cgroups: add per-thread subsystem callbacks
[deliverable/linux.git] / kernel / cgroup.c
CommitLineData
ddbcc7e8 1/*
ddbcc7e8
PM
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
0dea1168
KS
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
ddbcc7e8
PM
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
c6d57f33 30#include <linux/ctype.h>
ddbcc7e8
PM
31#include <linux/errno.h>
32#include <linux/fs.h>
33#include <linux/kernel.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/mutex.h>
37#include <linux/mount.h>
38#include <linux/pagemap.h>
a424316c 39#include <linux/proc_fs.h>
ddbcc7e8
PM
40#include <linux/rcupdate.h>
41#include <linux/sched.h>
817929ec 42#include <linux/backing-dev.h>
ddbcc7e8
PM
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
bbcb81d0 48#include <linux/sort.h>
81a6a5cd 49#include <linux/kmod.h>
e6a1105b 50#include <linux/module.h>
846c7bb0
BS
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
472b1053 53#include <linux/hash.h>
3f8206d4 54#include <linux/namei.h>
096b7fe0 55#include <linux/pid_namespace.h>
2c6ab6d2 56#include <linux/idr.h>
d1d9fd33 57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
0dea1168
KS
58#include <linux/eventfd.h>
59#include <linux/poll.h>
846c7bb0 60
ddbcc7e8
PM
61#include <asm/atomic.h>
62
81a6a5cd
PM
63static DEFINE_MUTEX(cgroup_mutex);
64
aae8aab4
BB
65/*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
ddbcc7e8 71#define SUBSYS(_x) &_x ## _subsys,
aae8aab4 72static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
ddbcc7e8
PM
73#include <linux/cgroup_subsys.h>
74};
75
c6d57f33
PM
76#define MAX_CGROUP_ROOT_NAMELEN 64
77
ddbcc7e8
PM
78/*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
2c6ab6d2
PM
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
ddbcc7e8
PM
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
e5f6a860 107 /* A list running through the active hierarchies */
ddbcc7e8
PM
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
81a6a5cd 112
e788e066 113 /* The path to use for release notifications. */
81a6a5cd 114 char release_agent_path[PATH_MAX];
c6d57f33
PM
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
ddbcc7e8
PM
118};
119
ddbcc7e8
PM
120/*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125static struct cgroupfs_root rootnode;
126
38460b48
KH
127/*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131#define CSS_ID_MAX (65535)
132struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
2c392b8c 140 struct cgroup_subsys_state __rcu *css;
38460b48
KH
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157};
158
0dea1168 159/*
25985edc 160 * cgroup_event represents events which userspace want to receive.
0dea1168
KS
161 */
162struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187};
38460b48 188
ddbcc7e8
PM
189/* The list of hierarchy roots */
190
191static LIST_HEAD(roots);
817929ec 192static int root_count;
ddbcc7e8 193
2c6ab6d2
PM
194static DEFINE_IDA(hierarchy_ida);
195static int next_hierarchy_id;
196static DEFINE_SPINLOCK(hierarchy_id_lock);
197
ddbcc7e8
PM
198/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199#define dummytop (&rootnode.top_cgroup)
200
201/* This flag indicates whether tasks in the fork and exit paths should
a043e3b2
LZ
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
ddbcc7e8 205 */
8947f9d5 206static int need_forkexit_callback __read_mostly;
ddbcc7e8 207
d11c563d
PM
208#ifdef CONFIG_PROVE_LOCKING
209int cgroup_lock_is_held(void)
210{
211 return lockdep_is_held(&cgroup_mutex);
212}
213#else /* #ifdef CONFIG_PROVE_LOCKING */
214int cgroup_lock_is_held(void)
215{
216 return mutex_is_locked(&cgroup_mutex);
217}
218#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
ddbcc7e8 222/* convenient tests for these bits */
bd89aabc 223inline int cgroup_is_removed(const struct cgroup *cgrp)
ddbcc7e8 224{
bd89aabc 225 return test_bit(CGRP_REMOVED, &cgrp->flags);
ddbcc7e8
PM
226}
227
228/* bits in struct cgroupfs_root flags field */
229enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231};
232
e9685a03 233static int cgroup_is_releasable(const struct cgroup *cgrp)
81a6a5cd
PM
234{
235 const int bits =
bd89aabc
PM
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
81a6a5cd
PM
239}
240
e9685a03 241static int notify_on_release(const struct cgroup *cgrp)
81a6a5cd 242{
bd89aabc 243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
81a6a5cd
PM
244}
245
97978e6d
DL
246static int clone_children(const struct cgroup *cgrp)
247{
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249}
250
ddbcc7e8
PM
251/*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255#define for_each_subsys(_root, _ss) \
256list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
e5f6a860
LZ
258/* for_each_active_root() allows you to iterate across the active hierarchies */
259#define for_each_active_root(_root) \
ddbcc7e8
PM
260list_for_each_entry(_root, &roots, root_list)
261
81a6a5cd
PM
262/* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264static LIST_HEAD(release_list);
265static DEFINE_SPINLOCK(release_list_lock);
266static void cgroup_release_agent(struct work_struct *work);
267static DECLARE_WORK(release_agent_work, cgroup_release_agent);
bd89aabc 268static void check_for_release(struct cgroup *cgrp);
81a6a5cd 269
817929ec
PM
270/* Link structure for associating css_set objects with cgroups */
271struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
bd89aabc 276 struct list_head cgrp_link_list;
7717f7ba 277 struct cgroup *cgrp;
817929ec
PM
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284};
285
286/* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293static struct css_set init_css_set;
294static struct cg_cgroup_link init_css_set_link;
295
e6a1105b
BB
296static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
38460b48 298
817929ec
PM
299/* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302static DEFINE_RWLOCK(css_set_lock);
303static int css_set_count;
304
7717f7ba
PM
305/*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
472b1053
LZ
310#define CSS_SET_HASH_BITS 7
311#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315{
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327}
328
817929ec
PM
329/* We don't maintain the lists running through each css_set to its
330 * task until after the first call to cgroup_iter_start(). This
331 * reduces the fork()/exit() overhead for people who have cgroups
332 * compiled into their kernel but not actually in use */
8947f9d5 333static int use_task_css_set_links __read_mostly;
817929ec 334
2c6ab6d2 335static void __put_css_set(struct css_set *cg, int taskexit)
b4f48b63 336{
71cbb949
KM
337 struct cg_cgroup_link *link;
338 struct cg_cgroup_link *saved_link;
146aa1bd
LJ
339 /*
340 * Ensure that the refcount doesn't hit zero while any readers
341 * can see it. Similar to atomic_dec_and_lock(), but for an
342 * rwlock
343 */
344 if (atomic_add_unless(&cg->refcount, -1, 1))
345 return;
346 write_lock(&css_set_lock);
347 if (!atomic_dec_and_test(&cg->refcount)) {
348 write_unlock(&css_set_lock);
349 return;
350 }
81a6a5cd 351
2c6ab6d2
PM
352 /* This css_set is dead. unlink it and release cgroup refcounts */
353 hlist_del(&cg->hlist);
354 css_set_count--;
355
356 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
357 cg_link_list) {
358 struct cgroup *cgrp = link->cgrp;
359 list_del(&link->cg_link_list);
360 list_del(&link->cgrp_link_list);
bd89aabc
PM
361 if (atomic_dec_and_test(&cgrp->count) &&
362 notify_on_release(cgrp)) {
81a6a5cd 363 if (taskexit)
bd89aabc
PM
364 set_bit(CGRP_RELEASABLE, &cgrp->flags);
365 check_for_release(cgrp);
81a6a5cd 366 }
2c6ab6d2
PM
367
368 kfree(link);
81a6a5cd 369 }
2c6ab6d2
PM
370
371 write_unlock(&css_set_lock);
30088ad8 372 kfree_rcu(cg, rcu_head);
b4f48b63
PM
373}
374
817929ec
PM
375/*
376 * refcounted get/put for css_set objects
377 */
378static inline void get_css_set(struct css_set *cg)
379{
146aa1bd 380 atomic_inc(&cg->refcount);
817929ec
PM
381}
382
383static inline void put_css_set(struct css_set *cg)
384{
146aa1bd 385 __put_css_set(cg, 0);
817929ec
PM
386}
387
81a6a5cd
PM
388static inline void put_css_set_taskexit(struct css_set *cg)
389{
146aa1bd 390 __put_css_set(cg, 1);
81a6a5cd
PM
391}
392
7717f7ba
PM
393/*
394 * compare_css_sets - helper function for find_existing_css_set().
395 * @cg: candidate css_set being tested
396 * @old_cg: existing css_set for a task
397 * @new_cgrp: cgroup that's being entered by the task
398 * @template: desired set of css pointers in css_set (pre-calculated)
399 *
400 * Returns true if "cg" matches "old_cg" except for the hierarchy
401 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
402 */
403static bool compare_css_sets(struct css_set *cg,
404 struct css_set *old_cg,
405 struct cgroup *new_cgrp,
406 struct cgroup_subsys_state *template[])
407{
408 struct list_head *l1, *l2;
409
410 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
411 /* Not all subsystems matched */
412 return false;
413 }
414
415 /*
416 * Compare cgroup pointers in order to distinguish between
417 * different cgroups in heirarchies with no subsystems. We
418 * could get by with just this check alone (and skip the
419 * memcmp above) but on most setups the memcmp check will
420 * avoid the need for this more expensive check on almost all
421 * candidates.
422 */
423
424 l1 = &cg->cg_links;
425 l2 = &old_cg->cg_links;
426 while (1) {
427 struct cg_cgroup_link *cgl1, *cgl2;
428 struct cgroup *cg1, *cg2;
429
430 l1 = l1->next;
431 l2 = l2->next;
432 /* See if we reached the end - both lists are equal length. */
433 if (l1 == &cg->cg_links) {
434 BUG_ON(l2 != &old_cg->cg_links);
435 break;
436 } else {
437 BUG_ON(l2 == &old_cg->cg_links);
438 }
439 /* Locate the cgroups associated with these links. */
440 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
441 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
442 cg1 = cgl1->cgrp;
443 cg2 = cgl2->cgrp;
444 /* Hierarchies should be linked in the same order. */
445 BUG_ON(cg1->root != cg2->root);
446
447 /*
448 * If this hierarchy is the hierarchy of the cgroup
449 * that's changing, then we need to check that this
450 * css_set points to the new cgroup; if it's any other
451 * hierarchy, then this css_set should point to the
452 * same cgroup as the old css_set.
453 */
454 if (cg1->root == new_cgrp->root) {
455 if (cg1 != new_cgrp)
456 return false;
457 } else {
458 if (cg1 != cg2)
459 return false;
460 }
461 }
462 return true;
463}
464
817929ec
PM
465/*
466 * find_existing_css_set() is a helper for
467 * find_css_set(), and checks to see whether an existing
472b1053 468 * css_set is suitable.
817929ec
PM
469 *
470 * oldcg: the cgroup group that we're using before the cgroup
471 * transition
472 *
bd89aabc 473 * cgrp: the cgroup that we're moving into
817929ec
PM
474 *
475 * template: location in which to build the desired set of subsystem
476 * state objects for the new cgroup group
477 */
817929ec
PM
478static struct css_set *find_existing_css_set(
479 struct css_set *oldcg,
bd89aabc 480 struct cgroup *cgrp,
817929ec 481 struct cgroup_subsys_state *template[])
b4f48b63
PM
482{
483 int i;
bd89aabc 484 struct cgroupfs_root *root = cgrp->root;
472b1053
LZ
485 struct hlist_head *hhead;
486 struct hlist_node *node;
487 struct css_set *cg;
817929ec 488
aae8aab4
BB
489 /*
490 * Build the set of subsystem state objects that we want to see in the
491 * new css_set. while subsystems can change globally, the entries here
492 * won't change, so no need for locking.
493 */
817929ec 494 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 495 if (root->subsys_bits & (1UL << i)) {
817929ec
PM
496 /* Subsystem is in this hierarchy. So we want
497 * the subsystem state from the new
498 * cgroup */
bd89aabc 499 template[i] = cgrp->subsys[i];
817929ec
PM
500 } else {
501 /* Subsystem is not in this hierarchy, so we
502 * don't want to change the subsystem state */
503 template[i] = oldcg->subsys[i];
504 }
505 }
506
472b1053
LZ
507 hhead = css_set_hash(template);
508 hlist_for_each_entry(cg, node, hhead, hlist) {
7717f7ba
PM
509 if (!compare_css_sets(cg, oldcg, cgrp, template))
510 continue;
511
512 /* This css_set matches what we need */
513 return cg;
472b1053 514 }
817929ec
PM
515
516 /* No existing cgroup group matched */
517 return NULL;
518}
519
36553434
LZ
520static void free_cg_links(struct list_head *tmp)
521{
522 struct cg_cgroup_link *link;
523 struct cg_cgroup_link *saved_link;
524
525 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
526 list_del(&link->cgrp_link_list);
527 kfree(link);
528 }
529}
530
817929ec
PM
531/*
532 * allocate_cg_links() allocates "count" cg_cgroup_link structures
bd89aabc 533 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
817929ec
PM
534 * success or a negative error
535 */
817929ec
PM
536static int allocate_cg_links(int count, struct list_head *tmp)
537{
538 struct cg_cgroup_link *link;
539 int i;
540 INIT_LIST_HEAD(tmp);
541 for (i = 0; i < count; i++) {
542 link = kmalloc(sizeof(*link), GFP_KERNEL);
543 if (!link) {
36553434 544 free_cg_links(tmp);
817929ec
PM
545 return -ENOMEM;
546 }
bd89aabc 547 list_add(&link->cgrp_link_list, tmp);
817929ec
PM
548 }
549 return 0;
550}
551
c12f65d4
LZ
552/**
553 * link_css_set - a helper function to link a css_set to a cgroup
554 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
555 * @cg: the css_set to be linked
556 * @cgrp: the destination cgroup
557 */
558static void link_css_set(struct list_head *tmp_cg_links,
559 struct css_set *cg, struct cgroup *cgrp)
560{
561 struct cg_cgroup_link *link;
562
563 BUG_ON(list_empty(tmp_cg_links));
564 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
565 cgrp_link_list);
566 link->cg = cg;
7717f7ba 567 link->cgrp = cgrp;
2c6ab6d2 568 atomic_inc(&cgrp->count);
c12f65d4 569 list_move(&link->cgrp_link_list, &cgrp->css_sets);
7717f7ba
PM
570 /*
571 * Always add links to the tail of the list so that the list
572 * is sorted by order of hierarchy creation
573 */
574 list_add_tail(&link->cg_link_list, &cg->cg_links);
c12f65d4
LZ
575}
576
817929ec
PM
577/*
578 * find_css_set() takes an existing cgroup group and a
579 * cgroup object, and returns a css_set object that's
580 * equivalent to the old group, but with the given cgroup
581 * substituted into the appropriate hierarchy. Must be called with
582 * cgroup_mutex held
583 */
817929ec 584static struct css_set *find_css_set(
bd89aabc 585 struct css_set *oldcg, struct cgroup *cgrp)
817929ec
PM
586{
587 struct css_set *res;
588 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
817929ec
PM
589
590 struct list_head tmp_cg_links;
817929ec 591
472b1053 592 struct hlist_head *hhead;
7717f7ba 593 struct cg_cgroup_link *link;
472b1053 594
817929ec
PM
595 /* First see if we already have a cgroup group that matches
596 * the desired set */
7e9abd89 597 read_lock(&css_set_lock);
bd89aabc 598 res = find_existing_css_set(oldcg, cgrp, template);
817929ec
PM
599 if (res)
600 get_css_set(res);
7e9abd89 601 read_unlock(&css_set_lock);
817929ec
PM
602
603 if (res)
604 return res;
605
606 res = kmalloc(sizeof(*res), GFP_KERNEL);
607 if (!res)
608 return NULL;
609
610 /* Allocate all the cg_cgroup_link objects that we'll need */
611 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
612 kfree(res);
613 return NULL;
614 }
615
146aa1bd 616 atomic_set(&res->refcount, 1);
817929ec
PM
617 INIT_LIST_HEAD(&res->cg_links);
618 INIT_LIST_HEAD(&res->tasks);
472b1053 619 INIT_HLIST_NODE(&res->hlist);
817929ec
PM
620
621 /* Copy the set of subsystem state objects generated in
622 * find_existing_css_set() */
623 memcpy(res->subsys, template, sizeof(res->subsys));
624
625 write_lock(&css_set_lock);
626 /* Add reference counts and links from the new css_set. */
7717f7ba
PM
627 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
628 struct cgroup *c = link->cgrp;
629 if (c->root == cgrp->root)
630 c = cgrp;
631 link_css_set(&tmp_cg_links, res, c);
632 }
817929ec
PM
633
634 BUG_ON(!list_empty(&tmp_cg_links));
635
817929ec 636 css_set_count++;
472b1053
LZ
637
638 /* Add this cgroup group to the hash table */
639 hhead = css_set_hash(res->subsys);
640 hlist_add_head(&res->hlist, hhead);
641
817929ec
PM
642 write_unlock(&css_set_lock);
643
644 return res;
b4f48b63
PM
645}
646
7717f7ba
PM
647/*
648 * Return the cgroup for "task" from the given hierarchy. Must be
649 * called with cgroup_mutex held.
650 */
651static struct cgroup *task_cgroup_from_root(struct task_struct *task,
652 struct cgroupfs_root *root)
653{
654 struct css_set *css;
655 struct cgroup *res = NULL;
656
657 BUG_ON(!mutex_is_locked(&cgroup_mutex));
658 read_lock(&css_set_lock);
659 /*
660 * No need to lock the task - since we hold cgroup_mutex the
661 * task can't change groups, so the only thing that can happen
662 * is that it exits and its css is set back to init_css_set.
663 */
664 css = task->cgroups;
665 if (css == &init_css_set) {
666 res = &root->top_cgroup;
667 } else {
668 struct cg_cgroup_link *link;
669 list_for_each_entry(link, &css->cg_links, cg_link_list) {
670 struct cgroup *c = link->cgrp;
671 if (c->root == root) {
672 res = c;
673 break;
674 }
675 }
676 }
677 read_unlock(&css_set_lock);
678 BUG_ON(!res);
679 return res;
680}
681
ddbcc7e8
PM
682/*
683 * There is one global cgroup mutex. We also require taking
684 * task_lock() when dereferencing a task's cgroup subsys pointers.
685 * See "The task_lock() exception", at the end of this comment.
686 *
687 * A task must hold cgroup_mutex to modify cgroups.
688 *
689 * Any task can increment and decrement the count field without lock.
690 * So in general, code holding cgroup_mutex can't rely on the count
691 * field not changing. However, if the count goes to zero, then only
956db3ca 692 * cgroup_attach_task() can increment it again. Because a count of zero
ddbcc7e8
PM
693 * means that no tasks are currently attached, therefore there is no
694 * way a task attached to that cgroup can fork (the other way to
695 * increment the count). So code holding cgroup_mutex can safely
696 * assume that if the count is zero, it will stay zero. Similarly, if
697 * a task holds cgroup_mutex on a cgroup with zero count, it
698 * knows that the cgroup won't be removed, as cgroup_rmdir()
699 * needs that mutex.
700 *
ddbcc7e8
PM
701 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
702 * (usually) take cgroup_mutex. These are the two most performance
703 * critical pieces of code here. The exception occurs on cgroup_exit(),
704 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
705 * is taken, and if the cgroup count is zero, a usermode call made
a043e3b2
LZ
706 * to the release agent with the name of the cgroup (path relative to
707 * the root of cgroup file system) as the argument.
ddbcc7e8
PM
708 *
709 * A cgroup can only be deleted if both its 'count' of using tasks
710 * is zero, and its list of 'children' cgroups is empty. Since all
711 * tasks in the system use _some_ cgroup, and since there is always at
712 * least one task in the system (init, pid == 1), therefore, top_cgroup
713 * always has either children cgroups and/or using tasks. So we don't
714 * need a special hack to ensure that top_cgroup cannot be deleted.
715 *
716 * The task_lock() exception
717 *
718 * The need for this exception arises from the action of
956db3ca 719 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
a043e3b2 720 * another. It does so using cgroup_mutex, however there are
ddbcc7e8
PM
721 * several performance critical places that need to reference
722 * task->cgroup without the expense of grabbing a system global
723 * mutex. Therefore except as noted below, when dereferencing or, as
956db3ca 724 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
ddbcc7e8
PM
725 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
726 * the task_struct routinely used for such matters.
727 *
728 * P.S. One more locking exception. RCU is used to guard the
956db3ca 729 * update of a tasks cgroup pointer by cgroup_attach_task()
ddbcc7e8
PM
730 */
731
ddbcc7e8
PM
732/**
733 * cgroup_lock - lock out any changes to cgroup structures
734 *
735 */
ddbcc7e8
PM
736void cgroup_lock(void)
737{
738 mutex_lock(&cgroup_mutex);
739}
67523c48 740EXPORT_SYMBOL_GPL(cgroup_lock);
ddbcc7e8
PM
741
742/**
743 * cgroup_unlock - release lock on cgroup changes
744 *
745 * Undo the lock taken in a previous cgroup_lock() call.
746 */
ddbcc7e8
PM
747void cgroup_unlock(void)
748{
749 mutex_unlock(&cgroup_mutex);
750}
67523c48 751EXPORT_SYMBOL_GPL(cgroup_unlock);
ddbcc7e8
PM
752
753/*
754 * A couple of forward declarations required, due to cyclic reference loop:
755 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
756 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
757 * -> cgroup_mkdir.
