cpusets: update_cpumask revision
[deliverable/linux.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
8793d854
PM
68/* Retrieve the cpuset from a cgroup */
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca
CW
100
101 /* used for walking a cpuset heirarchy */
102 struct list_head stack_list;
1da177e4
LT
103};
104
8793d854
PM
105/* Retrieve the cpuset for a cgroup */
106static inline struct cpuset *cgroup_cs(struct cgroup *cont)
107{
108 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
109 struct cpuset, css);
110}
111
112/* Retrieve the cpuset for a task */
113static inline struct cpuset *task_cs(struct task_struct *task)
114{
115 return container_of(task_subsys_state(task, cpuset_subsys_id),
116 struct cpuset, css);
117}
956db3ca
CW
118struct cpuset_hotplug_scanner {
119 struct cgroup_scanner scan;
120 struct cgroup *to;
121};
8793d854 122
1da177e4
LT
123/* bits in struct cpuset flags field */
124typedef enum {
125 CS_CPU_EXCLUSIVE,
126 CS_MEM_EXCLUSIVE,
45b07ef3 127 CS_MEMORY_MIGRATE,
029190c5 128 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
129 CS_SPREAD_PAGE,
130 CS_SPREAD_SLAB,
1da177e4
LT
131} cpuset_flagbits_t;
132
133/* convenient tests for these bits */
134static inline int is_cpu_exclusive(const struct cpuset *cs)
135{
7b5b9ef0 136 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
137}
138
139static inline int is_mem_exclusive(const struct cpuset *cs)
140{
7b5b9ef0 141 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
142}
143
029190c5
PJ
144static inline int is_sched_load_balance(const struct cpuset *cs)
145{
146 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
147}
148
45b07ef3
PJ
149static inline int is_memory_migrate(const struct cpuset *cs)
150{
7b5b9ef0 151 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
152}
153
825a46af
PJ
154static inline int is_spread_page(const struct cpuset *cs)
155{
156 return test_bit(CS_SPREAD_PAGE, &cs->flags);
157}
158
159static inline int is_spread_slab(const struct cpuset *cs)
160{
161 return test_bit(CS_SPREAD_SLAB, &cs->flags);
162}
163
1da177e4 164/*
151a4420 165 * Increment this integer everytime any cpuset changes its
1da177e4
LT
166 * mems_allowed value. Users of cpusets can track this generation
167 * number, and avoid having to lock and reload mems_allowed unless
168 * the cpuset they're using changes generation.
169 *
170 * A single, global generation is needed because attach_task() could
171 * reattach a task to a different cpuset, which must not have its
172 * generation numbers aliased with those of that tasks previous cpuset.
173 *
174 * Generations are needed for mems_allowed because one task cannot
175 * modify anothers memory placement. So we must enable every task,
176 * on every visit to __alloc_pages(), to efficiently check whether
177 * its current->cpuset->mems_allowed has changed, requiring an update
178 * of its current->mems_allowed.
151a4420
PJ
179 *
180 * Since cpuset_mems_generation is guarded by manage_mutex,
181 * there is no need to mark it atomic.
1da177e4 182 */
151a4420 183static int cpuset_mems_generation;
1da177e4
LT
184
185static struct cpuset top_cpuset = {
186 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
187 .cpus_allowed = CPU_MASK_ALL,
188 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
189};
190
1da177e4 191/*
3d3f26a7
IM
192 * We have two global cpuset mutexes below. They can nest.
193 * It is ok to first take manage_mutex, then nest callback_mutex. We also
053199ed
PJ
194 * require taking task_lock() when dereferencing a tasks cpuset pointer.
195 * See "The task_lock() exception", at the end of this comment.
196 *
3d3f26a7
IM
197 * A task must hold both mutexes to modify cpusets. If a task
198 * holds manage_mutex, then it blocks others wanting that mutex,
199 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
200 * and be able to modify cpusets. It can perform various checks on
201 * the cpuset structure first, knowing nothing will change. It can
3d3f26a7 202 * also allocate memory while just holding manage_mutex. While it is
053199ed 203 * performing these checks, various callback routines can briefly
3d3f26a7
IM
204 * acquire callback_mutex to query cpusets. Once it is ready to make
205 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
206 *
207 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 208 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
209 * from one of the callbacks into the cpuset code from within
210 * __alloc_pages().
211 *
3d3f26a7 212 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
213 * access to cpusets.
214 *
215 * The task_struct fields mems_allowed and mems_generation may only
216 * be accessed in the context of that task, so require no locks.
217 *
218 * Any task can increment and decrement the count field without lock.
3d3f26a7 219 * So in general, code holding manage_mutex or callback_mutex can't rely
053199ed 220 * on the count field not changing. However, if the count goes to
3d3f26a7 221 * zero, then only attach_task(), which holds both mutexes, can
053199ed
PJ
222 * increment it again. Because a count of zero means that no tasks
223 * are currently attached, therefore there is no way a task attached
224 * to that cpuset can fork (the other way to increment the count).
3d3f26a7 225 * So code holding manage_mutex or callback_mutex can safely assume that
053199ed 226 * if the count is zero, it will stay zero. Similarly, if a task
3d3f26a7 227 * holds manage_mutex or callback_mutex on a cpuset with zero count, it
053199ed 228 * knows that the cpuset won't be removed, as cpuset_rmdir() needs
3d3f26a7 229 * both of those mutexes.
053199ed
PJ
230 *
231 * The cpuset_common_file_write handler for operations that modify
3d3f26a7 232 * the cpuset hierarchy holds manage_mutex across the entire operation,
053199ed
PJ
233 * single threading all such cpuset modifications across the system.
234 *
3d3f26a7 235 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
236 * small pieces of code, such as when reading out possibly multi-word
237 * cpumasks and nodemasks.
238 *
239 * The fork and exit callbacks cpuset_fork() and cpuset_exit(), don't
3d3f26a7 240 * (usually) take either mutex. These are the two most performance
053199ed 241 * critical pieces of code here. The exception occurs on cpuset_exit(),
3d3f26a7 242 * when a task in a notify_on_release cpuset exits. Then manage_mutex
2efe86b8 243 * is taken, and if the cpuset count is zero, a usermode call made
1da177e4
LT
244 * to /sbin/cpuset_release_agent with the name of the cpuset (path
245 * relative to the root of cpuset file system) as the argument.
246 *
053199ed
PJ
247 * A cpuset can only be deleted if both its 'count' of using tasks
248 * is zero, and its list of 'children' cpusets is empty. Since all
249 * tasks in the system use _some_ cpuset, and since there is always at
f400e198 250 * least one task in the system (init), therefore, top_cpuset
053199ed
PJ
251 * always has either children cpusets and/or using tasks. So we don't
252 * need a special hack to ensure that top_cpuset cannot be deleted.
253 *
254 * The above "Tale of Two Semaphores" would be complete, but for:
255 *
256 * The task_lock() exception
257 *
258 * The need for this exception arises from the action of attach_task(),
259 * which overwrites one tasks cpuset pointer with another. It does
3d3f26a7 260 * so using both mutexes, however there are several performance
053199ed 261 * critical places that need to reference task->cpuset without the
3d3f26a7 262 * expense of grabbing a system global mutex. Therefore except as
053199ed
PJ
263 * noted below, when dereferencing or, as in attach_task(), modifying
264 * a tasks cpuset pointer we use task_lock(), which acts on a spinlock
265 * (task->alloc_lock) already in the task_struct routinely used for
266 * such matters.
6b9c2603
PJ
267 *
268 * P.S. One more locking exception. RCU is used to guard the
269 * update of a tasks cpuset pointer by attach_task() and the
270 * access of task->cpuset->mems_generation via that pointer in
271 * the routine cpuset_update_task_memory_state().
1da177e4
LT
272 */
273
3d3f26a7 274static DEFINE_MUTEX(callback_mutex);
4247bdc6 275
8793d854
PM
276/* This is ugly, but preserves the userspace API for existing cpuset
277 * users. If someone tries to mount the "cpuset" filesystem, we
278 * silently switch it to mount "cgroup" instead */
454e2398
DH
279static int cpuset_get_sb(struct file_system_type *fs_type,
280 int flags, const char *unused_dev_name,
281 void *data, struct vfsmount *mnt)
1da177e4 282{
8793d854
PM
283 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
284 int ret = -ENODEV;
285 if (cgroup_fs) {
286 char mountopts[] =
287 "cpuset,noprefix,"
288 "release_agent=/sbin/cpuset_release_agent";
289 ret = cgroup_fs->get_sb(cgroup_fs, flags,
290 unused_dev_name, mountopts, mnt);
291 put_filesystem(cgroup_fs);
292 }
293 return ret;
1da177e4
LT
294}
295
296static struct file_system_type cpuset_fs_type = {
297 .name = "cpuset",
298 .get_sb = cpuset_get_sb,
1da177e4
LT
299};
300
1da177e4
LT
301/*
302 * Return in *pmask the portion of a cpusets's cpus_allowed that
303 * are online. If none are online, walk up the cpuset hierarchy
304 * until we find one that does have some online cpus. If we get
305 * all the way to the top and still haven't found any online cpus,
306 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
307 * task, return cpu_online_map.
308 *
309 * One way or another, we guarantee to return some non-empty subset
310 * of cpu_online_map.
311 *
3d3f26a7 312 * Call with callback_mutex held.
1da177e4
LT
313 */
314
315static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
316{
317 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
318 cs = cs->parent;
319 if (cs)
320 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
321 else
322 *pmask = cpu_online_map;
323 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
324}
325
326/*
327 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
328 * are online, with memory. If none are online with memory, walk
329 * up the cpuset hierarchy until we find one that does have some
330 * online mems. If we get all the way to the top and still haven't
331 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
332 *
333 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 334 * of node_states[N_HIGH_MEMORY].
1da177e4 335 *
3d3f26a7 336 * Call with callback_mutex held.
