perf: Fix EXIT event notification
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
9ee318a7 148
108b02cf
PZ
149static LIST_HEAD(pmus);
150static DEFINE_MUTEX(pmus_lock);
151static struct srcu_struct pmus_srcu;
152
0764771d 153/*
cdd6c482 154 * perf event paranoia level:
0fbdea19
IM
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 157 * 1 - disallow cpu events for unpriv
0fbdea19 158 * 2 - disallow kernel profiling for unpriv
0764771d 159 */
cdd6c482 160int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 161
20443384
FW
162/* Minimum for 512 kiB + 1 user control page */
163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
164
165/*
cdd6c482 166 * max perf event sample rate
df58ab24 167 */
163ec435
PZ
168#define DEFAULT_MAX_SAMPLE_RATE 100000
169int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170static int max_samples_per_tick __read_mostly =
171 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172
173int perf_proc_update_handler(struct ctl_table *table, int write,
174 void __user *buffer, size_t *lenp,
175 loff_t *ppos)
176{
177 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
178
179 if (ret || !write)
180 return ret;
181
182 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
183
184 return 0;
185}
1ccd1549 186
cdd6c482 187static atomic64_t perf_event_id;
a96bbc16 188
0b3fcf17
SE
189static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
190 enum event_type_t event_type);
191
192static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
193 enum event_type_t event_type,
194 struct task_struct *task);
195
196static void update_context_time(struct perf_event_context *ctx);
197static u64 perf_event_time(struct perf_event *event);
0b3fcf17 198
10c6db11
PZ
199static void ring_buffer_attach(struct perf_event *event,
200 struct ring_buffer *rb);
201
cdd6c482 202void __weak perf_event_print_debug(void) { }
0793a61d 203
84c79910 204extern __weak const char *perf_pmu_name(void)
0793a61d 205{
84c79910 206 return "pmu";
0793a61d
TG
207}
208
0b3fcf17
SE
209static inline u64 perf_clock(void)
210{
211 return local_clock();
212}
213
e5d1367f
SE
214static inline struct perf_cpu_context *
215__get_cpu_context(struct perf_event_context *ctx)
216{
217 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
218}
219
facc4307
PZ
220static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
221 struct perf_event_context *ctx)
222{
223 raw_spin_lock(&cpuctx->ctx.lock);
224 if (ctx)
225 raw_spin_lock(&ctx->lock);
226}
227
228static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
229 struct perf_event_context *ctx)
230{
231 if (ctx)
232 raw_spin_unlock(&ctx->lock);
233 raw_spin_unlock(&cpuctx->ctx.lock);
234}
235
e5d1367f
SE
236#ifdef CONFIG_CGROUP_PERF
237
877c6856
LZ
238/*
239 * perf_cgroup_info keeps track of time_enabled for a cgroup.
240 * This is a per-cpu dynamically allocated data structure.
241 */
242struct perf_cgroup_info {
243 u64 time;
244 u64 timestamp;
245};
246
247struct perf_cgroup {
248 struct cgroup_subsys_state css;
86e213e1 249 struct perf_cgroup_info __percpu *info;
877c6856
LZ
250};
251
3f7cce3c
SE
252/*
253 * Must ensure cgroup is pinned (css_get) before calling
254 * this function. In other words, we cannot call this function
255 * if there is no cgroup event for the current CPU context.
256 */
e5d1367f
SE
257static inline struct perf_cgroup *
258perf_cgroup_from_task(struct task_struct *task)
259{
260 return container_of(task_subsys_state(task, perf_subsys_id),
261 struct perf_cgroup, css);
262}
263
264static inline bool
265perf_cgroup_match(struct perf_event *event)
266{
267 struct perf_event_context *ctx = event->ctx;
268 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
269
ef824fa1
TH
270 /* @event doesn't care about cgroup */
271 if (!event->cgrp)
272 return true;
273
274 /* wants specific cgroup scope but @cpuctx isn't associated with any */
275 if (!cpuctx->cgrp)
276 return false;
277
278 /*
279 * Cgroup scoping is recursive. An event enabled for a cgroup is
280 * also enabled for all its descendant cgroups. If @cpuctx's
281 * cgroup is a descendant of @event's (the test covers identity
282 * case), it's a match.
283 */
284 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
285 event->cgrp->css.cgroup);
e5d1367f
SE
286}
287
9c5da09d 288static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 289{
9c5da09d 290 return css_tryget(&event->cgrp->css);
e5d1367f
SE
291}
292
293static inline void perf_put_cgroup(struct perf_event *event)
294{
295 css_put(&event->cgrp->css);
296}
297
298static inline void perf_detach_cgroup(struct perf_event *event)
299{
300 perf_put_cgroup(event);
301 event->cgrp = NULL;
302}
303
304static inline int is_cgroup_event(struct perf_event *event)
305{
306 return event->cgrp != NULL;
307}
308
309static inline u64 perf_cgroup_event_time(struct perf_event *event)
310{
311 struct perf_cgroup_info *t;
312
313 t = per_cpu_ptr(event->cgrp->info, event->cpu);
314 return t->time;
315}
316
317static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
318{
319 struct perf_cgroup_info *info;
320 u64 now;
321
322 now = perf_clock();
323
324 info = this_cpu_ptr(cgrp->info);
325
326 info->time += now - info->timestamp;
327 info->timestamp = now;
328}
329
330static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
331{
332 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
333 if (cgrp_out)
334 __update_cgrp_time(cgrp_out);
335}
336
337static inline void update_cgrp_time_from_event(struct perf_event *event)
338{
3f7cce3c
SE
339 struct perf_cgroup *cgrp;
340
e5d1367f 341 /*
3f7cce3c
SE
342 * ensure we access cgroup data only when needed and
343 * when we know the cgroup is pinned (css_get)
e5d1367f 344 */
3f7cce3c 345 if (!is_cgroup_event(event))
e5d1367f
SE
346 return;
347
3f7cce3c
SE
348 cgrp = perf_cgroup_from_task(current);
349 /*
350 * Do not update time when cgroup is not active
351 */
352 if (cgrp == event->cgrp)
353 __update_cgrp_time(event->cgrp);
e5d1367f
SE
354}
355
356static inline void
3f7cce3c
SE
357perf_cgroup_set_timestamp(struct task_struct *task,
358 struct perf_event_context *ctx)
e5d1367f
SE
359{
360 struct perf_cgroup *cgrp;
361 struct perf_cgroup_info *info;
362
3f7cce3c
SE
363 /*
364 * ctx->lock held by caller
365 * ensure we do not access cgroup data
366 * unless we have the cgroup pinned (css_get)
367 */
368 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
369 return;
370
371 cgrp = perf_cgroup_from_task(task);
372 info = this_cpu_ptr(cgrp->info);
3f7cce3c 373 info->timestamp = ctx->timestamp;
e5d1367f
SE
374}
375
376#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
377#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
378
379/*
380 * reschedule events based on the cgroup constraint of task.
381 *
382 * mode SWOUT : schedule out everything
383 * mode SWIN : schedule in based on cgroup for next
384 */
385void perf_cgroup_switch(struct task_struct *task, int mode)
386{
387 struct perf_cpu_context *cpuctx;
388 struct pmu *pmu;
389 unsigned long flags;
390
391 /*
392 * disable interrupts to avoid geting nr_cgroup
393 * changes via __perf_event_disable(). Also
394 * avoids preemption.
395 */
396 local_irq_save(flags);
397
398 /*
399 * we reschedule only in the presence of cgroup
400 * constrained events.
401 */
402 rcu_read_lock();
403
404 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 405 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
406 if (cpuctx->unique_pmu != pmu)
407 continue; /* ensure we process each cpuctx once */
e5d1367f 408
e5d1367f
SE
409 /*
410 * perf_cgroup_events says at least one
411 * context on this CPU has cgroup events.
412 *
413 * ctx->nr_cgroups reports the number of cgroup
414 * events for a context.
415 */
416 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
417 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
418 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
419
420 if (mode & PERF_CGROUP_SWOUT) {
421 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
422 /*
423 * must not be done before ctxswout due
424 * to event_filter_match() in event_sched_out()
425 */
426 cpuctx->cgrp = NULL;
427 }
428
429 if (mode & PERF_CGROUP_SWIN) {
e566b76e 430 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
431 /*
432 * set cgrp before ctxsw in to allow
433 * event_filter_match() to not have to pass
434 * task around
e5d1367f
SE
435 */
436 cpuctx->cgrp = perf_cgroup_from_task(task);
437 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
438 }
facc4307
PZ
439 perf_pmu_enable(cpuctx->ctx.pmu);
440 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 441 }
e5d1367f
SE
442 }
443
444 rcu_read_unlock();
445
446 local_irq_restore(flags);
447}
448
a8d757ef
SE
449static inline void perf_cgroup_sched_out(struct task_struct *task,
450 struct task_struct *next)
e5d1367f 451{
a8d757ef
SE
452 struct perf_cgroup *cgrp1;
453 struct perf_cgroup *cgrp2 = NULL;
454
455 /*
456 * we come here when we know perf_cgroup_events > 0
457 */
458 cgrp1 = perf_cgroup_from_task(task);
459
460 /*
461 * next is NULL when called from perf_event_enable_on_exec()
462 * that will systematically cause a cgroup_switch()
463 */
464 if (next)
465 cgrp2 = perf_cgroup_from_task(next);
466
467 /*
468 * only schedule out current cgroup events if we know
469 * that we are switching to a different cgroup. Otherwise,
470 * do no touch the cgroup events.
471 */
472 if (cgrp1 != cgrp2)
473 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
474}
475
a8d757ef
SE
476static inline void perf_cgroup_sched_in(struct task_struct *prev,
477 struct task_struct *task)
e5d1367f 478{
a8d757ef
SE
479 struct perf_cgroup *cgrp1;
480 struct perf_cgroup *cgrp2 = NULL;
481
482 /*
483 * we come here when we know perf_cgroup_events > 0
484 */
485 cgrp1 = perf_cgroup_from_task(task);
486
487 /* prev can never be NULL */
488 cgrp2 = perf_cgroup_from_task(prev);
489
490 /*
491 * only need to schedule in cgroup events if we are changing
492 * cgroup during ctxsw. Cgroup events were not scheduled
493 * out of ctxsw out if that was not the case.
494 */
495 if (cgrp1 != cgrp2)
496 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
497}
498
499static inline int perf_cgroup_connect(int fd, struct perf_event *event,
500 struct perf_event_attr *attr,
501 struct perf_event *group_leader)
502{
503 struct perf_cgroup *cgrp;
504 struct cgroup_subsys_state *css;
2903ff01
AV
505 struct fd f = fdget(fd);
506 int ret = 0;
e5d1367f 507
2903ff01 508 if (!f.file)
e5d1367f
SE
509 return -EBADF;
510
2903ff01 511 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
512 if (IS_ERR(css)) {
513 ret = PTR_ERR(css);
514 goto out;
515 }
e5d1367f
SE
516
517 cgrp = container_of(css, struct perf_cgroup, css);
518 event->cgrp = cgrp;
519
f75e18cb 520 /* must be done before we fput() the file */
9c5da09d
SQ
521 if (!perf_tryget_cgroup(event)) {
522 event->cgrp = NULL;
523 ret = -ENOENT;
524 goto out;
525 }
f75e18cb 526
e5d1367f
SE
527 /*
528 * all events in a group must monitor
529 * the same cgroup because a task belongs
530 * to only one perf cgroup at a time
531 */
532 if (group_leader && group_leader->cgrp != cgrp) {
533 perf_detach_cgroup(event);
534 ret = -EINVAL;
e5d1367f 535 }
3db272c0 536out:
2903ff01 537 fdput(f);
e5d1367f
SE
538 return ret;
539}
540
541static inline void
542perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
543{
544 struct perf_cgroup_info *t;
545 t = per_cpu_ptr(event->cgrp->info, event->cpu);
546 event->shadow_ctx_time = now - t->timestamp;
547}
548
549static inline void
550perf_cgroup_defer_enabled(struct perf_event *event)
551{
552 /*
553 * when the current task's perf cgroup does not match
554 * the event's, we need to remember to call the
555 * perf_mark_enable() function the first time a task with
556 * a matching perf cgroup is scheduled in.
557 */
558 if (is_cgroup_event(event) && !perf_cgroup_match(event))
559 event->cgrp_defer_enabled = 1;
560}
561
562static inline void
563perf_cgroup_mark_enabled(struct perf_event *event,
564 struct perf_event_context *ctx)
565{
566 struct perf_event *sub;
567 u64 tstamp = perf_event_time(event);
568
569 if (!event->cgrp_defer_enabled)
570 return;
571
572 event->cgrp_defer_enabled = 0;
573
574 event->tstamp_enabled = tstamp - event->total_time_enabled;
575 list_for_each_entry(sub, &event->sibling_list, group_entry) {
576 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
577 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
578 sub->cgrp_defer_enabled = 0;
579 }
580 }
581}
582#else /* !CONFIG_CGROUP_PERF */
583
584static inline bool
585perf_cgroup_match(struct perf_event *event)
586{
587 return true;
588}
589
590static inline void perf_detach_cgroup(struct perf_event *event)
591{}
592
593static inline int is_cgroup_event(struct perf_event *event)
594{
595 return 0;
596}
597
598static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
599{
600 return 0;
601}
602
603static inline void update_cgrp_time_from_event(struct perf_event *event)
604{
605}
606
607static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
608{
609}
610
a8d757ef
SE
611static inline void perf_cgroup_sched_out(struct task_struct *task,
612 struct task_struct *next)
e5d1367f
SE
613{
614}
615
a8d757ef
SE
616static inline void perf_cgroup_sched_in(struct task_struct *prev,
617 struct task_struct *task)
e5d1367f
SE
618{
619}
620
621static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
622 struct perf_event_attr *attr,
623 struct perf_event *group_leader)
624{
625 return -EINVAL;
626}
627
628static inline void
3f7cce3c
SE
629perf_cgroup_set_timestamp(struct task_struct *task,
630 struct perf_event_context *ctx)
e5d1367f
SE
631{
632}
633
634void
635perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
636{
637}
638
639static inline void
640perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
641{
642}
643
644static inline u64 perf_cgroup_event_time(struct perf_event *event)
645{
646 return 0;
647}
648
649static inline void
650perf_cgroup_defer_enabled(struct perf_event *event)
651{
652}
653
654static inline void
655perf_cgroup_mark_enabled(struct perf_event *event,
656 struct perf_event_context *ctx)
657{
658}
659#endif
660
33696fc0 661void perf_pmu_disable(struct pmu *pmu)
9e35ad38 662{
33696fc0
PZ
663 int *count = this_cpu_ptr(pmu->pmu_disable_count);
664 if (!(*count)++)
665 pmu->pmu_disable(pmu);
9e35ad38 666}
9e35ad38 667
33696fc0 668void perf_pmu_enable(struct pmu *pmu)
9e35ad38 669{
33696fc0
PZ
670 int *count = this_cpu_ptr(pmu->pmu_disable_count);
671 if (!--(*count))
672 pmu->pmu_enable(pmu);
9e35ad38 673}
9e35ad38 674
e9d2b064
PZ
675static DEFINE_PER_CPU(struct list_head, rotation_list);
676
677/*
678 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
679 * because they're strictly cpu affine and rotate_start is called with IRQs
680 * disabled, while rotate_context is called from IRQ context.
681 */
108b02cf 682static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 683{
108b02cf 684 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 685 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 686
e9d2b064 687 WARN_ON(!irqs_disabled());
b5ab4cd5 688
12351ef8
FW
689 if (list_empty(&cpuctx->rotation_list)) {
690 int was_empty = list_empty(head);
e9d2b064 691 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
692 if (was_empty)
693 tick_nohz_full_kick();
694 }
9e35ad38 695}
9e35ad38 696
cdd6c482 697static void get_ctx(struct perf_event_context *ctx)
a63eaf34 698{
e5289d4a 699 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
700}
701
cdd6c482 702static void put_ctx(struct perf_event_context *ctx)
a63eaf34 703{
564c2b21
PM
704 if (atomic_dec_and_test(&ctx->refcount)) {
705 if (ctx->parent_ctx)
706 put_ctx(ctx->parent_ctx);
c93f7669
PM
707 if (ctx->task)
708 put_task_struct(ctx->task);
cb796ff3 709 kfree_rcu(ctx, rcu_head);
564c2b21 710 }
a63eaf34
PM
711}
712
cdd6c482 713static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
714{
715 if (ctx->parent_ctx) {
716 put_ctx(ctx->parent_ctx);
717 ctx->parent_ctx = NULL;
718 }
719}
720
6844c09d
ACM
721static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
722{
723 /*
724 * only top level events have the pid namespace they were created in
725 */
726 if (event->parent)
727 event = event->parent;
728
729 return task_tgid_nr_ns(p, event->ns);
730}
731
732static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
733{
734 /*
735 * only top level events have the pid namespace they were created in
736 */
737 if (event->parent)
738 event = event->parent;
739
740 return task_pid_nr_ns(p, event->ns);
741}
742
7f453c24 743/*
cdd6c482 744 * If we inherit events we want to return the parent event id
7f453c24
PZ
745 * to userspace.
746 */
cdd6c482 747static u64 primary_event_id(struct perf_event *event)
7f453c24 748{
cdd6c482 749 u64 id = event->id;
7f453c24 750
cdd6c482
IM
751 if (event->parent)
752 id = event->parent->id;
7f453c24
PZ
753
754 return id;
755}
756
25346b93 757/*
cdd6c482 758 * Get the perf_event_context for a task and lock it.
25346b93
PM
759 * This has to cope with with the fact that until it is locked,
760 * the context could get moved to another task.
761 */
cdd6c482 762static struct perf_event_context *
8dc85d54 763perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 764{
cdd6c482 765 struct perf_event_context *ctx;
25346b93
PM
766
767 rcu_read_lock();
9ed6060d 768retry:
8dc85d54 769 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
770 if (ctx) {
771 /*
772 * If this context is a clone of another, it might
773 * get swapped for another underneath us by
cdd6c482 774 * perf_event_task_sched_out, though the
25346b93
PM
775 * rcu_read_lock() protects us from any context
776 * getting freed. Lock the context and check if it
777 * got swapped before we could get the lock, and retry
778 * if so. If we locked the right context, then it
779 * can't get swapped on us any more.
780 */
e625cce1 781 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 782 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 783 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
784 goto retry;
785 }
b49a9e7e
PZ
786
787 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 788 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
789 ctx = NULL;
790 }
25346b93
PM
791 }
792 rcu_read_unlock();
793 return ctx;
794}
795
796/*
797 * Get the context for a task and increment its pin_count so it
798 * can't get swapped to another task. This also increments its
799 * reference count so that the context can't get freed.
800 */
8dc85d54
PZ
801static struct perf_event_context *
802perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 803{
cdd6c482 804 struct perf_event_context *ctx;
25346b93
PM
805 unsigned long flags;
806
8dc85d54 807 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
808 if (ctx) {
809 ++ctx->pin_count;
e625cce1 810 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
811 }
812 return ctx;
813}
814
cdd6c482 815static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
816{
817 unsigned long flags;
818
e625cce1 819 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 820 --ctx->pin_count;
e625cce1 821 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
822}
823
f67218c3
PZ
824/*
825 * Update the record of the current time in a context.
826 */
827static void update_context_time(struct perf_event_context *ctx)
828{
829 u64 now = perf_clock();
830
831 ctx->time += now - ctx->timestamp;
832 ctx->timestamp = now;
833}
834
4158755d
SE
835static u64 perf_event_time(struct perf_event *event)
836{
837 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
838
839 if (is_cgroup_event(event))
840 return perf_cgroup_event_time(event);
841
4158755d
SE
842 return ctx ? ctx->time : 0;
843}
844
f67218c3
PZ
845/*
846 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 847 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
848 */
849static void update_event_times(struct perf_event *event)
850{
851 struct perf_event_context *ctx = event->ctx;
852 u64 run_end;
853
854 if (event->state < PERF_EVENT_STATE_INACTIVE ||
855 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
856 return;
e5d1367f
SE
857 /*
858 * in cgroup mode, time_enabled represents
859 * the time the event was enabled AND active
860 * tasks were in the monitored cgroup. This is
861 * independent of the activity of the context as
862 * there may be a mix of cgroup and non-cgroup events.
863 *
864 * That is why we treat cgroup events differently
865 * here.
866 */
867 if (is_cgroup_event(event))
46cd6a7f 868 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
869 else if (ctx->is_active)
870 run_end = ctx->time;
acd1d7c1
PZ
871 else
872 run_end = event->tstamp_stopped;
873
874 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
875
876 if (event->state == PERF_EVENT_STATE_INACTIVE)
877 run_end = event->tstamp_stopped;
878 else
4158755d 879 run_end = perf_event_time(event);
f67218c3
PZ
880
881 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 882
f67218c3
PZ
883}
884
96c21a46
PZ
885/*
886 * Update total_time_enabled and total_time_running for all events in a group.
887 */
888static void update_group_times(struct perf_event *leader)
889{
890 struct perf_event *event;
891
892 update_event_times(leader);
893 list_for_each_entry(event, &leader->sibling_list, group_entry)
894 update_event_times(event);
895}
896
889ff015
FW
897static struct list_head *
898ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
899{
900 if (event->attr.pinned)
901 return &ctx->pinned_groups;
902 else
903 return &ctx->flexible_groups;
904}
905
fccc714b 906/*
cdd6c482 907 * Add a event from the lists for its context.
fccc714b
PZ
908 * Must be called with ctx->mutex and ctx->lock held.
909 */
04289bb9 910static void
cdd6c482 911list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 912{
8a49542c
PZ
913 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
914 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
915
916 /*
8a49542c
PZ
917 * If we're a stand alone event or group leader, we go to the context
918 * list, group events are kept attached to the group so that
919 * perf_group_detach can, at all times, locate all siblings.