758 */
759
760static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
c72a04e3 761static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
ddbcc7e8 762static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
bd89aabc 763static int cgroup_populate_dir(struct cgroup *cgrp);
6e1d5dcc 764static const struct inode_operations cgroup_dir_inode_operations;
828c0950 765static const struct file_operations proc_cgroupstats_operations;
a424316c
PM
766
767static struct backing_dev_info cgroup_backing_dev_info = {
d993831f 768 .name = "cgroup",
e4ad08fe 769 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
a424316c 770};
ddbcc7e8 771
38460b48
KH
772static int alloc_css_id(struct cgroup_subsys *ss,
773 struct cgroup *parent, struct cgroup *child);
774
ddbcc7e8
PM
775static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
776{
777 struct inode *inode = new_inode(sb);
ddbcc7e8
PM
778
779 if (inode) {
85fe4025 780 inode->i_ino = get_next_ino();
ddbcc7e8 781 inode->i_mode = mode;
76aac0e9
DH
782 inode->i_uid = current_fsuid();
783 inode->i_gid = current_fsgid();
ddbcc7e8
PM
784 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
785 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
786 }
787 return inode;
788}
789
4fca88c8
KH
790/*
791 * Call subsys's pre_destroy handler.
792 * This is called before css refcnt check.
793 */
ec64f515 794static int cgroup_call_pre_destroy(struct cgroup *cgrp)
4fca88c8
KH
795{
796 struct cgroup_subsys *ss;
ec64f515
KH
797 int ret = 0;
798
4fca88c8 799 for_each_subsys(cgrp->root, ss)
ec64f515
KH
800 if (ss->pre_destroy) {
801 ret = ss->pre_destroy(ss, cgrp);
802 if (ret)
4ab78683 803 break;
ec64f515 804 }
0dea1168 805
ec64f515 806 return ret;
4fca88c8
KH
807}
808
ddbcc7e8
PM
809static void cgroup_diput(struct dentry *dentry, struct inode *inode)
810{
811 /* is dentry a directory ? if so, kfree() associated cgroup */
812 if (S_ISDIR(inode->i_mode)) {
bd89aabc 813 struct cgroup *cgrp = dentry->d_fsdata;
8dc4f3e1 814 struct cgroup_subsys *ss;
bd89aabc 815 BUG_ON(!(cgroup_is_removed(cgrp)));
81a6a5cd
PM
816 /* It's possible for external users to be holding css
817 * reference counts on a cgroup; css_put() needs to
818 * be able to access the cgroup after decrementing
819 * the reference count in order to know if it needs to
820 * queue the cgroup to be handled by the release
821 * agent */
822 synchronize_rcu();
8dc4f3e1
PM
823
824 mutex_lock(&cgroup_mutex);
825 /*
826 * Release the subsystem state objects.
827 */
75139b82
LZ
828 for_each_subsys(cgrp->root, ss)
829 ss->destroy(ss, cgrp);
8dc4f3e1
PM
830
831 cgrp->root->number_of_cgroups--;
832 mutex_unlock(&cgroup_mutex);
833
a47295e6
PM
834 /*
835 * Drop the active superblock reference that we took when we
836 * created the cgroup
837 */
8dc4f3e1
PM
838 deactivate_super(cgrp->root->sb);
839
72a8cb30
BB
840 /*
841 * if we're getting rid of the cgroup, refcount should ensure
842 * that there are no pidlists left.
843 */
844 BUG_ON(!list_empty(&cgrp->pidlists));
845
f2da1c40 846 kfree_rcu(cgrp, rcu_head);
ddbcc7e8
PM
847 }
848 iput(inode);
849}
850
c72a04e3
AV
851static int cgroup_delete(const struct dentry *d)
852{
853 return 1;
854}
855
ddbcc7e8
PM
856static void remove_dir(struct dentry *d)
857{
858 struct dentry *parent = dget(d->d_parent);
859
860 d_delete(d);
861 simple_rmdir(parent->d_inode, d);
862 dput(parent);
863}
864
865static void cgroup_clear_directory(struct dentry *dentry)
866{
867 struct list_head *node;
868
869 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2fd6b7f5 870 spin_lock(&dentry->d_lock);
ddbcc7e8
PM
871 node = dentry->d_subdirs.next;
872 while (node != &dentry->d_subdirs) {
873 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
2fd6b7f5
NP
874
875 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8
PM
876 list_del_init(node);
877 if (d->d_inode) {
878 /* This should never be called on a cgroup
879 * directory with child cgroups */
880 BUG_ON(d->d_inode->i_mode & S_IFDIR);
dc0474be 881 dget_dlock(d);
2fd6b7f5
NP
882 spin_unlock(&d->d_lock);
883 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
884 d_delete(d);
885 simple_unlink(dentry->d_inode, d);
886 dput(d);
2fd6b7f5
NP
887 spin_lock(&dentry->d_lock);
888 } else
889 spin_unlock(&d->d_lock);
ddbcc7e8
PM
890 node = dentry->d_subdirs.next;
891 }
2fd6b7f5 892 spin_unlock(&dentry->d_lock);
ddbcc7e8
PM
893}
894
895/*
896 * NOTE : the dentry must have been dget()'ed
897 */
898static void cgroup_d_remove_dir(struct dentry *dentry)
899{
2fd6b7f5
NP
900 struct dentry *parent;
901
ddbcc7e8
PM
902 cgroup_clear_directory(dentry);
903
2fd6b7f5
NP
904 parent = dentry->d_parent;
905 spin_lock(&parent->d_lock);
3ec762ad 906 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
ddbcc7e8 907 list_del_init(&dentry->d_u.d_child);
2fd6b7f5
NP
908 spin_unlock(&dentry->d_lock);
909 spin_unlock(&parent->d_lock);
ddbcc7e8
PM
910 remove_dir(dentry);
911}
912
ec64f515
KH
913/*
914 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
915 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
916 * reference to css->refcnt. In general, this refcnt is expected to goes down
917 * to zero, soon.
918 *
88703267 919 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
ec64f515
KH
920 */
921DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
922
88703267 923static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
ec64f515 924{
88703267 925 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
ec64f515
KH
926 wake_up_all(&cgroup_rmdir_waitq);
927}
928
88703267
KH
929void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
930{
931 css_get(css);
932}
933
934void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
935{
936 cgroup_wakeup_rmdir_waiter(css->cgroup);
937 css_put(css);
938}
939
aae8aab4 940/*
cf5d5941
BB
941 * Call with cgroup_mutex held. Drops reference counts on modules, including
942 * any duplicate ones that parse_cgroupfs_options took. If this function
943 * returns an error, no reference counts are touched.
aae8aab4 944 */
ddbcc7e8
PM
945static int rebind_subsystems(struct cgroupfs_root *root,
946 unsigned long final_bits)
947{
948 unsigned long added_bits, removed_bits;
bd89aabc 949 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
950 int i;
951
aae8aab4
BB
952 BUG_ON(!mutex_is_locked(&cgroup_mutex));
953
ddbcc7e8
PM
954 removed_bits = root->actual_subsys_bits & ~final_bits;
955 added_bits = final_bits & ~root->actual_subsys_bits;
956 /* Check that any added subsystems are currently free */
957 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
8d53d55d 958 unsigned long bit = 1UL << i;
ddbcc7e8
PM
959 struct cgroup_subsys *ss = subsys[i];
960 if (!(bit & added_bits))
961 continue;
aae8aab4
BB
962 /*
963 * Nobody should tell us to do a subsys that doesn't exist:
964 * parse_cgroupfs_options should catch that case and refcounts
965 * ensure that subsystems won't disappear once selected.
966 */
967 BUG_ON(ss == NULL);
ddbcc7e8
PM
968 if (ss->root != &rootnode) {
969 /* Subsystem isn't free */
970 return -EBUSY;
971 }
972 }
973
974 /* Currently we don't handle adding/removing subsystems when
975 * any child cgroups exist. This is theoretically supportable
976 * but involves complex error handling, so it's being left until
977 * later */
307257cf 978 if (root->number_of_cgroups > 1)
ddbcc7e8
PM
979 return -EBUSY;
980
981 /* Process each subsystem */
982 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
983 struct cgroup_subsys *ss = subsys[i];
984 unsigned long bit = 1UL << i;
985 if (bit & added_bits) {
986 /* We're binding this subsystem to this hierarchy */
aae8aab4 987 BUG_ON(ss == NULL);
bd89aabc 988 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
989 BUG_ON(!dummytop->subsys[i]);
990 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
999cd8a4 991 mutex_lock(&ss->hierarchy_mutex);
bd89aabc
PM
992 cgrp->subsys[i] = dummytop->subsys[i];
993 cgrp->subsys[i]->cgroup = cgrp;
33a68ac1 994 list_move(&ss->sibling, &root->subsys_list);
b2aa30f7 995 ss->root = root;
ddbcc7e8 996 if (ss->bind)
bd89aabc 997 ss->bind(ss, cgrp);
999cd8a4 998 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941 999 /* refcount was already taken, and we're keeping it */
ddbcc7e8
PM
1000 } else if (bit & removed_bits) {
1001 /* We're removing this subsystem */
aae8aab4 1002 BUG_ON(ss == NULL);
bd89aabc
PM
1003 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1004 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
999cd8a4 1005 mutex_lock(&ss->hierarchy_mutex);
ddbcc7e8
PM
1006 if (ss->bind)
1007 ss->bind(ss, dummytop);
1008 dummytop->subsys[i]->cgroup = dummytop;
bd89aabc 1009 cgrp->subsys[i] = NULL;
b2aa30f7 1010 subsys[i]->root = &rootnode;
33a68ac1 1011 list_move(&ss->sibling, &rootnode.subsys_list);
999cd8a4 1012 mutex_unlock(&ss->hierarchy_mutex);
cf5d5941
BB
1013 /* subsystem is now free - drop reference on module */
1014 module_put(ss->module);
ddbcc7e8
PM
1015 } else if (bit & final_bits) {
1016 /* Subsystem state should already exist */
aae8aab4 1017 BUG_ON(ss == NULL);
bd89aabc 1018 BUG_ON(!cgrp->subsys[i]);
cf5d5941
BB
1019 /*
1020 * a refcount was taken, but we already had one, so
1021 * drop the extra reference.
1022 */
1023 module_put(ss->module);
1024#ifdef CONFIG_MODULE_UNLOAD
1025 BUG_ON(ss->module && !module_refcount(ss->module));
1026#endif
ddbcc7e8
PM
1027 } else {
1028 /* Subsystem state shouldn't exist */
bd89aabc 1029 BUG_ON(cgrp->subsys[i]);
ddbcc7e8
PM
1030 }
1031 }
1032 root->subsys_bits = root->actual_subsys_bits = final_bits;
1033 synchronize_rcu();
1034
1035 return 0;
1036}
1037
1038static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1039{
1040 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1041 struct cgroup_subsys *ss;
1042
1043 mutex_lock(&cgroup_mutex);
1044 for_each_subsys(root, ss)
1045 seq_printf(seq, ",%s", ss->name);
1046 if (test_bit(ROOT_NOPREFIX, &root->flags))
1047 seq_puts(seq, ",noprefix");
81a6a5cd
PM
1048 if (strlen(root->release_agent_path))
1049 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
97978e6d
DL
1050 if (clone_children(&root->top_cgroup))
1051 seq_puts(seq, ",clone_children");
c6d57f33
PM
1052 if (strlen(root->name))
1053 seq_printf(seq, ",name=%s", root->name);
ddbcc7e8
PM
1054 mutex_unlock(&cgroup_mutex);
1055 return 0;
1056}
1057
1058struct cgroup_sb_opts {
1059 unsigned long subsys_bits;
1060 unsigned long flags;
81a6a5cd 1061 char *release_agent;
97978e6d 1062 bool clone_children;
c6d57f33 1063 char *name;
2c6ab6d2
PM
1064 /* User explicitly requested empty subsystem */
1065 bool none;
c6d57f33
PM
1066
1067 struct cgroupfs_root *new_root;
2c6ab6d2 1068
ddbcc7e8
PM
1069};
1070
aae8aab4
BB
1071/*
1072 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
cf5d5941
BB
1073 * with cgroup_mutex held to protect the subsys[] array. This function takes
1074 * refcounts on subsystems to be used, unless it returns error, in which case
1075 * no refcounts are taken.
aae8aab4 1076 */
cf5d5941 1077static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
ddbcc7e8 1078{
32a8cf23
DL
1079 char *token, *o = data;
1080 bool all_ss = false, one_ss = false;
f9ab5b5b 1081 unsigned long mask = (unsigned long)-1;
cf5d5941
BB
1082 int i;
1083 bool module_pin_failed = false;
f9ab5b5b 1084
aae8aab4
BB
1085 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1086
f9ab5b5b
LZ
1087#ifdef CONFIG_CPUSETS
1088 mask = ~(1UL << cpuset_subsys_id);
1089#endif
ddbcc7e8 1090
c6d57f33 1091 memset(opts, 0, sizeof(*opts));
ddbcc7e8
PM
1092
1093 while ((token = strsep(&o, ",")) != NULL) {
1094 if (!*token)
1095 return -EINVAL;
32a8cf23 1096 if (!strcmp(token, "none")) {
2c6ab6d2
PM
1097 /* Explicitly have no subsystems */
1098 opts->none = true;
32a8cf23
DL
1099 continue;
1100 }
1101 if (!strcmp(token, "all")) {
1102 /* Mutually exclusive option 'all' + subsystem name */
1103 if (one_ss)
1104 return -EINVAL;
1105 all_ss = true;
1106 continue;
1107 }
1108 if (!strcmp(token, "noprefix")) {
ddbcc7e8 1109 set_bit(ROOT_NOPREFIX, &opts->flags);
32a8cf23
DL
1110 continue;
1111 }
1112 if (!strcmp(token, "clone_children")) {
97978e6d 1113 opts->clone_children = true;
32a8cf23
DL
1114 continue;
1115 }
1116 if (!strncmp(token, "release_agent=", 14)) {
81a6a5cd
PM
1117 /* Specifying two release agents is forbidden */
1118 if (opts->release_agent)
1119 return -EINVAL;
c6d57f33 1120 opts->release_agent =
e400c285 1121 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
81a6a5cd
PM
1122 if (!opts->release_agent)
1123 return -ENOMEM;
32a8cf23
DL
1124 continue;
1125 }
1126 if (!strncmp(token, "name=", 5)) {
c6d57f33
PM
1127 const char *name = token + 5;
1128 /* Can't specify an empty name */
1129 if (!strlen(name))
1130 return -EINVAL;
1131 /* Must match [\w.-]+ */
1132 for (i = 0; i < strlen(name); i++) {
1133 char c = name[i];
1134 if (isalnum(c))
1135 continue;
1136 if ((c == '.') || (c == '-') || (c == '_'))
1137 continue;
1138 return -EINVAL;
1139 }
1140 /* Specifying two names is forbidden */
1141 if (opts->name)
1142 return -EINVAL;
1143 opts->name = kstrndup(name,
e400c285 1144 MAX_CGROUP_ROOT_NAMELEN - 1,
c6d57f33
PM
1145 GFP_KERNEL);
1146 if (!opts->name)
1147 return -ENOMEM;
32a8cf23
DL
1148
1149 continue;
1150 }
1151
1152 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1153 struct cgroup_subsys *ss = subsys[i];
1154 if (ss == NULL)
1155 continue;
1156 if (strcmp(token, ss->name))
1157 continue;
1158 if (ss->disabled)
1159 continue;
1160
1161 /* Mutually exclusive option 'all' + subsystem name */
1162 if (all_ss)
1163 return -EINVAL;
1164 set_bit(i, &opts->subsys_bits);
1165 one_ss = true;
1166
1167 break;
1168 }
1169 if (i == CGROUP_SUBSYS_COUNT)
1170 return -ENOENT;
1171 }
1172
1173 /*
1174 * If the 'all' option was specified select all the subsystems,
1175 * otherwise 'all, 'none' and a subsystem name options were not
1176 * specified, let's default to 'all'
1177 */
1178 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1179 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1180 struct cgroup_subsys *ss = subsys[i];
1181 if (ss == NULL)
1182 continue;
1183 if (ss->disabled)
1184 continue;
1185 set_bit(i, &opts->subsys_bits);
ddbcc7e8
PM
1186 }
1187 }
1188
2c6ab6d2
PM
1189 /* Consistency checks */
1190
f9ab5b5b
LZ
1191 /*
1192 * Option noprefix was introduced just for backward compatibility
1193 * with the old cpuset, so we allow noprefix only if mounting just
1194 * the cpuset subsystem.
1195 */
1196 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1197 (opts->subsys_bits & mask))
1198 return -EINVAL;
1199
2c6ab6d2
PM
1200
1201 /* Can't specify "none" and some subsystems */
1202 if (opts->subsys_bits && opts->none)
1203 return -EINVAL;
1204
1205 /*
1206 * We either have to specify by name or by subsystems. (So all
1207 * empty hierarchies must have a name).
1208 */
c6d57f33 1209 if (!opts->subsys_bits && !opts->name)
ddbcc7e8
PM
1210 return -EINVAL;
1211
cf5d5941
BB
1212 /*
1213 * Grab references on all the modules we'll need, so the subsystems
1214 * don't dance around before rebind_subsystems attaches them. This may
1215 * take duplicate reference counts on a subsystem that's already used,
1216 * but rebind_subsystems handles this case.
1217 */
1218 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1219 unsigned long bit = 1UL << i;
1220
1221 if (!(bit & opts->subsys_bits))
1222 continue;
1223 if (!try_module_get(subsys[i]->module)) {
1224 module_pin_failed = true;
1225 break;
1226 }
1227 }
1228 if (module_pin_failed) {
1229 /*
1230 * oops, one of the modules was going away. this means that we
1231 * raced with a module_delete call, and to the user this is
1232 * essentially a "subsystem doesn't exist" case.
