perf: Disable PERF_SAMPLE_BRANCH_* when not supported
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f
SE
139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
140
cdd6c482
IM
141static atomic_t nr_mmap_events __read_mostly;
142static atomic_t nr_comm_events __read_mostly;
143static atomic_t nr_task_events __read_mostly;
9ee318a7 144
108b02cf
PZ
145static LIST_HEAD(pmus);
146static DEFINE_MUTEX(pmus_lock);
147static struct srcu_struct pmus_srcu;
148
0764771d 149/*
cdd6c482 150 * perf event paranoia level:
0fbdea19
IM
151 * -1 - not paranoid at all
152 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 153 * 1 - disallow cpu events for unpriv
0fbdea19 154 * 2 - disallow kernel profiling for unpriv
0764771d 155 */
cdd6c482 156int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 157
20443384
FW
158/* Minimum for 512 kiB + 1 user control page */
159int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
160
161/*
cdd6c482 162 * max perf event sample rate
df58ab24 163 */
163ec435
PZ
164#define DEFAULT_MAX_SAMPLE_RATE 100000
165int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
166static int max_samples_per_tick __read_mostly =
167 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
168
169int perf_proc_update_handler(struct ctl_table *table, int write,
170 void __user *buffer, size_t *lenp,
171 loff_t *ppos)
172{
173 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
174
175 if (ret || !write)
176 return ret;
177
178 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
179
180 return 0;
181}
1ccd1549 182
cdd6c482 183static atomic64_t perf_event_id;
a96bbc16 184
0b3fcf17
SE
185static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
186 enum event_type_t event_type);
187
188static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
189 enum event_type_t event_type,
190 struct task_struct *task);
191
192static void update_context_time(struct perf_event_context *ctx);
193static u64 perf_event_time(struct perf_event *event);
0b3fcf17 194
10c6db11
PZ
195static void ring_buffer_attach(struct perf_event *event,
196 struct ring_buffer *rb);
197
cdd6c482 198void __weak perf_event_print_debug(void) { }
0793a61d 199
84c79910 200extern __weak const char *perf_pmu_name(void)
0793a61d 201{
84c79910 202 return "pmu";
0793a61d
TG
203}
204
0b3fcf17
SE
205static inline u64 perf_clock(void)
206{
207 return local_clock();
208}
209
e5d1367f
SE
210static inline struct perf_cpu_context *
211__get_cpu_context(struct perf_event_context *ctx)
212{
213 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
214}
215
facc4307
PZ
216static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
217 struct perf_event_context *ctx)
218{
219 raw_spin_lock(&cpuctx->ctx.lock);
220 if (ctx)
221 raw_spin_lock(&ctx->lock);
222}
223
224static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
225 struct perf_event_context *ctx)
226{
227 if (ctx)
228 raw_spin_unlock(&ctx->lock);
229 raw_spin_unlock(&cpuctx->ctx.lock);
230}
231
e5d1367f
SE
232#ifdef CONFIG_CGROUP_PERF
233
3f7cce3c
SE
234/*
235 * Must ensure cgroup is pinned (css_get) before calling
236 * this function. In other words, we cannot call this function
237 * if there is no cgroup event for the current CPU context.
238 */
e5d1367f
SE
239static inline struct perf_cgroup *
240perf_cgroup_from_task(struct task_struct *task)
241{
242 return container_of(task_subsys_state(task, perf_subsys_id),
243 struct perf_cgroup, css);
244}
245
246static inline bool
247perf_cgroup_match(struct perf_event *event)
248{
249 struct perf_event_context *ctx = event->ctx;
250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
251
252 return !event->cgrp || event->cgrp == cpuctx->cgrp;
253}
254
255static inline void perf_get_cgroup(struct perf_event *event)
256{
257 css_get(&event->cgrp->css);
258}
259
260static inline void perf_put_cgroup(struct perf_event *event)
261{
262 css_put(&event->cgrp->css);
263}
264
265static inline void perf_detach_cgroup(struct perf_event *event)
266{
267 perf_put_cgroup(event);
268 event->cgrp = NULL;
269}
270
271static inline int is_cgroup_event(struct perf_event *event)
272{
273 return event->cgrp != NULL;
274}
275
276static inline u64 perf_cgroup_event_time(struct perf_event *event)
277{
278 struct perf_cgroup_info *t;
279
280 t = per_cpu_ptr(event->cgrp->info, event->cpu);
281 return t->time;
282}
283
284static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
285{
286 struct perf_cgroup_info *info;
287 u64 now;
288
289 now = perf_clock();
290
291 info = this_cpu_ptr(cgrp->info);
292
293 info->time += now - info->timestamp;
294 info->timestamp = now;
295}
296
297static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
298{
299 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
300 if (cgrp_out)
301 __update_cgrp_time(cgrp_out);
302}
303
304static inline void update_cgrp_time_from_event(struct perf_event *event)
305{
3f7cce3c
SE
306 struct perf_cgroup *cgrp;
307
e5d1367f 308 /*
3f7cce3c
SE
309 * ensure we access cgroup data only when needed and
310 * when we know the cgroup is pinned (css_get)
e5d1367f 311 */
3f7cce3c 312 if (!is_cgroup_event(event))
e5d1367f
SE
313 return;
314
3f7cce3c
SE
315 cgrp = perf_cgroup_from_task(current);
316 /*
317 * Do not update time when cgroup is not active
318 */
319 if (cgrp == event->cgrp)
320 __update_cgrp_time(event->cgrp);
e5d1367f
SE
321}
322
323static inline void
3f7cce3c
SE
324perf_cgroup_set_timestamp(struct task_struct *task,
325 struct perf_event_context *ctx)
e5d1367f
SE
326{
327 struct perf_cgroup *cgrp;
328 struct perf_cgroup_info *info;
329
3f7cce3c
SE
330 /*
331 * ctx->lock held by caller
332 * ensure we do not access cgroup data
333 * unless we have the cgroup pinned (css_get)
334 */
335 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
336 return;
337
338 cgrp = perf_cgroup_from_task(task);
339 info = this_cpu_ptr(cgrp->info);
3f7cce3c 340 info->timestamp = ctx->timestamp;
e5d1367f
SE
341}
342
343#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
344#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
345
346/*
347 * reschedule events based on the cgroup constraint of task.
348 *
349 * mode SWOUT : schedule out everything
350 * mode SWIN : schedule in based on cgroup for next
351 */
352void perf_cgroup_switch(struct task_struct *task, int mode)
353{
354 struct perf_cpu_context *cpuctx;
355 struct pmu *pmu;
356 unsigned long flags;
357
358 /*
359 * disable interrupts to avoid geting nr_cgroup
360 * changes via __perf_event_disable(). Also
361 * avoids preemption.
362 */
363 local_irq_save(flags);
364
365 /*
366 * we reschedule only in the presence of cgroup
367 * constrained events.
368 */
369 rcu_read_lock();
370
371 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
372 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
373
e5d1367f
SE
374 /*
375 * perf_cgroup_events says at least one
376 * context on this CPU has cgroup events.
377 *
378 * ctx->nr_cgroups reports the number of cgroup
379 * events for a context.
380 */
381 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
382 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
383 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
384
385 if (mode & PERF_CGROUP_SWOUT) {
386 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
387 /*
388 * must not be done before ctxswout due
389 * to event_filter_match() in event_sched_out()
390 */
391 cpuctx->cgrp = NULL;
392 }
393
394 if (mode & PERF_CGROUP_SWIN) {
e566b76e 395 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
396 /* set cgrp before ctxsw in to
397 * allow event_filter_match() to not
398 * have to pass task around
399 */
400 cpuctx->cgrp = perf_cgroup_from_task(task);
401 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
402 }
facc4307
PZ
403 perf_pmu_enable(cpuctx->ctx.pmu);
404 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 405 }
e5d1367f
SE
406 }
407
408 rcu_read_unlock();
409
410 local_irq_restore(flags);
411}
412
a8d757ef
SE
413static inline void perf_cgroup_sched_out(struct task_struct *task,
414 struct task_struct *next)
e5d1367f 415{
a8d757ef
SE
416 struct perf_cgroup *cgrp1;
417 struct perf_cgroup *cgrp2 = NULL;
418
419 /*
420 * we come here when we know perf_cgroup_events > 0
421 */
422 cgrp1 = perf_cgroup_from_task(task);
423
424 /*
425 * next is NULL when called from perf_event_enable_on_exec()
426 * that will systematically cause a cgroup_switch()
427 */
428 if (next)
429 cgrp2 = perf_cgroup_from_task(next);
430
431 /*
432 * only schedule out current cgroup events if we know
433 * that we are switching to a different cgroup. Otherwise,
434 * do no touch the cgroup events.
435 */
436 if (cgrp1 != cgrp2)
437 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
438}
439
a8d757ef
SE
440static inline void perf_cgroup_sched_in(struct task_struct *prev,
441 struct task_struct *task)
e5d1367f 442{
a8d757ef
SE
443 struct perf_cgroup *cgrp1;
444 struct perf_cgroup *cgrp2 = NULL;
445
446 /*
447 * we come here when we know perf_cgroup_events > 0
448 */
449 cgrp1 = perf_cgroup_from_task(task);
450
451 /* prev can never be NULL */
452 cgrp2 = perf_cgroup_from_task(prev);
453
454 /*
455 * only need to schedule in cgroup events if we are changing
456 * cgroup during ctxsw. Cgroup events were not scheduled
457 * out of ctxsw out if that was not the case.
458 */
459 if (cgrp1 != cgrp2)
460 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
461}
462
463static inline int perf_cgroup_connect(int fd, struct perf_event *event,
464 struct perf_event_attr *attr,
465 struct perf_event *group_leader)
466{
467 struct perf_cgroup *cgrp;
468 struct cgroup_subsys_state *css;
469 struct file *file;
470 int ret = 0, fput_needed;
471
472 file = fget_light(fd, &fput_needed);
473 if (!file)
474 return -EBADF;
475
476 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
477 if (IS_ERR(css)) {
478 ret = PTR_ERR(css);
479 goto out;
480 }
e5d1367f
SE
481
482 cgrp = container_of(css, struct perf_cgroup, css);
483 event->cgrp = cgrp;
484
f75e18cb
LZ
485 /* must be done before we fput() the file */
486 perf_get_cgroup(event);
487
e5d1367f
SE
488 /*
489 * all events in a group must monitor
490 * the same cgroup because a task belongs
491 * to only one perf cgroup at a time
492 */
493 if (group_leader && group_leader->cgrp != cgrp) {
494 perf_detach_cgroup(event);
495 ret = -EINVAL;
e5d1367f 496 }
3db272c0 497out:
e5d1367f
SE
498 fput_light(file, fput_needed);
499 return ret;
500}
501
502static inline void
503perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
504{
505 struct perf_cgroup_info *t;
506 t = per_cpu_ptr(event->cgrp->info, event->cpu);
507 event->shadow_ctx_time = now - t->timestamp;
508}
509
510static inline void
511perf_cgroup_defer_enabled(struct perf_event *event)
512{
513 /*
514 * when the current task's perf cgroup does not match
515 * the event's, we need to remember to call the
516 * perf_mark_enable() function the first time a task with
517 * a matching perf cgroup is scheduled in.
518 */
519 if (is_cgroup_event(event) && !perf_cgroup_match(event))
520 event->cgrp_defer_enabled = 1;
521}
522
523static inline void
524perf_cgroup_mark_enabled(struct perf_event *event,
525 struct perf_event_context *ctx)
526{
527 struct perf_event *sub;
528 u64 tstamp = perf_event_time(event);
529
530 if (!event->cgrp_defer_enabled)
531 return;
532
533 event->cgrp_defer_enabled = 0;
534
535 event->tstamp_enabled = tstamp - event->total_time_enabled;
536 list_for_each_entry(sub, &event->sibling_list, group_entry) {
537 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
538 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
539 sub->cgrp_defer_enabled = 0;
540 }
541 }
542}
543#else /* !CONFIG_CGROUP_PERF */
544
545static inline bool
546perf_cgroup_match(struct perf_event *event)
547{
548 return true;
549}
550
551static inline void perf_detach_cgroup(struct perf_event *event)
552{}
553
554static inline int is_cgroup_event(struct perf_event *event)
555{
556 return 0;
557}
558
559static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline void update_cgrp_time_from_event(struct perf_event *event)
565{
566}
567
568static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
569{
570}
571
a8d757ef
SE
572static inline void perf_cgroup_sched_out(struct task_struct *task,
573 struct task_struct *next)
e5d1367f
SE
574{
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_in(struct task_struct *prev,
578 struct task_struct *task)
e5d1367f
SE
579{
580}
581
582static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
583 struct perf_event_attr *attr,
584 struct perf_event *group_leader)
585{
586 return -EINVAL;
587}
588
589static inline void
3f7cce3c
SE
590perf_cgroup_set_timestamp(struct task_struct *task,
591 struct perf_event_context *ctx)
e5d1367f
SE
592{
593}
594
595void
596perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
597{
598}
599
600static inline void
601perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
602{
603}
604
605static inline u64 perf_cgroup_event_time(struct perf_event *event)
606{
607 return 0;
608}
609
610static inline void
611perf_cgroup_defer_enabled(struct perf_event *event)
612{
613}
614
615static inline void
616perf_cgroup_mark_enabled(struct perf_event *event,
617 struct perf_event_context *ctx)
618{
619}
620#endif
621
33696fc0 622void perf_pmu_disable(struct pmu *pmu)
9e35ad38 623{
33696fc0
PZ
624 int *count = this_cpu_ptr(pmu->pmu_disable_count);
625 if (!(*count)++)
626 pmu->pmu_disable(pmu);
9e35ad38 627}
9e35ad38 628
33696fc0 629void perf_pmu_enable(struct pmu *pmu)
9e35ad38 630{
33696fc0
PZ
631 int *count = this_cpu_ptr(pmu->pmu_disable_count);
632 if (!--(*count))
633 pmu->pmu_enable(pmu);
9e35ad38 634}
9e35ad38 635
e9d2b064
PZ
636static DEFINE_PER_CPU(struct list_head, rotation_list);
637
638/*
639 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
640 * because they're strictly cpu affine and rotate_start is called with IRQs
641 * disabled, while rotate_context is called from IRQ context.
642 */
108b02cf 643static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 644{
108b02cf 645 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 646 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 647
e9d2b064 648 WARN_ON(!irqs_disabled());
b5ab4cd5 649
e9d2b064
PZ
650 if (list_empty(&cpuctx->rotation_list))
651 list_add(&cpuctx->rotation_list, head);
9e35ad38 652}
9e35ad38 653
cdd6c482 654static void get_ctx(struct perf_event_context *ctx)
a63eaf34 655{
e5289d4a 656 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
657}
658
cdd6c482 659static void put_ctx(struct perf_event_context *ctx)
a63eaf34 660{
564c2b21
PM
661 if (atomic_dec_and_test(&ctx->refcount)) {
662 if (ctx->parent_ctx)
663 put_ctx(ctx->parent_ctx);
c93f7669
PM
664 if (ctx->task)
665 put_task_struct(ctx->task);
cb796ff3 666 kfree_rcu(ctx, rcu_head);
564c2b21 667 }
a63eaf34
PM
668}
669
cdd6c482 670static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
671{
672 if (ctx->parent_ctx) {
673 put_ctx(ctx->parent_ctx);
674 ctx->parent_ctx = NULL;
675 }
676}
677
6844c09d
ACM
678static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
679{
680 /*
681 * only top level events have the pid namespace they were created in
682 */
683 if (event->parent)
684 event = event->parent;
685
686 return task_tgid_nr_ns(p, event->ns);
687}
688
689static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
690{
691 /*
692 * only top level events have the pid namespace they were created in
693 */
694 if (event->parent)
695 event = event->parent;
696
697 return task_pid_nr_ns(p, event->ns);
698}
699
7f453c24 700/*
cdd6c482 701 * If we inherit events we want to return the parent event id
7f453c24
PZ
702 * to userspace.
703 */
cdd6c482 704static u64 primary_event_id(struct perf_event *event)
7f453c24 705{
cdd6c482 706 u64 id = event->id;
7f453c24 707
cdd6c482
IM
708 if (event->parent)
709 id = event->parent->id;
7f453c24
PZ
710
711 return id;
712}
713
25346b93 714/*
cdd6c482 715 * Get the perf_event_context for a task and lock it.
25346b93
PM
716 * This has to cope with with the fact that until it is locked,
717 * the context could get moved to another task.
718 */
cdd6c482 719static struct perf_event_context *
8dc85d54 720perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 721{
cdd6c482 722 struct perf_event_context *ctx;
25346b93
PM
723
724 rcu_read_lock();
9ed6060d 725retry:
8dc85d54 726 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
727 if (ctx) {
728 /*
729 * If this context is a clone of another, it might
730 * get swapped for another underneath us by
cdd6c482 731 * perf_event_task_sched_out, though the
25346b93
PM
732 * rcu_read_lock() protects us from any context
733 * getting freed. Lock the context and check if it
734 * got swapped before we could get the lock, and retry
735 * if so. If we locked the right context, then it
736 * can't get swapped on us any more.
737 */
e625cce1 738 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 739 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 740 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
741 goto retry;
742 }
b49a9e7e
PZ
743
744 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
746 ctx = NULL;
747 }
25346b93
PM
748 }
749 rcu_read_unlock();
750 return ctx;
751}
752
753/*
754 * Get the context for a task and increment its pin_count so it
755 * can't get swapped to another task. This also increments its
756 * reference count so that the context can't get freed.
757 */
8dc85d54
PZ
758static struct perf_event_context *
759perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 760{
cdd6c482 761 struct perf_event_context *ctx;
25346b93
PM
762 unsigned long flags;
763
8dc85d54 764 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
765 if (ctx) {
766 ++ctx->pin_count;
e625cce1 767 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
768 }
769 return ctx;
770}
771
cdd6c482 772static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
773{
774 unsigned long flags;
775
e625cce1 776 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 777 --ctx->pin_count;
e625cce1 778 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
779}
780
f67218c3
PZ
781/*
782 * Update the record of the current time in a context.
783 */
784static void update_context_time(struct perf_event_context *ctx)
785{
786 u64 now = perf_clock();
787
788 ctx->time += now - ctx->timestamp;
789 ctx->timestamp = now;
790}
791
4158755d
SE
792static u64 perf_event_time(struct perf_event *event)
793{
794 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
795
796 if (is_cgroup_event(event))
797 return perf_cgroup_event_time(event);
798
4158755d
SE
799 return ctx ? ctx->time : 0;
800}
801
f67218c3
PZ
802/*
803 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 804 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
805 */
806static void update_event_times(struct perf_event *event)
807{
808 struct perf_event_context *ctx = event->ctx;
809 u64 run_end;
810
811 if (event->state < PERF_EVENT_STATE_INACTIVE ||
812 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
813 return;
e5d1367f
SE
814 /*
815 * in cgroup mode, time_enabled represents
816 * the time the event was enabled AND active
817 * tasks were in the monitored cgroup. This is
818 * independent of the activity of the context as
819 * there may be a mix of cgroup and non-cgroup events.
820 *
821 * That is why we treat cgroup events differently
822 * here.
823 */
824 if (is_cgroup_event(event))
46cd6a7f 825 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
826 else if (ctx->is_active)
827 run_end = ctx->time;
acd1d7c1
PZ
828 else
829 run_end = event->tstamp_stopped;
830
831 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
832
833 if (event->state == PERF_EVENT_STATE_INACTIVE)
834 run_end = event->tstamp_stopped;
835 else
4158755d 836 run_end = perf_event_time(event);
f67218c3
PZ
837
838 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 839
f67218c3
PZ
840}
841
96c21a46
PZ
842/*
843 * Update total_time_enabled and total_time_running for all events in a group.
844 */
845static void update_group_times(struct perf_event *leader)
846{
847 struct perf_event *event;
848
849 update_event_times(leader);
850 list_for_each_entry(event, &leader->sibling_list, group_entry)
851 update_event_times(event);
852}
853
889ff015
FW
854static struct list_head *
855ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
856{
857 if (event->attr.pinned)
858 return &ctx->pinned_groups;
859 else
860 return &ctx->flexible_groups;
861}
862
fccc714b 863/*
cdd6c482 864 * Add a event from the lists for its context.
fccc714b
PZ
865 * Must be called with ctx->mutex and ctx->lock held.
866 */
04289bb9 867static void
cdd6c482 868list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 869{
8a49542c
PZ
870 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
871 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
872
873 /*
8a49542c
PZ
874 * If we're a stand alone event or group leader, we go to the context
875 * list, group events are kept attached to the group so that
876 * perf_group_detach can, at all times, locate all siblings.
04289bb9 877 */
8a49542c 878 if (event->group_leader == event) {
889ff015
FW
879 struct list_head *list;
880
d6f962b5
FW
881 if (is_software_event(event))
882 event->group_flags |= PERF_GROUP_SOFTWARE;
883
889ff015
FW
884 list = ctx_group_list(event, ctx);
885 list_add_tail(&event->group_entry, list);
5c148194 886 }
592903cd 887
08309379 888 if (is_cgroup_event(event))
e5d1367f 889 ctx->nr_cgroups++;
e5d1367f 890
cdd6c482 891 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 892 if (!ctx->nr_events)
108b02cf 893 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
894 ctx->nr_events++;
895 if (event->attr.inherit_stat)
bfbd3381 896 ctx->nr_stat++;
04289bb9
IM
897}
898
c320c7b7
ACM
899/*
900 * Called at perf_event creation and when events are attached/detached from a
901 * group.
902 */
903static void perf_event__read_size(struct perf_event *event)
904{
905 int entry = sizeof(u64); /* value */
906 int size = 0;
907 int nr = 1;
908
909 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
910 size += sizeof(u64);
911
912 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
913 size += sizeof(u64);
914
915 if (event->attr.read_format & PERF_FORMAT_ID)
916 entry += sizeof(u64);
917
918 if (event->attr.read_format & PERF_FORMAT_GROUP) {
919 nr += event->group_leader->nr_siblings;
920 size += sizeof(u64);
921 }
922
923 size += entry * nr;
924 event->read_size = size;
925}
926
927static void perf_event__header_size(struct perf_event *event)
928{
929 struct perf_sample_data *data;
930 u64 sample_type = event->attr.sample_type;
931 u16 size = 0;
932
933 perf_event__read_size(event);
934
935 if (sample_type & PERF_SAMPLE_IP)
936 size += sizeof(data->ip);
937
6844c09d
ACM
938 if (sample_type & PERF_SAMPLE_ADDR)
939 size += sizeof(data->addr);
940
941 if (sample_type & PERF_SAMPLE_PERIOD)
942 size += sizeof(data->period);
943
944 if (sample_type & PERF_SAMPLE_READ)
945 size += event->read_size;
946
947 event->header_size = size;
948}
949
950static void perf_event__id_header_size(struct perf_event *event)
951{
952 struct perf_sample_data *data;
953 u64 sample_type = event->attr.sample_type;
954 u16 size = 0;
955
c320c7b7
ACM
956 if (sample_type & PERF_SAMPLE_TID)
957 size += sizeof(data->tid_entry);
958
959 if (sample_type & PERF_SAMPLE_TIME)
960 size += sizeof(data->time);
961
c320c7b7
ACM
962 if (sample_type & PERF_SAMPLE_ID)
963 size += sizeof(data->id);
964
965 if (sample_type & PERF_SAMPLE_STREAM_ID)
966 size += sizeof(data->stream_id);
967
968 if (sample_type & PERF_SAMPLE_CPU)
969 size += sizeof(data->cpu_entry);
970
6844c09d 971 event->id_header_size = size;
c320c7b7
ACM
972}
973
8a49542c
PZ
974static void perf_group_attach(struct perf_event *event)
975{
c320c7b7 976 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 977
74c3337c
PZ
978 /*
979 * We can have double attach due to group movement in perf_event_open.
980 */
981 if (event->attach_state & PERF_ATTACH_GROUP)
982 return;
983
8a49542c
PZ
984 event->attach_state |= PERF_ATTACH_GROUP;
985
986 if (group_leader == event)
987 return;
988
989 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
990 !is_software_event(event))
991 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
992
993 list_add_tail(&event->group_entry, &group_leader->sibling_list);
994 group_leader->nr_siblings++;
c320c7b7
ACM
995
996 perf_event__header_size(group_leader);
997
998 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
999 perf_event__header_size(pos);
8a49542c
PZ
1000}
1001
a63eaf34 1002/*
cdd6c482 1003 * Remove a event from the lists for its context.
fccc714b 1004 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1005 */
04289bb9 1006static void
cdd6c482 1007list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1008{
68cacd29 1009 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1010 /*
1011 * We can have double detach due to exit/hot-unplug + close.
1012 */
1013 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1014 return;
8a49542c
PZ
1015
1016 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1017
68cacd29 1018 if (is_cgroup_event(event)) {
e5d1367f 1019 ctx->nr_cgroups--;
68cacd29
SE
1020 cpuctx = __get_cpu_context(ctx);
1021 /*
1022 * if there are no more cgroup events
1023 * then cler cgrp to avoid stale pointer
1024 * in update_cgrp_time_from_cpuctx()
1025 */
1026 if (!ctx->nr_cgroups)
1027 cpuctx->cgrp = NULL;
1028 }
e5d1367f 1029
cdd6c482
IM
1030 ctx->nr_events--;
1031 if (event->attr.inherit_stat)
bfbd3381 1032 ctx->nr_stat--;
8bc20959 1033
cdd6c482 1034 list_del_rcu(&event->event_entry);
04289bb9 1035
8a49542c
PZ
1036 if (event->group_leader == event)
1037 list_del_init(&event->group_entry);
5c148194 1038
96c21a46 1039 update_group_times(event);
b2e74a26
SE
1040
1041 /*
1042 * If event was in error state, then keep it
1043 * that way, otherwise bogus counts will be
1044 * returned on read(). The only way to get out
1045 * of error state is by explicit re-enabling
1046 * of the event
1047 */
1048 if (event->state > PERF_EVENT_STATE_OFF)
1049 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1050}
1051
8a49542c 1052static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1053{
1054 struct perf_event *sibling, *tmp;
8a49542c
PZ
1055 struct list_head *list = NULL;
1056
1057 /*
1058 * We can have double detach due to exit/hot-unplug + close.
1059 */
1060 if (!(event->attach_state & PERF_ATTACH_GROUP))
1061 return;
1062
1063 event->attach_state &= ~PERF_ATTACH_GROUP;
1064
1065 /*
1066 * If this is a sibling, remove it from its group.
1067 */
1068 if (event->group_leader != event) {
1069 list_del_init(&event->group_entry);
1070 event->group_leader->nr_siblings--;
c320c7b7 1071 goto out;
8a49542c
PZ
1072 }
1073
1074 if (!list_empty(&event->group_entry))
1075 list = &event->group_entry;
2e2af50b 1076
04289bb9 1077 /*
cdd6c482
IM
1078 * If this was a group event with sibling events then
1079 * upgrade the siblings to singleton events by adding them
8a49542c 1080 * to whatever list we are on.