1da177e4
LT
337 */
338
339static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
340{
0e1e7c7a
CL
341 while (cs && !nodes_intersects(cs->mems_allowed,
342 node_states[N_HIGH_MEMORY]))
1da177e4
LT
343 cs = cs->parent;
344 if (cs)
0e1e7c7a
CL
345 nodes_and(*pmask, cs->mems_allowed,
346 node_states[N_HIGH_MEMORY]);
1da177e4 347 else
0e1e7c7a
CL
348 *pmask = node_states[N_HIGH_MEMORY];
349 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
350}
351
cf2a473c
PJ
352/**
353 * cpuset_update_task_memory_state - update task memory placement
354 *
355 * If the current tasks cpusets mems_allowed changed behind our
356 * backs, update current->mems_allowed, mems_generation and task NUMA
357 * mempolicy to the new value.
053199ed 358 *
cf2a473c
PJ
359 * Task mempolicy is updated by rebinding it relative to the
360 * current->cpuset if a task has its memory placement changed.
361 * Do not call this routine if in_interrupt().
362 *
4a01c8d5
PJ
363 * Call without callback_mutex or task_lock() held. May be
364 * called with or without manage_mutex held. Thanks in part to
365 * 'the_top_cpuset_hack', the tasks cpuset pointer will never
366 * be NULL. This routine also might acquire callback_mutex and
cf2a473c 367 * current->mm->mmap_sem during call.
053199ed 368 *
6b9c2603
PJ
369 * Reading current->cpuset->mems_generation doesn't need task_lock
370 * to guard the current->cpuset derefence, because it is guarded
371 * from concurrent freeing of current->cpuset by attach_task(),
372 * using RCU.
373 *
374 * The rcu_dereference() is technically probably not needed,
375 * as I don't actually mind if I see a new cpuset pointer but
376 * an old value of mems_generation. However this really only
377 * matters on alpha systems using cpusets heavily. If I dropped
378 * that rcu_dereference(), it would save them a memory barrier.
379 * For all other arch's, rcu_dereference is a no-op anyway, and for
380 * alpha systems not using cpusets, another planned optimization,
381 * avoiding the rcu critical section for tasks in the root cpuset
382 * which is statically allocated, so can't vanish, will make this
383 * irrelevant. Better to use RCU as intended, than to engage in
384 * some cute trick to save a memory barrier that is impossible to
385 * test, for alpha systems using cpusets heavily, which might not
386 * even exist.
053199ed
PJ
387 *
388 * This routine is needed to update the per-task mems_allowed data,
389 * within the tasks context, when it is trying to allocate memory
390 * (in various mm/mempolicy.c routines) and notices that some other
391 * task has been modifying its cpuset.
1da177e4
LT
392 */
393
fe85a998 394void cpuset_update_task_memory_state(void)
1da177e4 395{
053199ed 396 int my_cpusets_mem_gen;
cf2a473c 397 struct task_struct *tsk = current;
6b9c2603 398 struct cpuset *cs;
053199ed 399
8793d854 400 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
401 /* Don't need rcu for top_cpuset. It's never freed. */
402 my_cpusets_mem_gen = top_cpuset.mems_generation;
403 } else {
404 rcu_read_lock();
8793d854 405 my_cpusets_mem_gen = task_cs(current)->mems_generation;
03a285f5
PJ
406 rcu_read_unlock();
407 }
1da177e4 408
cf2a473c 409 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 410 mutex_lock(&callback_mutex);
cf2a473c 411 task_lock(tsk);
8793d854 412 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
413 guarantee_online_mems(cs, &tsk->mems_allowed);
414 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
415 if (is_spread_page(cs))
416 tsk->flags |= PF_SPREAD_PAGE;
417 else
418 tsk->flags &= ~PF_SPREAD_PAGE;
419 if (is_spread_slab(cs))
420 tsk->flags |= PF_SPREAD_SLAB;
421 else
422 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 423 task_unlock(tsk);
3d3f26a7 424 mutex_unlock(&callback_mutex);
74cb2155 425 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
426 }
427}
428
429/*
430 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
431 *
432 * One cpuset is a subset of another if all its allowed CPUs and
433 * Memory Nodes are a subset of the other, and its exclusive flags
3d3f26a7 434 * are only set if the other's are set. Call holding manage_mutex.
1da177e4
LT
435 */
436
437static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
438{
439 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
440 nodes_subset(p->mems_allowed, q->mems_allowed) &&
441 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
442 is_mem_exclusive(p) <= is_mem_exclusive(q);
443}
444
445/*
446 * validate_change() - Used to validate that any proposed cpuset change
447 * follows the structural rules for cpusets.
448 *
449 * If we replaced the flag and mask values of the current cpuset
450 * (cur) with those values in the trial cpuset (trial), would
451 * our various subset and exclusive rules still be valid? Presumes
3d3f26a7 452 * manage_mutex held.
1da177e4
LT
453 *
454 * 'cur' is the address of an actual, in-use cpuset. Operations
455 * such as list traversal that depend on the actual address of the
456 * cpuset in the list must use cur below, not trial.
457 *
458 * 'trial' is the address of bulk structure copy of cur, with
459 * perhaps one or more of the fields cpus_allowed, mems_allowed,
460 * or flags changed to new, trial values.
461 *
462 * Return 0 if valid, -errno if not.
463 */
464
465static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
466{
8793d854 467 struct cgroup *cont;
1da177e4
LT
468 struct cpuset *c, *par;
469
470 /* Each of our child cpusets must be a subset of us */
8793d854
PM
471 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
472 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
473 return -EBUSY;
474 }
475
476 /* Remaining checks don't apply to root cpuset */
69604067 477 if (cur == &top_cpuset)
1da177e4
LT
478 return 0;
479
69604067
PJ
480 par = cur->parent;
481
1da177e4
LT
482 /* We must be a subset of our parent cpuset */
483 if (!is_cpuset_subset(trial, par))
484 return -EACCES;
485
486 /* If either I or some sibling (!= me) is exclusive, we can't overlap */
8793d854
PM
487 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
488 c = cgroup_cs(cont);
1da177e4
LT
489 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
490 c != cur &&
491 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
492 return -EINVAL;
493 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
494 c != cur &&
495 nodes_intersects(trial->mems_allowed, c->mems_allowed))
496 return -EINVAL;
497 }
498
020958b6
PJ
499 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
500 if (cgroup_task_count(cur->css.cgroup)) {
501 if (cpus_empty(trial->cpus_allowed) ||
502 nodes_empty(trial->mems_allowed)) {
503 return -ENOSPC;
504 }
505 }
506
1da177e4
LT
507 return 0;
508}
509
029190c5
PJ
510/*
511 * Helper routine for rebuild_sched_domains().
512 * Do cpusets a, b have overlapping cpus_allowed masks?
513 */
514
515static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
516{
517 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
518}
519
520/*
521 * rebuild_sched_domains()
522 *
523 * If the flag 'sched_load_balance' of any cpuset with non-empty
524 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
525 * which has that flag enabled, or if any cpuset with a non-empty
526 * 'cpus' is removed, then call this routine to rebuild the
527 * scheduler's dynamic sched domains.
528 *
529 * This routine builds a partial partition of the systems CPUs
530 * (the set of non-overlappping cpumask_t's in the array 'part'
531 * below), and passes that partial partition to the kernel/sched.c
532 * partition_sched_domains() routine, which will rebuild the
533 * schedulers load balancing domains (sched domains) as specified
534 * by that partial partition. A 'partial partition' is a set of
535 * non-overlapping subsets whose union is a subset of that set.
536 *
537 * See "What is sched_load_balance" in Documentation/cpusets.txt
538 * for a background explanation of this.
539 *
540 * Does not return errors, on the theory that the callers of this
541 * routine would rather not worry about failures to rebuild sched
542 * domains when operating in the severe memory shortage situations
543 * that could cause allocation failures below.
544 *
545 * Call with cgroup_mutex held. May take callback_mutex during
546 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 547 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 548 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
549 * call get_online_cpus() while holding callback_mutex. Elsewhere
550 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
551 * So the reverse nesting would risk an ABBA deadlock.
552 *
553 * The three key local variables below are:
554 * q - a kfifo queue of cpuset pointers, used to implement a
555 * top-down scan of all cpusets. This scan loads a pointer
556 * to each cpuset marked is_sched_load_balance into the
557 * array 'csa'. For our purposes, rebuilding the schedulers
558 * sched domains, we can ignore !is_sched_load_balance cpusets.
559 * csa - (for CpuSet Array) Array of pointers to all the cpusets
560 * that need to be load balanced, for convenient iterative
561 * access by the subsequent code that finds the best partition,
562 * i.e the set of domains (subsets) of CPUs such that the
563 * cpus_allowed of every cpuset marked is_sched_load_balance
564 * is a subset of one of these domains, while there are as
565 * many such domains as possible, each as small as possible.
566 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
567 * the kernel/sched.c routine partition_sched_domains() in a
568 * convenient format, that can be easily compared to the prior
569 * value to determine what partition elements (sched domains)
570 * were changed (added or removed.)
571 *
572 * Finding the best partition (set of domains):
573 * The triple nested loops below over i, j, k scan over the
574 * load balanced cpusets (using the array of cpuset pointers in
575 * csa[]) looking for pairs of cpusets that have overlapping
576 * cpus_allowed, but which don't have the same 'pn' partition
577 * number and gives them in the same partition number. It keeps
578 * looping on the 'restart' label until it can no longer find
579 * any such pairs.
580 *
581 * The union of the cpus_allowed masks from the set of
582 * all cpusets having the same 'pn' value then form the one
583 * element of the partition (one sched domain) to be passed to
584 * partition_sched_domains().
