5024 * ->self.children as dead children linger on it while being
5025 * drained; otherwise, "rmdir parent/child parent" may fail.
bb78a92f 5026 */
f3d46500 5027 if (css_has_online_children(&cgrp->self))
bb78a92f
HD
5028 return -EBUSY;
5029
455050d2
TH
5030 /*
5031 * Mark @cgrp dead. This prevents further task migration and child
de3f0341 5032 * creation by disabling cgroup_lock_live_group().
455050d2 5033 */
184faf32 5034 cgrp->self.flags &= ~CSS_ONLINE;
ddbcc7e8 5035
249f3468 5036 /* initiate massacre of all css's */
1c6727af
TH
5037 for_each_css(css, ssid, cgrp)
5038 kill_css(css);
455050d2 5039
455050d2 5040 /*
01f6474c
TH
5041 * Remove @cgrp directory along with the base files. @cgrp has an
5042 * extra ref on its kn.
f20104de 5043 */
01f6474c 5044 kernfs_remove(cgrp->kn);
f20104de 5045
d51f39b0 5046 check_for_release(cgroup_parent(cgrp));
2bd59d48 5047
249f3468 5048 /* put the base reference */
9d755d33 5049 percpu_ref_kill(&cgrp->self.refcnt);
455050d2 5050
ea15f8cc
TH
5051 return 0;
5052};
5053
2bd59d48 5054static int cgroup_rmdir(struct kernfs_node *kn)
42809dd4 5055{
a9746d8d 5056 struct cgroup *cgrp;
2bd59d48 5057 int ret = 0;
42809dd4 5058
a9746d8d
TH
5059 cgrp = cgroup_kn_lock_live(kn);
5060 if (!cgrp)
5061 return 0;
42809dd4 5062
a9746d8d 5063 ret = cgroup_destroy_locked(cgrp);
2bb566cb 5064
a9746d8d 5065 cgroup_kn_unlock(kn);
42809dd4 5066 return ret;
8e3f6541
TH
5067}
5068
2bd59d48
TH
5069static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5070 .remount_fs = cgroup_remount,
5071 .show_options = cgroup_show_options,
5072 .mkdir = cgroup_mkdir,
5073 .rmdir = cgroup_rmdir,
5074 .rename = cgroup_rename,
5075};
5076
15a4c835 5077static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
ddbcc7e8 5078{
ddbcc7e8 5079 struct cgroup_subsys_state *css;
cfe36bde
DC
5080
5081 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8 5082
648bb56d
TH
5083 mutex_lock(&cgroup_mutex);
5084
15a4c835 5085 idr_init(&ss->css_idr);
0adb0704 5086 INIT_LIST_HEAD(&ss->cfts);
8e3f6541 5087
3dd06ffa
TH
5088 /* Create the root cgroup state for this subsystem */
5089 ss->root = &cgrp_dfl_root;
5090 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
ddbcc7e8
PM
5091 /* We don't handle early failures gracefully */
5092 BUG_ON(IS_ERR(css));
ddfcadab 5093 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
3b514d24
TH
5094
5095 /*
5096 * Root csses are never destroyed and we can't initialize
5097 * percpu_ref during early init. Disable refcnting.
5098 */
5099 css->flags |= CSS_NO_REF;
5100
15a4c835 5101 if (early) {
9395a450 5102 /* allocation can't be done safely during early init */
15a4c835
TH
5103 css->id = 1;
5104 } else {
5105 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5106 BUG_ON(css->id < 0);
5107 }
ddbcc7e8 5108
e8d55fde 5109 /* Update the init_css_set to contain a subsys
817929ec 5110 * pointer to this state - since the subsystem is
e8d55fde 5111 * newly registered, all tasks and hence the
3dd06ffa 5112 * init_css_set is in the subsystem's root cgroup. */
aec25020 5113 init_css_set.subsys[ss->id] = css;
ddbcc7e8 5114
cb4a3167
AS
5115 have_fork_callback |= (bool)ss->fork << ss->id;
5116 have_exit_callback |= (bool)ss->exit << ss->id;
7e47682e 5117 have_canfork_callback |= (bool)ss->can_fork << ss->id;
ddbcc7e8 5118
e8d55fde
LZ
5119 /* At system boot, before all subsystems have been
5120 * registered, no tasks have been forked, so we don't
5121 * need to invoke fork callbacks here. */
5122 BUG_ON(!list_empty(&init_task.tasks));
5123
ae7f164a 5124 BUG_ON(online_css(css));
a8638030 5125
cf5d5941
BB
5126 mutex_unlock(&cgroup_mutex);
5127}
cf5d5941 5128
ddbcc7e8 5129/**
a043e3b2
LZ
5130 * cgroup_init_early - cgroup initialization at system boot
5131 *
5132 * Initialize cgroups at system boot, and initialize any
5133 * subsystems that request early init.