04289bb9 1081 */
cdd6c482 1082 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1083 if (list)
1084 list_move_tail(&sibling->group_entry, list);
04289bb9 1085 sibling->group_leader = sibling;
d6f962b5
FW
1086
1087 /* Inherit group flags from the previous leader */
1088 sibling->group_flags = event->group_flags;
04289bb9 1089 }
c320c7b7
ACM
1090
1091out:
1092 perf_event__header_size(event->group_leader);
1093
1094 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1095 perf_event__header_size(tmp);
04289bb9
IM
1096}
1097
fa66f07a
SE
1098static inline int
1099event_filter_match(struct perf_event *event)
1100{
e5d1367f
SE
1101 return (event->cpu == -1 || event->cpu == smp_processor_id())
1102 && perf_cgroup_match(event);
fa66f07a
SE
1103}
1104
9ffcfa6f
SE
1105static void
1106event_sched_out(struct perf_event *event,
3b6f9e5c 1107 struct perf_cpu_context *cpuctx,
cdd6c482 1108 struct perf_event_context *ctx)
3b6f9e5c 1109{
4158755d 1110 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1111 u64 delta;
1112 /*
1113 * An event which could not be activated because of
1114 * filter mismatch still needs to have its timings
1115 * maintained, otherwise bogus information is return
1116 * via read() for time_enabled, time_running:
1117 */
1118 if (event->state == PERF_EVENT_STATE_INACTIVE
1119 && !event_filter_match(event)) {
e5d1367f 1120 delta = tstamp - event->tstamp_stopped;
fa66f07a 1121 event->tstamp_running += delta;
4158755d 1122 event->tstamp_stopped = tstamp;
fa66f07a
SE
1123 }
1124
cdd6c482 1125 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1126 return;
3b6f9e5c 1127
cdd6c482
IM
1128 event->state = PERF_EVENT_STATE_INACTIVE;
1129 if (event->pending_disable) {
1130 event->pending_disable = 0;
1131 event->state = PERF_EVENT_STATE_OFF;
970892a9 1132 }
4158755d 1133 event->tstamp_stopped = tstamp;
a4eaf7f1 1134 event->pmu->del(event, 0);
cdd6c482 1135 event->oncpu = -1;
3b6f9e5c 1136
cdd6c482 1137 if (!is_software_event(event))
3b6f9e5c
PM
1138 cpuctx->active_oncpu--;
1139 ctx->nr_active--;
0f5a2601
PZ
1140 if (event->attr.freq && event->attr.sample_freq)
1141 ctx->nr_freq--;
cdd6c482 1142 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1143 cpuctx->exclusive = 0;
1144}
1145
d859e29f 1146static void
cdd6c482 1147group_sched_out(struct perf_event *group_event,
d859e29f 1148 struct perf_cpu_context *cpuctx,
cdd6c482 1149 struct perf_event_context *ctx)
d859e29f 1150{
cdd6c482 1151 struct perf_event *event;
fa66f07a 1152 int state = group_event->state;
d859e29f 1153
cdd6c482 1154 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1155
1156 /*
1157 * Schedule out siblings (if any):
1158 */
cdd6c482
IM
1159 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1160 event_sched_out(event, cpuctx, ctx);
d859e29f 1161
fa66f07a 1162 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1163 cpuctx->exclusive = 0;
1164}
1165
0793a61d 1166/*
cdd6c482 1167 * Cross CPU call to remove a performance event
0793a61d 1168 *
cdd6c482 1169 * We disable the event on the hardware level first. After that we
0793a61d
TG
1170 * remove it from the context list.
1171 */
fe4b04fa 1172static int __perf_remove_from_context(void *info)
0793a61d 1173{
cdd6c482
IM
1174 struct perf_event *event = info;
1175 struct perf_event_context *ctx = event->ctx;
108b02cf 1176 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1177
e625cce1 1178 raw_spin_lock(&ctx->lock);
cdd6c482 1179 event_sched_out(event, cpuctx, ctx);
cdd6c482 1180 list_del_event(event, ctx);
64ce3126
PZ
1181 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1182 ctx->is_active = 0;
1183 cpuctx->task_ctx = NULL;
1184 }
e625cce1 1185 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1186
1187 return 0;
0793a61d
TG
1188}
1189
1190
1191/*
cdd6c482 1192 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1193 *
cdd6c482 1194 * CPU events are removed with a smp call. For task events we only
0793a61d 1195 * call when the task is on a CPU.
c93f7669 1196 *
cdd6c482
IM
1197 * If event->ctx is a cloned context, callers must make sure that
1198 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1199 * remains valid. This is OK when called from perf_release since
1200 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1201 * When called from perf_event_exit_task, it's OK because the
c93f7669 1202 * context has been detached from its task.
0793a61d 1203 */
fe4b04fa 1204static void perf_remove_from_context(struct perf_event *event)
0793a61d 1205{
cdd6c482 1206 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1207 struct task_struct *task = ctx->task;
1208
fe4b04fa
PZ
1209 lockdep_assert_held(&ctx->mutex);
1210
0793a61d
TG
1211 if (!task) {
1212 /*
cdd6c482 1213 * Per cpu events are removed via an smp call and
af901ca1 1214 * the removal is always successful.
0793a61d 1215 */
fe4b04fa 1216 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1217 return;
1218 }
1219
1220retry:
fe4b04fa
PZ
1221 if (!task_function_call(task, __perf_remove_from_context, event))
1222 return;
0793a61d 1223
e625cce1 1224 raw_spin_lock_irq(&ctx->lock);
0793a61d 1225 /*
fe4b04fa
PZ
1226 * If we failed to find a running task, but find the context active now
1227 * that we've acquired the ctx->lock, retry.
0793a61d 1228 */
fe4b04fa 1229 if (ctx->is_active) {
e625cce1 1230 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1231 goto retry;
1232 }
1233
1234 /*
fe4b04fa
PZ
1235 * Since the task isn't running, its safe to remove the event, us
1236 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1237 */
fe4b04fa 1238 list_del_event(event, ctx);
e625cce1 1239 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1240}
1241
d859e29f 1242/*
cdd6c482 1243 * Cross CPU call to disable a performance event
d859e29f 1244 */
fe4b04fa 1245static int __perf_event_disable(void *info)
d859e29f 1246{
cdd6c482 1247 struct perf_event *event = info;
cdd6c482 1248 struct perf_event_context *ctx = event->ctx;
108b02cf 1249 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1250
1251 /*
cdd6c482
IM
1252 * If this is a per-task event, need to check whether this
1253 * event's task is the current task on this cpu.
fe4b04fa
PZ
1254 *
1255 * Can trigger due to concurrent perf_event_context_sched_out()
1256 * flipping contexts around.
d859e29f 1257 */
665c2142 1258 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1259 return -EINVAL;
d859e29f 1260
e625cce1 1261 raw_spin_lock(&ctx->lock);
d859e29f
PM
1262
1263 /*
cdd6c482 1264 * If the event is on, turn it off.
d859e29f
PM
1265 * If it is in error state, leave it in error state.
1266 */
cdd6c482 1267 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1268 update_context_time(ctx);
e5d1367f 1269 update_cgrp_time_from_event(event);
cdd6c482
IM
1270 update_group_times(event);
1271 if (event == event->group_leader)
1272 group_sched_out(event, cpuctx, ctx);
d859e29f 1273 else
cdd6c482
IM
1274 event_sched_out(event, cpuctx, ctx);
1275 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1276 }
1277
e625cce1 1278 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1279
1280 return 0;
d859e29f
PM
1281}
1282
1283/*
cdd6c482 1284 * Disable a event.
c93f7669 1285 *
cdd6c482
IM
1286 * If event->ctx is a cloned context, callers must make sure that
1287 * every task struct that event->ctx->task could possibly point to
c93f7669 1288 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1289 * perf_event_for_each_child or perf_event_for_each because they
1290 * hold the top-level event's child_mutex, so any descendant that
1291 * goes to exit will block in sync_child_event.
1292 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1293 * is the current context on this CPU and preemption is disabled,
cdd6c482 1294 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1295 */
44234adc 1296void perf_event_disable(struct perf_event *event)
d859e29f 1297{
cdd6c482 1298 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1299 struct task_struct *task = ctx->task;
1300
1301 if (!task) {
1302 /*
cdd6c482 1303 * Disable the event on the cpu that it's on
d859e29f 1304 */
fe4b04fa 1305 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1306 return;
1307 }
1308
9ed6060d 1309retry:
fe4b04fa
PZ
1310 if (!task_function_call(task, __perf_event_disable, event))
1311 return;
d859e29f 1312
e625cce1 1313 raw_spin_lock_irq(&ctx->lock);
d859e29f 1314 /*
cdd6c482 1315 * If the event is still active, we need to retry the cross-call.
d859e29f 1316 */
cdd6c482 1317 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1318 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1319 /*
1320 * Reload the task pointer, it might have been changed by
1321 * a concurrent perf_event_context_sched_out().
1322 */
1323 task = ctx->task;
d859e29f
PM
1324 goto retry;
1325 }
1326
1327 /*
1328 * Since we have the lock this context can't be scheduled
1329 * in, so we can change the state safely.
1330 */
cdd6c482
IM
1331 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1332 update_group_times(event);
1333 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1334 }
e625cce1 1335 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1336}
dcfce4a0 1337EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1338
e5d1367f
SE
1339static void perf_set_shadow_time(struct perf_event *event,
1340 struct perf_event_context *ctx,
1341 u64 tstamp)
1342{
1343 /*
1344 * use the correct time source for the time snapshot
1345 *
1346 * We could get by without this by leveraging the
1347 * fact that to get to this function, the caller
1348 * has most likely already called update_context_time()
1349 * and update_cgrp_time_xx() and thus both timestamp
1350 * are identical (or very close). Given that tstamp is,
1351 * already adjusted for cgroup, we could say that:
1352 * tstamp - ctx->timestamp
1353 * is equivalent to
1354 * tstamp - cgrp->timestamp.
1355 *
1356 * Then, in perf_output_read(), the calculation would
1357 * work with no changes because:
1358 * - event is guaranteed scheduled in
1359 * - no scheduled out in between
1360 * - thus the timestamp would be the same
1361 *
1362 * But this is a bit hairy.
1363 *
1364 * So instead, we have an explicit cgroup call to remain
1365 * within the time time source all along. We believe it
1366 * is cleaner and simpler to understand.
1367 */
1368 if (is_cgroup_event(event))
1369 perf_cgroup_set_shadow_time(event, tstamp);
1370 else
1371 event->shadow_ctx_time = tstamp - ctx->timestamp;
1372}
1373
4fe757dd
PZ
1374#define MAX_INTERRUPTS (~0ULL)
1375
1376static void perf_log_throttle(struct perf_event *event, int enable);
1377
235c7fc7 1378static int
9ffcfa6f 1379event_sched_in(struct perf_event *event,
235c7fc7 1380 struct perf_cpu_context *cpuctx,
6e37738a 1381 struct perf_event_context *ctx)
235c7fc7 1382{
4158755d
SE
1383 u64 tstamp = perf_event_time(event);
1384
cdd6c482 1385 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1386 return 0;
1387
cdd6c482 1388 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1389 event->oncpu = smp_processor_id();
4fe757dd
PZ
1390
1391 /*
1392 * Unthrottle events, since we scheduled we might have missed several
1393 * ticks already, also for a heavily scheduling task there is little
1394 * guarantee it'll get a tick in a timely manner.
1395 */
1396 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1397 perf_log_throttle(event, 1);
1398 event->hw.interrupts = 0;
1399 }
1400
235c7fc7
IM
1401 /*
1402 * The new state must be visible before we turn it on in the hardware:
1403 */
1404 smp_wmb();
1405
a4eaf7f1 1406 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1407 event->state = PERF_EVENT_STATE_INACTIVE;
1408 event->oncpu = -1;
235c7fc7
IM
1409 return -EAGAIN;
1410 }
1411
4158755d 1412 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1413
e5d1367f 1414 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1415
cdd6c482 1416 if (!is_software_event(event))
3b6f9e5c 1417 cpuctx->active_oncpu++;
235c7fc7 1418 ctx->nr_active++;
0f5a2601
PZ
1419 if (event->attr.freq && event->attr.sample_freq)
1420 ctx->nr_freq++;
235c7fc7 1421
cdd6c482 1422 if (event->attr.exclusive)
3b6f9e5c
PM
1423 cpuctx->exclusive = 1;
1424
235c7fc7
IM
1425 return 0;
1426}
1427
6751b71e 1428static int
cdd6c482 1429group_sched_in(struct perf_event *group_event,
6751b71e 1430 struct perf_cpu_context *cpuctx,
6e37738a 1431 struct perf_event_context *ctx)
6751b71e 1432{
6bde9b6c 1433 struct perf_event *event, *partial_group = NULL;
51b0fe39 1434 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1435 u64 now = ctx->time;
1436 bool simulate = false;
6751b71e 1437
cdd6c482 1438 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1439 return 0;
1440
ad5133b7 1441 pmu->start_txn(pmu);
6bde9b6c 1442
9ffcfa6f 1443 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1444 pmu->cancel_txn(pmu);
6751b71e 1445 return -EAGAIN;
90151c35 1446 }
6751b71e
PM
1447
1448 /*
1449 * Schedule in siblings as one group (if any):
1450 */
cdd6c482 1451 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1452 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1453 partial_group = event;
6751b71e
PM
1454 goto group_error;
1455 }
1456 }
1457
9ffcfa6f 1458 if (!pmu->commit_txn(pmu))
6e85158c 1459 return 0;
9ffcfa6f 1460
6751b71e
PM
1461group_error:
1462 /*
1463 * Groups can be scheduled in as one unit only, so undo any
1464 * partial group before returning:
d7842da4
SE
1465 * The events up to the failed event are scheduled out normally,
1466 * tstamp_stopped will be updated.
1467 *
1468 * The failed events and the remaining siblings need to have
1469 * their timings updated as if they had gone thru event_sched_in()
1470 * and event_sched_out(). This is required to get consistent timings
1471 * across the group. This also takes care of the case where the group
1472 * could never be scheduled by ensuring tstamp_stopped is set to mark
1473 * the time the event was actually stopped, such that time delta
1474 * calculation in update_event_times() is correct.
6751b71e 1475 */
cdd6c482
IM
1476 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1477 if (event == partial_group)
d7842da4
SE
1478 simulate = true;
1479
1480 if (simulate) {
1481 event->tstamp_running += now - event->tstamp_stopped;
1482 event->tstamp_stopped = now;
1483 } else {
1484 event_sched_out(event, cpuctx, ctx);
1485 }
6751b71e 1486 }
9ffcfa6f 1487 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1488
ad5133b7 1489 pmu->cancel_txn(pmu);
90151c35 1490
6751b71e
PM
1491 return -EAGAIN;
1492}
1493
3b6f9e5c 1494/*
cdd6c482 1495 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1496 */
cdd6c482 1497static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1498 struct perf_cpu_context *cpuctx,
1499 int can_add_hw)
1500{
1501 /*
cdd6c482 1502 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1503 */
d6f962b5 1504 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1505 return 1;
1506 /*
1507 * If an exclusive group is already on, no other hardware
cdd6c482 1508 * events can go on.
3b6f9e5c
PM
1509 */
1510 if (cpuctx->exclusive)
1511 return 0;
1512 /*
1513 * If this group is exclusive and there are already
cdd6c482 1514 * events on the CPU, it can't go on.
3b6f9e5c 1515 */
cdd6c482 1516 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1517 return 0;
1518 /*
1519 * Otherwise, try to add it if all previous groups were able
1520 * to go on.
1521 */
1522 return can_add_hw;
1523}
1524
cdd6c482
IM
1525static void add_event_to_ctx(struct perf_event *event,
1526 struct perf_event_context *ctx)
53cfbf59 1527{
4158755d
SE
1528 u64 tstamp = perf_event_time(event);
1529
cdd6c482 1530 list_add_event(event, ctx);
8a49542c 1531 perf_group_attach(event);
4158755d
SE
1532 event->tstamp_enabled = tstamp;
1533 event->tstamp_running = tstamp;
1534 event->tstamp_stopped = tstamp;
53cfbf59
PM
1535}
1536
2c29ef0f
PZ
1537static void task_ctx_sched_out(struct perf_event_context *ctx);
1538static void
1539ctx_sched_in(struct perf_event_context *ctx,
1540 struct perf_cpu_context *cpuctx,
1541 enum event_type_t event_type,
1542 struct task_struct *task);
fe4b04fa 1543
dce5855b
PZ
1544static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1545 struct perf_event_context *ctx,
1546 struct task_struct *task)
1547{
1548 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1549 if (ctx)
1550 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1551 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1552 if (ctx)
1553 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1554}
1555
0793a61d 1556/*
cdd6c482 1557 * Cross CPU call to install and enable a performance event
682076ae
PZ
1558 *
1559 * Must be called with ctx->mutex held
0793a61d 1560 */
fe4b04fa 1561static int __perf_install_in_context(void *info)
0793a61d 1562{
cdd6c482
IM
1563 struct perf_event *event = info;
1564 struct perf_event_context *ctx = event->ctx;
108b02cf 1565 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1566 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1567 struct task_struct *task = current;
1568
b58f6b0d 1569 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1570 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1571
1572 /*
2c29ef0f 1573 * If there was an active task_ctx schedule it out.
0793a61d 1574 */
b58f6b0d 1575 if (task_ctx)
2c29ef0f 1576 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1577
1578 /*
1579 * If the context we're installing events in is not the
1580 * active task_ctx, flip them.
1581 */
1582 if (ctx->task && task_ctx != ctx) {
1583 if (task_ctx)
1584 raw_spin_unlock(&task_ctx->lock);
1585 raw_spin_lock(&ctx->lock);
1586 task_ctx = ctx;
1587 }
1588
1589 if (task_ctx) {
1590 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1591 task = task_ctx->task;
1592 }
b58f6b0d 1593
2c29ef0f 1594 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1595
4af4998b 1596 update_context_time(ctx);
e5d1367f
SE
1597 /*
1598 * update cgrp time only if current cgrp
1599 * matches event->cgrp. Must be done before
1600 * calling add_event_to_ctx()
1601 */
1602 update_cgrp_time_from_event(event);
0793a61d 1603
cdd6c482 1604 add_event_to_ctx(event, ctx);
0793a61d 1605
d859e29f 1606 /*
2c29ef0f 1607 * Schedule everything back in
d859e29f 1608 */
dce5855b 1609 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1610
1611 perf_pmu_enable(cpuctx->ctx.pmu);
1612 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1613
1614 return 0;
0793a61d
TG
1615}
1616
1617/*
cdd6c482 1618 * Attach a performance event to a context
0793a61d 1619 *
cdd6c482
IM
1620 * First we add the event to the list with the hardware enable bit
1621 * in event->hw_config cleared.
0793a61d 1622 *
cdd6c482 1623 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1624 * call to enable it in the task context. The task might have been
1625 * scheduled away, but we check this in the smp call again.
1626 */
1627static void
cdd6c482
IM
1628perf_install_in_context(struct perf_event_context *ctx,
1629 struct perf_event *event,
0793a61d
TG
1630 int cpu)
1631{
1632 struct task_struct *task = ctx->task;
1633
fe4b04fa
PZ
1634 lockdep_assert_held(&ctx->mutex);
1635
c3f00c70
PZ
1636 event->ctx = ctx;
1637
0793a61d
TG
1638 if (!task) {
1639 /*
cdd6c482 1640 * Per cpu events are installed via an smp call and
af901ca1 1641 * the install is always successful.
0793a61d 1642 */
fe4b04fa 1643 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1644 return;
1645 }
1646
0793a61d 1647retry:
fe4b04fa
PZ
1648 if (!task_function_call(task, __perf_install_in_context, event))
1649 return;
0793a61d 1650
e625cce1 1651 raw_spin_lock_irq(&ctx->lock);
0793a61d 1652 /*
fe4b04fa
PZ
1653 * If we failed to find a running task, but find the context active now
1654 * that we've acquired the ctx->lock, retry.
0793a61d 1655 */
fe4b04fa 1656 if (ctx->is_active) {
e625cce1 1657 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1658 goto retry;
1659 }
1660
1661 /*
fe4b04fa
PZ
1662 * Since the task isn't running, its safe to add the event, us holding
1663 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1664 */
fe4b04fa 1665 add_event_to_ctx(event, ctx);
e625cce1 1666 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1667}
1668
fa289bec 1669/*
cdd6c482 1670 * Put a event into inactive state and update time fields.
fa289bec
PM
1671 * Enabling the leader of a group effectively enables all
1672 * the group members that aren't explicitly disabled, so we
1673 * have to update their ->tstamp_enabled also.
1674 * Note: this works for group members as well as group leaders
1675 * since the non-leader members' sibling_lists will be empty.
1676 */
1d9b482e 1677static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1678{
cdd6c482 1679 struct perf_event *sub;
4158755d 1680 u64 tstamp = perf_event_time(event);
fa289bec 1681
cdd6c482 1682 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1683 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1684 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1685 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1686 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1687 }
fa289bec
PM
1688}
1689
d859e29f 1690/*
cdd6c482 1691 * Cross CPU call to enable a performance event
d859e29f 1692 */
fe4b04fa 1693static int __perf_event_enable(void *info)
04289bb9 1694{
cdd6c482 1695 struct perf_event *event = info;
cdd6c482
IM
1696 struct perf_event_context *ctx = event->ctx;
1697 struct perf_event *leader = event->group_leader;
108b02cf 1698 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1699 int err;
04289bb9 1700
fe4b04fa
PZ
1701 if (WARN_ON_ONCE(!ctx->is_active))
1702 return -EINVAL;
3cbed429 1703
e625cce1 1704 raw_spin_lock(&ctx->lock);
4af4998b 1705 update_context_time(ctx);
d859e29f 1706
cdd6c482 1707 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1708 goto unlock;
e5d1367f
SE
1709
1710 /*
1711 * set current task's cgroup time reference point
1712 */
3f7cce3c 1713 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1714
1d9b482e 1715 __perf_event_mark_enabled(event);
04289bb9 1716
e5d1367f
SE
1717 if (!event_filter_match(event)) {
1718 if (is_cgroup_event(event))
1719 perf_cgroup_defer_enabled(event);
f4c4176f 1720 goto unlock;
e5d1367f 1721 }
f4c4176f 1722
04289bb9 1723 /*
cdd6c482 1724 * If the event is in a group and isn't the group leader,
d859e29f 1725 * then don't put it on unless the group is on.
04289bb9 1726 */
cdd6c482 1727 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1728 goto unlock;
3b6f9e5c 1729
cdd6c482 1730 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1731 err = -EEXIST;
e758a33d 1732 } else {
cdd6c482 1733 if (event == leader)
6e37738a 1734 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1735 else
6e37738a 1736 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1737 }
d859e29f
PM
1738
1739 if (err) {
1740 /*
cdd6c482 1741 * If this event can't go on and it's part of a
d859e29f
PM
1742 * group, then the whole group has to come off.
1743 */
cdd6c482 1744 if (leader != event)
d859e29f 1745 group_sched_out(leader, cpuctx, ctx);
0d48696f 1746 if (leader->attr.pinned) {
53cfbf59 1747 update_group_times(leader);
cdd6c482 1748 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1749 }
d859e29f
PM
1750 }
1751
9ed6060d 1752unlock:
e625cce1 1753 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1754
1755 return 0;
d859e29f
PM
1756}
1757
1758/*
cdd6c482 1759 * Enable a event.
c93f7669 1760 *
cdd6c482
IM
1761 * If event->ctx is a cloned context, callers must make sure that
1762 * every task struct that event->ctx->task could possibly point to
c93f7669 1763 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1764 * perf_event_for_each_child or perf_event_for_each as described
1765 * for perf_event_disable.
d859e29f 1766 */
44234adc 1767void perf_event_enable(struct perf_event *event)
d859e29f 1768{
cdd6c482 1769 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1770 struct task_struct *task = ctx->task;
1771
1772 if (!task) {
1773 /*
cdd6c482 1774 * Enable the event on the cpu that it's on
d859e29f 1775 */
fe4b04fa 1776 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1777 return;
1778 }
1779
e625cce1 1780 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1781 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1782 goto out;
1783
1784 /*
cdd6c482
IM
1785 * If the event is in error state, clear that first.
1786 * That way, if we see the event in error state below, we
d859e29f
PM
1787 * know that it has gone back into error state, as distinct
1788 * from the task having been scheduled away before the
1789 * cross-call arrived.
1790 */
cdd6c482
IM
1791 if (event->state == PERF_EVENT_STATE_ERROR)
1792 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1793
9ed6060d 1794retry:
fe4b04fa 1795 if (!ctx->is_active) {
1d9b482e 1796 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1797 goto out;
1798 }
1799
e625cce1 1800 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1801
1802 if (!task_function_call(task, __perf_event_enable, event))
1803 return;
d859e29f 1804
e625cce1 1805 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1806
1807 /*
cdd6c482 1808 * If the context is active and the event is still off,
d859e29f
PM
1809 * we need to retry the cross-call.
1810 */
fe4b04fa
PZ
1811 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1812 /*
1813 * task could have been flipped by a concurrent
1814 * perf_event_context_sched_out()
1815 */
1816 task = ctx->task;
d859e29f 1817 goto retry;
fe4b04fa 1818 }
fa289bec 1819
9ed6060d 1820out:
e625cce1 1821 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1822}
dcfce4a0 1823EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1824
26ca5c11 1825int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1826{
2023b359 1827 /*
cdd6c482 1828 * not supported on inherited events
2023b359 1829 */
2e939d1d 1830 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1831 return -EINVAL;
1832
cdd6c482
IM
1833 atomic_add(refresh, &event->event_limit);
1834 perf_event_enable(event);
2023b359
PZ
1835
1836 return 0;
79f14641 1837}
26ca5c11 1838EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1839
5b0311e1
FW
1840static void ctx_sched_out(struct perf_event_context *ctx,
1841 struct perf_cpu_context *cpuctx,
1842 enum event_type_t event_type)
235c7fc7 1843{
cdd6c482 1844 struct perf_event *event;
db24d33e 1845 int is_active = ctx->is_active;
235c7fc7 1846
db24d33e 1847 ctx->is_active &= ~event_type;
cdd6c482 1848 if (likely(!ctx->nr_events))
facc4307
PZ
1849 return;
1850
4af4998b 1851 update_context_time(ctx);
e5d1367f 1852 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1853 if (!ctx->nr_active)
facc4307 1854 return;
5b0311e1 1855
075e0b00 1856 perf_pmu_disable(ctx->pmu);
db24d33e 1857 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1858 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1859 group_sched_out(event, cpuctx, ctx);
9ed6060d 1860 }
889ff015 1861
db24d33e 1862 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1863 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1864 group_sched_out(event, cpuctx, ctx);
9ed6060d 1865 }
1b9a644f 1866 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1867}
1868
564c2b21
PM
1869/*
1870 * Test whether two contexts are equivalent, i.e. whether they
1871 * have both been cloned from the same version of the same context
cdd6c482
IM
1872 * and they both have the same number of enabled events.
1873 * If the number of enabled events is the same, then the set
1874 * of enabled events should be the same, because these are both
1875 * inherited contexts, therefore we can't access individual events
564c2b21 1876 * in them directly with an fd; we can only enable/disable all
cdd6c482 1877 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1878 * via ioctl, which will have the same effect on both contexts.
1879 */
cdd6c482
IM
1880static int context_equiv(struct perf_event_context *ctx1,
1881 struct perf_event_context *ctx2)
564c2b21
PM
1882{
1883 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1884 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1885 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1886}
1887
cdd6c482
IM
1888static void __perf_event_sync_stat(struct perf_event *event,
1889 struct perf_event *next_event)
bfbd3381
PZ
1890{
1891 u64 value;
1892
cdd6c482 1893 if (!event->attr.inherit_stat)
bfbd3381
PZ
1894 return;
1895
1896 /*
cdd6c482 1897 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1898 * because we're in the middle of a context switch and have IRQs
1899 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1900 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1901 * don't need to use it.
1902 */
cdd6c482
IM
1903 switch (event->state) {
1904 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1905 event->pmu->read(event);
1906 /* fall-through */
bfbd3381 1907
cdd6c482
IM
1908 case PERF_EVENT_STATE_INACTIVE:
1909 update_event_times(event);
bfbd3381
PZ
1910 break;
1911
1912 default:
1913 break;
1914 }
1915
1916 /*
cdd6c482 1917 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1918 * values when we flip the contexts.