585 */
586
587static void rebuild_sched_domains(void)
588{
589 struct kfifo *q; /* queue of cpusets to be scanned */
590 struct cpuset *cp; /* scans q */
591 struct cpuset **csa; /* array of all cpuset ptrs */
592 int csn; /* how many cpuset ptrs in csa so far */
593 int i, j, k; /* indices for partition finding loops */
594 cpumask_t *doms; /* resulting partition; i.e. sched domains */
595 int ndoms; /* number of sched domains in result */
596 int nslot; /* next empty doms[] cpumask_t slot */
597
598 q = NULL;
599 csa = NULL;
600 doms = NULL;
601
602 /* Special case for the 99% of systems with one, full, sched domain */
603 if (is_sched_load_balance(&top_cpuset)) {
604 ndoms = 1;
605 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
606 if (!doms)
607 goto rebuild;
608 *doms = top_cpuset.cpus_allowed;
609 goto rebuild;
610 }
611
612 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
613 if (IS_ERR(q))
614 goto done;
615 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
616 if (!csa)
617 goto done;
618 csn = 0;
619
620 cp = &top_cpuset;
621 __kfifo_put(q, (void *)&cp, sizeof(cp));
622 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
623 struct cgroup *cont;
624 struct cpuset *child; /* scans child cpusets of cp */
625 if (is_sched_load_balance(cp))
626 csa[csn++] = cp;
627 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
628 child = cgroup_cs(cont);
629 __kfifo_put(q, (void *)&child, sizeof(cp));
630 }
631 }
632
633 for (i = 0; i < csn; i++)
634 csa[i]->pn = i;
635 ndoms = csn;
636
637restart:
638 /* Find the best partition (set of sched domains) */
639 for (i = 0; i < csn; i++) {
640 struct cpuset *a = csa[i];
641 int apn = a->pn;
642
643 for (j = 0; j < csn; j++) {
644 struct cpuset *b = csa[j];
645 int bpn = b->pn;
646
647 if (apn != bpn && cpusets_overlap(a, b)) {
648 for (k = 0; k < csn; k++) {
649 struct cpuset *c = csa[k];
650
651 if (c->pn == bpn)
652 c->pn = apn;
653 }
654 ndoms--; /* one less element */
655 goto restart;
656 }
657 }
658 }
659
660 /* Convert <csn, csa> to <ndoms, doms> */
661 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
662 if (!doms)
663 goto rebuild;
664
665 for (nslot = 0, i = 0; i < csn; i++) {
666 struct cpuset *a = csa[i];
667 int apn = a->pn;
668
669 if (apn >= 0) {
670 cpumask_t *dp = doms + nslot;
671
672 if (nslot == ndoms) {
673 static int warnings = 10;
674 if (warnings) {
675 printk(KERN_WARNING
676 "rebuild_sched_domains confused:"
677 " nslot %d, ndoms %d, csn %d, i %d,"
678 " apn %d\n",
679 nslot, ndoms, csn, i, apn);
680 warnings--;
681 }
682 continue;
683 }
684
685 cpus_clear(*dp);
686 for (j = i; j < csn; j++) {
687 struct cpuset *b = csa[j];
688
689 if (apn == b->pn) {
690 cpus_or(*dp, *dp, b->cpus_allowed);
691 b->pn = -1;
692 }
693 }
694 nslot++;
695 }
696 }
697 BUG_ON(nslot != ndoms);
698
699rebuild:
700 /* Have scheduler rebuild sched domains */
86ef5c9a 701 get_online_cpus();
029190c5 702 partition_sched_domains(ndoms, doms);
86ef5c9a 703 put_online_cpus();
029190c5
PJ
704
705done:
706 if (q && !IS_ERR(q))
707 kfifo_free(q);
708 kfree(csa);
709 /* Don't kfree(doms) -- partition_sched_domains() does that. */
710}
711
8707d8b8
PM
712static inline int started_after_time(struct task_struct *t1,
713 struct timespec *time,
714 struct task_struct *t2)
715{
716 int start_diff = timespec_compare(&t1->start_time, time);
717 if (start_diff > 0) {
718 return 1;
719 } else if (start_diff < 0) {
720 return 0;
721 } else {
722 /*
723 * Arbitrarily, if two processes started at the same
724 * time, we'll say that the lower pointer value
725 * started first. Note that t2 may have exited by now
726 * so this may not be a valid pointer any longer, but
727 * that's fine - it still serves to distinguish
728 * between two tasks started (effectively)
729 * simultaneously.
730 */
731 return t1 > t2;
732 }
733}
734
735static inline int started_after(void *p1, void *p2)
736{
737 struct task_struct *t1 = p1;
738 struct task_struct *t2 = p2;
739 return started_after_time(t1, &t2->start_time, t2);
740}
741
58f4790b
CW
742/**
743 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
744 * @tsk: task to test
745 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
746 *
3d3f26a7 747 * Call with manage_mutex held. May take callback_mutex during call.
58f4790b
CW
748 * Called for each task in a cgroup by cgroup_scan_tasks().
749 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
750 * words, if its mask is not equal to its cpuset's mask).
053199ed 751 */
58f4790b
CW
752int cpuset_test_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
753{
754 return !cpus_equal(tsk->cpus_allowed,
755 (cgroup_cs(scan->cg))->cpus_allowed);
756}
053199ed 757
58f4790b
CW
758/**
759 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
760 * @tsk: task to test
761 * @scan: struct cgroup_scanner containing the cgroup of the task
762 *
763 * Called by cgroup_scan_tasks() for each task in a cgroup whose
764 * cpus_allowed mask needs to be changed.
765 *
766 * We don't need to re-check for the cgroup/cpuset membership, since we're
767 * holding cgroup_lock() at this point.
768 */
769void cpuset_change_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
770{
771 set_cpus_allowed(tsk, (cgroup_cs(scan->cg))->cpus_allowed);
772}
773
774/**
775 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
776 * @cs: the cpuset to consider
777 * @buf: buffer of cpu numbers written to this cpuset
778 */
1da177e4
LT
779static int update_cpumask(struct cpuset *cs, char *buf)
780{
781 struct cpuset trialcs;
58f4790b 782 struct cgroup_scanner scan;
8707d8b8 783 struct ptr_heap heap;
58f4790b
CW
784 int retval;
785 int is_load_balanced;
1da177e4 786
4c4d50f7
PJ
787 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
788 if (cs == &top_cpuset)
789 return -EACCES;
790
1da177e4 791 trialcs = *cs;
6f7f02e7
DR
792
793 /*
58f4790b 794 * An empty cpus_allowed is ok if there are no tasks in the cpuset.
020958b6
PJ
795 * Since cpulist_parse() fails on an empty mask, we special case
796 * that parsing. The validate_change() call ensures that cpusets
797 * with tasks have cpus.
6f7f02e7 798 */
020958b6
PJ
799 buf = strstrip(buf);
800 if (!*buf) {
6f7f02e7
DR
801 cpus_clear(trialcs.cpus_allowed);
802 } else {
803 retval = cpulist_parse(buf, trialcs.cpus_allowed);
804 if (retval < 0)
805 return retval;
806 }
1da177e4 807 cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
1da177e4 808 retval = validate_change(cs, &trialcs);
85d7b949
DG
809 if (retval < 0)
810 return retval;
029190c5 811
8707d8b8
PM
812 /* Nothing to do if the cpus didn't change */
813 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
814 return 0;
58f4790b 815
8707d8b8
PM
816 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
817 if (retval)
818 return retval;
819
029190c5
PJ
820 is_load_balanced = is_sched_load_balance(&trialcs);
821
3d3f26a7 822 mutex_lock(&callback_mutex);
85d7b949 823 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 824 mutex_unlock(&callback_mutex);
029190c5 825
8707d8b8
PM
826 /*
827 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 828 * that need an update.
8707d8b8 829 */
58f4790b
CW
830 scan.cg = cs->css.cgroup;
831 scan.test_task = cpuset_test_cpumask;
832 scan.process_task = cpuset_change_cpumask;
833 scan.heap = &heap;
834 cgroup_scan_tasks(&scan);
8707d8b8 835 heap_free(&heap);
58f4790b 836
8707d8b8 837 if (is_load_balanced)
029190c5 838 rebuild_sched_domains();
85d7b949 839 return 0;
1da177e4
LT
840}
841
e4e364e8
PJ
842/*
843 * cpuset_migrate_mm
844 *
845 * Migrate memory region from one set of nodes to another.
846 *
847 * Temporarilly set tasks mems_allowed to target nodes of migration,
848 * so that the migration code can allocate pages on these nodes.
849 *
850 * Call holding manage_mutex, so our current->cpuset won't change
851 * during this call, as manage_mutex holds off any attach_task()
852 * calls. Therefore we don't need to take task_lock around the
853 * call to guarantee_online_mems(), as we know no one is changing
854 * our tasks cpuset.
855 *
856 * Hold callback_mutex around the two modifications of our tasks
857 * mems_allowed to synchronize with cpuset_mems_allowed().
858 *
859 * While the mm_struct we are migrating is typically from some
860 * other task, the task_struct mems_allowed that we are hacking
861 * is for our current task, which must allocate new pages for that
862 * migrating memory region.
863 *
864 * We call cpuset_update_task_memory_state() before hacking
865 * our tasks mems_allowed, so that we are assured of being in
866 * sync with our tasks cpuset, and in particular, callbacks to
867 * cpuset_update_task_memory_state() from nested page allocations
868 * won't see any mismatch of our cpuset and task mems_generation
869 * values, so won't overwrite our hacked tasks mems_allowed
870 * nodemask.
871 */
872
873static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
874 const nodemask_t *to)
875{
876 struct task_struct *tsk = current;
877
878 cpuset_update_task_memory_state();
879
880 mutex_lock(&callback_mutex);
881 tsk->mems_allowed = *to;
882 mutex_unlock(&callback_mutex);
883
884 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
885
886 mutex_lock(&callback_mutex);
8793d854 887 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
888 mutex_unlock(&callback_mutex);
889}
890
053199ed 891/*
4225399a
PJ
892 * Handle user request to change the 'mems' memory placement
893 * of a cpuset. Needs to validate the request, update the
894 * cpusets mems_allowed and mems_generation, and for each
04c19fa6
PJ
895 * task in the cpuset, rebind any vma mempolicies and if
896 * the cpuset is marked 'memory_migrate', migrate the tasks
897 * pages to the new memory.