ddbcc7e8
PM
5134 */
5135int __init cgroup_init_early(void)
5136{
7b9a6ba5 5137 static struct cgroup_sb_opts __initdata opts;
30159ec7 5138 struct cgroup_subsys *ss;
ddbcc7e8 5139 int i;
30159ec7 5140
3dd06ffa 5141 init_cgroup_root(&cgrp_dfl_root, &opts);
3b514d24
TH
5142 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5143
a4ea1cc9 5144 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
817929ec 5145
3ed80a62 5146 for_each_subsys(ss, i) {
aec25020 5147 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
073219e9
TH
5148 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5149 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
aec25020 5150 ss->id, ss->name);
073219e9
TH
5151 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5152 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5153
aec25020 5154 ss->id = i;
073219e9 5155 ss->name = cgroup_subsys_name[i];
3e1d2eed
TH
5156 if (!ss->legacy_name)
5157 ss->legacy_name = cgroup_subsys_name[i];
ddbcc7e8
PM
5158
5159 if (ss->early_init)
15a4c835 5160 cgroup_init_subsys(ss, true);
ddbcc7e8
PM
5161 }
5162 return 0;
5163}
5164
a3e72739
TH
5165static unsigned long cgroup_disable_mask __initdata;
5166
ddbcc7e8 5167/**
a043e3b2
LZ
5168 * cgroup_init - cgroup initialization
5169 *
5170 * Register cgroup filesystem and /proc file, and initialize
5171 * any subsystems that didn't request early init.
ddbcc7e8
PM
5172 */
5173int __init cgroup_init(void)
5174{
30159ec7 5175 struct cgroup_subsys *ss;
0ac801fe 5176 unsigned long key;
172a2c06 5177 int ssid, err;
ddbcc7e8 5178
1ed13287 5179 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
a14c6874
TH
5180 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5181 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
ddbcc7e8 5182
54e7b4eb 5183 mutex_lock(&cgroup_mutex);
54e7b4eb 5184
82fe9b0d
TH
5185 /* Add init_css_set to the hash table */
5186 key = css_set_hash(init_css_set.subsys);
5187 hash_add(css_set_table, &init_css_set.hlist, key);
5188
3dd06ffa 5189 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
4e96ee8e 5190
54e7b4eb
TH
5191 mutex_unlock(&cgroup_mutex);
5192
172a2c06 5193 for_each_subsys(ss, ssid) {
15a4c835
TH
5194 if (ss->early_init) {
5195 struct cgroup_subsys_state *css =
5196 init_css_set.subsys[ss->id];
5197
5198 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5199 GFP_KERNEL);
5200 BUG_ON(css->id < 0);
5201 } else {
5202 cgroup_init_subsys(ss, false);
5203 }
172a2c06 5204
2d8f243a
TH
5205 list_add_tail(&init_css_set.e_cset_node[ssid],
5206 &cgrp_dfl_root.cgrp.e_csets[ssid]);
172a2c06
TH
5207
5208 /*
c731ae1d
LZ
5209 * Setting dfl_root subsys_mask needs to consider the
5210 * disabled flag and cftype registration needs kmalloc,
5211 * both of which aren't available during early_init.