1233 */
1234 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1235 /* drop refcounts only on the ones we took */
1236 unsigned long bit = 1UL << i;
1237
1238 if (!(bit & opts->subsys_bits))
1239 continue;
1240 module_put(subsys[i]->module);
1241 }
1242 return -ENOENT;
1243 }
1244
ddbcc7e8
PM
1245 return 0;
1246}
1247
cf5d5941
BB
1248static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1249{
1250 int i;
1251 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1252 unsigned long bit = 1UL << i;
1253
1254 if (!(bit & subsys_bits))
1255 continue;
1256 module_put(subsys[i]->module);
1257 }
1258}
1259
ddbcc7e8
PM
1260static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1261{
1262 int ret = 0;
1263 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1264 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1265 struct cgroup_sb_opts opts;
1266
bd89aabc 1267 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1268 mutex_lock(&cgroup_mutex);
1269
1270 /* See what subsystems are wanted */
1271 ret = parse_cgroupfs_options(data, &opts);
1272 if (ret)
1273 goto out_unlock;
1274
cf5d5941
BB
1275 /* Don't allow flags or name to change at remount */
1276 if (opts.flags != root->flags ||
1277 (opts.name && strcmp(opts.name, root->name))) {
c6d57f33 1278 ret = -EINVAL;
cf5d5941 1279 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1280 goto out_unlock;
1281 }
1282
ddbcc7e8 1283 ret = rebind_subsystems(root, opts.subsys_bits);
cf5d5941
BB
1284 if (ret) {
1285 drop_parsed_module_refcounts(opts.subsys_bits);
0670e08b 1286 goto out_unlock;
cf5d5941 1287 }
ddbcc7e8
PM
1288
1289 /* (re)populate subsystem files */
0670e08b 1290 cgroup_populate_dir(cgrp);
ddbcc7e8 1291
81a6a5cd
PM
1292 if (opts.release_agent)
1293 strcpy(root->release_agent_path, opts.release_agent);
ddbcc7e8 1294 out_unlock:
66bdc9cf 1295 kfree(opts.release_agent);
c6d57f33 1296 kfree(opts.name);
ddbcc7e8 1297 mutex_unlock(&cgroup_mutex);
bd89aabc 1298 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
1299 return ret;
1300}
1301
b87221de 1302static const struct super_operations cgroup_ops = {
ddbcc7e8
PM
1303 .statfs = simple_statfs,
1304 .drop_inode = generic_delete_inode,
1305 .show_options = cgroup_show_options,
1306 .remount_fs = cgroup_remount,
1307};
1308
cc31edce
PM
1309static void init_cgroup_housekeeping(struct cgroup *cgrp)
1310{
1311 INIT_LIST_HEAD(&cgrp->sibling);
1312 INIT_LIST_HEAD(&cgrp->children);
1313 INIT_LIST_HEAD(&cgrp->css_sets);
1314 INIT_LIST_HEAD(&cgrp->release_list);
72a8cb30
BB
1315 INIT_LIST_HEAD(&cgrp->pidlists);
1316 mutex_init(&cgrp->pidlist_mutex);
0dea1168
KS
1317 INIT_LIST_HEAD(&cgrp->event_list);
1318 spin_lock_init(&cgrp->event_list_lock);
cc31edce 1319}
c6d57f33 1320
ddbcc7e8
PM
1321static void init_cgroup_root(struct cgroupfs_root *root)
1322{
bd89aabc 1323 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8
PM
1324 INIT_LIST_HEAD(&root->subsys_list);
1325 INIT_LIST_HEAD(&root->root_list);
1326 root->number_of_cgroups = 1;
bd89aabc
PM
1327 cgrp->root = root;
1328 cgrp->top_cgroup = cgrp;
cc31edce 1329 init_cgroup_housekeeping(cgrp);
ddbcc7e8
PM
1330}
1331
2c6ab6d2
PM
1332static bool init_root_id(struct cgroupfs_root *root)
1333{
1334 int ret = 0;
1335
1336 do {
1337 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1338 return false;
1339 spin_lock(&hierarchy_id_lock);
1340 /* Try to allocate the next unused ID */
1341 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1342 &root->hierarchy_id);
1343 if (ret == -ENOSPC)
1344 /* Try again starting from 0 */
1345 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1346 if (!ret) {
1347 next_hierarchy_id = root->hierarchy_id + 1;
1348 } else if (ret != -EAGAIN) {
1349 /* Can only get here if the 31-bit IDR is full ... */
1350 BUG_ON(ret);
1351 }
1352 spin_unlock(&hierarchy_id_lock);
1353 } while (ret);
1354 return true;
1355}
1356
ddbcc7e8
PM
1357static int cgroup_test_super(struct super_block *sb, void *data)
1358{
c6d57f33 1359 struct cgroup_sb_opts *opts = data;
ddbcc7e8
PM
1360 struct cgroupfs_root *root = sb->s_fs_info;
1361
c6d57f33
PM
1362 /* If we asked for a name then it must match */
1363 if (opts->name && strcmp(opts->name, root->name))
1364 return 0;
ddbcc7e8 1365
2c6ab6d2
PM
1366 /*
1367 * If we asked for subsystems (or explicitly for no
1368 * subsystems) then they must match
1369 */
1370 if ((opts->subsys_bits || opts->none)
1371 && (opts->subsys_bits != root->subsys_bits))
ddbcc7e8
PM
1372 return 0;
1373
1374 return 1;
1375}
1376
c6d57f33
PM
1377static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1378{
1379 struct cgroupfs_root *root;
1380
2c6ab6d2 1381 if (!opts->subsys_bits && !opts->none)
c6d57f33
PM
1382 return NULL;
1383
1384 root = kzalloc(sizeof(*root), GFP_KERNEL);
1385 if (!root)
1386 return ERR_PTR(-ENOMEM);
1387
2c6ab6d2
PM
1388 if (!init_root_id(root)) {
1389 kfree(root);
1390 return ERR_PTR(-ENOMEM);
1391 }
c6d57f33 1392 init_cgroup_root(root);
2c6ab6d2 1393
c6d57f33
PM
1394 root->subsys_bits = opts->subsys_bits;
1395 root->flags = opts->flags;
1396 if (opts->release_agent)
1397 strcpy(root->release_agent_path, opts->release_agent);
1398 if (opts->name)
1399 strcpy(root->name, opts->name);
97978e6d
DL
1400 if (opts->clone_children)
1401 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
c6d57f33
PM
1402 return root;
1403}
1404
2c6ab6d2
PM
1405static void cgroup_drop_root(struct cgroupfs_root *root)
1406{
1407 if (!root)
1408 return;
1409
1410 BUG_ON(!root->hierarchy_id);
1411 spin_lock(&hierarchy_id_lock);
1412 ida_remove(&hierarchy_ida, root->hierarchy_id);
1413 spin_unlock(&hierarchy_id_lock);
1414 kfree(root);
1415}
1416
ddbcc7e8
PM
1417static int cgroup_set_super(struct super_block *sb, void *data)
1418{
1419 int ret;
c6d57f33
PM
1420 struct cgroup_sb_opts *opts = data;
1421
1422 /* If we don't have a new root, we can't set up a new sb */
1423 if (!opts->new_root)
1424 return -EINVAL;
1425
2c6ab6d2 1426 BUG_ON(!opts->subsys_bits && !opts->none);
ddbcc7e8
PM
1427
1428 ret = set_anon_super(sb, NULL);
1429 if (ret)
1430 return ret;
1431
c6d57f33
PM
1432 sb->s_fs_info = opts->new_root;
1433 opts->new_root->sb = sb;
ddbcc7e8
PM
1434
1435 sb->s_blocksize = PAGE_CACHE_SIZE;
1436 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1437 sb->s_magic = CGROUP_SUPER_MAGIC;
1438 sb->s_op = &cgroup_ops;
1439
1440 return 0;
1441}
1442
1443static int cgroup_get_rootdir(struct super_block *sb)
1444{
0df6a63f
AV
1445 static const struct dentry_operations cgroup_dops = {
1446 .d_iput = cgroup_diput,
c72a04e3 1447 .d_delete = cgroup_delete,
0df6a63f
AV
1448 };
1449
ddbcc7e8
PM
1450 struct inode *inode =
1451 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1452 struct dentry *dentry;
1453
1454 if (!inode)
1455 return -ENOMEM;
1456
ddbcc7e8
PM
1457 inode->i_fop = &simple_dir_operations;
1458 inode->i_op = &cgroup_dir_inode_operations;
1459 /* directories start off with i_nlink == 2 (for "." entry) */
1460 inc_nlink(inode);
1461 dentry = d_alloc_root(inode);
1462 if (!dentry) {
1463 iput(inode);
1464 return -ENOMEM;
1465 }
1466 sb->s_root = dentry;
0df6a63f
AV
1467 /* for everything else we want ->d_op set */
1468 sb->s_d_op = &cgroup_dops;
ddbcc7e8
PM
1469 return 0;
1470}
1471
f7e83571 1472static struct dentry *cgroup_mount(struct file_system_type *fs_type,
ddbcc7e8 1473 int flags, const char *unused_dev_name,
f7e83571 1474 void *data)
ddbcc7e8
PM
1475{
1476 struct cgroup_sb_opts opts;
c6d57f33 1477 struct cgroupfs_root *root;
ddbcc7e8
PM
1478 int ret = 0;
1479 struct super_block *sb;
c6d57f33 1480 struct cgroupfs_root *new_root;
ddbcc7e8
PM
1481
1482 /* First find the desired set of subsystems */
aae8aab4 1483 mutex_lock(&cgroup_mutex);
ddbcc7e8 1484 ret = parse_cgroupfs_options(data, &opts);
aae8aab4 1485 mutex_unlock(&cgroup_mutex);
c6d57f33
PM
1486 if (ret)
1487 goto out_err;
ddbcc7e8 1488
c6d57f33
PM
1489 /*
1490 * Allocate a new cgroup root. We may not need it if we're
1491 * reusing an existing hierarchy.
1492 */
1493 new_root = cgroup_root_from_opts(&opts);
1494 if (IS_ERR(new_root)) {
1495 ret = PTR_ERR(new_root);
cf5d5941 1496 goto drop_modules;
81a6a5cd 1497 }
c6d57f33 1498 opts.new_root = new_root;
ddbcc7e8 1499
c6d57f33
PM
1500 /* Locate an existing or new sb for this hierarchy */
1501 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
ddbcc7e8 1502 if (IS_ERR(sb)) {
c6d57f33 1503 ret = PTR_ERR(sb);
2c6ab6d2 1504 cgroup_drop_root(opts.new_root);
cf5d5941 1505 goto drop_modules;
ddbcc7e8
PM
1506 }
1507
c6d57f33
PM
1508 root = sb->s_fs_info;
1509 BUG_ON(!root);
1510 if (root == opts.new_root) {
1511 /* We used the new root structure, so this is a new hierarchy */
1512 struct list_head tmp_cg_links;
c12f65d4 1513 struct cgroup *root_cgrp = &root->top_cgroup;
817929ec 1514 struct inode *inode;
c6d57f33 1515 struct cgroupfs_root *existing_root;
28fd5dfc 1516 int i;
ddbcc7e8
PM
1517
1518 BUG_ON(sb->s_root != NULL);
1519
1520 ret = cgroup_get_rootdir(sb);
1521 if (ret)
1522 goto drop_new_super;
817929ec 1523 inode = sb->s_root->d_inode;
ddbcc7e8 1524
817929ec 1525 mutex_lock(&inode->i_mutex);
ddbcc7e8
PM
1526 mutex_lock(&cgroup_mutex);
1527
c6d57f33
PM
1528 if (strlen(root->name)) {
1529 /* Check for name clashes with existing mounts */
1530 for_each_active_root(existing_root) {
1531 if (!strcmp(existing_root->name, root->name)) {
1532 ret = -EBUSY;
1533 mutex_unlock(&cgroup_mutex);
1534 mutex_unlock(&inode->i_mutex);
1535 goto drop_new_super;
1536 }
1537 }
1538 }
1539
817929ec
PM
1540 /*
1541 * We're accessing css_set_count without locking
1542 * css_set_lock here, but that's OK - it can only be
1543 * increased by someone holding cgroup_lock, and
1544 * that's us. The worst that can happen is that we
1545 * have some link structures left over
1546 */
1547 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1548 if (ret) {
1549 mutex_unlock(&cgroup_mutex);
1550 mutex_unlock(&inode->i_mutex);
1551 goto drop_new_super;
1552 }
1553
ddbcc7e8
PM
1554 ret = rebind_subsystems(root, root->subsys_bits);
1555 if (ret == -EBUSY) {
1556 mutex_unlock(&cgroup_mutex);
817929ec 1557 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1558 free_cg_links(&tmp_cg_links);
1559 goto drop_new_super;
ddbcc7e8 1560 }
cf5d5941
BB
1561 /*
1562 * There must be no failure case after here, since rebinding
1563 * takes care of subsystems' refcounts, which are explicitly
1564 * dropped in the failure exit path.
1565 */
ddbcc7e8
PM
1566
1567 /* EBUSY should be the only error here */
1568 BUG_ON(ret);
1569
1570 list_add(&root->root_list, &roots);
817929ec 1571 root_count++;
ddbcc7e8 1572
c12f65d4 1573 sb->s_root->d_fsdata = root_cgrp;
ddbcc7e8
PM
1574 root->top_cgroup.dentry = sb->s_root;
1575
817929ec
PM
1576 /* Link the top cgroup in this hierarchy into all
1577 * the css_set objects */
1578 write_lock(&css_set_lock);
28fd5dfc
LZ
1579 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1580 struct hlist_head *hhead = &css_set_table[i];
1581 struct hlist_node *node;
817929ec 1582 struct css_set *cg;
28fd5dfc 1583
c12f65d4
LZ
1584 hlist_for_each_entry(cg, node, hhead, hlist)
1585 link_css_set(&tmp_cg_links, cg, root_cgrp);
28fd5dfc 1586 }
817929ec
PM
1587 write_unlock(&css_set_lock);
1588
1589 free_cg_links(&tmp_cg_links);
1590
c12f65d4
LZ
1591 BUG_ON(!list_empty(&root_cgrp->sibling));
1592 BUG_ON(!list_empty(&root_cgrp->children));
ddbcc7e8
PM
1593 BUG_ON(root->number_of_cgroups != 1);
1594
c12f65d4 1595 cgroup_populate_dir(root_cgrp);
ddbcc7e8 1596 mutex_unlock(&cgroup_mutex);
34f77a90 1597 mutex_unlock(&inode->i_mutex);
c6d57f33
PM
1598 } else {
1599 /*
1600 * We re-used an existing hierarchy - the new root (if
1601 * any) is not needed
1602 */
2c6ab6d2 1603 cgroup_drop_root(opts.new_root);
cf5d5941
BB
1604 /* no subsys rebinding, so refcounts don't change */
1605 drop_parsed_module_refcounts(opts.subsys_bits);
ddbcc7e8
PM
1606 }
1607
c6d57f33
PM
1608 kfree(opts.release_agent);
1609 kfree(opts.name);
f7e83571 1610 return dget(sb->s_root);
ddbcc7e8
PM
1611
1612 drop_new_super:
6f5bbff9 1613 deactivate_locked_super(sb);
cf5d5941
BB
1614 drop_modules:
1615 drop_parsed_module_refcounts(opts.subsys_bits);
c6d57f33
PM
1616 out_err:
1617 kfree(opts.release_agent);
1618 kfree(opts.name);
f7e83571 1619 return ERR_PTR(ret);
ddbcc7e8
PM
1620}
1621
1622static void cgroup_kill_sb(struct super_block *sb) {
1623 struct cgroupfs_root *root = sb->s_fs_info;
bd89aabc 1624 struct cgroup *cgrp = &root->top_cgroup;
ddbcc7e8 1625 int ret;
71cbb949
KM
1626 struct cg_cgroup_link *link;
1627 struct cg_cgroup_link *saved_link;
ddbcc7e8
PM
1628
1629 BUG_ON(!root);
1630
1631 BUG_ON(root->number_of_cgroups != 1);
bd89aabc
PM
1632 BUG_ON(!list_empty(&cgrp->children));
1633 BUG_ON(!list_empty(&cgrp->sibling));
ddbcc7e8
PM
1634
1635 mutex_lock(&cgroup_mutex);
1636
1637 /* Rebind all subsystems back to the default hierarchy */
1638 ret = rebind_subsystems(root, 0);
1639 /* Shouldn't be able to fail ... */
1640 BUG_ON(ret);
1641
817929ec
PM
1642 /*
1643 * Release all the links from css_sets to this hierarchy's
1644 * root cgroup
1645 */
1646 write_lock(&css_set_lock);
71cbb949
KM
1647
1648 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1649 cgrp_link_list) {
817929ec 1650 list_del(&link->cg_link_list);
bd89aabc 1651 list_del(&link->cgrp_link_list);
817929ec
PM
1652 kfree(link);
1653 }
1654 write_unlock(&css_set_lock);
1655
839ec545
PM
1656 if (!list_empty(&root->root_list)) {
1657 list_del(&root->root_list);
1658 root_count--;
1659 }
e5f6a860 1660
ddbcc7e8
PM
1661 mutex_unlock(&cgroup_mutex);
1662
ddbcc7e8 1663 kill_litter_super(sb);
2c6ab6d2 1664 cgroup_drop_root(root);
ddbcc7e8
PM
1665}
1666
1667static struct file_system_type cgroup_fs_type = {
1668 .name = "cgroup",
f7e83571 1669 .mount = cgroup_mount,
ddbcc7e8
PM
1670 .kill_sb = cgroup_kill_sb,
1671};
1672
676db4af
GK
1673static struct kobject *cgroup_kobj;
1674
bd89aabc 1675static inline struct cgroup *__d_cgrp(struct dentry *dentry)
ddbcc7e8
PM
1676{
1677 return dentry->d_fsdata;
1678}
1679
1680static inline struct cftype *__d_cft(struct dentry *dentry)
1681{
1682 return dentry->d_fsdata;
1683}
1684
a043e3b2
LZ
1685/**
1686 * cgroup_path - generate the path of a cgroup
1687 * @cgrp: the cgroup in question
1688 * @buf: the buffer to write the path into
1689 * @buflen: the length of the buffer
1690 *
a47295e6
PM
1691 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1692 * reference. Writes path of cgroup into buf. Returns 0 on success,
1693 * -errno on error.
ddbcc7e8 1694 */
bd89aabc 1695int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
ddbcc7e8
PM
1696{
1697 char *start;
9a9686b6
LZ
1698 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1699 rcu_read_lock_held() ||
1700 cgroup_lock_is_held());
ddbcc7e8 1701
a47295e6 1702 if (!dentry || cgrp == dummytop) {
ddbcc7e8
PM
1703 /*
1704 * Inactive subsystems have no dentry for their root
1705 * cgroup
1706 */
1707 strcpy(buf, "/");
1708 return 0;
1709 }
1710
1711 start = buf + buflen;
1712
1713 *--start = '\0';
1714 for (;;) {
a47295e6 1715 int len = dentry->d_name.len;
9a9686b6 1716
ddbcc7e8
PM
1717 if ((start -= len) < buf)
1718 return -ENAMETOOLONG;
9a9686b6 1719 memcpy(start, dentry->d_name.name, len);
bd89aabc
PM
1720 cgrp = cgrp->parent;
1721 if (!cgrp)
ddbcc7e8 1722 break;
9a9686b6
LZ
1723
1724 dentry = rcu_dereference_check(cgrp->dentry,
1725 rcu_read_lock_held() ||
1726 cgroup_lock_is_held());
bd89aabc 1727 if (!cgrp->parent)
ddbcc7e8
PM
1728 continue;
1729 if (--start < buf)
1730 return -ENAMETOOLONG;
1731 *start = '/';
1732 }
1733 memmove(buf, start, buf + buflen - start);
1734 return 0;
1735}
67523c48 1736EXPORT_SYMBOL_GPL(cgroup_path);
ddbcc7e8 1737
a043e3b2
LZ
1738/**
1739 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1740 * @cgrp: the cgroup the task is attaching to
1741 * @tsk: the task to be attached
bbcb81d0 1742 *
a043e3b2
LZ
1743 * Call holding cgroup_mutex. May take task_lock of
1744 * the task 'tsk' during call.
bbcb81d0 1745 */
956db3ca 1746int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
bbcb81d0
PM
1747{
1748 int retval = 0;
2468c723 1749 struct cgroup_subsys *ss, *failed_ss = NULL;
bd89aabc 1750 struct cgroup *oldcgrp;
77efecd9 1751 struct css_set *cg;
817929ec 1752 struct css_set *newcg;
bd89aabc 1753 struct cgroupfs_root *root = cgrp->root;
bbcb81d0
PM
1754
1755 /* Nothing to do if the task is already in that cgroup */
7717f7ba 1756 oldcgrp = task_cgroup_from_root(tsk, root);
bd89aabc 1757 if (cgrp == oldcgrp)
bbcb81d0
PM
1758 return 0;
1759
1760 for_each_subsys(root, ss) {
1761 if (ss->can_attach) {
f780bdb7 1762 retval = ss->can_attach(ss, cgrp, tsk);
2468c723
DN
1763 if (retval) {
1764 /*
1765 * Remember on which subsystem the can_attach()
1766 * failed, so that we only call cancel_attach()
1767 * against the subsystems whose can_attach()
1768 * succeeded. (See below)
1769 */
1770 failed_ss = ss;
1771 goto out;
1772 }
bbcb81d0 1773 }
f780bdb7
BB
1774 if (ss->can_attach_task) {
1775 retval = ss->can_attach_task(cgrp, tsk);
1776 if (retval) {
1777 failed_ss = ss;
1778 goto out;
1779 }
1780 }
bbcb81d0
PM
1781 }
1782
77efecd9
LJ
1783 task_lock(tsk);
1784 cg = tsk->cgroups;
1785 get_css_set(cg);
1786 task_unlock(tsk);
817929ec
PM
1787 /*
1788 * Locate or allocate a new css_set for this task,
1789 * based on its final set of cgroups
1790 */
bd89aabc 1791 newcg = find_css_set(cg, cgrp);
77efecd9 1792 put_css_set(cg);
2468c723
DN
1793 if (!newcg) {
1794 retval = -ENOMEM;
1795 goto out;
1796 }
817929ec 1797
bbcb81d0
PM
1798 task_lock(tsk);
1799 if (tsk->flags & PF_EXITING) {
1800 task_unlock(tsk);
817929ec 1801 put_css_set(newcg);
2468c723
DN
1802 retval = -ESRCH;
1803 goto out;
bbcb81d0 1804 }
817929ec 1805 rcu_assign_pointer(tsk->cgroups, newcg);
bbcb81d0
PM
1806 task_unlock(tsk);
1807
817929ec
PM
1808 /* Update the css_set linked lists if we're using them */
1809 write_lock(&css_set_lock);
8d258797
PC
1810 if (!list_empty(&tsk->cg_list))
1811 list_move(&tsk->cg_list, &newcg->tasks);
817929ec
PM
1812 write_unlock(&css_set_lock);
1813
bbcb81d0 1814 for_each_subsys(root, ss) {
f780bdb7
BB
1815 if (ss->pre_attach)
1816 ss->pre_attach(cgrp);
1817 if (ss->attach_task)
1818 ss->attach_task(cgrp, tsk);
e18f6318 1819 if (ss->attach)
f780bdb7 1820 ss->attach(ss, cgrp, oldcgrp, tsk);
bbcb81d0 1821 }
bd89aabc 1822 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
bbcb81d0 1823 synchronize_rcu();
817929ec 1824 put_css_set(cg);
ec64f515
KH
1825
1826 /*
1827 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1828 * is no longer empty.
1829 */
88703267 1830 cgroup_wakeup_rmdir_waiter(cgrp);
2468c723
DN
1831out:
1832 if (retval) {
1833 for_each_subsys(root, ss) {
1834 if (ss == failed_ss)
1835 /*
1836 * This subsystem was the one that failed the
1837 * can_attach() check earlier, so we don't need
1838 * to call cancel_attach() against it or any
1839 * remaining subsystems.