4225399a 898 *
3d3f26a7 899 * Call with manage_mutex held. May take callback_mutex during call.
4225399a
PJ
900 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
901 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
902 * their mempolicies to the cpusets new mems_allowed.
053199ed
PJ
903 */
904
8793d854
PM
905static void *cpuset_being_rebound;
906
1da177e4
LT
907static int update_nodemask(struct cpuset *cs, char *buf)
908{
909 struct cpuset trialcs;
04c19fa6 910 nodemask_t oldmem;
8793d854 911 struct task_struct *p;
4225399a
PJ
912 struct mm_struct **mmarray;
913 int i, n, ntasks;
04c19fa6 914 int migrate;
4225399a 915 int fudge;
1da177e4 916 int retval;
8793d854 917 struct cgroup_iter it;
1da177e4 918
0e1e7c7a
CL
919 /*
920 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
921 * it's read-only
922 */
38837fc7
PJ
923 if (cs == &top_cpuset)
924 return -EACCES;
925
1da177e4 926 trialcs = *cs;
6f7f02e7
DR
927
928 /*
020958b6
PJ
929 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
930 * Since nodelist_parse() fails on an empty mask, we special case
931 * that parsing. The validate_change() call ensures that cpusets
932 * with tasks have memory.
6f7f02e7 933 */
020958b6
PJ
934 buf = strstrip(buf);
935 if (!*buf) {
6f7f02e7
DR
936 nodes_clear(trialcs.mems_allowed);
937 } else {
938 retval = nodelist_parse(buf, trialcs.mems_allowed);
939 if (retval < 0)
940 goto done;
941 }
0e1e7c7a
CL
942 nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
943 node_states[N_HIGH_MEMORY]);
04c19fa6
PJ
944 oldmem = cs->mems_allowed;
945 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
946 retval = 0; /* Too easy - nothing to do */
947 goto done;
948 }
59dac16f
PJ
949 retval = validate_change(cs, &trialcs);
950 if (retval < 0)
951 goto done;
952
3d3f26a7 953 mutex_lock(&callback_mutex);
59dac16f 954 cs->mems_allowed = trialcs.mems_allowed;
151a4420 955 cs->mems_generation = cpuset_mems_generation++;
3d3f26a7 956 mutex_unlock(&callback_mutex);
59dac16f 957
8793d854 958 cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
4225399a
PJ
959
960 fudge = 10; /* spare mmarray[] slots */
961 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
962 retval = -ENOMEM;
963
964 /*
965 * Allocate mmarray[] to hold mm reference for each task
966 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
967 * tasklist_lock. We could use GFP_ATOMIC, but with a
968 * few more lines of code, we can retry until we get a big
969 * enough mmarray[] w/o using GFP_ATOMIC.
970 */
971 while (1) {
8793d854 972 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
973 ntasks += fudge;
974 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
975 if (!mmarray)
976 goto done;
c2aef333 977 read_lock(&tasklist_lock); /* block fork */
8793d854 978 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 979 break; /* got enough */
c2aef333 980 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
981 kfree(mmarray);
982 }
983
984 n = 0;
985
986 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
987 cgroup_iter_start(cs->css.cgroup, &it);
988 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
989 struct mm_struct *mm;
990
991 if (n >= ntasks) {
992 printk(KERN_WARNING
993 "Cpuset mempolicy rebind incomplete.\n");
8793d854 994 break;
4225399a 995 }
4225399a
PJ
996 mm = get_task_mm(p);
997 if (!mm)
998 continue;
999 mmarray[n++] = mm;
8793d854
PM
1000 }
1001 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 1002 read_unlock(&tasklist_lock);
4225399a
PJ
1003
1004 /*
1005 * Now that we've dropped the tasklist spinlock, we can
1006 * rebind the vma mempolicies of each mm in mmarray[] to their
1007 * new cpuset, and release that mm. The mpol_rebind_mm()
1008 * call takes mmap_sem, which we couldn't take while holding
1009 * tasklist_lock. Forks can happen again now - the mpol_copy()
1010 * cpuset_being_rebound check will catch such forks, and rebind
1011 * their vma mempolicies too. Because we still hold the global
3d3f26a7 1012 * cpuset manage_mutex, we know that no other rebind effort will
4225399a
PJ
1013 * be contending for the global variable cpuset_being_rebound.
1014 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1015 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1016 */
04c19fa6 1017 migrate = is_memory_migrate(cs);
4225399a
PJ
1018 for (i = 0; i < n; i++) {
1019 struct mm_struct *mm = mmarray[i];
1020
1021 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8
PJ
1022 if (migrate)
1023 cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
4225399a
PJ
1024 mmput(mm);
1025 }
1026
1027 /* We're done rebinding vma's to this cpusets new mems_allowed. */
1028 kfree(mmarray);
8793d854 1029 cpuset_being_rebound = NULL;
4225399a 1030 retval = 0;
59dac16f 1031done:
1da177e4
LT
1032 return retval;
1033}
1034
8793d854
PM
1035int current_cpuset_is_being_rebound(void)
1036{
1037 return task_cs(current) == cpuset_being_rebound;
1038}
1039
3e0d98b9 1040/*
3d3f26a7 1041 * Call with manage_mutex held.
3e0d98b9
PJ
1042 */
1043
1044static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
1045{
1046 if (simple_strtoul(buf, NULL, 10) != 0)
1047 cpuset_memory_pressure_enabled = 1;
1048 else
1049 cpuset_memory_pressure_enabled = 0;
1050 return 0;
1051}
1052
1da177e4
LT
1053/*
1054 * update_flag - read a 0 or a 1 in a file and update associated flag
1055 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
029190c5 1056 * CS_SCHED_LOAD_BALANCE,
825a46af
PJ
1057 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1058 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1da177e4
LT
1059 * cs: the cpuset to update
1060 * buf: the buffer where we read the 0 or 1
053199ed 1061 *
3d3f26a7 1062 * Call with manage_mutex held.
1da177e4
LT
1063 */
1064
1065static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
1066{
1067 int turning_on;
1068 struct cpuset trialcs;
607717a6 1069 int err;
029190c5 1070 int cpus_nonempty, balance_flag_changed;
1da177e4
LT
1071
1072 turning_on = (simple_strtoul(buf, NULL, 10) != 0);
1073
1074 trialcs = *cs;
1075 if (turning_on)
1076 set_bit(bit, &trialcs.flags);
1077 else
1078 clear_bit(bit, &trialcs.flags);
1079
1080 err = validate_change(cs, &trialcs);
85d7b949
DG
1081 if (err < 0)
1082 return err;
029190c5
PJ
1083
1084 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1085 balance_flag_changed = (is_sched_load_balance(cs) !=
1086 is_sched_load_balance(&trialcs));
1087
3d3f26a7 1088 mutex_lock(&callback_mutex);
69604067 1089 cs->flags = trialcs.flags;
3d3f26a7 1090 mutex_unlock(&callback_mutex);
85d7b949 1091
029190c5
PJ
1092 if (cpus_nonempty && balance_flag_changed)
1093 rebuild_sched_domains();
1094
85d7b949 1095 return 0;
1da177e4
LT
1096}
1097
3e0d98b9 1098/*
80f7228b 1099 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1100 *
1101 * These routines manage a digitally filtered, constant time based,
1102 * event frequency meter. There are four routines:
1103 * fmeter_init() - initialize a frequency meter.
1104 * fmeter_markevent() - called each time the event happens.
1105 * fmeter_getrate() - returns the recent rate of such events.
1106 * fmeter_update() - internal routine used to update fmeter.
1107 *
1108 * A common data structure is passed to each of these routines,
1109 * which is used to keep track of the state required to manage the
1110 * frequency meter and its digital filter.
1111 *
1112 * The filter works on the number of events marked per unit time.
1113 * The filter is single-pole low-pass recursive (IIR). The time unit
1114 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1115 * simulate 3 decimal digits of precision (multiplied by 1000).
1116 *
1117 * With an FM_COEF of 933, and a time base of 1 second, the filter
1118 * has a half-life of 10 seconds, meaning that if the events quit
1119 * happening, then the rate returned from the fmeter_getrate()
1120 * will be cut in half each 10 seconds, until it converges to zero.
1121 *
1122 * It is not worth doing a real infinitely recursive filter. If more
1123 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1124 * just compute FM_MAXTICKS ticks worth, by which point the level
1125 * will be stable.
1126 *
1127 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1128 * arithmetic overflow in the fmeter_update() routine.
1129 *
1130 * Given the simple 32 bit integer arithmetic used, this meter works
1131 * best for reporting rates between one per millisecond (msec) and
1132 * one per 32 (approx) seconds. At constant rates faster than one
1133 * per msec it maxes out at values just under 1,000,000. At constant
1134 * rates between one per msec, and one per second it will stabilize
1135 * to a value N*1000, where N is the rate of events per second.
1136 * At constant rates between one per second and one per 32 seconds,
1137 * it will be choppy, moving up on the seconds that have an event,
1138 * and then decaying until the next event. At rates slower than
1139 * about one in 32 seconds, it decays all the way back to zero between
1140 * each event.