172a2c06 5212 */
a3e72739
TH
5213 if (cgroup_disable_mask & (1 << ssid)) {
5214 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5215 printk(KERN_INFO "Disabling %s control group subsystem\n",
5216 ss->name);
a8ddc821 5217 continue;
a3e72739 5218 }
a8ddc821
TH
5219
5220 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5221
5222 if (cgroup_legacy_files_on_dfl && !ss->dfl_cftypes)
5223 ss->dfl_cftypes = ss->legacy_cftypes;
5224
5de4fa13
TH
5225 if (!ss->dfl_cftypes)
5226 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5227
a8ddc821
TH
5228 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5229 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5230 } else {
5231 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5232 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
c731ae1d 5233 }
295458e6
VD
5234
5235 if (ss->bind)
5236 ss->bind(init_css_set.subsys[ssid]);
676db4af
GK
5237 }
5238
f9bb4882
EB
5239 err = sysfs_create_mount_point(fs_kobj, "cgroup");
5240 if (err)
5241 return err;
676db4af 5242
ddbcc7e8 5243 err = register_filesystem(&cgroup_fs_type);
676db4af 5244 if (err < 0) {
f9bb4882 5245 sysfs_remove_mount_point(fs_kobj, "cgroup");
2bd59d48 5246 return err;
676db4af 5247 }
ddbcc7e8 5248
46ae220b 5249 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2bd59d48 5250 return 0;
ddbcc7e8 5251}
b4f48b63 5252
e5fca243
TH
5253static int __init cgroup_wq_init(void)
5254{
5255 /*
5256 * There isn't much point in executing destruction path in
5257 * parallel. Good chunk is serialized with cgroup_mutex anyway.
1a11533f 5258 * Use 1 for @max_active.
e5fca243
TH
5259 *
5260 * We would prefer to do this in cgroup_init() above, but that
5261 * is called before init_workqueues(): so leave this until after.
5262 */
1a11533f 5263 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
e5fca243 5264 BUG_ON(!cgroup_destroy_wq);
b1a21367
TH
5265
5266 /*
5267 * Used to destroy pidlists and separate to serve as flush domain.
5268 * Cap @max_active to 1 too.
5269 */
5270 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5271 0, 1);
5272 BUG_ON(!cgroup_pidlist_destroy_wq);
5273
e5fca243
TH
5274 return 0;
5275}
5276core_initcall(cgroup_wq_init);
5277
a424316c
PM
5278/*
5279 * proc_cgroup_show()
5280 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5281 * - Used for /proc/<pid>/cgroup.
a424316c 5282 */
006f4ac4
ZL
5283int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5284 struct pid *pid, struct task_struct *tsk)
a424316c 5285{
e61734c5 5286 char *buf, *path;
a424316c 5287 int retval;
3dd06ffa 5288 struct cgroup_root *root;
a424316c
PM
5289
5290 retval = -ENOMEM;
e61734c5 5291 buf = kmalloc(PATH_MAX, GFP_KERNEL);
a424316c
PM
5292 if (!buf)
5293 goto out;
5294
a424316c 5295 mutex_lock(&cgroup_mutex);
96d365e0 5296 down_read(&css_set_rwsem);
a424316c 5297
985ed670 5298 for_each_root(root) {
a424316c 5299 struct cgroup_subsys *ss;
bd89aabc 5300 struct cgroup *cgrp;
b85d2040 5301 int ssid, count = 0;
a424316c 5302
a2dd4247 5303 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
985ed670
TH
5304 continue;
5305
2c6ab6d2 5306 seq_printf(m, "%d:", root->hierarchy_id);
d98817d4
TH
5307 if (root != &cgrp_dfl_root)
5308 for_each_subsys(ss, ssid)
5309 if (root->subsys_mask & (1 << ssid))
5310 seq_printf(m, "%s%s", count++ ? "," : "",
3e1d2eed 5311 ss->legacy_name);
c6d57f33
PM
5312 if (strlen(root->name))
5313 seq_printf(m, "%sname=%s", count ? "," : "",
5314 root->name);
a424316c 5315 seq_putc(m, ':');
7717f7ba 5316 cgrp = task_cgroup_from_root(tsk, root);
e61734c5
TH
5317 path = cgroup_path(cgrp, buf, PATH_MAX);
5318 if (!path) {
5319 retval = -ENAMETOOLONG;
a424316c 5320 goto out_unlock;
e61734c5
TH
5321 }
5322 seq_puts(m, path);
a424316c
PM
5323 seq_putc(m, '\n');
5324 }
5325
006f4ac4 5326 retval = 0;
a424316c 5327out_unlock:
96d365e0 5328 up_read(&css_set_rwsem);
a424316c 5329 mutex_unlock(&cgroup_mutex);
a424316c
PM
5330 kfree(buf);
5331out:
5332 return retval;
5333}
5334
a424316c
PM
5335/* Display information about each subsystem and each hierarchy */
5336static int proc_cgroupstats_show(struct seq_file *m, void *v)
5337{
30159ec7 5338 struct cgroup_subsys *ss;
a424316c 5339 int i;
a424316c 5340
8bab8dde 5341 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
5342 /*
5343 * ideally we don't want subsystems moving around while we do this.