1840 */
1841 break;
1842 if (ss->cancel_attach)
f780bdb7 1843 ss->cancel_attach(ss, cgrp, tsk);
2468c723
DN
1844 }
1845 }
1846 return retval;
bbcb81d0
PM
1847}
1848
d7926ee3 1849/**
31583bb0
MT
1850 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1851 * @from: attach to all cgroups of a given task
d7926ee3
SS
1852 * @tsk: the task to be attached
1853 */
31583bb0 1854int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
d7926ee3
SS
1855{
1856 struct cgroupfs_root *root;
d7926ee3
SS
1857 int retval = 0;
1858
1859 cgroup_lock();
1860 for_each_active_root(root) {
31583bb0
MT
1861 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1862
1863 retval = cgroup_attach_task(from_cg, tsk);
d7926ee3
SS
1864 if (retval)
1865 break;
1866 }
1867 cgroup_unlock();
1868
1869 return retval;
1870}
31583bb0 1871EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
d7926ee3 1872
bbcb81d0 1873/*
af351026
PM
1874 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1875 * held. May take task_lock of task
bbcb81d0 1876 */
af351026 1877static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
bbcb81d0 1878{
bbcb81d0 1879 struct task_struct *tsk;
c69e8d9c 1880 const struct cred *cred = current_cred(), *tcred;
bbcb81d0
PM
1881 int ret;
1882
bbcb81d0
PM
1883 if (pid) {
1884 rcu_read_lock();
73507f33 1885 tsk = find_task_by_vpid(pid);
bbcb81d0
PM
1886 if (!tsk || tsk->flags & PF_EXITING) {
1887 rcu_read_unlock();
1888 return -ESRCH;
1889 }
bbcb81d0 1890
c69e8d9c
DH
1891 tcred = __task_cred(tsk);
1892 if (cred->euid &&
1893 cred->euid != tcred->uid &&
1894 cred->euid != tcred->suid) {
1895 rcu_read_unlock();
bbcb81d0
PM
1896 return -EACCES;
1897 }
c69e8d9c
DH
1898 get_task_struct(tsk);
1899 rcu_read_unlock();
bbcb81d0
PM
1900 } else {
1901 tsk = current;
1902 get_task_struct(tsk);
1903 }
1904
956db3ca 1905 ret = cgroup_attach_task(cgrp, tsk);
bbcb81d0
PM
1906 put_task_struct(tsk);
1907 return ret;
1908}
1909
af351026
PM
1910static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1911{
1912 int ret;
1913 if (!cgroup_lock_live_group(cgrp))
1914 return -ENODEV;
1915 ret = attach_task_by_pid(cgrp, pid);
1916 cgroup_unlock();
1917 return ret;
1918}
1919
e788e066
PM
1920/**
1921 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1922 * @cgrp: the cgroup to be checked for liveness
1923 *
84eea842
PM
1924 * On success, returns true; the lock should be later released with
1925 * cgroup_unlock(). On failure returns false with no lock held.
e788e066 1926 */
84eea842 1927bool cgroup_lock_live_group(struct cgroup *cgrp)
e788e066
PM
1928{
1929 mutex_lock(&cgroup_mutex);
1930 if (cgroup_is_removed(cgrp)) {
1931 mutex_unlock(&cgroup_mutex);
1932 return false;
1933 }
1934 return true;
1935}
67523c48 1936EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
e788e066
PM
1937
1938static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1939 const char *buffer)
1940{
1941 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
f4a2589f
EK
1942 if (strlen(buffer) >= PATH_MAX)
1943 return -EINVAL;
e788e066
PM
1944 if (!cgroup_lock_live_group(cgrp))
1945 return -ENODEV;
1946 strcpy(cgrp->root->release_agent_path, buffer);
84eea842 1947 cgroup_unlock();
e788e066
PM
1948 return 0;
1949}
1950
1951static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1952 struct seq_file *seq)
1953{
1954 if (!cgroup_lock_live_group(cgrp))
1955 return -ENODEV;
1956 seq_puts(seq, cgrp->root->release_agent_path);
1957 seq_putc(seq, '\n');
84eea842 1958 cgroup_unlock();
e788e066
PM
1959 return 0;
1960}
1961
84eea842
PM
1962/* A buffer size big enough for numbers or short strings */
1963#define CGROUP_LOCAL_BUFFER_SIZE 64
1964
e73d2c61 1965static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
f4c753b7
PM
1966 struct file *file,
1967 const char __user *userbuf,
1968 size_t nbytes, loff_t *unused_ppos)
355e0c48 1969{
84eea842 1970 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
355e0c48 1971 int retval = 0;
355e0c48
PM
1972 char *end;
1973
1974 if (!nbytes)
1975 return -EINVAL;
1976 if (nbytes >= sizeof(buffer))
1977 return -E2BIG;
1978 if (copy_from_user(buffer, userbuf, nbytes))
1979 return -EFAULT;
1980
1981 buffer[nbytes] = 0; /* nul-terminate */
e73d2c61 1982 if (cft->write_u64) {
478988d3 1983 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
e73d2c61
PM
1984 if (*end)
1985 return -EINVAL;
1986 retval = cft->write_u64(cgrp, cft, val);
1987 } else {
478988d3 1988 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
e73d2c61
PM
1989 if (*end)
1990 return -EINVAL;
1991 retval = cft->write_s64(cgrp, cft, val);
1992 }
355e0c48
PM
1993 if (!retval)
1994 retval = nbytes;
1995 return retval;
1996}
1997
db3b1497
PM
1998static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1999 struct file *file,
2000 const char __user *userbuf,
2001 size_t nbytes, loff_t *unused_ppos)
2002{
84eea842 2003 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
db3b1497
PM
2004 int retval = 0;
2005 size_t max_bytes = cft->max_write_len;
2006 char *buffer = local_buffer;
2007
2008 if (!max_bytes)
2009 max_bytes = sizeof(local_buffer) - 1;
2010 if (nbytes >= max_bytes)
2011 return -E2BIG;
2012 /* Allocate a dynamic buffer if we need one */
2013 if (nbytes >= sizeof(local_buffer)) {
2014 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2015 if (buffer == NULL)
2016 return -ENOMEM;
2017 }
5a3eb9f6
LZ
2018 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2019 retval = -EFAULT;
2020 goto out;
2021 }
db3b1497
PM
2022
2023 buffer[nbytes] = 0; /* nul-terminate */
478988d3 2024 retval = cft->write_string(cgrp, cft, strstrip(buffer));
db3b1497
PM
2025 if (!retval)
2026 retval = nbytes;
5a3eb9f6 2027out:
db3b1497
PM
2028 if (buffer != local_buffer)
2029 kfree(buffer);
2030 return retval;
2031}
2032
ddbcc7e8
PM
2033static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2034 size_t nbytes, loff_t *ppos)
2035{
2036 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2037 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2038
75139b82 2039 if (cgroup_is_removed(cgrp))
ddbcc7e8 2040 return -ENODEV;
355e0c48 2041 if (cft->write)
bd89aabc 2042 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2043 if (cft->write_u64 || cft->write_s64)
2044 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
db3b1497
PM
2045 if (cft->write_string)
2046 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
d447ea2f
PE
2047 if (cft->trigger) {
2048 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2049 return ret ? ret : nbytes;
2050 }
355e0c48 2051 return -EINVAL;
ddbcc7e8
PM
2052}
2053
f4c753b7
PM
2054static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2055 struct file *file,
2056 char __user *buf, size_t nbytes,
2057 loff_t *ppos)
ddbcc7e8 2058{
84eea842 2059 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
f4c753b7 2060 u64 val = cft->read_u64(cgrp, cft);
ddbcc7e8
PM
2061 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2062
2063 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2064}
2065
e73d2c61
PM
2066static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2067 struct file *file,
2068 char __user *buf, size_t nbytes,
2069 loff_t *ppos)
2070{
84eea842 2071 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
e73d2c61
PM
2072 s64 val = cft->read_s64(cgrp, cft);
2073 int len = sprintf(tmp, "%lld\n", (long long) val);
2074
2075 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2076}
2077
ddbcc7e8
PM
2078static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2079 size_t nbytes, loff_t *ppos)
2080{
2081 struct cftype *cft = __d_cft(file->f_dentry);
bd89aabc 2082 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
ddbcc7e8 2083
75139b82 2084 if (cgroup_is_removed(cgrp))
ddbcc7e8
PM
2085 return -ENODEV;
2086
2087 if (cft->read)
bd89aabc 2088 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
f4c753b7
PM
2089 if (cft->read_u64)
2090 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
e73d2c61
PM
2091 if (cft->read_s64)
2092 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
ddbcc7e8
PM
2093 return -EINVAL;
2094}
2095
91796569
PM
2096/*
2097 * seqfile ops/methods for returning structured data. Currently just
2098 * supports string->u64 maps, but can be extended in future.
2099 */
2100
2101struct cgroup_seqfile_state {
2102 struct cftype *cft;
2103 struct cgroup *cgroup;
2104};
2105
2106static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2107{
2108 struct seq_file *sf = cb->state;
2109 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2110}
2111
2112static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2113{
2114 struct cgroup_seqfile_state *state = m->private;
2115 struct cftype *cft = state->cft;
29486df3
SH
2116 if (cft->read_map) {
2117 struct cgroup_map_cb cb = {
2118 .fill = cgroup_map_add,
2119 .state = m,
2120 };
2121 return cft->read_map(state->cgroup, cft, &cb);
2122 }
2123 return cft->read_seq_string(state->cgroup, cft, m);
91796569
PM
2124}
2125
96930a63 2126static int cgroup_seqfile_release(struct inode *inode, struct file *file)
91796569
PM
2127{
2128 struct seq_file *seq = file->private_data;
2129 kfree(seq->private);
2130 return single_release(inode, file);
2131}
2132
828c0950 2133static const struct file_operations cgroup_seqfile_operations = {
91796569 2134 .read = seq_read,
e788e066 2135 .write = cgroup_file_write,
91796569
PM
2136 .llseek = seq_lseek,
2137 .release = cgroup_seqfile_release,
2138};
2139
ddbcc7e8
PM
2140static int cgroup_file_open(struct inode *inode, struct file *file)
2141{
2142 int err;
2143 struct cftype *cft;
2144
2145 err = generic_file_open(inode, file);
2146 if (err)
2147 return err;
ddbcc7e8 2148 cft = __d_cft(file->f_dentry);
75139b82 2149
29486df3 2150 if (cft->read_map || cft->read_seq_string) {
91796569
PM
2151 struct cgroup_seqfile_state *state =
2152 kzalloc(sizeof(*state), GFP_USER);
2153 if (!state)
2154 return -ENOMEM;
2155 state->cft = cft;
2156 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2157 file->f_op = &cgroup_seqfile_operations;
2158 err = single_open(file, cgroup_seqfile_show, state);
2159 if (err < 0)
2160 kfree(state);
2161 } else if (cft->open)
ddbcc7e8
PM
2162 err = cft->open(inode, file);
2163 else
2164 err = 0;
2165
2166 return err;
2167}
2168
2169static int cgroup_file_release(struct inode *inode, struct file *file)
2170{
2171 struct cftype *cft = __d_cft(file->f_dentry);
2172 if (cft->release)
2173 return cft->release(inode, file);
2174 return 0;
2175}
2176
2177/*
2178 * cgroup_rename - Only allow simple rename of directories in place.
2179 */
2180static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2181 struct inode *new_dir, struct dentry *new_dentry)
2182{
2183 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2184 return -ENOTDIR;
2185 if (new_dentry->d_inode)
2186 return -EEXIST;
2187 if (old_dir != new_dir)
2188 return -EIO;
2189 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2190}
2191
828c0950 2192static const struct file_operations cgroup_file_operations = {
ddbcc7e8
PM
2193 .read = cgroup_file_read,
2194 .write = cgroup_file_write,
2195 .llseek = generic_file_llseek,
2196 .open = cgroup_file_open,
2197 .release = cgroup_file_release,
2198};
2199
6e1d5dcc 2200static const struct inode_operations cgroup_dir_inode_operations = {
c72a04e3 2201 .lookup = cgroup_lookup,
ddbcc7e8
PM
2202 .mkdir = cgroup_mkdir,
2203 .rmdir = cgroup_rmdir,
2204 .rename = cgroup_rename,
2205};
2206
c72a04e3
AV
2207static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2208{
2209 if (dentry->d_name.len > NAME_MAX)
2210 return ERR_PTR(-ENAMETOOLONG);
2211 d_add(dentry, NULL);
2212 return NULL;
2213}
2214
0dea1168
KS
2215/*
2216 * Check if a file is a control file
2217 */
2218static inline struct cftype *__file_cft(struct file *file)
2219{
2220 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2221 return ERR_PTR(-EINVAL);
2222 return __d_cft(file->f_dentry);
2223}
2224
5adcee1d
NP
2225static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2226 struct super_block *sb)
2227{
ddbcc7e8
PM
2228 struct inode *inode;
2229
2230 if (!dentry)
2231 return -ENOENT;
2232 if (dentry->d_inode)
2233 return -EEXIST;
2234
2235 inode = cgroup_new_inode(mode, sb);
2236 if (!inode)
2237 return -ENOMEM;
2238
2239 if (S_ISDIR(mode)) {
2240 inode->i_op = &cgroup_dir_inode_operations;
2241 inode->i_fop = &simple_dir_operations;
2242
2243 /* start off with i_nlink == 2 (for "." entry) */
2244 inc_nlink(inode);
2245
2246 /* start with the directory inode held, so that we can
2247 * populate it without racing with another mkdir */
817929ec 2248 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
ddbcc7e8
PM
2249 } else if (S_ISREG(mode)) {
2250 inode->i_size = 0;
2251 inode->i_fop = &cgroup_file_operations;
2252 }
ddbcc7e8
PM
2253 d_instantiate(dentry, inode);
2254 dget(dentry); /* Extra count - pin the dentry in core */
2255 return 0;
2256}
2257
2258/*
a043e3b2
LZ
2259 * cgroup_create_dir - create a directory for an object.
2260 * @cgrp: the cgroup we create the directory for. It must have a valid
2261 * ->parent field. And we are going to fill its ->dentry field.
2262 * @dentry: dentry of the new cgroup
2263 * @mode: mode to set on new directory.
ddbcc7e8 2264 */
bd89aabc 2265static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
099fca32 2266 mode_t mode)
ddbcc7e8
PM
2267{
2268 struct dentry *parent;
2269 int error = 0;
2270
bd89aabc
PM
2271 parent = cgrp->parent->dentry;
2272 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
ddbcc7e8 2273 if (!error) {
bd89aabc 2274 dentry->d_fsdata = cgrp;
ddbcc7e8 2275 inc_nlink(parent->d_inode);
a47295e6 2276 rcu_assign_pointer(cgrp->dentry, dentry);
ddbcc7e8
PM
2277 dget(dentry);
2278 }
2279 dput(dentry);
2280
2281 return error;
2282}
2283
099fca32
LZ
2284/**
2285 * cgroup_file_mode - deduce file mode of a control file
2286 * @cft: the control file in question
2287 *
2288 * returns cft->mode if ->mode is not 0
2289 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2290 * returns S_IRUGO if it has only a read handler
2291 * returns S_IWUSR if it has only a write hander
2292 */
2293static mode_t cgroup_file_mode(const struct cftype *cft)
2294{
2295 mode_t mode = 0;
2296
2297 if (cft->mode)
2298 return cft->mode;
2299
2300 if (cft->read || cft->read_u64 || cft->read_s64 ||
2301 cft->read_map || cft->read_seq_string)
2302 mode |= S_IRUGO;
2303
2304 if (cft->write || cft->write_u64 || cft->write_s64 ||
2305 cft->write_string || cft->trigger)
2306 mode |= S_IWUSR;
2307
2308 return mode;
2309}
2310
bd89aabc 2311int cgroup_add_file(struct cgroup *cgrp,
ddbcc7e8
PM
2312 struct cgroup_subsys *subsys,
2313 const struct cftype *cft)
2314{
bd89aabc 2315 struct dentry *dir = cgrp->dentry;
ddbcc7e8
PM
2316 struct dentry *dentry;
2317 int error;
099fca32 2318 mode_t mode;
ddbcc7e8
PM
2319
2320 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
bd89aabc 2321 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
ddbcc7e8
PM
2322 strcpy(name, subsys->name);
2323 strcat(name, ".");
2324 }
2325 strcat(name, cft->name);
2326 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2327 dentry = lookup_one_len(name, dir, strlen(name));
2328 if (!IS_ERR(dentry)) {
099fca32
LZ
2329 mode = cgroup_file_mode(cft);
2330 error = cgroup_create_file(dentry, mode | S_IFREG,
bd89aabc 2331 cgrp->root->sb);
ddbcc7e8
PM
2332 if (!error)
2333 dentry->d_fsdata = (void *)cft;
2334 dput(dentry);
2335 } else
2336 error = PTR_ERR(dentry);
2337 return error;
2338}
e6a1105b 2339EXPORT_SYMBOL_GPL(cgroup_add_file);
ddbcc7e8 2340
bd89aabc 2341int cgroup_add_files(struct cgroup *cgrp,
ddbcc7e8
PM
2342 struct cgroup_subsys *subsys,
2343 const struct cftype cft[],
2344 int count)
2345{
2346 int i, err;
2347 for (i = 0; i < count; i++) {
bd89aabc 2348 err = cgroup_add_file(cgrp, subsys, &cft[i]);
ddbcc7e8
PM
2349 if (err)
2350 return err;
2351 }
2352 return 0;
2353}
e6a1105b 2354EXPORT_SYMBOL_GPL(cgroup_add_files);
ddbcc7e8 2355
a043e3b2
LZ
2356/**
2357 * cgroup_task_count - count the number of tasks in a cgroup.
2358 * @cgrp: the cgroup in question
2359 *
2360 * Return the number of tasks in the cgroup.
2361 */
bd89aabc 2362int cgroup_task_count(const struct cgroup *cgrp)
bbcb81d0
PM
2363{
2364 int count = 0;
71cbb949 2365 struct cg_cgroup_link *link;
817929ec
PM
2366
2367 read_lock(&css_set_lock);
71cbb949 2368 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
146aa1bd 2369 count += atomic_read(&link->cg->refcount);
817929ec
PM
2370 }
2371 read_unlock(&css_set_lock);
bbcb81d0
PM
2372 return count;
2373}
2374
817929ec
PM
2375/*
2376 * Advance a list_head iterator. The iterator should be positioned at
2377 * the start of a css_set
2378 */
bd89aabc 2379static void cgroup_advance_iter(struct cgroup *cgrp,
7717f7ba 2380 struct cgroup_iter *it)
817929ec
PM
2381{
2382 struct list_head *l = it->cg_link;
2383 struct cg_cgroup_link *link;
2384 struct css_set *cg;
2385
2386 /* Advance to the next non-empty css_set */
2387 do {
2388 l = l->next;
bd89aabc 2389 if (l == &cgrp->css_sets) {
817929ec
PM
2390 it->cg_link = NULL;
2391 return;
2392 }
bd89aabc 2393 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
817929ec
PM
2394 cg = link->cg;
2395 } while (list_empty(&cg->tasks));
2396 it->cg_link = l;
2397 it->task = cg->tasks.next;
2398}
2399
31a7df01
CW
2400/*
2401 * To reduce the fork() overhead for systems that are not actually
2402 * using their cgroups capability, we don't maintain the lists running
2403 * through each css_set to its tasks until we see the list actually
2404 * used - in other words after the first call to cgroup_iter_start().
2405 *
2406 * The tasklist_lock is not held here, as do_each_thread() and
2407 * while_each_thread() are protected by RCU.
2408 */
3df91fe3 2409static void cgroup_enable_task_cg_lists(void)
31a7df01
CW
2410{
2411 struct task_struct *p, *g;
2412 write_lock(&css_set_lock);
2413 use_task_css_set_links = 1;
2414 do_each_thread(g, p) {
2415 task_lock(p);
0e04388f
LZ
2416 /*
2417 * We should check if the process is exiting, otherwise
2418 * it will race with cgroup_exit() in that the list
2419 * entry won't be deleted though the process has exited.
2420 */
2421 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
31a7df01
CW
2422 list_add(&p->cg_list, &p->cgroups->tasks);
2423 task_unlock(p);
2424 } while_each_thread(g, p);
2425 write_unlock(&css_set_lock);
2426}
2427
bd89aabc 2428void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2429{
2430 /*
2431 * The first time anyone tries to iterate across a cgroup,
2432 * we need to enable the list linking each css_set to its
2433 * tasks, and fix up all existing tasks.
2434 */
31a7df01
CW
2435 if (!use_task_css_set_links)
2436 cgroup_enable_task_cg_lists();
2437
817929ec 2438 read_lock(&css_set_lock);
bd89aabc
PM
2439 it->cg_link = &cgrp->css_sets;
2440 cgroup_advance_iter(cgrp, it);
817929ec
PM
2441}
2442
bd89aabc 2443struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
817929ec
PM
2444 struct cgroup_iter *it)
2445{
2446 struct task_struct *res;
2447 struct list_head *l = it->task;
2019f634 2448 struct cg_cgroup_link *link;
817929ec
PM
2449
2450 /* If the iterator cg is NULL, we have no tasks */
2451 if (!it->cg_link)
2452 return NULL;
2453 res = list_entry(l, struct task_struct, cg_list);
2454 /* Advance iterator to find next entry */
2455 l = l->next;
2019f634
LJ
2456 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2457 if (l == &link->cg->tasks) {
817929ec
PM
2458 /* We reached the end of this task list - move on to
2459 * the next cg_cgroup_link */
bd89aabc 2460 cgroup_advance_iter(cgrp, it);
817929ec
PM
2461 } else {
2462 it->task = l;
2463 }
2464 return res;
2465}
2466
bd89aabc 2467void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
817929ec
PM
2468{
2469 read_unlock(&css_set_lock);
2470}
2471
31a7df01
CW
2472static inline int started_after_time(struct task_struct *t1,
2473 struct timespec *time,
2474 struct task_struct *t2)
2475{
2476 int start_diff = timespec_compare(&t1->start_time, time);
2477 if (start_diff > 0) {
2478 return 1;
2479 } else if (start_diff < 0) {
2480 return 0;
2481 } else {
2482 /*
2483 * Arbitrarily, if two processes started at the same
2484 * time, we'll say that the lower pointer value
2485 * started first. Note that t2 may have exited by now
2486 * so this may not be a valid pointer any longer, but
2487 * that's fine - it still serves to distinguish
2488 * between two tasks started (effectively) simultaneously.
2489 */
2490 return t1 > t2;
2491 }
2492}
2493
2494/*
2495 * This function is a callback from heap_insert() and is used to order
2496 * the heap.
2497 * In this case we order the heap in descending task start time.
2498 */
2499static inline int started_after(void *p1, void *p2)
2500{
2501 struct task_struct *t1 = p1;
2502 struct task_struct *t2 = p2;
2503 return started_after_time(t1, &t2->start_time, t2);
2504}
2505
2506/**
2507 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2508 * @scan: struct cgroup_scanner containing arguments for the scan
2509 *
2510 * Arguments include pointers to callback functions test_task() and
2511 * process_task().
2512 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2513 * and if it returns true, call process_task() for it also.
2514 * The test_task pointer may be NULL, meaning always true (select all tasks).
2515 * Effectively duplicates cgroup_iter_{start,next,end}()
2516 * but does not lock css_set_lock for the call to process_task().
2517 * The struct cgroup_scanner may be embedded in any structure of the caller's
2518 * creation.
2519 * It is guaranteed that process_task() will act on every task that
2520 * is a member of the cgroup for the duration of this call. This
2521 * function may or may not call process_task() for tasks that exit
2522 * or move to a different cgroup during the call, or are forked or
2523 * move into the cgroup during the call.
2524 *
2525 * Note that test_task() may be called with locks held, and may in some
2526 * situations be called multiple times for the same task, so it should
2527 * be cheap.
2528 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2529 * pre-allocated and will be used for heap operations (and its "gt" member will
2530 * be overwritten), else a temporary heap will be used (allocation of which
2531 * may cause this function to fail).