1141 */
1142
1143#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1144#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1145#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1146#define FM_SCALE 1000 /* faux fixed point scale */
1147
1148/* Initialize a frequency meter */
1149static void fmeter_init(struct fmeter *fmp)
1150{
1151 fmp->cnt = 0;
1152 fmp->val = 0;
1153 fmp->time = 0;
1154 spin_lock_init(&fmp->lock);
1155}
1156
1157/* Internal meter update - process cnt events and update value */
1158static void fmeter_update(struct fmeter *fmp)
1159{
1160 time_t now = get_seconds();
1161 time_t ticks = now - fmp->time;
1162
1163 if (ticks == 0)
1164 return;
1165
1166 ticks = min(FM_MAXTICKS, ticks);
1167 while (ticks-- > 0)
1168 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1169 fmp->time = now;
1170
1171 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1172 fmp->cnt = 0;
1173}
1174
1175/* Process any previous ticks, then bump cnt by one (times scale). */
1176static void fmeter_markevent(struct fmeter *fmp)
1177{
1178 spin_lock(&fmp->lock);
1179 fmeter_update(fmp);
1180 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1181 spin_unlock(&fmp->lock);
1182}
1183
1184/* Process any previous ticks, then return current value. */
1185static int fmeter_getrate(struct fmeter *fmp)
1186{
1187 int val;
1188
1189 spin_lock(&fmp->lock);
1190 fmeter_update(fmp);
1191 val = fmp->val;
1192 spin_unlock(&fmp->lock);
1193 return val;
1194}
1195
8793d854
PM
1196static int cpuset_can_attach(struct cgroup_subsys *ss,
1197 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1198{
8793d854 1199 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1200
1da177e4
LT
1201 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1202 return -ENOSPC;
1203
8793d854
PM
1204 return security_task_setscheduler(tsk, 0, NULL);
1205}
1da177e4 1206
8793d854
PM
1207static void cpuset_attach(struct cgroup_subsys *ss,
1208 struct cgroup *cont, struct cgroup *oldcont,
1209 struct task_struct *tsk)
1210{
1211 cpumask_t cpus;
1212 nodemask_t from, to;
1213 struct mm_struct *mm;
1214 struct cpuset *cs = cgroup_cs(cont);
1215 struct cpuset *oldcs = cgroup_cs(oldcont);
22fb52dd 1216
3d3f26a7 1217 mutex_lock(&callback_mutex);
1da177e4
LT
1218 guarantee_online_cpus(cs, &cpus);
1219 set_cpus_allowed(tsk, cpus);
8793d854 1220 mutex_unlock(&callback_mutex);
1da177e4 1221
45b07ef3
PJ
1222 from = oldcs->mems_allowed;
1223 to = cs->mems_allowed;
4225399a
PJ
1224 mm = get_task_mm(tsk);
1225 if (mm) {
1226 mpol_rebind_mm(mm, &to);
2741a559 1227 if (is_memory_migrate(cs))
e4e364e8 1228 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1229 mmput(mm);
1230 }
1231
1da177e4
LT
1232}
1233
1234/* The various types of files and directories in a cpuset file system */
1235
1236typedef enum {
45b07ef3 1237 FILE_MEMORY_MIGRATE,
1da177e4
LT
1238 FILE_CPULIST,
1239 FILE_MEMLIST,
1240 FILE_CPU_EXCLUSIVE,
1241 FILE_MEM_EXCLUSIVE,
029190c5 1242 FILE_SCHED_LOAD_BALANCE,
3e0d98b9
PJ
1243 FILE_MEMORY_PRESSURE_ENABLED,
1244 FILE_MEMORY_PRESSURE,
825a46af
PJ
1245 FILE_SPREAD_PAGE,
1246 FILE_SPREAD_SLAB,
1da177e4
LT
1247} cpuset_filetype_t;
1248
8793d854
PM
1249static ssize_t cpuset_common_file_write(struct cgroup *cont,
1250 struct cftype *cft,
1251 struct file *file,
d3ed11c3 1252 const char __user *userbuf,
1da177e4
LT
1253 size_t nbytes, loff_t *unused_ppos)
1254{
8793d854 1255 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1256 cpuset_filetype_t type = cft->private;
1257 char *buffer;
1258 int retval = 0;
1259
1260 /* Crude upper limit on largest legitimate cpulist user might write. */
029190c5 1261 if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
1da177e4
LT
1262 return -E2BIG;
1263
1264 /* +1 for nul-terminator */
1265 if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
1266 return -ENOMEM;
1267
1268 if (copy_from_user(buffer, userbuf, nbytes)) {
1269 retval = -EFAULT;
1270 goto out1;
1271 }
1272 buffer[nbytes] = 0; /* nul-terminate */
1273
8793d854 1274 cgroup_lock();
1da177e4 1275
8793d854 1276 if (cgroup_is_removed(cont)) {
1da177e4
LT
1277 retval = -ENODEV;
1278 goto out2;
1279 }
1280
1281 switch (type) {
1282 case FILE_CPULIST:
1283 retval = update_cpumask(cs, buffer);
1284 break;
1285 case FILE_MEMLIST:
1286 retval = update_nodemask(cs, buffer);
1287 break;
1288 case FILE_CPU_EXCLUSIVE:
1289 retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
1290 break;
1291 case FILE_MEM_EXCLUSIVE:
1292 retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
1293 break;
029190c5
PJ
1294 case FILE_SCHED_LOAD_BALANCE:
1295 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
1296 break;
45b07ef3
PJ
1297 case FILE_MEMORY_MIGRATE:
1298 retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
1299 break;
3e0d98b9
PJ
1300 case FILE_MEMORY_PRESSURE_ENABLED:
1301 retval = update_memory_pressure_enabled(cs, buffer);
1302 break;
1303 case FILE_MEMORY_PRESSURE:
1304 retval = -EACCES;
1305 break;
825a46af
PJ
1306 case FILE_SPREAD_PAGE:
1307 retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
151a4420 1308 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1309 break;
1310 case FILE_SPREAD_SLAB:
1311 retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
151a4420 1312 cs->mems_generation = cpuset_mems_generation++;
825a46af 1313 break;
1da177e4
LT
1314 default:
1315 retval = -EINVAL;
1316 goto out2;
1317 }
1318
1319 if (retval == 0)
1320 retval = nbytes;
1321out2:
8793d854 1322 cgroup_unlock();
1da177e4
LT
1323out1:
1324 kfree(buffer);
1325 return retval;
1326}
1327
1da177e4
LT
1328/*
1329 * These ascii lists should be read in a single call, by using a user
1330 * buffer large enough to hold the entire map. If read in smaller
1331 * chunks, there is no guarantee of atomicity. Since the display format
1332 * used, list of ranges of sequential numbers, is variable length,
1333 * and since these maps can change value dynamically, one could read
1334 * gibberish by doing partial reads while a list was changing.
1335 * A single large read to a buffer that crosses a page boundary is
1336 * ok, because the result being copied to user land is not recomputed
1337 * across a page fault.
1338 */
1339
1340static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1341{
1342 cpumask_t mask;
1343
3d3f26a7 1344 mutex_lock(&callback_mutex);
1da177e4 1345 mask = cs->cpus_allowed;
3d3f26a7 1346 mutex_unlock(&callback_mutex);
1da177e4
LT
1347
1348 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1349}
1350
1351static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1352{
1353 nodemask_t mask;
1354
3d3f26a7 1355 mutex_lock(&callback_mutex);
1da177e4 1356 mask = cs->mems_allowed;
3d3f26a7 1357 mutex_unlock(&callback_mutex);
1da177e4
LT
1358
1359 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1360}
1361
8793d854
PM
1362static ssize_t cpuset_common_file_read(struct cgroup *cont,
1363 struct cftype *cft,
1364 struct file *file,
1365 char __user *buf,
1366 size_t nbytes, loff_t *ppos)
1da177e4 1367{
8793d854 1368 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1369 cpuset_filetype_t type = cft->private;
1370 char *page;
1371 ssize_t retval = 0;
1372 char *s;
1da177e4 1373
e12ba74d 1374 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1375 return -ENOMEM;
1376
1377 s = page;
1378
1379 switch (type) {
1380 case FILE_CPULIST:
1381 s += cpuset_sprintf_cpulist(s, cs);
1382 break;
1383 case FILE_MEMLIST:
1384 s += cpuset_sprintf_memlist(s, cs);
1385 break;
1386 case FILE_CPU_EXCLUSIVE:
1387 *s++ = is_cpu_exclusive(cs) ? '1' : '0';
1388 break;
1389 case FILE_MEM_EXCLUSIVE:
1390 *s++ = is_mem_exclusive(cs) ? '1' : '0';
1391 break;
029190c5
PJ
1392 case FILE_SCHED_LOAD_BALANCE:
1393 *s++ = is_sched_load_balance(cs) ? '1' : '0';
1394 break;
45b07ef3
PJ
1395 case FILE_MEMORY_MIGRATE:
1396 *s++ = is_memory_migrate(cs) ? '1' : '0';
1397 break;
3e0d98b9
PJ
1398 case FILE_MEMORY_PRESSURE_ENABLED:
1399 *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
1400 break;
1401 case FILE_MEMORY_PRESSURE:
1402 s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
1403 break;
825a46af
PJ
1404 case FILE_SPREAD_PAGE:
1405 *s++ = is_spread_page(cs) ? '1' : '0';
1406 break;
1407 case FILE_SPREAD_SLAB:
1408 *s++ = is_spread_slab(cs) ? '1' : '0';
1409 break;
1da177e4
LT
1410 default:
1411 retval = -EINVAL;
1412 goto out;
1413 }
1414 *s++ = '\n';
1da177e4 1415
eacaa1f5 1416 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1417out:
1418 free_page((unsigned long)page);
1419 return retval;
1420}
1421
1da177e4 1422
1da177e4 1423
1da177e4 1424
1da177e4
LT
1425
1426/*
1427 * for the common functions, 'private' gives the type of file
1428 */
1429
1da177e4
LT
1430static struct cftype cft_cpus = {
1431 .name = "cpus",
8793d854
PM
1432 .read = cpuset_common_file_read,
1433 .write = cpuset_common_file_write,
1da177e4
LT
1434 .private = FILE_CPULIST,
1435};
1436
1437static struct cftype cft_mems = {
1438 .name = "mems",
8793d854
PM
1439 .read = cpuset_common_file_read,
1440 .write = cpuset_common_file_write,
1da177e4
LT
1441 .private = FILE_MEMLIST,
1442};
1443
1444static struct cftype cft_cpu_exclusive = {