1919 */
e7850595
PZ
1920 value = local64_read(&next_event->count);
1921 value = local64_xchg(&event->count, value);
1922 local64_set(&next_event->count, value);
bfbd3381 1923
cdd6c482
IM
1924 swap(event->total_time_enabled, next_event->total_time_enabled);
1925 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1926
bfbd3381 1927 /*
19d2e755 1928 * Since we swizzled the values, update the user visible data too.
bfbd3381 1929 */
cdd6c482
IM
1930 perf_event_update_userpage(event);
1931 perf_event_update_userpage(next_event);
bfbd3381
PZ
1932}
1933
1934#define list_next_entry(pos, member) \
1935 list_entry(pos->member.next, typeof(*pos), member)
1936
cdd6c482
IM
1937static void perf_event_sync_stat(struct perf_event_context *ctx,
1938 struct perf_event_context *next_ctx)
bfbd3381 1939{
cdd6c482 1940 struct perf_event *event, *next_event;
bfbd3381
PZ
1941
1942 if (!ctx->nr_stat)
1943 return;
1944
02ffdbc8
PZ
1945 update_context_time(ctx);
1946
cdd6c482
IM
1947 event = list_first_entry(&ctx->event_list,
1948 struct perf_event, event_entry);
bfbd3381 1949
cdd6c482
IM
1950 next_event = list_first_entry(&next_ctx->event_list,
1951 struct perf_event, event_entry);
bfbd3381 1952
cdd6c482
IM
1953 while (&event->event_entry != &ctx->event_list &&
1954 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1955
cdd6c482 1956 __perf_event_sync_stat(event, next_event);
bfbd3381 1957
cdd6c482
IM
1958 event = list_next_entry(event, event_entry);
1959 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1960 }
1961}
1962
fe4b04fa
PZ
1963static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1964 struct task_struct *next)
0793a61d 1965{
8dc85d54 1966 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1967 struct perf_event_context *next_ctx;
1968 struct perf_event_context *parent;
108b02cf 1969 struct perf_cpu_context *cpuctx;
c93f7669 1970 int do_switch = 1;
0793a61d 1971
108b02cf
PZ
1972 if (likely(!ctx))
1973 return;
10989fb2 1974
108b02cf
PZ
1975 cpuctx = __get_cpu_context(ctx);
1976 if (!cpuctx->task_ctx)
0793a61d
TG
1977 return;
1978
c93f7669
PM
1979 rcu_read_lock();
1980 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1981 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1982 if (parent && next_ctx &&
1983 rcu_dereference(next_ctx->parent_ctx) == parent) {
1984 /*
1985 * Looks like the two contexts are clones, so we might be
1986 * able to optimize the context switch. We lock both
1987 * contexts and check that they are clones under the
1988 * lock (including re-checking that neither has been
1989 * uncloned in the meantime). It doesn't matter which
1990 * order we take the locks because no other cpu could
1991 * be trying to lock both of these tasks.
1992 */
e625cce1
TG
1993 raw_spin_lock(&ctx->lock);
1994 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 1995 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
1996 /*
1997 * XXX do we need a memory barrier of sorts
cdd6c482 1998 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 1999 */
8dc85d54
PZ
2000 task->perf_event_ctxp[ctxn] = next_ctx;
2001 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2002 ctx->task = next;
2003 next_ctx->task = task;
2004 do_switch = 0;
bfbd3381 2005
cdd6c482 2006 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2007 }
e625cce1
TG
2008 raw_spin_unlock(&next_ctx->lock);
2009 raw_spin_unlock(&ctx->lock);
564c2b21 2010 }
c93f7669 2011 rcu_read_unlock();
564c2b21 2012
c93f7669 2013 if (do_switch) {
facc4307 2014 raw_spin_lock(&ctx->lock);
5b0311e1 2015 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2016 cpuctx->task_ctx = NULL;
facc4307 2017 raw_spin_unlock(&ctx->lock);
c93f7669 2018 }
0793a61d
TG
2019}
2020
8dc85d54
PZ
2021#define for_each_task_context_nr(ctxn) \
2022 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2023
2024/*
2025 * Called from scheduler to remove the events of the current task,
2026 * with interrupts disabled.
2027 *
2028 * We stop each event and update the event value in event->count.
2029 *
2030 * This does not protect us against NMI, but disable()
2031 * sets the disabled bit in the control field of event _before_
2032 * accessing the event control register. If a NMI hits, then it will
2033 * not restart the event.
2034 */
82cd6def
PZ
2035void __perf_event_task_sched_out(struct task_struct *task,
2036 struct task_struct *next)
8dc85d54
PZ
2037{
2038 int ctxn;
2039
8dc85d54
PZ
2040 for_each_task_context_nr(ctxn)
2041 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2042
2043 /*
2044 * if cgroup events exist on this CPU, then we need
2045 * to check if we have to switch out PMU state.
2046 * cgroup event are system-wide mode only
2047 */
2048 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2049 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2050}
2051
04dc2dbb 2052static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2053{
108b02cf 2054 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2055
a63eaf34
PM
2056 if (!cpuctx->task_ctx)
2057 return;
012b84da
IM
2058
2059 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2060 return;
2061
04dc2dbb 2062 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2063 cpuctx->task_ctx = NULL;
2064}
2065
5b0311e1
FW
2066/*
2067 * Called with IRQs disabled
2068 */
2069static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2070 enum event_type_t event_type)
2071{
2072 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2073}
2074
235c7fc7 2075static void
5b0311e1 2076ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2077 struct perf_cpu_context *cpuctx)
0793a61d 2078{
cdd6c482 2079 struct perf_event *event;
0793a61d 2080
889ff015
FW
2081 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2082 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2083 continue;
5632ab12 2084 if (!event_filter_match(event))
3b6f9e5c
PM
2085 continue;
2086
e5d1367f
SE
2087 /* may need to reset tstamp_enabled */
2088 if (is_cgroup_event(event))
2089 perf_cgroup_mark_enabled(event, ctx);
2090
8c9ed8e1 2091 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2092 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2093
2094 /*
2095 * If this pinned group hasn't been scheduled,
2096 * put it in error state.
2097 */
cdd6c482
IM
2098 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2099 update_group_times(event);
2100 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2101 }
3b6f9e5c 2102 }
5b0311e1
FW
2103}
2104
2105static void
2106ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2107 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2108{
2109 struct perf_event *event;
2110 int can_add_hw = 1;
3b6f9e5c 2111
889ff015
FW
2112 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2113 /* Ignore events in OFF or ERROR state */
2114 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2115 continue;
04289bb9
IM
2116 /*
2117 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2118 * of events:
04289bb9 2119 */
5632ab12 2120 if (!event_filter_match(event))
0793a61d
TG
2121 continue;
2122
e5d1367f
SE
2123 /* may need to reset tstamp_enabled */
2124 if (is_cgroup_event(event))
2125 perf_cgroup_mark_enabled(event, ctx);
2126
9ed6060d 2127 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2128 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2129 can_add_hw = 0;
9ed6060d 2130 }
0793a61d 2131 }
5b0311e1
FW
2132}
2133
2134static void
2135ctx_sched_in(struct perf_event_context *ctx,
2136 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2137 enum event_type_t event_type,
2138 struct task_struct *task)
5b0311e1 2139{
e5d1367f 2140 u64 now;
db24d33e 2141 int is_active = ctx->is_active;
e5d1367f 2142
db24d33e 2143 ctx->is_active |= event_type;
5b0311e1 2144 if (likely(!ctx->nr_events))
facc4307 2145 return;
5b0311e1 2146
e5d1367f
SE
2147 now = perf_clock();
2148 ctx->timestamp = now;
3f7cce3c 2149 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2150 /*
2151 * First go through the list and put on any pinned groups
2152 * in order to give them the best chance of going on.
2153 */
db24d33e 2154 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2155 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2156
2157 /* Then walk through the lower prio flexible groups */
db24d33e 2158 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2159 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2160}
2161
329c0e01 2162static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2163 enum event_type_t event_type,
2164 struct task_struct *task)
329c0e01
FW
2165{
2166 struct perf_event_context *ctx = &cpuctx->ctx;
2167
e5d1367f 2168 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2169}
2170
e5d1367f
SE
2171static void perf_event_context_sched_in(struct perf_event_context *ctx,
2172 struct task_struct *task)
235c7fc7 2173{
108b02cf 2174 struct perf_cpu_context *cpuctx;
235c7fc7 2175
108b02cf 2176 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2177 if (cpuctx->task_ctx == ctx)
2178 return;
2179
facc4307 2180 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2181 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2182 /*
2183 * We want to keep the following priority order:
2184 * cpu pinned (that don't need to move), task pinned,
2185 * cpu flexible, task flexible.
2186 */
2187 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2188
1d5f003f
GN
2189 if (ctx->nr_events)
2190 cpuctx->task_ctx = ctx;
9b33fa6b 2191
86b47c25
GN
2192 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2193
facc4307
PZ
2194 perf_pmu_enable(ctx->pmu);
2195 perf_ctx_unlock(cpuctx, ctx);
2196
b5ab4cd5
PZ
2197 /*
2198 * Since these rotations are per-cpu, we need to ensure the
2199 * cpu-context we got scheduled on is actually rotating.
2200 */
108b02cf 2201 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2202}
2203
8dc85d54
PZ
2204/*
2205 * Called from scheduler to add the events of the current task
2206 * with interrupts disabled.
2207 *
2208 * We restore the event value and then enable it.
2209 *
2210 * This does not protect us against NMI, but enable()
2211 * sets the enabled bit in the control field of event _before_
2212 * accessing the event control register. If a NMI hits, then it will
2213 * keep the event running.
2214 */
a8d757ef
SE
2215void __perf_event_task_sched_in(struct task_struct *prev,
2216 struct task_struct *task)
8dc85d54
PZ
2217{
2218 struct perf_event_context *ctx;
2219 int ctxn;
2220
2221 for_each_task_context_nr(ctxn) {
2222 ctx = task->perf_event_ctxp[ctxn];
2223 if (likely(!ctx))
2224 continue;
2225
e5d1367f 2226 perf_event_context_sched_in(ctx, task);
8dc85d54 2227 }
e5d1367f
SE
2228 /*
2229 * if cgroup events exist on this CPU, then we need
2230 * to check if we have to switch in PMU state.
2231 * cgroup event are system-wide mode only
2232 */
2233 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2234 perf_cgroup_sched_in(prev, task);
235c7fc7
IM
2235}
2236
abd50713
PZ
2237static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2238{
2239 u64 frequency = event->attr.sample_freq;
2240 u64 sec = NSEC_PER_SEC;
2241 u64 divisor, dividend;
2242
2243 int count_fls, nsec_fls, frequency_fls, sec_fls;
2244
2245 count_fls = fls64(count);
2246 nsec_fls = fls64(nsec);
2247 frequency_fls = fls64(frequency);
2248 sec_fls = 30;
2249
2250 /*
2251 * We got @count in @nsec, with a target of sample_freq HZ
2252 * the target period becomes:
2253 *
2254 * @count * 10^9
2255 * period = -------------------
2256 * @nsec * sample_freq
2257 *
2258 */
2259
2260 /*
2261 * Reduce accuracy by one bit such that @a and @b converge
2262 * to a similar magnitude.
2263 */
fe4b04fa 2264#define REDUCE_FLS(a, b) \
abd50713
PZ
2265do { \
2266 if (a##_fls > b##_fls) { \
2267 a >>= 1; \
2268 a##_fls--; \
2269 } else { \
2270 b >>= 1; \
2271 b##_fls--; \
2272 } \
2273} while (0)
2274
2275 /*
2276 * Reduce accuracy until either term fits in a u64, then proceed with
2277 * the other, so that finally we can do a u64/u64 division.
2278 */
2279 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2280 REDUCE_FLS(nsec, frequency);
2281 REDUCE_FLS(sec, count);
2282 }
2283
2284 if (count_fls + sec_fls > 64) {
2285 divisor = nsec * frequency;
2286
2287 while (count_fls + sec_fls > 64) {
2288 REDUCE_FLS(count, sec);
2289 divisor >>= 1;
2290 }
2291
2292 dividend = count * sec;
2293 } else {
2294 dividend = count * sec;
2295
2296 while (nsec_fls + frequency_fls > 64) {
2297 REDUCE_FLS(nsec, frequency);
2298 dividend >>= 1;
2299 }
2300
2301 divisor = nsec * frequency;
2302 }
2303
f6ab91ad
PZ
2304 if (!divisor)
2305 return dividend;
2306
abd50713
PZ
2307 return div64_u64(dividend, divisor);
2308}
2309
e050e3f0
SE
2310static DEFINE_PER_CPU(int, perf_throttled_count);
2311static DEFINE_PER_CPU(u64, perf_throttled_seq);
2312
f39d47ff 2313static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2314{
cdd6c482 2315 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2316 s64 period, sample_period;
bd2b5b12
PZ
2317 s64 delta;
2318
abd50713 2319 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2320
2321 delta = (s64)(period - hwc->sample_period);
2322 delta = (delta + 7) / 8; /* low pass filter */
2323
2324 sample_period = hwc->sample_period + delta;
2325
2326 if (!sample_period)
2327 sample_period = 1;
2328
bd2b5b12 2329 hwc->sample_period = sample_period;
abd50713 2330
e7850595 2331 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2332 if (disable)
2333 event->pmu->stop(event, PERF_EF_UPDATE);
2334
e7850595 2335 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2336
2337 if (disable)
2338 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2339 }
bd2b5b12
PZ
2340}
2341
e050e3f0
SE
2342/*
2343 * combine freq adjustment with unthrottling to avoid two passes over the
2344 * events. At the same time, make sure, having freq events does not change
2345 * the rate of unthrottling as that would introduce bias.
2346 */
2347static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2348 int needs_unthr)
60db5e09 2349{
cdd6c482
IM
2350 struct perf_event *event;
2351 struct hw_perf_event *hwc;
e050e3f0 2352 u64 now, period = TICK_NSEC;
abd50713 2353 s64 delta;
60db5e09 2354
e050e3f0
SE
2355 /*
2356 * only need to iterate over all events iff:
2357 * - context have events in frequency mode (needs freq adjust)
2358 * - there are events to unthrottle on this cpu
2359 */
2360 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2361 return;
2362
e050e3f0 2363 raw_spin_lock(&ctx->lock);
f39d47ff 2364 perf_pmu_disable(ctx->pmu);
e050e3f0 2365
03541f8b 2366 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2367 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2368 continue;
2369
5632ab12 2370 if (!event_filter_match(event))
5d27c23d
PZ
2371 continue;
2372
cdd6c482 2373 hwc = &event->hw;
6a24ed6c 2374
e050e3f0
SE
2375 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2376 hwc->interrupts = 0;
cdd6c482 2377 perf_log_throttle(event, 1);
a4eaf7f1 2378 event->pmu->start(event, 0);
a78ac325
PZ
2379 }
2380
cdd6c482 2381 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2382 continue;
2383
e050e3f0
SE
2384 /*
2385 * stop the event and update event->count
2386 */
2387 event->pmu->stop(event, PERF_EF_UPDATE);
2388
e7850595 2389 now = local64_read(&event->count);
abd50713
PZ
2390 delta = now - hwc->freq_count_stamp;
2391 hwc->freq_count_stamp = now;
60db5e09 2392
e050e3f0
SE
2393 /*
2394 * restart the event
2395 * reload only if value has changed
f39d47ff
SE
2396 * we have stopped the event so tell that
2397 * to perf_adjust_period() to avoid stopping it
2398 * twice.
e050e3f0 2399 */
abd50713 2400 if (delta > 0)
f39d47ff 2401 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2402
2403 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2404 }
e050e3f0 2405
f39d47ff 2406 perf_pmu_enable(ctx->pmu);
e050e3f0 2407 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2408}
2409
235c7fc7 2410/*
cdd6c482 2411 * Round-robin a context's events:
235c7fc7 2412 */
cdd6c482 2413static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2414{
dddd3379
TG
2415 /*
2416 * Rotate the first entry last of non-pinned groups. Rotation might be
2417 * disabled by the inheritance code.
2418 */
2419 if (!ctx->rotate_disable)
2420 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2421}
2422
b5ab4cd5 2423/*
e9d2b064
PZ
2424 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2425 * because they're strictly cpu affine and rotate_start is called with IRQs
2426 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2427 */
e9d2b064 2428static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2429{
8dc85d54 2430 struct perf_event_context *ctx = NULL;
e050e3f0 2431 int rotate = 0, remove = 1;
7fc23a53 2432
b5ab4cd5 2433 if (cpuctx->ctx.nr_events) {
e9d2b064 2434 remove = 0;
b5ab4cd5
PZ
2435 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2436 rotate = 1;
2437 }
235c7fc7 2438
8dc85d54 2439 ctx = cpuctx->task_ctx;
b5ab4cd5 2440 if (ctx && ctx->nr_events) {
e9d2b064 2441 remove = 0;
b5ab4cd5
PZ
2442 if (ctx->nr_events != ctx->nr_active)
2443 rotate = 1;
2444 }
9717e6cd 2445
e050e3f0 2446 if (!rotate)
0f5a2601
PZ
2447 goto done;
2448
facc4307 2449 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2450 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2451
e050e3f0
SE
2452 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2453 if (ctx)
2454 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2455
e050e3f0
SE
2456 rotate_ctx(&cpuctx->ctx);
2457 if (ctx)
2458 rotate_ctx(ctx);
235c7fc7 2459
e050e3f0 2460 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2461
0f5a2601
PZ
2462 perf_pmu_enable(cpuctx->ctx.pmu);
2463 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2464done:
e9d2b064
PZ
2465 if (remove)
2466 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2467}
2468
2469void perf_event_task_tick(void)
2470{
2471 struct list_head *head = &__get_cpu_var(rotation_list);
2472 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2473 struct perf_event_context *ctx;
2474 int throttled;
b5ab4cd5 2475
e9d2b064
PZ
2476 WARN_ON(!irqs_disabled());
2477
e050e3f0
SE
2478 __this_cpu_inc(perf_throttled_seq);
2479 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2480
e9d2b064 2481 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2482 ctx = &cpuctx->ctx;
2483 perf_adjust_freq_unthr_context(ctx, throttled);
2484
2485 ctx = cpuctx->task_ctx;
2486 if (ctx)
2487 perf_adjust_freq_unthr_context(ctx, throttled);
2488
e9d2b064
PZ
2489 if (cpuctx->jiffies_interval == 1 ||
2490 !(jiffies % cpuctx->jiffies_interval))
2491 perf_rotate_context(cpuctx);
2492 }
0793a61d
TG
2493}
2494
889ff015
FW
2495static int event_enable_on_exec(struct perf_event *event,
2496 struct perf_event_context *ctx)
2497{
2498 if (!event->attr.enable_on_exec)
2499 return 0;
2500
2501 event->attr.enable_on_exec = 0;
2502 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2503 return 0;
2504
1d9b482e 2505 __perf_event_mark_enabled(event);
889ff015
FW
2506
2507 return 1;
2508}
2509
57e7986e 2510/*
cdd6c482 2511 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2512 * This expects task == current.
2513 */
8dc85d54 2514static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2515{
cdd6c482 2516 struct perf_event *event;
57e7986e
PM
2517 unsigned long flags;
2518 int enabled = 0;
889ff015 2519 int ret;
57e7986e
PM
2520
2521 local_irq_save(flags);
cdd6c482 2522 if (!ctx || !ctx->nr_events)
57e7986e
PM
2523 goto out;
2524
e566b76e
SE
2525 /*
2526 * We must ctxsw out cgroup events to avoid conflict
2527 * when invoking perf_task_event_sched_in() later on
2528 * in this function. Otherwise we end up trying to
2529 * ctxswin cgroup events which are already scheduled
2530 * in.
2531 */
a8d757ef 2532 perf_cgroup_sched_out(current, NULL);
57e7986e 2533
e625cce1 2534 raw_spin_lock(&ctx->lock);
04dc2dbb 2535 task_ctx_sched_out(ctx);
57e7986e 2536
b79387ef 2537 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2538 ret = event_enable_on_exec(event, ctx);
2539 if (ret)
2540 enabled = 1;
57e7986e
PM
2541 }
2542
2543 /*
cdd6c482 2544 * Unclone this context if we enabled any event.
57e7986e 2545 */
71a851b4
PZ
2546 if (enabled)
2547 unclone_ctx(ctx);
57e7986e 2548
e625cce1 2549 raw_spin_unlock(&ctx->lock);
57e7986e 2550
e566b76e
SE
2551 /*
2552 * Also calls ctxswin for cgroup events, if any:
2553 */
e5d1367f 2554 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2555out:
57e7986e
PM
2556 local_irq_restore(flags);
2557}
2558
0793a61d 2559/*
cdd6c482 2560 * Cross CPU call to read the hardware event
0793a61d 2561 */
cdd6c482 2562static void __perf_event_read(void *info)
0793a61d 2563{
cdd6c482
IM
2564 struct perf_event *event = info;
2565 struct perf_event_context *ctx = event->ctx;
108b02cf 2566 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2567
e1ac3614
PM
2568 /*
2569 * If this is a task context, we need to check whether it is
2570 * the current task context of this cpu. If not it has been
2571 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2572 * event->count would have been updated to a recent sample
2573 * when the event was scheduled out.
e1ac3614
PM
2574 */
2575 if (ctx->task && cpuctx->task_ctx != ctx)
2576 return;
2577
e625cce1 2578 raw_spin_lock(&ctx->lock);
e5d1367f 2579 if (ctx->is_active) {
542e72fc 2580 update_context_time(ctx);
e5d1367f
SE
2581 update_cgrp_time_from_event(event);
2582 }
cdd6c482 2583 update_event_times(event);
542e72fc
PZ
2584 if (event->state == PERF_EVENT_STATE_ACTIVE)
2585 event->pmu->read(event);
e625cce1 2586 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2587}
2588
b5e58793
PZ
2589static inline u64 perf_event_count(struct perf_event *event)
2590{
e7850595 2591 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2592}
2593
cdd6c482 2594static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2595{
2596 /*
cdd6c482
IM
2597 * If event is enabled and currently active on a CPU, update the
2598 * value in the event structure:
0793a61d 2599 */
cdd6c482
IM
2600 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2601 smp_call_function_single(event->oncpu,
2602 __perf_event_read, event, 1);
2603 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2604 struct perf_event_context *ctx = event->ctx;
2605 unsigned long flags;
2606
e625cce1 2607 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2608 /*
2609 * may read while context is not active
2610 * (e.g., thread is blocked), in that case
2611 * we cannot update context time
2612 */
e5d1367f 2613 if (ctx->is_active) {
c530ccd9 2614 update_context_time(ctx);
e5d1367f
SE
2615 update_cgrp_time_from_event(event);
2616 }
cdd6c482 2617 update_event_times(event);
e625cce1 2618 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2619 }
2620
b5e58793 2621 return perf_event_count(event);
0793a61d
TG
2622}
2623
a63eaf34 2624/*
cdd6c482 2625 * Initialize the perf_event context in a task_struct:
a63eaf34 2626 */
eb184479 2627static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2628{
e625cce1 2629 raw_spin_lock_init(&ctx->lock);
a63eaf34 2630 mutex_init(&ctx->mutex);
889ff015
FW
2631 INIT_LIST_HEAD(&ctx->pinned_groups);
2632 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2633 INIT_LIST_HEAD(&ctx->event_list);
2634 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2635}
2636
2637static struct perf_event_context *
2638alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2639{
2640 struct perf_event_context *ctx;
2641
2642 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2643 if (!ctx)
2644 return NULL;
2645
2646 __perf_event_init_context(ctx);
2647 if (task) {
2648 ctx->task = task;
2649 get_task_struct(task);
0793a61d 2650 }
eb184479
PZ
2651 ctx->pmu = pmu;
2652
2653 return ctx;
a63eaf34
PM
2654}
2655
2ebd4ffb
MH
2656static struct task_struct *
2657find_lively_task_by_vpid(pid_t vpid)
2658{
2659 struct task_struct *task;
2660 int err;
0793a61d
TG
2661
2662 rcu_read_lock();
2ebd4ffb 2663 if (!vpid)
0793a61d
TG
2664 task = current;
2665 else
2ebd4ffb 2666 task = find_task_by_vpid(vpid);
0793a61d
TG
2667 if (task)
2668 get_task_struct(task);
2669 rcu_read_unlock();
2670
2671 if (!task)
2672 return ERR_PTR(-ESRCH);
2673
0793a61d 2674 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2675 err = -EACCES;
2676 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2677 goto errout;
2678
2ebd4ffb
MH
2679 return task;
2680errout:
2681 put_task_struct(task);
2682 return ERR_PTR(err);
2683
2684}
2685
fe4b04fa
PZ
2686/*
2687 * Returns a matching context with refcount and pincount.
2688 */
108b02cf 2689static struct perf_event_context *
38a81da2 2690find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2691{
cdd6c482 2692 struct perf_event_context *ctx;
22a4f650 2693 struct perf_cpu_context *cpuctx;
25346b93 2694 unsigned long flags;
8dc85d54 2695 int ctxn, err;
0793a61d 2696
22a4ec72 2697 if (!task) {
cdd6c482 2698 /* Must be root to operate on a CPU event: */
0764771d 2699 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2700 return ERR_PTR(-EACCES);
2701
0793a61d 2702 /*
cdd6c482 2703 * We could be clever and allow to attach a event to an
0793a61d
TG
2704 * offline CPU and activate it when the CPU comes up, but
2705 * that's for later.
2706 */
f6325e30 2707 if (!cpu_online(cpu))
0793a61d
TG
2708 return ERR_PTR(-ENODEV);
2709
108b02cf 2710 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2711 ctx = &cpuctx->ctx;
c93f7669 2712 get_ctx(ctx);
fe4b04fa 2713 ++ctx->pin_count;
0793a61d 2714
0793a61d
TG
2715 return ctx;
2716 }
2717
8dc85d54
PZ
2718 err = -EINVAL;
2719 ctxn = pmu->task_ctx_nr;
2720 if (ctxn < 0)
2721 goto errout;
2722
9ed6060d 2723retry:
8dc85d54 2724 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2725 if (ctx) {
71a851b4 2726 unclone_ctx(ctx);
fe4b04fa 2727 ++ctx->pin_count;
e625cce1 2728 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2729 } else {
eb184479 2730 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2731 err = -ENOMEM;
2732 if (!ctx)
2733 goto errout;
eb184479 2734
dbe08d82
ON
2735 err = 0;
2736 mutex_lock(&task->perf_event_mutex);
2737 /*
2738 * If it has already passed perf_event_exit_task().
2739 * we must see PF_EXITING, it takes this mutex too.
2740 */
2741 if (task->flags & PF_EXITING)
2742 err = -ESRCH;
2743 else if (task->perf_event_ctxp[ctxn])
2744 err = -EAGAIN;
fe4b04fa 2745 else {
9137fb28 2746 get_ctx(ctx);
fe4b04fa 2747 ++ctx->pin_count;
dbe08d82 2748 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2749 }
dbe08d82
ON
2750 mutex_unlock(&task->perf_event_mutex);
2751
2752 if (unlikely(err)) {
9137fb28 2753 put_ctx(ctx);
dbe08d82
ON
2754
2755 if (err == -EAGAIN)
2756 goto retry;
2757 goto errout;
a63eaf34
PM
2758 }
2759 }
2760
0793a61d 2761 return ctx;
c93f7669 2762
9ed6060d 2763errout:
c93f7669 2764 return ERR_PTR(err);
0793a61d
TG
2765}
2766
6fb2915d
LZ
2767static void perf_event_free_filter(struct perf_event *event);
2768
cdd6c482 2769static void free_event_rcu(struct rcu_head *head)
592903cd 2770{
cdd6c482 2771 struct perf_event *event;
592903cd 2772
cdd6c482
IM
2773 event = container_of(head, struct perf_event, rcu_head);
2774 if (event->ns)
2775 put_pid_ns(event->ns);
6fb2915d 2776 perf_event_free_filter(event);
cdd6c482 2777 kfree(event);
592903cd
PZ
2778}
2779
76369139 2780static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2781
cdd6c482 2782static void free_event(struct perf_event *event)
f1600952 2783{
e360adbe 2784 irq_work_sync(&event->pending);
925d519a 2785
cdd6c482 2786 if (!event->parent) {
82cd6def 2787 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2788 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2789 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2790 atomic_dec(&nr_mmap_events);
2791 if (event->attr.comm)
2792 atomic_dec(&nr_comm_events);
2793 if (event->attr.task)
2794 atomic_dec(&nr_task_events);
927c7a9e
FW
2795 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2796 put_callchain_buffers();
08309379
PZ
2797 if (is_cgroup_event(event)) {
2798 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2799 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2800 }
f344011c 2801 }
9ee318a7 2802
76369139
FW
2803 if (event->rb) {
2804 ring_buffer_put(event->rb);
2805 event->rb = NULL;
a4be7c27
PZ
2806 }
2807
e5d1367f
SE
2808 if (is_cgroup_event(event))
2809 perf_detach_cgroup(event);
2810
cdd6c482
IM
2811 if (event->destroy)
2812 event->destroy(event);
e077df4f 2813
0c67b408
PZ
2814 if (event->ctx)
2815 put_ctx(event->ctx);
2816
cdd6c482 2817 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2818}
2819
a66a3052 2820int perf_event_release_kernel(struct perf_event *event)
0793a61d 2821{
cdd6c482 2822 struct perf_event_context *ctx = event->ctx;
0793a61d 2823
ad3a37de 2824 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2825 /*
2826 * There are two ways this annotation is useful:
2827 *
2828 * 1) there is a lock recursion from perf_event_exit_task
2829 * see the comment there.
