cpuset: make CPU / memory hotplug propagation asynchronous
[deliverable/linux.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
1da177e4 90 struct cpuset *parent; /* my parent */
1da177e4 91
3e0d98b9 92 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
93
94 /* partition number for rebuild_sched_domains() */
95 int pn;
956db3ca 96
1d3504fc
HS
97 /* for custom sched domain */
98 int relax_domain_level;
99
732bee7a 100 /* used for walking a cpuset hierarchy */
956db3ca 101 struct list_head stack_list;
8d033948
TH
102
103 struct work_struct hotplug_work;
1da177e4
LT
104};
105
8793d854
PM
106/* Retrieve the cpuset for a cgroup */
107static inline struct cpuset *cgroup_cs(struct cgroup *cont)
108{
109 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
110 struct cpuset, css);
111}
112
113/* Retrieve the cpuset for a task */
114static inline struct cpuset *task_cs(struct task_struct *task)
115{
116 return container_of(task_subsys_state(task, cpuset_subsys_id),
117 struct cpuset, css);
118}
8793d854 119
b246272e
DR
120#ifdef CONFIG_NUMA
121static inline bool task_has_mempolicy(struct task_struct *task)
122{
123 return task->mempolicy;
124}
125#else
126static inline bool task_has_mempolicy(struct task_struct *task)
127{
128 return false;
129}
130#endif
131
132
1da177e4
LT
133/* bits in struct cpuset flags field */
134typedef enum {
efeb77b2 135 CS_ONLINE,
1da177e4
LT
136 CS_CPU_EXCLUSIVE,
137 CS_MEM_EXCLUSIVE,
78608366 138 CS_MEM_HARDWALL,
45b07ef3 139 CS_MEMORY_MIGRATE,
029190c5 140 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
141 CS_SPREAD_PAGE,
142 CS_SPREAD_SLAB,
1da177e4
LT
143} cpuset_flagbits_t;
144
145/* convenient tests for these bits */
efeb77b2
TH
146static inline bool is_cpuset_online(const struct cpuset *cs)
147{
148 return test_bit(CS_ONLINE, &cs->flags);
149}
150
1da177e4
LT
151static inline int is_cpu_exclusive(const struct cpuset *cs)
152{
7b5b9ef0 153 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
154}
155
156static inline int is_mem_exclusive(const struct cpuset *cs)
157{
7b5b9ef0 158 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
159}
160
78608366
PM
161static inline int is_mem_hardwall(const struct cpuset *cs)
162{
163 return test_bit(CS_MEM_HARDWALL, &cs->flags);
164}
165
029190c5
PJ
166static inline int is_sched_load_balance(const struct cpuset *cs)
167{
168 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
169}
170
45b07ef3
PJ
171static inline int is_memory_migrate(const struct cpuset *cs)
172{
7b5b9ef0 173 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
174}
175
825a46af
PJ
176static inline int is_spread_page(const struct cpuset *cs)
177{
178 return test_bit(CS_SPREAD_PAGE, &cs->flags);
179}
180
181static inline int is_spread_slab(const struct cpuset *cs)
182{
183 return test_bit(CS_SPREAD_SLAB, &cs->flags);
184}
185
1da177e4 186static struct cpuset top_cpuset = {
efeb77b2
TH
187 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
188 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
189};
190
ae8086ce
TH
191/**
192 * cpuset_for_each_child - traverse online children of a cpuset
193 * @child_cs: loop cursor pointing to the current child
194 * @pos_cgrp: used for iteration
195 * @parent_cs: target cpuset to walk children of
196 *
197 * Walk @child_cs through the online children of @parent_cs. Must be used
198 * with RCU read locked.
199 */
200#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
201 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
202 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
203
1da177e4 204/*
2df167a3
PM
205 * There are two global mutexes guarding cpuset structures. The first
206 * is the main control groups cgroup_mutex, accessed via
207 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
208 * callback_mutex, below. They can nest. It is ok to first take
209 * cgroup_mutex, then nest callback_mutex. We also require taking
210 * task_lock() when dereferencing a task's cpuset pointer. See "The
211 * task_lock() exception", at the end of this comment.
053199ed 212 *
3d3f26a7 213 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 214 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 215 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
216 * and be able to modify cpusets. It can perform various checks on
217 * the cpuset structure first, knowing nothing will change. It can
2df167a3 218 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 219 * performing these checks, various callback routines can briefly
3d3f26a7
IM
220 * acquire callback_mutex to query cpusets. Once it is ready to make
221 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
222 *
223 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 224 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
225 * from one of the callbacks into the cpuset code from within
226 * __alloc_pages().
227 *
3d3f26a7 228 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
229 * access to cpusets.
230 *
58568d2a
MX
231 * Now, the task_struct fields mems_allowed and mempolicy may be changed
232 * by other task, we use alloc_lock in the task_struct fields to protect
233 * them.
053199ed 234 *
3d3f26a7 235 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
236 * small pieces of code, such as when reading out possibly multi-word
237 * cpumasks and nodemasks.
238 *
2df167a3
PM
239 * Accessing a task's cpuset should be done in accordance with the
240 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
241 */
242
3d3f26a7 243static DEFINE_MUTEX(callback_mutex);
4247bdc6 244
75aa1994
DR
245/*
246 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
247 * buffers. They are statically allocated to prevent using excess stack
248 * when calling cpuset_print_task_mems_allowed().
249 */
250#define CPUSET_NAME_LEN (128)
251#define CPUSET_NODELIST_LEN (256)
252static char cpuset_name[CPUSET_NAME_LEN];
253static char cpuset_nodelist[CPUSET_NODELIST_LEN];
254static DEFINE_SPINLOCK(cpuset_buffer_lock);
255
3a5a6d0c
TH
256/*
257 * CPU / memory hotplug is handled asynchronously.
258 */
8d033948
TH
259static struct workqueue_struct *cpuset_propagate_hotplug_wq;
260
3a5a6d0c 261static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 262static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
3a5a6d0c
TH
263
264static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
265
cf417141
MK
266/*
267 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 268 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
269 * silently switch it to mount "cgroup" instead
270 */
f7e83571
AV
271static struct dentry *cpuset_mount(struct file_system_type *fs_type,
272 int flags, const char *unused_dev_name, void *data)
1da177e4 273{
8793d854 274 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 275 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
276 if (cgroup_fs) {
277 char mountopts[] =
278 "cpuset,noprefix,"
279 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
280 ret = cgroup_fs->mount(cgroup_fs, flags,
281 unused_dev_name, mountopts);
8793d854
PM
282 put_filesystem(cgroup_fs);
283 }
284 return ret;
1da177e4
LT
285}
286
287static struct file_system_type cpuset_fs_type = {
288 .name = "cpuset",
f7e83571 289 .mount = cpuset_mount,
1da177e4
LT
290};
291
1da177e4 292/*
300ed6cb 293 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
294 * are online. If none are online, walk up the cpuset hierarchy
295 * until we find one that does have some online cpus. If we get
296 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
297 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
298 * task, return cpu_online_mask.
1da177e4
LT
299 *
300 * One way or another, we guarantee to return some non-empty subset
5f054e31 301 * of cpu_online_mask.
1da177e4 302 *
3d3f26a7 303 * Call with callback_mutex held.
1da177e4
LT
304 */
305
6af866af
LZ
306static void guarantee_online_cpus(const struct cpuset *cs,
307 struct cpumask *pmask)
1da177e4 308{
300ed6cb 309 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
1da177e4
LT
310 cs = cs->parent;
311 if (cs)
300ed6cb 312 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 313 else
300ed6cb
LZ
314 cpumask_copy(pmask, cpu_online_mask);
315 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
316}
317
318/*
319 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
320 * are online, with memory. If none are online with memory, walk
321 * up the cpuset hierarchy until we find one that does have some
322 * online mems. If we get all the way to the top and still haven't
38d7bee9 323 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
324 *
325 * One way or another, we guarantee to return some non-empty subset
38d7bee9 326 * of node_states[N_MEMORY].
1da177e4 327 *
3d3f26a7 328 * Call with callback_mutex held.
1da177e4
LT
329 */
330
331static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
332{
0e1e7c7a 333 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 334 node_states[N_MEMORY]))
1da177e4
LT
335 cs = cs->parent;
336 if (cs)
0e1e7c7a 337 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 338 node_states[N_MEMORY]);
1da177e4 339 else
38d7bee9
LJ
340 *pmask = node_states[N_MEMORY];
341 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
342}
343
f3b39d47
MX
344/*
345 * update task's spread flag if cpuset's page/slab spread flag is set
346 *
347 * Called with callback_mutex/cgroup_mutex held
348 */
349static void cpuset_update_task_spread_flag(struct cpuset *cs,
350 struct task_struct *tsk)
351{
352 if (is_spread_page(cs))
353 tsk->flags |= PF_SPREAD_PAGE;
354 else
355 tsk->flags &= ~PF_SPREAD_PAGE;
356 if (is_spread_slab(cs))
357 tsk->flags |= PF_SPREAD_SLAB;
358 else
359 tsk->flags &= ~PF_SPREAD_SLAB;
360}
361
1da177e4
LT
362/*
363 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
364 *
365 * One cpuset is a subset of another if all its allowed CPUs and
366 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 367 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
368 */
369
370static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
371{
300ed6cb 372 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
373 nodes_subset(p->mems_allowed, q->mems_allowed) &&
374 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
375 is_mem_exclusive(p) <= is_mem_exclusive(q);
376}
377
645fcc9d
LZ
378/**
379 * alloc_trial_cpuset - allocate a trial cpuset
380 * @cs: the cpuset that the trial cpuset duplicates
381 */
382static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
383{
300ed6cb
LZ
384 struct cpuset *trial;
385
386 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
387 if (!trial)
388 return NULL;
389
390 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
391 kfree(trial);
392 return NULL;
393 }
394 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
395
396 return trial;
645fcc9d
LZ
397}
398
399/**
400 * free_trial_cpuset - free the trial cpuset
401 * @trial: the trial cpuset to be freed
402 */
403static void free_trial_cpuset(struct cpuset *trial)
404{
300ed6cb 405 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
406 kfree(trial);
407}
408
1da177e4
LT
409/*
410 * validate_change() - Used to validate that any proposed cpuset change
411 * follows the structural rules for cpusets.
412 *
413 * If we replaced the flag and mask values of the current cpuset
414 * (cur) with those values in the trial cpuset (trial), would
415 * our various subset and exclusive rules still be valid? Presumes
2df167a3 416 * cgroup_mutex held.
1da177e4
LT
417 *
418 * 'cur' is the address of an actual, in-use cpuset. Operations
419 * such as list traversal that depend on the actual address of the
420 * cpuset in the list must use cur below, not trial.