1445 .name = "cpu_exclusive",
8793d854
PM
1446 .read = cpuset_common_file_read,
1447 .write = cpuset_common_file_write,
1da177e4
LT
1448 .private = FILE_CPU_EXCLUSIVE,
1449};
1450
1451static struct cftype cft_mem_exclusive = {
1452 .name = "mem_exclusive",
8793d854
PM
1453 .read = cpuset_common_file_read,
1454 .write = cpuset_common_file_write,
1da177e4
LT
1455 .private = FILE_MEM_EXCLUSIVE,
1456};
1457
029190c5
PJ
1458static struct cftype cft_sched_load_balance = {
1459 .name = "sched_load_balance",
1460 .read = cpuset_common_file_read,
1461 .write = cpuset_common_file_write,
1462 .private = FILE_SCHED_LOAD_BALANCE,
1463};
1464
45b07ef3
PJ
1465static struct cftype cft_memory_migrate = {
1466 .name = "memory_migrate",
8793d854
PM
1467 .read = cpuset_common_file_read,
1468 .write = cpuset_common_file_write,
45b07ef3
PJ
1469 .private = FILE_MEMORY_MIGRATE,
1470};
1471
3e0d98b9
PJ
1472static struct cftype cft_memory_pressure_enabled = {
1473 .name = "memory_pressure_enabled",
8793d854
PM
1474 .read = cpuset_common_file_read,
1475 .write = cpuset_common_file_write,
3e0d98b9
PJ
1476 .private = FILE_MEMORY_PRESSURE_ENABLED,
1477};
1478
1479static struct cftype cft_memory_pressure = {
1480 .name = "memory_pressure",
8793d854
PM
1481 .read = cpuset_common_file_read,
1482 .write = cpuset_common_file_write,
3e0d98b9
PJ
1483 .private = FILE_MEMORY_PRESSURE,
1484};
1485
825a46af
PJ
1486static struct cftype cft_spread_page = {
1487 .name = "memory_spread_page",
8793d854
PM
1488 .read = cpuset_common_file_read,
1489 .write = cpuset_common_file_write,
825a46af
PJ
1490 .private = FILE_SPREAD_PAGE,
1491};
1492
1493static struct cftype cft_spread_slab = {
1494 .name = "memory_spread_slab",
8793d854
PM
1495 .read = cpuset_common_file_read,
1496 .write = cpuset_common_file_write,
825a46af
PJ
1497 .private = FILE_SPREAD_SLAB,
1498};
1499
8793d854 1500static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1501{
1502 int err;
1503
8793d854 1504 if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
1da177e4 1505 return err;
8793d854 1506 if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
1da177e4 1507 return err;
8793d854 1508 if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
1da177e4 1509 return err;
8793d854 1510 if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
1da177e4 1511 return err;
8793d854 1512 if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
1da177e4 1513 return err;
029190c5
PJ
1514 if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
1515 return err;
8793d854 1516 if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
45b07ef3 1517 return err;
8793d854 1518 if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
3e0d98b9 1519 return err;
8793d854 1520 if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
1da177e4 1521 return err;
8793d854
PM
1522 /* memory_pressure_enabled is in root cpuset only */
1523 if (err == 0 && !cont->parent)
1524 err = cgroup_add_file(cont, ss,
1525 &cft_memory_pressure_enabled);
1da177e4
LT
1526 return 0;
1527}
1528
8793d854
PM
1529/*
1530 * post_clone() is called at the end of cgroup_clone().
1531 * 'cgroup' was just created automatically as a result of
1532 * a cgroup_clone(), and the current task is about to
1533 * be moved into 'cgroup'.
1534 *
1535 * Currently we refuse to set up the cgroup - thereby
1536 * refusing the task to be entered, and as a result refusing
1537 * the sys_unshare() or clone() which initiated it - if any
1538 * sibling cpusets have exclusive cpus or mem.
1539 *
1540 * If this becomes a problem for some users who wish to
1541 * allow that scenario, then cpuset_post_clone() could be
1542 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1543 * (and likewise for mems) to the new cgroup.
1544 */
1545static void cpuset_post_clone(struct cgroup_subsys *ss,
1546 struct cgroup *cgroup)
1547{
1548 struct cgroup *parent, *child;
1549 struct cpuset *cs, *parent_cs;
1550
1551 parent = cgroup->parent;
1552 list_for_each_entry(child, &parent->children, sibling) {
1553 cs = cgroup_cs(child);
1554 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1555 return;
1556 }
1557 cs = cgroup_cs(cgroup);
1558 parent_cs = cgroup_cs(parent);
1559
1560 cs->mems_allowed = parent_cs->mems_allowed;
1561 cs->cpus_allowed = parent_cs->cpus_allowed;
1562 return;
1563}
1564
1da177e4
LT
1565/*
1566 * cpuset_create - create a cpuset
1567 * parent: cpuset that will be parent of the new cpuset.
1568 * name: name of the new cpuset. Will be strcpy'ed.
1569 * mode: mode to set on new inode
1570 *
3d3f26a7 1571 * Must be called with the mutex on the parent inode held
1da177e4
LT
1572 */
1573
8793d854
PM
1574static struct cgroup_subsys_state *cpuset_create(
1575 struct cgroup_subsys *ss,
1576 struct cgroup *cont)
1da177e4
LT
1577{
1578 struct cpuset *cs;
8793d854 1579 struct cpuset *parent;
1da177e4 1580
8793d854
PM
1581 if (!cont->parent) {
1582 /* This is early initialization for the top cgroup */
1583 top_cpuset.mems_generation = cpuset_mems_generation++;
1584 return &top_cpuset.css;
1585 }
1586 parent = cgroup_cs(cont->parent);
1da177e4
LT
1587 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1588 if (!cs)
8793d854 1589 return ERR_PTR(-ENOMEM);
1da177e4 1590
cf2a473c 1591 cpuset_update_task_memory_state();
1da177e4 1592 cs->flags = 0;
825a46af
PJ
1593 if (is_spread_page(parent))
1594 set_bit(CS_SPREAD_PAGE, &cs->flags);
1595 if (is_spread_slab(parent))
1596 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1597 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
1da177e4
LT
1598 cs->cpus_allowed = CPU_MASK_NONE;
1599 cs->mems_allowed = NODE_MASK_NONE;
151a4420 1600 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1601 fmeter_init(&cs->fmeter);
1da177e4
LT
1602
1603 cs->parent = parent;
202f72d5 1604 number_of_cpusets++;
8793d854 1605 return &cs->css ;
1da177e4
LT
1606}
1607
029190c5
PJ
1608/*
1609 * Locking note on the strange update_flag() call below:
1610 *
1611 * If the cpuset being removed has its flag 'sched_load_balance'
1612 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1613 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1614 * call in rebuild_sched_domains() must not be made while holding
1615 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1616 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1617 * ABBA deadlock.
1618 */
1619
8793d854 1620static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1621{
8793d854 1622 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1623
cf2a473c 1624 cpuset_update_task_memory_state();
029190c5
PJ
1625
1626 if (is_sched_load_balance(cs))
1627 update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
1628
202f72d5 1629 number_of_cpusets--;
8793d854 1630 kfree(cs);
1da177e4
LT
1631}
1632
8793d854
PM
1633struct cgroup_subsys cpuset_subsys = {
1634 .name = "cpuset",
1635 .create = cpuset_create,
1636 .destroy = cpuset_destroy,
1637 .can_attach = cpuset_can_attach,
1638 .attach = cpuset_attach,
1639 .populate = cpuset_populate,
1640 .post_clone = cpuset_post_clone,
1641 .subsys_id = cpuset_subsys_id,
1642 .early_init = 1,
1643};
1644
c417f024
PJ
1645/*
1646 * cpuset_init_early - just enough so that the calls to
1647 * cpuset_update_task_memory_state() in early init code
1648 * are harmless.
1649 */
1650
1651int __init cpuset_init_early(void)
1652{
8793d854 1653 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1654 return 0;
1655}
1656
8793d854 1657
1da177e4
LT
1658/**
1659 * cpuset_init - initialize cpusets at system boot
1660 *
1661 * Description: Initialize top_cpuset and the cpuset internal file system,
1662 **/
1663
1664int __init cpuset_init(void)
1665{
8793d854 1666 int err = 0;
1da177e4
LT
1667
1668 top_cpuset.cpus_allowed = CPU_MASK_ALL;
1669 top_cpuset.mems_allowed = NODE_MASK_ALL;
1670
3e0d98b9 1671 fmeter_init(&top_cpuset.fmeter);
151a4420 1672 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1673 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1da177e4 1674
1da177e4
LT
1675 err = register_filesystem(&cpuset_fs_type);
1676 if (err < 0)
8793d854
PM
1677 return err;
1678
202f72d5 1679 number_of_cpusets = 1;
8793d854 1680 return 0;
1da177e4
LT
1681}
1682
956db3ca
CW
1683/**
1684 * cpuset_do_move_task - move a given task to another cpuset
1685 * @tsk: pointer to task_struct the task to move
1686 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1687 *
1688 * Called by cgroup_scan_tasks() for each task in a cgroup.
1689 * Return nonzero to stop the walk through the tasks.
1690 */
1691void cpuset_do_move_task(struct task_struct *tsk, struct cgroup_scanner *scan)
1692{
1693 struct cpuset_hotplug_scanner *chsp;
1694
1695 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1696 cgroup_attach_task(chsp->to, tsk);
1697}
1698
1699/**
1700 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1701 * @from: cpuset in which the tasks currently reside
1702 * @to: cpuset to which the tasks will be moved
1703 *
1704 * Called with manage_sem held
1705 * callback_mutex must not be held, as attach_task() will take it.
1706 *
1707 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1708 * calling callback functions for each.