04289bb9 920 */
8a49542c 921 if (event->group_leader == event) {
889ff015
FW
922 struct list_head *list;
923
d6f962b5
FW
924 if (is_software_event(event))
925 event->group_flags |= PERF_GROUP_SOFTWARE;
926
889ff015
FW
927 list = ctx_group_list(event, ctx);
928 list_add_tail(&event->group_entry, list);
5c148194 929 }
592903cd 930
08309379 931 if (is_cgroup_event(event))
e5d1367f 932 ctx->nr_cgroups++;
e5d1367f 933
d010b332
SE
934 if (has_branch_stack(event))
935 ctx->nr_branch_stack++;
936
cdd6c482 937 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 938 if (!ctx->nr_events)
108b02cf 939 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
940 ctx->nr_events++;
941 if (event->attr.inherit_stat)
bfbd3381 942 ctx->nr_stat++;
04289bb9
IM
943}
944
0231bb53
JO
945/*
946 * Initialize event state based on the perf_event_attr::disabled.
947 */
948static inline void perf_event__state_init(struct perf_event *event)
949{
950 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
951 PERF_EVENT_STATE_INACTIVE;
952}
953
c320c7b7
ACM
954/*
955 * Called at perf_event creation and when events are attached/detached from a
956 * group.
957 */
958static void perf_event__read_size(struct perf_event *event)
959{
960 int entry = sizeof(u64); /* value */
961 int size = 0;
962 int nr = 1;
963
964 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
965 size += sizeof(u64);
966
967 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
968 size += sizeof(u64);
969
970 if (event->attr.read_format & PERF_FORMAT_ID)
971 entry += sizeof(u64);
972
973 if (event->attr.read_format & PERF_FORMAT_GROUP) {
974 nr += event->group_leader->nr_siblings;
975 size += sizeof(u64);
976 }
977
978 size += entry * nr;
979 event->read_size = size;
980}
981
982static void perf_event__header_size(struct perf_event *event)
983{
984 struct perf_sample_data *data;
985 u64 sample_type = event->attr.sample_type;
986 u16 size = 0;
987
988 perf_event__read_size(event);
989
990 if (sample_type & PERF_SAMPLE_IP)
991 size += sizeof(data->ip);
992
6844c09d
ACM
993 if (sample_type & PERF_SAMPLE_ADDR)
994 size += sizeof(data->addr);
995
996 if (sample_type & PERF_SAMPLE_PERIOD)
997 size += sizeof(data->period);
998
c3feedf2
AK
999 if (sample_type & PERF_SAMPLE_WEIGHT)
1000 size += sizeof(data->weight);
1001
6844c09d
ACM
1002 if (sample_type & PERF_SAMPLE_READ)
1003 size += event->read_size;
1004
d6be9ad6
SE
1005 if (sample_type & PERF_SAMPLE_DATA_SRC)
1006 size += sizeof(data->data_src.val);
1007
6844c09d
ACM
1008 event->header_size = size;
1009}
1010
1011static void perf_event__id_header_size(struct perf_event *event)
1012{
1013 struct perf_sample_data *data;
1014 u64 sample_type = event->attr.sample_type;
1015 u16 size = 0;
1016
c320c7b7
ACM
1017 if (sample_type & PERF_SAMPLE_TID)
1018 size += sizeof(data->tid_entry);
1019
1020 if (sample_type & PERF_SAMPLE_TIME)
1021 size += sizeof(data->time);
1022
c320c7b7
ACM
1023 if (sample_type & PERF_SAMPLE_ID)
1024 size += sizeof(data->id);
1025
1026 if (sample_type & PERF_SAMPLE_STREAM_ID)
1027 size += sizeof(data->stream_id);
1028
1029 if (sample_type & PERF_SAMPLE_CPU)
1030 size += sizeof(data->cpu_entry);
1031
6844c09d 1032 event->id_header_size = size;
c320c7b7
ACM
1033}
1034
8a49542c
PZ
1035static void perf_group_attach(struct perf_event *event)
1036{
c320c7b7 1037 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1038
74c3337c
PZ
1039 /*
1040 * We can have double attach due to group movement in perf_event_open.
1041 */
1042 if (event->attach_state & PERF_ATTACH_GROUP)
1043 return;
1044
8a49542c
PZ
1045 event->attach_state |= PERF_ATTACH_GROUP;
1046
1047 if (group_leader == event)
1048 return;
1049
1050 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1051 !is_software_event(event))
1052 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1053
1054 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1055 group_leader->nr_siblings++;
c320c7b7
ACM
1056
1057 perf_event__header_size(group_leader);
1058
1059 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1060 perf_event__header_size(pos);
8a49542c
PZ
1061}
1062
a63eaf34 1063/*
cdd6c482 1064 * Remove a event from the lists for its context.
fccc714b 1065 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1066 */
04289bb9 1067static void
cdd6c482 1068list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1069{
68cacd29 1070 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1071 /*
1072 * We can have double detach due to exit/hot-unplug + close.
1073 */
1074 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1075 return;
8a49542c
PZ
1076
1077 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1078
68cacd29 1079 if (is_cgroup_event(event)) {
e5d1367f 1080 ctx->nr_cgroups--;
68cacd29
SE
1081 cpuctx = __get_cpu_context(ctx);
1082 /*
1083 * if there are no more cgroup events
1084 * then cler cgrp to avoid stale pointer
1085 * in update_cgrp_time_from_cpuctx()
1086 */
1087 if (!ctx->nr_cgroups)
1088 cpuctx->cgrp = NULL;
1089 }
e5d1367f 1090
d010b332
SE
1091 if (has_branch_stack(event))
1092 ctx->nr_branch_stack--;
1093
cdd6c482
IM
1094 ctx->nr_events--;
1095 if (event->attr.inherit_stat)
bfbd3381 1096 ctx->nr_stat--;
8bc20959 1097
cdd6c482 1098 list_del_rcu(&event->event_entry);
04289bb9 1099
8a49542c
PZ
1100 if (event->group_leader == event)
1101 list_del_init(&event->group_entry);
5c148194 1102
96c21a46 1103 update_group_times(event);
b2e74a26
SE
1104
1105 /*
1106 * If event was in error state, then keep it
1107 * that way, otherwise bogus counts will be
1108 * returned on read(). The only way to get out
1109 * of error state is by explicit re-enabling
1110 * of the event
1111 */
1112 if (event->state > PERF_EVENT_STATE_OFF)
1113 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1114}
1115
8a49542c 1116static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1117{
1118 struct perf_event *sibling, *tmp;
8a49542c
PZ
1119 struct list_head *list = NULL;
1120
1121 /*
1122 * We can have double detach due to exit/hot-unplug + close.
1123 */
1124 if (!(event->attach_state & PERF_ATTACH_GROUP))
1125 return;
1126
1127 event->attach_state &= ~PERF_ATTACH_GROUP;
1128
1129 /*
1130 * If this is a sibling, remove it from its group.
1131 */
1132 if (event->group_leader != event) {
1133 list_del_init(&event->group_entry);
1134 event->group_leader->nr_siblings--;
c320c7b7 1135 goto out;
8a49542c
PZ
1136 }
1137
1138 if (!list_empty(&event->group_entry))
1139 list = &event->group_entry;
2e2af50b 1140
04289bb9 1141 /*
cdd6c482
IM
1142 * If this was a group event with sibling events then
1143 * upgrade the siblings to singleton events by adding them
8a49542c 1144 * to whatever list we are on.
04289bb9 1145 */
cdd6c482 1146 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1147 if (list)
1148 list_move_tail(&sibling->group_entry, list);
04289bb9 1149 sibling->group_leader = sibling;
d6f962b5
FW
1150
1151 /* Inherit group flags from the previous leader */
1152 sibling->group_flags = event->group_flags;
04289bb9 1153 }
c320c7b7
ACM
1154
1155out:
1156 perf_event__header_size(event->group_leader);
1157
1158 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1159 perf_event__header_size(tmp);
04289bb9
IM
1160}
1161
fa66f07a
SE
1162static inline int
1163event_filter_match(struct perf_event *event)
1164{
e5d1367f
SE
1165 return (event->cpu == -1 || event->cpu == smp_processor_id())
1166 && perf_cgroup_match(event);
fa66f07a
SE
1167}
1168
9ffcfa6f
SE
1169static void
1170event_sched_out(struct perf_event *event,
3b6f9e5c 1171 struct perf_cpu_context *cpuctx,
cdd6c482 1172 struct perf_event_context *ctx)
3b6f9e5c 1173{
4158755d 1174 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1175 u64 delta;
1176 /*
1177 * An event which could not be activated because of
1178 * filter mismatch still needs to have its timings
1179 * maintained, otherwise bogus information is return
1180 * via read() for time_enabled, time_running:
1181 */
1182 if (event->state == PERF_EVENT_STATE_INACTIVE
1183 && !event_filter_match(event)) {
e5d1367f 1184 delta = tstamp - event->tstamp_stopped;
fa66f07a 1185 event->tstamp_running += delta;
4158755d 1186 event->tstamp_stopped = tstamp;
fa66f07a
SE
1187 }
1188
cdd6c482 1189 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1190 return;
3b6f9e5c 1191
cdd6c482
IM
1192 event->state = PERF_EVENT_STATE_INACTIVE;
1193 if (event->pending_disable) {
1194 event->pending_disable = 0;
1195 event->state = PERF_EVENT_STATE_OFF;
970892a9 1196 }
4158755d 1197 event->tstamp_stopped = tstamp;
a4eaf7f1 1198 event->pmu->del(event, 0);
cdd6c482 1199 event->oncpu = -1;
3b6f9e5c 1200
cdd6c482 1201 if (!is_software_event(event))
3b6f9e5c
PM
1202 cpuctx->active_oncpu--;
1203 ctx->nr_active--;
0f5a2601
PZ
1204 if (event->attr.freq && event->attr.sample_freq)
1205 ctx->nr_freq--;
cdd6c482 1206 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1207 cpuctx->exclusive = 0;
1208}
1209
d859e29f 1210static void
cdd6c482 1211group_sched_out(struct perf_event *group_event,
d859e29f 1212 struct perf_cpu_context *cpuctx,
cdd6c482 1213 struct perf_event_context *ctx)
d859e29f 1214{
cdd6c482 1215 struct perf_event *event;
fa66f07a 1216 int state = group_event->state;
d859e29f 1217
cdd6c482 1218 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1219
1220 /*
1221 * Schedule out siblings (if any):
1222 */
cdd6c482
IM
1223 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1224 event_sched_out(event, cpuctx, ctx);
d859e29f 1225
fa66f07a 1226 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1227 cpuctx->exclusive = 0;
1228}
1229
0793a61d 1230/*
cdd6c482 1231 * Cross CPU call to remove a performance event
0793a61d 1232 *
cdd6c482 1233 * We disable the event on the hardware level first. After that we
0793a61d
TG
1234 * remove it from the context list.
1235 */
fe4b04fa 1236static int __perf_remove_from_context(void *info)
0793a61d 1237{
cdd6c482
IM
1238 struct perf_event *event = info;
1239 struct perf_event_context *ctx = event->ctx;
108b02cf 1240 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1241
e625cce1 1242 raw_spin_lock(&ctx->lock);
cdd6c482 1243 event_sched_out(event, cpuctx, ctx);
cdd6c482 1244 list_del_event(event, ctx);
64ce3126
PZ
1245 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1246 ctx->is_active = 0;
1247 cpuctx->task_ctx = NULL;
1248 }
e625cce1 1249 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1250
1251 return 0;
0793a61d
TG
1252}
1253
1254
1255/*
cdd6c482 1256 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1257 *
cdd6c482 1258 * CPU events are removed with a smp call. For task events we only
0793a61d 1259 * call when the task is on a CPU.
c93f7669 1260 *
cdd6c482
IM
1261 * If event->ctx is a cloned context, callers must make sure that
1262 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1263 * remains valid. This is OK when called from perf_release since
1264 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1265 * When called from perf_event_exit_task, it's OK because the
c93f7669 1266 * context has been detached from its task.
0793a61d 1267 */
fe4b04fa 1268static void perf_remove_from_context(struct perf_event *event)
0793a61d 1269{
cdd6c482 1270 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1271 struct task_struct *task = ctx->task;
1272
fe4b04fa
PZ
1273 lockdep_assert_held(&ctx->mutex);
1274
0793a61d
TG
1275 if (!task) {
1276 /*
cdd6c482 1277 * Per cpu events are removed via an smp call and
af901ca1 1278 * the removal is always successful.
0793a61d 1279 */
fe4b04fa 1280 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1281 return;
1282 }
1283
1284retry:
fe4b04fa
PZ
1285 if (!task_function_call(task, __perf_remove_from_context, event))
1286 return;
0793a61d 1287
e625cce1 1288 raw_spin_lock_irq(&ctx->lock);
0793a61d 1289 /*
fe4b04fa
PZ
1290 * If we failed to find a running task, but find the context active now
1291 * that we've acquired the ctx->lock, retry.
0793a61d 1292 */
fe4b04fa 1293 if (ctx->is_active) {
e625cce1 1294 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1295 goto retry;
1296 }
1297
1298 /*
fe4b04fa
PZ
1299 * Since the task isn't running, its safe to remove the event, us
1300 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1301 */
fe4b04fa 1302 list_del_event(event, ctx);
e625cce1 1303 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1304}
1305
d859e29f 1306/*
cdd6c482 1307 * Cross CPU call to disable a performance event
d859e29f 1308 */
500ad2d8 1309int __perf_event_disable(void *info)
d859e29f 1310{
cdd6c482 1311 struct perf_event *event = info;
cdd6c482 1312 struct perf_event_context *ctx = event->ctx;
108b02cf 1313 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1314
1315 /*
cdd6c482
IM
1316 * If this is a per-task event, need to check whether this
1317 * event's task is the current task on this cpu.
fe4b04fa
PZ
1318 *
1319 * Can trigger due to concurrent perf_event_context_sched_out()
1320 * flipping contexts around.
d859e29f 1321 */
665c2142 1322 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1323 return -EINVAL;
d859e29f 1324
e625cce1 1325 raw_spin_lock(&ctx->lock);
d859e29f
PM
1326
1327 /*
cdd6c482 1328 * If the event is on, turn it off.
d859e29f
PM
1329 * If it is in error state, leave it in error state.
1330 */
cdd6c482 1331 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1332 update_context_time(ctx);
e5d1367f 1333 update_cgrp_time_from_event(event);
cdd6c482
IM
1334 update_group_times(event);
1335 if (event == event->group_leader)
1336 group_sched_out(event, cpuctx, ctx);
d859e29f 1337 else
cdd6c482
IM
1338 event_sched_out(event, cpuctx, ctx);
1339 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1340 }
1341
e625cce1 1342 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1343
1344 return 0;
d859e29f
PM
1345}
1346
1347/*
cdd6c482 1348 * Disable a event.
c93f7669 1349 *
cdd6c482
IM
1350 * If event->ctx is a cloned context, callers must make sure that
1351 * every task struct that event->ctx->task could possibly point to
c93f7669 1352 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1353 * perf_event_for_each_child or perf_event_for_each because they
1354 * hold the top-level event's child_mutex, so any descendant that
1355 * goes to exit will block in sync_child_event.
1356 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1357 * is the current context on this CPU and preemption is disabled,
cdd6c482 1358 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1359 */
44234adc 1360void perf_event_disable(struct perf_event *event)
d859e29f 1361{
cdd6c482 1362 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1363 struct task_struct *task = ctx->task;
1364
1365 if (!task) {
1366 /*
cdd6c482 1367 * Disable the event on the cpu that it's on
d859e29f 1368 */
fe4b04fa 1369 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1370 return;
1371 }
1372
9ed6060d 1373retry:
fe4b04fa
PZ
1374 if (!task_function_call(task, __perf_event_disable, event))
1375 return;
d859e29f 1376
e625cce1 1377 raw_spin_lock_irq(&ctx->lock);
d859e29f 1378 /*
cdd6c482 1379 * If the event is still active, we need to retry the cross-call.
d859e29f 1380 */
cdd6c482 1381 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1382 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1383 /*
1384 * Reload the task pointer, it might have been changed by
1385 * a concurrent perf_event_context_sched_out().
1386 */
1387 task = ctx->task;
d859e29f
PM
1388 goto retry;
1389 }
1390
1391 /*
1392 * Since we have the lock this context can't be scheduled
1393 * in, so we can change the state safely.
1394 */
cdd6c482
IM
1395 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1396 update_group_times(event);
1397 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1398 }
e625cce1 1399 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1400}
dcfce4a0 1401EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1402
e5d1367f
SE
1403static void perf_set_shadow_time(struct perf_event *event,
1404 struct perf_event_context *ctx,
1405 u64 tstamp)
1406{
1407 /*
1408 * use the correct time source for the time snapshot
1409 *
1410 * We could get by without this by leveraging the
1411 * fact that to get to this function, the caller
1412 * has most likely already called update_context_time()
1413 * and update_cgrp_time_xx() and thus both timestamp
1414 * are identical (or very close). Given that tstamp is,
1415 * already adjusted for cgroup, we could say that:
1416 * tstamp - ctx->timestamp
1417 * is equivalent to
1418 * tstamp - cgrp->timestamp.
1419 *
1420 * Then, in perf_output_read(), the calculation would
1421 * work with no changes because:
1422 * - event is guaranteed scheduled in
1423 * - no scheduled out in between
1424 * - thus the timestamp would be the same
1425 *
1426 * But this is a bit hairy.
1427 *
1428 * So instead, we have an explicit cgroup call to remain
1429 * within the time time source all along. We believe it
1430 * is cleaner and simpler to understand.
1431 */
1432 if (is_cgroup_event(event))
1433 perf_cgroup_set_shadow_time(event, tstamp);
1434 else
1435 event->shadow_ctx_time = tstamp - ctx->timestamp;
1436}
1437
4fe757dd
PZ
1438#define MAX_INTERRUPTS (~0ULL)
1439
1440static void perf_log_throttle(struct perf_event *event, int enable);
1441
235c7fc7 1442static int
9ffcfa6f 1443event_sched_in(struct perf_event *event,
235c7fc7 1444 struct perf_cpu_context *cpuctx,
6e37738a 1445 struct perf_event_context *ctx)
235c7fc7 1446{
4158755d
SE
1447 u64 tstamp = perf_event_time(event);
1448
cdd6c482 1449 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1450 return 0;
1451
cdd6c482 1452 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1453 event->oncpu = smp_processor_id();
4fe757dd
PZ
1454
1455 /*
1456 * Unthrottle events, since we scheduled we might have missed several
1457 * ticks already, also for a heavily scheduling task there is little
1458 * guarantee it'll get a tick in a timely manner.
1459 */
1460 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1461 perf_log_throttle(event, 1);
1462 event->hw.interrupts = 0;
1463 }
1464
235c7fc7
IM
1465 /*
1466 * The new state must be visible before we turn it on in the hardware:
1467 */
1468 smp_wmb();
1469
a4eaf7f1 1470 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1471 event->state = PERF_EVENT_STATE_INACTIVE;
1472 event->oncpu = -1;
235c7fc7
IM
1473 return -EAGAIN;
1474 }
1475
4158755d 1476 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1477
e5d1367f 1478 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1479
cdd6c482 1480 if (!is_software_event(event))
3b6f9e5c 1481 cpuctx->active_oncpu++;
235c7fc7 1482 ctx->nr_active++;
0f5a2601
PZ
1483 if (event->attr.freq && event->attr.sample_freq)
1484 ctx->nr_freq++;
235c7fc7 1485
cdd6c482 1486 if (event->attr.exclusive)
3b6f9e5c
PM
1487 cpuctx->exclusive = 1;
1488
235c7fc7
IM
1489 return 0;
1490}
1491
6751b71e 1492static int
cdd6c482 1493group_sched_in(struct perf_event *group_event,
6751b71e 1494 struct perf_cpu_context *cpuctx,
6e37738a 1495 struct perf_event_context *ctx)
6751b71e 1496{
6bde9b6c 1497 struct perf_event *event, *partial_group = NULL;
51b0fe39 1498 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1499 u64 now = ctx->time;
1500 bool simulate = false;
6751b71e 1501
cdd6c482 1502 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1503 return 0;
1504
ad5133b7 1505 pmu->start_txn(pmu);
6bde9b6c 1506
9ffcfa6f 1507 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1508 pmu->cancel_txn(pmu);
6751b71e 1509 return -EAGAIN;
90151c35 1510 }
6751b71e
PM
1511
1512 /*
1513 * Schedule in siblings as one group (if any):
1514 */
cdd6c482 1515 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1516 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1517 partial_group = event;
6751b71e
PM
1518 goto group_error;
1519 }
1520 }
1521
9ffcfa6f 1522 if (!pmu->commit_txn(pmu))
6e85158c 1523 return 0;
9ffcfa6f 1524
6751b71e
PM
1525group_error:
1526 /*
1527 * Groups can be scheduled in as one unit only, so undo any
1528 * partial group before returning:
d7842da4
SE
1529 * The events up to the failed event are scheduled out normally,
1530 * tstamp_stopped will be updated.
1531 *
1532 * The failed events and the remaining siblings need to have
1533 * their timings updated as if they had gone thru event_sched_in()
1534 * and event_sched_out(). This is required to get consistent timings
1535 * across the group. This also takes care of the case where the group
1536 * could never be scheduled by ensuring tstamp_stopped is set to mark
1537 * the time the event was actually stopped, such that time delta
1538 * calculation in update_event_times() is correct.