421 *
422 * 'trial' is the address of bulk structure copy of cur, with
423 * perhaps one or more of the fields cpus_allowed, mems_allowed,
424 * or flags changed to new, trial values.
425 *
426 * Return 0 if valid, -errno if not.
427 */
428
429static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
430{
8793d854 431 struct cgroup *cont;
1da177e4 432 struct cpuset *c, *par;
ae8086ce
TH
433 int ret;
434
435 rcu_read_lock();
1da177e4
LT
436
437 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
438 ret = -EBUSY;
439 cpuset_for_each_child(c, cont, cur)
440 if (!is_cpuset_subset(c, trial))
441 goto out;
1da177e4
LT
442
443 /* Remaining checks don't apply to root cpuset */
ae8086ce 444 ret = 0;
69604067 445 if (cur == &top_cpuset)
ae8086ce 446 goto out;
1da177e4 447
69604067
PJ
448 par = cur->parent;
449
1da177e4 450 /* We must be a subset of our parent cpuset */
ae8086ce 451 ret = -EACCES;
1da177e4 452 if (!is_cpuset_subset(trial, par))
ae8086ce 453 goto out;
1da177e4 454
2df167a3
PM
455 /*
456 * If either I or some sibling (!= me) is exclusive, we can't
457 * overlap
458 */
ae8086ce
TH
459 ret = -EINVAL;
460 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
461 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
462 c != cur &&
300ed6cb 463 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 464 goto out;
1da177e4
LT
465 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
466 c != cur &&
467 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 468 goto out;
1da177e4
LT
469 }
470
020958b6 471 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
ae8086ce
TH
472 ret = -ENOSPC;
473 if (cgroup_task_count(cur->css.cgroup) &&
474 (cpumask_empty(trial->cpus_allowed) ||
475 nodes_empty(trial->mems_allowed)))
476 goto out;
020958b6 477
ae8086ce
TH
478 ret = 0;
479out:
480 rcu_read_unlock();
481 return ret;
1da177e4
LT
482}
483
db7f47cf 484#ifdef CONFIG_SMP
029190c5 485/*
cf417141 486 * Helper routine for generate_sched_domains().
029190c5
PJ
487 * Do cpusets a, b have overlapping cpus_allowed masks?
488 */
029190c5
PJ
489static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
490{
300ed6cb 491 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
492}
493
1d3504fc
HS
494static void
495update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
496{
1d3504fc
HS
497 if (dattr->relax_domain_level < c->relax_domain_level)
498 dattr->relax_domain_level = c->relax_domain_level;
499 return;
500}
501
f5393693
LJ
502static void
503update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
504{
505 LIST_HEAD(q);
506
507 list_add(&c->stack_list, &q);
508 while (!list_empty(&q)) {
509 struct cpuset *cp;
510 struct cgroup *cont;
511 struct cpuset *child;
512
513 cp = list_first_entry(&q, struct cpuset, stack_list);
514 list_del(q.next);
515
300ed6cb 516 if (cpumask_empty(cp->cpus_allowed))
f5393693
LJ
517 continue;
518
519 if (is_sched_load_balance(cp))
520 update_domain_attr(dattr, cp);
521
ae8086ce
TH
522 rcu_read_lock();
523 cpuset_for_each_child(child, cont, cp)
f5393693 524 list_add_tail(&child->stack_list, &q);
ae8086ce 525 rcu_read_unlock();
f5393693
LJ
526 }
527}
528
029190c5 529/*
cf417141
MK
530 * generate_sched_domains()
531 *
532 * This function builds a partial partition of the systems CPUs
533 * A 'partial partition' is a set of non-overlapping subsets whose
534 * union is a subset of that set.
535 * The output of this function needs to be passed to kernel/sched.c
536 * partition_sched_domains() routine, which will rebuild the scheduler's
537 * load balancing domains (sched domains) as specified by that partial
538 * partition.
029190c5 539 *
45ce80fb 540 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
541 * for a background explanation of this.
542 *
543 * Does not return errors, on the theory that the callers of this
544 * routine would rather not worry about failures to rebuild sched
545 * domains when operating in the severe memory shortage situations
546 * that could cause allocation failures below.
547 *
cf417141 548 * Must be called with cgroup_lock held.
029190c5
PJ
549 *
550 * The three key local variables below are:
aeed6824 551 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
552 * top-down scan of all cpusets. This scan loads a pointer
553 * to each cpuset marked is_sched_load_balance into the
554 * array 'csa'. For our purposes, rebuilding the schedulers
555 * sched domains, we can ignore !is_sched_load_balance cpusets.
556 * csa - (for CpuSet Array) Array of pointers to all the cpusets
557 * that need to be load balanced, for convenient iterative
558 * access by the subsequent code that finds the best partition,
559 * i.e the set of domains (subsets) of CPUs such that the
560 * cpus_allowed of every cpuset marked is_sched_load_balance
561 * is a subset of one of these domains, while there are as
562 * many such domains as possible, each as small as possible.
563 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
564 * the kernel/sched.c routine partition_sched_domains() in a
565 * convenient format, that can be easily compared to the prior
566 * value to determine what partition elements (sched domains)
567 * were changed (added or removed.)
568 *
569 * Finding the best partition (set of domains):
570 * The triple nested loops below over i, j, k scan over the
571 * load balanced cpusets (using the array of cpuset pointers in
572 * csa[]) looking for pairs of cpusets that have overlapping
573 * cpus_allowed, but which don't have the same 'pn' partition
574 * number and gives them in the same partition number. It keeps
575 * looping on the 'restart' label until it can no longer find
576 * any such pairs.
577 *
578 * The union of the cpus_allowed masks from the set of
579 * all cpusets having the same 'pn' value then form the one
580 * element of the partition (one sched domain) to be passed to
581 * partition_sched_domains().
582 */
acc3f5d7 583static int generate_sched_domains(cpumask_var_t **domains,
cf417141 584 struct sched_domain_attr **attributes)
029190c5 585{
cf417141 586 LIST_HEAD(q); /* queue of cpusets to be scanned */
029190c5
PJ
587 struct cpuset *cp; /* scans q */
588 struct cpuset **csa; /* array of all cpuset ptrs */
589 int csn; /* how many cpuset ptrs in csa so far */
590 int i, j, k; /* indices for partition finding loops */
acc3f5d7 591 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 592 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 593 int ndoms = 0; /* number of sched domains in result */
6af866af 594 int nslot; /* next empty doms[] struct cpumask slot */
029190c5 595
029190c5 596 doms = NULL;
1d3504fc 597 dattr = NULL;
cf417141 598 csa = NULL;
029190c5
PJ
599
600 /* Special case for the 99% of systems with one, full, sched domain */
601 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
602 ndoms = 1;
603 doms = alloc_sched_domains(ndoms);
029190c5 604 if (!doms)
cf417141
MK
605 goto done;
606
1d3504fc
HS
607 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
608 if (dattr) {
609 *dattr = SD_ATTR_INIT;
93a65575 610 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 611 }
acc3f5d7 612 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 613
cf417141 614 goto done;
029190c5
PJ
615 }
616
029190c5
PJ
617 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
618 if (!csa)
619 goto done;
620 csn = 0;
621
aeed6824
LZ
622 list_add(&top_cpuset.stack_list, &q);
623 while (!list_empty(&q)) {
029190c5
PJ
624 struct cgroup *cont;
625 struct cpuset *child; /* scans child cpusets of cp */
489a5393 626
aeed6824
LZ
627 cp = list_first_entry(&q, struct cpuset, stack_list);
628 list_del(q.next);
629
300ed6cb 630 if (cpumask_empty(cp->cpus_allowed))
489a5393
LJ
631 continue;
632
f5393693
LJ
633 /*
634 * All child cpusets contain a subset of the parent's cpus, so
635 * just skip them, and then we call update_domain_attr_tree()
636 * to calc relax_domain_level of the corresponding sched
637 * domain.
638 */
639 if (is_sched_load_balance(cp)) {
029190c5 640 csa[csn++] = cp;
f5393693
LJ
641 continue;
642 }
489a5393 643
ae8086ce
TH
644 rcu_read_lock();
645 cpuset_for_each_child(child, cont, cp)
aeed6824 646 list_add_tail(&child->stack_list, &q);
ae8086ce 647 rcu_read_unlock();
029190c5
PJ
648 }
649
650 for (i = 0; i < csn; i++)
651 csa[i]->pn = i;
652 ndoms = csn;
653
654restart:
655 /* Find the best partition (set of sched domains) */
656 for (i = 0; i < csn; i++) {
657 struct cpuset *a = csa[i];
658 int apn = a->pn;
659
660 for (j = 0; j < csn; j++) {
661 struct cpuset *b = csa[j];
662 int bpn = b->pn;
663
664 if (apn != bpn && cpusets_overlap(a, b)) {
665 for (k = 0; k < csn; k++) {
666 struct cpuset *c = csa[k];
667
668 if (c->pn == bpn)
669 c->pn = apn;
670 }
671 ndoms--; /* one less element */
672 goto restart;
673 }
674 }
675 }
676
cf417141
MK
677 /*
678 * Now we know how many domains to create.
679 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
680 */
acc3f5d7 681 doms = alloc_sched_domains(ndoms);
700018e0 682 if (!doms)
cf417141 683 goto done;
cf417141
MK
684
685 /*
686 * The rest of the code, including the scheduler, can deal with
687 * dattr==NULL case. No need to abort if alloc fails.
688 */
1d3504fc 689 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
690
691 for (nslot = 0, i = 0; i < csn; i++) {
692 struct cpuset *a = csa[i];
6af866af 693 struct cpumask *dp;
029190c5
PJ
694 int apn = a->pn;
695
cf417141
MK
696 if (apn < 0) {
697 /* Skip completed partitions */
698 continue;
699 }
700
acc3f5d7 701 dp = doms[nslot];
cf417141
MK
702
703 if (nslot == ndoms) {
704 static int warnings = 10;
705 if (warnings) {
706 printk(KERN_WARNING
707 "rebuild_sched_domains confused:"
708 " nslot %d, ndoms %d, csn %d, i %d,"
709 " apn %d\n",
710 nslot, ndoms, csn, i, apn);
711 warnings--;
029190c5 712 }
cf417141
MK
713 continue;
714 }
029190c5 715
6af866af 716 cpumask_clear(dp);
cf417141
MK
717 if (dattr)
718 *(dattr + nslot) = SD_ATTR_INIT;
719 for (j = i; j < csn; j++) {
720 struct cpuset *b = csa[j];
721
722 if (apn == b->pn) {
300ed6cb 723 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
724 if (dattr)
725 update_domain_attr_tree(dattr + nslot, b);
726
727 /* Done with this partition */
728 b->pn = -1;
029190c5 729 }
029190c5 730 }
cf417141 731 nslot++;
029190c5
PJ
732 }
733 BUG_ON(nslot != ndoms);
734
cf417141
MK
735done:
736 kfree(csa);
737
700018e0
LZ
738 /*
739 * Fallback to the default domain if kmalloc() failed.