1709 */
1710static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1711{
1712 struct cpuset_hotplug_scanner scan;
1713
1714 scan.scan.cg = from->css.cgroup;
1715 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1716 scan.scan.process_task = cpuset_do_move_task;
1717 scan.scan.heap = NULL;
1718 scan.to = to->css.cgroup;
1719
1720 if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
1721 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1722 "cgroup_scan_tasks failed\n");
1723}
1724
b1aac8bb
PJ
1725/*
1726 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1727 * or memory nodes, we need to walk over the cpuset hierarchy,
1728 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1729 * last CPU or node from a cpuset, then move the tasks in the empty
1730 * cpuset to its next-highest non-empty parent.
b1aac8bb 1731 *
956db3ca
CW
1732 * The parent cpuset has some superset of the 'mems' nodes that the
1733 * newly empty cpuset held, so no migration of memory is necessary.
b1aac8bb 1734 *
956db3ca 1735 * Called with both manage_sem and callback_sem held
b1aac8bb 1736 */
956db3ca
CW
1737static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1738{
1739 struct cpuset *parent;
1740
1741 /* the cgroup's css_sets list is in use if there are tasks
1742 in the cpuset; the list is empty if there are none;
1743 the cs->css.refcnt seems always 0 */
1744 if (list_empty(&cs->css.cgroup->css_sets))
1745 return;
b1aac8bb 1746
956db3ca
CW
1747 /*
1748 * Find its next-highest non-empty parent, (top cpuset
1749 * has online cpus, so can't be empty).
1750 */
1751 parent = cs->parent;
1752 while (cpus_empty(parent->cpus_allowed)) {
1753 /*
1754 * this empty cpuset should now be considered to
1755 * have been used, and therefore eligible for
1756 * release when empty (if it is notify_on_release)
1757 */
1758 parent = parent->parent;
1759 }
1760
1761 move_member_tasks_to_cpuset(cs, parent);
1762}
1763
1764/*
1765 * Walk the specified cpuset subtree and look for empty cpusets.
1766 * The tasks of such cpuset must be moved to a parent cpuset.
1767 *
1768 * Note that such a notify_on_release cpuset must have had, at some time,
1769 * member tasks or cpuset descendants and cpus and memory, before it can
1770 * be a candidate for release.
1771 *
1772 * Called with manage_mutex held. We take callback_mutex to modify
1773 * cpus_allowed and mems_allowed.
1774 *
1775 * This walk processes the tree from top to bottom, completing one layer
1776 * before dropping down to the next. It always processes a node before
1777 * any of its children.
1778 *
1779 * For now, since we lack memory hot unplug, we'll never see a cpuset
1780 * that has tasks along with an empty 'mems'. But if we did see such
1781 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1782 */
1783static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1784{
956db3ca
CW
1785 struct cpuset *cp; /* scans cpusets being updated */
1786 struct cpuset *child; /* scans child cpusets of cp */
1787 struct list_head queue;
8793d854 1788 struct cgroup *cont;
b1aac8bb 1789
956db3ca
CW
1790 INIT_LIST_HEAD(&queue);
1791
1792 list_add_tail((struct list_head *)&root->stack_list, &queue);
1793
1794 mutex_lock(&callback_mutex);
1795 while (!list_empty(&queue)) {
1796 cp = container_of(queue.next, struct cpuset, stack_list);
1797 list_del(queue.next);
1798 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1799 child = cgroup_cs(cont);
1800 list_add_tail(&child->stack_list, &queue);
1801 }
1802 cont = cp->css.cgroup;
1803 /* Remove offline cpus and mems from this cpuset. */
1804 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1805 nodes_and(cp->mems_allowed, cp->mems_allowed,
1806 node_states[N_HIGH_MEMORY]);
1807 if ((cpus_empty(cp->cpus_allowed) ||
1808 nodes_empty(cp->mems_allowed))) {
1809 /* Move tasks from the empty cpuset to a parent */
1810 mutex_unlock(&callback_mutex);
1811 remove_tasks_in_empty_cpuset(cp);
1812 mutex_lock(&callback_mutex);
1813 }
b1aac8bb 1814 }
956db3ca
CW
1815 mutex_unlock(&callback_mutex);
1816 return;
b1aac8bb
PJ
1817}
1818
1819/*
1820 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1821 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1822 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1823 *
1824 * Since there are two callers of this routine, one for CPU hotplug
1825 * events and one for memory node hotplug events, we could have coded
1826 * two separate routines here. We code it as a single common routine
1827 * in order to minimize text size.
1828 */
1829
1830static void common_cpu_mem_hotplug_unplug(void)
1831{
8793d854 1832 cgroup_lock();
b1aac8bb 1833
b1aac8bb 1834 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1835 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1836 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1837
8793d854 1838 cgroup_unlock();
b1aac8bb 1839}
b1aac8bb 1840
4c4d50f7
PJ
1841/*
1842 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1843 * period. This is necessary in order to make cpusets transparent
1844 * (of no affect) on systems that are actively using CPU hotplug
1845 * but making no active use of cpusets.
1846 *
38837fc7
PJ
1847 * This routine ensures that top_cpuset.cpus_allowed tracks
1848 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1849 */
1850
029190c5
PJ
1851static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1852 unsigned long phase, void *unused_cpu)
4c4d50f7 1853{
ac076758
AK
1854 if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
1855 return NOTIFY_DONE;
1856
b1aac8bb 1857 common_cpu_mem_hotplug_unplug();
4c4d50f7
PJ
1858 return 0;
1859}
4c4d50f7 1860
b1aac8bb 1861#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1862/*
0e1e7c7a
CL
1863 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1864 * Call this routine anytime after you change
1865 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1866 * See also the previous routine cpuset_handle_cpuhp().
1867 */
1868
1af98928 1869void cpuset_track_online_nodes(void)
38837fc7 1870{
b1aac8bb 1871 common_cpu_mem_hotplug_unplug();
38837fc7
PJ
1872}
1873#endif
1874
1da177e4
LT
1875/**
1876 * cpuset_init_smp - initialize cpus_allowed
1877 *
1878 * Description: Finish top cpuset after cpu, node maps are initialized
1879 **/
1880
1881void __init cpuset_init_smp(void)
1882{
1883 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1884 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1885
1886 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1887}
1888
1889/**
3077a260 1890
1da177e4
LT
1891 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1892 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1893 *
1894 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1895 * attached to the specified @tsk. Guaranteed to return some non-empty
1896 * subset of cpu_online_map, even if this means going outside the
1897 * tasks cpuset.
1898 **/
1899
909d75a3 1900cpumask_t cpuset_cpus_allowed(struct task_struct *tsk)
1da177e4
LT
1901{
1902 cpumask_t mask;
1903
3d3f26a7 1904 mutex_lock(&callback_mutex);
470fd646
CW
1905 mask = cpuset_cpus_allowed_locked(tsk);
1906 mutex_unlock(&callback_mutex);
1907
1908 return mask;
1909}
1910
1911/**
1912 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1913 * Must be called with callback_mutex held.
1914 **/
1915cpumask_t cpuset_cpus_allowed_locked(struct task_struct *tsk)
1916{
1917 cpumask_t mask;
1918
909d75a3 1919 task_lock(tsk);
8793d854 1920 guarantee_online_cpus(task_cs(tsk), &mask);
909d75a3 1921 task_unlock(tsk);
1da177e4
LT
1922
1923 return mask;
1924}
1925
1926void cpuset_init_current_mems_allowed(void)
1927{
1928 current->mems_allowed = NODE_MASK_ALL;
1929}
1930
909d75a3
PJ
1931/**
1932 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1933 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1934 *
1935 * Description: Returns the nodemask_t mems_allowed of the cpuset
1936 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 1937 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
1938 * tasks cpuset.
1939 **/
1940
1941nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
1942{
1943 nodemask_t mask;
1944
3d3f26a7 1945 mutex_lock(&callback_mutex);
909d75a3 1946 task_lock(tsk);
8793d854 1947 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 1948 task_unlock(tsk);
3d3f26a7 1949 mutex_unlock(&callback_mutex);
909d75a3
PJ
1950
1951 return mask;
1952}
1953
d9fd8a6d
RD
1954/**
1955 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1956 * @zl: the zonelist to be checked
1957 *
1da177e4
LT
1958 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1959 */
1960int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
1961{
1962 int i;
1963
1964 for (i = 0; zl->zones[i]; i++) {
89fa3024 1965 int nid = zone_to_nid(zl->zones[i]);
1da177e4
LT
1966
1967 if (node_isset(nid, current->mems_allowed))
1968 return 1;
1969 }
1970 return 0;
1971}
1972
9bf2229f
PJ
1973/*
1974 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
3d3f26a7 1975 * ancestor to the specified cpuset. Call holding callback_mutex.
9bf2229f
PJ
1976 * If no ancestor is mem_exclusive (an unusual configuration), then
1977 * returns the root cpuset.
1978 */
1979static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
1980{
1981 while (!is_mem_exclusive(cs) && cs->parent)
1982 cs = cs->parent;
1983 return cs;
1984}
1985
d9fd8a6d 1986/**
02a0e53d 1987 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 1988 * @z: is this zone on an allowed node?
02a0e53d 1989 * @gfp_mask: memory allocation flags
d9fd8a6d 1990 *
02a0e53d
PJ
1991 * If we're in interrupt, yes, we can always allocate. If
1992 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
1993 * z's node is in our tasks mems_allowed, yes. If it's not a
1994 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1995 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
1996 * If the task has been OOM killed and has access to memory reserves
1997 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
1998 * Otherwise, no.
1999 *
02a0e53d
PJ
2000 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2001 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2002 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2003 * from an enclosing cpuset.
2004 *
2005 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2006 * hardwall cpusets, and never sleeps.
2007 *
2008 * The __GFP_THISNODE placement logic is really handled elsewhere,
2009 * by forcibly using a zonelist starting at a specified node, and by
2010 * (in get_page_from_freelist()) refusing to consider the zones for
2011 * any node on the zonelist except the first. By the time any such
2012 * calls get to this routine, we should just shut up and say 'yes'.
2013 *
9bf2229f 2014 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2015 * and do not allow allocations outside the current tasks cpuset
2016 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2017 * GFP_KERNEL allocations are not so marked, so can escape to the
02a0e53d 2018 * nearest enclosing mem_exclusive ancestor cpuset.
9bf2229f 2019 *
02a0e53d
PJ
2020 * Scanning up parent cpusets requires callback_mutex. The
2021 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2022 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2023 * current tasks mems_allowed came up empty on the first pass over
2024 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2025 * cpuset are short of memory, might require taking the callback_mutex
2026 * mutex.