2830 *
2831 * 2) there is a lock-inversion with mmap_sem through
2832 * perf_event_read_group(), which takes faults while
2833 * holding ctx->mutex, however this is called after
2834 * the last filedesc died, so there is no possibility
2835 * to trigger the AB-BA case.
2836 */
2837 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2838 raw_spin_lock_irq(&ctx->lock);
8a49542c 2839 perf_group_detach(event);
050735b0 2840 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2841 perf_remove_from_context(event);
d859e29f 2842 mutex_unlock(&ctx->mutex);
0793a61d 2843
cdd6c482 2844 free_event(event);
0793a61d
TG
2845
2846 return 0;
2847}
a66a3052 2848EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2849
a66a3052
PZ
2850/*
2851 * Called when the last reference to the file is gone.
2852 */
2853static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2854{
a66a3052 2855 struct perf_event *event = file->private_data;
8882135b 2856 struct task_struct *owner;
fb0459d7 2857
a66a3052 2858 file->private_data = NULL;
fb0459d7 2859
8882135b
PZ
2860 rcu_read_lock();
2861 owner = ACCESS_ONCE(event->owner);
2862 /*
2863 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2864 * !owner it means the list deletion is complete and we can indeed
2865 * free this event, otherwise we need to serialize on
2866 * owner->perf_event_mutex.
2867 */
2868 smp_read_barrier_depends();
2869 if (owner) {
2870 /*
2871 * Since delayed_put_task_struct() also drops the last
2872 * task reference we can safely take a new reference
2873 * while holding the rcu_read_lock().
2874 */
2875 get_task_struct(owner);
2876 }
2877 rcu_read_unlock();
2878
2879 if (owner) {
2880 mutex_lock(&owner->perf_event_mutex);
2881 /*
2882 * We have to re-check the event->owner field, if it is cleared
2883 * we raced with perf_event_exit_task(), acquiring the mutex
2884 * ensured they're done, and we can proceed with freeing the
2885 * event.
2886 */
2887 if (event->owner)
2888 list_del_init(&event->owner_entry);
2889 mutex_unlock(&owner->perf_event_mutex);
2890 put_task_struct(owner);
2891 }
2892
a66a3052 2893 return perf_event_release_kernel(event);
fb0459d7 2894}
fb0459d7 2895
59ed446f 2896u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2897{
cdd6c482 2898 struct perf_event *child;
e53c0994
PZ
2899 u64 total = 0;
2900
59ed446f
PZ
2901 *enabled = 0;
2902 *running = 0;
2903
6f10581a 2904 mutex_lock(&event->child_mutex);
cdd6c482 2905 total += perf_event_read(event);
59ed446f
PZ
2906 *enabled += event->total_time_enabled +
2907 atomic64_read(&event->child_total_time_enabled);
2908 *running += event->total_time_running +
2909 atomic64_read(&event->child_total_time_running);
2910
2911 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2912 total += perf_event_read(child);
59ed446f
PZ
2913 *enabled += child->total_time_enabled;
2914 *running += child->total_time_running;
2915 }
6f10581a 2916 mutex_unlock(&event->child_mutex);
e53c0994
PZ
2917
2918 return total;
2919}
fb0459d7 2920EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 2921
cdd6c482 2922static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
2923 u64 read_format, char __user *buf)
2924{
cdd6c482 2925 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
2926 int n = 0, size = 0, ret = -EFAULT;
2927 struct perf_event_context *ctx = leader->ctx;
abf4868b 2928 u64 values[5];
59ed446f 2929 u64 count, enabled, running;
abf4868b 2930
6f10581a 2931 mutex_lock(&ctx->mutex);
59ed446f 2932 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
2933
2934 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
2935 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2936 values[n++] = enabled;
2937 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2938 values[n++] = running;
abf4868b
PZ
2939 values[n++] = count;
2940 if (read_format & PERF_FORMAT_ID)
2941 values[n++] = primary_event_id(leader);
3dab77fb
PZ
2942
2943 size = n * sizeof(u64);
2944
2945 if (copy_to_user(buf, values, size))
6f10581a 2946 goto unlock;
3dab77fb 2947
6f10581a 2948 ret = size;
3dab77fb 2949
65abc865 2950 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 2951 n = 0;
3dab77fb 2952
59ed446f 2953 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
2954 if (read_format & PERF_FORMAT_ID)
2955 values[n++] = primary_event_id(sub);
2956
2957 size = n * sizeof(u64);
2958
184d3da8 2959 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
2960 ret = -EFAULT;
2961 goto unlock;
2962 }
abf4868b
PZ
2963
2964 ret += size;
3dab77fb 2965 }
6f10581a
PZ
2966unlock:
2967 mutex_unlock(&ctx->mutex);
3dab77fb 2968
abf4868b 2969 return ret;
3dab77fb
PZ
2970}
2971
cdd6c482 2972static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
2973 u64 read_format, char __user *buf)
2974{
59ed446f 2975 u64 enabled, running;
3dab77fb
PZ
2976 u64 values[4];
2977 int n = 0;
2978
59ed446f
PZ
2979 values[n++] = perf_event_read_value(event, &enabled, &running);
2980 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2981 values[n++] = enabled;
2982 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2983 values[n++] = running;
3dab77fb 2984 if (read_format & PERF_FORMAT_ID)
cdd6c482 2985 values[n++] = primary_event_id(event);
3dab77fb
PZ
2986
2987 if (copy_to_user(buf, values, n * sizeof(u64)))
2988 return -EFAULT;
2989
2990 return n * sizeof(u64);
2991}
2992
0793a61d 2993/*
cdd6c482 2994 * Read the performance event - simple non blocking version for now
0793a61d
TG
2995 */
2996static ssize_t
cdd6c482 2997perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 2998{
cdd6c482 2999 u64 read_format = event->attr.read_format;
3dab77fb 3000 int ret;
0793a61d 3001
3b6f9e5c 3002 /*
cdd6c482 3003 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3004 * error state (i.e. because it was pinned but it couldn't be
3005 * scheduled on to the CPU at some point).
3006 */
cdd6c482 3007 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3008 return 0;
3009
c320c7b7 3010 if (count < event->read_size)
3dab77fb
PZ
3011 return -ENOSPC;
3012
cdd6c482 3013 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3014 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3015 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3016 else
cdd6c482 3017 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3018
3dab77fb 3019 return ret;
0793a61d
TG
3020}
3021
0793a61d
TG
3022static ssize_t
3023perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3024{
cdd6c482 3025 struct perf_event *event = file->private_data;
0793a61d 3026
cdd6c482 3027 return perf_read_hw(event, buf, count);
0793a61d
TG
3028}
3029
3030static unsigned int perf_poll(struct file *file, poll_table *wait)
3031{
cdd6c482 3032 struct perf_event *event = file->private_data;
76369139 3033 struct ring_buffer *rb;
c33a0bc4 3034 unsigned int events = POLL_HUP;
c7138f37 3035
10c6db11
PZ
3036 /*
3037 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3038 * grabs the rb reference but perf_event_set_output() overrides it.
3039 * Here is the timeline for two threads T1, T2:
3040 * t0: T1, rb = rcu_dereference(event->rb)
3041 * t1: T2, old_rb = event->rb
3042 * t2: T2, event->rb = new rb
3043 * t3: T2, ring_buffer_detach(old_rb)
3044 * t4: T1, ring_buffer_attach(rb1)
3045 * t5: T1, poll_wait(event->waitq)
3046 *
3047 * To avoid this problem, we grab mmap_mutex in perf_poll()
3048 * thereby ensuring that the assignment of the new ring buffer
3049 * and the detachment of the old buffer appear atomic to perf_poll()
3050 */
3051 mutex_lock(&event->mmap_mutex);
3052
c7138f37 3053 rcu_read_lock();
76369139 3054 rb = rcu_dereference(event->rb);
10c6db11
PZ
3055 if (rb) {
3056 ring_buffer_attach(event, rb);
76369139 3057 events = atomic_xchg(&rb->poll, 0);
10c6db11 3058 }
c7138f37 3059 rcu_read_unlock();
0793a61d 3060
10c6db11
PZ
3061 mutex_unlock(&event->mmap_mutex);
3062
cdd6c482 3063 poll_wait(file, &event->waitq, wait);
0793a61d 3064
0793a61d
TG
3065 return events;
3066}
3067
cdd6c482 3068static void perf_event_reset(struct perf_event *event)
6de6a7b9 3069{
cdd6c482 3070 (void)perf_event_read(event);
e7850595 3071 local64_set(&event->count, 0);
cdd6c482 3072 perf_event_update_userpage(event);
3df5edad
PZ
3073}
3074
c93f7669 3075/*
cdd6c482
IM
3076 * Holding the top-level event's child_mutex means that any
3077 * descendant process that has inherited this event will block
3078 * in sync_child_event if it goes to exit, thus satisfying the
3079 * task existence requirements of perf_event_enable/disable.
c93f7669 3080 */
cdd6c482
IM
3081static void perf_event_for_each_child(struct perf_event *event,
3082 void (*func)(struct perf_event *))
3df5edad 3083{
cdd6c482 3084 struct perf_event *child;
3df5edad 3085
cdd6c482
IM
3086 WARN_ON_ONCE(event->ctx->parent_ctx);
3087 mutex_lock(&event->child_mutex);
3088 func(event);
3089 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3090 func(child);
cdd6c482 3091 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3092}
3093
cdd6c482
IM
3094static void perf_event_for_each(struct perf_event *event,
3095 void (*func)(struct perf_event *))
3df5edad 3096{
cdd6c482
IM
3097 struct perf_event_context *ctx = event->ctx;
3098 struct perf_event *sibling;
3df5edad 3099
75f937f2
PZ
3100 WARN_ON_ONCE(ctx->parent_ctx);
3101 mutex_lock(&ctx->mutex);
cdd6c482 3102 event = event->group_leader;
75f937f2 3103
cdd6c482
IM
3104 perf_event_for_each_child(event, func);
3105 func(event);
3106 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3107 perf_event_for_each_child(event, func);
75f937f2 3108 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3109}
3110
cdd6c482 3111static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3112{
cdd6c482 3113 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3114 int ret = 0;
3115 u64 value;
3116
6c7e550f 3117 if (!is_sampling_event(event))
08247e31
PZ
3118 return -EINVAL;
3119
ad0cf347 3120 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3121 return -EFAULT;
3122
3123 if (!value)
3124 return -EINVAL;
3125
e625cce1 3126 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3127 if (event->attr.freq) {
3128 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3129 ret = -EINVAL;
3130 goto unlock;
3131 }
3132
cdd6c482 3133 event->attr.sample_freq = value;
08247e31 3134 } else {
cdd6c482
IM
3135 event->attr.sample_period = value;
3136 event->hw.sample_period = value;
08247e31
PZ
3137 }
3138unlock:
e625cce1 3139 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3140
3141 return ret;
3142}
3143
ac9721f3
PZ
3144static const struct file_operations perf_fops;
3145
3146static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3147{
3148 struct file *file;
3149
3150 file = fget_light(fd, fput_needed);
3151 if (!file)
3152 return ERR_PTR(-EBADF);
3153
3154 if (file->f_op != &perf_fops) {
3155 fput_light(file, *fput_needed);
3156 *fput_needed = 0;
3157 return ERR_PTR(-EBADF);
3158 }
3159
3160 return file->private_data;
3161}
3162
3163static int perf_event_set_output(struct perf_event *event,
3164 struct perf_event *output_event);
6fb2915d 3165static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3166
d859e29f
PM
3167static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3168{
cdd6c482
IM
3169 struct perf_event *event = file->private_data;
3170 void (*func)(struct perf_event *);
3df5edad 3171 u32 flags = arg;
d859e29f
PM
3172
3173 switch (cmd) {
cdd6c482
IM
3174 case PERF_EVENT_IOC_ENABLE:
3175 func = perf_event_enable;
d859e29f 3176 break;
cdd6c482
IM
3177 case PERF_EVENT_IOC_DISABLE:
3178 func = perf_event_disable;
79f14641 3179 break;
cdd6c482
IM
3180 case PERF_EVENT_IOC_RESET:
3181 func = perf_event_reset;
6de6a7b9 3182 break;
3df5edad 3183
cdd6c482
IM
3184 case PERF_EVENT_IOC_REFRESH:
3185 return perf_event_refresh(event, arg);
08247e31 3186
cdd6c482
IM
3187 case PERF_EVENT_IOC_PERIOD:
3188 return perf_event_period(event, (u64 __user *)arg);
08247e31 3189
cdd6c482 3190 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3191 {
3192 struct perf_event *output_event = NULL;
3193 int fput_needed = 0;
3194 int ret;
3195
3196 if (arg != -1) {
3197 output_event = perf_fget_light(arg, &fput_needed);
3198 if (IS_ERR(output_event))
3199 return PTR_ERR(output_event);
3200 }
3201
3202 ret = perf_event_set_output(event, output_event);
3203 if (output_event)
3204 fput_light(output_event->filp, fput_needed);
3205
3206 return ret;
3207 }
a4be7c27 3208
6fb2915d
LZ
3209 case PERF_EVENT_IOC_SET_FILTER:
3210 return perf_event_set_filter(event, (void __user *)arg);
3211
d859e29f 3212 default:
3df5edad 3213 return -ENOTTY;
d859e29f 3214 }
3df5edad
PZ
3215
3216 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3217 perf_event_for_each(event, func);
3df5edad 3218 else
cdd6c482 3219 perf_event_for_each_child(event, func);
3df5edad
PZ
3220
3221 return 0;
d859e29f
PM
3222}
3223
cdd6c482 3224int perf_event_task_enable(void)
771d7cde 3225{
cdd6c482 3226 struct perf_event *event;
771d7cde 3227
cdd6c482
IM
3228 mutex_lock(&current->perf_event_mutex);
3229 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3230 perf_event_for_each_child(event, perf_event_enable);
3231 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3232
3233 return 0;
3234}
3235
cdd6c482 3236int perf_event_task_disable(void)
771d7cde 3237{
cdd6c482 3238 struct perf_event *event;
771d7cde 3239
cdd6c482
IM
3240 mutex_lock(&current->perf_event_mutex);
3241 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3242 perf_event_for_each_child(event, perf_event_disable);
3243 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3244
3245 return 0;
3246}
3247
cdd6c482 3248static int perf_event_index(struct perf_event *event)
194002b2 3249{
a4eaf7f1
PZ
3250 if (event->hw.state & PERF_HES_STOPPED)
3251 return 0;
3252
cdd6c482 3253 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3254 return 0;
3255
35edc2a5 3256 return event->pmu->event_idx(event);
194002b2
PZ
3257}
3258
c4794295 3259static void calc_timer_values(struct perf_event *event,
e3f3541c 3260 u64 *now,
7f310a5d
EM
3261 u64 *enabled,
3262 u64 *running)
c4794295 3263{
e3f3541c 3264 u64 ctx_time;
c4794295 3265
e3f3541c
PZ
3266 *now = perf_clock();
3267 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3268 *enabled = ctx_time - event->tstamp_enabled;
3269 *running = ctx_time - event->tstamp_running;
3270}
3271
e3f3541c
PZ
3272void __weak perf_update_user_clock(struct perf_event_mmap_page *userpg, u64 now)
3273{
3274}
3275
38ff667b
PZ
3276/*
3277 * Callers need to ensure there can be no nesting of this function, otherwise
3278 * the seqlock logic goes bad. We can not serialize this because the arch
3279 * code calls this from NMI context.
3280 */
cdd6c482 3281void perf_event_update_userpage(struct perf_event *event)
37d81828 3282{
cdd6c482 3283 struct perf_event_mmap_page *userpg;
76369139 3284 struct ring_buffer *rb;
e3f3541c 3285 u64 enabled, running, now;
38ff667b
PZ
3286
3287 rcu_read_lock();
0d641208
EM
3288 /*
3289 * compute total_time_enabled, total_time_running
3290 * based on snapshot values taken when the event
3291 * was last scheduled in.
3292 *
3293 * we cannot simply called update_context_time()
3294 * because of locking issue as we can be called in
3295 * NMI context
3296 */
e3f3541c 3297 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3298 rb = rcu_dereference(event->rb);
3299 if (!rb)
38ff667b
PZ
3300 goto unlock;
3301
76369139 3302 userpg = rb->user_page;
37d81828 3303
7b732a75
PZ
3304 /*
3305 * Disable preemption so as to not let the corresponding user-space
3306 * spin too long if we get preempted.
3307 */
3308 preempt_disable();
37d81828 3309 ++userpg->lock;
92f22a38 3310 barrier();
cdd6c482 3311 userpg->index = perf_event_index(event);
b5e58793 3312 userpg->offset = perf_event_count(event);
365a4038 3313 if (userpg->index)
e7850595 3314 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3315
0d641208 3316 userpg->time_enabled = enabled +
cdd6c482 3317 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3318
0d641208 3319 userpg->time_running = running +
cdd6c482 3320 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3321
e3f3541c
PZ
3322 perf_update_user_clock(userpg, now);
3323
92f22a38 3324 barrier();
37d81828 3325 ++userpg->lock;
7b732a75 3326 preempt_enable();
38ff667b 3327unlock:
7b732a75 3328 rcu_read_unlock();
37d81828
PM
3329}
3330
906010b2
PZ
3331static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3332{
3333 struct perf_event *event = vma->vm_file->private_data;
76369139 3334 struct ring_buffer *rb;
906010b2
PZ
3335 int ret = VM_FAULT_SIGBUS;
3336
3337 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3338 if (vmf->pgoff == 0)
3339 ret = 0;
3340 return ret;
3341 }
3342
3343 rcu_read_lock();
76369139
FW
3344 rb = rcu_dereference(event->rb);
3345 if (!rb)
906010b2
PZ
3346 goto unlock;
3347
3348 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3349 goto unlock;
3350
76369139 3351 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3352 if (!vmf->page)
3353 goto unlock;
3354
3355 get_page(vmf->page);
3356 vmf->page->mapping = vma->vm_file->f_mapping;
3357 vmf->page->index = vmf->pgoff;
3358
3359 ret = 0;
3360unlock:
3361 rcu_read_unlock();
3362
3363 return ret;
3364}
3365
10c6db11
PZ
3366static void ring_buffer_attach(struct perf_event *event,
3367 struct ring_buffer *rb)
3368{
3369 unsigned long flags;
3370
3371 if (!list_empty(&event->rb_entry))
3372 return;
3373
3374 spin_lock_irqsave(&rb->event_lock, flags);
3375 if (!list_empty(&event->rb_entry))
3376 goto unlock;
3377
3378 list_add(&event->rb_entry, &rb->event_list);
3379unlock:
3380 spin_unlock_irqrestore(&rb->event_lock, flags);
3381}
3382
3383static void ring_buffer_detach(struct perf_event *event,
3384 struct ring_buffer *rb)
3385{
3386 unsigned long flags;
3387
3388 if (list_empty(&event->rb_entry))
3389 return;
3390
3391 spin_lock_irqsave(&rb->event_lock, flags);
3392 list_del_init(&event->rb_entry);
3393 wake_up_all(&event->waitq);
3394 spin_unlock_irqrestore(&rb->event_lock, flags);
3395}
3396
3397static void ring_buffer_wakeup(struct perf_event *event)
3398{
3399 struct ring_buffer *rb;
3400
3401 rcu_read_lock();
3402 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3403 if (!rb)
3404 goto unlock;
3405
3406 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3407 wake_up_all(&event->waitq);
44b7f4b9
WD
3408
3409unlock:
10c6db11
PZ
3410 rcu_read_unlock();
3411}
3412
76369139 3413static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3414{
76369139 3415 struct ring_buffer *rb;
906010b2 3416
76369139
FW
3417 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3418 rb_free(rb);
7b732a75
PZ
3419}
3420
76369139 3421static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3422{
76369139 3423 struct ring_buffer *rb;
7b732a75 3424
ac9721f3 3425 rcu_read_lock();
76369139
FW
3426 rb = rcu_dereference(event->rb);
3427 if (rb) {
3428 if (!atomic_inc_not_zero(&rb->refcount))
3429 rb = NULL;
ac9721f3
PZ
3430 }
3431 rcu_read_unlock();
3432
76369139 3433 return rb;
ac9721f3
PZ
3434}
3435
76369139 3436static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3437{
10c6db11
PZ
3438 struct perf_event *event, *n;
3439 unsigned long flags;
3440
76369139 3441 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3442 return;
7b732a75 3443
10c6db11
PZ
3444 spin_lock_irqsave(&rb->event_lock, flags);
3445 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3446 list_del_init(&event->rb_entry);
3447 wake_up_all(&event->waitq);
3448 }
3449 spin_unlock_irqrestore(&rb->event_lock, flags);
3450
76369139 3451 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3452}
3453
3454static void perf_mmap_open(struct vm_area_struct *vma)
3455{
cdd6c482 3456 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3457
cdd6c482 3458 atomic_inc(&event->mmap_count);
7b732a75
PZ
3459}
3460
3461static void perf_mmap_close(struct vm_area_struct *vma)
3462{
cdd6c482 3463 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3464
cdd6c482 3465 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3466 unsigned long size = perf_data_size(event->rb);
ac9721f3 3467 struct user_struct *user = event->mmap_user;
76369139 3468 struct ring_buffer *rb = event->rb;
789f90fc 3469
906010b2 3470 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3471 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3472 rcu_assign_pointer(event->rb, NULL);
10c6db11 3473 ring_buffer_detach(event, rb);
cdd6c482 3474 mutex_unlock(&event->mmap_mutex);
ac9721f3 3475
76369139 3476 ring_buffer_put(rb);
ac9721f3 3477 free_uid(user);
7b732a75 3478 }
37d81828
PM
3479}
3480
f0f37e2f 3481static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3482 .open = perf_mmap_open,
3483 .close = perf_mmap_close,
3484 .fault = perf_mmap_fault,
3485 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3486};
3487
3488static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3489{
cdd6c482 3490 struct perf_event *event = file->private_data;
22a4f650 3491 unsigned long user_locked, user_lock_limit;
789f90fc 3492 struct user_struct *user = current_user();
22a4f650 3493 unsigned long locked, lock_limit;
76369139 3494 struct ring_buffer *rb;
7b732a75
PZ
3495 unsigned long vma_size;
3496 unsigned long nr_pages;
789f90fc 3497 long user_extra, extra;
d57e34fd 3498 int ret = 0, flags = 0;
37d81828 3499
c7920614
PZ
3500 /*
3501 * Don't allow mmap() of inherited per-task counters. This would
3502 * create a performance issue due to all children writing to the
76369139 3503 * same rb.
c7920614
PZ
3504 */
3505 if (event->cpu == -1 && event->attr.inherit)
3506 return -EINVAL;
3507
43a21ea8 3508 if (!(vma->vm_flags & VM_SHARED))
37d81828 3509 return -EINVAL;
7b732a75
PZ
3510
3511 vma_size = vma->vm_end - vma->vm_start;
3512 nr_pages = (vma_size / PAGE_SIZE) - 1;
3513
7730d865 3514 /*
76369139 3515 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3516 * can do bitmasks instead of modulo.
3517 */
3518 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3519 return -EINVAL;
3520
7b732a75 3521 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3522 return -EINVAL;
3523
7b732a75
PZ
3524 if (vma->vm_pgoff != 0)
3525 return -EINVAL;
37d81828 3526
cdd6c482
IM
3527 WARN_ON_ONCE(event->ctx->parent_ctx);
3528 mutex_lock(&event->mmap_mutex);
76369139
FW
3529 if (event->rb) {
3530 if (event->rb->nr_pages == nr_pages)
3531 atomic_inc(&event->rb->refcount);
ac9721f3 3532 else
ebb3c4c4
PZ
3533 ret = -EINVAL;
3534 goto unlock;
3535 }
3536
789f90fc 3537 user_extra = nr_pages + 1;
cdd6c482 3538 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3539
3540 /*
3541 * Increase the limit linearly with more CPUs:
3542 */
3543 user_lock_limit *= num_online_cpus();
3544
789f90fc 3545 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3546
789f90fc
PZ
3547 extra = 0;
3548 if (user_locked > user_lock_limit)
3549 extra = user_locked - user_lock_limit;
7b732a75 3550
78d7d407 3551 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3552 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3553 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3554
459ec28a
IM
3555 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3556 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3557 ret = -EPERM;
3558 goto unlock;
3559 }
7b732a75 3560
76369139 3561 WARN_ON(event->rb);
906010b2 3562
d57e34fd 3563 if (vma->vm_flags & VM_WRITE)
76369139 3564 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3565
4ec8363d
VW
3566 rb = rb_alloc(nr_pages,
3567 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3568 event->cpu, flags);
3569
76369139 3570 if (!rb) {
ac9721f3 3571 ret = -ENOMEM;
ebb3c4c4 3572 goto unlock;
ac9721f3 3573 }
76369139 3574 rcu_assign_pointer(event->rb, rb);
43a21ea8 3575
ac9721f3
PZ
3576 atomic_long_add(user_extra, &user->locked_vm);
3577 event->mmap_locked = extra;
3578 event->mmap_user = get_current_user();
bc3e53f6 3579 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3580
9a0f05cb
PZ
3581 perf_event_update_userpage(event);
3582
ebb3c4c4 3583unlock:
ac9721f3
PZ
3584 if (!ret)
3585 atomic_inc(&event->mmap_count);
cdd6c482 3586 mutex_unlock(&event->mmap_mutex);
37d81828 3587
37d81828
PM
3588 vma->vm_flags |= VM_RESERVED;
3589 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3590
3591 return ret;
37d81828
PM
3592}
3593
3c446b3d
PZ
3594static int perf_fasync(int fd, struct file *filp, int on)
3595{
3c446b3d 3596 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3597 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3598 int retval;
3599
3600 mutex_lock(&inode->i_mutex);
cdd6c482 3601 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3602 mutex_unlock(&inode->i_mutex);
3603
3604 if (retval < 0)
3605 return retval;
3606
3607 return 0;
3608}
3609
0793a61d 3610static const struct file_operations perf_fops = {
3326c1ce 3611 .llseek = no_llseek,
0793a61d
TG
3612 .release = perf_release,
3613 .read = perf_read,
3614 .poll = perf_poll,
d859e29f
PM
3615 .unlocked_ioctl = perf_ioctl,
3616 .compat_ioctl = perf_ioctl,
37d81828 3617 .mmap = perf_mmap,
3c446b3d 3618 .fasync = perf_fasync,
0793a61d
TG
3619};
3620
925d519a 3621/*
cdd6c482 3622 * Perf event wakeup
925d519a
PZ
3623 *
3624 * If there's data, ensure we set the poll() state and publish everything
3625 * to user-space before waking everybody up.
3626 */
3627
cdd6c482 3628void perf_event_wakeup(struct perf_event *event)
925d519a 3629{
10c6db11 3630 ring_buffer_wakeup(event);
4c9e2542 3631
cdd6c482
IM
3632 if (event->pending_kill) {
3633 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3634 event->pending_kill = 0;
4c9e2542 3635 }
925d519a
PZ
3636}
3637
e360adbe 3638static void perf_pending_event(struct irq_work *entry)
79f14641 3639{
cdd6c482
IM
3640 struct perf_event *event = container_of(entry,
3641 struct perf_event, pending);
79f14641 3642
cdd6c482
IM
3643 if (event->pending_disable) {
3644 event->pending_disable = 0;
3645 __perf_event_disable(event);
79f14641
PZ
3646 }
3647
cdd6c482
IM
3648 if (event->pending_wakeup) {
3649 event->pending_wakeup = 0;
3650 perf_event_wakeup(event);
79f14641
PZ
3651 }
3652}
3653
39447b38
ZY
3654/*
3655 * We assume there is only KVM supporting the callbacks.