740 * See comments in partition_sched_domains().
741 */
742 if (doms == NULL)
743 ndoms = 1;
744
cf417141
MK
745 *domains = doms;
746 *attributes = dattr;
747 return ndoms;
748}
749
750/*
751 * Rebuild scheduler domains.
752 *
699140ba
TH
753 * If the flag 'sched_load_balance' of any cpuset with non-empty
754 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
755 * which has that flag enabled, or if any cpuset with a non-empty
756 * 'cpus' is removed, then call this routine to rebuild the
757 * scheduler's dynamic sched domains.
cf417141 758 *
699140ba 759 * Call with cgroup_mutex held. Takes get_online_cpus().
cf417141 760 */
699140ba 761static void rebuild_sched_domains_locked(void)
cf417141
MK
762{
763 struct sched_domain_attr *attr;
acc3f5d7 764 cpumask_var_t *doms;
cf417141
MK
765 int ndoms;
766
699140ba 767 WARN_ON_ONCE(!cgroup_lock_is_held());
86ef5c9a 768 get_online_cpus();
cf417141
MK
769
770 /* Generate domain masks and attrs */
cf417141 771 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
772
773 /* Have scheduler rebuild the domains */
774 partition_sched_domains(ndoms, doms, attr);
775
86ef5c9a 776 put_online_cpus();
cf417141 777}
db7f47cf 778#else /* !CONFIG_SMP */
699140ba 779static void rebuild_sched_domains_locked(void)
db7f47cf
PM
780{
781}
782
e1b8090b 783static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
784 struct sched_domain_attr **attributes)
785{
786 *domains = NULL;
787 return 1;
788}
789#endif /* CONFIG_SMP */
029190c5 790
cf417141
MK
791void rebuild_sched_domains(void)
792{
699140ba
TH
793 cgroup_lock();
794 rebuild_sched_domains_locked();
795 cgroup_unlock();
029190c5
PJ
796}
797
58f4790b
CW
798/**
799 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
800 * @tsk: task to test
801 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
802 *
2df167a3 803 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
804 * Called for each task in a cgroup by cgroup_scan_tasks().
805 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
806 * words, if its mask is not equal to its cpuset's mask).
053199ed 807 */
9e0c914c
AB
808static int cpuset_test_cpumask(struct task_struct *tsk,
809 struct cgroup_scanner *scan)
58f4790b 810{
300ed6cb 811 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
812 (cgroup_cs(scan->cg))->cpus_allowed);
813}
053199ed 814
58f4790b
CW
815/**
816 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
817 * @tsk: task to test
818 * @scan: struct cgroup_scanner containing the cgroup of the task
819 *
820 * Called by cgroup_scan_tasks() for each task in a cgroup whose
821 * cpus_allowed mask needs to be changed.
822 *
823 * We don't need to re-check for the cgroup/cpuset membership, since we're
824 * holding cgroup_lock() at this point.
825 */
9e0c914c
AB
826static void cpuset_change_cpumask(struct task_struct *tsk,
827 struct cgroup_scanner *scan)
58f4790b 828{
300ed6cb 829 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
830}
831
0b2f630a
MX
832/**
833 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
834 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 835 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
836 *
837 * Called with cgroup_mutex held
838 *
839 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
840 * calling callback functions for each.
841 *
4e74339a
LZ
842 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
843 * if @heap != NULL.
0b2f630a 844 */
4e74339a 845static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
846{
847 struct cgroup_scanner scan;
0b2f630a
MX
848
849 scan.cg = cs->css.cgroup;
850 scan.test_task = cpuset_test_cpumask;
851 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
852 scan.heap = heap;
853 cgroup_scan_tasks(&scan);
0b2f630a
MX
854}
855
58f4790b
CW
856/**
857 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
858 * @cs: the cpuset to consider
859 * @buf: buffer of cpu numbers written to this cpuset
860 */
645fcc9d
LZ
861static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
862 const char *buf)
1da177e4 863{
4e74339a 864 struct ptr_heap heap;
58f4790b
CW
865 int retval;
866 int is_load_balanced;
1da177e4 867
5f054e31 868 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
869 if (cs == &top_cpuset)
870 return -EACCES;
871
6f7f02e7 872 /*
c8d9c90c 873 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
874 * Since cpulist_parse() fails on an empty mask, we special case
875 * that parsing. The validate_change() call ensures that cpusets
876 * with tasks have cpus.
6f7f02e7 877 */
020958b6 878 if (!*buf) {
300ed6cb 879 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 880 } else {
300ed6cb 881 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
882 if (retval < 0)
883 return retval;
37340746 884
6ad4c188 885 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 886 return -EINVAL;
6f7f02e7 887 }
645fcc9d 888 retval = validate_change(cs, trialcs);
85d7b949
DG
889 if (retval < 0)
890 return retval;
029190c5 891
8707d8b8 892 /* Nothing to do if the cpus didn't change */
300ed6cb 893 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 894 return 0;
58f4790b 895
4e74339a
LZ
896 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
897 if (retval)
898 return retval;
899
645fcc9d 900 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 901
3d3f26a7 902 mutex_lock(&callback_mutex);
300ed6cb 903 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 904 mutex_unlock(&callback_mutex);
029190c5 905
8707d8b8
PM
906 /*
907 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 908 * that need an update.
8707d8b8 909 */
4e74339a
LZ
910 update_tasks_cpumask(cs, &heap);
911
912 heap_free(&heap);
58f4790b 913
8707d8b8 914 if (is_load_balanced)
699140ba 915 rebuild_sched_domains_locked();
85d7b949 916 return 0;
1da177e4
LT
917}
918
e4e364e8
PJ
919/*
920 * cpuset_migrate_mm
921 *
922 * Migrate memory region from one set of nodes to another.
923 *
924 * Temporarilly set tasks mems_allowed to target nodes of migration,
925 * so that the migration code can allocate pages on these nodes.
926 *
2df167a3 927 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 928 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
929 * calls. Therefore we don't need to take task_lock around the
930 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 931 * our task's cpuset.
e4e364e8 932 *
e4e364e8
PJ
933 * While the mm_struct we are migrating is typically from some
934 * other task, the task_struct mems_allowed that we are hacking
935 * is for our current task, which must allocate new pages for that
936 * migrating memory region.
e4e364e8
PJ
937 */
938
939static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
940 const nodemask_t *to)
941{
942 struct task_struct *tsk = current;
943
e4e364e8 944 tsk->mems_allowed = *to;
e4e364e8
PJ
945
946 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
947
8793d854 948 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
949}
950
3b6766fe 951/*
58568d2a
MX
952 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
953 * @tsk: the task to change
954 * @newmems: new nodes that the task will be set
955 *
956 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
957 * we structure updates as setting all new allowed nodes, then clearing newly
958 * disallowed ones.
58568d2a
MX
959 */
960static void cpuset_change_task_nodemask(struct task_struct *tsk,
961 nodemask_t *newmems)
962{
b246272e 963 bool need_loop;
89e8a244 964
c0ff7453
MX
965 /*
966 * Allow tasks that have access to memory reserves because they have
967 * been OOM killed to get memory anywhere.
968 */
969 if (unlikely(test_thread_flag(TIF_MEMDIE)))
970 return;
971 if (current->flags & PF_EXITING) /* Let dying task have memory */
972 return;
973
974 task_lock(tsk);
b246272e
DR
975 /*
976 * Determine if a loop is necessary if another thread is doing
977 * get_mems_allowed(). If at least one node remains unchanged and
978 * tsk does not have a mempolicy, then an empty nodemask will not be
979 * possible when mems_allowed is larger than a word.
980 */
981 need_loop = task_has_mempolicy(tsk) ||
982 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 983
cc9a6c87
MG
984 if (need_loop)
985 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 986
cc9a6c87
MG
987 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
988 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
989
990 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 991 tsk->mems_allowed = *newmems;
cc9a6c87
MG
992
993 if (need_loop)
994 write_seqcount_end(&tsk->mems_allowed_seq);
995
c0ff7453 996 task_unlock(tsk);
58568d2a
MX
997}
998
999/*
1000 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1001 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
1002 * memory_migrate flag is set. Called with cgroup_mutex held.
3b6766fe
LZ
1003 */
1004static void cpuset_change_nodemask(struct task_struct *p,
1005 struct cgroup_scanner *scan)
1006{
1007 struct mm_struct *mm;
1008 struct cpuset *cs;
1009 int migrate;
1010 const nodemask_t *oldmem = scan->data;
ee24d379 1011 static nodemask_t newmems; /* protected by cgroup_mutex */
58568d2a
MX
1012
1013 cs = cgroup_cs(scan->cg);
ee24d379 1014 guarantee_online_mems(cs, &newmems);
58568d2a 1015
ee24d379 1016 cpuset_change_task_nodemask(p, &newmems);
53feb297 1017
3b6766fe
LZ
1018 mm = get_task_mm(p);
1019 if (!mm)
1020 return;
1021
3b6766fe
LZ
1022 migrate = is_memory_migrate(cs);
1023
1024 mpol_rebind_mm(mm, &cs->mems_allowed);
1025 if (migrate)
1026 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1027 mmput(mm);
1028}
1029
8793d854
PM
1030static void *cpuset_being_rebound;
1031
0b2f630a
MX
1032/**
1033 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1034 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1035 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1036 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a
MX
1037 *
1038 * Called with cgroup_mutex held
010cfac4
LZ
1039 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1040 * if @heap != NULL.
0b2f630a 1041 */
010cfac4
LZ
1042static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1043 struct ptr_heap *heap)
1da177e4 1044{
3b6766fe 1045 struct cgroup_scanner scan;
59dac16f 1046
846a16bf 1047 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1048
3b6766fe
LZ
1049 scan.cg = cs->css.cgroup;
1050 scan.test_task = NULL;
1051 scan.process_task = cpuset_change_nodemask;
010cfac4 1052 scan.heap = heap;
3b6766fe 1053 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1054
1055 /*
3b6766fe
LZ
1056 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1057 * take while holding tasklist_lock. Forks can happen - the
1058 * mpol_dup() cpuset_being_rebound check will catch such forks,
1059 * and rebind their vma mempolicies too. Because we still hold
1060 * the global cgroup_mutex, we know that no other rebind effort
1061 * will be contending for the global variable cpuset_being_rebound.