6751b71e 1539 */
cdd6c482
IM
1540 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1541 if (event == partial_group)
d7842da4
SE
1542 simulate = true;
1543
1544 if (simulate) {
1545 event->tstamp_running += now - event->tstamp_stopped;
1546 event->tstamp_stopped = now;
1547 } else {
1548 event_sched_out(event, cpuctx, ctx);
1549 }
6751b71e 1550 }
9ffcfa6f 1551 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1552
ad5133b7 1553 pmu->cancel_txn(pmu);
90151c35 1554
6751b71e
PM
1555 return -EAGAIN;
1556}
1557
3b6f9e5c 1558/*
cdd6c482 1559 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1560 */
cdd6c482 1561static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1562 struct perf_cpu_context *cpuctx,
1563 int can_add_hw)
1564{
1565 /*
cdd6c482 1566 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1567 */
d6f962b5 1568 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1569 return 1;
1570 /*
1571 * If an exclusive group is already on, no other hardware
cdd6c482 1572 * events can go on.
3b6f9e5c
PM
1573 */
1574 if (cpuctx->exclusive)
1575 return 0;
1576 /*
1577 * If this group is exclusive and there are already
cdd6c482 1578 * events on the CPU, it can't go on.
3b6f9e5c 1579 */
cdd6c482 1580 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1581 return 0;
1582 /*
1583 * Otherwise, try to add it if all previous groups were able
1584 * to go on.
1585 */
1586 return can_add_hw;
1587}
1588
cdd6c482
IM
1589static void add_event_to_ctx(struct perf_event *event,
1590 struct perf_event_context *ctx)
53cfbf59 1591{
4158755d
SE
1592 u64 tstamp = perf_event_time(event);
1593
cdd6c482 1594 list_add_event(event, ctx);
8a49542c 1595 perf_group_attach(event);
4158755d
SE
1596 event->tstamp_enabled = tstamp;
1597 event->tstamp_running = tstamp;
1598 event->tstamp_stopped = tstamp;
53cfbf59
PM
1599}
1600
2c29ef0f
PZ
1601static void task_ctx_sched_out(struct perf_event_context *ctx);
1602static void
1603ctx_sched_in(struct perf_event_context *ctx,
1604 struct perf_cpu_context *cpuctx,
1605 enum event_type_t event_type,
1606 struct task_struct *task);
fe4b04fa 1607
dce5855b
PZ
1608static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1609 struct perf_event_context *ctx,
1610 struct task_struct *task)
1611{
1612 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1613 if (ctx)
1614 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1615 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1616 if (ctx)
1617 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1618}
1619
0793a61d 1620/*
cdd6c482 1621 * Cross CPU call to install and enable a performance event
682076ae
PZ
1622 *
1623 * Must be called with ctx->mutex held
0793a61d 1624 */
fe4b04fa 1625static int __perf_install_in_context(void *info)
0793a61d 1626{
cdd6c482
IM
1627 struct perf_event *event = info;
1628 struct perf_event_context *ctx = event->ctx;
108b02cf 1629 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1630 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1631 struct task_struct *task = current;
1632
b58f6b0d 1633 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1634 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1635
1636 /*
2c29ef0f 1637 * If there was an active task_ctx schedule it out.
0793a61d 1638 */
b58f6b0d 1639 if (task_ctx)
2c29ef0f 1640 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1641
1642 /*
1643 * If the context we're installing events in is not the
1644 * active task_ctx, flip them.
1645 */
1646 if (ctx->task && task_ctx != ctx) {
1647 if (task_ctx)
1648 raw_spin_unlock(&task_ctx->lock);
1649 raw_spin_lock(&ctx->lock);
1650 task_ctx = ctx;
1651 }
1652
1653 if (task_ctx) {
1654 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1655 task = task_ctx->task;
1656 }
b58f6b0d 1657
2c29ef0f 1658 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1659
4af4998b 1660 update_context_time(ctx);
e5d1367f
SE
1661 /*
1662 * update cgrp time only if current cgrp
1663 * matches event->cgrp. Must be done before
1664 * calling add_event_to_ctx()
1665 */
1666 update_cgrp_time_from_event(event);
0793a61d 1667
cdd6c482 1668 add_event_to_ctx(event, ctx);
0793a61d 1669
d859e29f 1670 /*
2c29ef0f 1671 * Schedule everything back in
d859e29f 1672 */
dce5855b 1673 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1674
1675 perf_pmu_enable(cpuctx->ctx.pmu);
1676 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1677
1678 return 0;
0793a61d
TG
1679}
1680
1681/*
cdd6c482 1682 * Attach a performance event to a context
0793a61d 1683 *
cdd6c482
IM
1684 * First we add the event to the list with the hardware enable bit
1685 * in event->hw_config cleared.
0793a61d 1686 *
cdd6c482 1687 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1688 * call to enable it in the task context. The task might have been
1689 * scheduled away, but we check this in the smp call again.
1690 */
1691static void
cdd6c482
IM
1692perf_install_in_context(struct perf_event_context *ctx,
1693 struct perf_event *event,
0793a61d
TG
1694 int cpu)
1695{
1696 struct task_struct *task = ctx->task;
1697
fe4b04fa
PZ
1698 lockdep_assert_held(&ctx->mutex);
1699
c3f00c70 1700 event->ctx = ctx;
0cda4c02
YZ
1701 if (event->cpu != -1)
1702 event->cpu = cpu;
c3f00c70 1703
0793a61d
TG
1704 if (!task) {
1705 /*
cdd6c482 1706 * Per cpu events are installed via an smp call and
af901ca1 1707 * the install is always successful.
0793a61d 1708 */
fe4b04fa 1709 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1710 return;
1711 }
1712
0793a61d 1713retry:
fe4b04fa
PZ
1714 if (!task_function_call(task, __perf_install_in_context, event))
1715 return;
0793a61d 1716
e625cce1 1717 raw_spin_lock_irq(&ctx->lock);
0793a61d 1718 /*
fe4b04fa
PZ
1719 * If we failed to find a running task, but find the context active now
1720 * that we've acquired the ctx->lock, retry.
0793a61d 1721 */
fe4b04fa 1722 if (ctx->is_active) {
e625cce1 1723 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1724 goto retry;
1725 }
1726
1727 /*
fe4b04fa
PZ
1728 * Since the task isn't running, its safe to add the event, us holding
1729 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1730 */
fe4b04fa 1731 add_event_to_ctx(event, ctx);
e625cce1 1732 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1733}
1734
fa289bec 1735/*
cdd6c482 1736 * Put a event into inactive state and update time fields.
fa289bec
PM
1737 * Enabling the leader of a group effectively enables all
1738 * the group members that aren't explicitly disabled, so we
1739 * have to update their ->tstamp_enabled also.
1740 * Note: this works for group members as well as group leaders
1741 * since the non-leader members' sibling_lists will be empty.
1742 */
1d9b482e 1743static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1744{
cdd6c482 1745 struct perf_event *sub;
4158755d 1746 u64 tstamp = perf_event_time(event);
fa289bec 1747
cdd6c482 1748 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1749 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1750 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1751 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1752 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1753 }
fa289bec
PM
1754}
1755
d859e29f 1756/*
cdd6c482 1757 * Cross CPU call to enable a performance event
d859e29f 1758 */
fe4b04fa 1759static int __perf_event_enable(void *info)
04289bb9 1760{
cdd6c482 1761 struct perf_event *event = info;
cdd6c482
IM
1762 struct perf_event_context *ctx = event->ctx;
1763 struct perf_event *leader = event->group_leader;
108b02cf 1764 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1765 int err;
04289bb9 1766
fe4b04fa
PZ
1767 if (WARN_ON_ONCE(!ctx->is_active))
1768 return -EINVAL;
3cbed429 1769
e625cce1 1770 raw_spin_lock(&ctx->lock);
4af4998b 1771 update_context_time(ctx);
d859e29f 1772
cdd6c482 1773 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1774 goto unlock;
e5d1367f
SE
1775
1776 /*
1777 * set current task's cgroup time reference point
1778 */
3f7cce3c 1779 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1780
1d9b482e 1781 __perf_event_mark_enabled(event);
04289bb9 1782
e5d1367f
SE
1783 if (!event_filter_match(event)) {
1784 if (is_cgroup_event(event))
1785 perf_cgroup_defer_enabled(event);
f4c4176f 1786 goto unlock;
e5d1367f 1787 }
f4c4176f 1788
04289bb9 1789 /*
cdd6c482 1790 * If the event is in a group and isn't the group leader,
d859e29f 1791 * then don't put it on unless the group is on.
04289bb9 1792 */
cdd6c482 1793 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1794 goto unlock;
3b6f9e5c 1795
cdd6c482 1796 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1797 err = -EEXIST;
e758a33d 1798 } else {
cdd6c482 1799 if (event == leader)
6e37738a 1800 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1801 else
6e37738a 1802 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1803 }
d859e29f
PM
1804
1805 if (err) {
1806 /*
cdd6c482 1807 * If this event can't go on and it's part of a
d859e29f
PM
1808 * group, then the whole group has to come off.
1809 */
cdd6c482 1810 if (leader != event)
d859e29f 1811 group_sched_out(leader, cpuctx, ctx);
0d48696f 1812 if (leader->attr.pinned) {
53cfbf59 1813 update_group_times(leader);
cdd6c482 1814 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1815 }
d859e29f
PM
1816 }
1817
9ed6060d 1818unlock:
e625cce1 1819 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1820
1821 return 0;
d859e29f
PM
1822}
1823
1824/*
cdd6c482 1825 * Enable a event.
c93f7669 1826 *
cdd6c482
IM
1827 * If event->ctx is a cloned context, callers must make sure that
1828 * every task struct that event->ctx->task could possibly point to
c93f7669 1829 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1830 * perf_event_for_each_child or perf_event_for_each as described
1831 * for perf_event_disable.
d859e29f 1832 */
44234adc 1833void perf_event_enable(struct perf_event *event)
d859e29f 1834{
cdd6c482 1835 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1836 struct task_struct *task = ctx->task;
1837
1838 if (!task) {
1839 /*
cdd6c482 1840 * Enable the event on the cpu that it's on
d859e29f 1841 */
fe4b04fa 1842 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1843 return;
1844 }
1845
e625cce1 1846 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1847 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1848 goto out;
1849
1850 /*
cdd6c482
IM
1851 * If the event is in error state, clear that first.
1852 * That way, if we see the event in error state below, we
d859e29f
PM
1853 * know that it has gone back into error state, as distinct
1854 * from the task having been scheduled away before the
1855 * cross-call arrived.
1856 */
cdd6c482
IM
1857 if (event->state == PERF_EVENT_STATE_ERROR)
1858 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1859
9ed6060d 1860retry:
fe4b04fa 1861 if (!ctx->is_active) {
1d9b482e 1862 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1863 goto out;
1864 }
1865
e625cce1 1866 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1867
1868 if (!task_function_call(task, __perf_event_enable, event))
1869 return;
d859e29f 1870
e625cce1 1871 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1872
1873 /*
cdd6c482 1874 * If the context is active and the event is still off,
d859e29f
PM
1875 * we need to retry the cross-call.
1876 */
fe4b04fa
PZ
1877 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1878 /*
1879 * task could have been flipped by a concurrent
1880 * perf_event_context_sched_out()
1881 */
1882 task = ctx->task;
d859e29f 1883 goto retry;
fe4b04fa 1884 }
fa289bec 1885
9ed6060d 1886out:
e625cce1 1887 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1888}
dcfce4a0 1889EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1890
26ca5c11 1891int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1892{
2023b359 1893 /*
cdd6c482 1894 * not supported on inherited events
2023b359 1895 */
2e939d1d 1896 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1897 return -EINVAL;
1898
cdd6c482
IM
1899 atomic_add(refresh, &event->event_limit);
1900 perf_event_enable(event);
2023b359
PZ
1901
1902 return 0;
79f14641 1903}
26ca5c11 1904EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1905
5b0311e1
FW
1906static void ctx_sched_out(struct perf_event_context *ctx,
1907 struct perf_cpu_context *cpuctx,
1908 enum event_type_t event_type)
235c7fc7 1909{
cdd6c482 1910 struct perf_event *event;
db24d33e 1911 int is_active = ctx->is_active;
235c7fc7 1912
db24d33e 1913 ctx->is_active &= ~event_type;
cdd6c482 1914 if (likely(!ctx->nr_events))
facc4307
PZ
1915 return;
1916
4af4998b 1917 update_context_time(ctx);
e5d1367f 1918 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1919 if (!ctx->nr_active)
facc4307 1920 return;
5b0311e1 1921
075e0b00 1922 perf_pmu_disable(ctx->pmu);
db24d33e 1923 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1924 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1925 group_sched_out(event, cpuctx, ctx);
9ed6060d 1926 }
889ff015 1927
db24d33e 1928 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1929 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1930 group_sched_out(event, cpuctx, ctx);
9ed6060d 1931 }
1b9a644f 1932 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1933}
1934
564c2b21
PM
1935/*
1936 * Test whether two contexts are equivalent, i.e. whether they
1937 * have both been cloned from the same version of the same context
cdd6c482
IM
1938 * and they both have the same number of enabled events.
1939 * If the number of enabled events is the same, then the set
1940 * of enabled events should be the same, because these are both
1941 * inherited contexts, therefore we can't access individual events
564c2b21 1942 * in them directly with an fd; we can only enable/disable all
cdd6c482 1943 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1944 * via ioctl, which will have the same effect on both contexts.
1945 */
cdd6c482
IM
1946static int context_equiv(struct perf_event_context *ctx1,
1947 struct perf_event_context *ctx2)
564c2b21
PM
1948{
1949 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1950 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1951 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1952}
1953
cdd6c482
IM
1954static void __perf_event_sync_stat(struct perf_event *event,
1955 struct perf_event *next_event)
bfbd3381
PZ
1956{
1957 u64 value;
1958
cdd6c482 1959 if (!event->attr.inherit_stat)
bfbd3381
PZ
1960 return;
1961
1962 /*
cdd6c482 1963 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1964 * because we're in the middle of a context switch and have IRQs
1965 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1966 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1967 * don't need to use it.
1968 */
cdd6c482
IM
1969 switch (event->state) {
1970 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1971 event->pmu->read(event);
1972 /* fall-through */
bfbd3381 1973
cdd6c482
IM
1974 case PERF_EVENT_STATE_INACTIVE:
1975 update_event_times(event);
bfbd3381
PZ
1976 break;
1977
1978 default:
1979 break;
1980 }
1981
1982 /*
cdd6c482 1983 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1984 * values when we flip the contexts.
1985 */
e7850595
PZ
1986 value = local64_read(&next_event->count);
1987 value = local64_xchg(&event->count, value);
1988 local64_set(&next_event->count, value);
bfbd3381 1989
cdd6c482
IM
1990 swap(event->total_time_enabled, next_event->total_time_enabled);
1991 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1992
bfbd3381 1993 /*
19d2e755 1994 * Since we swizzled the values, update the user visible data too.
bfbd3381 1995 */
cdd6c482
IM
1996 perf_event_update_userpage(event);
1997 perf_event_update_userpage(next_event);
bfbd3381
PZ
1998}
1999
2000#define list_next_entry(pos, member) \
2001 list_entry(pos->member.next, typeof(*pos), member)
2002
cdd6c482
IM
2003static void perf_event_sync_stat(struct perf_event_context *ctx,
2004 struct perf_event_context *next_ctx)
bfbd3381 2005{
cdd6c482 2006 struct perf_event *event, *next_event;
bfbd3381
PZ
2007
2008 if (!ctx->nr_stat)
2009 return;
2010
02ffdbc8
PZ
2011 update_context_time(ctx);
2012
cdd6c482
IM
2013 event = list_first_entry(&ctx->event_list,
2014 struct perf_event, event_entry);
bfbd3381 2015
cdd6c482
IM
2016 next_event = list_first_entry(&next_ctx->event_list,
2017 struct perf_event, event_entry);
bfbd3381 2018
cdd6c482
IM
2019 while (&event->event_entry != &ctx->event_list &&
2020 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2021
cdd6c482 2022 __perf_event_sync_stat(event, next_event);
bfbd3381 2023
cdd6c482
IM
2024 event = list_next_entry(event, event_entry);
2025 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2026 }
2027}
2028
fe4b04fa
PZ
2029static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2030 struct task_struct *next)
0793a61d 2031{
8dc85d54 2032 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2033 struct perf_event_context *next_ctx;
2034 struct perf_event_context *parent;
108b02cf 2035 struct perf_cpu_context *cpuctx;
c93f7669 2036 int do_switch = 1;
0793a61d 2037
108b02cf
PZ
2038 if (likely(!ctx))
2039 return;
10989fb2 2040
108b02cf
PZ
2041 cpuctx = __get_cpu_context(ctx);
2042 if (!cpuctx->task_ctx)
0793a61d
TG
2043 return;
2044
c93f7669
PM
2045 rcu_read_lock();
2046 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2047 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2048 if (parent && next_ctx &&
2049 rcu_dereference(next_ctx->parent_ctx) == parent) {
2050 /*
2051 * Looks like the two contexts are clones, so we might be
2052 * able to optimize the context switch. We lock both
2053 * contexts and check that they are clones under the
2054 * lock (including re-checking that neither has been
2055 * uncloned in the meantime). It doesn't matter which
2056 * order we take the locks because no other cpu could
2057 * be trying to lock both of these tasks.
2058 */
e625cce1
TG
2059 raw_spin_lock(&ctx->lock);
2060 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2061 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2062 /*
2063 * XXX do we need a memory barrier of sorts
cdd6c482 2064 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2065 */
8dc85d54
PZ
2066 task->perf_event_ctxp[ctxn] = next_ctx;
2067 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2068 ctx->task = next;
2069 next_ctx->task = task;
2070 do_switch = 0;
bfbd3381 2071
cdd6c482 2072 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2073 }
e625cce1
TG
2074 raw_spin_unlock(&next_ctx->lock);
2075 raw_spin_unlock(&ctx->lock);
564c2b21 2076 }
c93f7669 2077 rcu_read_unlock();
564c2b21 2078
c93f7669 2079 if (do_switch) {
facc4307 2080 raw_spin_lock(&ctx->lock);
5b0311e1 2081 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2082 cpuctx->task_ctx = NULL;
facc4307 2083 raw_spin_unlock(&ctx->lock);
c93f7669 2084 }
0793a61d
TG
2085}
2086
8dc85d54
PZ
2087#define for_each_task_context_nr(ctxn) \
2088 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2089
2090/*
2091 * Called from scheduler to remove the events of the current task,
2092 * with interrupts disabled.
2093 *
2094 * We stop each event and update the event value in event->count.
2095 *
2096 * This does not protect us against NMI, but disable()
2097 * sets the disabled bit in the control field of event _before_
2098 * accessing the event control register. If a NMI hits, then it will
2099 * not restart the event.
2100 */
ab0cce56
JO
2101void __perf_event_task_sched_out(struct task_struct *task,
2102 struct task_struct *next)
8dc85d54
PZ
2103{
2104 int ctxn;
2105
8dc85d54
PZ
2106 for_each_task_context_nr(ctxn)
2107 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2108
2109 /*
2110 * if cgroup events exist on this CPU, then we need
2111 * to check if we have to switch out PMU state.
2112 * cgroup event are system-wide mode only
2113 */
2114 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2115 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2116}
2117
04dc2dbb 2118static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2119{
108b02cf 2120 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2121
a63eaf34
PM
2122 if (!cpuctx->task_ctx)
2123 return;
012b84da
IM
2124
2125 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2126 return;
2127
04dc2dbb 2128 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2129 cpuctx->task_ctx = NULL;
2130}
2131
5b0311e1
FW
2132/*
2133 * Called with IRQs disabled
2134 */
2135static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2136 enum event_type_t event_type)
2137{
2138 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2139}
2140
235c7fc7 2141static void
5b0311e1 2142ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2143 struct perf_cpu_context *cpuctx)
0793a61d 2144{
cdd6c482 2145 struct perf_event *event;
0793a61d 2146
889ff015
FW
2147 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2148 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2149 continue;
5632ab12 2150 if (!event_filter_match(event))
3b6f9e5c
PM
2151 continue;
2152
e5d1367f
SE
2153 /* may need to reset tstamp_enabled */
2154 if (is_cgroup_event(event))
2155 perf_cgroup_mark_enabled(event, ctx);
2156
8c9ed8e1 2157 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2158 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2159
2160 /*
2161 * If this pinned group hasn't been scheduled,
2162 * put it in error state.
2163 */
cdd6c482
IM
2164 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2165 update_group_times(event);
2166 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2167 }
3b6f9e5c 2168 }
5b0311e1
FW
2169}
2170
2171static void
2172ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2173 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2174{
2175 struct perf_event *event;
2176 int can_add_hw = 1;
3b6f9e5c 2177
889ff015
FW
2178 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2179 /* Ignore events in OFF or ERROR state */
2180 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2181 continue;
04289bb9
IM
2182 /*
2183 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2184 * of events:
04289bb9 2185 */
5632ab12 2186 if (!event_filter_match(event))
0793a61d
TG
2187 continue;
2188
e5d1367f
SE
2189 /* may need to reset tstamp_enabled */
2190 if (is_cgroup_event(event))
2191 perf_cgroup_mark_enabled(event, ctx);
2192
9ed6060d 2193 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2194 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2195 can_add_hw = 0;
9ed6060d 2196 }
0793a61d 2197 }
5b0311e1
FW
2198}
2199
2200static void
2201ctx_sched_in(struct perf_event_context *ctx,
2202 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2203 enum event_type_t event_type,
2204 struct task_struct *task)
5b0311e1 2205{
e5d1367f 2206 u64 now;
db24d33e 2207 int is_active = ctx->is_active;
e5d1367f 2208
db24d33e 2209 ctx->is_active |= event_type;
5b0311e1 2210 if (likely(!ctx->nr_events))
facc4307 2211 return;
5b0311e1 2212
e5d1367f
SE
2213 now = perf_clock();
2214 ctx->timestamp = now;
3f7cce3c 2215 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2216 /*
2217 * First go through the list and put on any pinned groups
2218 * in order to give them the best chance of going on.