5344 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5345 * subsys/hierarchy state.
5346 */
a424316c 5347 mutex_lock(&cgroup_mutex);
30159ec7
TH
5348
5349 for_each_subsys(ss, i)
2c6ab6d2 5350 seq_printf(m, "%s\t%d\t%d\t%d\n",
3e1d2eed 5351 ss->legacy_name, ss->root->hierarchy_id,
fc5ed1e9
TH
5352 atomic_read(&ss->root->nr_cgrps),
5353 cgroup_ssid_enabled(i));
30159ec7 5354
a424316c
PM
5355 mutex_unlock(&cgroup_mutex);
5356 return 0;
5357}
5358
5359static int cgroupstats_open(struct inode *inode, struct file *file)
5360{
9dce07f1 5361 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
5362}
5363
828c0950 5364static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
5365 .open = cgroupstats_open,
5366 .read = seq_read,
5367 .llseek = seq_lseek,
5368 .release = single_release,
5369};
5370
7e47682e
AS
5371static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5372{
5373 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5374 return &ss_priv[i - CGROUP_CANFORK_START];
5375 return NULL;
5376}
5377
5378static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5379{
5380 void **private = subsys_canfork_priv_p(ss_priv, i);
5381 return private ? *private : NULL;
5382}
5383
b4f48b63 5384/**
eaf797ab 5385 * cgroup_fork - initialize cgroup related fields during copy_process()
a043e3b2 5386 * @child: pointer to task_struct of forking parent process.
b4f48b63 5387 *
eaf797ab
TH
5388 * A task is associated with the init_css_set until cgroup_post_fork()
5389 * attaches it to the parent's css_set. Empty cg_list indicates that
5390 * @child isn't holding reference to its css_set.
b4f48b63
PM
5391 */
5392void cgroup_fork(struct task_struct *child)
5393{
eaf797ab 5394 RCU_INIT_POINTER(child->cgroups, &init_css_set);
817929ec 5395 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
5396}
5397
7e47682e
AS
5398/**
5399 * cgroup_can_fork - called on a new task before the process is exposed
5400 * @child: the task in question.
5401 *
5402 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5403 * returns an error, the fork aborts with that error code. This allows for
5404 * a cgroup subsystem to conditionally allow or deny new forks.
5405 */
5406int cgroup_can_fork(struct task_struct *child,
5407 void *ss_priv[CGROUP_CANFORK_COUNT])
5408{
5409 struct cgroup_subsys *ss;
5410 int i, j, ret;
5411
5412 for_each_subsys_which(ss, i, &have_canfork_callback) {
5413 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5414 if (ret)
5415 goto out_revert;
5416 }
5417
5418 return 0;
5419
5420out_revert:
5421 for_each_subsys(ss, j) {
5422 if (j >= i)
5423 break;
5424 if (ss->cancel_fork)
5425 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5426 }
5427
5428 return ret;
5429}
5430
5431/**
5432 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5433 * @child: the task in question
5434 *
5435 * This calls the cancel_fork() callbacks if a fork failed *after*
5436 * cgroup_can_fork() succeded.