2532 */
2533int cgroup_scan_tasks(struct cgroup_scanner *scan)
2534{
2535 int retval, i;
2536 struct cgroup_iter it;
2537 struct task_struct *p, *dropped;
2538 /* Never dereference latest_task, since it's not refcounted */
2539 struct task_struct *latest_task = NULL;
2540 struct ptr_heap tmp_heap;
2541 struct ptr_heap *heap;
2542 struct timespec latest_time = { 0, 0 };
2543
2544 if (scan->heap) {
2545 /* The caller supplied our heap and pre-allocated its memory */
2546 heap = scan->heap;
2547 heap->gt = &started_after;
2548 } else {
2549 /* We need to allocate our own heap memory */
2550 heap = &tmp_heap;
2551 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2552 if (retval)
2553 /* cannot allocate the heap */
2554 return retval;
2555 }
2556
2557 again:
2558 /*
2559 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2560 * to determine which are of interest, and using the scanner's
2561 * "process_task" callback to process any of them that need an update.
2562 * Since we don't want to hold any locks during the task updates,
2563 * gather tasks to be processed in a heap structure.
2564 * The heap is sorted by descending task start time.
2565 * If the statically-sized heap fills up, we overflow tasks that
2566 * started later, and in future iterations only consider tasks that
2567 * started after the latest task in the previous pass. This
2568 * guarantees forward progress and that we don't miss any tasks.
2569 */
2570 heap->size = 0;
2571 cgroup_iter_start(scan->cg, &it);
2572 while ((p = cgroup_iter_next(scan->cg, &it))) {
2573 /*
2574 * Only affect tasks that qualify per the caller's callback,
2575 * if he provided one
2576 */
2577 if (scan->test_task && !scan->test_task(p, scan))
2578 continue;
2579 /*
2580 * Only process tasks that started after the last task
2581 * we processed
2582 */
2583 if (!started_after_time(p, &latest_time, latest_task))
2584 continue;
2585 dropped = heap_insert(heap, p);
2586 if (dropped == NULL) {
2587 /*
2588 * The new task was inserted; the heap wasn't
2589 * previously full
2590 */
2591 get_task_struct(p);
2592 } else if (dropped != p) {
2593 /*
2594 * The new task was inserted, and pushed out a
2595 * different task
2596 */
2597 get_task_struct(p);
2598 put_task_struct(dropped);
2599 }
2600 /*
2601 * Else the new task was newer than anything already in
2602 * the heap and wasn't inserted
2603 */
2604 }
2605 cgroup_iter_end(scan->cg, &it);
2606
2607 if (heap->size) {
2608 for (i = 0; i < heap->size; i++) {
4fe91d51 2609 struct task_struct *q = heap->ptrs[i];
31a7df01 2610 if (i == 0) {
4fe91d51
PJ
2611 latest_time = q->start_time;
2612 latest_task = q;
31a7df01
CW
2613 }
2614 /* Process the task per the caller's callback */
4fe91d51
PJ
2615 scan->process_task(q, scan);
2616 put_task_struct(q);
31a7df01
CW
2617 }
2618 /*
2619 * If we had to process any tasks at all, scan again
2620 * in case some of them were in the middle of forking
2621 * children that didn't get processed.
2622 * Not the most efficient way to do it, but it avoids
2623 * having to take callback_mutex in the fork path
2624 */
2625 goto again;
2626 }
2627 if (heap == &tmp_heap)
2628 heap_free(&tmp_heap);
2629 return 0;
2630}
2631
bbcb81d0 2632/*
102a775e 2633 * Stuff for reading the 'tasks'/'procs' files.
bbcb81d0
PM
2634 *
2635 * Reading this file can return large amounts of data if a cgroup has
2636 * *lots* of attached tasks. So it may need several calls to read(),
2637 * but we cannot guarantee that the information we produce is correct
2638 * unless we produce it entirely atomically.
2639 *
bbcb81d0 2640 */
bbcb81d0 2641
d1d9fd33
BB
2642/*
2643 * The following two functions "fix" the issue where there are more pids
2644 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2645 * TODO: replace with a kernel-wide solution to this problem
2646 */
2647#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2648static void *pidlist_allocate(int count)
2649{
2650 if (PIDLIST_TOO_LARGE(count))
2651 return vmalloc(count * sizeof(pid_t));
2652 else
2653 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2654}
2655static void pidlist_free(void *p)
2656{
2657 if (is_vmalloc_addr(p))
2658 vfree(p);
2659 else
2660 kfree(p);
2661}
2662static void *pidlist_resize(void *p, int newcount)
2663{
2664 void *newlist;
2665 /* note: if new alloc fails, old p will still be valid either way */
2666 if (is_vmalloc_addr(p)) {
2667 newlist = vmalloc(newcount * sizeof(pid_t));
2668 if (!newlist)
2669 return NULL;
2670 memcpy(newlist, p, newcount * sizeof(pid_t));
2671 vfree(p);
2672 } else {
2673 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2674 }
2675 return newlist;
2676}
2677
bbcb81d0 2678/*
102a775e
BB
2679 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2680 * If the new stripped list is sufficiently smaller and there's enough memory
2681 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2682 * number of unique elements.
bbcb81d0 2683 */
102a775e
BB
2684/* is the size difference enough that we should re-allocate the array? */
2685#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2686static int pidlist_uniq(pid_t **p, int length)
bbcb81d0 2687{
102a775e
BB
2688 int src, dest = 1;
2689 pid_t *list = *p;
2690 pid_t *newlist;
2691
2692 /*
2693 * we presume the 0th element is unique, so i starts at 1. trivial
2694 * edge cases first; no work needs to be done for either
2695 */
2696 if (length == 0 || length == 1)
2697 return length;
2698 /* src and dest walk down the list; dest counts unique elements */
2699 for (src = 1; src < length; src++) {
2700 /* find next unique element */
2701 while (list[src] == list[src-1]) {
2702 src++;
2703 if (src == length)
2704 goto after;
2705 }
2706 /* dest always points to where the next unique element goes */
2707 list[dest] = list[src];
2708 dest++;
2709 }
2710after:
2711 /*
2712 * if the length difference is large enough, we want to allocate a
2713 * smaller buffer to save memory. if this fails due to out of memory,
2714 * we'll just stay with what we've got.
2715 */
2716 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
d1d9fd33 2717 newlist = pidlist_resize(list, dest);
102a775e
BB
2718 if (newlist)
2719 *p = newlist;
2720 }
2721 return dest;
2722}
2723
2724static int cmppid(const void *a, const void *b)
2725{
2726 return *(pid_t *)a - *(pid_t *)b;
2727}
2728
72a8cb30
BB
2729/*
2730 * find the appropriate pidlist for our purpose (given procs vs tasks)
2731 * returns with the lock on that pidlist already held, and takes care
2732 * of the use count, or returns NULL with no locks held if we're out of
2733 * memory.
2734 */
2735static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2736 enum cgroup_filetype type)
2737{
2738 struct cgroup_pidlist *l;
2739 /* don't need task_nsproxy() if we're looking at ourself */
b70cc5fd
LZ
2740 struct pid_namespace *ns = current->nsproxy->pid_ns;
2741
72a8cb30
BB
2742 /*
2743 * We can't drop the pidlist_mutex before taking the l->mutex in case
2744 * the last ref-holder is trying to remove l from the list at the same
2745 * time. Holding the pidlist_mutex precludes somebody taking whichever
2746 * list we find out from under us - compare release_pid_array().
2747 */
2748 mutex_lock(&cgrp->pidlist_mutex);
2749 list_for_each_entry(l, &cgrp->pidlists, links) {
2750 if (l->key.type == type && l->key.ns == ns) {
72a8cb30
BB
2751 /* make sure l doesn't vanish out from under us */
2752 down_write(&l->mutex);
2753 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2754 return l;
2755 }
2756 }
2757 /* entry not found; create a new one */
2758 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2759 if (!l) {
2760 mutex_unlock(&cgrp->pidlist_mutex);
72a8cb30
BB
2761 return l;
2762 }
2763 init_rwsem(&l->mutex);
2764 down_write(&l->mutex);
2765 l->key.type = type;
b70cc5fd 2766 l->key.ns = get_pid_ns(ns);
72a8cb30
BB
2767 l->use_count = 0; /* don't increment here */
2768 l->list = NULL;
2769 l->owner = cgrp;
2770 list_add(&l->links, &cgrp->pidlists);
2771 mutex_unlock(&cgrp->pidlist_mutex);
2772 return l;
2773}
2774
102a775e
BB
2775/*
2776 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2777 */
72a8cb30
BB
2778static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2779 struct cgroup_pidlist **lp)
102a775e
BB
2780{
2781 pid_t *array;
2782 int length;
2783 int pid, n = 0; /* used for populating the array */
817929ec
PM
2784 struct cgroup_iter it;
2785 struct task_struct *tsk;
102a775e
BB
2786 struct cgroup_pidlist *l;
2787
2788 /*
2789 * If cgroup gets more users after we read count, we won't have
2790 * enough space - tough. This race is indistinguishable to the
2791 * caller from the case that the additional cgroup users didn't
2792 * show up until sometime later on.
2793 */
2794 length = cgroup_task_count(cgrp);
d1d9fd33 2795 array = pidlist_allocate(length);
102a775e
BB
2796 if (!array)
2797 return -ENOMEM;
2798 /* now, populate the array */
bd89aabc
PM
2799 cgroup_iter_start(cgrp, &it);
2800 while ((tsk = cgroup_iter_next(cgrp, &it))) {
102a775e 2801 if (unlikely(n == length))
817929ec 2802 break;
102a775e 2803 /* get tgid or pid for procs or tasks file respectively */
72a8cb30
BB
2804 if (type == CGROUP_FILE_PROCS)
2805 pid = task_tgid_vnr(tsk);
2806 else
2807 pid = task_pid_vnr(tsk);
102a775e
BB
2808 if (pid > 0) /* make sure to only use valid results */
2809 array[n++] = pid;
817929ec 2810 }
bd89aabc 2811 cgroup_iter_end(cgrp, &it);
102a775e
BB
2812 length = n;
2813 /* now sort & (if procs) strip out duplicates */
2814 sort(array, length, sizeof(pid_t), cmppid, NULL);
72a8cb30 2815 if (type == CGROUP_FILE_PROCS)
102a775e 2816 length = pidlist_uniq(&array, length);
72a8cb30
BB
2817 l = cgroup_pidlist_find(cgrp, type);
2818 if (!l) {
d1d9fd33 2819 pidlist_free(array);
72a8cb30 2820 return -ENOMEM;
102a775e 2821 }
72a8cb30 2822 /* store array, freeing old if necessary - lock already held */
d1d9fd33 2823 pidlist_free(l->list);
102a775e
BB
2824 l->list = array;
2825 l->length = length;
2826 l->use_count++;
2827 up_write(&l->mutex);
72a8cb30 2828 *lp = l;
102a775e 2829 return 0;
bbcb81d0
PM
2830}
2831
846c7bb0 2832/**
a043e3b2 2833 * cgroupstats_build - build and fill cgroupstats
846c7bb0
BS
2834 * @stats: cgroupstats to fill information into
2835 * @dentry: A dentry entry belonging to the cgroup for which stats have
2836 * been requested.
a043e3b2
LZ
2837 *
2838 * Build and fill cgroupstats so that taskstats can export it to user
2839 * space.
846c7bb0
BS
2840 */
2841int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2842{
2843 int ret = -EINVAL;
bd89aabc 2844 struct cgroup *cgrp;
846c7bb0
BS
2845 struct cgroup_iter it;
2846 struct task_struct *tsk;
33d283be 2847
846c7bb0 2848 /*
33d283be
LZ
2849 * Validate dentry by checking the superblock operations,
2850 * and make sure it's a directory.
846c7bb0 2851 */
33d283be
LZ
2852 if (dentry->d_sb->s_op != &cgroup_ops ||
2853 !S_ISDIR(dentry->d_inode->i_mode))
846c7bb0
BS
2854 goto err;
2855
2856 ret = 0;
bd89aabc 2857 cgrp = dentry->d_fsdata;
846c7bb0 2858
bd89aabc
PM
2859 cgroup_iter_start(cgrp, &it);
2860 while ((tsk = cgroup_iter_next(cgrp, &it))) {
846c7bb0
BS
2861 switch (tsk->state) {
2862 case TASK_RUNNING:
2863 stats->nr_running++;
2864 break;
2865 case TASK_INTERRUPTIBLE:
2866 stats->nr_sleeping++;
2867 break;
2868 case TASK_UNINTERRUPTIBLE:
2869 stats->nr_uninterruptible++;
2870 break;
2871 case TASK_STOPPED:
2872 stats->nr_stopped++;
2873 break;
2874 default:
2875 if (delayacct_is_task_waiting_on_io(tsk))
2876 stats->nr_io_wait++;
2877 break;
2878 }
2879 }
bd89aabc 2880 cgroup_iter_end(cgrp, &it);
846c7bb0 2881
846c7bb0
BS
2882err:
2883 return ret;
2884}
2885
8f3ff208 2886
bbcb81d0 2887/*
102a775e 2888 * seq_file methods for the tasks/procs files. The seq_file position is the
cc31edce 2889 * next pid to display; the seq_file iterator is a pointer to the pid
102a775e 2890 * in the cgroup->l->list array.
bbcb81d0 2891 */
cc31edce 2892
102a775e 2893static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
bbcb81d0 2894{
cc31edce
PM
2895 /*
2896 * Initially we receive a position value that corresponds to
2897 * one more than the last pid shown (or 0 on the first call or
2898 * after a seek to the start). Use a binary-search to find the
2899 * next pid to display, if any
2900 */
102a775e 2901 struct cgroup_pidlist *l = s->private;
cc31edce
PM
2902 int index = 0, pid = *pos;
2903 int *iter;
2904
102a775e 2905 down_read(&l->mutex);
cc31edce 2906 if (pid) {
102a775e 2907 int end = l->length;
20777766 2908
cc31edce
PM
2909 while (index < end) {
2910 int mid = (index + end) / 2;
102a775e 2911 if (l->list[mid] == pid) {
cc31edce
PM
2912 index = mid;
2913 break;
102a775e 2914 } else if (l->list[mid] <= pid)
cc31edce
PM
2915 index = mid + 1;
2916 else
2917 end = mid;
2918 }
2919 }
2920 /* If we're off the end of the array, we're done */
102a775e 2921 if (index >= l->length)
cc31edce
PM
2922 return NULL;
2923 /* Update the abstract position to be the actual pid that we found */
102a775e 2924 iter = l->list + index;
cc31edce
PM
2925 *pos = *iter;
2926 return iter;
2927}
2928
102a775e 2929static void cgroup_pidlist_stop(struct seq_file *s, void *v)
cc31edce 2930{
102a775e
BB
2931 struct cgroup_pidlist *l = s->private;
2932 up_read(&l->mutex);
cc31edce
PM
2933}
2934
102a775e 2935static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
cc31edce 2936{
102a775e
BB
2937 struct cgroup_pidlist *l = s->private;
2938 pid_t *p = v;
2939 pid_t *end = l->list + l->length;
cc31edce
PM
2940 /*
2941 * Advance to the next pid in the array. If this goes off the
2942 * end, we're done
2943 */
2944 p++;
2945 if (p >= end) {
2946 return NULL;
2947 } else {
2948 *pos = *p;
2949 return p;
2950 }
2951}
2952
102a775e 2953static int cgroup_pidlist_show(struct seq_file *s, void *v)
cc31edce
PM
2954{
2955 return seq_printf(s, "%d\n", *(int *)v);
2956}
bbcb81d0 2957
102a775e
BB
2958/*
2959 * seq_operations functions for iterating on pidlists through seq_file -
2960 * independent of whether it's tasks or procs
2961 */
2962static const struct seq_operations cgroup_pidlist_seq_operations = {
2963 .start = cgroup_pidlist_start,
2964 .stop = cgroup_pidlist_stop,
2965 .next = cgroup_pidlist_next,
2966 .show = cgroup_pidlist_show,
cc31edce
PM
2967};
2968
102a775e 2969static void cgroup_release_pid_array(struct cgroup_pidlist *l)
cc31edce 2970{
72a8cb30
BB
2971 /*
2972 * the case where we're the last user of this particular pidlist will
2973 * have us remove it from the cgroup's list, which entails taking the
2974 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2975 * pidlist_mutex, we have to take pidlist_mutex first.
2976 */
2977 mutex_lock(&l->owner->pidlist_mutex);
102a775e
BB
2978 down_write(&l->mutex);
2979 BUG_ON(!l->use_count);
2980 if (!--l->use_count) {
72a8cb30
BB
2981 /* we're the last user if refcount is 0; remove and free */
2982 list_del(&l->links);
2983 mutex_unlock(&l->owner->pidlist_mutex);
d1d9fd33 2984 pidlist_free(l->list);
72a8cb30
BB
2985 put_pid_ns(l->key.ns);
2986 up_write(&l->mutex);
2987 kfree(l);
2988 return;
cc31edce 2989 }
72a8cb30 2990 mutex_unlock(&l->owner->pidlist_mutex);
102a775e 2991 up_write(&l->mutex);
bbcb81d0
PM
2992}
2993
102a775e 2994static int cgroup_pidlist_release(struct inode *inode, struct file *file)
cc31edce 2995{
102a775e 2996 struct cgroup_pidlist *l;
cc31edce
PM
2997 if (!(file->f_mode & FMODE_READ))
2998 return 0;
102a775e
BB
2999 /*
3000 * the seq_file will only be initialized if the file was opened for
3001 * reading; hence we check if it's not null only in that case.
3002 */
3003 l = ((struct seq_file *)file->private_data)->private;
3004 cgroup_release_pid_array(l);
cc31edce
PM
3005 return seq_release(inode, file);
3006}
3007
102a775e 3008static const struct file_operations cgroup_pidlist_operations = {
cc31edce
PM
3009 .read = seq_read,
3010 .llseek = seq_lseek,
3011 .write = cgroup_file_write,
102a775e 3012 .release = cgroup_pidlist_release,
cc31edce
PM
3013};
3014
bbcb81d0 3015/*
102a775e
BB
3016 * The following functions handle opens on a file that displays a pidlist
3017 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3018 * in the cgroup.
bbcb81d0 3019 */
102a775e 3020/* helper function for the two below it */
72a8cb30 3021static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
bbcb81d0 3022{
bd89aabc 3023 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
72a8cb30 3024 struct cgroup_pidlist *l;
cc31edce 3025 int retval;
bbcb81d0 3026
cc31edce 3027 /* Nothing to do for write-only files */
bbcb81d0
PM
3028 if (!(file->f_mode & FMODE_READ))
3029 return 0;
3030
102a775e 3031 /* have the array populated */
72a8cb30 3032 retval = pidlist_array_load(cgrp, type, &l);
102a775e
BB
3033 if (retval)
3034 return retval;
3035 /* configure file information */
3036 file->f_op = &cgroup_pidlist_operations;
cc31edce 3037
102a775e 3038 retval = seq_open(file, &cgroup_pidlist_seq_operations);
cc31edce 3039 if (retval) {
102a775e 3040 cgroup_release_pid_array(l);
cc31edce 3041 return retval;
bbcb81d0 3042 }
102a775e 3043 ((struct seq_file *)file->private_data)->private = l;
bbcb81d0
PM
3044 return 0;
3045}
102a775e
BB
3046static int cgroup_tasks_open(struct inode *unused, struct file *file)
3047{
72a8cb30 3048 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
102a775e
BB
3049}
3050static int cgroup_procs_open(struct inode *unused, struct file *file)
3051{
72a8cb30 3052 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
102a775e 3053}
bbcb81d0 3054
bd89aabc 3055static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
81a6a5cd
PM
3056 struct cftype *cft)
3057{
bd89aabc 3058 return notify_on_release(cgrp);
81a6a5cd
PM
3059}
3060
6379c106
PM
3061static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3062 struct cftype *cft,
3063 u64 val)
3064{
3065 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3066 if (val)
3067 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3068 else
3069 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3070 return 0;
3071}
3072
0dea1168
KS
3073/*
3074 * Unregister event and free resources.
3075 *
3076 * Gets called from workqueue.
3077 */
3078static void cgroup_event_remove(struct work_struct *work)
3079{
3080 struct cgroup_event *event = container_of(work, struct cgroup_event,
3081 remove);
3082 struct cgroup *cgrp = event->cgrp;
3083
0dea1168
KS
3084 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3085
3086 eventfd_ctx_put(event->eventfd);
0dea1168 3087 kfree(event);
a0a4db54 3088 dput(cgrp->dentry);
0dea1168
KS
3089}
3090
3091/*
3092 * Gets called on POLLHUP on eventfd when user closes it.
3093 *
3094 * Called with wqh->lock held and interrupts disabled.
3095 */
3096static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3097 int sync, void *key)
3098{
3099 struct cgroup_event *event = container_of(wait,
3100 struct cgroup_event, wait);
3101 struct cgroup *cgrp = event->cgrp;
3102 unsigned long flags = (unsigned long)key;
3103
3104 if (flags & POLLHUP) {
a93d2f17 3105 __remove_wait_queue(event->wqh, &event->wait);
0dea1168
KS
3106 spin_lock(&cgrp->event_list_lock);
3107 list_del(&event->list);
3108 spin_unlock(&cgrp->event_list_lock);
3109 /*
3110 * We are in atomic context, but cgroup_event_remove() may
3111 * sleep, so we have to call it in workqueue.
3112 */
3113 schedule_work(&event->remove);
3114 }
3115
3116 return 0;
3117}
3118
3119static void cgroup_event_ptable_queue_proc(struct file *file,
3120 wait_queue_head_t *wqh, poll_table *pt)
3121{
3122 struct cgroup_event *event = container_of(pt,
3123 struct cgroup_event, pt);
3124
3125 event->wqh = wqh;
3126 add_wait_queue(wqh, &event->wait);
3127}
3128
3129/*
3130 * Parse input and register new cgroup event handler.
3131 *
3132 * Input must be in format '<event_fd> <control_fd> <args>'.
3133 * Interpretation of args is defined by control file implementation.