2219 */
db24d33e 2220 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2221 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2222
2223 /* Then walk through the lower prio flexible groups */
db24d33e 2224 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2225 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2226}
2227
329c0e01 2228static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2229 enum event_type_t event_type,
2230 struct task_struct *task)
329c0e01
FW
2231{
2232 struct perf_event_context *ctx = &cpuctx->ctx;
2233
e5d1367f 2234 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2235}
2236
e5d1367f
SE
2237static void perf_event_context_sched_in(struct perf_event_context *ctx,
2238 struct task_struct *task)
235c7fc7 2239{
108b02cf 2240 struct perf_cpu_context *cpuctx;
235c7fc7 2241
108b02cf 2242 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2243 if (cpuctx->task_ctx == ctx)
2244 return;
2245
facc4307 2246 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2247 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2248 /*
2249 * We want to keep the following priority order:
2250 * cpu pinned (that don't need to move), task pinned,
2251 * cpu flexible, task flexible.
2252 */
2253 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2254
1d5f003f
GN
2255 if (ctx->nr_events)
2256 cpuctx->task_ctx = ctx;
9b33fa6b 2257
86b47c25
GN
2258 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2259
facc4307
PZ
2260 perf_pmu_enable(ctx->pmu);
2261 perf_ctx_unlock(cpuctx, ctx);
2262
b5ab4cd5
PZ
2263 /*
2264 * Since these rotations are per-cpu, we need to ensure the
2265 * cpu-context we got scheduled on is actually rotating.
2266 */
108b02cf 2267 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2268}
2269
d010b332
SE
2270/*
2271 * When sampling the branck stack in system-wide, it may be necessary
2272 * to flush the stack on context switch. This happens when the branch
2273 * stack does not tag its entries with the pid of the current task.
2274 * Otherwise it becomes impossible to associate a branch entry with a
2275 * task. This ambiguity is more likely to appear when the branch stack
2276 * supports priv level filtering and the user sets it to monitor only
2277 * at the user level (which could be a useful measurement in system-wide
2278 * mode). In that case, the risk is high of having a branch stack with
2279 * branch from multiple tasks. Flushing may mean dropping the existing
2280 * entries or stashing them somewhere in the PMU specific code layer.
2281 *
2282 * This function provides the context switch callback to the lower code
2283 * layer. It is invoked ONLY when there is at least one system-wide context
2284 * with at least one active event using taken branch sampling.
2285 */
2286static void perf_branch_stack_sched_in(struct task_struct *prev,
2287 struct task_struct *task)
2288{
2289 struct perf_cpu_context *cpuctx;
2290 struct pmu *pmu;
2291 unsigned long flags;
2292
2293 /* no need to flush branch stack if not changing task */
2294 if (prev == task)
2295 return;
2296
2297 local_irq_save(flags);
2298
2299 rcu_read_lock();
2300
2301 list_for_each_entry_rcu(pmu, &pmus, entry) {
2302 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2303
2304 /*
2305 * check if the context has at least one
2306 * event using PERF_SAMPLE_BRANCH_STACK
2307 */
2308 if (cpuctx->ctx.nr_branch_stack > 0
2309 && pmu->flush_branch_stack) {
2310
2311 pmu = cpuctx->ctx.pmu;
2312
2313 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2314
2315 perf_pmu_disable(pmu);
2316
2317 pmu->flush_branch_stack();
2318
2319 perf_pmu_enable(pmu);
2320
2321 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2322 }
2323 }
2324
2325 rcu_read_unlock();
2326
2327 local_irq_restore(flags);
2328}
2329
8dc85d54
PZ
2330/*
2331 * Called from scheduler to add the events of the current task
2332 * with interrupts disabled.
2333 *
2334 * We restore the event value and then enable it.
2335 *
2336 * This does not protect us against NMI, but enable()
2337 * sets the enabled bit in the control field of event _before_
2338 * accessing the event control register. If a NMI hits, then it will
2339 * keep the event running.
2340 */
ab0cce56
JO
2341void __perf_event_task_sched_in(struct task_struct *prev,
2342 struct task_struct *task)
8dc85d54
PZ
2343{
2344 struct perf_event_context *ctx;
2345 int ctxn;
2346
2347 for_each_task_context_nr(ctxn) {
2348 ctx = task->perf_event_ctxp[ctxn];
2349 if (likely(!ctx))
2350 continue;
2351
e5d1367f 2352 perf_event_context_sched_in(ctx, task);
8dc85d54 2353 }
e5d1367f
SE
2354 /*
2355 * if cgroup events exist on this CPU, then we need
2356 * to check if we have to switch in PMU state.
2357 * cgroup event are system-wide mode only
2358 */
2359 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2360 perf_cgroup_sched_in(prev, task);
d010b332
SE
2361
2362 /* check for system-wide branch_stack events */
2363 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2364 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2365}
2366
abd50713
PZ
2367static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2368{
2369 u64 frequency = event->attr.sample_freq;
2370 u64 sec = NSEC_PER_SEC;
2371 u64 divisor, dividend;
2372
2373 int count_fls, nsec_fls, frequency_fls, sec_fls;
2374
2375 count_fls = fls64(count);
2376 nsec_fls = fls64(nsec);
2377 frequency_fls = fls64(frequency);
2378 sec_fls = 30;
2379
2380 /*
2381 * We got @count in @nsec, with a target of sample_freq HZ
2382 * the target period becomes:
2383 *
2384 * @count * 10^9
2385 * period = -------------------
2386 * @nsec * sample_freq
2387 *
2388 */
2389
2390 /*
2391 * Reduce accuracy by one bit such that @a and @b converge
2392 * to a similar magnitude.
2393 */
fe4b04fa 2394#define REDUCE_FLS(a, b) \
abd50713
PZ
2395do { \
2396 if (a##_fls > b##_fls) { \
2397 a >>= 1; \
2398 a##_fls--; \
2399 } else { \
2400 b >>= 1; \
2401 b##_fls--; \
2402 } \
2403} while (0)
2404
2405 /*
2406 * Reduce accuracy until either term fits in a u64, then proceed with
2407 * the other, so that finally we can do a u64/u64 division.
2408 */
2409 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2410 REDUCE_FLS(nsec, frequency);
2411 REDUCE_FLS(sec, count);
2412 }
2413
2414 if (count_fls + sec_fls > 64) {
2415 divisor = nsec * frequency;
2416
2417 while (count_fls + sec_fls > 64) {
2418 REDUCE_FLS(count, sec);
2419 divisor >>= 1;
2420 }
2421
2422 dividend = count * sec;
2423 } else {
2424 dividend = count * sec;
2425
2426 while (nsec_fls + frequency_fls > 64) {
2427 REDUCE_FLS(nsec, frequency);
2428 dividend >>= 1;
2429 }
2430
2431 divisor = nsec * frequency;
2432 }
2433
f6ab91ad
PZ
2434 if (!divisor)
2435 return dividend;
2436
abd50713
PZ
2437 return div64_u64(dividend, divisor);
2438}
2439
e050e3f0
SE
2440static DEFINE_PER_CPU(int, perf_throttled_count);
2441static DEFINE_PER_CPU(u64, perf_throttled_seq);
2442
f39d47ff 2443static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2444{
cdd6c482 2445 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2446 s64 period, sample_period;
bd2b5b12
PZ
2447 s64 delta;
2448
abd50713 2449 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2450
2451 delta = (s64)(period - hwc->sample_period);
2452 delta = (delta + 7) / 8; /* low pass filter */
2453
2454 sample_period = hwc->sample_period + delta;
2455
2456 if (!sample_period)
2457 sample_period = 1;
2458
bd2b5b12 2459 hwc->sample_period = sample_period;
abd50713 2460
e7850595 2461 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2462 if (disable)
2463 event->pmu->stop(event, PERF_EF_UPDATE);
2464
e7850595 2465 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2466
2467 if (disable)
2468 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2469 }
bd2b5b12
PZ
2470}
2471
e050e3f0
SE
2472/*
2473 * combine freq adjustment with unthrottling to avoid two passes over the
2474 * events. At the same time, make sure, having freq events does not change
2475 * the rate of unthrottling as that would introduce bias.
2476 */
2477static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2478 int needs_unthr)
60db5e09 2479{
cdd6c482
IM
2480 struct perf_event *event;
2481 struct hw_perf_event *hwc;
e050e3f0 2482 u64 now, period = TICK_NSEC;
abd50713 2483 s64 delta;
60db5e09 2484
e050e3f0
SE
2485 /*
2486 * only need to iterate over all events iff:
2487 * - context have events in frequency mode (needs freq adjust)
2488 * - there are events to unthrottle on this cpu
2489 */
2490 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2491 return;
2492
e050e3f0 2493 raw_spin_lock(&ctx->lock);
f39d47ff 2494 perf_pmu_disable(ctx->pmu);
e050e3f0 2495
03541f8b 2496 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2497 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2498 continue;
2499
5632ab12 2500 if (!event_filter_match(event))
5d27c23d
PZ
2501 continue;
2502
cdd6c482 2503 hwc = &event->hw;
6a24ed6c 2504
e050e3f0
SE
2505 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2506 hwc->interrupts = 0;
cdd6c482 2507 perf_log_throttle(event, 1);
a4eaf7f1 2508 event->pmu->start(event, 0);
a78ac325
PZ
2509 }
2510
cdd6c482 2511 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2512 continue;
2513
e050e3f0
SE
2514 /*
2515 * stop the event and update event->count
2516 */
2517 event->pmu->stop(event, PERF_EF_UPDATE);
2518
e7850595 2519 now = local64_read(&event->count);
abd50713
PZ
2520 delta = now - hwc->freq_count_stamp;
2521 hwc->freq_count_stamp = now;
60db5e09 2522
e050e3f0
SE
2523 /*
2524 * restart the event
2525 * reload only if value has changed
f39d47ff
SE
2526 * we have stopped the event so tell that
2527 * to perf_adjust_period() to avoid stopping it
2528 * twice.
e050e3f0 2529 */
abd50713 2530 if (delta > 0)
f39d47ff 2531 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2532
2533 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2534 }
e050e3f0 2535
f39d47ff 2536 perf_pmu_enable(ctx->pmu);
e050e3f0 2537 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2538}
2539
235c7fc7 2540/*
cdd6c482 2541 * Round-robin a context's events:
235c7fc7 2542 */
cdd6c482 2543static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2544{
dddd3379
TG
2545 /*
2546 * Rotate the first entry last of non-pinned groups. Rotation might be
2547 * disabled by the inheritance code.
2548 */
2549 if (!ctx->rotate_disable)
2550 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2551}
2552
b5ab4cd5 2553/*
e9d2b064
PZ
2554 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2555 * because they're strictly cpu affine and rotate_start is called with IRQs
2556 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2557 */
e9d2b064 2558static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2559{
8dc85d54 2560 struct perf_event_context *ctx = NULL;
e050e3f0 2561 int rotate = 0, remove = 1;
7fc23a53 2562
b5ab4cd5 2563 if (cpuctx->ctx.nr_events) {
e9d2b064 2564 remove = 0;
b5ab4cd5
PZ
2565 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2566 rotate = 1;
2567 }
235c7fc7 2568
8dc85d54 2569 ctx = cpuctx->task_ctx;
b5ab4cd5 2570 if (ctx && ctx->nr_events) {
e9d2b064 2571 remove = 0;
b5ab4cd5
PZ
2572 if (ctx->nr_events != ctx->nr_active)
2573 rotate = 1;
2574 }
9717e6cd 2575
e050e3f0 2576 if (!rotate)
0f5a2601
PZ
2577 goto done;
2578
facc4307 2579 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2580 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2581
e050e3f0
SE
2582 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2583 if (ctx)
2584 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2585
e050e3f0
SE
2586 rotate_ctx(&cpuctx->ctx);
2587 if (ctx)
2588 rotate_ctx(ctx);
235c7fc7 2589
e050e3f0 2590 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2591
0f5a2601
PZ
2592 perf_pmu_enable(cpuctx->ctx.pmu);
2593 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2594done:
e9d2b064
PZ
2595 if (remove)
2596 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2597}
2598
026249ef
FW
2599#ifdef CONFIG_NO_HZ_FULL
2600bool perf_event_can_stop_tick(void)
2601{
2602 if (list_empty(&__get_cpu_var(rotation_list)))
2603 return true;
2604 else
2605 return false;
2606}
2607#endif
2608
e9d2b064
PZ
2609void perf_event_task_tick(void)
2610{
2611 struct list_head *head = &__get_cpu_var(rotation_list);
2612 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2613 struct perf_event_context *ctx;
2614 int throttled;
b5ab4cd5 2615
e9d2b064
PZ
2616 WARN_ON(!irqs_disabled());
2617
e050e3f0
SE
2618 __this_cpu_inc(perf_throttled_seq);
2619 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2620
e9d2b064 2621 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2622 ctx = &cpuctx->ctx;
2623 perf_adjust_freq_unthr_context(ctx, throttled);
2624
2625 ctx = cpuctx->task_ctx;
2626 if (ctx)
2627 perf_adjust_freq_unthr_context(ctx, throttled);
2628
e9d2b064
PZ
2629 if (cpuctx->jiffies_interval == 1 ||
2630 !(jiffies % cpuctx->jiffies_interval))
2631 perf_rotate_context(cpuctx);
2632 }
0793a61d
TG
2633}
2634
889ff015
FW
2635static int event_enable_on_exec(struct perf_event *event,
2636 struct perf_event_context *ctx)
2637{
2638 if (!event->attr.enable_on_exec)
2639 return 0;
2640
2641 event->attr.enable_on_exec = 0;
2642 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2643 return 0;
2644
1d9b482e 2645 __perf_event_mark_enabled(event);
889ff015
FW
2646
2647 return 1;
2648}
2649
57e7986e 2650/*
cdd6c482 2651 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2652 * This expects task == current.
2653 */
8dc85d54 2654static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2655{
cdd6c482 2656 struct perf_event *event;
57e7986e
PM
2657 unsigned long flags;
2658 int enabled = 0;
889ff015 2659 int ret;
57e7986e
PM
2660
2661 local_irq_save(flags);
cdd6c482 2662 if (!ctx || !ctx->nr_events)
57e7986e
PM
2663 goto out;
2664
e566b76e
SE
2665 /*
2666 * We must ctxsw out cgroup events to avoid conflict
2667 * when invoking perf_task_event_sched_in() later on
2668 * in this function. Otherwise we end up trying to
2669 * ctxswin cgroup events which are already scheduled
2670 * in.
2671 */
a8d757ef 2672 perf_cgroup_sched_out(current, NULL);
57e7986e 2673
e625cce1 2674 raw_spin_lock(&ctx->lock);
04dc2dbb 2675 task_ctx_sched_out(ctx);
57e7986e 2676
b79387ef 2677 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2678 ret = event_enable_on_exec(event, ctx);
2679 if (ret)
2680 enabled = 1;
57e7986e
PM
2681 }
2682
2683 /*
cdd6c482 2684 * Unclone this context if we enabled any event.
57e7986e 2685 */
71a851b4
PZ
2686 if (enabled)
2687 unclone_ctx(ctx);
57e7986e 2688
e625cce1 2689 raw_spin_unlock(&ctx->lock);
57e7986e 2690
e566b76e
SE
2691 /*
2692 * Also calls ctxswin for cgroup events, if any:
2693 */
e5d1367f 2694 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2695out:
57e7986e
PM
2696 local_irq_restore(flags);
2697}
2698
0793a61d 2699/*
cdd6c482 2700 * Cross CPU call to read the hardware event
0793a61d 2701 */
cdd6c482 2702static void __perf_event_read(void *info)
0793a61d 2703{
cdd6c482
IM
2704 struct perf_event *event = info;
2705 struct perf_event_context *ctx = event->ctx;
108b02cf 2706 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2707
e1ac3614
PM
2708 /*
2709 * If this is a task context, we need to check whether it is
2710 * the current task context of this cpu. If not it has been
2711 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2712 * event->count would have been updated to a recent sample
2713 * when the event was scheduled out.
e1ac3614
PM
2714 */
2715 if (ctx->task && cpuctx->task_ctx != ctx)
2716 return;
2717
e625cce1 2718 raw_spin_lock(&ctx->lock);
e5d1367f 2719 if (ctx->is_active) {
542e72fc 2720 update_context_time(ctx);
e5d1367f
SE
2721 update_cgrp_time_from_event(event);
2722 }
cdd6c482 2723 update_event_times(event);
542e72fc
PZ
2724 if (event->state == PERF_EVENT_STATE_ACTIVE)
2725 event->pmu->read(event);
e625cce1 2726 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2727}
2728
b5e58793
PZ
2729static inline u64 perf_event_count(struct perf_event *event)
2730{
e7850595 2731 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2732}
2733
cdd6c482 2734static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2735{
2736 /*
cdd6c482
IM
2737 * If event is enabled and currently active on a CPU, update the
2738 * value in the event structure:
0793a61d 2739 */
cdd6c482
IM
2740 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2741 smp_call_function_single(event->oncpu,
2742 __perf_event_read, event, 1);
2743 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2744 struct perf_event_context *ctx = event->ctx;
2745 unsigned long flags;
2746
e625cce1 2747 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2748 /*
2749 * may read while context is not active
2750 * (e.g., thread is blocked), in that case
2751 * we cannot update context time
2752 */
e5d1367f 2753 if (ctx->is_active) {
c530ccd9 2754 update_context_time(ctx);
e5d1367f
SE
2755 update_cgrp_time_from_event(event);
2756 }
cdd6c482 2757 update_event_times(event);
e625cce1 2758 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2759 }
2760
b5e58793 2761 return perf_event_count(event);
0793a61d
TG
2762}
2763
a63eaf34 2764/*
cdd6c482 2765 * Initialize the perf_event context in a task_struct:
a63eaf34 2766 */
eb184479 2767static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2768{
e625cce1 2769 raw_spin_lock_init(&ctx->lock);
a63eaf34 2770 mutex_init(&ctx->mutex);
889ff015
FW
2771 INIT_LIST_HEAD(&ctx->pinned_groups);
2772 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2773 INIT_LIST_HEAD(&ctx->event_list);
2774 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2775}
2776
2777static struct perf_event_context *
2778alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2779{
2780 struct perf_event_context *ctx;
2781
2782 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2783 if (!ctx)
2784 return NULL;
2785
2786 __perf_event_init_context(ctx);
2787 if (task) {
2788 ctx->task = task;
2789 get_task_struct(task);
0793a61d 2790 }
eb184479
PZ
2791 ctx->pmu = pmu;
2792
2793 return ctx;
a63eaf34
PM
2794}
2795
2ebd4ffb
MH
2796static struct task_struct *
2797find_lively_task_by_vpid(pid_t vpid)
2798{
2799 struct task_struct *task;
2800 int err;
0793a61d
TG
2801
2802 rcu_read_lock();
2ebd4ffb 2803 if (!vpid)
0793a61d
TG
2804 task = current;
2805 else
2ebd4ffb 2806 task = find_task_by_vpid(vpid);
0793a61d
TG
2807 if (task)
2808 get_task_struct(task);
2809 rcu_read_unlock();
2810
2811 if (!task)
2812 return ERR_PTR(-ESRCH);
2813
0793a61d 2814 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2815 err = -EACCES;
2816 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2817 goto errout;
2818
2ebd4ffb
MH
2819 return task;
2820errout:
2821 put_task_struct(task);
2822 return ERR_PTR(err);
2823
2824}
2825
fe4b04fa
PZ
2826/*
2827 * Returns a matching context with refcount and pincount.
2828 */
108b02cf 2829static struct perf_event_context *
38a81da2 2830find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2831{
cdd6c482 2832 struct perf_event_context *ctx;
22a4f650 2833 struct perf_cpu_context *cpuctx;
25346b93 2834 unsigned long flags;
8dc85d54 2835 int ctxn, err;
0793a61d 2836
22a4ec72 2837 if (!task) {
cdd6c482 2838 /* Must be root to operate on a CPU event: */
0764771d 2839 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2840 return ERR_PTR(-EACCES);
2841
0793a61d 2842 /*
cdd6c482 2843 * We could be clever and allow to attach a event to an
0793a61d
TG
2844 * offline CPU and activate it when the CPU comes up, but
2845 * that's for later.
2846 */
f6325e30 2847 if (!cpu_online(cpu))
0793a61d
TG
2848 return ERR_PTR(-ENODEV);
2849
108b02cf 2850 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2851 ctx = &cpuctx->ctx;
c93f7669 2852 get_ctx(ctx);
fe4b04fa 2853 ++ctx->pin_count;
0793a61d 2854
0793a61d
TG
2855 return ctx;
2856 }
2857
8dc85d54
PZ
2858 err = -EINVAL;
2859 ctxn = pmu->task_ctx_nr;
2860 if (ctxn < 0)
2861 goto errout;
2862
9ed6060d 2863retry:
8dc85d54 2864 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2865 if (ctx) {
71a851b4 2866 unclone_ctx(ctx);
fe4b04fa 2867 ++ctx->pin_count;
e625cce1 2868 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2869 } else {
eb184479 2870 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2871 err = -ENOMEM;
2872 if (!ctx)
2873 goto errout;
eb184479 2874
dbe08d82
ON
2875 err = 0;
2876 mutex_lock(&task->perf_event_mutex);
2877 /*
2878 * If it has already passed perf_event_exit_task().
2879 * we must see PF_EXITING, it takes this mutex too.