3656 * Later on, we might change it to a list if there is
3657 * another virtualization implementation supporting the callbacks.
3658 */
3659struct perf_guest_info_callbacks *perf_guest_cbs;
3660
3661int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3662{
3663 perf_guest_cbs = cbs;
3664 return 0;
3665}
3666EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3667
3668int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3669{
3670 perf_guest_cbs = NULL;
3671 return 0;
3672}
3673EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3674
c980d109
ACM
3675static void __perf_event_header__init_id(struct perf_event_header *header,
3676 struct perf_sample_data *data,
3677 struct perf_event *event)
6844c09d
ACM
3678{
3679 u64 sample_type = event->attr.sample_type;
3680
3681 data->type = sample_type;
3682 header->size += event->id_header_size;
3683
3684 if (sample_type & PERF_SAMPLE_TID) {
3685 /* namespace issues */
3686 data->tid_entry.pid = perf_event_pid(event, current);
3687 data->tid_entry.tid = perf_event_tid(event, current);
3688 }
3689
3690 if (sample_type & PERF_SAMPLE_TIME)
3691 data->time = perf_clock();
3692
3693 if (sample_type & PERF_SAMPLE_ID)
3694 data->id = primary_event_id(event);
3695
3696 if (sample_type & PERF_SAMPLE_STREAM_ID)
3697 data->stream_id = event->id;
3698
3699 if (sample_type & PERF_SAMPLE_CPU) {
3700 data->cpu_entry.cpu = raw_smp_processor_id();
3701 data->cpu_entry.reserved = 0;
3702 }
3703}
3704
76369139
FW
3705void perf_event_header__init_id(struct perf_event_header *header,
3706 struct perf_sample_data *data,
3707 struct perf_event *event)
c980d109
ACM
3708{
3709 if (event->attr.sample_id_all)
3710 __perf_event_header__init_id(header, data, event);
3711}
3712
3713static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3714 struct perf_sample_data *data)
3715{
3716 u64 sample_type = data->type;
3717
3718 if (sample_type & PERF_SAMPLE_TID)
3719 perf_output_put(handle, data->tid_entry);
3720
3721 if (sample_type & PERF_SAMPLE_TIME)
3722 perf_output_put(handle, data->time);
3723
3724 if (sample_type & PERF_SAMPLE_ID)
3725 perf_output_put(handle, data->id);
3726
3727 if (sample_type & PERF_SAMPLE_STREAM_ID)
3728 perf_output_put(handle, data->stream_id);
3729
3730 if (sample_type & PERF_SAMPLE_CPU)
3731 perf_output_put(handle, data->cpu_entry);
3732}
3733
76369139
FW
3734void perf_event__output_id_sample(struct perf_event *event,
3735 struct perf_output_handle *handle,
3736 struct perf_sample_data *sample)
c980d109
ACM
3737{
3738 if (event->attr.sample_id_all)
3739 __perf_event__output_id_sample(handle, sample);
3740}
3741
3dab77fb 3742static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3743 struct perf_event *event,
3744 u64 enabled, u64 running)
3dab77fb 3745{
cdd6c482 3746 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3747 u64 values[4];
3748 int n = 0;
3749
b5e58793 3750 values[n++] = perf_event_count(event);
3dab77fb 3751 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3752 values[n++] = enabled +
cdd6c482 3753 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3754 }
3755 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3756 values[n++] = running +
cdd6c482 3757 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3758 }
3759 if (read_format & PERF_FORMAT_ID)
cdd6c482 3760 values[n++] = primary_event_id(event);
3dab77fb 3761
76369139 3762 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3763}
3764
3765/*
cdd6c482 3766 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3767 */
3768static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3769 struct perf_event *event,
3770 u64 enabled, u64 running)
3dab77fb 3771{
cdd6c482
IM
3772 struct perf_event *leader = event->group_leader, *sub;
3773 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3774 u64 values[5];
3775 int n = 0;
3776
3777 values[n++] = 1 + leader->nr_siblings;
3778
3779 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3780 values[n++] = enabled;
3dab77fb
PZ
3781
3782 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3783 values[n++] = running;
3dab77fb 3784
cdd6c482 3785 if (leader != event)
3dab77fb
PZ
3786 leader->pmu->read(leader);
3787
b5e58793 3788 values[n++] = perf_event_count(leader);
3dab77fb 3789 if (read_format & PERF_FORMAT_ID)
cdd6c482 3790 values[n++] = primary_event_id(leader);
3dab77fb 3791
76369139 3792 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3793
65abc865 3794 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3795 n = 0;
3796
cdd6c482 3797 if (sub != event)
3dab77fb
PZ
3798 sub->pmu->read(sub);
3799
b5e58793 3800 values[n++] = perf_event_count(sub);
3dab77fb 3801 if (read_format & PERF_FORMAT_ID)
cdd6c482 3802 values[n++] = primary_event_id(sub);
3dab77fb 3803
76369139 3804 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3805 }
3806}
3807
eed01528
SE
3808#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3809 PERF_FORMAT_TOTAL_TIME_RUNNING)
3810
3dab77fb 3811static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3812 struct perf_event *event)
3dab77fb 3813{
e3f3541c 3814 u64 enabled = 0, running = 0, now;
eed01528
SE
3815 u64 read_format = event->attr.read_format;
3816
3817 /*
3818 * compute total_time_enabled, total_time_running
3819 * based on snapshot values taken when the event
3820 * was last scheduled in.
3821 *
3822 * we cannot simply called update_context_time()
3823 * because of locking issue as we are called in
3824 * NMI context
3825 */
c4794295 3826 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3827 calc_timer_values(event, &now, &enabled, &running);
eed01528 3828
cdd6c482 3829 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3830 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3831 else
eed01528 3832 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3833}
3834
5622f295
MM
3835void perf_output_sample(struct perf_output_handle *handle,
3836 struct perf_event_header *header,
3837 struct perf_sample_data *data,
cdd6c482 3838 struct perf_event *event)
5622f295
MM
3839{
3840 u64 sample_type = data->type;
3841
3842 perf_output_put(handle, *header);
3843
3844 if (sample_type & PERF_SAMPLE_IP)
3845 perf_output_put(handle, data->ip);
3846
3847 if (sample_type & PERF_SAMPLE_TID)
3848 perf_output_put(handle, data->tid_entry);
3849
3850 if (sample_type & PERF_SAMPLE_TIME)
3851 perf_output_put(handle, data->time);
3852
3853 if (sample_type & PERF_SAMPLE_ADDR)
3854 perf_output_put(handle, data->addr);
3855
3856 if (sample_type & PERF_SAMPLE_ID)
3857 perf_output_put(handle, data->id);
3858
3859 if (sample_type & PERF_SAMPLE_STREAM_ID)
3860 perf_output_put(handle, data->stream_id);
3861
3862 if (sample_type & PERF_SAMPLE_CPU)
3863 perf_output_put(handle, data->cpu_entry);
3864
3865 if (sample_type & PERF_SAMPLE_PERIOD)
3866 perf_output_put(handle, data->period);
3867
3868 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3869 perf_output_read(handle, event);
5622f295
MM
3870
3871 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3872 if (data->callchain) {
3873 int size = 1;
3874
3875 if (data->callchain)
3876 size += data->callchain->nr;
3877
3878 size *= sizeof(u64);
3879
76369139 3880 __output_copy(handle, data->callchain, size);
5622f295
MM
3881 } else {
3882 u64 nr = 0;
3883 perf_output_put(handle, nr);
3884 }
3885 }
3886
3887 if (sample_type & PERF_SAMPLE_RAW) {
3888 if (data->raw) {
3889 perf_output_put(handle, data->raw->size);
76369139
FW
3890 __output_copy(handle, data->raw->data,
3891 data->raw->size);
5622f295
MM
3892 } else {
3893 struct {
3894 u32 size;
3895 u32 data;
3896 } raw = {
3897 .size = sizeof(u32),
3898 .data = 0,
3899 };
3900 perf_output_put(handle, raw);
3901 }
3902 }
a7ac67ea
PZ
3903
3904 if (!event->attr.watermark) {
3905 int wakeup_events = event->attr.wakeup_events;
3906
3907 if (wakeup_events) {
3908 struct ring_buffer *rb = handle->rb;
3909 int events = local_inc_return(&rb->events);
3910
3911 if (events >= wakeup_events) {
3912 local_sub(wakeup_events, &rb->events);
3913 local_inc(&rb->wakeup);
3914 }
3915 }
3916 }
bce38cd5
SE
3917
3918 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3919 if (data->br_stack) {
3920 size_t size;
3921
3922 size = data->br_stack->nr
3923 * sizeof(struct perf_branch_entry);
3924
3925 perf_output_put(handle, data->br_stack->nr);
3926 perf_output_copy(handle, data->br_stack->entries, size);
3927 } else {
3928 /*
3929 * we always store at least the value of nr
3930 */
3931 u64 nr = 0;
3932 perf_output_put(handle, nr);
3933 }
3934 }
5622f295
MM
3935}
3936
3937void perf_prepare_sample(struct perf_event_header *header,
3938 struct perf_sample_data *data,
cdd6c482 3939 struct perf_event *event,
5622f295 3940 struct pt_regs *regs)
7b732a75 3941{
cdd6c482 3942 u64 sample_type = event->attr.sample_type;
7b732a75 3943
cdd6c482 3944 header->type = PERF_RECORD_SAMPLE;
c320c7b7 3945 header->size = sizeof(*header) + event->header_size;
5622f295
MM
3946
3947 header->misc = 0;
3948 header->misc |= perf_misc_flags(regs);
6fab0192 3949
c980d109 3950 __perf_event_header__init_id(header, data, event);
6844c09d 3951
c320c7b7 3952 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
3953 data->ip = perf_instruction_pointer(regs);
3954
b23f3325 3955 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 3956 int size = 1;
394ee076 3957
5622f295
MM
3958 data->callchain = perf_callchain(regs);
3959
3960 if (data->callchain)
3961 size += data->callchain->nr;
3962
3963 header->size += size * sizeof(u64);
394ee076
PZ
3964 }
3965
3a43ce68 3966 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
3967 int size = sizeof(u32);
3968
3969 if (data->raw)
3970 size += data->raw->size;
3971 else
3972 size += sizeof(u32);
3973
3974 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 3975 header->size += size;
7f453c24 3976 }
bce38cd5
SE
3977
3978 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
3979 int size = sizeof(u64); /* nr */
3980 if (data->br_stack) {
3981 size += data->br_stack->nr
3982 * sizeof(struct perf_branch_entry);
3983 }
3984 header->size += size;
3985 }
5622f295 3986}
7f453c24 3987
a8b0ca17 3988static void perf_event_output(struct perf_event *event,
5622f295
MM
3989 struct perf_sample_data *data,
3990 struct pt_regs *regs)
3991{
3992 struct perf_output_handle handle;
3993 struct perf_event_header header;
689802b2 3994
927c7a9e
FW
3995 /* protect the callchain buffers */
3996 rcu_read_lock();
3997
cdd6c482 3998 perf_prepare_sample(&header, data, event, regs);
5c148194 3999
a7ac67ea 4000 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4001 goto exit;
0322cd6e 4002
cdd6c482 4003 perf_output_sample(&handle, &header, data, event);
f413cdb8 4004
8a057d84 4005 perf_output_end(&handle);
927c7a9e
FW
4006
4007exit:
4008 rcu_read_unlock();
0322cd6e
PZ
4009}
4010
38b200d6 4011/*
cdd6c482 4012 * read event_id
38b200d6
PZ
4013 */
4014
4015struct perf_read_event {
4016 struct perf_event_header header;
4017
4018 u32 pid;
4019 u32 tid;
38b200d6
PZ
4020};
4021
4022static void
cdd6c482 4023perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4024 struct task_struct *task)
4025{
4026 struct perf_output_handle handle;
c980d109 4027 struct perf_sample_data sample;
dfc65094 4028 struct perf_read_event read_event = {
38b200d6 4029 .header = {
cdd6c482 4030 .type = PERF_RECORD_READ,
38b200d6 4031 .misc = 0,
c320c7b7 4032 .size = sizeof(read_event) + event->read_size,
38b200d6 4033 },
cdd6c482
IM
4034 .pid = perf_event_pid(event, task),
4035 .tid = perf_event_tid(event, task),
38b200d6 4036 };
3dab77fb 4037 int ret;
38b200d6 4038
c980d109 4039 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4040 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4041 if (ret)
4042 return;
4043
dfc65094 4044 perf_output_put(&handle, read_event);
cdd6c482 4045 perf_output_read(&handle, event);
c980d109 4046 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4047
38b200d6
PZ
4048 perf_output_end(&handle);
4049}
4050
60313ebe 4051/*
9f498cc5
PZ
4052 * task tracking -- fork/exit
4053 *
3af9e859 4054 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4055 */
4056
9f498cc5 4057struct perf_task_event {
3a80b4a3 4058 struct task_struct *task;
cdd6c482 4059 struct perf_event_context *task_ctx;
60313ebe
PZ
4060
4061 struct {
4062 struct perf_event_header header;
4063
4064 u32 pid;
4065 u32 ppid;
9f498cc5
PZ
4066 u32 tid;
4067 u32 ptid;
393b2ad8 4068 u64 time;
cdd6c482 4069 } event_id;
60313ebe
PZ
4070};
4071
cdd6c482 4072static void perf_event_task_output(struct perf_event *event,
9f498cc5 4073 struct perf_task_event *task_event)
60313ebe
PZ
4074{
4075 struct perf_output_handle handle;
c980d109 4076 struct perf_sample_data sample;
9f498cc5 4077 struct task_struct *task = task_event->task;
c980d109 4078 int ret, size = task_event->event_id.header.size;
8bb39f9a 4079
c980d109 4080 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4081
c980d109 4082 ret = perf_output_begin(&handle, event,
a7ac67ea 4083 task_event->event_id.header.size);
ef60777c 4084 if (ret)
c980d109 4085 goto out;
60313ebe 4086
cdd6c482
IM
4087 task_event->event_id.pid = perf_event_pid(event, task);
4088 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4089
cdd6c482
IM
4090 task_event->event_id.tid = perf_event_tid(event, task);
4091 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4092
cdd6c482 4093 perf_output_put(&handle, task_event->event_id);
393b2ad8 4094
c980d109
ACM
4095 perf_event__output_id_sample(event, &handle, &sample);
4096
60313ebe 4097 perf_output_end(&handle);
c980d109
ACM
4098out:
4099 task_event->event_id.header.size = size;
60313ebe
PZ
4100}
4101
cdd6c482 4102static int perf_event_task_match(struct perf_event *event)
60313ebe 4103{
6f93d0a7 4104 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4105 return 0;
4106
5632ab12 4107 if (!event_filter_match(event))
5d27c23d
PZ
4108 return 0;
4109
3af9e859
EM
4110 if (event->attr.comm || event->attr.mmap ||
4111 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4112 return 1;
4113
4114 return 0;
4115}
4116
cdd6c482 4117static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4118 struct perf_task_event *task_event)
60313ebe 4119{
cdd6c482 4120 struct perf_event *event;
60313ebe 4121
cdd6c482
IM
4122 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4123 if (perf_event_task_match(event))
4124 perf_event_task_output(event, task_event);
60313ebe 4125 }
60313ebe
PZ
4126}
4127
cdd6c482 4128static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4129{
4130 struct perf_cpu_context *cpuctx;
8dc85d54 4131 struct perf_event_context *ctx;
108b02cf 4132 struct pmu *pmu;
8dc85d54 4133 int ctxn;
60313ebe 4134
d6ff86cf 4135 rcu_read_lock();
108b02cf 4136 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4137 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4138 if (cpuctx->active_pmu != pmu)
4139 goto next;
108b02cf 4140 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4141
4142 ctx = task_event->task_ctx;
4143 if (!ctx) {
4144 ctxn = pmu->task_ctx_nr;
4145 if (ctxn < 0)
41945f6c 4146 goto next;
8dc85d54
PZ
4147 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4148 }
4149 if (ctx)
4150 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4151next:
4152 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4153 }
60313ebe
PZ
4154 rcu_read_unlock();
4155}
4156
cdd6c482
IM
4157static void perf_event_task(struct task_struct *task,
4158 struct perf_event_context *task_ctx,
3a80b4a3 4159 int new)
60313ebe 4160{
9f498cc5 4161 struct perf_task_event task_event;
60313ebe 4162
cdd6c482
IM
4163 if (!atomic_read(&nr_comm_events) &&
4164 !atomic_read(&nr_mmap_events) &&
4165 !atomic_read(&nr_task_events))
60313ebe
PZ
4166 return;
4167
9f498cc5 4168 task_event = (struct perf_task_event){
3a80b4a3
PZ
4169 .task = task,
4170 .task_ctx = task_ctx,
cdd6c482 4171 .event_id = {
60313ebe 4172 .header = {
cdd6c482 4173 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4174 .misc = 0,
cdd6c482 4175 .size = sizeof(task_event.event_id),
60313ebe 4176 },
573402db
PZ
4177 /* .pid */
4178 /* .ppid */
9f498cc5
PZ
4179 /* .tid */
4180 /* .ptid */
6f93d0a7 4181 .time = perf_clock(),
60313ebe
PZ
4182 },
4183 };
4184
cdd6c482 4185 perf_event_task_event(&task_event);
9f498cc5
PZ
4186}
4187
cdd6c482 4188void perf_event_fork(struct task_struct *task)
9f498cc5 4189{
cdd6c482 4190 perf_event_task(task, NULL, 1);
60313ebe
PZ
4191}
4192
8d1b2d93
PZ
4193/*
4194 * comm tracking
4195 */
4196
4197struct perf_comm_event {
22a4f650
IM
4198 struct task_struct *task;
4199 char *comm;
8d1b2d93
PZ
4200 int comm_size;
4201
4202 struct {
4203 struct perf_event_header header;
4204
4205 u32 pid;
4206 u32 tid;
cdd6c482 4207 } event_id;
8d1b2d93
PZ
4208};
4209
cdd6c482 4210static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4211 struct perf_comm_event *comm_event)
4212{
4213 struct perf_output_handle handle;
c980d109 4214 struct perf_sample_data sample;
cdd6c482 4215 int size = comm_event->event_id.header.size;
c980d109
ACM
4216 int ret;
4217
4218 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4219 ret = perf_output_begin(&handle, event,
a7ac67ea 4220 comm_event->event_id.header.size);
8d1b2d93
PZ
4221
4222 if (ret)
c980d109 4223 goto out;
8d1b2d93 4224
cdd6c482
IM
4225 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4226 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4227
cdd6c482 4228 perf_output_put(&handle, comm_event->event_id);
76369139 4229 __output_copy(&handle, comm_event->comm,
8d1b2d93 4230 comm_event->comm_size);
c980d109
ACM
4231
4232 perf_event__output_id_sample(event, &handle, &sample);
4233
8d1b2d93 4234 perf_output_end(&handle);
c980d109
ACM
4235out:
4236 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4237}
4238
cdd6c482 4239static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4240{
6f93d0a7 4241 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4242 return 0;
4243
5632ab12 4244 if (!event_filter_match(event))
5d27c23d
PZ
4245 return 0;
4246
cdd6c482 4247 if (event->attr.comm)
8d1b2d93
PZ
4248 return 1;
4249
4250 return 0;
4251}
4252
cdd6c482 4253static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4254 struct perf_comm_event *comm_event)
4255{
cdd6c482 4256 struct perf_event *event;
8d1b2d93 4257
cdd6c482
IM
4258 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4259 if (perf_event_comm_match(event))
4260 perf_event_comm_output(event, comm_event);
8d1b2d93 4261 }
8d1b2d93
PZ
4262}
4263
cdd6c482 4264static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4265{
4266 struct perf_cpu_context *cpuctx;
cdd6c482 4267 struct perf_event_context *ctx;
413ee3b4 4268 char comm[TASK_COMM_LEN];
8d1b2d93 4269 unsigned int size;
108b02cf 4270 struct pmu *pmu;
8dc85d54 4271 int ctxn;
8d1b2d93 4272
413ee3b4 4273 memset(comm, 0, sizeof(comm));
96b02d78 4274 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4275 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4276
4277 comm_event->comm = comm;
4278 comm_event->comm_size = size;
4279
cdd6c482 4280 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4281 rcu_read_lock();
108b02cf 4282 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4283 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4284 if (cpuctx->active_pmu != pmu)
4285 goto next;
108b02cf 4286 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4287
4288 ctxn = pmu->task_ctx_nr;
4289 if (ctxn < 0)
41945f6c 4290 goto next;
8dc85d54
PZ
4291
4292 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4293 if (ctx)
4294 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4295next:
4296 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4297 }
665c2142 4298 rcu_read_unlock();
8d1b2d93
PZ
4299}
4300
cdd6c482 4301void perf_event_comm(struct task_struct *task)
8d1b2d93 4302{
9ee318a7 4303 struct perf_comm_event comm_event;
8dc85d54
PZ
4304 struct perf_event_context *ctx;
4305 int ctxn;
9ee318a7 4306
8dc85d54
PZ
4307 for_each_task_context_nr(ctxn) {
4308 ctx = task->perf_event_ctxp[ctxn];
4309 if (!ctx)
4310 continue;
9ee318a7 4311
8dc85d54
PZ
4312 perf_event_enable_on_exec(ctx);
4313 }
9ee318a7 4314
cdd6c482 4315 if (!atomic_read(&nr_comm_events))
9ee318a7 4316 return;
a63eaf34 4317
9ee318a7 4318 comm_event = (struct perf_comm_event){
8d1b2d93 4319 .task = task,
573402db
PZ
4320 /* .comm */
4321 /* .comm_size */
cdd6c482 4322 .event_id = {
573402db 4323 .header = {
cdd6c482 4324 .type = PERF_RECORD_COMM,
573402db
PZ
4325 .misc = 0,
4326 /* .size */
4327 },
4328 /* .pid */
4329 /* .tid */
8d1b2d93
PZ
4330 },
4331 };
4332
cdd6c482 4333 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4334}
4335
0a4a9391
PZ
4336/*
4337 * mmap tracking
4338 */
4339
4340struct perf_mmap_event {
089dd79d
PZ
4341 struct vm_area_struct *vma;
4342
4343 const char *file_name;
4344 int file_size;
0a4a9391
PZ
4345
4346 struct {
4347 struct perf_event_header header;
4348
4349 u32 pid;
4350 u32 tid;
4351 u64 start;
4352 u64 len;
4353 u64 pgoff;
cdd6c482 4354 } event_id;
0a4a9391
PZ
4355};
4356
cdd6c482 4357static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4358 struct perf_mmap_event *mmap_event)
4359{
4360 struct perf_output_handle handle;
c980d109 4361 struct perf_sample_data sample;
cdd6c482 4362 int size = mmap_event->event_id.header.size;
c980d109 4363 int ret;
0a4a9391 4364
c980d109
ACM
4365 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4366 ret = perf_output_begin(&handle, event,
a7ac67ea 4367 mmap_event->event_id.header.size);
0a4a9391 4368 if (ret)
c980d109 4369 goto out;
0a4a9391 4370
cdd6c482
IM
4371 mmap_event->event_id.pid = perf_event_pid(event, current);
4372 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4373
cdd6c482 4374 perf_output_put(&handle, mmap_event->event_id);
76369139 4375 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4376 mmap_event->file_size);
c980d109
ACM
4377
4378 perf_event__output_id_sample(event, &handle, &sample);
4379
78d613eb 4380 perf_output_end(&handle);
c980d109
ACM
4381out:
4382 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4383}
4384
cdd6c482 4385static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4386 struct perf_mmap_event *mmap_event,
4387 int executable)
0a4a9391 4388{
6f93d0a7 4389 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4390 return 0;
4391
5632ab12 4392 if (!event_filter_match(event))
5d27c23d
PZ
4393 return 0;
4394
3af9e859
EM
4395 if ((!executable && event->attr.mmap_data) ||
4396 (executable && event->attr.mmap))
0a4a9391
PZ
4397 return 1;
4398
4399 return 0;
4400}
4401
cdd6c482 4402static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4403 struct perf_mmap_event *mmap_event,
4404 int executable)
0a4a9391 4405{
cdd6c482 4406 struct perf_event *event;
0a4a9391 4407
cdd6c482 4408 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4409 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4410 perf_event_mmap_output(event, mmap_event);
0a4a9391 4411 }
0a4a9391
PZ
4412}
4413
cdd6c482 4414static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4415{
4416 struct perf_cpu_context *cpuctx;
cdd6c482 4417 struct perf_event_context *ctx;
089dd79d
PZ
4418 struct vm_area_struct *vma = mmap_event->vma;
4419 struct file *file = vma->vm_file;
0a4a9391
PZ
4420 unsigned int size;
4421 char tmp[16];
4422 char *buf = NULL;
089dd79d 4423 const char *name;
108b02cf 4424 struct pmu *pmu;
8dc85d54 4425 int ctxn;
0a4a9391 4426
413ee3b4
AB
4427 memset(tmp, 0, sizeof(tmp));
4428
0a4a9391 4429 if (file) {
413ee3b4 4430 /*
76369139 4431 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4432 * need to add enough zero bytes after the string to handle
4433 * the 64bit alignment we do later.
4434 */
4435 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4436 if (!buf) {
4437 name = strncpy(tmp, "//enomem", sizeof(tmp));
4438 goto got_name;
4439 }
d3d21c41 4440 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4441 if (IS_ERR(name)) {
4442 name = strncpy(tmp, "//toolong", sizeof(tmp));
4443 goto got_name;
4444 }
4445 } else {
413ee3b4
AB
4446 if (arch_vma_name(mmap_event->vma)) {
4447 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4448 sizeof(tmp));
089dd79d 4449 goto got_name;
413ee3b4 4450 }
089dd79d
PZ
4451
4452 if (!vma->vm_mm) {
4453 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4454 goto got_name;
3af9e859
EM
4455 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4456 vma->vm_end >= vma->vm_mm->brk) {
4457 name = strncpy(tmp, "[heap]", sizeof(tmp));
4458 goto got_name;
4459 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4460 vma->vm_end >= vma->vm_mm->start_stack) {
4461 name = strncpy(tmp, "[stack]", sizeof(tmp));
4462 goto got_name;
089dd79d
PZ
4463 }
4464
0a4a9391
PZ
4465 name = strncpy(tmp, "//anon", sizeof(tmp));
4466 goto got_name;
4467 }
4468
4469got_name:
888fcee0 4470 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4471
4472 mmap_event->file_name = name;
4473 mmap_event->file_size = size;
4474
cdd6c482 4475 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4476
f6d9dd23 4477 rcu_read_lock();
108b02cf 4478 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4479 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4480 if (cpuctx->active_pmu != pmu)
4481 goto next;
108b02cf
PZ
4482 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4483 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4484
4485 ctxn = pmu->task_ctx_nr;
4486 if (ctxn < 0)
41945f6c 4487 goto next;
8dc85d54
PZ
4488
4489 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4490 if (ctx) {
4491 perf_event_mmap_ctx(ctx, mmap_event,
4492 vma->vm_flags & VM_EXEC);
4493 }
41945f6c
PZ
4494next:
4495 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4496 }
665c2142
PZ
4497 rcu_read_unlock();
4498
0a4a9391
PZ
4499 kfree(buf);
4500}
4501
3af9e859 4502void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4503{
9ee318a7
PZ
4504 struct perf_mmap_event mmap_event;
4505
cdd6c482 4506 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4507 return;
4508
4509 mmap_event = (struct perf_mmap_event){
089dd79d 4510 .vma = vma,
573402db
PZ
4511 /* .file_name */
4512 /* .file_size */
cdd6c482 4513 .event_id = {
573402db 4514 .header = {
cdd6c482 4515 .type = PERF_RECORD_MMAP,
39447b38 4516 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4517 /* .size */
4518 },
4519 /* .pid */
4520 /* .tid */
089dd79d
PZ
4521 .start = vma->vm_start,
4522 .len = vma->vm_end - vma->vm_start,
3a0304e9 4523 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4524 },
4525 };
4526
cdd6c482 4527 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4528}
4529
a78ac325
PZ
4530/*
4531 * IRQ throttle logging
4532 */
4533
cdd6c482 4534static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4535{
4536 struct perf_output_handle handle;
c980d109 4537 struct perf_sample_data sample;
a78ac325
PZ
4538 int ret;
4539
4540 struct {
4541 struct perf_event_header header;
4542 u64 time;
cca3f454 4543 u64 id;
7f453c24 4544 u64 stream_id;
a78ac325
PZ
4545 } throttle_event = {
4546 .header = {
cdd6c482 4547 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4548 .misc = 0,
4549 .size = sizeof(throttle_event),
4550 },
def0a9b2 4551 .time = perf_clock(),
cdd6c482
IM
4552 .id = primary_event_id(event),
4553 .stream_id = event->id,
a78ac325
PZ
4554 };
4555
966ee4d6 4556 if (enable)
cdd6c482 4557 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4558
c980d109
ACM
4559 perf_event_header__init_id(&throttle_event.header, &sample, event);
4560
4561 ret = perf_output_begin(&handle, event,
a7ac67ea 4562 throttle_event.header.size);
a78ac325
PZ
4563 if (ret)
4564 return;
4565
4566 perf_output_put(&handle, throttle_event);
c980d109 4567 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4568 perf_output_end(&handle);
4569}
4570
f6c7d5fe 4571/*
cdd6c482 4572 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4573 */
4574
a8b0ca17 4575static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4576 int throttle, struct perf_sample_data *data,
4577 struct pt_regs *regs)
f6c7d5fe 4578{
cdd6c482
IM
4579 int events = atomic_read(&event->event_limit);
4580 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4581 u64 seq;
79f14641
PZ
4582 int ret = 0;
4583
96398826
PZ
4584 /*
4585 * Non-sampling counters might still use the PMI to fold short
4586 * hardware counters, ignore those.