3134 */
3135static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3136 const char *buffer)
3137{
3138 struct cgroup_event *event = NULL;
3139 unsigned int efd, cfd;
3140 struct file *efile = NULL;
3141 struct file *cfile = NULL;
3142 char *endp;
3143 int ret;
3144
3145 efd = simple_strtoul(buffer, &endp, 10);
3146 if (*endp != ' ')
3147 return -EINVAL;
3148 buffer = endp + 1;
3149
3150 cfd = simple_strtoul(buffer, &endp, 10);
3151 if ((*endp != ' ') && (*endp != '\0'))
3152 return -EINVAL;
3153 buffer = endp + 1;
3154
3155 event = kzalloc(sizeof(*event), GFP_KERNEL);
3156 if (!event)
3157 return -ENOMEM;
3158 event->cgrp = cgrp;
3159 INIT_LIST_HEAD(&event->list);
3160 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3161 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3162 INIT_WORK(&event->remove, cgroup_event_remove);
3163
3164 efile = eventfd_fget(efd);
3165 if (IS_ERR(efile)) {
3166 ret = PTR_ERR(efile);
3167 goto fail;
3168 }
3169
3170 event->eventfd = eventfd_ctx_fileget(efile);
3171 if (IS_ERR(event->eventfd)) {
3172 ret = PTR_ERR(event->eventfd);
3173 goto fail;
3174 }
3175
3176 cfile = fget(cfd);
3177 if (!cfile) {
3178 ret = -EBADF;
3179 goto fail;
3180 }
3181
3182 /* the process need read permission on control file */
3183 ret = file_permission(cfile, MAY_READ);
3184 if (ret < 0)
3185 goto fail;
3186
3187 event->cft = __file_cft(cfile);
3188 if (IS_ERR(event->cft)) {
3189 ret = PTR_ERR(event->cft);
3190 goto fail;
3191 }
3192
3193 if (!event->cft->register_event || !event->cft->unregister_event) {
3194 ret = -EINVAL;
3195 goto fail;
3196 }
3197
3198 ret = event->cft->register_event(cgrp, event->cft,
3199 event->eventfd, buffer);
3200 if (ret)
3201 goto fail;
3202
3203 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3204 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3205 ret = 0;
3206 goto fail;
3207 }
3208
a0a4db54
KS
3209 /*
3210 * Events should be removed after rmdir of cgroup directory, but before
3211 * destroying subsystem state objects. Let's take reference to cgroup
3212 * directory dentry to do that.
3213 */
3214 dget(cgrp->dentry);
3215
0dea1168
KS
3216 spin_lock(&cgrp->event_list_lock);
3217 list_add(&event->list, &cgrp->event_list);
3218 spin_unlock(&cgrp->event_list_lock);
3219
3220 fput(cfile);
3221 fput(efile);
3222
3223 return 0;
3224
3225fail:
3226 if (cfile)
3227 fput(cfile);
3228
3229 if (event && event->eventfd && !IS_ERR(event->eventfd))
3230 eventfd_ctx_put(event->eventfd);
3231
3232 if (!IS_ERR_OR_NULL(efile))
3233 fput(efile);
3234
3235 kfree(event);
3236
3237 return ret;
3238}
3239
97978e6d
DL
3240static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3241 struct cftype *cft)
3242{
3243 return clone_children(cgrp);
3244}
3245
3246static int cgroup_clone_children_write(struct cgroup *cgrp,
3247 struct cftype *cft,
3248 u64 val)
3249{
3250 if (val)
3251 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3252 else
3253 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3254 return 0;
3255}
3256
bbcb81d0
PM
3257/*
3258 * for the common functions, 'private' gives the type of file
3259 */
102a775e
BB
3260/* for hysterical raisins, we can't put this on the older files */
3261#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
81a6a5cd
PM
3262static struct cftype files[] = {
3263 {
3264 .name = "tasks",
3265 .open = cgroup_tasks_open,
af351026 3266 .write_u64 = cgroup_tasks_write,
102a775e 3267 .release = cgroup_pidlist_release,
099fca32 3268 .mode = S_IRUGO | S_IWUSR,
81a6a5cd 3269 },
102a775e
BB
3270 {
3271 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3272 .open = cgroup_procs_open,
3273 /* .write_u64 = cgroup_procs_write, TODO */
3274 .release = cgroup_pidlist_release,
3275 .mode = S_IRUGO,
3276 },
81a6a5cd
PM
3277 {
3278 .name = "notify_on_release",
f4c753b7 3279 .read_u64 = cgroup_read_notify_on_release,
6379c106 3280 .write_u64 = cgroup_write_notify_on_release,
81a6a5cd 3281 },
0dea1168
KS
3282 {
3283 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3284 .write_string = cgroup_write_event_control,
3285 .mode = S_IWUGO,
3286 },
97978e6d
DL
3287 {
3288 .name = "cgroup.clone_children",
3289 .read_u64 = cgroup_clone_children_read,
3290 .write_u64 = cgroup_clone_children_write,
3291 },
81a6a5cd
PM
3292};
3293
3294static struct cftype cft_release_agent = {
3295 .name = "release_agent",
e788e066
PM
3296 .read_seq_string = cgroup_release_agent_show,
3297 .write_string = cgroup_release_agent_write,
3298 .max_write_len = PATH_MAX,
bbcb81d0
PM
3299};
3300
bd89aabc 3301static int cgroup_populate_dir(struct cgroup *cgrp)
ddbcc7e8
PM
3302{
3303 int err;
3304 struct cgroup_subsys *ss;
3305
3306 /* First clear out any existing files */
bd89aabc 3307 cgroup_clear_directory(cgrp->dentry);
ddbcc7e8 3308
bd89aabc 3309 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
bbcb81d0
PM
3310 if (err < 0)
3311 return err;
3312
bd89aabc
PM
3313 if (cgrp == cgrp->top_cgroup) {
3314 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
81a6a5cd
PM
3315 return err;
3316 }
3317
bd89aabc
PM
3318 for_each_subsys(cgrp->root, ss) {
3319 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
ddbcc7e8
PM
3320 return err;
3321 }
38460b48
KH
3322 /* This cgroup is ready now */
3323 for_each_subsys(cgrp->root, ss) {
3324 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3325 /*
3326 * Update id->css pointer and make this css visible from
3327 * CSS ID functions. This pointer will be dereferened
3328 * from RCU-read-side without locks.
3329 */
3330 if (css->id)
3331 rcu_assign_pointer(css->id->css, css);
3332 }
ddbcc7e8
PM
3333
3334 return 0;
3335}
3336
3337static void init_cgroup_css(struct cgroup_subsys_state *css,
3338 struct cgroup_subsys *ss,
bd89aabc 3339 struct cgroup *cgrp)
ddbcc7e8 3340{
bd89aabc 3341 css->cgroup = cgrp;
e7c5ec91 3342 atomic_set(&css->refcnt, 1);
ddbcc7e8 3343 css->flags = 0;
38460b48 3344 css->id = NULL;
bd89aabc 3345 if (cgrp == dummytop)
ddbcc7e8 3346 set_bit(CSS_ROOT, &css->flags);
bd89aabc
PM
3347 BUG_ON(cgrp->subsys[ss->subsys_id]);
3348 cgrp->subsys[ss->subsys_id] = css;
ddbcc7e8
PM
3349}
3350
999cd8a4
PM
3351static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3352{
3353 /* We need to take each hierarchy_mutex in a consistent order */
3354 int i;
3355
aae8aab4
BB
3356 /*
3357 * No worry about a race with rebind_subsystems that might mess up the
3358 * locking order, since both parties are under cgroup_mutex.
3359 */
999cd8a4
PM
3360 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3361 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3362 if (ss == NULL)
3363 continue;
999cd8a4 3364 if (ss->root == root)
cfebe563 3365 mutex_lock(&ss->hierarchy_mutex);
999cd8a4
PM
3366 }
3367}
3368
3369static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3370{
3371 int i;
3372
3373 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3374 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
3375 if (ss == NULL)
3376 continue;
999cd8a4
PM
3377 if (ss->root == root)
3378 mutex_unlock(&ss->hierarchy_mutex);
3379 }
3380}
3381
ddbcc7e8 3382/*
a043e3b2
LZ
3383 * cgroup_create - create a cgroup
3384 * @parent: cgroup that will be parent of the new cgroup
3385 * @dentry: dentry of the new cgroup
3386 * @mode: mode to set on new inode
ddbcc7e8 3387 *
a043e3b2 3388 * Must be called with the mutex on the parent inode held
ddbcc7e8 3389 */
ddbcc7e8 3390static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
099fca32 3391 mode_t mode)
ddbcc7e8 3392{
bd89aabc 3393 struct cgroup *cgrp;
ddbcc7e8
PM
3394 struct cgroupfs_root *root = parent->root;
3395 int err = 0;
3396 struct cgroup_subsys *ss;
3397 struct super_block *sb = root->sb;
3398
bd89aabc
PM
3399 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3400 if (!cgrp)
ddbcc7e8
PM
3401 return -ENOMEM;
3402
3403 /* Grab a reference on the superblock so the hierarchy doesn't
3404 * get deleted on unmount if there are child cgroups. This
3405 * can be done outside cgroup_mutex, since the sb can't
3406 * disappear while someone has an open control file on the
3407 * fs */
3408 atomic_inc(&sb->s_active);
3409
3410 mutex_lock(&cgroup_mutex);
3411
cc31edce 3412 init_cgroup_housekeeping(cgrp);
ddbcc7e8 3413
bd89aabc
PM
3414 cgrp->parent = parent;
3415 cgrp->root = parent->root;
3416 cgrp->top_cgroup = parent->top_cgroup;
ddbcc7e8 3417
b6abdb0e
LZ
3418 if (notify_on_release(parent))
3419 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3420
97978e6d
DL
3421 if (clone_children(parent))
3422 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3423
ddbcc7e8 3424 for_each_subsys(root, ss) {
bd89aabc 3425 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
4528fd05 3426
ddbcc7e8
PM
3427 if (IS_ERR(css)) {
3428 err = PTR_ERR(css);
3429 goto err_destroy;
3430 }
bd89aabc 3431 init_cgroup_css(css, ss, cgrp);
4528fd05
LZ
3432 if (ss->use_id) {
3433 err = alloc_css_id(ss, parent, cgrp);
3434 if (err)
38460b48 3435 goto err_destroy;
4528fd05 3436 }
38460b48 3437 /* At error, ->destroy() callback has to free assigned ID. */
97978e6d
DL
3438 if (clone_children(parent) && ss->post_clone)
3439 ss->post_clone(ss, cgrp);
ddbcc7e8
PM
3440 }
3441
999cd8a4 3442 cgroup_lock_hierarchy(root);
bd89aabc 3443 list_add(&cgrp->sibling, &cgrp->parent->children);
999cd8a4 3444 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3445 root->number_of_cgroups++;
3446
bd89aabc 3447 err = cgroup_create_dir(cgrp, dentry, mode);
ddbcc7e8
PM
3448 if (err < 0)
3449 goto err_remove;
3450
3451 /* The cgroup directory was pre-locked for us */
bd89aabc 3452 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
ddbcc7e8 3453
bd89aabc 3454 err = cgroup_populate_dir(cgrp);
ddbcc7e8
PM
3455 /* If err < 0, we have a half-filled directory - oh well ;) */
3456
3457 mutex_unlock(&cgroup_mutex);
bd89aabc 3458 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
ddbcc7e8
PM
3459
3460 return 0;
3461
3462 err_remove:
3463
baef99a0 3464 cgroup_lock_hierarchy(root);
bd89aabc 3465 list_del(&cgrp->sibling);
baef99a0 3466 cgroup_unlock_hierarchy(root);
ddbcc7e8
PM
3467 root->number_of_cgroups--;
3468
3469 err_destroy:
3470
3471 for_each_subsys(root, ss) {
bd89aabc
PM
3472 if (cgrp->subsys[ss->subsys_id])
3473 ss->destroy(ss, cgrp);
ddbcc7e8
PM
3474 }
3475
3476 mutex_unlock(&cgroup_mutex);
3477
3478 /* Release the reference count that we took on the superblock */
3479 deactivate_super(sb);
3480
bd89aabc 3481 kfree(cgrp);
ddbcc7e8
PM
3482 return err;
3483}
3484
3485static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3486{
3487 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3488
3489 /* the vfs holds inode->i_mutex already */
3490 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3491}
3492
55b6fd01 3493static int cgroup_has_css_refs(struct cgroup *cgrp)
81a6a5cd
PM
3494{
3495 /* Check the reference count on each subsystem. Since we
3496 * already established that there are no tasks in the
e7c5ec91 3497 * cgroup, if the css refcount is also 1, then there should
81a6a5cd
PM
3498 * be no outstanding references, so the subsystem is safe to
3499 * destroy. We scan across all subsystems rather than using
3500 * the per-hierarchy linked list of mounted subsystems since
3501 * we can be called via check_for_release() with no
3502 * synchronization other than RCU, and the subsystem linked
3503 * list isn't RCU-safe */
3504 int i;
aae8aab4
BB
3505 /*
3506 * We won't need to lock the subsys array, because the subsystems
3507 * we're concerned about aren't going anywhere since our cgroup root
3508 * has a reference on them.
3509 */
81a6a5cd
PM
3510 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3511 struct cgroup_subsys *ss = subsys[i];
3512 struct cgroup_subsys_state *css;
aae8aab4
BB
3513 /* Skip subsystems not present or not in this hierarchy */
3514 if (ss == NULL || ss->root != cgrp->root)
81a6a5cd 3515 continue;
bd89aabc 3516 css = cgrp->subsys[ss->subsys_id];
81a6a5cd
PM
3517 /* When called from check_for_release() it's possible
3518 * that by this point the cgroup has been removed
3519 * and the css deleted. But a false-positive doesn't
3520 * matter, since it can only happen if the cgroup
3521 * has been deleted and hence no longer needs the
3522 * release agent to be called anyway. */
e7c5ec91 3523 if (css && (atomic_read(&css->refcnt) > 1))
81a6a5cd 3524 return 1;
81a6a5cd
PM
3525 }
3526 return 0;
3527}
3528
e7c5ec91
PM
3529/*
3530 * Atomically mark all (or else none) of the cgroup's CSS objects as
3531 * CSS_REMOVED. Return true on success, or false if the cgroup has
3532 * busy subsystems. Call with cgroup_mutex held
3533 */
3534
3535static int cgroup_clear_css_refs(struct cgroup *cgrp)
3536{
3537 struct cgroup_subsys *ss;
3538 unsigned long flags;
3539 bool failed = false;
3540 local_irq_save(flags);
3541 for_each_subsys(cgrp->root, ss) {
3542 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3543 int refcnt;
804b3c28 3544 while (1) {
e7c5ec91
PM
3545 /* We can only remove a CSS with a refcnt==1 */
3546 refcnt = atomic_read(&css->refcnt);
3547 if (refcnt > 1) {
3548 failed = true;
3549 goto done;
3550 }
3551 BUG_ON(!refcnt);
3552 /*
3553 * Drop the refcnt to 0 while we check other
3554 * subsystems. This will cause any racing
3555 * css_tryget() to spin until we set the
3556 * CSS_REMOVED bits or abort
3557 */
804b3c28
PM
3558 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3559 break;
3560 cpu_relax();
3561 }
e7c5ec91
PM
3562 }
3563 done:
3564 for_each_subsys(cgrp->root, ss) {
3565 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3566 if (failed) {
3567 /*
3568 * Restore old refcnt if we previously managed
3569 * to clear it from 1 to 0
3570 */
3571 if (!atomic_read(&css->refcnt))
3572 atomic_set(&css->refcnt, 1);
3573 } else {
3574 /* Commit the fact that the CSS is removed */
3575 set_bit(CSS_REMOVED, &css->flags);
3576 }
3577 }
3578 local_irq_restore(flags);
3579 return !failed;
3580}
3581
ddbcc7e8
PM
3582static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3583{
bd89aabc 3584 struct cgroup *cgrp = dentry->d_fsdata;
ddbcc7e8
PM
3585 struct dentry *d;
3586 struct cgroup *parent;
ec64f515 3587 DEFINE_WAIT(wait);
4ab78683 3588 struct cgroup_event *event, *tmp;
ec64f515 3589 int ret;
ddbcc7e8
PM
3590
3591 /* the vfs holds both inode->i_mutex already */
ec64f515 3592again:
ddbcc7e8 3593 mutex_lock(&cgroup_mutex);
bd89aabc 3594 if (atomic_read(&cgrp->count) != 0) {
ddbcc7e8
PM
3595 mutex_unlock(&cgroup_mutex);
3596 return -EBUSY;
3597 }
bd89aabc 3598 if (!list_empty(&cgrp->children)) {
ddbcc7e8
PM
3599 mutex_unlock(&cgroup_mutex);
3600 return -EBUSY;
3601 }
3fa59dfb 3602 mutex_unlock(&cgroup_mutex);
a043e3b2 3603
88703267
KH
3604 /*
3605 * In general, subsystem has no css->refcnt after pre_destroy(). But
3606 * in racy cases, subsystem may have to get css->refcnt after
3607 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3608 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3609 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3610 * and subsystem's reference count handling. Please see css_get/put
3611 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3612 */
3613 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3614
4fca88c8 3615 /*
a043e3b2
LZ
3616 * Call pre_destroy handlers of subsys. Notify subsystems
3617 * that rmdir() request comes.
4fca88c8 3618 */
ec64f515 3619 ret = cgroup_call_pre_destroy(cgrp);
88703267
KH
3620 if (ret) {
3621 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ec64f515 3622 return ret;
88703267 3623 }
ddbcc7e8 3624
3fa59dfb
KH
3625 mutex_lock(&cgroup_mutex);
3626 parent = cgrp->parent;
ec64f515 3627 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
88703267 3628 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8
PM
3629 mutex_unlock(&cgroup_mutex);
3630 return -EBUSY;
3631 }
ec64f515 3632 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
ec64f515
KH
3633 if (!cgroup_clear_css_refs(cgrp)) {
3634 mutex_unlock(&cgroup_mutex);
88703267
KH
3635 /*
3636 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3637 * prepare_to_wait(), we need to check this flag.
3638 */
3639 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3640 schedule();
ec64f515
KH
3641 finish_wait(&cgroup_rmdir_waitq, &wait);
3642 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3643 if (signal_pending(current))
3644 return -EINTR;
3645 goto again;
3646 }
3647 /* NO css_tryget() can success after here. */
3648 finish_wait(&cgroup_rmdir_waitq, &wait);
3649 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
ddbcc7e8 3650
81a6a5cd 3651 spin_lock(&release_list_lock);
bd89aabc
PM
3652 set_bit(CGRP_REMOVED, &cgrp->flags);
3653 if (!list_empty(&cgrp->release_list))
8d258797 3654 list_del_init(&cgrp->release_list);
81a6a5cd 3655 spin_unlock(&release_list_lock);
999cd8a4
PM
3656
3657 cgroup_lock_hierarchy(cgrp->root);
3658 /* delete this cgroup from parent->children */
8d258797 3659 list_del_init(&cgrp->sibling);
999cd8a4
PM
3660 cgroup_unlock_hierarchy(cgrp->root);
3661
bd89aabc 3662 d = dget(cgrp->dentry);
ddbcc7e8
PM
3663
3664 cgroup_d_remove_dir(d);
3665 dput(d);
ddbcc7e8 3666
bd89aabc 3667 set_bit(CGRP_RELEASABLE, &parent->flags);
81a6a5cd
PM
3668 check_for_release(parent);
3669
4ab78683
KS
3670 /*
3671 * Unregister events and notify userspace.
3672 * Notify userspace about cgroup removing only after rmdir of cgroup
3673 * directory to avoid race between userspace and kernelspace
3674 */
3675 spin_lock(&cgrp->event_list_lock);
3676 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3677 list_del(&event->list);
3678 remove_wait_queue(event->wqh, &event->wait);
3679 eventfd_signal(event->eventfd, 1);
3680 schedule_work(&event->remove);
3681 }
3682 spin_unlock(&cgrp->event_list_lock);
3683
ddbcc7e8 3684 mutex_unlock(&cgroup_mutex);
ddbcc7e8
PM
3685 return 0;
3686}
3687
06a11920 3688static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
ddbcc7e8 3689{
ddbcc7e8 3690 struct cgroup_subsys_state *css;
cfe36bde
DC
3691
3692 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
ddbcc7e8
PM
3693
3694 /* Create the top cgroup state for this subsystem */
33a68ac1 3695 list_add(&ss->sibling, &rootnode.subsys_list);
ddbcc7e8
PM
3696 ss->root = &rootnode;
3697 css = ss->create(ss, dummytop);
3698 /* We don't handle early failures gracefully */
3699 BUG_ON(IS_ERR(css));
3700 init_cgroup_css(css, ss, dummytop);
3701
e8d55fde 3702 /* Update the init_css_set to contain a subsys
817929ec 3703 * pointer to this state - since the subsystem is
e8d55fde
LZ
3704 * newly registered, all tasks and hence the
3705 * init_css_set is in the subsystem's top cgroup. */
3706 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
ddbcc7e8
PM
3707
3708 need_forkexit_callback |= ss->fork || ss->exit;
3709
e8d55fde
LZ
3710 /* At system boot, before all subsystems have been
3711 * registered, no tasks have been forked, so we don't
3712 * need to invoke fork callbacks here. */
3713 BUG_ON(!list_empty(&init_task.tasks));
3714
999cd8a4 3715 mutex_init(&ss->hierarchy_mutex);
cfebe563 3716 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
ddbcc7e8 3717 ss->active = 1;
e6a1105b
BB
3718
3719 /* this function shouldn't be used with modular subsystems, since they
3720 * need to register a subsys_id, among other things */
3721 BUG_ON(ss->module);
3722}
3723
3724/**
3725 * cgroup_load_subsys: load and register a modular subsystem at runtime
3726 * @ss: the subsystem to load
3727 *
3728 * This function should be called in a modular subsystem's initcall. If the
88393161 3729 * subsystem is built as a module, it will be assigned a new subsys_id and set
e6a1105b
BB
3730 * up for use. If the subsystem is built-in anyway, work is delegated to the
3731 * simpler cgroup_init_subsys.