2880 */
2881 if (task->flags & PF_EXITING)
2882 err = -ESRCH;
2883 else if (task->perf_event_ctxp[ctxn])
2884 err = -EAGAIN;
fe4b04fa 2885 else {
9137fb28 2886 get_ctx(ctx);
fe4b04fa 2887 ++ctx->pin_count;
dbe08d82 2888 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2889 }
dbe08d82
ON
2890 mutex_unlock(&task->perf_event_mutex);
2891
2892 if (unlikely(err)) {
9137fb28 2893 put_ctx(ctx);
dbe08d82
ON
2894
2895 if (err == -EAGAIN)
2896 goto retry;
2897 goto errout;
a63eaf34
PM
2898 }
2899 }
2900
0793a61d 2901 return ctx;
c93f7669 2902
9ed6060d 2903errout:
c93f7669 2904 return ERR_PTR(err);
0793a61d
TG
2905}
2906
6fb2915d
LZ
2907static void perf_event_free_filter(struct perf_event *event);
2908
cdd6c482 2909static void free_event_rcu(struct rcu_head *head)
592903cd 2910{
cdd6c482 2911 struct perf_event *event;
592903cd 2912
cdd6c482
IM
2913 event = container_of(head, struct perf_event, rcu_head);
2914 if (event->ns)
2915 put_pid_ns(event->ns);
6fb2915d 2916 perf_event_free_filter(event);
cdd6c482 2917 kfree(event);
592903cd
PZ
2918}
2919
76369139 2920static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2921
cdd6c482 2922static void free_event(struct perf_event *event)
f1600952 2923{
e360adbe 2924 irq_work_sync(&event->pending);
925d519a 2925
cdd6c482 2926 if (!event->parent) {
82cd6def 2927 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2928 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2929 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2930 atomic_dec(&nr_mmap_events);
2931 if (event->attr.comm)
2932 atomic_dec(&nr_comm_events);
2933 if (event->attr.task)
2934 atomic_dec(&nr_task_events);
927c7a9e
FW
2935 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2936 put_callchain_buffers();
08309379
PZ
2937 if (is_cgroup_event(event)) {
2938 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2939 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2940 }
d010b332
SE
2941
2942 if (has_branch_stack(event)) {
2943 static_key_slow_dec_deferred(&perf_sched_events);
2944 /* is system-wide event */
2945 if (!(event->attach_state & PERF_ATTACH_TASK))
2946 atomic_dec(&per_cpu(perf_branch_stack_events,
2947 event->cpu));
2948 }
f344011c 2949 }
9ee318a7 2950
76369139
FW
2951 if (event->rb) {
2952 ring_buffer_put(event->rb);
2953 event->rb = NULL;
a4be7c27
PZ
2954 }
2955
e5d1367f
SE
2956 if (is_cgroup_event(event))
2957 perf_detach_cgroup(event);
2958
cdd6c482
IM
2959 if (event->destroy)
2960 event->destroy(event);
e077df4f 2961
0c67b408
PZ
2962 if (event->ctx)
2963 put_ctx(event->ctx);
2964
cdd6c482 2965 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2966}
2967
a66a3052 2968int perf_event_release_kernel(struct perf_event *event)
0793a61d 2969{
cdd6c482 2970 struct perf_event_context *ctx = event->ctx;
0793a61d 2971
ad3a37de 2972 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2973 /*
2974 * There are two ways this annotation is useful:
2975 *
2976 * 1) there is a lock recursion from perf_event_exit_task
2977 * see the comment there.
2978 *
2979 * 2) there is a lock-inversion with mmap_sem through
2980 * perf_event_read_group(), which takes faults while
2981 * holding ctx->mutex, however this is called after
2982 * the last filedesc died, so there is no possibility
2983 * to trigger the AB-BA case.
2984 */
2985 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2986 raw_spin_lock_irq(&ctx->lock);
8a49542c 2987 perf_group_detach(event);
050735b0 2988 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2989 perf_remove_from_context(event);
d859e29f 2990 mutex_unlock(&ctx->mutex);
0793a61d 2991
cdd6c482 2992 free_event(event);
0793a61d
TG
2993
2994 return 0;
2995}
a66a3052 2996EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2997
a66a3052
PZ
2998/*
2999 * Called when the last reference to the file is gone.
3000 */
a6fa941d 3001static void put_event(struct perf_event *event)
fb0459d7 3002{
8882135b 3003 struct task_struct *owner;
fb0459d7 3004
a6fa941d
AV
3005 if (!atomic_long_dec_and_test(&event->refcount))
3006 return;
fb0459d7 3007
8882135b
PZ
3008 rcu_read_lock();
3009 owner = ACCESS_ONCE(event->owner);
3010 /*
3011 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3012 * !owner it means the list deletion is complete and we can indeed
3013 * free this event, otherwise we need to serialize on
3014 * owner->perf_event_mutex.
3015 */
3016 smp_read_barrier_depends();
3017 if (owner) {
3018 /*
3019 * Since delayed_put_task_struct() also drops the last
3020 * task reference we can safely take a new reference
3021 * while holding the rcu_read_lock().
3022 */
3023 get_task_struct(owner);
3024 }
3025 rcu_read_unlock();
3026
3027 if (owner) {
3028 mutex_lock(&owner->perf_event_mutex);
3029 /*
3030 * We have to re-check the event->owner field, if it is cleared
3031 * we raced with perf_event_exit_task(), acquiring the mutex
3032 * ensured they're done, and we can proceed with freeing the
3033 * event.
3034 */
3035 if (event->owner)
3036 list_del_init(&event->owner_entry);
3037 mutex_unlock(&owner->perf_event_mutex);
3038 put_task_struct(owner);
3039 }
3040
a6fa941d
AV
3041 perf_event_release_kernel(event);
3042}
3043
3044static int perf_release(struct inode *inode, struct file *file)
3045{
3046 put_event(file->private_data);
3047 return 0;
fb0459d7 3048}
fb0459d7 3049
59ed446f 3050u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3051{
cdd6c482 3052 struct perf_event *child;
e53c0994
PZ
3053 u64 total = 0;
3054
59ed446f
PZ
3055 *enabled = 0;
3056 *running = 0;
3057
6f10581a 3058 mutex_lock(&event->child_mutex);
cdd6c482 3059 total += perf_event_read(event);
59ed446f
PZ
3060 *enabled += event->total_time_enabled +
3061 atomic64_read(&event->child_total_time_enabled);
3062 *running += event->total_time_running +
3063 atomic64_read(&event->child_total_time_running);
3064
3065 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3066 total += perf_event_read(child);
59ed446f
PZ
3067 *enabled += child->total_time_enabled;
3068 *running += child->total_time_running;
3069 }
6f10581a 3070 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3071
3072 return total;
3073}
fb0459d7 3074EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3075
cdd6c482 3076static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3077 u64 read_format, char __user *buf)
3078{
cdd6c482 3079 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3080 int n = 0, size = 0, ret = -EFAULT;
3081 struct perf_event_context *ctx = leader->ctx;
abf4868b 3082 u64 values[5];
59ed446f 3083 u64 count, enabled, running;
abf4868b 3084
6f10581a 3085 mutex_lock(&ctx->mutex);
59ed446f 3086 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3087
3088 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3089 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3090 values[n++] = enabled;
3091 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3092 values[n++] = running;
abf4868b
PZ
3093 values[n++] = count;
3094 if (read_format & PERF_FORMAT_ID)
3095 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3096
3097 size = n * sizeof(u64);
3098
3099 if (copy_to_user(buf, values, size))
6f10581a 3100 goto unlock;
3dab77fb 3101
6f10581a 3102 ret = size;
3dab77fb 3103
65abc865 3104 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3105 n = 0;
3dab77fb 3106
59ed446f 3107 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3108 if (read_format & PERF_FORMAT_ID)
3109 values[n++] = primary_event_id(sub);
3110
3111 size = n * sizeof(u64);
3112
184d3da8 3113 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3114 ret = -EFAULT;
3115 goto unlock;
3116 }
abf4868b
PZ
3117
3118 ret += size;
3dab77fb 3119 }
6f10581a
PZ
3120unlock:
3121 mutex_unlock(&ctx->mutex);
3dab77fb 3122
abf4868b 3123 return ret;
3dab77fb
PZ
3124}
3125
cdd6c482 3126static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3127 u64 read_format, char __user *buf)
3128{
59ed446f 3129 u64 enabled, running;
3dab77fb
PZ
3130 u64 values[4];
3131 int n = 0;
3132
59ed446f
PZ
3133 values[n++] = perf_event_read_value(event, &enabled, &running);
3134 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3135 values[n++] = enabled;
3136 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3137 values[n++] = running;
3dab77fb 3138 if (read_format & PERF_FORMAT_ID)
cdd6c482 3139 values[n++] = primary_event_id(event);
3dab77fb
PZ
3140
3141 if (copy_to_user(buf, values, n * sizeof(u64)))
3142 return -EFAULT;
3143
3144 return n * sizeof(u64);
3145}
3146
0793a61d 3147/*
cdd6c482 3148 * Read the performance event - simple non blocking version for now
0793a61d
TG
3149 */
3150static ssize_t
cdd6c482 3151perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3152{
cdd6c482 3153 u64 read_format = event->attr.read_format;
3dab77fb 3154 int ret;
0793a61d 3155
3b6f9e5c 3156 /*
cdd6c482 3157 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3158 * error state (i.e. because it was pinned but it couldn't be
3159 * scheduled on to the CPU at some point).
3160 */
cdd6c482 3161 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3162 return 0;
3163
c320c7b7 3164 if (count < event->read_size)
3dab77fb
PZ
3165 return -ENOSPC;
3166
cdd6c482 3167 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3168 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3169 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3170 else
cdd6c482 3171 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3172
3dab77fb 3173 return ret;
0793a61d
TG
3174}
3175
0793a61d
TG
3176static ssize_t
3177perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3178{
cdd6c482 3179 struct perf_event *event = file->private_data;
0793a61d 3180
cdd6c482 3181 return perf_read_hw(event, buf, count);
0793a61d
TG
3182}
3183
3184static unsigned int perf_poll(struct file *file, poll_table *wait)
3185{
cdd6c482 3186 struct perf_event *event = file->private_data;
76369139 3187 struct ring_buffer *rb;
c33a0bc4 3188 unsigned int events = POLL_HUP;
c7138f37 3189
10c6db11
PZ
3190 /*
3191 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3192 * grabs the rb reference but perf_event_set_output() overrides it.
3193 * Here is the timeline for two threads T1, T2:
3194 * t0: T1, rb = rcu_dereference(event->rb)
3195 * t1: T2, old_rb = event->rb
3196 * t2: T2, event->rb = new rb
3197 * t3: T2, ring_buffer_detach(old_rb)
3198 * t4: T1, ring_buffer_attach(rb1)
3199 * t5: T1, poll_wait(event->waitq)
3200 *
3201 * To avoid this problem, we grab mmap_mutex in perf_poll()
3202 * thereby ensuring that the assignment of the new ring buffer
3203 * and the detachment of the old buffer appear atomic to perf_poll()
3204 */
3205 mutex_lock(&event->mmap_mutex);
3206
c7138f37 3207 rcu_read_lock();
76369139 3208 rb = rcu_dereference(event->rb);
10c6db11
PZ
3209 if (rb) {
3210 ring_buffer_attach(event, rb);
76369139 3211 events = atomic_xchg(&rb->poll, 0);
10c6db11 3212 }
c7138f37 3213 rcu_read_unlock();
0793a61d 3214
10c6db11
PZ
3215 mutex_unlock(&event->mmap_mutex);
3216
cdd6c482 3217 poll_wait(file, &event->waitq, wait);
0793a61d 3218
0793a61d
TG
3219 return events;
3220}
3221
cdd6c482 3222static void perf_event_reset(struct perf_event *event)
6de6a7b9 3223{
cdd6c482 3224 (void)perf_event_read(event);
e7850595 3225 local64_set(&event->count, 0);
cdd6c482 3226 perf_event_update_userpage(event);
3df5edad
PZ
3227}
3228
c93f7669 3229/*
cdd6c482
IM
3230 * Holding the top-level event's child_mutex means that any
3231 * descendant process that has inherited this event will block
3232 * in sync_child_event if it goes to exit, thus satisfying the
3233 * task existence requirements of perf_event_enable/disable.
c93f7669 3234 */
cdd6c482
IM
3235static void perf_event_for_each_child(struct perf_event *event,
3236 void (*func)(struct perf_event *))
3df5edad 3237{
cdd6c482 3238 struct perf_event *child;
3df5edad 3239
cdd6c482
IM
3240 WARN_ON_ONCE(event->ctx->parent_ctx);
3241 mutex_lock(&event->child_mutex);
3242 func(event);
3243 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3244 func(child);
cdd6c482 3245 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3246}
3247
cdd6c482
IM
3248static void perf_event_for_each(struct perf_event *event,
3249 void (*func)(struct perf_event *))
3df5edad 3250{
cdd6c482
IM
3251 struct perf_event_context *ctx = event->ctx;
3252 struct perf_event *sibling;
3df5edad 3253
75f937f2
PZ
3254 WARN_ON_ONCE(ctx->parent_ctx);
3255 mutex_lock(&ctx->mutex);
cdd6c482 3256 event = event->group_leader;
75f937f2 3257
cdd6c482 3258 perf_event_for_each_child(event, func);
cdd6c482 3259 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3260 perf_event_for_each_child(sibling, func);
75f937f2 3261 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3262}
3263
cdd6c482 3264static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3265{
cdd6c482 3266 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3267 int ret = 0;
3268 u64 value;
3269
6c7e550f 3270 if (!is_sampling_event(event))
08247e31
PZ
3271 return -EINVAL;
3272
ad0cf347 3273 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3274 return -EFAULT;
3275
3276 if (!value)
3277 return -EINVAL;
3278
e625cce1 3279 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3280 if (event->attr.freq) {
3281 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3282 ret = -EINVAL;
3283 goto unlock;
3284 }
3285
cdd6c482 3286 event->attr.sample_freq = value;
08247e31 3287 } else {
cdd6c482
IM
3288 event->attr.sample_period = value;
3289 event->hw.sample_period = value;
08247e31
PZ
3290 }
3291unlock:
e625cce1 3292 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3293
3294 return ret;
3295}
3296
ac9721f3
PZ
3297static const struct file_operations perf_fops;
3298
2903ff01 3299static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3300{
2903ff01
AV
3301 struct fd f = fdget(fd);
3302 if (!f.file)
3303 return -EBADF;
ac9721f3 3304
2903ff01
AV
3305 if (f.file->f_op != &perf_fops) {
3306 fdput(f);
3307 return -EBADF;
ac9721f3 3308 }
2903ff01
AV
3309 *p = f;
3310 return 0;
ac9721f3
PZ
3311}
3312
3313static int perf_event_set_output(struct perf_event *event,
3314 struct perf_event *output_event);
6fb2915d 3315static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3316
d859e29f
PM
3317static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3318{
cdd6c482
IM
3319 struct perf_event *event = file->private_data;
3320 void (*func)(struct perf_event *);
3df5edad 3321 u32 flags = arg;
d859e29f
PM
3322
3323 switch (cmd) {
cdd6c482
IM
3324 case PERF_EVENT_IOC_ENABLE:
3325 func = perf_event_enable;
d859e29f 3326 break;
cdd6c482
IM
3327 case PERF_EVENT_IOC_DISABLE:
3328 func = perf_event_disable;
79f14641 3329 break;
cdd6c482
IM
3330 case PERF_EVENT_IOC_RESET:
3331 func = perf_event_reset;
6de6a7b9 3332 break;
3df5edad 3333
cdd6c482
IM
3334 case PERF_EVENT_IOC_REFRESH:
3335 return perf_event_refresh(event, arg);
08247e31 3336
cdd6c482
IM
3337 case PERF_EVENT_IOC_PERIOD:
3338 return perf_event_period(event, (u64 __user *)arg);
08247e31 3339
cdd6c482 3340 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3341 {
ac9721f3 3342 int ret;
ac9721f3 3343 if (arg != -1) {
2903ff01
AV
3344 struct perf_event *output_event;
3345 struct fd output;
3346 ret = perf_fget_light(arg, &output);
3347 if (ret)
3348 return ret;
3349 output_event = output.file->private_data;
3350 ret = perf_event_set_output(event, output_event);
3351 fdput(output);
3352 } else {
3353 ret = perf_event_set_output(event, NULL);
ac9721f3 3354 }
ac9721f3
PZ
3355 return ret;
3356 }
a4be7c27 3357
6fb2915d
LZ
3358 case PERF_EVENT_IOC_SET_FILTER:
3359 return perf_event_set_filter(event, (void __user *)arg);
3360
d859e29f 3361 default:
3df5edad 3362 return -ENOTTY;
d859e29f 3363 }
3df5edad
PZ
3364
3365 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3366 perf_event_for_each(event, func);
3df5edad 3367 else
cdd6c482 3368 perf_event_for_each_child(event, func);
3df5edad
PZ
3369
3370 return 0;
d859e29f
PM
3371}
3372
cdd6c482 3373int perf_event_task_enable(void)
771d7cde 3374{
cdd6c482 3375 struct perf_event *event;
771d7cde 3376
cdd6c482
IM
3377 mutex_lock(&current->perf_event_mutex);
3378 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3379 perf_event_for_each_child(event, perf_event_enable);
3380 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3381
3382 return 0;
3383}
3384
cdd6c482 3385int perf_event_task_disable(void)
771d7cde 3386{
cdd6c482 3387 struct perf_event *event;
771d7cde 3388
cdd6c482
IM
3389 mutex_lock(&current->perf_event_mutex);
3390 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3391 perf_event_for_each_child(event, perf_event_disable);
3392 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3393
3394 return 0;
3395}
3396
cdd6c482 3397static int perf_event_index(struct perf_event *event)
194002b2 3398{
a4eaf7f1
PZ
3399 if (event->hw.state & PERF_HES_STOPPED)
3400 return 0;
3401
cdd6c482 3402 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3403 return 0;
3404
35edc2a5 3405 return event->pmu->event_idx(event);
194002b2
PZ
3406}
3407
c4794295 3408static void calc_timer_values(struct perf_event *event,
e3f3541c 3409 u64 *now,
7f310a5d
EM
3410 u64 *enabled,
3411 u64 *running)
c4794295 3412{
e3f3541c 3413 u64 ctx_time;
c4794295 3414
e3f3541c
PZ
3415 *now = perf_clock();
3416 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3417 *enabled = ctx_time - event->tstamp_enabled;
3418 *running = ctx_time - event->tstamp_running;
3419}
3420
c7206205 3421void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3422{
3423}
3424
38ff667b
PZ
3425/*
3426 * Callers need to ensure there can be no nesting of this function, otherwise
3427 * the seqlock logic goes bad. We can not serialize this because the arch
3428 * code calls this from NMI context.
3429 */
cdd6c482 3430void perf_event_update_userpage(struct perf_event *event)
37d81828 3431{
cdd6c482 3432 struct perf_event_mmap_page *userpg;
76369139 3433 struct ring_buffer *rb;
e3f3541c 3434 u64 enabled, running, now;
38ff667b
PZ
3435
3436 rcu_read_lock();
0d641208
EM
3437 /*
3438 * compute total_time_enabled, total_time_running
3439 * based on snapshot values taken when the event
3440 * was last scheduled in.
3441 *
3442 * we cannot simply called update_context_time()
3443 * because of locking issue as we can be called in
3444 * NMI context
3445 */
e3f3541c 3446 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3447 rb = rcu_dereference(event->rb);
3448 if (!rb)
38ff667b
PZ
3449 goto unlock;
3450
76369139 3451 userpg = rb->user_page;
37d81828 3452
7b732a75
PZ
3453 /*
3454 * Disable preemption so as to not let the corresponding user-space
3455 * spin too long if we get preempted.