5437 */
5438void cgroup_cancel_fork(struct task_struct *child,
5439 void *ss_priv[CGROUP_CANFORK_COUNT])
5440{
5441 struct cgroup_subsys *ss;
5442 int i;
5443
5444 for_each_subsys(ss, i)
5445 if (ss->cancel_fork)
5446 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5447}
5448
817929ec 5449/**
a043e3b2
LZ
5450 * cgroup_post_fork - called on a new task after adding it to the task list
5451 * @child: the task in question
5452 *
5edee61e
TH
5453 * Adds the task to the list running through its css_set if necessary and
5454 * call the subsystem fork() callbacks. Has to be after the task is
5455 * visible on the task list in case we race with the first call to
0942eeee 5456 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5edee61e 5457 * list.
a043e3b2 5458 */
7e47682e
AS
5459void cgroup_post_fork(struct task_struct *child,
5460 void *old_ss_priv[CGROUP_CANFORK_COUNT])
817929ec 5461{
30159ec7 5462 struct cgroup_subsys *ss;
5edee61e
TH
5463 int i;
5464
3ce3230a 5465 /*
251f8c03 5466 * This may race against cgroup_enable_task_cg_lists(). As that
eaf797ab
TH
5467 * function sets use_task_css_set_links before grabbing
5468 * tasklist_lock and we just went through tasklist_lock to add
5469 * @child, it's guaranteed that either we see the set
5470 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5471 * @child during its iteration.
5472 *
5473 * If we won the race, @child is associated with %current's
5474 * css_set. Grabbing css_set_rwsem guarantees both that the
5475 * association is stable, and, on completion of the parent's
5476 * migration, @child is visible in the source of migration or
5477 * already in the destination cgroup. This guarantee is necessary
5478 * when implementing operations which need to migrate all tasks of
5479 * a cgroup to another.
5480 *
251f8c03 5481 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
eaf797ab
TH
5482 * will remain in init_css_set. This is safe because all tasks are
5483 * in the init_css_set before cg_links is enabled and there's no
5484 * operation which transfers all tasks out of init_css_set.
3ce3230a 5485 */
817929ec 5486 if (use_task_css_set_links) {
eaf797ab
TH
5487 struct css_set *cset;
5488
96d365e0 5489 down_write(&css_set_rwsem);
0e1d768f 5490 cset = task_css_set(current);
eaf797ab 5491 if (list_empty(&child->cg_list)) {
eaf797ab 5492 get_css_set(cset);
f6d7d049 5493 css_set_move_task(child, NULL, cset, false);
eaf797ab 5494 }
96d365e0 5495 up_write(&css_set_rwsem);
817929ec 5496 }
5edee61e
TH
5497
5498 /*
5499 * Call ss->fork(). This must happen after @child is linked on
5500 * css_set; otherwise, @child might change state between ->fork()
5501 * and addition to css_set.
5502 */
cb4a3167 5503 for_each_subsys_which(ss, i, &have_fork_callback)
7e47682e 5504 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
817929ec 5505}
5edee61e 5506
b4f48b63
PM
5507/**
5508 * cgroup_exit - detach cgroup from exiting task
5509 * @tsk: pointer to task_struct of exiting process
5510 *
5511 * Description: Detach cgroup from @tsk and release it.
5512 *
5513 * Note that cgroups marked notify_on_release force every task in
5514 * them to take the global cgroup_mutex mutex when exiting.
5515 * This could impact scaling on very large systems. Be reluctant to
5516 * use notify_on_release cgroups where very high task exit scaling
5517 * is required on large systems.
5518 *
0e1d768f
TH
5519 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5520 * call cgroup_exit() while the task is still competent to handle
5521 * notify_on_release(), then leave the task attached to the root cgroup in
5522 * each hierarchy for the remainder of its exit. No need to bother with
5523 * init_css_set refcnting. init_css_set never goes away and we can't race
e8604cb4 5524 * with migration path - PF_EXITING is visible to migration path.
b4f48b63 5525 */
1ec41830 5526void cgroup_exit(struct task_struct *tsk)
b4f48b63 5527{
30159ec7 5528 struct cgroup_subsys *ss;
5abb8855 5529 struct css_set *cset;
eaf797ab 5530 bool put_cset = false;
d41d5a01 5531 int i;
817929ec
PM
5532
5533 /*
0e1d768f 5534 * Unlink from @tsk from its css_set. As migration path can't race
0de0942d 5535 * with us, we can check css_set and cg_list without synchronization.