4225399a 1062 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1063 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1064 */
010cfac4 1065 cgroup_scan_tasks(&scan);
4225399a 1066
2df167a3 1067 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1068 cpuset_being_rebound = NULL;
1da177e4
LT
1069}
1070
0b2f630a
MX
1071/*
1072 * Handle user request to change the 'mems' memory placement
1073 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1074 * cpusets mems_allowed, and for each task in the cpuset,
1075 * update mems_allowed and rebind task's mempolicy and any vma
1076 * mempolicies and if the cpuset is marked 'memory_migrate',
1077 * migrate the tasks pages to the new memory.
0b2f630a
MX
1078 *
1079 * Call with cgroup_mutex held. May take callback_mutex during call.
1080 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1081 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1082 * their mempolicies to the cpusets new mems_allowed.
1083 */
645fcc9d
LZ
1084static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1085 const char *buf)
0b2f630a 1086{
53feb297 1087 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1088 int retval;
010cfac4 1089 struct ptr_heap heap;
0b2f630a 1090
53feb297
MX
1091 if (!oldmem)
1092 return -ENOMEM;
1093
0b2f630a 1094 /*
38d7bee9 1095 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1096 * it's read-only
1097 */
53feb297
MX
1098 if (cs == &top_cpuset) {
1099 retval = -EACCES;
1100 goto done;
1101 }
0b2f630a 1102
0b2f630a
MX
1103 /*
1104 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1105 * Since nodelist_parse() fails on an empty mask, we special case
1106 * that parsing. The validate_change() call ensures that cpusets
1107 * with tasks have memory.
1108 */
1109 if (!*buf) {
645fcc9d 1110 nodes_clear(trialcs->mems_allowed);
0b2f630a 1111 } else {
645fcc9d 1112 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1113 if (retval < 0)
1114 goto done;
1115
645fcc9d 1116 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1117 node_states[N_MEMORY])) {
53feb297
MX
1118 retval = -EINVAL;
1119 goto done;
1120 }
0b2f630a 1121 }
53feb297
MX
1122 *oldmem = cs->mems_allowed;
1123 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1124 retval = 0; /* Too easy - nothing to do */
1125 goto done;
1126 }
645fcc9d 1127 retval = validate_change(cs, trialcs);
0b2f630a
MX
1128 if (retval < 0)
1129 goto done;
1130
010cfac4
LZ
1131 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1132 if (retval < 0)
1133 goto done;
1134
0b2f630a 1135 mutex_lock(&callback_mutex);
645fcc9d 1136 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1137 mutex_unlock(&callback_mutex);
1138
53feb297 1139 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1140
1141 heap_free(&heap);
0b2f630a 1142done:
53feb297 1143 NODEMASK_FREE(oldmem);
0b2f630a
MX
1144 return retval;
1145}
1146
8793d854
PM
1147int current_cpuset_is_being_rebound(void)
1148{
1149 return task_cs(current) == cpuset_being_rebound;
1150}
1151
5be7a479 1152static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1153{
db7f47cf 1154#ifdef CONFIG_SMP
60495e77 1155 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1156 return -EINVAL;
db7f47cf 1157#endif
1d3504fc
HS
1158
1159 if (val != cs->relax_domain_level) {
1160 cs->relax_domain_level = val;
300ed6cb
LZ
1161 if (!cpumask_empty(cs->cpus_allowed) &&
1162 is_sched_load_balance(cs))
699140ba 1163 rebuild_sched_domains_locked();
1d3504fc
HS
1164 }
1165
1166 return 0;
1167}
1168
950592f7
MX
1169/*
1170 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1171 * @tsk: task to be updated
1172 * @scan: struct cgroup_scanner containing the cgroup of the task
1173 *
1174 * Called by cgroup_scan_tasks() for each task in a cgroup.
1175 *
1176 * We don't need to re-check for the cgroup/cpuset membership, since we're
1177 * holding cgroup_lock() at this point.
1178 */
1179static void cpuset_change_flag(struct task_struct *tsk,
1180 struct cgroup_scanner *scan)
1181{
1182 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1183}
1184
1185/*
1186 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1187 * @cs: the cpuset in which each task's spread flags needs to be changed
1188 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1189 *
1190 * Called with cgroup_mutex held
1191 *
1192 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1193 * calling callback functions for each.
1194 *
1195 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1196 * if @heap != NULL.
1197 */
1198static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1199{
1200 struct cgroup_scanner scan;
1201
1202 scan.cg = cs->css.cgroup;
1203 scan.test_task = NULL;
1204 scan.process_task = cpuset_change_flag;
1205 scan.heap = heap;
1206 cgroup_scan_tasks(&scan);
1207}
1208
1da177e4
LT
1209/*
1210 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1211 * bit: the bit to update (see cpuset_flagbits_t)
1212 * cs: the cpuset to update
1213 * turning_on: whether the flag is being set or cleared
053199ed 1214 *
2df167a3 1215 * Call with cgroup_mutex held.
1da177e4
LT
1216 */
1217
700fe1ab
PM
1218static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1219 int turning_on)
1da177e4 1220{
645fcc9d 1221 struct cpuset *trialcs;
40b6a762 1222 int balance_flag_changed;
950592f7
MX
1223 int spread_flag_changed;
1224 struct ptr_heap heap;
1225 int err;
1da177e4 1226
645fcc9d
LZ
1227 trialcs = alloc_trial_cpuset(cs);
1228 if (!trialcs)
1229 return -ENOMEM;
1230
1da177e4 1231 if (turning_on)
645fcc9d 1232 set_bit(bit, &trialcs->flags);
1da177e4 1233 else
645fcc9d 1234 clear_bit(bit, &trialcs->flags);
1da177e4 1235
645fcc9d 1236 err = validate_change(cs, trialcs);
85d7b949 1237 if (err < 0)
645fcc9d 1238 goto out;
029190c5 1239
950592f7
MX
1240 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1241 if (err < 0)
1242 goto out;
1243
029190c5 1244 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1245 is_sched_load_balance(trialcs));
029190c5 1246
950592f7
MX
1247 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1248 || (is_spread_page(cs) != is_spread_page(trialcs)));
1249
3d3f26a7 1250 mutex_lock(&callback_mutex);
645fcc9d 1251 cs->flags = trialcs->flags;
3d3f26a7 1252 mutex_unlock(&callback_mutex);
85d7b949 1253
300ed6cb 1254 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1255 rebuild_sched_domains_locked();
029190c5 1256
950592f7
MX
1257 if (spread_flag_changed)
1258 update_tasks_flags(cs, &heap);
1259 heap_free(&heap);
645fcc9d
LZ
1260out:
1261 free_trial_cpuset(trialcs);
1262 return err;
1da177e4
LT
1263}
1264
3e0d98b9 1265/*
80f7228b 1266 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1267 *
1268 * These routines manage a digitally filtered, constant time based,
1269 * event frequency meter. There are four routines:
1270 * fmeter_init() - initialize a frequency meter.
1271 * fmeter_markevent() - called each time the event happens.
1272 * fmeter_getrate() - returns the recent rate of such events.
1273 * fmeter_update() - internal routine used to update fmeter.
1274 *
1275 * A common data structure is passed to each of these routines,
1276 * which is used to keep track of the state required to manage the
1277 * frequency meter and its digital filter.
1278 *
1279 * The filter works on the number of events marked per unit time.
1280 * The filter is single-pole low-pass recursive (IIR). The time unit
1281 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1282 * simulate 3 decimal digits of precision (multiplied by 1000).
1283 *
1284 * With an FM_COEF of 933, and a time base of 1 second, the filter
1285 * has a half-life of 10 seconds, meaning that if the events quit
1286 * happening, then the rate returned from the fmeter_getrate()
1287 * will be cut in half each 10 seconds, until it converges to zero.
1288 *
1289 * It is not worth doing a real infinitely recursive filter. If more
1290 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1291 * just compute FM_MAXTICKS ticks worth, by which point the level
1292 * will be stable.
1293 *
1294 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1295 * arithmetic overflow in the fmeter_update() routine.
1296 *
1297 * Given the simple 32 bit integer arithmetic used, this meter works
1298 * best for reporting rates between one per millisecond (msec) and
1299 * one per 32 (approx) seconds. At constant rates faster than one
1300 * per msec it maxes out at values just under 1,000,000. At constant
1301 * rates between one per msec, and one per second it will stabilize
1302 * to a value N*1000, where N is the rate of events per second.
1303 * At constant rates between one per second and one per 32 seconds,
1304 * it will be choppy, moving up on the seconds that have an event,
1305 * and then decaying until the next event. At rates slower than
1306 * about one in 32 seconds, it decays all the way back to zero between
1307 * each event.
1308 */
1309
1310#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1311#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1312#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1313#define FM_SCALE 1000 /* faux fixed point scale */
1314
1315/* Initialize a frequency meter */
1316static void fmeter_init(struct fmeter *fmp)
1317{
1318 fmp->cnt = 0;
1319 fmp->val = 0;
1320 fmp->time = 0;
1321 spin_lock_init(&fmp->lock);
1322}
1323
1324/* Internal meter update - process cnt events and update value */
1325static void fmeter_update(struct fmeter *fmp)
1326{
1327 time_t now = get_seconds();
1328 time_t ticks = now - fmp->time;
1329
1330 if (ticks == 0)
1331 return;
1332
1333 ticks = min(FM_MAXTICKS, ticks);
1334 while (ticks-- > 0)
1335 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1336 fmp->time = now;
1337
1338 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1339 fmp->cnt = 0;
1340}
1341
1342/* Process any previous ticks, then bump cnt by one (times scale). */
1343static void fmeter_markevent(struct fmeter *fmp)
1344{
1345 spin_lock(&fmp->lock);
1346 fmeter_update(fmp);
1347 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1348 spin_unlock(&fmp->lock);
1349}
1350
1351/* Process any previous ticks, then return current value. */
1352static int fmeter_getrate(struct fmeter *fmp)
1353{
1354 int val;
1355
1356 spin_lock(&fmp->lock);
1357 fmeter_update(fmp);
1358 val = fmp->val;
1359 spin_unlock(&fmp->lock);
1360 return val;
1361}
1362
2df167a3 1363/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
761b3ef5 1364static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1365{
2f7ee569 1366 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1367 struct task_struct *task;
1368 int ret;
1da177e4 1369
300ed6cb 1370 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1da177e4 1371 return -ENOSPC;
9985b0ba 1372
bb9d97b6
TH
1373 cgroup_taskset_for_each(task, cgrp, tset) {
1374 /*
1375 * Kthreads bound to specific cpus cannot be moved to a new
1376 * cpuset; we cannot change their cpu affinity and
1377 * isolating such threads by their set of allowed nodes is
1378 * unnecessary. Thus, cpusets are not applicable for such
1379 * threads. This prevents checking for success of
1380 * set_cpus_allowed_ptr() on all attached tasks before
1381 * cpus_allowed may be changed.