3456 */
3457 preempt_disable();
37d81828 3458 ++userpg->lock;
92f22a38 3459 barrier();
cdd6c482 3460 userpg->index = perf_event_index(event);
b5e58793 3461 userpg->offset = perf_event_count(event);
365a4038 3462 if (userpg->index)
e7850595 3463 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3464
0d641208 3465 userpg->time_enabled = enabled +
cdd6c482 3466 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3467
0d641208 3468 userpg->time_running = running +
cdd6c482 3469 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3470
c7206205 3471 arch_perf_update_userpage(userpg, now);
e3f3541c 3472
92f22a38 3473 barrier();
37d81828 3474 ++userpg->lock;
7b732a75 3475 preempt_enable();
38ff667b 3476unlock:
7b732a75 3477 rcu_read_unlock();
37d81828
PM
3478}
3479
906010b2
PZ
3480static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3481{
3482 struct perf_event *event = vma->vm_file->private_data;
76369139 3483 struct ring_buffer *rb;
906010b2
PZ
3484 int ret = VM_FAULT_SIGBUS;
3485
3486 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3487 if (vmf->pgoff == 0)
3488 ret = 0;
3489 return ret;
3490 }
3491
3492 rcu_read_lock();
76369139
FW
3493 rb = rcu_dereference(event->rb);
3494 if (!rb)
906010b2
PZ
3495 goto unlock;
3496
3497 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3498 goto unlock;
3499
76369139 3500 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3501 if (!vmf->page)
3502 goto unlock;
3503
3504 get_page(vmf->page);
3505 vmf->page->mapping = vma->vm_file->f_mapping;
3506 vmf->page->index = vmf->pgoff;
3507
3508 ret = 0;
3509unlock:
3510 rcu_read_unlock();
3511
3512 return ret;
3513}
3514
10c6db11
PZ
3515static void ring_buffer_attach(struct perf_event *event,
3516 struct ring_buffer *rb)
3517{
3518 unsigned long flags;
3519
3520 if (!list_empty(&event->rb_entry))
3521 return;
3522
3523 spin_lock_irqsave(&rb->event_lock, flags);
3524 if (!list_empty(&event->rb_entry))
3525 goto unlock;
3526
3527 list_add(&event->rb_entry, &rb->event_list);
3528unlock:
3529 spin_unlock_irqrestore(&rb->event_lock, flags);
3530}
3531
3532static void ring_buffer_detach(struct perf_event *event,
3533 struct ring_buffer *rb)
3534{
3535 unsigned long flags;
3536
3537 if (list_empty(&event->rb_entry))
3538 return;
3539
3540 spin_lock_irqsave(&rb->event_lock, flags);
3541 list_del_init(&event->rb_entry);
3542 wake_up_all(&event->waitq);
3543 spin_unlock_irqrestore(&rb->event_lock, flags);
3544}
3545
3546static void ring_buffer_wakeup(struct perf_event *event)
3547{
3548 struct ring_buffer *rb;
3549
3550 rcu_read_lock();
3551 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3552 if (!rb)
3553 goto unlock;
3554
3555 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3556 wake_up_all(&event->waitq);
44b7f4b9
WD
3557
3558unlock:
10c6db11
PZ
3559 rcu_read_unlock();
3560}
3561
76369139 3562static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3563{
76369139 3564 struct ring_buffer *rb;
906010b2 3565
76369139
FW
3566 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3567 rb_free(rb);
7b732a75
PZ
3568}
3569
76369139 3570static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3571{
76369139 3572 struct ring_buffer *rb;
7b732a75 3573
ac9721f3 3574 rcu_read_lock();
76369139
FW
3575 rb = rcu_dereference(event->rb);
3576 if (rb) {
3577 if (!atomic_inc_not_zero(&rb->refcount))
3578 rb = NULL;
ac9721f3
PZ
3579 }
3580 rcu_read_unlock();
3581
76369139 3582 return rb;
ac9721f3
PZ
3583}
3584
76369139 3585static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3586{
10c6db11
PZ
3587 struct perf_event *event, *n;
3588 unsigned long flags;
3589
76369139 3590 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3591 return;
7b732a75 3592
10c6db11
PZ
3593 spin_lock_irqsave(&rb->event_lock, flags);
3594 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3595 list_del_init(&event->rb_entry);
3596 wake_up_all(&event->waitq);
3597 }
3598 spin_unlock_irqrestore(&rb->event_lock, flags);
3599
76369139 3600 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3601}
3602
3603static void perf_mmap_open(struct vm_area_struct *vma)
3604{
cdd6c482 3605 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3606
cdd6c482 3607 atomic_inc(&event->mmap_count);
7b732a75
PZ
3608}
3609
3610static void perf_mmap_close(struct vm_area_struct *vma)
3611{
cdd6c482 3612 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3613
cdd6c482 3614 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3615 unsigned long size = perf_data_size(event->rb);
ac9721f3 3616 struct user_struct *user = event->mmap_user;
76369139 3617 struct ring_buffer *rb = event->rb;
789f90fc 3618
906010b2 3619 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3620 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3621 rcu_assign_pointer(event->rb, NULL);
10c6db11 3622 ring_buffer_detach(event, rb);
cdd6c482 3623 mutex_unlock(&event->mmap_mutex);
ac9721f3 3624
76369139 3625 ring_buffer_put(rb);
ac9721f3 3626 free_uid(user);
7b732a75 3627 }
37d81828
PM
3628}
3629
f0f37e2f 3630static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3631 .open = perf_mmap_open,
3632 .close = perf_mmap_close,
3633 .fault = perf_mmap_fault,
3634 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3635};
3636
3637static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3638{
cdd6c482 3639 struct perf_event *event = file->private_data;
22a4f650 3640 unsigned long user_locked, user_lock_limit;
789f90fc 3641 struct user_struct *user = current_user();
22a4f650 3642 unsigned long locked, lock_limit;
76369139 3643 struct ring_buffer *rb;
7b732a75
PZ
3644 unsigned long vma_size;
3645 unsigned long nr_pages;
789f90fc 3646 long user_extra, extra;
d57e34fd 3647 int ret = 0, flags = 0;
37d81828 3648
c7920614
PZ
3649 /*
3650 * Don't allow mmap() of inherited per-task counters. This would
3651 * create a performance issue due to all children writing to the
76369139 3652 * same rb.
c7920614
PZ
3653 */
3654 if (event->cpu == -1 && event->attr.inherit)
3655 return -EINVAL;
3656
43a21ea8 3657 if (!(vma->vm_flags & VM_SHARED))
37d81828 3658 return -EINVAL;
7b732a75
PZ
3659
3660 vma_size = vma->vm_end - vma->vm_start;
3661 nr_pages = (vma_size / PAGE_SIZE) - 1;
3662
7730d865 3663 /*
76369139 3664 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3665 * can do bitmasks instead of modulo.
3666 */
3667 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3668 return -EINVAL;
3669
7b732a75 3670 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3671 return -EINVAL;
3672
7b732a75
PZ
3673 if (vma->vm_pgoff != 0)
3674 return -EINVAL;
37d81828 3675
cdd6c482
IM
3676 WARN_ON_ONCE(event->ctx->parent_ctx);
3677 mutex_lock(&event->mmap_mutex);
76369139
FW
3678 if (event->rb) {
3679 if (event->rb->nr_pages == nr_pages)
3680 atomic_inc(&event->rb->refcount);
ac9721f3 3681 else
ebb3c4c4
PZ
3682 ret = -EINVAL;
3683 goto unlock;
3684 }
3685
789f90fc 3686 user_extra = nr_pages + 1;
cdd6c482 3687 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3688
3689 /*
3690 * Increase the limit linearly with more CPUs:
3691 */
3692 user_lock_limit *= num_online_cpus();
3693
789f90fc 3694 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3695
789f90fc
PZ
3696 extra = 0;
3697 if (user_locked > user_lock_limit)
3698 extra = user_locked - user_lock_limit;
7b732a75 3699
78d7d407 3700 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3701 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3702 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3703
459ec28a
IM
3704 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3705 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3706 ret = -EPERM;
3707 goto unlock;
3708 }
7b732a75 3709
76369139 3710 WARN_ON(event->rb);
906010b2 3711
d57e34fd 3712 if (vma->vm_flags & VM_WRITE)
76369139 3713 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3714
4ec8363d
VW
3715 rb = rb_alloc(nr_pages,
3716 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3717 event->cpu, flags);
3718
76369139 3719 if (!rb) {
ac9721f3 3720 ret = -ENOMEM;
ebb3c4c4 3721 goto unlock;
ac9721f3 3722 }
76369139 3723 rcu_assign_pointer(event->rb, rb);
43a21ea8 3724
ac9721f3
PZ
3725 atomic_long_add(user_extra, &user->locked_vm);
3726 event->mmap_locked = extra;
3727 event->mmap_user = get_current_user();
bc3e53f6 3728 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3729
9a0f05cb
PZ
3730 perf_event_update_userpage(event);
3731
ebb3c4c4 3732unlock:
ac9721f3
PZ
3733 if (!ret)
3734 atomic_inc(&event->mmap_count);
cdd6c482 3735 mutex_unlock(&event->mmap_mutex);
37d81828 3736
314e51b9 3737 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
37d81828 3738 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3739
3740 return ret;
37d81828
PM
3741}
3742
3c446b3d
PZ
3743static int perf_fasync(int fd, struct file *filp, int on)
3744{
496ad9aa 3745 struct inode *inode = file_inode(filp);
cdd6c482 3746 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3747 int retval;
3748
3749 mutex_lock(&inode->i_mutex);
cdd6c482 3750 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3751 mutex_unlock(&inode->i_mutex);
3752
3753 if (retval < 0)
3754 return retval;
3755
3756 return 0;
3757}
3758
0793a61d 3759static const struct file_operations perf_fops = {
3326c1ce 3760 .llseek = no_llseek,
0793a61d
TG
3761 .release = perf_release,
3762 .read = perf_read,
3763 .poll = perf_poll,
d859e29f
PM
3764 .unlocked_ioctl = perf_ioctl,
3765 .compat_ioctl = perf_ioctl,
37d81828 3766 .mmap = perf_mmap,
3c446b3d 3767 .fasync = perf_fasync,
0793a61d
TG
3768};
3769
925d519a 3770/*
cdd6c482 3771 * Perf event wakeup
925d519a
PZ
3772 *
3773 * If there's data, ensure we set the poll() state and publish everything
3774 * to user-space before waking everybody up.
3775 */
3776
cdd6c482 3777void perf_event_wakeup(struct perf_event *event)
925d519a 3778{
10c6db11 3779 ring_buffer_wakeup(event);
4c9e2542 3780
cdd6c482
IM
3781 if (event->pending_kill) {
3782 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3783 event->pending_kill = 0;
4c9e2542 3784 }
925d519a
PZ
3785}
3786
e360adbe 3787static void perf_pending_event(struct irq_work *entry)
79f14641 3788{
cdd6c482
IM
3789 struct perf_event *event = container_of(entry,
3790 struct perf_event, pending);
79f14641 3791
cdd6c482
IM
3792 if (event->pending_disable) {
3793 event->pending_disable = 0;
3794 __perf_event_disable(event);
79f14641
PZ
3795 }
3796
cdd6c482
IM
3797 if (event->pending_wakeup) {
3798 event->pending_wakeup = 0;
3799 perf_event_wakeup(event);
79f14641
PZ
3800 }
3801}
3802
39447b38
ZY
3803/*
3804 * We assume there is only KVM supporting the callbacks.
3805 * Later on, we might change it to a list if there is
3806 * another virtualization implementation supporting the callbacks.
3807 */
3808struct perf_guest_info_callbacks *perf_guest_cbs;
3809
3810int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3811{
3812 perf_guest_cbs = cbs;
3813 return 0;
3814}
3815EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3816
3817int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3818{
3819 perf_guest_cbs = NULL;
3820 return 0;
3821}
3822EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3823
4018994f
JO
3824static void
3825perf_output_sample_regs(struct perf_output_handle *handle,
3826 struct pt_regs *regs, u64 mask)
3827{
3828 int bit;
3829
3830 for_each_set_bit(bit, (const unsigned long *) &mask,
3831 sizeof(mask) * BITS_PER_BYTE) {
3832 u64 val;
3833
3834 val = perf_reg_value(regs, bit);
3835 perf_output_put(handle, val);
3836 }
3837}
3838
3839static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3840 struct pt_regs *regs)
3841{
3842 if (!user_mode(regs)) {
3843 if (current->mm)
3844 regs = task_pt_regs(current);
3845 else
3846 regs = NULL;
3847 }
3848
3849 if (regs) {
3850 regs_user->regs = regs;
3851 regs_user->abi = perf_reg_abi(current);
3852 }
3853}
3854
c5ebcedb
JO
3855/*
3856 * Get remaining task size from user stack pointer.
3857 *
3858 * It'd be better to take stack vma map and limit this more
3859 * precisly, but there's no way to get it safely under interrupt,
3860 * so using TASK_SIZE as limit.
3861 */
3862static u64 perf_ustack_task_size(struct pt_regs *regs)
3863{
3864 unsigned long addr = perf_user_stack_pointer(regs);
3865
3866 if (!addr || addr >= TASK_SIZE)
3867 return 0;
3868
3869 return TASK_SIZE - addr;
3870}
3871
3872static u16
3873perf_sample_ustack_size(u16 stack_size, u16 header_size,
3874 struct pt_regs *regs)
3875{
3876 u64 task_size;
3877
3878 /* No regs, no stack pointer, no dump. */
3879 if (!regs)
3880 return 0;
3881
3882 /*
3883 * Check if we fit in with the requested stack size into the:
3884 * - TASK_SIZE
3885 * If we don't, we limit the size to the TASK_SIZE.
3886 *
3887 * - remaining sample size
3888 * If we don't, we customize the stack size to
3889 * fit in to the remaining sample size.
3890 */
3891
3892 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3893 stack_size = min(stack_size, (u16) task_size);
3894
3895 /* Current header size plus static size and dynamic size. */
3896 header_size += 2 * sizeof(u64);
3897
3898 /* Do we fit in with the current stack dump size? */
3899 if ((u16) (header_size + stack_size) < header_size) {
3900 /*
3901 * If we overflow the maximum size for the sample,
3902 * we customize the stack dump size to fit in.
3903 */
3904 stack_size = USHRT_MAX - header_size - sizeof(u64);
3905 stack_size = round_up(stack_size, sizeof(u64));
3906 }
3907
3908 return stack_size;
3909}
3910
3911static void
3912perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
3913 struct pt_regs *regs)
3914{
3915 /* Case of a kernel thread, nothing to dump */
3916 if (!regs) {
3917 u64 size = 0;
3918 perf_output_put(handle, size);
3919 } else {
3920 unsigned long sp;
3921 unsigned int rem;
3922 u64 dyn_size;
3923
3924 /*
3925 * We dump:
3926 * static size
3927 * - the size requested by user or the best one we can fit
3928 * in to the sample max size
3929 * data
3930 * - user stack dump data
3931 * dynamic size
3932 * - the actual dumped size
3933 */
3934
3935 /* Static size. */
3936 perf_output_put(handle, dump_size);
3937
3938 /* Data. */
3939 sp = perf_user_stack_pointer(regs);
3940 rem = __output_copy_user(handle, (void *) sp, dump_size);
3941 dyn_size = dump_size - rem;
3942
3943 perf_output_skip(handle, rem);
3944
3945 /* Dynamic size. */
3946 perf_output_put(handle, dyn_size);
3947 }
3948}
3949
c980d109
ACM
3950static void __perf_event_header__init_id(struct perf_event_header *header,
3951 struct perf_sample_data *data,
3952 struct perf_event *event)
6844c09d
ACM
3953{
3954 u64 sample_type = event->attr.sample_type;
3955
3956 data->type = sample_type;
3957 header->size += event->id_header_size;
3958
3959 if (sample_type & PERF_SAMPLE_TID) {
3960 /* namespace issues */
3961 data->tid_entry.pid = perf_event_pid(event, current);
3962 data->tid_entry.tid = perf_event_tid(event, current);
3963 }
3964
3965 if (sample_type & PERF_SAMPLE_TIME)
3966 data->time = perf_clock();
3967
3968 if (sample_type & PERF_SAMPLE_ID)
3969 data->id = primary_event_id(event);
3970
3971 if (sample_type & PERF_SAMPLE_STREAM_ID)
3972 data->stream_id = event->id;
3973
3974 if (sample_type & PERF_SAMPLE_CPU) {
3975 data->cpu_entry.cpu = raw_smp_processor_id();
3976 data->cpu_entry.reserved = 0;
3977 }
3978}
3979
76369139
FW
3980void perf_event_header__init_id(struct perf_event_header *header,
3981 struct perf_sample_data *data,
3982 struct perf_event *event)
c980d109
ACM
3983{
3984 if (event->attr.sample_id_all)
3985 __perf_event_header__init_id(header, data, event);
3986}
3987
3988static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3989 struct perf_sample_data *data)
3990{
3991 u64 sample_type = data->type;
3992
3993 if (sample_type & PERF_SAMPLE_TID)
3994 perf_output_put(handle, data->tid_entry);
3995
3996 if (sample_type & PERF_SAMPLE_TIME)
3997 perf_output_put(handle, data->time);
3998
3999 if (sample_type & PERF_SAMPLE_ID)
4000 perf_output_put(handle, data->id);
4001
4002 if (sample_type & PERF_SAMPLE_STREAM_ID)
4003 perf_output_put(handle, data->stream_id);
4004
4005 if (sample_type & PERF_SAMPLE_CPU)
4006 perf_output_put(handle, data->cpu_entry);
4007}
4008
76369139
FW
4009void perf_event__output_id_sample(struct perf_event *event,
4010 struct perf_output_handle *handle,
4011 struct perf_sample_data *sample)
c980d109
ACM
4012{
4013 if (event->attr.sample_id_all)
4014 __perf_event__output_id_sample(handle, sample);
4015}
4016
3dab77fb 4017static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4018 struct perf_event *event,
4019 u64 enabled, u64 running)
3dab77fb 4020{
cdd6c482 4021 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4022 u64 values[4];
4023 int n = 0;
4024
b5e58793 4025 values[n++] = perf_event_count(event);
3dab77fb 4026 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4027 values[n++] = enabled +
cdd6c482 4028 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4029 }
4030 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4031 values[n++] = running +
cdd6c482 4032 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4033 }
4034 if (read_format & PERF_FORMAT_ID)
cdd6c482 4035 values[n++] = primary_event_id(event);
3dab77fb 4036
76369139 4037 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4038}
4039
4040/*
cdd6c482 4041 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4042 */
4043static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4044 struct perf_event *event,
4045 u64 enabled, u64 running)
3dab77fb 4046{
cdd6c482
IM
4047 struct perf_event *leader = event->group_leader, *sub;
4048 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4049 u64 values[5];
4050 int n = 0;
4051
4052 values[n++] = 1 + leader->nr_siblings;
4053
4054 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4055 values[n++] = enabled;
3dab77fb
PZ
4056
4057 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4058 values[n++] = running;
3dab77fb 4059
cdd6c482 4060 if (leader != event)
3dab77fb
PZ
4061 leader->pmu->read(leader);
4062
b5e58793 4063 values[n++] = perf_event_count(leader);
3dab77fb 4064 if (read_format & PERF_FORMAT_ID)
cdd6c482 4065 values[n++] = primary_event_id(leader);
3dab77fb 4066
76369139 4067 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4068
65abc865 4069 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4070 n = 0;
4071
cdd6c482 4072 if (sub != event)
3dab77fb
PZ
4073 sub->pmu->read(sub);
4074
b5e58793 4075 values[n++] = perf_event_count(sub);
3dab77fb 4076 if (read_format & PERF_FORMAT_ID)
cdd6c482 4077 values[n++] = primary_event_id(sub);
3dab77fb 4078
76369139 4079 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4080 }
4081}
4082
eed01528
SE
4083#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4084 PERF_FORMAT_TOTAL_TIME_RUNNING)
4085
3dab77fb 4086static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4087 struct perf_event *event)
3dab77fb 4088{
e3f3541c 4089 u64 enabled = 0, running = 0, now;
eed01528
SE
4090 u64 read_format = event->attr.read_format;
4091
4092 /*
4093 * compute total_time_enabled, total_time_running
4094 * based on snapshot values taken when the event
4095 * was last scheduled in.
4096 *
4097 * we cannot simply called update_context_time()
4098 * because of locking issue as we are called in
4099 * NMI context
4100 */
c4794295 4101 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4102 calc_timer_values(event, &now, &enabled, &running);
eed01528 4103
cdd6c482 4104 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4105 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4106 else
eed01528 4107 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4108}
4109
5622f295
MM
4110void perf_output_sample(struct perf_output_handle *handle,
4111 struct perf_event_header *header,
4112 struct perf_sample_data *data,
cdd6c482 4113 struct perf_event *event)
5622f295
MM
4114{
4115 u64 sample_type = data->type;
4116
4117 perf_output_put(handle, *header);
4118
4119 if (sample_type & PERF_SAMPLE_IP)
4120 perf_output_put(handle, data->ip);
4121
4122 if (sample_type & PERF_SAMPLE_TID)
4123 perf_output_put(handle, data->tid_entry);
4124
4125 if (sample_type & PERF_SAMPLE_TIME)
4126 perf_output_put(handle, data->time);
4127
4128 if (sample_type & PERF_SAMPLE_ADDR)
4129 perf_output_put(handle, data->addr);
4130
4131 if (sample_type & PERF_SAMPLE_ID)
4132 perf_output_put(handle, data->id);
4133
4134 if (sample_type & PERF_SAMPLE_STREAM_ID)
4135 perf_output_put(handle, data->stream_id);
4136
4137 if (sample_type & PERF_SAMPLE_CPU)
4138 perf_output_put(handle, data->cpu_entry);
4139
4140 if (sample_type & PERF_SAMPLE_PERIOD)
4141 perf_output_put(handle, data->period);
4142
4143 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4144 perf_output_read(handle, event);
5622f295
MM
4145
4146 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4147 if (data->callchain) {
4148 int size = 1;
4149
4150 if (data->callchain)
4151 size += data->callchain->nr;
4152
4153 size *= sizeof(u64);
4154
76369139 4155 __output_copy(handle, data->callchain, size);
5622f295
MM
4156 } else {
4157 u64 nr = 0;
4158 perf_output_put(handle, nr);
4159 }
4160 }
4161
4162 if (sample_type & PERF_SAMPLE_RAW) {
4163 if (data->raw) {
4164 perf_output_put(handle, data->raw->size);
76369139
FW
4165 __output_copy(handle, data->raw->data,
4166 data->raw->size);
5622f295
MM
4167 } else {
4168 struct {
4169 u32 size;
4170 u32 data;
4171 } raw = {
4172 .size = sizeof(u32),
4173 .data = 0,
4174 };
4175 perf_output_put(handle, raw);
4176 }
4177 }
a7ac67ea
PZ
4178
4179 if (!event->attr.watermark) {
4180 int wakeup_events = event->attr.wakeup_events;
4181
4182 if (wakeup_events) {
4183 struct ring_buffer *rb = handle->rb;
4184 int events = local_inc_return(&rb->events);
4185
4186 if (events >= wakeup_events) {
4187 local_sub(wakeup_events, &rb->events);
4188 local_inc(&rb->wakeup);
4189 }
4190 }
4191 }
bce38cd5
SE
4192
4193 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4194 if (data->br_stack) {
4195 size_t size;
4196
4197 size = data->br_stack->nr
4198 * sizeof(struct perf_branch_entry);
4199
4200 perf_output_put(handle, data->br_stack->nr);
4201 perf_output_copy(handle, data->br_stack->entries, size);
4202 } else {
4203 /*
4204 * we always store at least the value of nr
4205 */
4206 u64 nr = 0;
4207 perf_output_put(handle, nr);
4208 }
4209 }
4018994f
JO
4210
4211 if (sample_type & PERF_SAMPLE_REGS_USER) {
4212 u64 abi = data->regs_user.abi;
4213
4214 /*
4215 * If there are no regs to dump, notice it through
4216 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4217 */
4218 perf_output_put(handle, abi);
4219
4220 if (abi) {
4221 u64 mask = event->attr.sample_regs_user;
4222 perf_output_sample_regs(handle,
4223 data->regs_user.regs,
4224 mask);
4225 }
4226 }
c5ebcedb
JO
4227
4228 if (sample_type & PERF_SAMPLE_STACK_USER)
4229 perf_output_sample_ustack(handle,
4230 data->stack_user_size,
4231 data->regs_user.regs);
c3feedf2
AK
4232
4233 if (sample_type & PERF_SAMPLE_WEIGHT)
4234 perf_output_put(handle, data->weight);
d6be9ad6
SE
4235
4236 if (sample_type & PERF_SAMPLE_DATA_SRC)
4237 perf_output_put(handle, data->data_src.val);
5622f295
MM
4238}
4239
4240void perf_prepare_sample(struct perf_event_header *header,
4241 struct perf_sample_data *data,
cdd6c482 4242 struct perf_event *event,
5622f295 4243 struct pt_regs *regs)
7b732a75 4244{
cdd6c482 4245 u64 sample_type = event->attr.sample_type;
7b732a75 4246
cdd6c482 4247 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4248 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4249
4250 header->misc = 0;
4251 header->misc |= perf_misc_flags(regs);
6fab0192 4252
c980d109 4253 __perf_event_header__init_id(header, data, event);
6844c09d 4254
c320c7b7 4255 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4256 data->ip = perf_instruction_pointer(regs);
4257
b23f3325 4258 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4259 int size = 1;
394ee076 4260
e6dab5ff 4261 data->callchain = perf_callchain(event, regs);
5622f295
MM
4262
4263 if (data->callchain)
4264 size += data->callchain->nr;
4265
4266 header->size += size * sizeof(u64);
394ee076
PZ
4267 }
4268
3a43ce68 4269 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4270 int size = sizeof(u32);
4271
4272 if (data->raw)
4273 size += data->raw->size;
4274 else
4275 size += sizeof(u32);
4276
4277 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4278 header->size += size;
7f453c24 4279 }
bce38cd5
SE
4280
4281 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4282 int size = sizeof(u64); /* nr */
4283 if (data->br_stack) {
4284 size += data->br_stack->nr
4285 * sizeof(struct perf_branch_entry);
4286 }
4287 header->size += size;
4288 }
4018994f
JO
4289
4290 if (sample_type & PERF_SAMPLE_REGS_USER) {
4291 /* regs dump ABI info */
4292 int size = sizeof(u64);
4293
4294 perf_sample_regs_user(&data->regs_user, regs);
4295
4296 if (data->regs_user.regs) {
4297 u64 mask = event->attr.sample_regs_user;
4298 size += hweight64(mask) * sizeof(u64);
4299 }
4300
4301 header->size += size;
4302 }
c5ebcedb
JO
4303
4304 if (sample_type & PERF_SAMPLE_STACK_USER) {
4305 /*
4306 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4307 * processed as the last one or have additional check added
4308 * in case new sample type is added, because we could eat
4309 * up the rest of the sample size.