4587 */
4588 if (unlikely(!is_sampling_event(event)))
4589 return 0;
4590
e050e3f0
SE
4591 seq = __this_cpu_read(perf_throttled_seq);
4592 if (seq != hwc->interrupts_seq) {
4593 hwc->interrupts_seq = seq;
4594 hwc->interrupts = 1;
4595 } else {
4596 hwc->interrupts++;
4597 if (unlikely(throttle
4598 && hwc->interrupts >= max_samples_per_tick)) {
4599 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4600 hwc->interrupts = MAX_INTERRUPTS;
4601 perf_log_throttle(event, 0);
a78ac325
PZ
4602 ret = 1;
4603 }
e050e3f0 4604 }
60db5e09 4605
cdd6c482 4606 if (event->attr.freq) {
def0a9b2 4607 u64 now = perf_clock();
abd50713 4608 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4609
abd50713 4610 hwc->freq_time_stamp = now;
bd2b5b12 4611
abd50713 4612 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4613 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4614 }
4615
2023b359
PZ
4616 /*
4617 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4618 * events
2023b359
PZ
4619 */
4620
cdd6c482
IM
4621 event->pending_kill = POLL_IN;
4622 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4623 ret = 1;
cdd6c482 4624 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4625 event->pending_disable = 1;
4626 irq_work_queue(&event->pending);
79f14641
PZ
4627 }
4628
453f19ee 4629 if (event->overflow_handler)
a8b0ca17 4630 event->overflow_handler(event, data, regs);
453f19ee 4631 else
a8b0ca17 4632 perf_event_output(event, data, regs);
453f19ee 4633
f506b3dc 4634 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4635 event->pending_wakeup = 1;
4636 irq_work_queue(&event->pending);
f506b3dc
PZ
4637 }
4638
79f14641 4639 return ret;
f6c7d5fe
PZ
4640}
4641
a8b0ca17 4642int perf_event_overflow(struct perf_event *event,
5622f295
MM
4643 struct perf_sample_data *data,
4644 struct pt_regs *regs)
850bc73f 4645{
a8b0ca17 4646 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4647}
4648
15dbf27c 4649/*
cdd6c482 4650 * Generic software event infrastructure
15dbf27c
PZ
4651 */
4652
b28ab83c
PZ
4653struct swevent_htable {
4654 struct swevent_hlist *swevent_hlist;
4655 struct mutex hlist_mutex;
4656 int hlist_refcount;
4657
4658 /* Recursion avoidance in each contexts */
4659 int recursion[PERF_NR_CONTEXTS];
4660};
4661
4662static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4663
7b4b6658 4664/*
cdd6c482
IM
4665 * We directly increment event->count and keep a second value in
4666 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4667 * is kept in the range [-sample_period, 0] so that we can use the
4668 * sign as trigger.
4669 */
4670
cdd6c482 4671static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4672{
cdd6c482 4673 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4674 u64 period = hwc->last_period;
4675 u64 nr, offset;
4676 s64 old, val;
4677
4678 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4679
4680again:
e7850595 4681 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4682 if (val < 0)
4683 return 0;
15dbf27c 4684
7b4b6658
PZ
4685 nr = div64_u64(period + val, period);
4686 offset = nr * period;
4687 val -= offset;
e7850595 4688 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4689 goto again;
15dbf27c 4690
7b4b6658 4691 return nr;
15dbf27c
PZ
4692}
4693
0cff784a 4694static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4695 struct perf_sample_data *data,
5622f295 4696 struct pt_regs *regs)
15dbf27c 4697{
cdd6c482 4698 struct hw_perf_event *hwc = &event->hw;
850bc73f 4699 int throttle = 0;
15dbf27c 4700
0cff784a
PZ
4701 if (!overflow)
4702 overflow = perf_swevent_set_period(event);
15dbf27c 4703
7b4b6658
PZ
4704 if (hwc->interrupts == MAX_INTERRUPTS)
4705 return;
15dbf27c 4706
7b4b6658 4707 for (; overflow; overflow--) {
a8b0ca17 4708 if (__perf_event_overflow(event, throttle,
5622f295 4709 data, regs)) {
7b4b6658
PZ
4710 /*
4711 * We inhibit the overflow from happening when
4712 * hwc->interrupts == MAX_INTERRUPTS.
4713 */
4714 break;
4715 }
cf450a73 4716 throttle = 1;
7b4b6658 4717 }
15dbf27c
PZ
4718}
4719
a4eaf7f1 4720static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4721 struct perf_sample_data *data,
5622f295 4722 struct pt_regs *regs)
7b4b6658 4723{
cdd6c482 4724 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4725
e7850595 4726 local64_add(nr, &event->count);
d6d020e9 4727
0cff784a
PZ
4728 if (!regs)
4729 return;
4730
6c7e550f 4731 if (!is_sampling_event(event))
7b4b6658 4732 return;
d6d020e9 4733
5d81e5cf
AV
4734 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4735 data->period = nr;
4736 return perf_swevent_overflow(event, 1, data, regs);
4737 } else
4738 data->period = event->hw.last_period;
4739
0cff784a 4740 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4741 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4742
e7850595 4743 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4744 return;
df1a132b 4745
a8b0ca17 4746 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4747}
4748
f5ffe02e
FW
4749static int perf_exclude_event(struct perf_event *event,
4750 struct pt_regs *regs)
4751{
a4eaf7f1 4752 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4753 return 1;
a4eaf7f1 4754
f5ffe02e
FW
4755 if (regs) {
4756 if (event->attr.exclude_user && user_mode(regs))
4757 return 1;
4758
4759 if (event->attr.exclude_kernel && !user_mode(regs))
4760 return 1;
4761 }
4762
4763 return 0;
4764}
4765
cdd6c482 4766static int perf_swevent_match(struct perf_event *event,
1c432d89 4767 enum perf_type_id type,
6fb2915d
LZ
4768 u32 event_id,
4769 struct perf_sample_data *data,
4770 struct pt_regs *regs)
15dbf27c 4771{
cdd6c482 4772 if (event->attr.type != type)
a21ca2ca 4773 return 0;
f5ffe02e 4774
cdd6c482 4775 if (event->attr.config != event_id)
15dbf27c
PZ
4776 return 0;
4777
f5ffe02e
FW
4778 if (perf_exclude_event(event, regs))
4779 return 0;
15dbf27c
PZ
4780
4781 return 1;
4782}
4783
76e1d904
FW
4784static inline u64 swevent_hash(u64 type, u32 event_id)
4785{
4786 u64 val = event_id | (type << 32);
4787
4788 return hash_64(val, SWEVENT_HLIST_BITS);
4789}
4790
49f135ed
FW
4791static inline struct hlist_head *
4792__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4793{
49f135ed
FW
4794 u64 hash = swevent_hash(type, event_id);
4795
4796 return &hlist->heads[hash];
4797}
76e1d904 4798
49f135ed
FW
4799/* For the read side: events when they trigger */
4800static inline struct hlist_head *
b28ab83c 4801find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4802{
4803 struct swevent_hlist *hlist;
76e1d904 4804
b28ab83c 4805 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4806 if (!hlist)
4807 return NULL;
4808
49f135ed
FW
4809 return __find_swevent_head(hlist, type, event_id);
4810}
4811
4812/* For the event head insertion and removal in the hlist */
4813static inline struct hlist_head *
b28ab83c 4814find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4815{
4816 struct swevent_hlist *hlist;
4817 u32 event_id = event->attr.config;
4818 u64 type = event->attr.type;
4819
4820 /*
4821 * Event scheduling is always serialized against hlist allocation
4822 * and release. Which makes the protected version suitable here.
4823 * The context lock guarantees that.
4824 */
b28ab83c 4825 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4826 lockdep_is_held(&event->ctx->lock));
4827 if (!hlist)
4828 return NULL;
4829
4830 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4831}
4832
4833static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4834 u64 nr,
76e1d904
FW
4835 struct perf_sample_data *data,
4836 struct pt_regs *regs)
15dbf27c 4837{
b28ab83c 4838 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4839 struct perf_event *event;
76e1d904
FW
4840 struct hlist_node *node;
4841 struct hlist_head *head;
15dbf27c 4842
76e1d904 4843 rcu_read_lock();
b28ab83c 4844 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4845 if (!head)
4846 goto end;
4847
4848 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4849 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4850 perf_swevent_event(event, nr, data, regs);
15dbf27c 4851 }
76e1d904
FW
4852end:
4853 rcu_read_unlock();
15dbf27c
PZ
4854}
4855
4ed7c92d 4856int perf_swevent_get_recursion_context(void)
96f6d444 4857{
b28ab83c 4858 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 4859
b28ab83c 4860 return get_recursion_context(swhash->recursion);
96f6d444 4861}
645e8cc0 4862EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 4863
fa9f90be 4864inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 4865{
b28ab83c 4866 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 4867
b28ab83c 4868 put_recursion_context(swhash->recursion, rctx);
ce71b9df 4869}
15dbf27c 4870
a8b0ca17 4871void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 4872{
a4234bfc 4873 struct perf_sample_data data;
4ed7c92d
PZ
4874 int rctx;
4875
1c024eca 4876 preempt_disable_notrace();
4ed7c92d
PZ
4877 rctx = perf_swevent_get_recursion_context();
4878 if (rctx < 0)
4879 return;
a4234bfc 4880
dc1d628a 4881 perf_sample_data_init(&data, addr);
92bf309a 4882
a8b0ca17 4883 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
4884
4885 perf_swevent_put_recursion_context(rctx);
1c024eca 4886 preempt_enable_notrace();
b8e83514
PZ
4887}
4888
cdd6c482 4889static void perf_swevent_read(struct perf_event *event)
15dbf27c 4890{
15dbf27c
PZ
4891}
4892
a4eaf7f1 4893static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 4894{
b28ab83c 4895 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4896 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
4897 struct hlist_head *head;
4898
6c7e550f 4899 if (is_sampling_event(event)) {
7b4b6658 4900 hwc->last_period = hwc->sample_period;
cdd6c482 4901 perf_swevent_set_period(event);
7b4b6658 4902 }
76e1d904 4903
a4eaf7f1
PZ
4904 hwc->state = !(flags & PERF_EF_START);
4905
b28ab83c 4906 head = find_swevent_head(swhash, event);
76e1d904
FW
4907 if (WARN_ON_ONCE(!head))
4908 return -EINVAL;
4909
4910 hlist_add_head_rcu(&event->hlist_entry, head);
4911
15dbf27c
PZ
4912 return 0;
4913}
4914
a4eaf7f1 4915static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 4916{
76e1d904 4917 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
4918}
4919
a4eaf7f1 4920static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 4921{
a4eaf7f1 4922 event->hw.state = 0;
d6d020e9 4923}
aa9c4c0f 4924
a4eaf7f1 4925static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 4926{
a4eaf7f1 4927 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
4928}
4929
49f135ed
FW
4930/* Deref the hlist from the update side */
4931static inline struct swevent_hlist *
b28ab83c 4932swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 4933{
b28ab83c
PZ
4934 return rcu_dereference_protected(swhash->swevent_hlist,
4935 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
4936}
4937
b28ab83c 4938static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 4939{
b28ab83c 4940 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 4941
49f135ed 4942 if (!hlist)
76e1d904
FW
4943 return;
4944
b28ab83c 4945 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 4946 kfree_rcu(hlist, rcu_head);
76e1d904
FW
4947}
4948
4949static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4950{
b28ab83c 4951 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 4952
b28ab83c 4953 mutex_lock(&swhash->hlist_mutex);
76e1d904 4954
b28ab83c
PZ
4955 if (!--swhash->hlist_refcount)
4956 swevent_hlist_release(swhash);
76e1d904 4957
b28ab83c 4958 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4959}
4960
4961static void swevent_hlist_put(struct perf_event *event)
4962{
4963 int cpu;
4964
4965 if (event->cpu != -1) {
4966 swevent_hlist_put_cpu(event, event->cpu);
4967 return;
4968 }
4969
4970 for_each_possible_cpu(cpu)
4971 swevent_hlist_put_cpu(event, cpu);
4972}
4973
4974static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4975{
b28ab83c 4976 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
4977 int err = 0;
4978
b28ab83c 4979 mutex_lock(&swhash->hlist_mutex);
76e1d904 4980
b28ab83c 4981 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
4982 struct swevent_hlist *hlist;
4983
4984 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4985 if (!hlist) {
4986 err = -ENOMEM;
4987 goto exit;
4988 }
b28ab83c 4989 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 4990 }
b28ab83c 4991 swhash->hlist_refcount++;
9ed6060d 4992exit:
b28ab83c 4993 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
4994
4995 return err;
4996}
4997
4998static int swevent_hlist_get(struct perf_event *event)
4999{
5000 int err;
5001 int cpu, failed_cpu;
5002
5003 if (event->cpu != -1)
5004 return swevent_hlist_get_cpu(event, event->cpu);
5005
5006 get_online_cpus();
5007 for_each_possible_cpu(cpu) {
5008 err = swevent_hlist_get_cpu(event, cpu);
5009 if (err) {
5010 failed_cpu = cpu;
5011 goto fail;
5012 }
5013 }
5014 put_online_cpus();
5015
5016 return 0;
9ed6060d 5017fail:
76e1d904
FW
5018 for_each_possible_cpu(cpu) {
5019 if (cpu == failed_cpu)
5020 break;
5021 swevent_hlist_put_cpu(event, cpu);
5022 }
5023
5024 put_online_cpus();
5025 return err;
5026}
5027
c5905afb 5028struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5029
b0a873eb
PZ
5030static void sw_perf_event_destroy(struct perf_event *event)
5031{
5032 u64 event_id = event->attr.config;
95476b64 5033
b0a873eb
PZ
5034 WARN_ON(event->parent);
5035
c5905afb 5036 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5037 swevent_hlist_put(event);
5038}
5039
5040static int perf_swevent_init(struct perf_event *event)
5041{
5042 int event_id = event->attr.config;
5043
5044 if (event->attr.type != PERF_TYPE_SOFTWARE)
5045 return -ENOENT;
5046
2481c5fa
SE
5047 /*
5048 * no branch sampling for software events
5049 */
5050 if (has_branch_stack(event))
5051 return -EOPNOTSUPP;
5052
b0a873eb
PZ
5053 switch (event_id) {
5054 case PERF_COUNT_SW_CPU_CLOCK:
5055 case PERF_COUNT_SW_TASK_CLOCK:
5056 return -ENOENT;
5057
5058 default:
5059 break;
5060 }
5061
ce677831 5062 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5063 return -ENOENT;
5064
5065 if (!event->parent) {
5066 int err;
5067
5068 err = swevent_hlist_get(event);
5069 if (err)
5070 return err;
5071
c5905afb 5072 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5073 event->destroy = sw_perf_event_destroy;
5074 }
5075
5076 return 0;
5077}
5078
35edc2a5
PZ
5079static int perf_swevent_event_idx(struct perf_event *event)
5080{
5081 return 0;
5082}
5083
b0a873eb 5084static struct pmu perf_swevent = {
89a1e187 5085 .task_ctx_nr = perf_sw_context,
95476b64 5086
b0a873eb 5087 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5088 .add = perf_swevent_add,
5089 .del = perf_swevent_del,
5090 .start = perf_swevent_start,
5091 .stop = perf_swevent_stop,
1c024eca 5092 .read = perf_swevent_read,
35edc2a5
PZ
5093
5094 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5095};
5096
b0a873eb
PZ
5097#ifdef CONFIG_EVENT_TRACING
5098
1c024eca
PZ
5099static int perf_tp_filter_match(struct perf_event *event,
5100 struct perf_sample_data *data)
5101{
5102 void *record = data->raw->data;
5103
5104 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5105 return 1;
5106 return 0;
5107}
5108
5109static int perf_tp_event_match(struct perf_event *event,
5110 struct perf_sample_data *data,
5111 struct pt_regs *regs)
5112{
a0f7d0f7
FW
5113 if (event->hw.state & PERF_HES_STOPPED)
5114 return 0;
580d607c
PZ
5115 /*
5116 * All tracepoints are from kernel-space.
5117 */
5118 if (event->attr.exclude_kernel)
1c024eca
PZ
5119 return 0;
5120
5121 if (!perf_tp_filter_match(event, data))
5122 return 0;
5123
5124 return 1;
5125}
5126
5127void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
ecc55f84 5128 struct pt_regs *regs, struct hlist_head *head, int rctx)
95476b64
FW
5129{
5130 struct perf_sample_data data;
1c024eca
PZ
5131 struct perf_event *event;
5132 struct hlist_node *node;
5133
95476b64
FW
5134 struct perf_raw_record raw = {
5135 .size = entry_size,
5136 .data = record,
5137 };
5138
5139 perf_sample_data_init(&data, addr);
5140 data.raw = &raw;
5141
1c024eca
PZ
5142 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5143 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5144 perf_swevent_event(event, count, &data, regs);
4f41c013 5145 }
ecc55f84
PZ
5146
5147 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5148}
5149EXPORT_SYMBOL_GPL(perf_tp_event);
5150
cdd6c482 5151static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5152{
1c024eca 5153 perf_trace_destroy(event);
e077df4f
PZ
5154}
5155
b0a873eb 5156static int perf_tp_event_init(struct perf_event *event)
e077df4f 5157{
76e1d904
FW
5158 int err;
5159
b0a873eb
PZ
5160 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5161 return -ENOENT;
5162
2481c5fa
SE
5163 /*
5164 * no branch sampling for tracepoint events
5165 */
5166 if (has_branch_stack(event))
5167 return -EOPNOTSUPP;
5168
1c024eca
PZ
5169 err = perf_trace_init(event);
5170 if (err)
b0a873eb 5171 return err;
e077df4f 5172
cdd6c482 5173 event->destroy = tp_perf_event_destroy;
e077df4f 5174
b0a873eb
PZ
5175 return 0;
5176}
5177
5178static struct pmu perf_tracepoint = {
89a1e187
PZ
5179 .task_ctx_nr = perf_sw_context,
5180
b0a873eb 5181 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5182 .add = perf_trace_add,
5183 .del = perf_trace_del,
5184 .start = perf_swevent_start,
5185 .stop = perf_swevent_stop,
b0a873eb 5186 .read = perf_swevent_read,
35edc2a5
PZ
5187
5188 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5189};
5190
5191static inline void perf_tp_register(void)
5192{
2e80a82a 5193 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5194}
6fb2915d
LZ
5195
5196static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5197{
5198 char *filter_str;
5199 int ret;
5200
5201 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5202 return -EINVAL;
5203
5204 filter_str = strndup_user(arg, PAGE_SIZE);
5205 if (IS_ERR(filter_str))
5206 return PTR_ERR(filter_str);
5207
5208 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5209
5210 kfree(filter_str);
5211 return ret;
5212}
5213
5214static void perf_event_free_filter(struct perf_event *event)
5215{
5216 ftrace_profile_free_filter(event);
5217}
5218
e077df4f 5219#else
6fb2915d 5220
b0a873eb 5221static inline void perf_tp_register(void)
e077df4f 5222{
e077df4f 5223}
6fb2915d
LZ
5224
5225static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5226{
5227 return -ENOENT;
5228}
5229
5230static void perf_event_free_filter(struct perf_event *event)
5231{
5232}
5233
07b139c8 5234#endif /* CONFIG_EVENT_TRACING */
e077df4f 5235
24f1e32c 5236#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5237void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5238{
f5ffe02e
FW
5239 struct perf_sample_data sample;
5240 struct pt_regs *regs = data;
5241
dc1d628a 5242 perf_sample_data_init(&sample, bp->attr.bp_addr);
f5ffe02e 5243
a4eaf7f1 5244 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5245 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5246}
5247#endif
5248
b0a873eb
PZ
5249/*
5250 * hrtimer based swevent callback
5251 */
f29ac756 5252
b0a873eb 5253static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5254{
b0a873eb
PZ
5255 enum hrtimer_restart ret = HRTIMER_RESTART;
5256 struct perf_sample_data data;
5257 struct pt_regs *regs;
5258 struct perf_event *event;
5259 u64 period;
f29ac756 5260
b0a873eb 5261 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5262
5263 if (event->state != PERF_EVENT_STATE_ACTIVE)
5264 return HRTIMER_NORESTART;
5265
b0a873eb 5266 event->pmu->read(event);
f344011c 5267
b0a873eb
PZ
5268 perf_sample_data_init(&data, 0);
5269 data.period = event->hw.last_period;
5270 regs = get_irq_regs();
5271
5272 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5273 if (!(event->attr.exclude_idle && is_idle_task(current)))
a8b0ca17 5274 if (perf_event_overflow(event, &data, regs))
b0a873eb
PZ
5275 ret = HRTIMER_NORESTART;
5276 }
24f1e32c 5277
b0a873eb
PZ
5278 period = max_t(u64, 10000, event->hw.sample_period);
5279 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5280
b0a873eb 5281 return ret;
f29ac756
PZ
5282}
5283
b0a873eb 5284static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5285{
b0a873eb 5286 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5287 s64 period;
5288
5289 if (!is_sampling_event(event))
5290 return;
f5ffe02e 5291
5d508e82
FBH
5292 period = local64_read(&hwc->period_left);
5293 if (period) {
5294 if (period < 0)
5295 period = 10000;
fa407f35 5296
5d508e82
FBH
5297 local64_set(&hwc->period_left, 0);
5298 } else {
5299 period = max_t(u64, 10000, hwc->sample_period);
5300 }
5301 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5302 ns_to_ktime(period), 0,
b5ab4cd5 5303 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5304}
b0a873eb
PZ
5305
5306static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5307{
b0a873eb
PZ
5308 struct hw_perf_event *hwc = &event->hw;
5309
6c7e550f 5310 if (is_sampling_event(event)) {
b0a873eb 5311 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5312 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5313
5314 hrtimer_cancel(&hwc->hrtimer);
5315 }
24f1e32c
FW
5316}
5317
ba3dd36c
PZ
5318static void perf_swevent_init_hrtimer(struct perf_event *event)
5319{
5320 struct hw_perf_event *hwc = &event->hw;
5321
5322 if (!is_sampling_event(event))
5323 return;
5324
5325 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5326 hwc->hrtimer.function = perf_swevent_hrtimer;
5327
5328 /*
5329 * Since hrtimers have a fixed rate, we can do a static freq->period
5330 * mapping and avoid the whole period adjust feedback stuff.
5331 */
5332 if (event->attr.freq) {
5333 long freq = event->attr.sample_freq;
5334
5335 event->attr.sample_period = NSEC_PER_SEC / freq;
5336 hwc->sample_period = event->attr.sample_period;
5337 local64_set(&hwc->period_left, hwc->sample_period);
5338 event->attr.freq = 0;
5339 }
5340}
5341
b0a873eb
PZ
5342/*
5343 * Software event: cpu wall time clock
5344 */
5345
5346static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5347{
b0a873eb
PZ
5348 s64 prev;
5349 u64 now;
5350
a4eaf7f1 5351 now = local_clock();
b0a873eb
PZ
5352 prev = local64_xchg(&event->hw.prev_count, now);
5353 local64_add(now - prev, &event->count);
24f1e32c 5354}
24f1e32c 5355
a4eaf7f1 5356static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5357{
a4eaf7f1 5358 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5359 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5360}
5361
a4eaf7f1 5362static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5363{
b0a873eb
PZ
5364 perf_swevent_cancel_hrtimer(event);
5365 cpu_clock_event_update(event);
5366}
f29ac756 5367
a4eaf7f1
PZ
5368static int cpu_clock_event_add(struct perf_event *event, int flags)
5369{
5370 if (flags & PERF_EF_START)
5371 cpu_clock_event_start(event, flags);
5372
5373 return 0;
5374}
5375
5376static void cpu_clock_event_del(struct perf_event *event, int flags)
5377{
5378 cpu_clock_event_stop(event, flags);
5379}
5380
b0a873eb
PZ
5381static void cpu_clock_event_read(struct perf_event *event)
5382{
5383 cpu_clock_event_update(event);
5384}
f344011c 5385
b0a873eb
PZ
5386static int cpu_clock_event_init(struct perf_event *event)
5387{
5388 if (event->attr.type != PERF_TYPE_SOFTWARE)
5389 return -ENOENT;
5390
5391 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5392 return -ENOENT;
5393
2481c5fa
SE
5394 /*
5395 * no branch sampling for software events
5396 */
5397 if (has_branch_stack(event))
5398 return -EOPNOTSUPP;
5399
ba3dd36c
PZ
5400 perf_swevent_init_hrtimer(event);
5401
b0a873eb 5402 return 0;
f29ac756
PZ
5403}
5404
b0a873eb 5405static struct pmu perf_cpu_clock = {
89a1e187
PZ
5406 .task_ctx_nr = perf_sw_context,
5407
b0a873eb 5408 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5409 .add = cpu_clock_event_add,
5410 .del = cpu_clock_event_del,
5411 .start = cpu_clock_event_start,
5412 .stop = cpu_clock_event_stop,
b0a873eb 5413 .read = cpu_clock_event_read,
35edc2a5
PZ
5414
5415 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5416};
5417
5418/*
5419 * Software event: task time clock
5420 */
5421
5422static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5423{
b0a873eb
PZ
5424 u64 prev;
5425 s64 delta;
5c92d124 5426
b0a873eb
PZ
5427 prev = local64_xchg(&event->hw.prev_count, now);
5428 delta = now - prev;
5429 local64_add(delta, &event->count);
5430}
5c92d124 5431
a4eaf7f1 5432static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5433{
a4eaf7f1 5434 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5435 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5436}
5437
a4eaf7f1 5438static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5439{
5440 perf_swevent_cancel_hrtimer(event);
5441 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5442}
5443
5444static int task_clock_event_add(struct perf_event *event, int flags)
5445{
5446 if (flags & PERF_EF_START)
5447 task_clock_event_start(event, flags);
b0a873eb 5448
a4eaf7f1
PZ
5449 return 0;
5450}
5451
5452static void task_clock_event_del(struct perf_event *event, int flags)
5453{
5454 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5455}
5456
5457static void task_clock_event_read(struct perf_event *event)
5458{
768a06e2
PZ
5459 u64 now = perf_clock();
5460 u64 delta = now - event->ctx->timestamp;
5461 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5462
5463 task_clock_event_update(event, time);
5464}
5465
5466static int task_clock_event_init(struct perf_event *event)
6fb2915d 5467{
b0a873eb
PZ
5468 if (event->attr.type != PERF_TYPE_SOFTWARE)
5469 return -ENOENT;
5470
5471 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5472 return -ENOENT;
5473
2481c5fa
SE
5474 /*
5475 * no branch sampling for software events
5476 */
5477 if (has_branch_stack(event))
5478 return -EOPNOTSUPP;
5479
ba3dd36c
PZ
5480 perf_swevent_init_hrtimer(event);
5481
b0a873eb 5482 return 0;
6fb2915d
LZ
5483}
5484
b0a873eb 5485static struct pmu perf_task_clock = {
89a1e187
PZ
5486 .task_ctx_nr = perf_sw_context,
5487
b0a873eb 5488 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5489 .add = task_clock_event_add,
5490 .del = task_clock_event_del,
5491 .start = task_clock_event_start,
5492 .stop = task_clock_event_stop,
b0a873eb 5493 .read = task_clock_event_read,
35edc2a5
PZ
5494
5495 .event_idx = perf_swevent_event_idx,
b0a873eb 5496};
6fb2915d 5497
ad5133b7 5498static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5499{
e077df4f 5500}
6fb2915d 5501
ad5133b7 5502static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5503{
ad5133b7 5504 return 0;
6fb2915d
LZ
5505}
5506
ad5133b7 5507static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5508{
ad5133b7 5509 perf_pmu_disable(pmu);
6fb2915d
LZ
5510}
5511
ad5133b7
PZ
5512static int perf_pmu_commit_txn(struct pmu *pmu)
5513{
5514 perf_pmu_enable(pmu);
5515 return 0;
5516}
e077df4f 5517
ad5133b7 5518static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5519{
ad5133b7 5520 perf_pmu_enable(pmu);
24f1e32c
FW
5521}
5522
35edc2a5
PZ
5523static int perf_event_idx_default(struct perf_event *event)
5524{
5525 return event->hw.idx + 1;
5526}
5527
8dc85d54
PZ
5528/*
5529 * Ensures all contexts with the same task_ctx_nr have the same
5530 * pmu_cpu_context too.