1382 */
1383 if (task->flags & PF_THREAD_BOUND)
1384 return -EINVAL;
1385 if ((ret = security_task_setscheduler(task)))
1386 return ret;
1387 }
f780bdb7 1388
94196f51 1389 return 0;
8793d854 1390}
1da177e4 1391
4e4c9a14
TH
1392/*
1393 * Protected by cgroup_mutex. cpus_attach is used only by cpuset_attach()
1394 * but we can't allocate it dynamically there. Define it global and
1395 * allocate from cpuset_init().
1396 */
1397static cpumask_var_t cpus_attach;
1398
761b3ef5 1399static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1400{
4e4c9a14
TH
1401 /* static bufs protected by cgroup_mutex */
1402 static nodemask_t cpuset_attach_nodemask_from;
1403 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1404 struct mm_struct *mm;
bb9d97b6
TH
1405 struct task_struct *task;
1406 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1407 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1408 struct cpuset *cs = cgroup_cs(cgrp);
1409 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1410
4e4c9a14
TH
1411 /* prepare for attach */
1412 if (cs == &top_cpuset)
1413 cpumask_copy(cpus_attach, cpu_possible_mask);
1414 else
1415 guarantee_online_cpus(cs, cpus_attach);
1416
1417 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1418
bb9d97b6
TH
1419 cgroup_taskset_for_each(task, cgrp, tset) {
1420 /*
1421 * can_attach beforehand should guarantee that this doesn't
1422 * fail. TODO: have a better way to handle failure here
1423 */
1424 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1425
1426 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1427 cpuset_update_task_spread_flag(cs, task);
1428 }
22fb52dd 1429
f780bdb7
BB
1430 /*
1431 * Change mm, possibly for multiple threads in a threadgroup. This is
1432 * expensive and may sleep.
1433 */
1434 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1435 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1436 mm = get_task_mm(leader);
4225399a 1437 if (mm) {
f780bdb7 1438 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1439 if (is_memory_migrate(cs))
f780bdb7
BB
1440 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1441 &cpuset_attach_nodemask_to);
4225399a
PJ
1442 mmput(mm);
1443 }
1da177e4
LT
1444}
1445
1446/* The various types of files and directories in a cpuset file system */
1447
1448typedef enum {
45b07ef3 1449 FILE_MEMORY_MIGRATE,
1da177e4
LT
1450 FILE_CPULIST,
1451 FILE_MEMLIST,
1452 FILE_CPU_EXCLUSIVE,
1453 FILE_MEM_EXCLUSIVE,
78608366 1454 FILE_MEM_HARDWALL,
029190c5 1455 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1456 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1457 FILE_MEMORY_PRESSURE_ENABLED,
1458 FILE_MEMORY_PRESSURE,
825a46af
PJ
1459 FILE_SPREAD_PAGE,
1460 FILE_SPREAD_SLAB,
1da177e4
LT
1461} cpuset_filetype_t;
1462
700fe1ab
PM
1463static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1464{
1465 int retval = 0;
1466 struct cpuset *cs = cgroup_cs(cgrp);
1467 cpuset_filetype_t type = cft->private;
1468
e3712395 1469 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1470 return -ENODEV;
700fe1ab
PM
1471
1472 switch (type) {
1da177e4 1473 case FILE_CPU_EXCLUSIVE:
700fe1ab 1474 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1475 break;
1476 case FILE_MEM_EXCLUSIVE:
700fe1ab 1477 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1478 break;
78608366
PM
1479 case FILE_MEM_HARDWALL:
1480 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1481 break;
029190c5 1482 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1483 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1484 break;
45b07ef3 1485 case FILE_MEMORY_MIGRATE:
700fe1ab 1486 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1487 break;
3e0d98b9 1488 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1489 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1490 break;
1491 case FILE_MEMORY_PRESSURE:
1492 retval = -EACCES;
1493 break;
825a46af 1494 case FILE_SPREAD_PAGE:
700fe1ab 1495 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1496 break;
1497 case FILE_SPREAD_SLAB:
700fe1ab 1498 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1499 break;
1da177e4
LT
1500 default:
1501 retval = -EINVAL;
700fe1ab 1502 break;
1da177e4 1503 }
8793d854 1504 cgroup_unlock();
1da177e4
LT
1505 return retval;
1506}
1507
5be7a479
PM
1508static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1509{
1510 int retval = 0;
1511 struct cpuset *cs = cgroup_cs(cgrp);
1512 cpuset_filetype_t type = cft->private;
1513
e3712395 1514 if (!cgroup_lock_live_group(cgrp))
5be7a479 1515 return -ENODEV;
e3712395 1516
5be7a479
PM
1517 switch (type) {
1518 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1519 retval = update_relax_domain_level(cs, val);
1520 break;
1521 default:
1522 retval = -EINVAL;
1523 break;
1524 }
1525 cgroup_unlock();
1526 return retval;
1527}
1528
e3712395
PM
1529/*
1530 * Common handling for a write to a "cpus" or "mems" file.
1531 */
1532static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1533 const char *buf)
1534{
1535 int retval = 0;
645fcc9d
LZ
1536 struct cpuset *cs = cgroup_cs(cgrp);
1537 struct cpuset *trialcs;
e3712395 1538
3a5a6d0c
TH
1539 /*
1540 * CPU or memory hotunplug may leave @cs w/o any execution
1541 * resources, in which case the hotplug code asynchronously updates
1542 * configuration and transfers all tasks to the nearest ancestor
1543 * which can execute.
1544 *
1545 * As writes to "cpus" or "mems" may restore @cs's execution
1546 * resources, wait for the previously scheduled operations before
1547 * proceeding, so that we don't end up keep removing tasks added
1548 * after execution capability is restored.
1549 */
1550 flush_work(&cpuset_hotplug_work);
1551
e3712395
PM
1552 if (!cgroup_lock_live_group(cgrp))
1553 return -ENODEV;
1554
645fcc9d 1555 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1556 if (!trialcs) {
1557 retval = -ENOMEM;
1558 goto out;
1559 }
645fcc9d 1560
e3712395
PM
1561 switch (cft->private) {
1562 case FILE_CPULIST:
645fcc9d 1563 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1564 break;
1565 case FILE_MEMLIST:
645fcc9d 1566 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1567 break;
1568 default:
1569 retval = -EINVAL;
1570 break;
1571 }
645fcc9d
LZ
1572
1573 free_trial_cpuset(trialcs);
b75f38d6 1574out:
e3712395
PM
1575 cgroup_unlock();
1576 return retval;
1577}
1578
1da177e4
LT
1579/*
1580 * These ascii lists should be read in a single call, by using a user
1581 * buffer large enough to hold the entire map. If read in smaller
1582 * chunks, there is no guarantee of atomicity. Since the display format
1583 * used, list of ranges of sequential numbers, is variable length,
1584 * and since these maps can change value dynamically, one could read
1585 * gibberish by doing partial reads while a list was changing.
1586 * A single large read to a buffer that crosses a page boundary is
1587 * ok, because the result being copied to user land is not recomputed
1588 * across a page fault.
1589 */
1590
9303e0c4 1591static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1592{
9303e0c4 1593 size_t count;
1da177e4 1594
3d3f26a7 1595 mutex_lock(&callback_mutex);
9303e0c4 1596 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1597 mutex_unlock(&callback_mutex);
1da177e4 1598
9303e0c4 1599 return count;
1da177e4
LT
1600}
1601
9303e0c4 1602static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1603{
9303e0c4 1604 size_t count;
1da177e4 1605
3d3f26a7 1606 mutex_lock(&callback_mutex);
9303e0c4 1607 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1608 mutex_unlock(&callback_mutex);
1da177e4 1609
9303e0c4 1610 return count;
1da177e4
LT
1611}
1612
8793d854
PM
1613static ssize_t cpuset_common_file_read(struct cgroup *cont,
1614 struct cftype *cft,
1615 struct file *file,
1616 char __user *buf,
1617 size_t nbytes, loff_t *ppos)
1da177e4 1618{
8793d854 1619 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1620 cpuset_filetype_t type = cft->private;
1621 char *page;
1622 ssize_t retval = 0;
1623 char *s;
1da177e4 1624
e12ba74d 1625 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1626 return -ENOMEM;
1627
1628 s = page;
1629
1630 switch (type) {
1631 case FILE_CPULIST:
1632 s += cpuset_sprintf_cpulist(s, cs);
1633 break;
1634 case FILE_MEMLIST:
1635 s += cpuset_sprintf_memlist(s, cs);
1636 break;
1da177e4
LT
1637 default:
1638 retval = -EINVAL;
1639 goto out;
1640 }
1641 *s++ = '\n';
1da177e4 1642
eacaa1f5 1643 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1644out:
1645 free_page((unsigned long)page);
1646 return retval;
1647}
1648
700fe1ab
PM
1649static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1650{
1651 struct cpuset *cs = cgroup_cs(cont);
1652 cpuset_filetype_t type = cft->private;
1653 switch (type) {
1654 case FILE_CPU_EXCLUSIVE:
1655 return is_cpu_exclusive(cs);
1656 case FILE_MEM_EXCLUSIVE:
1657 return is_mem_exclusive(cs);
78608366
PM
1658 case FILE_MEM_HARDWALL:
1659 return is_mem_hardwall(cs);
700fe1ab
PM
1660 case FILE_SCHED_LOAD_BALANCE:
1661 return is_sched_load_balance(cs);
1662 case FILE_MEMORY_MIGRATE:
1663 return is_memory_migrate(cs);
1664 case FILE_MEMORY_PRESSURE_ENABLED:
1665 return cpuset_memory_pressure_enabled;
1666 case FILE_MEMORY_PRESSURE:
1667 return fmeter_getrate(&cs->fmeter);
1668 case FILE_SPREAD_PAGE:
1669 return is_spread_page(cs);
1670 case FILE_SPREAD_SLAB:
1671 return is_spread_slab(cs);
1672 default:
1673 BUG();
1674 }
cf417141
MK
1675
1676 /* Unreachable but makes gcc happy */
1677 return 0;
700fe1ab 1678}
1da177e4 1679
5be7a479
PM
1680static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1681{
1682 struct cpuset *cs = cgroup_cs(cont);
1683 cpuset_filetype_t type = cft->private;
1684 switch (type) {
1685 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1686 return cs->relax_domain_level;
1687 default:
1688 BUG();
1689 }
cf417141
MK
1690
1691 /* Unrechable but makes gcc happy */
1692 return 0;
5be7a479
PM
1693}
1694
1da177e4
LT
1695
1696/*
1697 * for the common functions, 'private' gives the type of file
1698 */
1699
addf2c73
PM
1700static struct cftype files[] = {
1701 {
1702 .name = "cpus",