817929ec 5536 */
0de0942d
TH
5537 cset = task_css_set(tsk);
5538
817929ec 5539 if (!list_empty(&tsk->cg_list)) {
96d365e0 5540 down_write(&css_set_rwsem);
f6d7d049 5541 css_set_move_task(tsk, cset, NULL, false);
96d365e0 5542 up_write(&css_set_rwsem);
0e1d768f 5543 put_cset = true;
817929ec
PM
5544 }
5545
b4f48b63 5546 /* Reassign the task to the init_css_set. */
a8ad805c 5547 RCU_INIT_POINTER(tsk->cgroups, &init_css_set);
d41d5a01 5548
cb4a3167
AS
5549 /* see cgroup_post_fork() for details */
5550 for_each_subsys_which(ss, i, &have_exit_callback) {
5551 struct cgroup_subsys_state *old_css = cset->subsys[i];
5552 struct cgroup_subsys_state *css = task_css(tsk, i);
30159ec7 5553
cb4a3167 5554 ss->exit(css, old_css, tsk);
d41d5a01 5555 }
d41d5a01 5556
eaf797ab 5557 if (put_cset)
a25eb52e 5558 put_css_set(cset);
b4f48b63 5559}
697f4161 5560
bd89aabc 5561static void check_for_release(struct cgroup *cgrp)
81a6a5cd 5562{
27bd4dbb 5563 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
971ff493
ZL
5564 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5565 schedule_work(&cgrp->release_agent_work);
81a6a5cd
PM
5566}
5567
81a6a5cd
PM
5568/*
5569 * Notify userspace when a cgroup is released, by running the
5570 * configured release agent with the name of the cgroup (path
5571 * relative to the root of cgroup file system) as the argument.
5572 *
5573 * Most likely, this user command will try to rmdir this cgroup.
5574 *
5575 * This races with the possibility that some other task will be
5576 * attached to this cgroup before it is removed, or that some other
5577 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5578 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5579 * unused, and this cgroup will be reprieved from its death sentence,
5580 * to continue to serve a useful existence. Next time it's released,
5581 * we will get notified again, if it still has 'notify_on_release' set.
5582 *
5583 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5584 * means only wait until the task is successfully execve()'d. The
5585 * separate release agent task is forked by call_usermodehelper(),
5586 * then control in this thread returns here, without waiting for the
5587 * release agent task. We don't bother to wait because the caller of
5588 * this routine has no use for the exit status of the release agent
5589 * task, so no sense holding our caller up for that.
81a6a5cd 5590 */
81a6a5cd
PM
5591static void cgroup_release_agent(struct work_struct *work)
5592{
971ff493
ZL
5593 struct cgroup *cgrp =
5594 container_of(work, struct cgroup, release_agent_work);
5595 char *pathbuf = NULL, *agentbuf = NULL, *path;
5596 char *argv[3], *envp[3];
5597
81a6a5cd 5598 mutex_lock(&cgroup_mutex);
971ff493
ZL
5599
5600 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5601 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5602 if (!pathbuf || !agentbuf)
5603 goto out;
5604
5605 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5606 if (!path)
5607 goto out;
5608
5609 argv[0] = agentbuf;
5610 argv[1] = path;
5611 argv[2] = NULL;
5612
5613 /* minimal command environment */
5614 envp[0] = "HOME=/";
5615 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5616 envp[2] = NULL;
5617
81a6a5cd 5618 mutex_unlock(&cgroup_mutex);
971ff493 5619 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
3e2cd91a 5620 goto out_free;
971ff493 5621out:
81a6a5cd 5622 mutex_unlock(&cgroup_mutex);
3e2cd91a 5623out_free:
971ff493
ZL
5624 kfree(agentbuf);
5625 kfree(pathbuf);
81a6a5cd 5626}
8bab8dde
PM
5627
5628static int __init cgroup_disable(char *str)
5629{
30159ec7 5630 struct cgroup_subsys *ss;
8bab8dde 5631 char *token;
30159ec7 5632 int i;
8bab8dde
PM
5633
5634 while ((token = strsep(&str, ",")) != NULL) {
5635 if (!*token)
5636 continue;
be45c900 5637
3ed80a62 5638 for_each_subsys(ss, i) {
3e1d2eed
TH
5639 if (strcmp(token, ss->name) &&
5640 strcmp(token, ss->legacy_name))
5641 continue;
a3e72739 5642 cgroup_disable_mask |= 1 << i;
8bab8dde
PM
5643 }
5644 }
5645 return 1;
5646}
5647__setup("cgroup_disable=", cgroup_disable);
38460b48 5648
a8ddc821
TH
5649static int __init cgroup_set_legacy_files_on_dfl(char *str)
5650{
5651 printk("cgroup: using legacy files on the default hierarchy\n");
5652 cgroup_legacy_files_on_dfl = true;
5653 return 0;
5654}
5655__setup("cgroup__DEVEL__legacy_files_on_dfl", cgroup_set_legacy_files_on_dfl);
5656
b77d7b60 5657/**
ec903c0c 5658 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
35cf0836
TH
5659 * @dentry: directory dentry of interest
5660 * @ss: subsystem of interest
b77d7b60 5661 *
5a17f543
TH
5662 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5663 * to get the corresponding css and return it. If such css doesn't exist
5664 * or can't be pinned, an ERR_PTR value is returned.