4310 */
4311 struct perf_regs_user *uregs = &data->regs_user;
4312 u16 stack_size = event->attr.sample_stack_user;
4313 u16 size = sizeof(u64);
4314
4315 if (!uregs->abi)
4316 perf_sample_regs_user(uregs, regs);
4317
4318 stack_size = perf_sample_ustack_size(stack_size, header->size,
4319 uregs->regs);
4320
4321 /*
4322 * If there is something to dump, add space for the dump
4323 * itself and for the field that tells the dynamic size,
4324 * which is how many have been actually dumped.
4325 */
4326 if (stack_size)
4327 size += sizeof(u64) + stack_size;
4328
4329 data->stack_user_size = stack_size;
4330 header->size += size;
4331 }
5622f295 4332}
7f453c24 4333
a8b0ca17 4334static void perf_event_output(struct perf_event *event,
5622f295
MM
4335 struct perf_sample_data *data,
4336 struct pt_regs *regs)
4337{
4338 struct perf_output_handle handle;
4339 struct perf_event_header header;
689802b2 4340
927c7a9e
FW
4341 /* protect the callchain buffers */
4342 rcu_read_lock();
4343
cdd6c482 4344 perf_prepare_sample(&header, data, event, regs);
5c148194 4345
a7ac67ea 4346 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4347 goto exit;
0322cd6e 4348
cdd6c482 4349 perf_output_sample(&handle, &header, data, event);
f413cdb8 4350
8a057d84 4351 perf_output_end(&handle);
927c7a9e
FW
4352
4353exit:
4354 rcu_read_unlock();
0322cd6e
PZ
4355}
4356
38b200d6 4357/*
cdd6c482 4358 * read event_id
38b200d6
PZ
4359 */
4360
4361struct perf_read_event {
4362 struct perf_event_header header;
4363
4364 u32 pid;
4365 u32 tid;
38b200d6
PZ
4366};
4367
4368static void
cdd6c482 4369perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4370 struct task_struct *task)
4371{
4372 struct perf_output_handle handle;
c980d109 4373 struct perf_sample_data sample;
dfc65094 4374 struct perf_read_event read_event = {
38b200d6 4375 .header = {
cdd6c482 4376 .type = PERF_RECORD_READ,
38b200d6 4377 .misc = 0,
c320c7b7 4378 .size = sizeof(read_event) + event->read_size,
38b200d6 4379 },
cdd6c482
IM
4380 .pid = perf_event_pid(event, task),
4381 .tid = perf_event_tid(event, task),
38b200d6 4382 };
3dab77fb 4383 int ret;
38b200d6 4384
c980d109 4385 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4386 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4387 if (ret)
4388 return;
4389
dfc65094 4390 perf_output_put(&handle, read_event);
cdd6c482 4391 perf_output_read(&handle, event);
c980d109 4392 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4393
38b200d6
PZ
4394 perf_output_end(&handle);
4395}
4396
60313ebe 4397/*
9f498cc5
PZ
4398 * task tracking -- fork/exit
4399 *
3af9e859 4400 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4401 */
4402
9f498cc5 4403struct perf_task_event {
3a80b4a3 4404 struct task_struct *task;
cdd6c482 4405 struct perf_event_context *task_ctx;
60313ebe
PZ
4406
4407 struct {
4408 struct perf_event_header header;
4409
4410 u32 pid;
4411 u32 ppid;
9f498cc5
PZ
4412 u32 tid;
4413 u32 ptid;
393b2ad8 4414 u64 time;
cdd6c482 4415 } event_id;
60313ebe
PZ
4416};
4417
cdd6c482 4418static void perf_event_task_output(struct perf_event *event,
9f498cc5 4419 struct perf_task_event *task_event)
60313ebe
PZ
4420{
4421 struct perf_output_handle handle;
c980d109 4422 struct perf_sample_data sample;
9f498cc5 4423 struct task_struct *task = task_event->task;
c980d109 4424 int ret, size = task_event->event_id.header.size;
8bb39f9a 4425
c980d109 4426 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4427
c980d109 4428 ret = perf_output_begin(&handle, event,
a7ac67ea 4429 task_event->event_id.header.size);
ef60777c 4430 if (ret)
c980d109 4431 goto out;
60313ebe 4432
cdd6c482
IM
4433 task_event->event_id.pid = perf_event_pid(event, task);
4434 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4435
cdd6c482
IM
4436 task_event->event_id.tid = perf_event_tid(event, task);
4437 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4438
cdd6c482 4439 perf_output_put(&handle, task_event->event_id);
393b2ad8 4440
c980d109
ACM
4441 perf_event__output_id_sample(event, &handle, &sample);
4442
60313ebe 4443 perf_output_end(&handle);
c980d109
ACM
4444out:
4445 task_event->event_id.header.size = size;
60313ebe
PZ
4446}
4447
cdd6c482 4448static int perf_event_task_match(struct perf_event *event)
60313ebe 4449{
6f93d0a7 4450 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4451 return 0;
4452
5632ab12 4453 if (!event_filter_match(event))
5d27c23d
PZ
4454 return 0;
4455
3af9e859
EM
4456 if (event->attr.comm || event->attr.mmap ||
4457 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4458 return 1;
4459
4460 return 0;
4461}
4462
cdd6c482 4463static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4464 struct perf_task_event *task_event)
60313ebe 4465{
cdd6c482 4466 struct perf_event *event;
60313ebe 4467
cdd6c482
IM
4468 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4469 if (perf_event_task_match(event))
4470 perf_event_task_output(event, task_event);
60313ebe 4471 }
60313ebe
PZ
4472}
4473
cdd6c482 4474static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4475{
4476 struct perf_cpu_context *cpuctx;
524eff18 4477 struct perf_event_context *ctx, *task_ctx = task_event->task_ctx;
108b02cf 4478 struct pmu *pmu;
8dc85d54 4479 int ctxn;
60313ebe 4480
d6ff86cf 4481 rcu_read_lock();
108b02cf 4482 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4483 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4484 if (cpuctx->unique_pmu != pmu)
51676957 4485 goto next;
108b02cf 4486 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54 4487
524eff18
JO
4488 if (task_ctx)
4489 goto next;
4490 ctxn = pmu->task_ctx_nr;
4491 if (ctxn < 0)
4492 goto next;
4493 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4494 if (ctx)
4495 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4496next:
4497 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4498 }
524eff18
JO
4499 if (task_ctx) {
4500 preempt_disable();
4501 perf_event_task_ctx(task_ctx, task_event);
4502 preempt_enable();
4503 }
d610d98b 4504
60313ebe
PZ
4505 rcu_read_unlock();
4506}
4507
cdd6c482
IM
4508static void perf_event_task(struct task_struct *task,
4509 struct perf_event_context *task_ctx,
3a80b4a3 4510 int new)
60313ebe 4511{
9f498cc5 4512 struct perf_task_event task_event;
60313ebe 4513
cdd6c482
IM
4514 if (!atomic_read(&nr_comm_events) &&
4515 !atomic_read(&nr_mmap_events) &&
4516 !atomic_read(&nr_task_events))
60313ebe
PZ
4517 return;
4518
9f498cc5 4519 task_event = (struct perf_task_event){
3a80b4a3
PZ
4520 .task = task,
4521 .task_ctx = task_ctx,
cdd6c482 4522 .event_id = {
60313ebe 4523 .header = {
cdd6c482 4524 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4525 .misc = 0,
cdd6c482 4526 .size = sizeof(task_event.event_id),
60313ebe 4527 },
573402db
PZ
4528 /* .pid */
4529 /* .ppid */
9f498cc5
PZ
4530 /* .tid */
4531 /* .ptid */
6f93d0a7 4532 .time = perf_clock(),
60313ebe
PZ
4533 },
4534 };
4535
cdd6c482 4536 perf_event_task_event(&task_event);
9f498cc5
PZ
4537}
4538
cdd6c482 4539void perf_event_fork(struct task_struct *task)
9f498cc5 4540{
cdd6c482 4541 perf_event_task(task, NULL, 1);
60313ebe
PZ
4542}
4543
8d1b2d93
PZ
4544/*
4545 * comm tracking
4546 */
4547
4548struct perf_comm_event {
22a4f650
IM
4549 struct task_struct *task;
4550 char *comm;
8d1b2d93
PZ
4551 int comm_size;
4552
4553 struct {
4554 struct perf_event_header header;
4555
4556 u32 pid;
4557 u32 tid;
cdd6c482 4558 } event_id;
8d1b2d93
PZ
4559};
4560
cdd6c482 4561static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4562 struct perf_comm_event *comm_event)
4563{
4564 struct perf_output_handle handle;
c980d109 4565 struct perf_sample_data sample;
cdd6c482 4566 int size = comm_event->event_id.header.size;
c980d109
ACM
4567 int ret;
4568
4569 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4570 ret = perf_output_begin(&handle, event,
a7ac67ea 4571 comm_event->event_id.header.size);
8d1b2d93
PZ
4572
4573 if (ret)
c980d109 4574 goto out;
8d1b2d93 4575
cdd6c482
IM
4576 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4577 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4578
cdd6c482 4579 perf_output_put(&handle, comm_event->event_id);
76369139 4580 __output_copy(&handle, comm_event->comm,
8d1b2d93 4581 comm_event->comm_size);
c980d109
ACM
4582
4583 perf_event__output_id_sample(event, &handle, &sample);
4584
8d1b2d93 4585 perf_output_end(&handle);
c980d109
ACM
4586out:
4587 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4588}
4589
cdd6c482 4590static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4591{
6f93d0a7 4592 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4593 return 0;
4594
5632ab12 4595 if (!event_filter_match(event))
5d27c23d
PZ
4596 return 0;
4597
cdd6c482 4598 if (event->attr.comm)
8d1b2d93
PZ
4599 return 1;
4600
4601 return 0;
4602}
4603
cdd6c482 4604static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4605 struct perf_comm_event *comm_event)
4606{
cdd6c482 4607 struct perf_event *event;
8d1b2d93 4608
cdd6c482
IM
4609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4610 if (perf_event_comm_match(event))
4611 perf_event_comm_output(event, comm_event);
8d1b2d93 4612 }
8d1b2d93
PZ
4613}
4614
cdd6c482 4615static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4616{
4617 struct perf_cpu_context *cpuctx;
cdd6c482 4618 struct perf_event_context *ctx;
413ee3b4 4619 char comm[TASK_COMM_LEN];
8d1b2d93 4620 unsigned int size;
108b02cf 4621 struct pmu *pmu;
8dc85d54 4622 int ctxn;
8d1b2d93 4623
413ee3b4 4624 memset(comm, 0, sizeof(comm));
96b02d78 4625 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4626 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4627
4628 comm_event->comm = comm;
4629 comm_event->comm_size = size;
4630
cdd6c482 4631 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4632 rcu_read_lock();
108b02cf 4633 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4634 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4635 if (cpuctx->unique_pmu != pmu)
51676957 4636 goto next;
108b02cf 4637 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4638
4639 ctxn = pmu->task_ctx_nr;
4640 if (ctxn < 0)
41945f6c 4641 goto next;
8dc85d54
PZ
4642
4643 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4644 if (ctx)
4645 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4646next:
4647 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4648 }
665c2142 4649 rcu_read_unlock();
8d1b2d93
PZ
4650}
4651
cdd6c482 4652void perf_event_comm(struct task_struct *task)
8d1b2d93 4653{
9ee318a7 4654 struct perf_comm_event comm_event;
8dc85d54
PZ
4655 struct perf_event_context *ctx;
4656 int ctxn;
9ee318a7 4657
c79aa0d9 4658 rcu_read_lock();
8dc85d54
PZ
4659 for_each_task_context_nr(ctxn) {
4660 ctx = task->perf_event_ctxp[ctxn];
4661 if (!ctx)
4662 continue;
9ee318a7 4663
8dc85d54
PZ
4664 perf_event_enable_on_exec(ctx);
4665 }
c79aa0d9 4666 rcu_read_unlock();
9ee318a7 4667
cdd6c482 4668 if (!atomic_read(&nr_comm_events))
9ee318a7 4669 return;
a63eaf34 4670
9ee318a7 4671 comm_event = (struct perf_comm_event){
8d1b2d93 4672 .task = task,
573402db
PZ
4673 /* .comm */
4674 /* .comm_size */
cdd6c482 4675 .event_id = {
573402db 4676 .header = {
cdd6c482 4677 .type = PERF_RECORD_COMM,
573402db
PZ
4678 .misc = 0,
4679 /* .size */
4680 },
4681 /* .pid */
4682 /* .tid */
8d1b2d93
PZ
4683 },
4684 };
4685
cdd6c482 4686 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4687}
4688
0a4a9391
PZ
4689/*
4690 * mmap tracking
4691 */
4692
4693struct perf_mmap_event {
089dd79d
PZ
4694 struct vm_area_struct *vma;
4695
4696 const char *file_name;
4697 int file_size;
0a4a9391
PZ
4698
4699 struct {
4700 struct perf_event_header header;
4701
4702 u32 pid;
4703 u32 tid;
4704 u64 start;
4705 u64 len;
4706 u64 pgoff;
cdd6c482 4707 } event_id;
0a4a9391
PZ
4708};
4709
cdd6c482 4710static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4711 struct perf_mmap_event *mmap_event)
4712{
4713 struct perf_output_handle handle;
c980d109 4714 struct perf_sample_data sample;
cdd6c482 4715 int size = mmap_event->event_id.header.size;
c980d109 4716 int ret;
0a4a9391 4717
c980d109
ACM
4718 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4719 ret = perf_output_begin(&handle, event,
a7ac67ea 4720 mmap_event->event_id.header.size);
0a4a9391 4721 if (ret)
c980d109 4722 goto out;
0a4a9391 4723
cdd6c482
IM
4724 mmap_event->event_id.pid = perf_event_pid(event, current);
4725 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4726
cdd6c482 4727 perf_output_put(&handle, mmap_event->event_id);
76369139 4728 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4729 mmap_event->file_size);
c980d109
ACM
4730
4731 perf_event__output_id_sample(event, &handle, &sample);
4732
78d613eb 4733 perf_output_end(&handle);
c980d109
ACM
4734out:
4735 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4736}
4737
cdd6c482 4738static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4739 struct perf_mmap_event *mmap_event,
4740 int executable)
0a4a9391 4741{
6f93d0a7 4742 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4743 return 0;
4744
5632ab12 4745 if (!event_filter_match(event))
5d27c23d
PZ
4746 return 0;
4747
3af9e859
EM
4748 if ((!executable && event->attr.mmap_data) ||
4749 (executable && event->attr.mmap))
0a4a9391
PZ
4750 return 1;
4751
4752 return 0;
4753}
4754
cdd6c482 4755static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4756 struct perf_mmap_event *mmap_event,
4757 int executable)
0a4a9391 4758{
cdd6c482 4759 struct perf_event *event;
0a4a9391 4760
cdd6c482 4761 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4762 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4763 perf_event_mmap_output(event, mmap_event);
0a4a9391 4764 }
0a4a9391
PZ
4765}
4766
cdd6c482 4767static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4768{
4769 struct perf_cpu_context *cpuctx;
cdd6c482 4770 struct perf_event_context *ctx;
089dd79d
PZ
4771 struct vm_area_struct *vma = mmap_event->vma;
4772 struct file *file = vma->vm_file;
0a4a9391
PZ
4773 unsigned int size;
4774 char tmp[16];
4775 char *buf = NULL;
089dd79d 4776 const char *name;
108b02cf 4777 struct pmu *pmu;
8dc85d54 4778 int ctxn;
0a4a9391 4779
413ee3b4
AB
4780 memset(tmp, 0, sizeof(tmp));
4781
0a4a9391 4782 if (file) {
413ee3b4 4783 /*
76369139 4784 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4785 * need to add enough zero bytes after the string to handle
4786 * the 64bit alignment we do later.
4787 */
4788 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4789 if (!buf) {
4790 name = strncpy(tmp, "//enomem", sizeof(tmp));
4791 goto got_name;
4792 }
d3d21c41 4793 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4794 if (IS_ERR(name)) {
4795 name = strncpy(tmp, "//toolong", sizeof(tmp));
4796 goto got_name;
4797 }
4798 } else {
413ee3b4
AB
4799 if (arch_vma_name(mmap_event->vma)) {
4800 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
4801 sizeof(tmp) - 1);
4802 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 4803 goto got_name;
413ee3b4 4804 }
089dd79d
PZ
4805
4806 if (!vma->vm_mm) {
4807 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4808 goto got_name;
3af9e859
EM
4809 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4810 vma->vm_end >= vma->vm_mm->brk) {
4811 name = strncpy(tmp, "[heap]", sizeof(tmp));
4812 goto got_name;
4813 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4814 vma->vm_end >= vma->vm_mm->start_stack) {
4815 name = strncpy(tmp, "[stack]", sizeof(tmp));
4816 goto got_name;
089dd79d
PZ
4817 }
4818
0a4a9391
PZ
4819 name = strncpy(tmp, "//anon", sizeof(tmp));
4820 goto got_name;
4821 }
4822
4823got_name:
888fcee0 4824 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4825
4826 mmap_event->file_name = name;
4827 mmap_event->file_size = size;
4828
2fe85427
SE
4829 if (!(vma->vm_flags & VM_EXEC))
4830 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4831
cdd6c482 4832 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4833
f6d9dd23 4834 rcu_read_lock();
108b02cf 4835 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4836 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3f1f3320 4837 if (cpuctx->unique_pmu != pmu)
51676957 4838 goto next;
108b02cf
PZ
4839 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4840 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4841
4842 ctxn = pmu->task_ctx_nr;
4843 if (ctxn < 0)
41945f6c 4844 goto next;
8dc85d54
PZ
4845
4846 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4847 if (ctx) {
4848 perf_event_mmap_ctx(ctx, mmap_event,
4849 vma->vm_flags & VM_EXEC);
4850 }
41945f6c
PZ
4851next:
4852 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4853 }
665c2142
PZ
4854 rcu_read_unlock();
4855
0a4a9391
PZ
4856 kfree(buf);
4857}
4858
3af9e859 4859void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4860{
9ee318a7
PZ
4861 struct perf_mmap_event mmap_event;
4862
cdd6c482 4863 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4864 return;
4865
4866 mmap_event = (struct perf_mmap_event){
089dd79d 4867 .vma = vma,
573402db
PZ
4868 /* .file_name */
4869 /* .file_size */
cdd6c482 4870 .event_id = {
573402db 4871 .header = {
cdd6c482 4872 .type = PERF_RECORD_MMAP,
39447b38 4873 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4874 /* .size */
4875 },
4876 /* .pid */
4877 /* .tid */
089dd79d
PZ
4878 .start = vma->vm_start,
4879 .len = vma->vm_end - vma->vm_start,
3a0304e9 4880 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4881 },
4882 };
4883
cdd6c482 4884 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4885}
4886
a78ac325
PZ
4887/*
4888 * IRQ throttle logging
4889 */
4890
cdd6c482 4891static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4892{
4893 struct perf_output_handle handle;
c980d109 4894 struct perf_sample_data sample;
a78ac325
PZ
4895 int ret;
4896
4897 struct {
4898 struct perf_event_header header;
4899 u64 time;
cca3f454 4900 u64 id;
7f453c24 4901 u64 stream_id;
a78ac325
PZ
4902 } throttle_event = {
4903 .header = {
cdd6c482 4904 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4905 .misc = 0,
4906 .size = sizeof(throttle_event),
4907 },
def0a9b2 4908 .time = perf_clock(),
cdd6c482
IM
4909 .id = primary_event_id(event),
4910 .stream_id = event->id,
a78ac325
PZ
4911 };
4912
966ee4d6 4913 if (enable)
cdd6c482 4914 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4915
c980d109
ACM
4916 perf_event_header__init_id(&throttle_event.header, &sample, event);
4917
4918 ret = perf_output_begin(&handle, event,
a7ac67ea 4919 throttle_event.header.size);
a78ac325
PZ
4920 if (ret)
4921 return;
4922
4923 perf_output_put(&handle, throttle_event);
c980d109 4924 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4925 perf_output_end(&handle);
4926}
4927
f6c7d5fe 4928/*
cdd6c482 4929 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4930 */
4931
a8b0ca17 4932static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4933 int throttle, struct perf_sample_data *data,
4934 struct pt_regs *regs)
f6c7d5fe 4935{
cdd6c482
IM
4936 int events = atomic_read(&event->event_limit);
4937 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4938 u64 seq;
79f14641
PZ
4939 int ret = 0;
4940
96398826
PZ
4941 /*
4942 * Non-sampling counters might still use the PMI to fold short
4943 * hardware counters, ignore those.