9bf2229f 2027 *
36be57ff 2028 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2029 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2030 * so no allocation on a node outside the cpuset is allowed (unless
2031 * in interrupt, of course).
36be57ff
PJ
2032 *
2033 * The second pass through get_page_from_freelist() doesn't even call
2034 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2035 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2036 * in alloc_flags. That logic and the checks below have the combined
2037 * affect that:
9bf2229f
PJ
2038 * in_interrupt - any node ok (current task context irrelevant)
2039 * GFP_ATOMIC - any node ok
c596d9f3 2040 * TIF_MEMDIE - any node ok
9bf2229f
PJ
2041 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
2042 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2043 *
2044 * Rule:
02a0e53d 2045 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2046 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2047 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2048 */
9bf2229f 2049
02a0e53d 2050int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2051{
9bf2229f
PJ
2052 int node; /* node that zone z is on */
2053 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2054 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2055
9b819d20 2056 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2057 return 1;
89fa3024 2058 node = zone_to_nid(z);
92d1dbd2 2059 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2060 if (node_isset(node, current->mems_allowed))
2061 return 1;
c596d9f3
DR
2062 /*
2063 * Allow tasks that have access to memory reserves because they have
2064 * been OOM killed to get memory anywhere.
2065 */
2066 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2067 return 1;
9bf2229f
PJ
2068 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2069 return 0;
2070
5563e770
BP
2071 if (current->flags & PF_EXITING) /* Let dying task have memory */
2072 return 1;
2073
9bf2229f 2074 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2075 mutex_lock(&callback_mutex);
053199ed 2076
053199ed 2077 task_lock(current);
8793d854 2078 cs = nearest_exclusive_ancestor(task_cs(current));
053199ed
PJ
2079 task_unlock(current);
2080
9bf2229f 2081 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2082 mutex_unlock(&callback_mutex);
9bf2229f 2083 return allowed;
1da177e4
LT
2084}
2085
02a0e53d
PJ
2086/*
2087 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2088 * @z: is this zone on an allowed node?
2089 * @gfp_mask: memory allocation flags
2090 *
2091 * If we're in interrupt, yes, we can always allocate.
2092 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2093 * z's node is in our tasks mems_allowed, yes. If the task has been
2094 * OOM killed and has access to memory reserves as specified by the
2095 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2096 *
2097 * The __GFP_THISNODE placement logic is really handled elsewhere,
2098 * by forcibly using a zonelist starting at a specified node, and by
2099 * (in get_page_from_freelist()) refusing to consider the zones for
2100 * any node on the zonelist except the first. By the time any such
2101 * calls get to this routine, we should just shut up and say 'yes'.
2102 *
2103 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2104 * this variant requires that the zone be in the current tasks
2105 * mems_allowed or that we're in interrupt. It does not scan up the
2106 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2107 * It never sleeps.
2108 */
2109
2110int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2111{
2112 int node; /* node that zone z is on */
2113
2114 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2115 return 1;
2116 node = zone_to_nid(z);
2117 if (node_isset(node, current->mems_allowed))
2118 return 1;
dedf8b79
DW
2119 /*
2120 * Allow tasks that have access to memory reserves because they have
2121 * been OOM killed to get memory anywhere.
2122 */
2123 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2124 return 1;
02a0e53d
PJ
2125 return 0;
2126}
2127
505970b9
PJ
2128/**
2129 * cpuset_lock - lock out any changes to cpuset structures
2130 *
3d3f26a7 2131 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2132 * from being changed while it scans the tasklist looking for a
3d3f26a7 2133 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2134 * cpuset_lock() routine, so the oom code can lock it, before
2135 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2136 * must be taken inside callback_mutex.
505970b9
PJ
2137 */
2138
2139void cpuset_lock(void)
2140{
3d3f26a7 2141 mutex_lock(&callback_mutex);
505970b9
PJ
2142}
2143
2144/**
2145 * cpuset_unlock - release lock on cpuset changes
2146 *
2147 * Undo the lock taken in a previous cpuset_lock() call.
2148 */
2149
2150void cpuset_unlock(void)
2151{
3d3f26a7 2152 mutex_unlock(&callback_mutex);
505970b9
PJ
2153}
2154
825a46af
PJ
2155/**
2156 * cpuset_mem_spread_node() - On which node to begin search for a page
2157 *
2158 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2159 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2160 * and if the memory allocation used cpuset_mem_spread_node()
2161 * to determine on which node to start looking, as it will for
2162 * certain page cache or slab cache pages such as used for file
2163 * system buffers and inode caches, then instead of starting on the
2164 * local node to look for a free page, rather spread the starting
2165 * node around the tasks mems_allowed nodes.
2166 *
2167 * We don't have to worry about the returned node being offline
2168 * because "it can't happen", and even if it did, it would be ok.
2169 *
2170 * The routines calling guarantee_online_mems() are careful to
2171 * only set nodes in task->mems_allowed that are online. So it
2172 * should not be possible for the following code to return an
2173 * offline node. But if it did, that would be ok, as this routine
2174 * is not returning the node where the allocation must be, only
2175 * the node where the search should start. The zonelist passed to
2176 * __alloc_pages() will include all nodes. If the slab allocator
2177 * is passed an offline node, it will fall back to the local node.
2178 * See kmem_cache_alloc_node().
2179 */
2180
2181int cpuset_mem_spread_node(void)
2182{
2183 int node;
2184
2185 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2186 if (node == MAX_NUMNODES)
2187 node = first_node(current->mems_allowed);
2188 current->cpuset_mem_spread_rotor = node;
2189 return node;
2190}
2191EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2192
ef08e3b4 2193/**
bbe373f2
DR
2194 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2195 * @tsk1: pointer to task_struct of some task.
2196 * @tsk2: pointer to task_struct of some other task.
2197 *
2198 * Description: Return true if @tsk1's mems_allowed intersects the
2199 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2200 * one of the task's memory usage might impact the memory available
2201 * to the other.
ef08e3b4
PJ
2202 **/
2203
bbe373f2
DR
2204int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2205 const struct task_struct *tsk2)
ef08e3b4 2206{
bbe373f2 2207 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2208}
2209
3e0d98b9
PJ
2210/*
2211 * Collection of memory_pressure is suppressed unless
2212 * this flag is enabled by writing "1" to the special
2213 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2214 */
2215
c5b2aff8 2216int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2217
2218/**
2219 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2220 *
2221 * Keep a running average of the rate of synchronous (direct)
2222 * page reclaim efforts initiated by tasks in each cpuset.
2223 *
2224 * This represents the rate at which some task in the cpuset
2225 * ran low on memory on all nodes it was allowed to use, and
2226 * had to enter the kernels page reclaim code in an effort to
2227 * create more free memory by tossing clean pages or swapping
2228 * or writing dirty pages.
2229 *
2230 * Display to user space in the per-cpuset read-only file
2231 * "memory_pressure". Value displayed is an integer
2232 * representing the recent rate of entry into the synchronous
2233 * (direct) page reclaim by any task attached to the cpuset.
2234 **/
2235
2236void __cpuset_memory_pressure_bump(void)
2237{
3e0d98b9 2238 task_lock(current);
8793d854 2239 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2240 task_unlock(current);
2241}
2242
8793d854 2243#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2244/*
2245 * proc_cpuset_show()
2246 * - Print tasks cpuset path into seq_file.
2247 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2248 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2249 * doesn't really matter if tsk->cpuset changes after we read it,
3d3f26a7 2250 * and we take manage_mutex, keeping attach_task() from changing it
8488bc35
PJ
2251 * anyway. No need to check that tsk->cpuset != NULL, thanks to
2252 * the_top_cpuset_hack in cpuset_exit(), which sets an exiting tasks
2253 * cpuset to top_cpuset.
1da177e4 2254 */
029190c5 2255static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2256{
13b41b09 2257 struct pid *pid;
1da177e4
LT
2258 struct task_struct *tsk;
2259 char *buf;
8793d854 2260 struct cgroup_subsys_state *css;
99f89551 2261 int retval;
1da177e4 2262
99f89551 2263 retval = -ENOMEM;
1da177e4
LT
2264 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2265 if (!buf)
99f89551
EB
2266 goto out;
2267
2268 retval = -ESRCH;
13b41b09
EB
2269 pid = m->private;
2270 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2271 if (!tsk)
2272 goto out_free;
1da177e4 2273
99f89551 2274 retval = -EINVAL;
8793d854
PM
2275 cgroup_lock();
2276 css = task_subsys_state(tsk, cpuset_subsys_id);
2277 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2278 if (retval < 0)
99f89551 2279 goto out_unlock;
1da177e4
LT
2280 seq_puts(m, buf);
2281 seq_putc(m, '\n');
99f89551 2282out_unlock:
8793d854 2283 cgroup_unlock();
99f89551
EB
2284 put_task_struct(tsk);
2285out_free:
1da177e4 2286 kfree(buf);
99f89551 2287out:
1da177e4
LT
2288 return retval;
2289}
2290
2291static int cpuset_open(struct inode *inode, struct file *file)
2292{
13b41b09
EB
2293 struct pid *pid = PROC_I(inode)->pid;
2294 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2295}
2296
9a32144e 2297const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2298 .open = cpuset_open,
2299 .read = seq_read,
2300 .llseek = seq_lseek,
2301 .release = single_release,
2302};
8793d854 2303#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2304
2305/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2306char *cpuset_task_status_allowed(struct task_struct *task, char *buffer)
2307{
2308 buffer += sprintf(buffer, "Cpus_allowed:\t");
2309 buffer += cpumask_scnprintf(buffer, PAGE_SIZE, task->cpus_allowed);
2310 buffer += sprintf(buffer, "\n");
2311 buffer += sprintf(buffer, "Mems_allowed:\t");
2312 buffer += nodemask_scnprintf(buffer, PAGE_SIZE, task->mems_allowed);
2313 buffer += sprintf(buffer, "\n");
2314 return buffer;
2315}
This page took 0.610972 seconds and 5 git commands to generate.