e5d1367f 5665 */
ec903c0c
TH
5666struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5667 struct cgroup_subsys *ss)
e5d1367f 5668{
2bd59d48
TH
5669 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5670 struct cgroup_subsys_state *css = NULL;
e5d1367f 5671 struct cgroup *cgrp;
e5d1367f 5672
35cf0836 5673 /* is @dentry a cgroup dir? */
2bd59d48
TH
5674 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5675 kernfs_type(kn) != KERNFS_DIR)
e5d1367f
SE
5676 return ERR_PTR(-EBADF);
5677
5a17f543
TH
5678 rcu_read_lock();
5679
2bd59d48
TH
5680 /*
5681 * This path doesn't originate from kernfs and @kn could already
5682 * have been or be removed at any point. @kn->priv is RCU
a4189487 5683 * protected for this access. See css_release_work_fn() for details.
2bd59d48
TH
5684 */
5685 cgrp = rcu_dereference(kn->priv);
5686 if (cgrp)
5687 css = cgroup_css(cgrp, ss);
5a17f543 5688
ec903c0c 5689 if (!css || !css_tryget_online(css))
5a17f543
TH
5690 css = ERR_PTR(-ENOENT);
5691
5692 rcu_read_unlock();
5693 return css;
e5d1367f 5694}
e5d1367f 5695
1cb650b9
LZ
5696/**
5697 * css_from_id - lookup css by id
5698 * @id: the cgroup id
5699 * @ss: cgroup subsys to be looked into
5700 *
5701 * Returns the css if there's valid one with @id, otherwise returns NULL.
5702 * Should be called under rcu_read_lock().
5703 */
5704struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5705{
6fa4918d 5706 WARN_ON_ONCE(!rcu_read_lock_held());
adbe427b 5707 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
e5d1367f
SE
5708}
5709
fe693435 5710#ifdef CONFIG_CGROUP_DEBUG
eb95419b
TH
5711static struct cgroup_subsys_state *
5712debug_css_alloc(struct cgroup_subsys_state *parent_css)
fe693435
PM
5713{
5714 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5715
5716 if (!css)
5717 return ERR_PTR(-ENOMEM);
5718
5719 return css;
5720}
5721
eb95419b 5722static void debug_css_free(struct cgroup_subsys_state *css)
fe693435 5723{
eb95419b 5724 kfree(css);
fe693435
PM
5725}
5726
182446d0
TH
5727static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5728 struct cftype *cft)
fe693435 5729{
182446d0 5730 return cgroup_task_count(css->cgroup);
fe693435
PM
5731}
5732
182446d0
TH
5733static u64 current_css_set_read(struct cgroup_subsys_state *css,
5734 struct cftype *cft)
fe693435
PM
5735{
5736 return (u64)(unsigned long)current->cgroups;
5737}
5738
182446d0 5739static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
03c78cbe 5740 struct cftype *cft)
fe693435
PM
5741{
5742 u64 count;
5743
5744 rcu_read_lock();
a8ad805c 5745 count = atomic_read(&task_css_set(current)->refcount);
fe693435
PM
5746 rcu_read_unlock();
5747 return count;
5748}
5749
2da8ca82 5750static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
7717f7ba 5751{
69d0206c 5752 struct cgrp_cset_link *link;
5abb8855 5753 struct css_set *cset;
e61734c5
TH
5754 char *name_buf;
5755
5756 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5757 if (!name_buf)
5758 return -ENOMEM;
7717f7ba 5759