1703 .read = cpuset_common_file_read,
e3712395
PM
1704 .write_string = cpuset_write_resmask,
1705 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1706 .private = FILE_CPULIST,
1707 },
1708
1709 {
1710 .name = "mems",
1711 .read = cpuset_common_file_read,
e3712395
PM
1712 .write_string = cpuset_write_resmask,
1713 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1714 .private = FILE_MEMLIST,
1715 },
1716
1717 {
1718 .name = "cpu_exclusive",
1719 .read_u64 = cpuset_read_u64,
1720 .write_u64 = cpuset_write_u64,
1721 .private = FILE_CPU_EXCLUSIVE,
1722 },
1723
1724 {
1725 .name = "mem_exclusive",
1726 .read_u64 = cpuset_read_u64,
1727 .write_u64 = cpuset_write_u64,
1728 .private = FILE_MEM_EXCLUSIVE,
1729 },
1730
78608366
PM
1731 {
1732 .name = "mem_hardwall",
1733 .read_u64 = cpuset_read_u64,
1734 .write_u64 = cpuset_write_u64,
1735 .private = FILE_MEM_HARDWALL,
1736 },
1737
addf2c73
PM
1738 {
1739 .name = "sched_load_balance",
1740 .read_u64 = cpuset_read_u64,
1741 .write_u64 = cpuset_write_u64,
1742 .private = FILE_SCHED_LOAD_BALANCE,
1743 },
1744
1745 {
1746 .name = "sched_relax_domain_level",
5be7a479
PM
1747 .read_s64 = cpuset_read_s64,
1748 .write_s64 = cpuset_write_s64,
addf2c73
PM
1749 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1750 },
1751
1752 {
1753 .name = "memory_migrate",
1754 .read_u64 = cpuset_read_u64,
1755 .write_u64 = cpuset_write_u64,
1756 .private = FILE_MEMORY_MIGRATE,
1757 },
1758
1759 {
1760 .name = "memory_pressure",
1761 .read_u64 = cpuset_read_u64,
1762 .write_u64 = cpuset_write_u64,
1763 .private = FILE_MEMORY_PRESSURE,
099fca32 1764 .mode = S_IRUGO,
addf2c73
PM
1765 },
1766
1767 {
1768 .name = "memory_spread_page",
1769 .read_u64 = cpuset_read_u64,
1770 .write_u64 = cpuset_write_u64,
1771 .private = FILE_SPREAD_PAGE,
1772 },
1773
1774 {
1775 .name = "memory_spread_slab",
1776 .read_u64 = cpuset_read_u64,
1777 .write_u64 = cpuset_write_u64,
1778 .private = FILE_SPREAD_SLAB,
1779 },
3e0d98b9 1780
4baf6e33
TH
1781 {
1782 .name = "memory_pressure_enabled",
1783 .flags = CFTYPE_ONLY_ON_ROOT,
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_MEMORY_PRESSURE_ENABLED,
1787 },
1da177e4 1788
4baf6e33
TH
1789 { } /* terminate */
1790};
1da177e4
LT
1791
1792/*
92fb9748 1793 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1794 * cont: control group that the new cpuset will be part of
1da177e4
LT
1795 */
1796
92fb9748 1797static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1798{
c8f699bb 1799 struct cpuset *cs;
1da177e4 1800
c8f699bb 1801 if (!cont->parent)
8793d854 1802 return &top_cpuset.css;
033fa1c5 1803
c8f699bb 1804 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1805 if (!cs)
8793d854 1806 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1807 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1808 kfree(cs);
1809 return ERR_PTR(-ENOMEM);
1810 }
1da177e4 1811
029190c5 1812 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1813 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1814 nodes_clear(cs->mems_allowed);
3e0d98b9 1815 fmeter_init(&cs->fmeter);
8d033948 1816 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1817 cs->relax_domain_level = -1;
c8f699bb
TH
1818 cs->parent = cgroup_cs(cont->parent);
1819
1820 return &cs->css;
1821}
1822
1823static int cpuset_css_online(struct cgroup *cgrp)
1824{
1825 struct cpuset *cs = cgroup_cs(cgrp);
1826 struct cpuset *parent = cs->parent;
ae8086ce
TH
1827 struct cpuset *tmp_cs;
1828 struct cgroup *pos_cg;
c8f699bb
TH
1829
1830 if (!parent)
1831 return 0;
1832
efeb77b2 1833 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1834 if (is_spread_page(parent))
1835 set_bit(CS_SPREAD_PAGE, &cs->flags);
1836 if (is_spread_slab(parent))
1837 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1838
202f72d5 1839 number_of_cpusets++;
033fa1c5 1840
c8f699bb
TH
1841 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
1842 return 0;
033fa1c5
TH
1843
1844 /*
1845 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1846 * set. This flag handling is implemented in cgroup core for
1847 * histrical reasons - the flag may be specified during mount.
1848 *
1849 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1850 * refuse to clone the configuration - thereby refusing the task to
1851 * be entered, and as a result refusing the sys_unshare() or
1852 * clone() which initiated it. If this becomes a problem for some
1853 * users who wish to allow that scenario, then this could be
1854 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1855 * (and likewise for mems) to the new cgroup.
1856 */
ae8086ce
TH
1857 rcu_read_lock();
1858 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1859 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1860 rcu_read_unlock();
c8f699bb 1861 return 0;
ae8086ce 1862 }
033fa1c5 1863 }
ae8086ce 1864 rcu_read_unlock();
033fa1c5
TH
1865
1866 mutex_lock(&callback_mutex);
1867 cs->mems_allowed = parent->mems_allowed;
1868 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1869 mutex_unlock(&callback_mutex);
c8f699bb
TH
1870
1871 return 0;
1872}
1873
1874static void cpuset_css_offline(struct cgroup *cgrp)
1875{
1876 struct cpuset *cs = cgroup_cs(cgrp);
1877
1878 /* css_offline is called w/o cgroup_mutex, grab it */
1879 cgroup_lock();
1880
1881 if (is_sched_load_balance(cs))
1882 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1883
1884 number_of_cpusets--;
efeb77b2 1885 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1886
1887 cgroup_unlock();
1da177e4
LT
1888}
1889
029190c5 1890/*
029190c5
PJ
1891 * If the cpuset being removed has its flag 'sched_load_balance'
1892 * enabled, then simulate turning sched_load_balance off, which
699140ba 1893 * will call rebuild_sched_domains_locked().
029190c5
PJ
1894 */
1895
92fb9748 1896static void cpuset_css_free(struct cgroup *cont)
1da177e4 1897{
8793d854 1898 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1899
300ed6cb 1900 free_cpumask_var(cs->cpus_allowed);
8793d854 1901 kfree(cs);
1da177e4
LT
1902}
1903
8793d854
PM
1904struct cgroup_subsys cpuset_subsys = {
1905 .name = "cpuset",
92fb9748 1906 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1907 .css_online = cpuset_css_online,
1908 .css_offline = cpuset_css_offline,
92fb9748 1909 .css_free = cpuset_css_free,
8793d854
PM
1910 .can_attach = cpuset_can_attach,
1911 .attach = cpuset_attach,
8793d854 1912 .subsys_id = cpuset_subsys_id,
4baf6e33 1913 .base_cftypes = files,
8793d854
PM
1914 .early_init = 1,
1915};
1916
1da177e4
LT
1917/**
1918 * cpuset_init - initialize cpusets at system boot
1919 *
1920 * Description: Initialize top_cpuset and the cpuset internal file system,
1921 **/
1922
1923int __init cpuset_init(void)
1924{
8793d854 1925 int err = 0;
1da177e4 1926
58568d2a
MX
1927 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1928 BUG();
1929
300ed6cb 1930 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1931 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1932
3e0d98b9 1933 fmeter_init(&top_cpuset.fmeter);
029190c5 1934 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1935 top_cpuset.relax_domain_level = -1;
1da177e4 1936
1da177e4
LT
1937 err = register_filesystem(&cpuset_fs_type);
1938 if (err < 0)
8793d854
PM
1939 return err;
1940
2341d1b6
LZ
1941 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
1942 BUG();
1943
202f72d5 1944 number_of_cpusets = 1;
8793d854 1945 return 0;
1da177e4
LT
1946}
1947
956db3ca
CW
1948/**
1949 * cpuset_do_move_task - move a given task to another cpuset
1950 * @tsk: pointer to task_struct the task to move
1951 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1952 *
1953 * Called by cgroup_scan_tasks() for each task in a cgroup.
1954 * Return nonzero to stop the walk through the tasks.
1955 */
9e0c914c
AB
1956static void cpuset_do_move_task(struct task_struct *tsk,
1957 struct cgroup_scanner *scan)
956db3ca 1958{
7f81b1ae 1959 struct cgroup *new_cgroup = scan->data;
956db3ca 1960
7f81b1ae 1961 cgroup_attach_task(new_cgroup, tsk);
956db3ca
CW
1962}
1963
1964/**
1965 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1966 * @from: cpuset in which the tasks currently reside
1967 * @to: cpuset to which the tasks will be moved
1968 *
c8d9c90c
PJ
1969 * Called with cgroup_mutex held
1970 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1971 *
1972 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1973 * calling callback functions for each.
1974 */
1975static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1976{
7f81b1ae 1977 struct cgroup_scanner scan;
956db3ca 1978
7f81b1ae
LZ
1979 scan.cg = from->css.cgroup;
1980 scan.test_task = NULL; /* select all tasks in cgroup */
1981 scan.process_task = cpuset_do_move_task;
1982 scan.heap = NULL;
1983 scan.data = to->css.cgroup;
956db3ca 1984
7f81b1ae 1985 if (cgroup_scan_tasks(&scan))
956db3ca
CW
1986 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1987 "cgroup_scan_tasks failed\n");
1988}
1989
b1aac8bb 1990/*
cf417141 1991 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
1992 * or memory nodes, we need to walk over the cpuset hierarchy,
1993 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1994 * last CPU or node from a cpuset, then move the tasks in the empty
1995 * cpuset to its next-highest non-empty parent.
b1aac8bb 1996 *
c8d9c90c
PJ
1997 * Called with cgroup_mutex held
1998 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1999 */
956db3ca
CW
2000static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2001{
2002 struct cpuset *parent;
2003
956db3ca
CW
2004 /*
2005 * Find its next-highest non-empty parent, (top cpuset
2006 * has online cpus, so can't be empty).
2007 */
2008 parent = cs->parent;
300ed6cb 2009 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2010 nodes_empty(parent->mems_allowed))
956db3ca 2011 parent = parent->parent;
956db3ca
CW
2012
2013 move_member_tasks_to_cpuset(cs, parent);
2014}
2015
80d1fa64
SB
2016/*
2017 * Helper function to traverse cpusets.
2018 * It can be used to walk the cpuset tree from top to bottom, completing
2019 * one layer before dropping down to the next (thus always processing a
2020 * node before any of its children).