3732 */
3733int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3734{
3735 int i;
3736 struct cgroup_subsys_state *css;
3737
3738 /* check name and function validity */
3739 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3740 ss->create == NULL || ss->destroy == NULL)
3741 return -EINVAL;
3742
3743 /*
3744 * we don't support callbacks in modular subsystems. this check is
3745 * before the ss->module check for consistency; a subsystem that could
3746 * be a module should still have no callbacks even if the user isn't
3747 * compiling it as one.
3748 */
3749 if (ss->fork || ss->exit)
3750 return -EINVAL;
3751
3752 /*
3753 * an optionally modular subsystem is built-in: we want to do nothing,
3754 * since cgroup_init_subsys will have already taken care of it.
3755 */
3756 if (ss->module == NULL) {
3757 /* a few sanity checks */
3758 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3759 BUG_ON(subsys[ss->subsys_id] != ss);
3760 return 0;
3761 }
3762
3763 /*
3764 * need to register a subsys id before anything else - for example,
3765 * init_cgroup_css needs it.
3766 */
3767 mutex_lock(&cgroup_mutex);
3768 /* find the first empty slot in the array */
3769 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3770 if (subsys[i] == NULL)
3771 break;
3772 }
3773 if (i == CGROUP_SUBSYS_COUNT) {
3774 /* maximum number of subsystems already registered! */
3775 mutex_unlock(&cgroup_mutex);
3776 return -EBUSY;
3777 }
3778 /* assign ourselves the subsys_id */
3779 ss->subsys_id = i;
3780 subsys[i] = ss;
3781
3782 /*
3783 * no ss->create seems to need anything important in the ss struct, so
3784 * this can happen first (i.e. before the rootnode attachment).
3785 */
3786 css = ss->create(ss, dummytop);
3787 if (IS_ERR(css)) {
3788 /* failure case - need to deassign the subsys[] slot. */
3789 subsys[i] = NULL;
3790 mutex_unlock(&cgroup_mutex);
3791 return PTR_ERR(css);
3792 }
3793
3794 list_add(&ss->sibling, &rootnode.subsys_list);
3795 ss->root = &rootnode;
3796
3797 /* our new subsystem will be attached to the dummy hierarchy. */
3798 init_cgroup_css(css, ss, dummytop);
3799 /* init_idr must be after init_cgroup_css because it sets css->id. */
3800 if (ss->use_id) {
3801 int ret = cgroup_init_idr(ss, css);
3802 if (ret) {
3803 dummytop->subsys[ss->subsys_id] = NULL;
3804 ss->destroy(ss, dummytop);
3805 subsys[i] = NULL;
3806 mutex_unlock(&cgroup_mutex);
3807 return ret;
3808 }
3809 }
3810
3811 /*
3812 * Now we need to entangle the css into the existing css_sets. unlike
3813 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3814 * will need a new pointer to it; done by iterating the css_set_table.
3815 * furthermore, modifying the existing css_sets will corrupt the hash
3816 * table state, so each changed css_set will need its hash recomputed.
3817 * this is all done under the css_set_lock.
3818 */
3819 write_lock(&css_set_lock);
3820 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3821 struct css_set *cg;
3822 struct hlist_node *node, *tmp;
3823 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3824
3825 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3826 /* skip entries that we already rehashed */
3827 if (cg->subsys[ss->subsys_id])
3828 continue;
3829 /* remove existing entry */
3830 hlist_del(&cg->hlist);
3831 /* set new value */
3832 cg->subsys[ss->subsys_id] = css;
3833 /* recompute hash and restore entry */
3834 new_bucket = css_set_hash(cg->subsys);
3835 hlist_add_head(&cg->hlist, new_bucket);
3836 }
3837 }
3838 write_unlock(&css_set_lock);
3839
3840 mutex_init(&ss->hierarchy_mutex);
3841 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3842 ss->active = 1;
3843
e6a1105b
BB
3844 /* success! */
3845 mutex_unlock(&cgroup_mutex);
3846 return 0;
ddbcc7e8 3847}
e6a1105b 3848EXPORT_SYMBOL_GPL(cgroup_load_subsys);
ddbcc7e8 3849
cf5d5941
BB
3850/**
3851 * cgroup_unload_subsys: unload a modular subsystem
3852 * @ss: the subsystem to unload
3853 *
3854 * This function should be called in a modular subsystem's exitcall. When this
3855 * function is invoked, the refcount on the subsystem's module will be 0, so
3856 * the subsystem will not be attached to any hierarchy.
3857 */
3858void cgroup_unload_subsys(struct cgroup_subsys *ss)
3859{
3860 struct cg_cgroup_link *link;
3861 struct hlist_head *hhead;
3862
3863 BUG_ON(ss->module == NULL);
3864
3865 /*
3866 * we shouldn't be called if the subsystem is in use, and the use of
3867 * try_module_get in parse_cgroupfs_options should ensure that it
3868 * doesn't start being used while we're killing it off.
3869 */
3870 BUG_ON(ss->root != &rootnode);
3871
3872 mutex_lock(&cgroup_mutex);
3873 /* deassign the subsys_id */
3874 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3875 subsys[ss->subsys_id] = NULL;
3876
3877 /* remove subsystem from rootnode's list of subsystems */
8d258797 3878 list_del_init(&ss->sibling);
cf5d5941
BB
3879
3880 /*
3881 * disentangle the css from all css_sets attached to the dummytop. as
3882 * in loading, we need to pay our respects to the hashtable gods.
3883 */
3884 write_lock(&css_set_lock);
3885 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3886 struct css_set *cg = link->cg;
3887
3888 hlist_del(&cg->hlist);
3889 BUG_ON(!cg->subsys[ss->subsys_id]);
3890 cg->subsys[ss->subsys_id] = NULL;
3891 hhead = css_set_hash(cg->subsys);
3892 hlist_add_head(&cg->hlist, hhead);
3893 }
3894 write_unlock(&css_set_lock);
3895
3896 /*
3897 * remove subsystem's css from the dummytop and free it - need to free
3898 * before marking as null because ss->destroy needs the cgrp->subsys
3899 * pointer to find their state. note that this also takes care of
3900 * freeing the css_id.
3901 */
3902 ss->destroy(ss, dummytop);
3903 dummytop->subsys[ss->subsys_id] = NULL;
3904
3905 mutex_unlock(&cgroup_mutex);
3906}
3907EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3908
ddbcc7e8 3909/**
a043e3b2
LZ
3910 * cgroup_init_early - cgroup initialization at system boot
3911 *
3912 * Initialize cgroups at system boot, and initialize any
3913 * subsystems that request early init.
ddbcc7e8
PM
3914 */
3915int __init cgroup_init_early(void)
3916{
3917 int i;
146aa1bd 3918 atomic_set(&init_css_set.refcount, 1);
817929ec
PM
3919 INIT_LIST_HEAD(&init_css_set.cg_links);
3920 INIT_LIST_HEAD(&init_css_set.tasks);
472b1053 3921 INIT_HLIST_NODE(&init_css_set.hlist);
817929ec 3922 css_set_count = 1;
ddbcc7e8 3923 init_cgroup_root(&rootnode);
817929ec
PM
3924 root_count = 1;
3925 init_task.cgroups = &init_css_set;
3926
3927 init_css_set_link.cg = &init_css_set;
7717f7ba 3928 init_css_set_link.cgrp = dummytop;
bd89aabc 3929 list_add(&init_css_set_link.cgrp_link_list,
817929ec
PM
3930 &rootnode.top_cgroup.css_sets);
3931 list_add(&init_css_set_link.cg_link_list,
3932 &init_css_set.cg_links);
ddbcc7e8 3933
472b1053
LZ
3934 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3935 INIT_HLIST_HEAD(&css_set_table[i]);
3936
aae8aab4
BB
3937 /* at bootup time, we don't worry about modular subsystems */
3938 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3939 struct cgroup_subsys *ss = subsys[i];
3940
3941 BUG_ON(!ss->name);
3942 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3943 BUG_ON(!ss->create);
3944 BUG_ON(!ss->destroy);
3945 if (ss->subsys_id != i) {
cfe36bde 3946 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
ddbcc7e8
PM
3947 ss->name, ss->subsys_id);
3948 BUG();
3949 }
3950
3951 if (ss->early_init)
3952 cgroup_init_subsys(ss);
3953 }
3954 return 0;
3955}
3956
3957/**
a043e3b2
LZ
3958 * cgroup_init - cgroup initialization
3959 *
3960 * Register cgroup filesystem and /proc file, and initialize
3961 * any subsystems that didn't request early init.
ddbcc7e8
PM
3962 */
3963int __init cgroup_init(void)
3964{
3965 int err;
3966 int i;
472b1053 3967 struct hlist_head *hhead;
a424316c
PM
3968
3969 err = bdi_init(&cgroup_backing_dev_info);
3970 if (err)
3971 return err;
ddbcc7e8 3972
aae8aab4
BB
3973 /* at bootup time, we don't worry about modular subsystems */
3974 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
ddbcc7e8
PM
3975 struct cgroup_subsys *ss = subsys[i];
3976 if (!ss->early_init)
3977 cgroup_init_subsys(ss);
38460b48 3978 if (ss->use_id)
e6a1105b 3979 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
ddbcc7e8
PM
3980 }
3981
472b1053
LZ
3982 /* Add init_css_set to the hash table */
3983 hhead = css_set_hash(init_css_set.subsys);
3984 hlist_add_head(&init_css_set.hlist, hhead);
2c6ab6d2 3985 BUG_ON(!init_root_id(&rootnode));
676db4af
GK
3986
3987 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3988 if (!cgroup_kobj) {
3989 err = -ENOMEM;
3990 goto out;
3991 }
3992
ddbcc7e8 3993 err = register_filesystem(&cgroup_fs_type);
676db4af
GK
3994 if (err < 0) {
3995 kobject_put(cgroup_kobj);
ddbcc7e8 3996 goto out;
676db4af 3997 }
ddbcc7e8 3998
46ae220b 3999 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
a424316c 4000
ddbcc7e8 4001out:
a424316c
PM
4002 if (err)
4003 bdi_destroy(&cgroup_backing_dev_info);
4004
ddbcc7e8
PM
4005 return err;
4006}
b4f48b63 4007
a424316c
PM
4008/*
4009 * proc_cgroup_show()
4010 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4011 * - Used for /proc/<pid>/cgroup.
4012 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4013 * doesn't really matter if tsk->cgroup changes after we read it,
956db3ca 4014 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
a424316c
PM
4015 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4016 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4017 * cgroup to top_cgroup.
4018 */
4019
4020/* TODO: Use a proper seq_file iterator */
4021static int proc_cgroup_show(struct seq_file *m, void *v)
4022{
4023 struct pid *pid;
4024 struct task_struct *tsk;
4025 char *buf;
4026 int retval;
4027 struct cgroupfs_root *root;
4028
4029 retval = -ENOMEM;
4030 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4031 if (!buf)
4032 goto out;
4033
4034 retval = -ESRCH;
4035 pid = m->private;
4036 tsk = get_pid_task(pid, PIDTYPE_PID);
4037 if (!tsk)
4038 goto out_free;
4039
4040 retval = 0;
4041
4042 mutex_lock(&cgroup_mutex);
4043
e5f6a860 4044 for_each_active_root(root) {
a424316c 4045 struct cgroup_subsys *ss;
bd89aabc 4046 struct cgroup *cgrp;
a424316c
PM
4047 int count = 0;
4048
2c6ab6d2 4049 seq_printf(m, "%d:", root->hierarchy_id);
a424316c
PM
4050 for_each_subsys(root, ss)
4051 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
c6d57f33
PM
4052 if (strlen(root->name))
4053 seq_printf(m, "%sname=%s", count ? "," : "",
4054 root->name);
a424316c 4055 seq_putc(m, ':');
7717f7ba 4056 cgrp = task_cgroup_from_root(tsk, root);
bd89aabc 4057 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
a424316c
PM
4058 if (retval < 0)
4059 goto out_unlock;
4060 seq_puts(m, buf);
4061 seq_putc(m, '\n');
4062 }
4063
4064out_unlock:
4065 mutex_unlock(&cgroup_mutex);
4066 put_task_struct(tsk);
4067out_free:
4068 kfree(buf);
4069out:
4070 return retval;
4071}
4072
4073static int cgroup_open(struct inode *inode, struct file *file)
4074{
4075 struct pid *pid = PROC_I(inode)->pid;
4076 return single_open(file, proc_cgroup_show, pid);
4077}
4078
828c0950 4079const struct file_operations proc_cgroup_operations = {
a424316c
PM
4080 .open = cgroup_open,
4081 .read = seq_read,
4082 .llseek = seq_lseek,
4083 .release = single_release,
4084};
4085
4086/* Display information about each subsystem and each hierarchy */
4087static int proc_cgroupstats_show(struct seq_file *m, void *v)
4088{
4089 int i;
a424316c 4090
8bab8dde 4091 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
aae8aab4
BB
4092 /*
4093 * ideally we don't want subsystems moving around while we do this.
4094 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4095 * subsys/hierarchy state.
4096 */
a424316c 4097 mutex_lock(&cgroup_mutex);
a424316c
PM
4098 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4099 struct cgroup_subsys *ss = subsys[i];
aae8aab4
BB
4100 if (ss == NULL)
4101 continue;
2c6ab6d2
PM
4102 seq_printf(m, "%s\t%d\t%d\t%d\n",
4103 ss->name, ss->root->hierarchy_id,
8bab8dde 4104 ss->root->number_of_cgroups, !ss->disabled);
a424316c
PM
4105 }
4106 mutex_unlock(&cgroup_mutex);
4107 return 0;
4108}
4109
4110static int cgroupstats_open(struct inode *inode, struct file *file)
4111{
9dce07f1 4112 return single_open(file, proc_cgroupstats_show, NULL);
a424316c
PM
4113}
4114
828c0950 4115static const struct file_operations proc_cgroupstats_operations = {
a424316c
PM
4116 .open = cgroupstats_open,
4117 .read = seq_read,
4118 .llseek = seq_lseek,
4119 .release = single_release,
4120};
4121
b4f48b63
PM
4122/**
4123 * cgroup_fork - attach newly forked task to its parents cgroup.
a043e3b2 4124 * @child: pointer to task_struct of forking parent process.
b4f48b63
PM
4125 *
4126 * Description: A task inherits its parent's cgroup at fork().
4127 *
4128 * A pointer to the shared css_set was automatically copied in
4129 * fork.c by dup_task_struct(). However, we ignore that copy, since
4130 * it was not made under the protection of RCU or cgroup_mutex, so
956db3ca 4131 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
817929ec
PM
4132 * have already changed current->cgroups, allowing the previously
4133 * referenced cgroup group to be removed and freed.
b4f48b63
PM
4134 *
4135 * At the point that cgroup_fork() is called, 'current' is the parent
4136 * task, and the passed argument 'child' points to the child task.
4137 */
4138void cgroup_fork(struct task_struct *child)
4139{
817929ec
PM
4140 task_lock(current);
4141 child->cgroups = current->cgroups;
4142 get_css_set(child->cgroups);
4143 task_unlock(current);
4144 INIT_LIST_HEAD(&child->cg_list);
b4f48b63
PM
4145}
4146
4147/**
a043e3b2
LZ
4148 * cgroup_fork_callbacks - run fork callbacks
4149 * @child: the new task
4150 *
4151 * Called on a new task very soon before adding it to the
4152 * tasklist. No need to take any locks since no-one can
4153 * be operating on this task.
b4f48b63
PM
4154 */
4155void cgroup_fork_callbacks(struct task_struct *child)
4156{
4157 if (need_forkexit_callback) {
4158 int i;
aae8aab4
BB
4159 /*
4160 * forkexit callbacks are only supported for builtin
4161 * subsystems, and the builtin section of the subsys array is
4162 * immutable, so we don't need to lock the subsys array here.
4163 */
4164 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
b4f48b63
PM
4165 struct cgroup_subsys *ss = subsys[i];
4166 if (ss->fork)
4167 ss->fork(ss, child);
4168 }
4169 }
4170}
4171
817929ec 4172/**
a043e3b2
LZ
4173 * cgroup_post_fork - called on a new task after adding it to the task list
4174 * @child: the task in question
4175 *
4176 * Adds the task to the list running through its css_set if necessary.
4177 * Has to be after the task is visible on the task list in case we race
4178 * with the first call to cgroup_iter_start() - to guarantee that the
4179 * new task ends up on its list.
4180 */
817929ec
PM
4181void cgroup_post_fork(struct task_struct *child)
4182{
4183 if (use_task_css_set_links) {
4184 write_lock(&css_set_lock);
b12b533f 4185 task_lock(child);
817929ec
PM
4186 if (list_empty(&child->cg_list))
4187 list_add(&child->cg_list, &child->cgroups->tasks);
b12b533f 4188 task_unlock(child);
817929ec
PM
4189 write_unlock(&css_set_lock);
4190 }
4191}
b4f48b63
PM
4192/**
4193 * cgroup_exit - detach cgroup from exiting task
4194 * @tsk: pointer to task_struct of exiting process
a043e3b2 4195 * @run_callback: run exit callbacks?
b4f48b63
PM
4196 *
4197 * Description: Detach cgroup from @tsk and release it.
4198 *
4199 * Note that cgroups marked notify_on_release force every task in
4200 * them to take the global cgroup_mutex mutex when exiting.
4201 * This could impact scaling on very large systems. Be reluctant to
4202 * use notify_on_release cgroups where very high task exit scaling
4203 * is required on large systems.
4204 *
4205 * the_top_cgroup_hack:
4206 *
4207 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4208 *
4209 * We call cgroup_exit() while the task is still competent to
4210 * handle notify_on_release(), then leave the task attached to the
4211 * root cgroup in each hierarchy for the remainder of its exit.
4212 *
4213 * To do this properly, we would increment the reference count on
4214 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4215 * code we would add a second cgroup function call, to drop that
4216 * reference. This would just create an unnecessary hot spot on
4217 * the top_cgroup reference count, to no avail.
4218 *
4219 * Normally, holding a reference to a cgroup without bumping its
4220 * count is unsafe. The cgroup could go away, or someone could
4221 * attach us to a different cgroup, decrementing the count on
4222 * the first cgroup that we never incremented. But in this case,
4223 * top_cgroup isn't going away, and either task has PF_EXITING set,
956db3ca
CW
4224 * which wards off any cgroup_attach_task() attempts, or task is a failed
4225 * fork, never visible to cgroup_attach_task.
b4f48b63
PM
4226 */
4227void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4228{
817929ec 4229 struct css_set *cg;
d41d5a01 4230 int i;
817929ec
PM
4231
4232 /*
4233 * Unlink from the css_set task list if necessary.
4234 * Optimistically check cg_list before taking
4235 * css_set_lock
4236 */
4237 if (!list_empty(&tsk->cg_list)) {
4238 write_lock(&css_set_lock);
4239 if (!list_empty(&tsk->cg_list))
8d258797 4240 list_del_init(&tsk->cg_list);
817929ec
PM
4241 write_unlock(&css_set_lock);
4242 }
4243
b4f48b63
PM
4244 /* Reassign the task to the init_css_set. */
4245 task_lock(tsk);
817929ec
PM
4246 cg = tsk->cgroups;
4247 tsk->cgroups = &init_css_set;
d41d5a01
PZ
4248
4249 if (run_callbacks && need_forkexit_callback) {
4250 /*
4251 * modular subsystems can't use callbacks, so no need to lock
4252 * the subsys array
4253 */
4254 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4255 struct cgroup_subsys *ss = subsys[i];
4256 if (ss->exit) {
4257 struct cgroup *old_cgrp =
4258 rcu_dereference_raw(cg->subsys[i])->cgroup;
4259 struct cgroup *cgrp = task_cgroup(tsk, i);
4260 ss->exit(ss, cgrp, old_cgrp, tsk);
4261 }
4262 }
4263 }
b4f48b63 4264 task_unlock(tsk);
d41d5a01 4265
817929ec 4266 if (cg)
81a6a5cd 4267 put_css_set_taskexit(cg);
b4f48b63 4268}
697f4161
PM
4269
4270/**
a043e3b2
LZ
4271 * cgroup_clone - clone the cgroup the given subsystem is attached to
4272 * @tsk: the task to be moved
4273 * @subsys: the given subsystem
e885dcde 4274 * @nodename: the name for the new cgroup
a043e3b2
LZ
4275 *
4276 * Duplicate the current cgroup in the hierarchy that the given
4277 * subsystem is attached to, and move this task into the new
4278 * child.