96d365e0 5760 down_read(&css_set_rwsem);
7717f7ba 5761 rcu_read_lock();
5abb8855 5762 cset = rcu_dereference(current->cgroups);
69d0206c 5763 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
7717f7ba 5764 struct cgroup *c = link->cgrp;
7717f7ba 5765
a2dd4247 5766 cgroup_name(c, name_buf, NAME_MAX + 1);
2c6ab6d2 5767 seq_printf(seq, "Root %d group %s\n",
a2dd4247 5768 c->root->hierarchy_id, name_buf);
7717f7ba
PM
5769 }
5770 rcu_read_unlock();
96d365e0 5771 up_read(&css_set_rwsem);
e61734c5 5772 kfree(name_buf);
7717f7ba
PM
5773 return 0;
5774}
5775
5776#define MAX_TASKS_SHOWN_PER_CSS 25
2da8ca82 5777static int cgroup_css_links_read(struct seq_file *seq, void *v)
7717f7ba 5778{
2da8ca82 5779 struct cgroup_subsys_state *css = seq_css(seq);
69d0206c 5780 struct cgrp_cset_link *link;
7717f7ba 5781
96d365e0 5782 down_read(&css_set_rwsem);
182446d0 5783 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
69d0206c 5784 struct css_set *cset = link->cset;
7717f7ba
PM
5785 struct task_struct *task;
5786 int count = 0;
c7561128 5787
5abb8855 5788 seq_printf(seq, "css_set %p\n", cset);
c7561128 5789
5abb8855 5790 list_for_each_entry(task, &cset->tasks, cg_list) {
c7561128
TH
5791 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5792 goto overflow;
5793 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5794 }
5795
5796 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5797 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5798 goto overflow;
5799 seq_printf(seq, " task %d\n", task_pid_vnr(task));
7717f7ba 5800 }
c7561128
TH
5801 continue;
5802 overflow:
5803 seq_puts(seq, " ...\n");
7717f7ba 5804 }
96d365e0 5805 up_read(&css_set_rwsem);
7717f7ba
PM
5806 return 0;
5807}
5808
182446d0 5809static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
fe693435 5810{
27bd4dbb 5811 return (!cgroup_is_populated(css->cgroup) &&
a25eb52e 5812 !css_has_online_children(&css->cgroup->self));
fe693435
PM
5813}
5814
5815static struct cftype debug_files[] = {
fe693435
PM
5816 {
5817 .name = "taskcount",
5818 .read_u64 = debug_taskcount_read,
5819 },
5820
5821 {
5822 .name = "current_css_set",
5823 .read_u64 = current_css_set_read,
5824 },
5825
5826 {
5827 .name = "current_css_set_refcount",
5828 .read_u64 = current_css_set_refcount_read,
5829 },
5830
7717f7ba
PM
5831 {
5832 .name = "current_css_set_cg_links",
2da8ca82 5833 .seq_show = current_css_set_cg_links_read,
7717f7ba
PM
5834 },
5835
5836 {
5837 .name = "cgroup_css_links",
2da8ca82 5838 .seq_show = cgroup_css_links_read,
7717f7ba
PM
5839 },
5840
fe693435
PM
5841 {
5842 .name = "releasable",
5843 .read_u64 = releasable_read,
5844 },
fe693435 5845
4baf6e33
TH
5846 { } /* terminate */
5847};
fe693435 5848
073219e9 5849struct cgroup_subsys debug_cgrp_subsys = {
92fb9748
TH
5850 .css_alloc = debug_css_alloc,
5851 .css_free = debug_css_free,
5577964e 5852 .legacy_cftypes = debug_files,
fe693435
PM
5853};
5854#endif /* CONFIG_CGROUP_DEBUG */
This page took 1.386039 seconds and 5 git commands to generate.