2021 */
2022static struct cpuset *cpuset_next(struct list_head *queue)
2023{
2024 struct cpuset *cp;
2025 struct cpuset *child; /* scans child cpusets of cp */
2026 struct cgroup *cont;
2027
2028 if (list_empty(queue))
2029 return NULL;
2030
2031 cp = list_first_entry(queue, struct cpuset, stack_list);
2032 list_del(queue->next);
ae8086ce
TH
2033 rcu_read_lock();
2034 cpuset_for_each_child(child, cont, cp)
80d1fa64 2035 list_add_tail(&child->stack_list, queue);
ae8086ce 2036 rcu_read_unlock();
80d1fa64
SB
2037
2038 return cp;
2039}
2040
deb7aa30 2041/**
8d033948 2042 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2043 * @cs: cpuset in interest
956db3ca 2044 *
deb7aa30
TH
2045 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2046 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2047 * all its tasks are moved to the nearest ancestor with both resources.
956db3ca 2048 */
8d033948 2049static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
b1aac8bb 2050{
deb7aa30
TH
2051 static cpumask_t off_cpus;
2052 static nodemask_t off_mems, tmp_mems;
8d033948 2053 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
7ddf96b0 2054
8d033948 2055 cgroup_lock();
7ddf96b0 2056
deb7aa30
TH
2057 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2058 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
7ddf96b0 2059
deb7aa30
TH
2060 /* remove offline cpus from @cs */
2061 if (!cpumask_empty(&off_cpus)) {
2062 mutex_lock(&callback_mutex);
2063 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2064 mutex_unlock(&callback_mutex);
2065 update_tasks_cpumask(cs, NULL);
2066 }
b4501295 2067
deb7aa30
TH
2068 /* remove offline mems from @cs */
2069 if (!nodes_empty(off_mems)) {
2070 tmp_mems = cs->mems_allowed;
2071 mutex_lock(&callback_mutex);
2072 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2073 mutex_unlock(&callback_mutex);
2074 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2075 }
deb7aa30
TH
2076
2077 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
2078 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2079
2080 cgroup_unlock();
2081
2082 /* the following may free @cs, should be the last operation */
2083 css_put(&cs->css);
2084}
2085
2086/**
2087 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2088 * @cs: cpuset of interest
2089 *
2090 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2091 * memory masks according to top_cpuset.
2092 */
2093static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2094{
2095 /*
2096 * Pin @cs. The refcnt will be released when the work item
2097 * finishes executing.
2098 */
2099 if (!css_tryget(&cs->css))
2100 return;
2101
2102 /*
2103 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2104 * cpuset_propagate_hotplug_wq is ordered and propagation will
2105 * happen in the order this function is called.
2106 */
2107 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2108 css_put(&cs->css);
b1aac8bb
PJ
2109}
2110
deb7aa30 2111/**
3a5a6d0c 2112 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
d35be8ba 2113 *
deb7aa30
TH
2114 * This function is called after either CPU or memory configuration has
2115 * changed and updates cpuset accordingly. The top_cpuset is always
2116 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2117 * order to make cpusets transparent (of no affect) on systems that are
2118 * actively using CPU hotplug but making no active use of cpusets.
cf417141 2119 *
deb7aa30
TH
2120 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2121 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2122 * descendants.
7ddf96b0 2123 *
deb7aa30
TH
2124 * Note that CPU offlining during suspend is ignored. We don't modify
2125 * cpusets across suspend/resume cycles at all.
4c4d50f7 2126 */
3a5a6d0c 2127static void cpuset_hotplug_workfn(struct work_struct *work)
4c4d50f7 2128{
deb7aa30
TH
2129 static cpumask_t new_cpus, tmp_cpus;
2130 static nodemask_t new_mems, tmp_mems;
2131 bool cpus_updated, mems_updated;
2132 bool cpus_offlined, mems_offlined;
cf417141 2133
cf417141 2134 cgroup_lock();
7ddf96b0 2135
deb7aa30
TH
2136 /* fetch the available cpus/mems and find out which changed how */
2137 cpumask_copy(&new_cpus, cpu_active_mask);
2138 new_mems = node_states[N_MEMORY];
2139
2140 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2141 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2142 &new_cpus);
2143
2144 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2145 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2146 mems_offlined = !nodes_empty(tmp_mems);
2147
2148 /* synchronize cpus_allowed to cpu_active_mask */
2149 if (cpus_updated) {
2150 mutex_lock(&callback_mutex);
2151 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2152 mutex_unlock(&callback_mutex);
2153 /* we don't mess with cpumasks of tasks in top_cpuset */
2154 }
2155
2156 /* synchronize mems_allowed to N_MEMORY */
2157 if (mems_updated) {
2158 tmp_mems = top_cpuset.mems_allowed;
2159 mutex_lock(&callback_mutex);
2160 top_cpuset.mems_allowed = new_mems;
2161 mutex_unlock(&callback_mutex);
2162 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2163 }
2164
2165 /* if cpus or mems went down, we need to propagate to descendants */
2166 if (cpus_offlined || mems_offlined) {
2167 struct cpuset *cs;
2168 LIST_HEAD(queue);
2169
2170 list_add_tail(&top_cpuset.stack_list, &queue);
2171 while ((cs = cpuset_next(&queue)))
2172 if (cs != &top_cpuset)
8d033948 2173 schedule_cpuset_propagate_hotplug(cs);
deb7aa30 2174 }
7ddf96b0 2175
cf417141
MK
2176 cgroup_unlock();
2177
8d033948
TH
2178 /* wait for propagations to finish */
2179 flush_workqueue(cpuset_propagate_hotplug_wq);
2180
deb7aa30
TH
2181 /* rebuild sched domains if cpus_allowed has changed */
2182 if (cpus_updated) {
2183 struct sched_domain_attr *attr;
2184 cpumask_var_t *doms;
2185 int ndoms;
2186
2187 cgroup_lock();
2188 ndoms = generate_sched_domains(&doms, &attr);
2189 cgroup_unlock();
2190
2191 partition_sched_domains(ndoms, doms, attr);
2192 }
2193}
2194
2195void cpuset_update_active_cpus(bool cpu_online)
2196{
3a5a6d0c
TH
2197 /*
2198 * We're inside cpu hotplug critical region which usually nests
2199 * inside cgroup synchronization. Bounce actual hotplug processing
2200 * to a work item to avoid reverse locking order.
2201 *
2202 * We still need to do partition_sched_domains() synchronously;
2203 * otherwise, the scheduler will get confused and put tasks to the
2204 * dead CPU. Fall back to the default single domain.
2205 * cpuset_hotplug_workfn() will rebuild it as necessary.
2206 */
2207 partition_sched_domains(1, NULL, NULL);
2208 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2209}
4c4d50f7 2210
b1aac8bb 2211#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2212/*
38d7bee9
LJ
2213 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2214 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2215 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2216 */
f481891f
MX
2217static int cpuset_track_online_nodes(struct notifier_block *self,
2218 unsigned long action, void *arg)
38837fc7 2219{
3a5a6d0c 2220 schedule_work(&cpuset_hotplug_work);
f481891f 2221 return NOTIFY_OK;
38837fc7
PJ
2222}
2223#endif
2224
1da177e4
LT
2225/**
2226 * cpuset_init_smp - initialize cpus_allowed
2227 *
2228 * Description: Finish top cpuset after cpu, node maps are initialized
2229 **/
2230
2231void __init cpuset_init_smp(void)
2232{
6ad4c188 2233 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2234 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2235
f481891f 2236 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
8d033948
TH
2237
2238 cpuset_propagate_hotplug_wq =
2239 alloc_ordered_workqueue("cpuset_hotplug", 0);
2240 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2241}
2242
2243/**
1da177e4
LT
2244 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2245 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2246 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2247 *
300ed6cb 2248 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2249 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2250 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2251 * tasks cpuset.
2252 **/
2253
6af866af 2254void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2255{
3d3f26a7 2256 mutex_lock(&callback_mutex);
909d75a3 2257 task_lock(tsk);
f9a86fcb 2258 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2259 task_unlock(tsk);
897f0b3c 2260 mutex_unlock(&callback_mutex);
1da177e4
LT
2261}
2262
2baab4e9 2263void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2264{
2265 const struct cpuset *cs;
9084bb82
ON
2266
2267 rcu_read_lock();
2268 cs = task_cs(tsk);
2269 if (cs)
1e1b6c51 2270 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2271 rcu_read_unlock();
2272
2273 /*
2274 * We own tsk->cpus_allowed, nobody can change it under us.
2275 *
2276 * But we used cs && cs->cpus_allowed lockless and thus can
2277 * race with cgroup_attach_task() or update_cpumask() and get
2278 * the wrong tsk->cpus_allowed. However, both cases imply the
2279 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2280 * which takes task_rq_lock().
2281 *
2282 * If we are called after it dropped the lock we must see all
2283 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2284 * set any mask even if it is not right from task_cs() pov,
2285 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2286 *
2287 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2288 * if required.
9084bb82 2289 */
9084bb82
ON
2290}
2291
1da177e4
LT
2292void cpuset_init_current_mems_allowed(void)
2293{
f9a86fcb 2294 nodes_setall(current->mems_allowed);
1da177e4
LT
2295}
2296
909d75a3
PJ
2297/**
2298 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2299 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2300 *
2301 * Description: Returns the nodemask_t mems_allowed of the cpuset
2302 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2303 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2304 * tasks cpuset.
2305 **/
2306
2307nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2308{
2309 nodemask_t mask;
2310
3d3f26a7 2311 mutex_lock(&callback_mutex);
909d75a3 2312 task_lock(tsk);
8793d854 2313 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2314 task_unlock(tsk);
3d3f26a7 2315 mutex_unlock(&callback_mutex);
909d75a3
PJ
2316
2317 return mask;
2318}
2319
d9fd8a6d 2320/**
19770b32
MG
2321 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2322 * @nodemask: the nodemask to be checked
d9fd8a6d 2323 *
19770b32 2324 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2325 */
19770b32 2326int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2327{
19770b32 2328 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2329}
2330
9bf2229f 2331/*
78608366
PM
2332 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2333 * mem_hardwall ancestor to the specified cpuset. Call holding
2334 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2335 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2336 */
78608366 2337static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2338{
78608366 2339 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2340 cs = cs->parent;
2341 return cs;
2342}
2343
d9fd8a6d 2344/**
a1bc5a4e
DR
2345 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2346 * @node: is this an allowed node?
02a0e53d 2347 * @gfp_mask: memory allocation flags
d9fd8a6d 2348 *
a1bc5a4e
DR
2349 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2350 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2351 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2352 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2353 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2354 * flag, yes.
9bf2229f
PJ
2355 * Otherwise, no.