5531 */
5532static void *find_pmu_context(int ctxn)
24f1e32c 5533{
8dc85d54 5534 struct pmu *pmu;
b326e956 5535
8dc85d54
PZ
5536 if (ctxn < 0)
5537 return NULL;
24f1e32c 5538
8dc85d54
PZ
5539 list_for_each_entry(pmu, &pmus, entry) {
5540 if (pmu->task_ctx_nr == ctxn)
5541 return pmu->pmu_cpu_context;
5542 }
24f1e32c 5543
8dc85d54 5544 return NULL;
24f1e32c
FW
5545}
5546
51676957 5547static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5548{
51676957
PZ
5549 int cpu;
5550
5551 for_each_possible_cpu(cpu) {
5552 struct perf_cpu_context *cpuctx;
5553
5554 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5555
5556 if (cpuctx->active_pmu == old_pmu)
5557 cpuctx->active_pmu = pmu;
5558 }
5559}
5560
5561static void free_pmu_context(struct pmu *pmu)
5562{
5563 struct pmu *i;
f5ffe02e 5564
8dc85d54 5565 mutex_lock(&pmus_lock);
0475f9ea 5566 /*
8dc85d54 5567 * Like a real lame refcount.
0475f9ea 5568 */
51676957
PZ
5569 list_for_each_entry(i, &pmus, entry) {
5570 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5571 update_pmu_context(i, pmu);
8dc85d54 5572 goto out;
51676957 5573 }
8dc85d54 5574 }
d6d020e9 5575
51676957 5576 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5577out:
5578 mutex_unlock(&pmus_lock);
24f1e32c 5579}
2e80a82a 5580static struct idr pmu_idr;
d6d020e9 5581
abe43400
PZ
5582static ssize_t
5583type_show(struct device *dev, struct device_attribute *attr, char *page)
5584{
5585 struct pmu *pmu = dev_get_drvdata(dev);
5586
5587 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5588}
5589
5590static struct device_attribute pmu_dev_attrs[] = {
5591 __ATTR_RO(type),
5592 __ATTR_NULL,
5593};
5594
5595static int pmu_bus_running;
5596static struct bus_type pmu_bus = {
5597 .name = "event_source",
5598 .dev_attrs = pmu_dev_attrs,
5599};
5600
5601static void pmu_dev_release(struct device *dev)
5602{
5603 kfree(dev);
5604}
5605
5606static int pmu_dev_alloc(struct pmu *pmu)
5607{
5608 int ret = -ENOMEM;
5609
5610 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5611 if (!pmu->dev)
5612 goto out;
5613
0c9d42ed 5614 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5615 device_initialize(pmu->dev);
5616 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5617 if (ret)
5618 goto free_dev;
5619
5620 dev_set_drvdata(pmu->dev, pmu);
5621 pmu->dev->bus = &pmu_bus;
5622 pmu->dev->release = pmu_dev_release;
5623 ret = device_add(pmu->dev);
5624 if (ret)
5625 goto free_dev;
5626
5627out:
5628 return ret;
5629
5630free_dev:
5631 put_device(pmu->dev);
5632 goto out;
5633}
5634
547e9fd7 5635static struct lock_class_key cpuctx_mutex;
facc4307 5636static struct lock_class_key cpuctx_lock;
547e9fd7 5637
2e80a82a 5638int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5639{
108b02cf 5640 int cpu, ret;
24f1e32c 5641
b0a873eb 5642 mutex_lock(&pmus_lock);
33696fc0
PZ
5643 ret = -ENOMEM;
5644 pmu->pmu_disable_count = alloc_percpu(int);
5645 if (!pmu->pmu_disable_count)
5646 goto unlock;
f29ac756 5647
2e80a82a
PZ
5648 pmu->type = -1;
5649 if (!name)
5650 goto skip_type;
5651 pmu->name = name;
5652
5653 if (type < 0) {
5654 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5655 if (!err)
5656 goto free_pdc;
5657
5658 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5659 if (err) {
5660 ret = err;
5661 goto free_pdc;
5662 }
5663 }
5664 pmu->type = type;
5665
abe43400
PZ
5666 if (pmu_bus_running) {
5667 ret = pmu_dev_alloc(pmu);
5668 if (ret)
5669 goto free_idr;
5670 }
5671
2e80a82a 5672skip_type:
8dc85d54
PZ
5673 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5674 if (pmu->pmu_cpu_context)
5675 goto got_cpu_context;
f29ac756 5676
108b02cf
PZ
5677 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5678 if (!pmu->pmu_cpu_context)
abe43400 5679 goto free_dev;
f344011c 5680
108b02cf
PZ
5681 for_each_possible_cpu(cpu) {
5682 struct perf_cpu_context *cpuctx;
5683
5684 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5685 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5686 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5687 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5688 cpuctx->ctx.type = cpu_context;
108b02cf 5689 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5690 cpuctx->jiffies_interval = 1;
5691 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5692 cpuctx->active_pmu = pmu;
108b02cf 5693 }
76e1d904 5694
8dc85d54 5695got_cpu_context:
ad5133b7
PZ
5696 if (!pmu->start_txn) {
5697 if (pmu->pmu_enable) {
5698 /*
5699 * If we have pmu_enable/pmu_disable calls, install
5700 * transaction stubs that use that to try and batch
5701 * hardware accesses.
5702 */
5703 pmu->start_txn = perf_pmu_start_txn;
5704 pmu->commit_txn = perf_pmu_commit_txn;
5705 pmu->cancel_txn = perf_pmu_cancel_txn;
5706 } else {
5707 pmu->start_txn = perf_pmu_nop_void;
5708 pmu->commit_txn = perf_pmu_nop_int;
5709 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5710 }
5c92d124 5711 }
15dbf27c 5712
ad5133b7
PZ
5713 if (!pmu->pmu_enable) {
5714 pmu->pmu_enable = perf_pmu_nop_void;
5715 pmu->pmu_disable = perf_pmu_nop_void;
5716 }
5717
35edc2a5
PZ
5718 if (!pmu->event_idx)
5719 pmu->event_idx = perf_event_idx_default;
5720
b0a873eb 5721 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5722 ret = 0;
5723unlock:
b0a873eb
PZ
5724 mutex_unlock(&pmus_lock);
5725
33696fc0 5726 return ret;
108b02cf 5727
abe43400
PZ
5728free_dev:
5729 device_del(pmu->dev);
5730 put_device(pmu->dev);
5731
2e80a82a
PZ
5732free_idr:
5733 if (pmu->type >= PERF_TYPE_MAX)
5734 idr_remove(&pmu_idr, pmu->type);
5735
108b02cf
PZ
5736free_pdc:
5737 free_percpu(pmu->pmu_disable_count);
5738 goto unlock;
f29ac756
PZ
5739}
5740
b0a873eb 5741void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5742{
b0a873eb
PZ
5743 mutex_lock(&pmus_lock);
5744 list_del_rcu(&pmu->entry);
5745 mutex_unlock(&pmus_lock);
5c92d124 5746
0475f9ea 5747 /*
cde8e884
PZ
5748 * We dereference the pmu list under both SRCU and regular RCU, so
5749 * synchronize against both of those.
0475f9ea 5750 */
b0a873eb 5751 synchronize_srcu(&pmus_srcu);
cde8e884 5752 synchronize_rcu();
d6d020e9 5753
33696fc0 5754 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5755 if (pmu->type >= PERF_TYPE_MAX)
5756 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5757 device_del(pmu->dev);
5758 put_device(pmu->dev);
51676957 5759 free_pmu_context(pmu);
b0a873eb 5760}
d6d020e9 5761
b0a873eb
PZ
5762struct pmu *perf_init_event(struct perf_event *event)
5763{
5764 struct pmu *pmu = NULL;
5765 int idx;
940c5b29 5766 int ret;
b0a873eb
PZ
5767
5768 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5769
5770 rcu_read_lock();
5771 pmu = idr_find(&pmu_idr, event->attr.type);
5772 rcu_read_unlock();
940c5b29 5773 if (pmu) {
7e5b2a01 5774 event->pmu = pmu;
940c5b29
LM
5775 ret = pmu->event_init(event);
5776 if (ret)
5777 pmu = ERR_PTR(ret);
2e80a82a 5778 goto unlock;
940c5b29 5779 }
2e80a82a 5780
b0a873eb 5781 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5782 event->pmu = pmu;
940c5b29 5783 ret = pmu->event_init(event);
b0a873eb 5784 if (!ret)
e5f4d339 5785 goto unlock;
76e1d904 5786
b0a873eb
PZ
5787 if (ret != -ENOENT) {
5788 pmu = ERR_PTR(ret);
e5f4d339 5789 goto unlock;
f344011c 5790 }
5c92d124 5791 }
e5f4d339
PZ
5792 pmu = ERR_PTR(-ENOENT);
5793unlock:
b0a873eb 5794 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5795
4aeb0b42 5796 return pmu;
5c92d124
IM
5797}
5798
0793a61d 5799/*
cdd6c482 5800 * Allocate and initialize a event structure
0793a61d 5801 */
cdd6c482 5802static struct perf_event *
c3f00c70 5803perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5804 struct task_struct *task,
5805 struct perf_event *group_leader,
5806 struct perf_event *parent_event,
4dc0da86
AK
5807 perf_overflow_handler_t overflow_handler,
5808 void *context)
0793a61d 5809{
51b0fe39 5810 struct pmu *pmu;
cdd6c482
IM
5811 struct perf_event *event;
5812 struct hw_perf_event *hwc;
d5d2bc0d 5813 long err;
0793a61d 5814
66832eb4
ON
5815 if ((unsigned)cpu >= nr_cpu_ids) {
5816 if (!task || cpu != -1)
5817 return ERR_PTR(-EINVAL);
5818 }
5819
c3f00c70 5820 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5821 if (!event)
d5d2bc0d 5822 return ERR_PTR(-ENOMEM);
0793a61d 5823
04289bb9 5824 /*
cdd6c482 5825 * Single events are their own group leaders, with an
04289bb9
IM
5826 * empty sibling list:
5827 */
5828 if (!group_leader)
cdd6c482 5829 group_leader = event;
04289bb9 5830
cdd6c482
IM
5831 mutex_init(&event->child_mutex);
5832 INIT_LIST_HEAD(&event->child_list);
fccc714b 5833
cdd6c482
IM
5834 INIT_LIST_HEAD(&event->group_entry);
5835 INIT_LIST_HEAD(&event->event_entry);
5836 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
5837 INIT_LIST_HEAD(&event->rb_entry);
5838
cdd6c482 5839 init_waitqueue_head(&event->waitq);
e360adbe 5840 init_irq_work(&event->pending, perf_pending_event);
0793a61d 5841
cdd6c482 5842 mutex_init(&event->mmap_mutex);
7b732a75 5843
cdd6c482
IM
5844 event->cpu = cpu;
5845 event->attr = *attr;
5846 event->group_leader = group_leader;
5847 event->pmu = NULL;
cdd6c482 5848 event->oncpu = -1;
a96bbc16 5849
cdd6c482 5850 event->parent = parent_event;
b84fbc9f 5851
cdd6c482
IM
5852 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5853 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 5854
cdd6c482 5855 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 5856
d580ff86
PZ
5857 if (task) {
5858 event->attach_state = PERF_ATTACH_TASK;
5859#ifdef CONFIG_HAVE_HW_BREAKPOINT
5860 /*
5861 * hw_breakpoint is a bit difficult here..
5862 */
5863 if (attr->type == PERF_TYPE_BREAKPOINT)
5864 event->hw.bp_target = task;
5865#endif
5866 }
5867
4dc0da86 5868 if (!overflow_handler && parent_event) {
b326e956 5869 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
5870 context = parent_event->overflow_handler_context;
5871 }
66832eb4 5872
b326e956 5873 event->overflow_handler = overflow_handler;
4dc0da86 5874 event->overflow_handler_context = context;
97eaf530 5875
0d48696f 5876 if (attr->disabled)
cdd6c482 5877 event->state = PERF_EVENT_STATE_OFF;
a86ed508 5878
4aeb0b42 5879 pmu = NULL;
b8e83514 5880
cdd6c482 5881 hwc = &event->hw;
bd2b5b12 5882 hwc->sample_period = attr->sample_period;
0d48696f 5883 if (attr->freq && attr->sample_freq)
bd2b5b12 5884 hwc->sample_period = 1;
eced1dfc 5885 hwc->last_period = hwc->sample_period;
bd2b5b12 5886
e7850595 5887 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 5888
2023b359 5889 /*
cdd6c482 5890 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 5891 */
3dab77fb 5892 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
5893 goto done;
5894
b0a873eb 5895 pmu = perf_init_event(event);
974802ea 5896
d5d2bc0d
PM
5897done:
5898 err = 0;
4aeb0b42 5899 if (!pmu)
d5d2bc0d 5900 err = -EINVAL;
4aeb0b42
RR
5901 else if (IS_ERR(pmu))
5902 err = PTR_ERR(pmu);
5c92d124 5903
d5d2bc0d 5904 if (err) {
cdd6c482
IM
5905 if (event->ns)
5906 put_pid_ns(event->ns);
5907 kfree(event);
d5d2bc0d 5908 return ERR_PTR(err);
621a01ea 5909 }
d5d2bc0d 5910
cdd6c482 5911 if (!event->parent) {
82cd6def 5912 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 5913 static_key_slow_inc(&perf_sched_events.key);
3af9e859 5914 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
5915 atomic_inc(&nr_mmap_events);
5916 if (event->attr.comm)
5917 atomic_inc(&nr_comm_events);
5918 if (event->attr.task)
5919 atomic_inc(&nr_task_events);
927c7a9e
FW
5920 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5921 err = get_callchain_buffers();
5922 if (err) {
5923 free_event(event);
5924 return ERR_PTR(err);
5925 }
5926 }
f344011c 5927 }
9ee318a7 5928
cdd6c482 5929 return event;
0793a61d
TG
5930}
5931
cdd6c482
IM
5932static int perf_copy_attr(struct perf_event_attr __user *uattr,
5933 struct perf_event_attr *attr)
974802ea 5934{
974802ea 5935 u32 size;
cdf8073d 5936 int ret;
974802ea
PZ
5937
5938 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5939 return -EFAULT;
5940
5941 /*
5942 * zero the full structure, so that a short copy will be nice.
5943 */
5944 memset(attr, 0, sizeof(*attr));
5945
5946 ret = get_user(size, &uattr->size);
5947 if (ret)
5948 return ret;
5949
5950 if (size > PAGE_SIZE) /* silly large */
5951 goto err_size;
5952
5953 if (!size) /* abi compat */
5954 size = PERF_ATTR_SIZE_VER0;
5955
5956 if (size < PERF_ATTR_SIZE_VER0)
5957 goto err_size;
5958
5959 /*
5960 * If we're handed a bigger struct than we know of,
cdf8073d
IS
5961 * ensure all the unknown bits are 0 - i.e. new
5962 * user-space does not rely on any kernel feature
5963 * extensions we dont know about yet.
974802ea
PZ
5964 */
5965 if (size > sizeof(*attr)) {
cdf8073d
IS
5966 unsigned char __user *addr;
5967 unsigned char __user *end;
5968 unsigned char val;
974802ea 5969
cdf8073d
IS
5970 addr = (void __user *)uattr + sizeof(*attr);
5971 end = (void __user *)uattr + size;
974802ea 5972
cdf8073d 5973 for (; addr < end; addr++) {
974802ea
PZ
5974 ret = get_user(val, addr);
5975 if (ret)
5976 return ret;
5977 if (val)
5978 goto err_size;
5979 }
b3e62e35 5980 size = sizeof(*attr);
974802ea
PZ
5981 }
5982
5983 ret = copy_from_user(attr, uattr, size);
5984 if (ret)
5985 return -EFAULT;
5986
cd757645 5987 if (attr->__reserved_1)
974802ea
PZ
5988 return -EINVAL;
5989
5990 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5991 return -EINVAL;
5992
5993 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5994 return -EINVAL;
5995
bce38cd5
SE
5996 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
5997 u64 mask = attr->branch_sample_type;
5998
5999 /* only using defined bits */
6000 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6001 return -EINVAL;
6002
6003 /* at least one branch bit must be set */
6004 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6005 return -EINVAL;
6006
6007 /* kernel level capture: check permissions */
6008 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6009 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6010 return -EACCES;
6011
6012 /* propagate priv level, when not set for branch */
6013 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6014
6015 /* exclude_kernel checked on syscall entry */
6016 if (!attr->exclude_kernel)
6017 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6018
6019 if (!attr->exclude_user)
6020 mask |= PERF_SAMPLE_BRANCH_USER;
6021
6022 if (!attr->exclude_hv)
6023 mask |= PERF_SAMPLE_BRANCH_HV;
6024 /*
6025 * adjust user setting (for HW filter setup)
6026 */
6027 attr->branch_sample_type = mask;
6028 }
6029 }
974802ea
PZ
6030out:
6031 return ret;
6032
6033err_size:
6034 put_user(sizeof(*attr), &uattr->size);
6035 ret = -E2BIG;
6036 goto out;
6037}
6038
ac9721f3
PZ
6039static int
6040perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6041{
76369139 6042 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6043 int ret = -EINVAL;
6044
ac9721f3 6045 if (!output_event)
a4be7c27
PZ
6046 goto set;
6047
ac9721f3
PZ
6048 /* don't allow circular references */
6049 if (event == output_event)
a4be7c27
PZ
6050 goto out;
6051
0f139300
PZ
6052 /*
6053 * Don't allow cross-cpu buffers
6054 */
6055 if (output_event->cpu != event->cpu)
6056 goto out;
6057
6058 /*
76369139 6059 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6060 */
6061 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6062 goto out;
6063
a4be7c27 6064set:
cdd6c482 6065 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6066 /* Can't redirect output if we've got an active mmap() */
6067 if (atomic_read(&event->mmap_count))
6068 goto unlock;
a4be7c27 6069
ac9721f3 6070 if (output_event) {
76369139
FW
6071 /* get the rb we want to redirect to */
6072 rb = ring_buffer_get(output_event);
6073 if (!rb)
ac9721f3 6074 goto unlock;
a4be7c27
PZ
6075 }
6076
76369139
FW
6077 old_rb = event->rb;
6078 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6079 if (old_rb)
6080 ring_buffer_detach(event, old_rb);
a4be7c27 6081 ret = 0;
ac9721f3
PZ
6082unlock:
6083 mutex_unlock(&event->mmap_mutex);
6084
76369139
FW
6085 if (old_rb)
6086 ring_buffer_put(old_rb);
a4be7c27 6087out:
a4be7c27
PZ
6088 return ret;
6089}
6090
0793a61d 6091/**
cdd6c482 6092 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6093 *
cdd6c482 6094 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6095 * @pid: target pid
9f66a381 6096 * @cpu: target cpu
cdd6c482 6097 * @group_fd: group leader event fd
0793a61d 6098 */
cdd6c482
IM
6099SYSCALL_DEFINE5(perf_event_open,
6100 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6101 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6102{
b04243ef
PZ
6103 struct perf_event *group_leader = NULL, *output_event = NULL;
6104 struct perf_event *event, *sibling;
cdd6c482
IM
6105 struct perf_event_attr attr;
6106 struct perf_event_context *ctx;
6107 struct file *event_file = NULL;
04289bb9 6108 struct file *group_file = NULL;
38a81da2 6109 struct task_struct *task = NULL;
89a1e187 6110 struct pmu *pmu;
ea635c64 6111 int event_fd;
b04243ef 6112 int move_group = 0;
04289bb9 6113 int fput_needed = 0;
dc86cabe 6114 int err;
0793a61d 6115
2743a5b0 6116 /* for future expandability... */
e5d1367f 6117 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6118 return -EINVAL;
6119
dc86cabe
IM
6120 err = perf_copy_attr(attr_uptr, &attr);
6121 if (err)
6122 return err;
eab656ae 6123
0764771d
PZ
6124 if (!attr.exclude_kernel) {
6125 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6126 return -EACCES;
6127 }
6128
df58ab24 6129 if (attr.freq) {
cdd6c482 6130 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6131 return -EINVAL;
6132 }
6133
e5d1367f
SE
6134 /*
6135 * In cgroup mode, the pid argument is used to pass the fd
6136 * opened to the cgroup directory in cgroupfs. The cpu argument
6137 * designates the cpu on which to monitor threads from that
6138 * cgroup.
6139 */
6140 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6141 return -EINVAL;
6142
ea635c64
AV
6143 event_fd = get_unused_fd_flags(O_RDWR);
6144 if (event_fd < 0)
6145 return event_fd;
6146
ac9721f3
PZ
6147 if (group_fd != -1) {
6148 group_leader = perf_fget_light(group_fd, &fput_needed);
6149 if (IS_ERR(group_leader)) {
6150 err = PTR_ERR(group_leader);
d14b12d7 6151 goto err_fd;
ac9721f3
PZ
6152 }
6153 group_file = group_leader->filp;
6154 if (flags & PERF_FLAG_FD_OUTPUT)
6155 output_event = group_leader;
6156 if (flags & PERF_FLAG_FD_NO_GROUP)
6157 group_leader = NULL;
6158 }
6159
e5d1367f 6160 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6161 task = find_lively_task_by_vpid(pid);
6162 if (IS_ERR(task)) {
6163 err = PTR_ERR(task);
6164 goto err_group_fd;
6165 }
6166 }
6167
4dc0da86
AK
6168 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6169 NULL, NULL);
d14b12d7
SE
6170 if (IS_ERR(event)) {
6171 err = PTR_ERR(event);
c6be5a5c 6172 goto err_task;
d14b12d7
SE
6173 }
6174
e5d1367f
SE
6175 if (flags & PERF_FLAG_PID_CGROUP) {
6176 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6177 if (err)
6178 goto err_alloc;
08309379
PZ
6179 /*
6180 * one more event:
6181 * - that has cgroup constraint on event->cpu
6182 * - that may need work on context switch
6183 */
6184 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6185 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6186 }
6187
89a1e187
PZ
6188 /*
6189 * Special case software events and allow them to be part of
6190 * any hardware group.
6191 */
6192 pmu = event->pmu;
b04243ef
PZ
6193
6194 if (group_leader &&
6195 (is_software_event(event) != is_software_event(group_leader))) {
6196 if (is_software_event(event)) {
6197 /*
6198 * If event and group_leader are not both a software
6199 * event, and event is, then group leader is not.
6200 *
6201 * Allow the addition of software events to !software
6202 * groups, this is safe because software events never
6203 * fail to schedule.
6204 */
6205 pmu = group_leader->pmu;
6206 } else if (is_software_event(group_leader) &&
6207 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6208 /*
6209 * In case the group is a pure software group, and we
6210 * try to add a hardware event, move the whole group to
6211 * the hardware context.
6212 */
6213 move_group = 1;
6214 }
6215 }
89a1e187
PZ
6216
6217 /*
6218 * Get the target context (task or percpu):
6219 */
38a81da2 6220 ctx = find_get_context(pmu, task, cpu);
89a1e187
PZ
6221 if (IS_ERR(ctx)) {
6222 err = PTR_ERR(ctx);
c6be5a5c 6223 goto err_alloc;
89a1e187
PZ
6224 }
6225
fd1edb3a
PZ
6226 if (task) {
6227 put_task_struct(task);
6228 task = NULL;
6229 }
6230
ccff286d 6231 /*
cdd6c482 6232 * Look up the group leader (we will attach this event to it):
04289bb9 6233 */
ac9721f3 6234 if (group_leader) {
dc86cabe 6235 err = -EINVAL;
04289bb9 6236
04289bb9 6237 /*
ccff286d
IM
6238 * Do not allow a recursive hierarchy (this new sibling
6239 * becoming part of another group-sibling):
6240 */
6241 if (group_leader->group_leader != group_leader)
c3f00c70 6242 goto err_context;
ccff286d
IM
6243 /*
6244 * Do not allow to attach to a group in a different
6245 * task or CPU context:
04289bb9 6246 */
b04243ef
PZ
6247 if (move_group) {
6248 if (group_leader->ctx->type != ctx->type)
6249 goto err_context;
6250 } else {
6251 if (group_leader->ctx != ctx)
6252 goto err_context;
6253 }
6254
3b6f9e5c
PM
6255 /*
6256 * Only a group leader can be exclusive or pinned
6257 */
0d48696f 6258 if (attr.exclusive || attr.pinned)
c3f00c70 6259 goto err_context;
ac9721f3
PZ
6260 }
6261
6262 if (output_event) {
6263 err = perf_event_set_output(event, output_event);
6264 if (err)
c3f00c70 6265 goto err_context;
ac9721f3 6266 }
0793a61d 6267
ea635c64
AV
6268 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6269 if (IS_ERR(event_file)) {
6270 err = PTR_ERR(event_file);
c3f00c70 6271 goto err_context;
ea635c64 6272 }
9b51f66d 6273
b04243ef
PZ
6274 if (move_group) {
6275 struct perf_event_context *gctx = group_leader->ctx;
6276
6277 mutex_lock(&gctx->mutex);
fe4b04fa 6278 perf_remove_from_context(group_leader);
b04243ef
PZ
6279 list_for_each_entry(sibling, &group_leader->sibling_list,
6280 group_entry) {
fe4b04fa 6281 perf_remove_from_context(sibling);
b04243ef
PZ
6282 put_ctx(gctx);
6283 }
6284 mutex_unlock(&gctx->mutex);
6285 put_ctx(gctx);
ea635c64 6286 }
9b51f66d 6287
cdd6c482 6288 event->filp = event_file;
ad3a37de 6289 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6290 mutex_lock(&ctx->mutex);
b04243ef
PZ
6291
6292 if (move_group) {
6293 perf_install_in_context(ctx, group_leader, cpu);
6294 get_ctx(ctx);
6295 list_for_each_entry(sibling, &group_leader->sibling_list,
6296 group_entry) {
6297 perf_install_in_context(ctx, sibling, cpu);
6298 get_ctx(ctx);
6299 }
6300 }
6301
cdd6c482 6302 perf_install_in_context(ctx, event, cpu);
ad3a37de 6303 ++ctx->generation;
fe4b04fa 6304 perf_unpin_context(ctx);
d859e29f 6305 mutex_unlock(&ctx->mutex);
9b51f66d 6306
cdd6c482 6307 event->owner = current;
8882135b 6308
cdd6c482
IM
6309 mutex_lock(&current->perf_event_mutex);
6310 list_add_tail(&event->owner_entry, &current->perf_event_list);
6311 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6312
c320c7b7
ACM
6313 /*
6314 * Precalculate sample_data sizes
6315 */
6316 perf_event__header_size(event);
6844c09d 6317 perf_event__id_header_size(event);
c320c7b7 6318
8a49542c
PZ
6319 /*
6320 * Drop the reference on the group_event after placing the
6321 * new event on the sibling_list. This ensures destruction
6322 * of the group leader will find the pointer to itself in
6323 * perf_group_detach().