697f4161 4279 */
e885dcde
SH
4280int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4281 char *nodename)
697f4161
PM
4282{
4283 struct dentry *dentry;
4284 int ret = 0;
697f4161
PM
4285 struct cgroup *parent, *child;
4286 struct inode *inode;
4287 struct css_set *cg;
4288 struct cgroupfs_root *root;
4289 struct cgroup_subsys *ss;
4290
4291 /* We shouldn't be called by an unregistered subsystem */
4292 BUG_ON(!subsys->active);
4293
4294 /* First figure out what hierarchy and cgroup we're dealing
4295 * with, and pin them so we can drop cgroup_mutex */
4296 mutex_lock(&cgroup_mutex);
4297 again:
4298 root = subsys->root;
4299 if (root == &rootnode) {
697f4161
PM
4300 mutex_unlock(&cgroup_mutex);
4301 return 0;
4302 }
697f4161 4303
697f4161 4304 /* Pin the hierarchy */
1404f065 4305 if (!atomic_inc_not_zero(&root->sb->s_active)) {
7b574b7b
LZ
4306 /* We race with the final deactivate_super() */
4307 mutex_unlock(&cgroup_mutex);
4308 return 0;
4309 }
697f4161 4310
817929ec 4311 /* Keep the cgroup alive */
1404f065
LZ
4312 task_lock(tsk);
4313 parent = task_cgroup(tsk, subsys->subsys_id);
4314 cg = tsk->cgroups;
817929ec 4315 get_css_set(cg);
104cbd55 4316 task_unlock(tsk);
1404f065 4317
697f4161
PM
4318 mutex_unlock(&cgroup_mutex);
4319
4320 /* Now do the VFS work to create a cgroup */
4321 inode = parent->dentry->d_inode;
4322
4323 /* Hold the parent directory mutex across this operation to
4324 * stop anyone else deleting the new cgroup */
4325 mutex_lock(&inode->i_mutex);
4326 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4327 if (IS_ERR(dentry)) {
4328 printk(KERN_INFO
cfe36bde 4329 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
697f4161
PM
4330 PTR_ERR(dentry));
4331 ret = PTR_ERR(dentry);
4332 goto out_release;
4333 }
4334
4335 /* Create the cgroup directory, which also creates the cgroup */
75139b82 4336 ret = vfs_mkdir(inode, dentry, 0755);
bd89aabc 4337 child = __d_cgrp(dentry);
697f4161
PM
4338 dput(dentry);
4339 if (ret) {
4340 printk(KERN_INFO
4341 "Failed to create cgroup %s: %d\n", nodename,
4342 ret);
4343 goto out_release;
4344 }
4345
697f4161
PM
4346 /* The cgroup now exists. Retake cgroup_mutex and check
4347 * that we're still in the same state that we thought we
4348 * were. */
4349 mutex_lock(&cgroup_mutex);
4350 if ((root != subsys->root) ||
4351 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4352 /* Aargh, we raced ... */
4353 mutex_unlock(&inode->i_mutex);
817929ec 4354 put_css_set(cg);
697f4161 4355
1404f065 4356 deactivate_super(root->sb);
697f4161
PM
4357 /* The cgroup is still accessible in the VFS, but
4358 * we're not going to try to rmdir() it at this
4359 * point. */
4360 printk(KERN_INFO
4361 "Race in cgroup_clone() - leaking cgroup %s\n",
4362 nodename);
4363 goto again;
4364 }
4365
4366 /* do any required auto-setup */
4367 for_each_subsys(root, ss) {
4368 if (ss->post_clone)
4369 ss->post_clone(ss, child);
4370 }
4371
4372 /* All seems fine. Finish by moving the task into the new cgroup */
956db3ca 4373 ret = cgroup_attach_task(child, tsk);
697f4161
PM
4374 mutex_unlock(&cgroup_mutex);
4375
4376 out_release:
4377 mutex_unlock(&inode->i_mutex);
81a6a5cd
PM
4378
4379 mutex_lock(&cgroup_mutex);
817929ec 4380 put_css_set(cg);
81a6a5cd 4381 mutex_unlock(&cgroup_mutex);
1404f065 4382 deactivate_super(root->sb);
697f4161
PM
4383 return ret;
4384}
4385
a043e3b2 4386/**
313e924c 4387 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
a043e3b2 4388 * @cgrp: the cgroup in question
313e924c 4389 * @task: the task in question
a043e3b2 4390 *
313e924c
GN
4391 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4392 * hierarchy.
697f4161
PM
4393 *
4394 * If we are sending in dummytop, then presumably we are creating
4395 * the top cgroup in the subsystem.
4396 *
4397 * Called only by the ns (nsproxy) cgroup.
4398 */
313e924c 4399int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
697f4161
PM
4400{
4401 int ret;
4402 struct cgroup *target;
697f4161 4403
bd89aabc 4404 if (cgrp == dummytop)
697f4161
PM
4405 return 1;
4406
7717f7ba 4407 target = task_cgroup_from_root(task, cgrp->root);
bd89aabc
PM
4408 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4409 cgrp = cgrp->parent;
4410 ret = (cgrp == target);
697f4161
PM
4411 return ret;
4412}
81a6a5cd 4413
bd89aabc 4414static void check_for_release(struct cgroup *cgrp)
81a6a5cd
PM
4415{
4416 /* All of these checks rely on RCU to keep the cgroup
4417 * structure alive */
bd89aabc
PM
4418 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4419 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
81a6a5cd
PM
4420 /* Control Group is currently removeable. If it's not
4421 * already queued for a userspace notification, queue
4422 * it now */
4423 int need_schedule_work = 0;
4424 spin_lock(&release_list_lock);
bd89aabc
PM
4425 if (!cgroup_is_removed(cgrp) &&
4426 list_empty(&cgrp->release_list)) {
4427 list_add(&cgrp->release_list, &release_list);
81a6a5cd
PM
4428 need_schedule_work = 1;
4429 }
4430 spin_unlock(&release_list_lock);
4431 if (need_schedule_work)
4432 schedule_work(&release_agent_work);
4433 }
4434}
4435
d7b9fff7
DN
4436/* Caller must verify that the css is not for root cgroup */
4437void __css_put(struct cgroup_subsys_state *css, int count)
81a6a5cd 4438{
bd89aabc 4439 struct cgroup *cgrp = css->cgroup;
3dece834 4440 int val;
81a6a5cd 4441 rcu_read_lock();
d7b9fff7 4442 val = atomic_sub_return(count, &css->refcnt);
3dece834 4443 if (val == 1) {
ec64f515
KH
4444 if (notify_on_release(cgrp)) {
4445 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4446 check_for_release(cgrp);
4447 }
88703267 4448 cgroup_wakeup_rmdir_waiter(cgrp);
81a6a5cd
PM
4449 }
4450 rcu_read_unlock();
3dece834 4451 WARN_ON_ONCE(val < 1);
81a6a5cd 4452}
67523c48 4453EXPORT_SYMBOL_GPL(__css_put);
81a6a5cd
PM
4454
4455/*
4456 * Notify userspace when a cgroup is released, by running the
4457 * configured release agent with the name of the cgroup (path
4458 * relative to the root of cgroup file system) as the argument.
4459 *
4460 * Most likely, this user command will try to rmdir this cgroup.
4461 *
4462 * This races with the possibility that some other task will be
4463 * attached to this cgroup before it is removed, or that some other
4464 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4465 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4466 * unused, and this cgroup will be reprieved from its death sentence,
4467 * to continue to serve a useful existence. Next time it's released,
4468 * we will get notified again, if it still has 'notify_on_release' set.
4469 *
4470 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4471 * means only wait until the task is successfully execve()'d. The
4472 * separate release agent task is forked by call_usermodehelper(),
4473 * then control in this thread returns here, without waiting for the
4474 * release agent task. We don't bother to wait because the caller of
4475 * this routine has no use for the exit status of the release agent
4476 * task, so no sense holding our caller up for that.
81a6a5cd 4477 */
81a6a5cd
PM
4478static void cgroup_release_agent(struct work_struct *work)
4479{
4480 BUG_ON(work != &release_agent_work);
4481 mutex_lock(&cgroup_mutex);
4482 spin_lock(&release_list_lock);
4483 while (!list_empty(&release_list)) {
4484 char *argv[3], *envp[3];
4485 int i;
e788e066 4486 char *pathbuf = NULL, *agentbuf = NULL;
bd89aabc 4487 struct cgroup *cgrp = list_entry(release_list.next,
81a6a5cd
PM
4488 struct cgroup,
4489 release_list);
bd89aabc 4490 list_del_init(&cgrp->release_list);
81a6a5cd
PM
4491 spin_unlock(&release_list_lock);
4492 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
e788e066
PM
4493 if (!pathbuf)
4494 goto continue_free;
4495 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4496 goto continue_free;
4497 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4498 if (!agentbuf)
4499 goto continue_free;
81a6a5cd
PM
4500
4501 i = 0;
e788e066
PM
4502 argv[i++] = agentbuf;
4503 argv[i++] = pathbuf;
81a6a5cd
PM
4504 argv[i] = NULL;
4505
4506 i = 0;
4507 /* minimal command environment */
4508 envp[i++] = "HOME=/";
4509 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4510 envp[i] = NULL;
4511
4512 /* Drop the lock while we invoke the usermode helper,
4513 * since the exec could involve hitting disk and hence
4514 * be a slow process */
4515 mutex_unlock(&cgroup_mutex);
4516 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
81a6a5cd 4517 mutex_lock(&cgroup_mutex);
e788e066
PM
4518 continue_free:
4519 kfree(pathbuf);
4520 kfree(agentbuf);
81a6a5cd
PM
4521 spin_lock(&release_list_lock);
4522 }
4523 spin_unlock(&release_list_lock);
4524 mutex_unlock(&cgroup_mutex);
4525}
8bab8dde
PM
4526
4527static int __init cgroup_disable(char *str)
4528{
4529 int i;
4530 char *token;
4531
4532 while ((token = strsep(&str, ",")) != NULL) {
4533 if (!*token)
4534 continue;
aae8aab4
BB
4535 /*
4536 * cgroup_disable, being at boot time, can't know about module
4537 * subsystems, so we don't worry about them.
4538 */
4539 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
8bab8dde
PM
4540 struct cgroup_subsys *ss = subsys[i];
4541
4542 if (!strcmp(token, ss->name)) {
4543 ss->disabled = 1;
4544 printk(KERN_INFO "Disabling %s control group"
4545 " subsystem\n", ss->name);
4546 break;
4547 }
4548 }
4549 }
4550 return 1;
4551}
4552__setup("cgroup_disable=", cgroup_disable);
38460b48
KH
4553
4554/*
4555 * Functons for CSS ID.
4556 */
4557
4558/*
4559 *To get ID other than 0, this should be called when !cgroup_is_removed().
4560 */
4561unsigned short css_id(struct cgroup_subsys_state *css)
4562{
7f0f1546
KH
4563 struct css_id *cssid;
4564
4565 /*
4566 * This css_id() can return correct value when somone has refcnt
4567 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4568 * it's unchanged until freed.
4569 */
4570 cssid = rcu_dereference_check(css->id,
4571 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4572
4573 if (cssid)
4574 return cssid->id;
4575 return 0;
4576}
67523c48 4577EXPORT_SYMBOL_GPL(css_id);
38460b48
KH
4578
4579unsigned short css_depth(struct cgroup_subsys_state *css)
4580{
7f0f1546
KH
4581 struct css_id *cssid;
4582
4583 cssid = rcu_dereference_check(css->id,
4584 rcu_read_lock_held() || atomic_read(&css->refcnt));
38460b48
KH
4585
4586 if (cssid)
4587 return cssid->depth;
4588 return 0;
4589}
67523c48 4590EXPORT_SYMBOL_GPL(css_depth);
38460b48 4591
747388d7
KH
4592/**
4593 * css_is_ancestor - test "root" css is an ancestor of "child"
4594 * @child: the css to be tested.
4595 * @root: the css supporsed to be an ancestor of the child.
4596 *
4597 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4598 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4599 * But, considering usual usage, the csses should be valid objects after test.
4600 * Assuming that the caller will do some action to the child if this returns
4601 * returns true, the caller must take "child";s reference count.
4602 * If "child" is valid object and this returns true, "root" is valid, too.
4603 */
4604
38460b48 4605bool css_is_ancestor(struct cgroup_subsys_state *child,
0b7f569e 4606 const struct cgroup_subsys_state *root)
38460b48 4607{
747388d7
KH
4608 struct css_id *child_id;
4609 struct css_id *root_id;
4610 bool ret = true;
38460b48 4611
747388d7
KH
4612 rcu_read_lock();
4613 child_id = rcu_dereference(child->id);
4614 root_id = rcu_dereference(root->id);
4615 if (!child_id
4616 || !root_id
4617 || (child_id->depth < root_id->depth)
4618 || (child_id->stack[root_id->depth] != root_id->id))
4619 ret = false;
4620 rcu_read_unlock();
4621 return ret;
38460b48
KH
4622}
4623
38460b48
KH
4624void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4625{
4626 struct css_id *id = css->id;
4627 /* When this is called before css_id initialization, id can be NULL */
4628 if (!id)
4629 return;
4630
4631 BUG_ON(!ss->use_id);
4632
4633 rcu_assign_pointer(id->css, NULL);
4634 rcu_assign_pointer(css->id, NULL);
4635 spin_lock(&ss->id_lock);
4636 idr_remove(&ss->idr, id->id);
4637 spin_unlock(&ss->id_lock);
025cea99 4638 kfree_rcu(id, rcu_head);
38460b48 4639}
67523c48 4640EXPORT_SYMBOL_GPL(free_css_id);
38460b48
KH
4641
4642/*
4643 * This is called by init or create(). Then, calls to this function are
4644 * always serialized (By cgroup_mutex() at create()).
4645 */
4646
4647static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4648{
4649 struct css_id *newid;
4650 int myid, error, size;
4651
4652 BUG_ON(!ss->use_id);
4653
4654 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4655 newid = kzalloc(size, GFP_KERNEL);
4656 if (!newid)
4657 return ERR_PTR(-ENOMEM);
4658 /* get id */
4659 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4660 error = -ENOMEM;
4661 goto err_out;
4662 }
4663 spin_lock(&ss->id_lock);
4664 /* Don't use 0. allocates an ID of 1-65535 */
4665 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4666 spin_unlock(&ss->id_lock);
4667
4668 /* Returns error when there are no free spaces for new ID.*/
4669 if (error) {
4670 error = -ENOSPC;
4671 goto err_out;
4672 }
4673 if (myid > CSS_ID_MAX)
4674 goto remove_idr;
4675
4676 newid->id = myid;
4677 newid->depth = depth;
4678 return newid;
4679remove_idr:
4680 error = -ENOSPC;
4681 spin_lock(&ss->id_lock);
4682 idr_remove(&ss->idr, myid);
4683 spin_unlock(&ss->id_lock);
4684err_out:
4685 kfree(newid);
4686 return ERR_PTR(error);
4687
4688}
4689
e6a1105b
BB
4690static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4691 struct cgroup_subsys_state *rootcss)
38460b48
KH
4692{
4693 struct css_id *newid;
38460b48
KH
4694
4695 spin_lock_init(&ss->id_lock);
4696 idr_init(&ss->idr);
4697
38460b48
KH
4698 newid = get_new_cssid(ss, 0);
4699 if (IS_ERR(newid))
4700 return PTR_ERR(newid);
4701
4702 newid->stack[0] = newid->id;
4703 newid->css = rootcss;
4704 rootcss->id = newid;
4705 return 0;
4706}
4707
4708static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4709 struct cgroup *child)
4710{
4711 int subsys_id, i, depth = 0;
4712 struct cgroup_subsys_state *parent_css, *child_css;
fae9c791 4713 struct css_id *child_id, *parent_id;
38460b48
KH
4714
4715 subsys_id = ss->subsys_id;
4716 parent_css = parent->subsys[subsys_id];
4717 child_css = child->subsys[subsys_id];
38460b48 4718 parent_id = parent_css->id;
94b3dd0f 4719 depth = parent_id->depth + 1;
38460b48
KH
4720
4721 child_id = get_new_cssid(ss, depth);
4722 if (IS_ERR(child_id))
4723 return PTR_ERR(child_id);
4724
4725 for (i = 0; i < depth; i++)
4726 child_id->stack[i] = parent_id->stack[i];
4727 child_id->stack[depth] = child_id->id;
4728 /*
4729 * child_id->css pointer will be set after this cgroup is available
4730 * see cgroup_populate_dir()
4731 */
4732 rcu_assign_pointer(child_css->id, child_id);
4733
4734 return 0;
4735}
4736
4737/**
4738 * css_lookup - lookup css by id
4739 * @ss: cgroup subsys to be looked into.
4740 * @id: the id
4741 *
4742 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4743 * NULL if not. Should be called under rcu_read_lock()
4744 */
4745struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4746{
4747 struct css_id *cssid = NULL;
4748
4749 BUG_ON(!ss->use_id);
4750 cssid = idr_find(&ss->idr, id);
4751
4752 if (unlikely(!cssid))
4753 return NULL;
4754
4755 return rcu_dereference(cssid->css);
4756}
67523c48 4757EXPORT_SYMBOL_GPL(css_lookup);
38460b48
KH
4758
4759/**
4760 * css_get_next - lookup next cgroup under specified hierarchy.
4761 * @ss: pointer to subsystem
4762 * @id: current position of iteration.
4763 * @root: pointer to css. search tree under this.
4764 * @foundid: position of found object.
4765 *
4766 * Search next css under the specified hierarchy of rootid. Calling under
4767 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4768 */
4769struct cgroup_subsys_state *
4770css_get_next(struct cgroup_subsys *ss, int id,
4771 struct cgroup_subsys_state *root, int *foundid)
4772{
4773 struct cgroup_subsys_state *ret = NULL;
4774 struct css_id *tmp;
4775 int tmpid;
4776 int rootid = css_id(root);
4777 int depth = css_depth(root);
4778
4779 if (!rootid)
4780 return NULL;
4781
4782 BUG_ON(!ss->use_id);
4783 /* fill start point for scan */
4784 tmpid = id;
4785 while (1) {
4786 /*
4787 * scan next entry from bitmap(tree), tmpid is updated after
4788 * idr_get_next().
4789 */
4790 spin_lock(&ss->id_lock);
4791 tmp = idr_get_next(&ss->idr, &tmpid);
4792 spin_unlock(&ss->id_lock);
4793
4794 if (!tmp)
4795 break;
4796 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4797 ret = rcu_dereference(tmp->css);
4798 if (ret) {
4799 *foundid = tmpid;
4800 break;
4801 }
4802 }
4803 /* continue to scan from next id */
4804 tmpid = tmpid + 1;
4805 }
4806 return ret;
4807}
4808
e5d1367f
SE
4809/*
4810 * get corresponding css from file open on cgroupfs directory
4811 */
4812struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
4813{
4814 struct cgroup *cgrp;
4815 struct inode *inode;
4816 struct cgroup_subsys_state *css;
4817
4818 inode = f->f_dentry->d_inode;
4819 /* check in cgroup filesystem dir */
4820 if (inode->i_op != &cgroup_dir_inode_operations)
4821 return ERR_PTR(-EBADF);
4822
4823 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
4824 return ERR_PTR(-EINVAL);
4825
4826 /* get cgroup */
4827 cgrp = __d_cgrp(f->f_dentry);
4828 css = cgrp->subsys[id];
4829 return css ? css : ERR_PTR(-ENOENT);
4830}
4831
fe693435
PM
4832#ifdef CONFIG_CGROUP_DEBUG
4833static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4834 struct cgroup *cont)
4835{
4836 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4837
4838 if (!css)
4839 return ERR_PTR(-ENOMEM);
4840
4841 return css;
4842}
4843
4844static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4845{
4846 kfree(cont->subsys[debug_subsys_id]);
4847}
4848
4849static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4850{
4851 return atomic_read(&cont->count);
4852}
4853
4854static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4855{
4856 return cgroup_task_count(cont);
4857}
4858
4859static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4860{
4861 return (u64)(unsigned long)current->cgroups;
4862}
4863
4864static u64 current_css_set_refcount_read(struct cgroup *cont,
4865 struct cftype *cft)
4866{
4867 u64 count;
4868
4869 rcu_read_lock();
4870 count = atomic_read(&current->cgroups->refcount);
4871 rcu_read_unlock();
4872 return count;
4873}
4874
7717f7ba
PM
4875static int current_css_set_cg_links_read(struct cgroup *cont,
4876 struct cftype *cft,
4877 struct seq_file *seq)
4878{
4879 struct cg_cgroup_link *link;
4880 struct css_set *cg;
4881
4882 read_lock(&css_set_lock);
4883 rcu_read_lock();
4884 cg = rcu_dereference(current->cgroups);
4885 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4886 struct cgroup *c = link->cgrp;
4887 const char *name;
4888
4889 if (c->dentry)
4890 name = c->dentry->d_name.name;
4891 else
4892 name = "?";
2c6ab6d2
PM
4893 seq_printf(seq, "Root %d group %s\n",
4894 c->root->hierarchy_id, name);
7717f7ba
PM
4895 }
4896 rcu_read_unlock();
4897 read_unlock(&css_set_lock);
4898 return 0;
4899}
4900
4901#define MAX_TASKS_SHOWN_PER_CSS 25
4902static int cgroup_css_links_read(struct cgroup *cont,
4903 struct cftype *cft,
4904 struct seq_file *seq)
4905{
4906 struct cg_cgroup_link *link;
4907
4908 read_lock(&css_set_lock);
4909 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4910 struct css_set *cg = link->cg;
4911 struct task_struct *task;
4912 int count = 0;
4913 seq_printf(seq, "css_set %p\n", cg);
4914 list_for_each_entry(task, &cg->tasks, cg_list) {
4915 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4916 seq_puts(seq, " ...\n");
4917 break;
4918 } else {
4919 seq_printf(seq, " task %d\n",
4920 task_pid_vnr(task));
4921 }
4922 }
4923 }
4924 read_unlock(&css_set_lock);
4925 return 0;
4926}
4927
fe693435
PM
4928static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4929{
4930 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4931}
4932
4933static struct cftype debug_files[] = {
4934 {
4935 .name = "cgroup_refcount",
4936 .read_u64 = cgroup_refcount_read,
4937 },
4938 {
4939 .name = "taskcount",
4940 .read_u64 = debug_taskcount_read,
4941 },
4942
4943 {
4944 .name = "current_css_set",
4945 .read_u64 = current_css_set_read,
4946 },
4947
4948 {
4949 .name = "current_css_set_refcount",
4950 .read_u64 = current_css_set_refcount_read,
4951 },
4952
7717f7ba
PM
4953 {
4954 .name = "current_css_set_cg_links",
4955 .read_seq_string = current_css_set_cg_links_read,
4956 },
4957
4958 {
4959 .name = "cgroup_css_links",
4960 .read_seq_string = cgroup_css_links_read,
4961 },
4962
fe693435
PM
4963 {
4964 .name = "releasable",
4965 .read_u64 = releasable_read,
4966 },
4967};
4968
4969static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4970{
4971 return cgroup_add_files(cont, ss, debug_files,
4972 ARRAY_SIZE(debug_files));
4973}
4974
4975struct cgroup_subsys debug_subsys = {
4976 .name = "debug",
4977 .create = debug_create,
4978 .destroy = debug_destroy,
4979 .populate = debug_populate,
4980 .subsys_id = debug_subsys_id,
4981};
4982#endif /* CONFIG_CGROUP_DEBUG */
This page took 0.57119 seconds and 5 git commands to generate.