2356 *
a1bc5a4e
DR
2357 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2358 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2359 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2360 *
a1bc5a4e
DR
2361 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2362 * cpusets, and never sleeps.
02a0e53d
PJ
2363 *
2364 * The __GFP_THISNODE placement logic is really handled elsewhere,
2365 * by forcibly using a zonelist starting at a specified node, and by
2366 * (in get_page_from_freelist()) refusing to consider the zones for
2367 * any node on the zonelist except the first. By the time any such
2368 * calls get to this routine, we should just shut up and say 'yes'.
2369 *
9bf2229f 2370 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2371 * and do not allow allocations outside the current tasks cpuset
2372 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2373 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2374 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2375 *
02a0e53d
PJ
2376 * Scanning up parent cpusets requires callback_mutex. The
2377 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2378 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2379 * current tasks mems_allowed came up empty on the first pass over
2380 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2381 * cpuset are short of memory, might require taking the callback_mutex
2382 * mutex.
9bf2229f 2383 *
36be57ff 2384 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2385 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2386 * so no allocation on a node outside the cpuset is allowed (unless
2387 * in interrupt, of course).
36be57ff
PJ
2388 *
2389 * The second pass through get_page_from_freelist() doesn't even call
2390 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2391 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2392 * in alloc_flags. That logic and the checks below have the combined
2393 * affect that:
9bf2229f
PJ
2394 * in_interrupt - any node ok (current task context irrelevant)
2395 * GFP_ATOMIC - any node ok
c596d9f3 2396 * TIF_MEMDIE - any node ok
78608366 2397 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2398 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2399 *
2400 * Rule:
a1bc5a4e 2401 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2402 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2403 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2404 */
a1bc5a4e 2405int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2406{
9bf2229f 2407 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2408 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2409
9b819d20 2410 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2411 return 1;
92d1dbd2 2412 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2413 if (node_isset(node, current->mems_allowed))
2414 return 1;
c596d9f3
DR
2415 /*
2416 * Allow tasks that have access to memory reserves because they have
2417 * been OOM killed to get memory anywhere.
2418 */
2419 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2420 return 1;
9bf2229f
PJ
2421 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2422 return 0;
2423
5563e770
BP
2424 if (current->flags & PF_EXITING) /* Let dying task have memory */
2425 return 1;
2426
9bf2229f 2427 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2428 mutex_lock(&callback_mutex);
053199ed 2429
053199ed 2430 task_lock(current);
78608366 2431 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2432 task_unlock(current);
2433
9bf2229f 2434 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2435 mutex_unlock(&callback_mutex);
9bf2229f 2436 return allowed;
1da177e4
LT
2437}
2438
02a0e53d 2439/*
a1bc5a4e
DR
2440 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2441 * @node: is this an allowed node?
02a0e53d
PJ
2442 * @gfp_mask: memory allocation flags
2443 *
a1bc5a4e
DR
2444 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2445 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2446 * yes. If the task has been OOM killed and has access to memory reserves as
2447 * specified by the TIF_MEMDIE flag, yes.
2448 * Otherwise, no.
02a0e53d
PJ
2449 *
2450 * The __GFP_THISNODE placement logic is really handled elsewhere,
2451 * by forcibly using a zonelist starting at a specified node, and by
2452 * (in get_page_from_freelist()) refusing to consider the zones for
2453 * any node on the zonelist except the first. By the time any such
2454 * calls get to this routine, we should just shut up and say 'yes'.
2455 *
a1bc5a4e
DR
2456 * Unlike the cpuset_node_allowed_softwall() variant, above,
2457 * this variant requires that the node be in the current task's
02a0e53d
PJ
2458 * mems_allowed or that we're in interrupt. It does not scan up the
2459 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2460 * It never sleeps.
2461 */
a1bc5a4e 2462int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2463{
02a0e53d
PJ
2464 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2465 return 1;
02a0e53d
PJ
2466 if (node_isset(node, current->mems_allowed))
2467 return 1;
dedf8b79
DW
2468 /*
2469 * Allow tasks that have access to memory reserves because they have
2470 * been OOM killed to get memory anywhere.
2471 */
2472 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2473 return 1;
02a0e53d
PJ
2474 return 0;
2475}
2476
825a46af 2477/**
6adef3eb
JS
2478 * cpuset_mem_spread_node() - On which node to begin search for a file page
2479 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2480 *
2481 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2482 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2483 * and if the memory allocation used cpuset_mem_spread_node()
2484 * to determine on which node to start looking, as it will for
2485 * certain page cache or slab cache pages such as used for file
2486 * system buffers and inode caches, then instead of starting on the
2487 * local node to look for a free page, rather spread the starting
2488 * node around the tasks mems_allowed nodes.
2489 *
2490 * We don't have to worry about the returned node being offline
2491 * because "it can't happen", and even if it did, it would be ok.
2492 *
2493 * The routines calling guarantee_online_mems() are careful to
2494 * only set nodes in task->mems_allowed that are online. So it
2495 * should not be possible for the following code to return an
2496 * offline node. But if it did, that would be ok, as this routine
2497 * is not returning the node where the allocation must be, only
2498 * the node where the search should start. The zonelist passed to
2499 * __alloc_pages() will include all nodes. If the slab allocator
2500 * is passed an offline node, it will fall back to the local node.
2501 * See kmem_cache_alloc_node().
2502 */
2503
6adef3eb 2504static int cpuset_spread_node(int *rotor)
825a46af
PJ
2505{
2506 int node;
2507
6adef3eb 2508 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2509 if (node == MAX_NUMNODES)
2510 node = first_node(current->mems_allowed);
6adef3eb 2511 *rotor = node;
825a46af
PJ
2512 return node;
2513}
6adef3eb
JS
2514
2515int cpuset_mem_spread_node(void)
2516{
778d3b0f
MH
2517 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2518 current->cpuset_mem_spread_rotor =
2519 node_random(&current->mems_allowed);
2520
6adef3eb
JS
2521 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2522}
2523
2524int cpuset_slab_spread_node(void)
2525{
778d3b0f
MH
2526 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2527 current->cpuset_slab_spread_rotor =
2528 node_random(&current->mems_allowed);
2529
6adef3eb
JS
2530 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2531}
2532
825a46af
PJ
2533EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2534
ef08e3b4 2535/**
bbe373f2
DR
2536 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2537 * @tsk1: pointer to task_struct of some task.
2538 * @tsk2: pointer to task_struct of some other task.
2539 *
2540 * Description: Return true if @tsk1's mems_allowed intersects the
2541 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2542 * one of the task's memory usage might impact the memory available
2543 * to the other.
ef08e3b4
PJ
2544 **/
2545
bbe373f2
DR
2546int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2547 const struct task_struct *tsk2)
ef08e3b4 2548{
bbe373f2 2549 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2550}
2551
75aa1994
DR
2552/**
2553 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2554 * @task: pointer to task_struct of some task.
2555 *
2556 * Description: Prints @task's name, cpuset name, and cached copy of its
2557 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2558 * dereferencing task_cs(task).
2559 */
2560void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2561{
2562 struct dentry *dentry;
2563
2564 dentry = task_cs(tsk)->css.cgroup->dentry;
2565 spin_lock(&cpuset_buffer_lock);
2566 snprintf(cpuset_name, CPUSET_NAME_LEN,
2567 dentry ? (const char *)dentry->d_name.name : "/");
2568 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2569 tsk->mems_allowed);
2570 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2571 tsk->comm, cpuset_name, cpuset_nodelist);
2572 spin_unlock(&cpuset_buffer_lock);
2573}
2574
3e0d98b9
PJ
2575/*
2576 * Collection of memory_pressure is suppressed unless
2577 * this flag is enabled by writing "1" to the special
2578 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2579 */
2580
c5b2aff8 2581int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2582
2583/**
2584 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2585 *
2586 * Keep a running average of the rate of synchronous (direct)
2587 * page reclaim efforts initiated by tasks in each cpuset.
2588 *
2589 * This represents the rate at which some task in the cpuset
2590 * ran low on memory on all nodes it was allowed to use, and
2591 * had to enter the kernels page reclaim code in an effort to
2592 * create more free memory by tossing clean pages or swapping
2593 * or writing dirty pages.
2594 *
2595 * Display to user space in the per-cpuset read-only file
2596 * "memory_pressure". Value displayed is an integer
2597 * representing the recent rate of entry into the synchronous
2598 * (direct) page reclaim by any task attached to the cpuset.
2599 **/
2600
2601void __cpuset_memory_pressure_bump(void)
2602{
3e0d98b9 2603 task_lock(current);
8793d854 2604 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2605 task_unlock(current);
2606}
2607
8793d854 2608#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2609/*
2610 * proc_cpuset_show()
2611 * - Print tasks cpuset path into seq_file.
2612 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2613 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2614 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2615 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2616 * anyway.
1da177e4 2617 */
029190c5 2618static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2619{
13b41b09 2620 struct pid *pid;
1da177e4
LT
2621 struct task_struct *tsk;
2622 char *buf;
8793d854 2623 struct cgroup_subsys_state *css;
99f89551 2624 int retval;
1da177e4 2625
99f89551 2626 retval = -ENOMEM;
1da177e4
LT
2627 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2628 if (!buf)
99f89551
EB
2629 goto out;
2630
2631 retval = -ESRCH;
13b41b09
EB
2632 pid = m->private;
2633 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2634 if (!tsk)
2635 goto out_free;
1da177e4 2636
99f89551 2637 retval = -EINVAL;
8793d854
PM
2638 cgroup_lock();
2639 css = task_subsys_state(tsk, cpuset_subsys_id);
2640 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2641 if (retval < 0)
99f89551 2642 goto out_unlock;
1da177e4
LT
2643 seq_puts(m, buf);
2644 seq_putc(m, '\n');
99f89551 2645out_unlock:
8793d854 2646 cgroup_unlock();
99f89551
EB
2647 put_task_struct(tsk);
2648out_free:
1da177e4 2649 kfree(buf);
99f89551 2650out:
1da177e4
LT
2651 return retval;
2652}
2653
2654static int cpuset_open(struct inode *inode, struct file *file)
2655{
13b41b09
EB
2656 struct pid *pid = PROC_I(inode)->pid;
2657 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2658}
2659
9a32144e 2660const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2661 .open = cpuset_open,
2662 .read = seq_read,
2663 .llseek = seq_lseek,
2664 .release = single_release,
2665};
8793d854 2666#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2667
d01d4827 2668/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2669void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2670{
df5f8314 2671 seq_printf(m, "Mems_allowed:\t");
30e8e136 2672 seq_nodemask(m, &task->mems_allowed);
df5f8314 2673 seq_printf(m, "\n");
39106dcf 2674 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2675 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2676 seq_printf(m, "\n");
1da177e4 2677}
This page took 0.766027 seconds and 5 git commands to generate.