6324 */
ea635c64
AV
6325 fput_light(group_file, fput_needed);
6326 fd_install(event_fd, event_file);
6327 return event_fd;
0793a61d 6328
c3f00c70 6329err_context:
fe4b04fa 6330 perf_unpin_context(ctx);
ea635c64 6331 put_ctx(ctx);
c6be5a5c 6332err_alloc:
ea635c64 6333 free_event(event);
e7d0bc04
PZ
6334err_task:
6335 if (task)
6336 put_task_struct(task);
89a1e187 6337err_group_fd:
dc86cabe 6338 fput_light(group_file, fput_needed);
ea635c64
AV
6339err_fd:
6340 put_unused_fd(event_fd);
dc86cabe 6341 return err;
0793a61d
TG
6342}
6343
fb0459d7
AV
6344/**
6345 * perf_event_create_kernel_counter
6346 *
6347 * @attr: attributes of the counter to create
6348 * @cpu: cpu in which the counter is bound
38a81da2 6349 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6350 */
6351struct perf_event *
6352perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6353 struct task_struct *task,
4dc0da86
AK
6354 perf_overflow_handler_t overflow_handler,
6355 void *context)
fb0459d7 6356{
fb0459d7 6357 struct perf_event_context *ctx;
c3f00c70 6358 struct perf_event *event;
fb0459d7 6359 int err;
d859e29f 6360
fb0459d7
AV
6361 /*
6362 * Get the target context (task or percpu):
6363 */
d859e29f 6364
4dc0da86
AK
6365 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6366 overflow_handler, context);
c3f00c70
PZ
6367 if (IS_ERR(event)) {
6368 err = PTR_ERR(event);
6369 goto err;
6370 }
d859e29f 6371
38a81da2 6372 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6373 if (IS_ERR(ctx)) {
6374 err = PTR_ERR(ctx);
c3f00c70 6375 goto err_free;
d859e29f 6376 }
fb0459d7
AV
6377
6378 event->filp = NULL;
6379 WARN_ON_ONCE(ctx->parent_ctx);
6380 mutex_lock(&ctx->mutex);
6381 perf_install_in_context(ctx, event, cpu);
6382 ++ctx->generation;
fe4b04fa 6383 perf_unpin_context(ctx);
fb0459d7
AV
6384 mutex_unlock(&ctx->mutex);
6385
fb0459d7
AV
6386 return event;
6387
c3f00c70
PZ
6388err_free:
6389 free_event(event);
6390err:
c6567f64 6391 return ERR_PTR(err);
9b51f66d 6392}
fb0459d7 6393EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6394
cdd6c482 6395static void sync_child_event(struct perf_event *child_event,
38b200d6 6396 struct task_struct *child)
d859e29f 6397{
cdd6c482 6398 struct perf_event *parent_event = child_event->parent;
8bc20959 6399 u64 child_val;
d859e29f 6400
cdd6c482
IM
6401 if (child_event->attr.inherit_stat)
6402 perf_event_read_event(child_event, child);
38b200d6 6403
b5e58793 6404 child_val = perf_event_count(child_event);
d859e29f
PM
6405
6406 /*
6407 * Add back the child's count to the parent's count:
6408 */
a6e6dea6 6409 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6410 atomic64_add(child_event->total_time_enabled,
6411 &parent_event->child_total_time_enabled);
6412 atomic64_add(child_event->total_time_running,
6413 &parent_event->child_total_time_running);
d859e29f
PM
6414
6415 /*
cdd6c482 6416 * Remove this event from the parent's list
d859e29f 6417 */
cdd6c482
IM
6418 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6419 mutex_lock(&parent_event->child_mutex);
6420 list_del_init(&child_event->child_list);
6421 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6422
6423 /*
cdd6c482 6424 * Release the parent event, if this was the last
d859e29f
PM
6425 * reference to it.
6426 */
cdd6c482 6427 fput(parent_event->filp);
d859e29f
PM
6428}
6429
9b51f66d 6430static void
cdd6c482
IM
6431__perf_event_exit_task(struct perf_event *child_event,
6432 struct perf_event_context *child_ctx,
38b200d6 6433 struct task_struct *child)
9b51f66d 6434{
38b435b1
PZ
6435 if (child_event->parent) {
6436 raw_spin_lock_irq(&child_ctx->lock);
6437 perf_group_detach(child_event);
6438 raw_spin_unlock_irq(&child_ctx->lock);
6439 }
9b51f66d 6440
fe4b04fa 6441 perf_remove_from_context(child_event);
0cc0c027 6442
9b51f66d 6443 /*
38b435b1 6444 * It can happen that the parent exits first, and has events
9b51f66d 6445 * that are still around due to the child reference. These
38b435b1 6446 * events need to be zapped.
9b51f66d 6447 */
38b435b1 6448 if (child_event->parent) {
cdd6c482
IM
6449 sync_child_event(child_event, child);
6450 free_event(child_event);
4bcf349a 6451 }
9b51f66d
IM
6452}
6453
8dc85d54 6454static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6455{
cdd6c482
IM
6456 struct perf_event *child_event, *tmp;
6457 struct perf_event_context *child_ctx;
a63eaf34 6458 unsigned long flags;
9b51f66d 6459
8dc85d54 6460 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6461 perf_event_task(child, NULL, 0);
9b51f66d 6462 return;
9f498cc5 6463 }
9b51f66d 6464
a63eaf34 6465 local_irq_save(flags);
ad3a37de
PM
6466 /*
6467 * We can't reschedule here because interrupts are disabled,
6468 * and either child is current or it is a task that can't be
6469 * scheduled, so we are now safe from rescheduling changing
6470 * our context.
6471 */
806839b2 6472 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6473
6474 /*
6475 * Take the context lock here so that if find_get_context is
cdd6c482 6476 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6477 * incremented the context's refcount before we do put_ctx below.
6478 */
e625cce1 6479 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6480 task_ctx_sched_out(child_ctx);
8dc85d54 6481 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6482 /*
6483 * If this context is a clone; unclone it so it can't get
6484 * swapped to another process while we're removing all
cdd6c482 6485 * the events from it.
71a851b4
PZ
6486 */
6487 unclone_ctx(child_ctx);
5e942bb3 6488 update_context_time(child_ctx);
e625cce1 6489 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6490
6491 /*
cdd6c482
IM
6492 * Report the task dead after unscheduling the events so that we
6493 * won't get any samples after PERF_RECORD_EXIT. We can however still
6494 * get a few PERF_RECORD_READ events.
9f498cc5 6495 */
cdd6c482 6496 perf_event_task(child, child_ctx, 0);
a63eaf34 6497
66fff224
PZ
6498 /*
6499 * We can recurse on the same lock type through:
6500 *
cdd6c482
IM
6501 * __perf_event_exit_task()
6502 * sync_child_event()
6503 * fput(parent_event->filp)
66fff224
PZ
6504 * perf_release()
6505 * mutex_lock(&ctx->mutex)
6506 *
6507 * But since its the parent context it won't be the same instance.
6508 */
a0507c84 6509 mutex_lock(&child_ctx->mutex);
a63eaf34 6510
8bc20959 6511again:
889ff015
FW
6512 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6513 group_entry)
6514 __perf_event_exit_task(child_event, child_ctx, child);
6515
6516 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6517 group_entry)
cdd6c482 6518 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6519
6520 /*
cdd6c482 6521 * If the last event was a group event, it will have appended all
8bc20959
PZ
6522 * its siblings to the list, but we obtained 'tmp' before that which
6523 * will still point to the list head terminating the iteration.
6524 */
889ff015
FW
6525 if (!list_empty(&child_ctx->pinned_groups) ||
6526 !list_empty(&child_ctx->flexible_groups))
8bc20959 6527 goto again;
a63eaf34
PM
6528
6529 mutex_unlock(&child_ctx->mutex);
6530
6531 put_ctx(child_ctx);
9b51f66d
IM
6532}
6533
8dc85d54
PZ
6534/*
6535 * When a child task exits, feed back event values to parent events.
6536 */
6537void perf_event_exit_task(struct task_struct *child)
6538{
8882135b 6539 struct perf_event *event, *tmp;
8dc85d54
PZ
6540 int ctxn;
6541
8882135b
PZ
6542 mutex_lock(&child->perf_event_mutex);
6543 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6544 owner_entry) {
6545 list_del_init(&event->owner_entry);
6546
6547 /*
6548 * Ensure the list deletion is visible before we clear
6549 * the owner, closes a race against perf_release() where
6550 * we need to serialize on the owner->perf_event_mutex.
6551 */
6552 smp_wmb();
6553 event->owner = NULL;
6554 }
6555 mutex_unlock(&child->perf_event_mutex);
6556
8dc85d54
PZ
6557 for_each_task_context_nr(ctxn)
6558 perf_event_exit_task_context(child, ctxn);
6559}
6560
889ff015
FW
6561static void perf_free_event(struct perf_event *event,
6562 struct perf_event_context *ctx)
6563{
6564 struct perf_event *parent = event->parent;
6565
6566 if (WARN_ON_ONCE(!parent))
6567 return;
6568
6569 mutex_lock(&parent->child_mutex);
6570 list_del_init(&event->child_list);
6571 mutex_unlock(&parent->child_mutex);
6572
6573 fput(parent->filp);
6574
8a49542c 6575 perf_group_detach(event);
889ff015
FW
6576 list_del_event(event, ctx);
6577 free_event(event);
6578}
6579
bbbee908
PZ
6580/*
6581 * free an unexposed, unused context as created by inheritance by
8dc85d54 6582 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6583 */
cdd6c482 6584void perf_event_free_task(struct task_struct *task)
bbbee908 6585{
8dc85d54 6586 struct perf_event_context *ctx;
cdd6c482 6587 struct perf_event *event, *tmp;
8dc85d54 6588 int ctxn;
bbbee908 6589
8dc85d54
PZ
6590 for_each_task_context_nr(ctxn) {
6591 ctx = task->perf_event_ctxp[ctxn];
6592 if (!ctx)
6593 continue;
bbbee908 6594
8dc85d54 6595 mutex_lock(&ctx->mutex);
bbbee908 6596again:
8dc85d54
PZ
6597 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6598 group_entry)
6599 perf_free_event(event, ctx);
bbbee908 6600
8dc85d54
PZ
6601 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6602 group_entry)
6603 perf_free_event(event, ctx);
bbbee908 6604
8dc85d54
PZ
6605 if (!list_empty(&ctx->pinned_groups) ||
6606 !list_empty(&ctx->flexible_groups))
6607 goto again;
bbbee908 6608
8dc85d54 6609 mutex_unlock(&ctx->mutex);
bbbee908 6610
8dc85d54
PZ
6611 put_ctx(ctx);
6612 }
889ff015
FW
6613}
6614
4e231c79
PZ
6615void perf_event_delayed_put(struct task_struct *task)
6616{
6617 int ctxn;
6618
6619 for_each_task_context_nr(ctxn)
6620 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6621}
6622
97dee4f3
PZ
6623/*
6624 * inherit a event from parent task to child task:
6625 */
6626static struct perf_event *
6627inherit_event(struct perf_event *parent_event,
6628 struct task_struct *parent,
6629 struct perf_event_context *parent_ctx,
6630 struct task_struct *child,
6631 struct perf_event *group_leader,
6632 struct perf_event_context *child_ctx)
6633{
6634 struct perf_event *child_event;
cee010ec 6635 unsigned long flags;
97dee4f3
PZ
6636
6637 /*
6638 * Instead of creating recursive hierarchies of events,
6639 * we link inherited events back to the original parent,
6640 * which has a filp for sure, which we use as the reference
6641 * count:
6642 */
6643 if (parent_event->parent)
6644 parent_event = parent_event->parent;
6645
6646 child_event = perf_event_alloc(&parent_event->attr,
6647 parent_event->cpu,
d580ff86 6648 child,
97dee4f3 6649 group_leader, parent_event,
4dc0da86 6650 NULL, NULL);
97dee4f3
PZ
6651 if (IS_ERR(child_event))
6652 return child_event;
6653 get_ctx(child_ctx);
6654
6655 /*
6656 * Make the child state follow the state of the parent event,
6657 * not its attr.disabled bit. We hold the parent's mutex,
6658 * so we won't race with perf_event_{en, dis}able_family.
6659 */
6660 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6661 child_event->state = PERF_EVENT_STATE_INACTIVE;
6662 else
6663 child_event->state = PERF_EVENT_STATE_OFF;
6664
6665 if (parent_event->attr.freq) {
6666 u64 sample_period = parent_event->hw.sample_period;
6667 struct hw_perf_event *hwc = &child_event->hw;
6668
6669 hwc->sample_period = sample_period;
6670 hwc->last_period = sample_period;
6671
6672 local64_set(&hwc->period_left, sample_period);
6673 }
6674
6675 child_event->ctx = child_ctx;
6676 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6677 child_event->overflow_handler_context
6678 = parent_event->overflow_handler_context;
97dee4f3 6679
614b6780
TG
6680 /*
6681 * Precalculate sample_data sizes
6682 */
6683 perf_event__header_size(child_event);
6844c09d 6684 perf_event__id_header_size(child_event);
614b6780 6685
97dee4f3
PZ
6686 /*
6687 * Link it up in the child's context:
6688 */
cee010ec 6689 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6690 add_event_to_ctx(child_event, child_ctx);
cee010ec 6691 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6692
6693 /*
6694 * Get a reference to the parent filp - we will fput it
6695 * when the child event exits. This is safe to do because
6696 * we are in the parent and we know that the filp still
6697 * exists and has a nonzero count:
6698 */
6699 atomic_long_inc(&parent_event->filp->f_count);
6700
6701 /*
6702 * Link this into the parent event's child list
6703 */
6704 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6705 mutex_lock(&parent_event->child_mutex);
6706 list_add_tail(&child_event->child_list, &parent_event->child_list);
6707 mutex_unlock(&parent_event->child_mutex);
6708
6709 return child_event;
6710}
6711
6712static int inherit_group(struct perf_event *parent_event,
6713 struct task_struct *parent,
6714 struct perf_event_context *parent_ctx,
6715 struct task_struct *child,
6716 struct perf_event_context *child_ctx)
6717{
6718 struct perf_event *leader;
6719 struct perf_event *sub;
6720 struct perf_event *child_ctr;
6721
6722 leader = inherit_event(parent_event, parent, parent_ctx,
6723 child, NULL, child_ctx);
6724 if (IS_ERR(leader))
6725 return PTR_ERR(leader);
6726 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6727 child_ctr = inherit_event(sub, parent, parent_ctx,
6728 child, leader, child_ctx);
6729 if (IS_ERR(child_ctr))
6730 return PTR_ERR(child_ctr);
6731 }
6732 return 0;
889ff015
FW
6733}
6734
6735static int
6736inherit_task_group(struct perf_event *event, struct task_struct *parent,
6737 struct perf_event_context *parent_ctx,
8dc85d54 6738 struct task_struct *child, int ctxn,
889ff015
FW
6739 int *inherited_all)
6740{
6741 int ret;
8dc85d54 6742 struct perf_event_context *child_ctx;
889ff015
FW
6743
6744 if (!event->attr.inherit) {
6745 *inherited_all = 0;
6746 return 0;
bbbee908
PZ
6747 }
6748
fe4b04fa 6749 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6750 if (!child_ctx) {
6751 /*
6752 * This is executed from the parent task context, so
6753 * inherit events that have been marked for cloning.
6754 * First allocate and initialize a context for the
6755 * child.
6756 */
bbbee908 6757
eb184479 6758 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6759 if (!child_ctx)
6760 return -ENOMEM;
bbbee908 6761
8dc85d54 6762 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6763 }
6764
6765 ret = inherit_group(event, parent, parent_ctx,
6766 child, child_ctx);
6767
6768 if (ret)
6769 *inherited_all = 0;
6770
6771 return ret;
bbbee908
PZ
6772}
6773
9b51f66d 6774/*
cdd6c482 6775 * Initialize the perf_event context in task_struct
9b51f66d 6776 */
8dc85d54 6777int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6778{
889ff015 6779 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
6780 struct perf_event_context *cloned_ctx;
6781 struct perf_event *event;
9b51f66d 6782 struct task_struct *parent = current;
564c2b21 6783 int inherited_all = 1;
dddd3379 6784 unsigned long flags;
6ab423e0 6785 int ret = 0;
9b51f66d 6786
8dc85d54 6787 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
6788 return 0;
6789
ad3a37de 6790 /*
25346b93
PM
6791 * If the parent's context is a clone, pin it so it won't get
6792 * swapped under us.
ad3a37de 6793 */
8dc85d54 6794 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 6795
ad3a37de
PM
6796 /*
6797 * No need to check if parent_ctx != NULL here; since we saw
6798 * it non-NULL earlier, the only reason for it to become NULL
6799 * is if we exit, and since we're currently in the middle of
6800 * a fork we can't be exiting at the same time.
6801 */
ad3a37de 6802
9b51f66d
IM
6803 /*
6804 * Lock the parent list. No need to lock the child - not PID
6805 * hashed yet and not running, so nobody can access it.
6806 */
d859e29f 6807 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
6808
6809 /*
6810 * We dont have to disable NMIs - we are only looking at
6811 * the list, not manipulating it:
6812 */
889ff015 6813 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
6814 ret = inherit_task_group(event, parent, parent_ctx,
6815 child, ctxn, &inherited_all);
889ff015
FW
6816 if (ret)
6817 break;
6818 }
b93f7978 6819
dddd3379
TG
6820 /*
6821 * We can't hold ctx->lock when iterating the ->flexible_group list due
6822 * to allocations, but we need to prevent rotation because
6823 * rotate_ctx() will change the list from interrupt context.
6824 */
6825 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6826 parent_ctx->rotate_disable = 1;
6827 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6828
889ff015 6829 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
6830 ret = inherit_task_group(event, parent, parent_ctx,
6831 child, ctxn, &inherited_all);
889ff015 6832 if (ret)
9b51f66d 6833 break;
564c2b21
PM
6834 }
6835
dddd3379
TG
6836 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6837 parent_ctx->rotate_disable = 0;
dddd3379 6838
8dc85d54 6839 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 6840
05cbaa28 6841 if (child_ctx && inherited_all) {
564c2b21
PM
6842 /*
6843 * Mark the child context as a clone of the parent
6844 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
6845 *
6846 * Note that if the parent is a clone, the holding of
6847 * parent_ctx->lock avoids it from being uncloned.
564c2b21 6848 */
c5ed5145 6849 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
6850 if (cloned_ctx) {
6851 child_ctx->parent_ctx = cloned_ctx;
25346b93 6852 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
6853 } else {
6854 child_ctx->parent_ctx = parent_ctx;
6855 child_ctx->parent_gen = parent_ctx->generation;
6856 }
6857 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
6858 }
6859
c5ed5145 6860 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 6861 mutex_unlock(&parent_ctx->mutex);
6ab423e0 6862
25346b93 6863 perf_unpin_context(parent_ctx);
fe4b04fa 6864 put_ctx(parent_ctx);
ad3a37de 6865
6ab423e0 6866 return ret;
9b51f66d
IM
6867}
6868
8dc85d54
PZ
6869/*
6870 * Initialize the perf_event context in task_struct
6871 */
6872int perf_event_init_task(struct task_struct *child)
6873{
6874 int ctxn, ret;
6875
8550d7cb
ON
6876 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
6877 mutex_init(&child->perf_event_mutex);
6878 INIT_LIST_HEAD(&child->perf_event_list);
6879
8dc85d54
PZ
6880 for_each_task_context_nr(ctxn) {
6881 ret = perf_event_init_context(child, ctxn);
6882 if (ret)
6883 return ret;
6884 }
6885
6886 return 0;
6887}
6888
220b140b
PM
6889static void __init perf_event_init_all_cpus(void)
6890{
b28ab83c 6891 struct swevent_htable *swhash;
220b140b 6892 int cpu;
220b140b
PM
6893
6894 for_each_possible_cpu(cpu) {
b28ab83c
PZ
6895 swhash = &per_cpu(swevent_htable, cpu);
6896 mutex_init(&swhash->hlist_mutex);
e9d2b064 6897 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
6898 }
6899}
6900
cdd6c482 6901static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 6902{
108b02cf 6903 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 6904
b28ab83c 6905 mutex_lock(&swhash->hlist_mutex);
4536e4d1 6906 if (swhash->hlist_refcount > 0) {
76e1d904
FW
6907 struct swevent_hlist *hlist;
6908
b28ab83c
PZ
6909 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6910 WARN_ON(!hlist);
6911 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6912 }
b28ab83c 6913 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
6914}
6915
c277443c 6916#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 6917static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 6918{
e9d2b064
PZ
6919 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6920
6921 WARN_ON(!irqs_disabled());
6922
6923 list_del_init(&cpuctx->rotation_list);
6924}
6925
108b02cf 6926static void __perf_event_exit_context(void *__info)
0793a61d 6927{
108b02cf 6928 struct perf_event_context *ctx = __info;
cdd6c482 6929 struct perf_event *event, *tmp;
0793a61d 6930
108b02cf 6931 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 6932
889ff015 6933 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 6934 __perf_remove_from_context(event);
889ff015 6935 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 6936 __perf_remove_from_context(event);
0793a61d 6937}
108b02cf
PZ
6938
6939static void perf_event_exit_cpu_context(int cpu)
6940{
6941 struct perf_event_context *ctx;
6942 struct pmu *pmu;
6943 int idx;
6944
6945 idx = srcu_read_lock(&pmus_srcu);
6946 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 6947 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
6948
6949 mutex_lock(&ctx->mutex);
6950 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6951 mutex_unlock(&ctx->mutex);
6952 }
6953 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
6954}
6955
cdd6c482 6956static void perf_event_exit_cpu(int cpu)
0793a61d 6957{
b28ab83c 6958 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 6959
b28ab83c
PZ
6960 mutex_lock(&swhash->hlist_mutex);
6961 swevent_hlist_release(swhash);
6962 mutex_unlock(&swhash->hlist_mutex);
76e1d904 6963
108b02cf 6964 perf_event_exit_cpu_context(cpu);
0793a61d
TG
6965}
6966#else
cdd6c482 6967static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
6968#endif
6969
c277443c
PZ
6970static int
6971perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6972{
6973 int cpu;
6974
6975 for_each_online_cpu(cpu)
6976 perf_event_exit_cpu(cpu);
6977
6978 return NOTIFY_OK;
6979}
6980
6981/*
6982 * Run the perf reboot notifier at the very last possible moment so that
6983 * the generic watchdog code runs as long as possible.
6984 */
6985static struct notifier_block perf_reboot_notifier = {
6986 .notifier_call = perf_reboot,
6987 .priority = INT_MIN,
6988};
6989
0793a61d
TG
6990static int __cpuinit
6991perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6992{
6993 unsigned int cpu = (long)hcpu;
6994
4536e4d1 6995 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
6996
6997 case CPU_UP_PREPARE:
5e11637e 6998 case CPU_DOWN_FAILED:
cdd6c482 6999 perf_event_init_cpu(cpu);
0793a61d
TG
7000 break;
7001
5e11637e 7002 case CPU_UP_CANCELED:
0793a61d 7003 case CPU_DOWN_PREPARE:
cdd6c482 7004 perf_event_exit_cpu(cpu);
0793a61d
TG
7005 break;
7006
7007 default:
7008 break;
7009 }
7010
7011 return NOTIFY_OK;
7012}
7013
cdd6c482 7014void __init perf_event_init(void)
0793a61d 7015{
3c502e7a
JW
7016 int ret;
7017
2e80a82a
PZ
7018 idr_init(&pmu_idr);
7019
220b140b 7020 perf_event_init_all_cpus();
b0a873eb 7021 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7022 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7023 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7024 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7025 perf_tp_register();
7026 perf_cpu_notifier(perf_cpu_notify);
c277443c 7027 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7028
7029 ret = init_hw_breakpoint();
7030 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7031
7032 /* do not patch jump label more than once per second */
7033 jump_label_rate_limit(&perf_sched_events, HZ);
0793a61d 7034}
abe43400
PZ
7035
7036static int __init perf_event_sysfs_init(void)
7037{
7038 struct pmu *pmu;
7039 int ret;
7040
7041 mutex_lock(&pmus_lock);
7042
7043 ret = bus_register(&pmu_bus);
7044 if (ret)
7045 goto unlock;
7046
7047 list_for_each_entry(pmu, &pmus, entry) {
7048 if (!pmu->name || pmu->type < 0)
7049 continue;
7050
7051 ret = pmu_dev_alloc(pmu);
7052 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7053 }
7054 pmu_bus_running = 1;
7055 ret = 0;
7056
7057unlock:
7058 mutex_unlock(&pmus_lock);
7059
7060 return ret;
7061}
7062device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7063
7064#ifdef CONFIG_CGROUP_PERF
7065static struct cgroup_subsys_state *perf_cgroup_create(
7066 struct cgroup_subsys *ss, struct cgroup *cont)
7067{
7068 struct perf_cgroup *jc;
e5d1367f 7069
1b15d055 7070 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7071 if (!jc)
7072 return ERR_PTR(-ENOMEM);
7073
e5d1367f
SE
7074 jc->info = alloc_percpu(struct perf_cgroup_info);
7075 if (!jc->info) {
7076 kfree(jc);
7077 return ERR_PTR(-ENOMEM);
7078 }
7079
e5d1367f
SE
7080 return &jc->css;
7081}
7082
7083static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7084 struct cgroup *cont)
7085{
7086 struct perf_cgroup *jc;
7087 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7088 struct perf_cgroup, css);
7089 free_percpu(jc->info);
7090 kfree(jc);
7091}
7092
7093static int __perf_cgroup_move(void *info)
7094{
7095 struct task_struct *task = info;
7096 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7097 return 0;
7098}
7099
bb9d97b6
TH
7100static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7101 struct cgroup_taskset *tset)
e5d1367f 7102{
bb9d97b6
TH
7103 struct task_struct *task;
7104
7105 cgroup_taskset_for_each(task, cgrp, tset)
7106 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7107}
7108
e5d1367f
SE
7109static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7110 struct cgroup *old_cgrp, struct task_struct *task)
7111{
7112 /*
7113 * cgroup_exit() is called in the copy_process() failure path.
7114 * Ignore this case since the task hasn't ran yet, this avoids
7115 * trying to poke a half freed task state from generic code.
7116 */
7117 if (!(task->flags & PF_EXITING))
7118 return;
7119
bb9d97b6 7120 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7121}
7122
7123struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7124 .name = "perf_event",
7125 .subsys_id = perf_subsys_id,
7126 .create = perf_cgroup_create,
7127 .destroy = perf_cgroup_destroy,
7128 .exit = perf_cgroup_exit,
bb9d97b6 7129 .attach = perf_cgroup_attach,
e5d1367f
SE
7130};
7131#endif /* CONFIG_CGROUP_PERF */
This page took 1.113642 seconds and 5 git commands to generate.