4944 */
4945 if (unlikely(!is_sampling_event(event)))
4946 return 0;
4947
e050e3f0
SE
4948 seq = __this_cpu_read(perf_throttled_seq);
4949 if (seq != hwc->interrupts_seq) {
4950 hwc->interrupts_seq = seq;
4951 hwc->interrupts = 1;
4952 } else {
4953 hwc->interrupts++;
4954 if (unlikely(throttle
4955 && hwc->interrupts >= max_samples_per_tick)) {
4956 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4957 hwc->interrupts = MAX_INTERRUPTS;
4958 perf_log_throttle(event, 0);
a78ac325
PZ
4959 ret = 1;
4960 }
e050e3f0 4961 }
60db5e09 4962
cdd6c482 4963 if (event->attr.freq) {
def0a9b2 4964 u64 now = perf_clock();
abd50713 4965 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4966
abd50713 4967 hwc->freq_time_stamp = now;
bd2b5b12 4968
abd50713 4969 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4970 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4971 }
4972
2023b359
PZ
4973 /*
4974 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4975 * events
2023b359
PZ
4976 */
4977
cdd6c482
IM
4978 event->pending_kill = POLL_IN;
4979 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4980 ret = 1;
cdd6c482 4981 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4982 event->pending_disable = 1;
4983 irq_work_queue(&event->pending);
79f14641
PZ
4984 }
4985
453f19ee 4986 if (event->overflow_handler)
a8b0ca17 4987 event->overflow_handler(event, data, regs);
453f19ee 4988 else
a8b0ca17 4989 perf_event_output(event, data, regs);
453f19ee 4990
f506b3dc 4991 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4992 event->pending_wakeup = 1;
4993 irq_work_queue(&event->pending);
f506b3dc
PZ
4994 }
4995
79f14641 4996 return ret;
f6c7d5fe
PZ
4997}
4998
a8b0ca17 4999int perf_event_overflow(struct perf_event *event,
5622f295
MM
5000 struct perf_sample_data *data,
5001 struct pt_regs *regs)
850bc73f 5002{
a8b0ca17 5003 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5004}
5005
15dbf27c 5006/*
cdd6c482 5007 * Generic software event infrastructure
15dbf27c
PZ
5008 */
5009
b28ab83c
PZ
5010struct swevent_htable {
5011 struct swevent_hlist *swevent_hlist;
5012 struct mutex hlist_mutex;
5013 int hlist_refcount;
5014
5015 /* Recursion avoidance in each contexts */
5016 int recursion[PERF_NR_CONTEXTS];
5017};
5018
5019static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5020
7b4b6658 5021/*
cdd6c482
IM
5022 * We directly increment event->count and keep a second value in
5023 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5024 * is kept in the range [-sample_period, 0] so that we can use the
5025 * sign as trigger.
5026 */
5027
cdd6c482 5028static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5029{
cdd6c482 5030 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5031 u64 period = hwc->last_period;
5032 u64 nr, offset;
5033 s64 old, val;
5034
5035 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5036
5037again:
e7850595 5038 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5039 if (val < 0)
5040 return 0;
15dbf27c 5041
7b4b6658
PZ
5042 nr = div64_u64(period + val, period);
5043 offset = nr * period;
5044 val -= offset;
e7850595 5045 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5046 goto again;
15dbf27c 5047
7b4b6658 5048 return nr;
15dbf27c
PZ
5049}
5050
0cff784a 5051static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5052 struct perf_sample_data *data,
5622f295 5053 struct pt_regs *regs)
15dbf27c 5054{
cdd6c482 5055 struct hw_perf_event *hwc = &event->hw;
850bc73f 5056 int throttle = 0;
15dbf27c 5057
0cff784a
PZ
5058 if (!overflow)
5059 overflow = perf_swevent_set_period(event);
15dbf27c 5060
7b4b6658
PZ
5061 if (hwc->interrupts == MAX_INTERRUPTS)
5062 return;
15dbf27c 5063
7b4b6658 5064 for (; overflow; overflow--) {
a8b0ca17 5065 if (__perf_event_overflow(event, throttle,
5622f295 5066 data, regs)) {
7b4b6658
PZ
5067 /*
5068 * We inhibit the overflow from happening when
5069 * hwc->interrupts == MAX_INTERRUPTS.
5070 */
5071 break;
5072 }
cf450a73 5073 throttle = 1;
7b4b6658 5074 }
15dbf27c
PZ
5075}
5076
a4eaf7f1 5077static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5078 struct perf_sample_data *data,
5622f295 5079 struct pt_regs *regs)
7b4b6658 5080{
cdd6c482 5081 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5082
e7850595 5083 local64_add(nr, &event->count);
d6d020e9 5084
0cff784a
PZ
5085 if (!regs)
5086 return;
5087
6c7e550f 5088 if (!is_sampling_event(event))
7b4b6658 5089 return;
d6d020e9 5090
5d81e5cf
AV
5091 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5092 data->period = nr;
5093 return perf_swevent_overflow(event, 1, data, regs);
5094 } else
5095 data->period = event->hw.last_period;
5096
0cff784a 5097 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5098 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5099
e7850595 5100 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5101 return;
df1a132b 5102
a8b0ca17 5103 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5104}
5105
f5ffe02e
FW
5106static int perf_exclude_event(struct perf_event *event,
5107 struct pt_regs *regs)
5108{
a4eaf7f1 5109 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5110 return 1;
a4eaf7f1 5111
f5ffe02e
FW
5112 if (regs) {
5113 if (event->attr.exclude_user && user_mode(regs))
5114 return 1;
5115
5116 if (event->attr.exclude_kernel && !user_mode(regs))
5117 return 1;
5118 }
5119
5120 return 0;
5121}
5122
cdd6c482 5123static int perf_swevent_match(struct perf_event *event,
1c432d89 5124 enum perf_type_id type,
6fb2915d
LZ
5125 u32 event_id,
5126 struct perf_sample_data *data,
5127 struct pt_regs *regs)
15dbf27c 5128{
cdd6c482 5129 if (event->attr.type != type)
a21ca2ca 5130 return 0;
f5ffe02e 5131
cdd6c482 5132 if (event->attr.config != event_id)
15dbf27c
PZ
5133 return 0;
5134
f5ffe02e
FW
5135 if (perf_exclude_event(event, regs))
5136 return 0;
15dbf27c
PZ
5137
5138 return 1;
5139}
5140
76e1d904
FW
5141static inline u64 swevent_hash(u64 type, u32 event_id)
5142{
5143 u64 val = event_id | (type << 32);
5144
5145 return hash_64(val, SWEVENT_HLIST_BITS);
5146}
5147
49f135ed
FW
5148static inline struct hlist_head *
5149__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5150{
49f135ed
FW
5151 u64 hash = swevent_hash(type, event_id);
5152
5153 return &hlist->heads[hash];
5154}
76e1d904 5155
49f135ed
FW
5156/* For the read side: events when they trigger */
5157static inline struct hlist_head *
b28ab83c 5158find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5159{
5160 struct swevent_hlist *hlist;
76e1d904 5161
b28ab83c 5162 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5163 if (!hlist)
5164 return NULL;
5165
49f135ed
FW
5166 return __find_swevent_head(hlist, type, event_id);
5167}
5168
5169/* For the event head insertion and removal in the hlist */
5170static inline struct hlist_head *
b28ab83c 5171find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5172{
5173 struct swevent_hlist *hlist;
5174 u32 event_id = event->attr.config;
5175 u64 type = event->attr.type;
5176
5177 /*
5178 * Event scheduling is always serialized against hlist allocation
5179 * and release. Which makes the protected version suitable here.
5180 * The context lock guarantees that.
5181 */
b28ab83c 5182 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5183 lockdep_is_held(&event->ctx->lock));
5184 if (!hlist)
5185 return NULL;
5186
5187 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5188}
5189
5190static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5191 u64 nr,
76e1d904
FW
5192 struct perf_sample_data *data,
5193 struct pt_regs *regs)
15dbf27c 5194{
b28ab83c 5195 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5196 struct perf_event *event;
76e1d904 5197 struct hlist_head *head;
15dbf27c 5198
76e1d904 5199 rcu_read_lock();
b28ab83c 5200 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5201 if (!head)
5202 goto end;
5203
b67bfe0d 5204 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5205 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5206 perf_swevent_event(event, nr, data, regs);
15dbf27c 5207 }
76e1d904
FW
5208end:
5209 rcu_read_unlock();
15dbf27c
PZ
5210}
5211
4ed7c92d 5212int perf_swevent_get_recursion_context(void)
96f6d444 5213{
b28ab83c 5214 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5215
b28ab83c 5216 return get_recursion_context(swhash->recursion);
96f6d444 5217}
645e8cc0 5218EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5219
fa9f90be 5220inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5221{
b28ab83c 5222 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5223
b28ab83c 5224 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5225}
15dbf27c 5226
a8b0ca17 5227void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5228{
a4234bfc 5229 struct perf_sample_data data;
4ed7c92d
PZ
5230 int rctx;
5231
1c024eca 5232 preempt_disable_notrace();
4ed7c92d
PZ
5233 rctx = perf_swevent_get_recursion_context();
5234 if (rctx < 0)
5235 return;
a4234bfc 5236
fd0d000b 5237 perf_sample_data_init(&data, addr, 0);
92bf309a 5238
a8b0ca17 5239 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5240
5241 perf_swevent_put_recursion_context(rctx);
1c024eca 5242 preempt_enable_notrace();
b8e83514
PZ
5243}
5244
cdd6c482 5245static void perf_swevent_read(struct perf_event *event)
15dbf27c 5246{
15dbf27c
PZ
5247}
5248
a4eaf7f1 5249static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5250{
b28ab83c 5251 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5252 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5253 struct hlist_head *head;
5254
6c7e550f 5255 if (is_sampling_event(event)) {
7b4b6658 5256 hwc->last_period = hwc->sample_period;
cdd6c482 5257 perf_swevent_set_period(event);
7b4b6658 5258 }
76e1d904 5259
a4eaf7f1
PZ
5260 hwc->state = !(flags & PERF_EF_START);
5261
b28ab83c 5262 head = find_swevent_head(swhash, event);
76e1d904
FW
5263 if (WARN_ON_ONCE(!head))
5264 return -EINVAL;
5265
5266 hlist_add_head_rcu(&event->hlist_entry, head);
5267
15dbf27c
PZ
5268 return 0;
5269}
5270
a4eaf7f1 5271static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5272{
76e1d904 5273 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5274}
5275
a4eaf7f1 5276static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5277{
a4eaf7f1 5278 event->hw.state = 0;
d6d020e9 5279}
aa9c4c0f 5280
a4eaf7f1 5281static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5282{
a4eaf7f1 5283 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5284}
5285
49f135ed
FW
5286/* Deref the hlist from the update side */
5287static inline struct swevent_hlist *
b28ab83c 5288swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5289{
b28ab83c
PZ
5290 return rcu_dereference_protected(swhash->swevent_hlist,
5291 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5292}
5293
b28ab83c 5294static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5295{
b28ab83c 5296 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5297
49f135ed 5298 if (!hlist)
76e1d904
FW
5299 return;
5300
b28ab83c 5301 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5302 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5303}
5304
5305static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5306{
b28ab83c 5307 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5308
b28ab83c 5309 mutex_lock(&swhash->hlist_mutex);
76e1d904 5310
b28ab83c
PZ
5311 if (!--swhash->hlist_refcount)
5312 swevent_hlist_release(swhash);
76e1d904 5313
b28ab83c 5314 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5315}
5316
5317static void swevent_hlist_put(struct perf_event *event)
5318{
5319 int cpu;
5320
5321 if (event->cpu != -1) {
5322 swevent_hlist_put_cpu(event, event->cpu);
5323 return;
5324 }
5325
5326 for_each_possible_cpu(cpu)
5327 swevent_hlist_put_cpu(event, cpu);
5328}
5329
5330static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5331{
b28ab83c 5332 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5333 int err = 0;
5334
b28ab83c 5335 mutex_lock(&swhash->hlist_mutex);
76e1d904 5336
b28ab83c 5337 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5338 struct swevent_hlist *hlist;
5339
5340 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5341 if (!hlist) {
5342 err = -ENOMEM;
5343 goto exit;
5344 }
b28ab83c 5345 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5346 }
b28ab83c 5347 swhash->hlist_refcount++;
9ed6060d 5348exit:
b28ab83c 5349 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5350
5351 return err;
5352}
5353
5354static int swevent_hlist_get(struct perf_event *event)
5355{
5356 int err;
5357 int cpu, failed_cpu;
5358
5359 if (event->cpu != -1)
5360 return swevent_hlist_get_cpu(event, event->cpu);
5361
5362 get_online_cpus();
5363 for_each_possible_cpu(cpu) {
5364 err = swevent_hlist_get_cpu(event, cpu);
5365 if (err) {
5366 failed_cpu = cpu;
5367 goto fail;
5368 }
5369 }
5370 put_online_cpus();
5371
5372 return 0;
9ed6060d 5373fail:
76e1d904
FW
5374 for_each_possible_cpu(cpu) {
5375 if (cpu == failed_cpu)
5376 break;
5377 swevent_hlist_put_cpu(event, cpu);
5378 }
5379
5380 put_online_cpus();
5381 return err;
5382}
5383
c5905afb 5384struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5385
b0a873eb
PZ
5386static void sw_perf_event_destroy(struct perf_event *event)
5387{
5388 u64 event_id = event->attr.config;
95476b64 5389
b0a873eb
PZ
5390 WARN_ON(event->parent);
5391
c5905afb 5392 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5393 swevent_hlist_put(event);
5394}
5395
5396static int perf_swevent_init(struct perf_event *event)
5397{
8176cced 5398 u64 event_id = event->attr.config;
b0a873eb
PZ
5399
5400 if (event->attr.type != PERF_TYPE_SOFTWARE)
5401 return -ENOENT;
5402
2481c5fa
SE
5403 /*
5404 * no branch sampling for software events
5405 */
5406 if (has_branch_stack(event))
5407 return -EOPNOTSUPP;
5408
b0a873eb
PZ
5409 switch (event_id) {
5410 case PERF_COUNT_SW_CPU_CLOCK:
5411 case PERF_COUNT_SW_TASK_CLOCK:
5412 return -ENOENT;
5413
5414 default:
5415 break;
5416 }
5417
ce677831 5418 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5419 return -ENOENT;
5420
5421 if (!event->parent) {
5422 int err;
5423
5424 err = swevent_hlist_get(event);
5425 if (err)
5426 return err;
5427
c5905afb 5428 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5429 event->destroy = sw_perf_event_destroy;
5430 }
5431
5432 return 0;
5433}
5434
35edc2a5
PZ
5435static int perf_swevent_event_idx(struct perf_event *event)
5436{
5437 return 0;
5438}
5439
b0a873eb 5440static struct pmu perf_swevent = {
89a1e187 5441 .task_ctx_nr = perf_sw_context,
95476b64 5442
b0a873eb 5443 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5444 .add = perf_swevent_add,
5445 .del = perf_swevent_del,
5446 .start = perf_swevent_start,
5447 .stop = perf_swevent_stop,
1c024eca 5448 .read = perf_swevent_read,
35edc2a5
PZ
5449
5450 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5451};
5452
b0a873eb
PZ
5453#ifdef CONFIG_EVENT_TRACING
5454
1c024eca
PZ
5455static int perf_tp_filter_match(struct perf_event *event,
5456 struct perf_sample_data *data)
5457{
5458 void *record = data->raw->data;
5459
5460 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5461 return 1;
5462 return 0;
5463}
5464
5465static int perf_tp_event_match(struct perf_event *event,
5466 struct perf_sample_data *data,
5467 struct pt_regs *regs)
5468{
a0f7d0f7
FW
5469 if (event->hw.state & PERF_HES_STOPPED)
5470 return 0;
580d607c
PZ
5471 /*
5472 * All tracepoints are from kernel-space.
5473 */
5474 if (event->attr.exclude_kernel)
1c024eca
PZ
5475 return 0;
5476
5477 if (!perf_tp_filter_match(event, data))
5478 return 0;
5479
5480 return 1;
5481}
5482
5483void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5484 struct pt_regs *regs, struct hlist_head *head, int rctx,
5485 struct task_struct *task)
95476b64
FW
5486{
5487 struct perf_sample_data data;
1c024eca 5488 struct perf_event *event;
1c024eca 5489
95476b64
FW
5490 struct perf_raw_record raw = {
5491 .size = entry_size,
5492 .data = record,
5493 };
5494
fd0d000b 5495 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5496 data.raw = &raw;
5497
b67bfe0d 5498 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5499 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5500 perf_swevent_event(event, count, &data, regs);
4f41c013 5501 }
ecc55f84 5502
e6dab5ff
AV
5503 /*
5504 * If we got specified a target task, also iterate its context and
5505 * deliver this event there too.
5506 */
5507 if (task && task != current) {
5508 struct perf_event_context *ctx;
5509 struct trace_entry *entry = record;
5510
5511 rcu_read_lock();
5512 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5513 if (!ctx)
5514 goto unlock;
5515
5516 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5517 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5518 continue;
5519 if (event->attr.config != entry->type)
5520 continue;
5521 if (perf_tp_event_match(event, &data, regs))
5522 perf_swevent_event(event, count, &data, regs);
5523 }
5524unlock:
5525 rcu_read_unlock();
5526 }
5527
ecc55f84 5528 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5529}
5530EXPORT_SYMBOL_GPL(perf_tp_event);
5531
cdd6c482 5532static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5533{
1c024eca 5534 perf_trace_destroy(event);
e077df4f
PZ
5535}
5536
b0a873eb 5537static int perf_tp_event_init(struct perf_event *event)
e077df4f 5538{
76e1d904
FW
5539 int err;
5540
b0a873eb
PZ
5541 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5542 return -ENOENT;
5543
2481c5fa
SE
5544 /*
5545 * no branch sampling for tracepoint events
5546 */
5547 if (has_branch_stack(event))
5548 return -EOPNOTSUPP;
5549
1c024eca
PZ
5550 err = perf_trace_init(event);
5551 if (err)
b0a873eb 5552 return err;
e077df4f 5553
cdd6c482 5554 event->destroy = tp_perf_event_destroy;
e077df4f 5555
b0a873eb
PZ
5556 return 0;
5557}
5558
5559static struct pmu perf_tracepoint = {
89a1e187
PZ
5560 .task_ctx_nr = perf_sw_context,
5561
b0a873eb 5562 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5563 .add = perf_trace_add,
5564 .del = perf_trace_del,
5565 .start = perf_swevent_start,
5566 .stop = perf_swevent_stop,
b0a873eb 5567 .read = perf_swevent_read,
35edc2a5
PZ
5568
5569 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5570};
5571
5572static inline void perf_tp_register(void)
5573{
2e80a82a 5574 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5575}
6fb2915d
LZ
5576
5577static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5578{
5579 char *filter_str;
5580 int ret;
5581
5582 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5583 return -EINVAL;
5584
5585 filter_str = strndup_user(arg, PAGE_SIZE);
5586 if (IS_ERR(filter_str))
5587 return PTR_ERR(filter_str);
5588
5589 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5590
5591 kfree(filter_str);
5592 return ret;
5593}
5594
5595static void perf_event_free_filter(struct perf_event *event)
5596{
5597 ftrace_profile_free_filter(event);
5598}
5599
e077df4f 5600#else
6fb2915d 5601
b0a873eb 5602static inline void perf_tp_register(void)
e077df4f 5603{
e077df4f 5604}
6fb2915d
LZ
5605
5606static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5607{
5608 return -ENOENT;
5609}
5610
5611static void perf_event_free_filter(struct perf_event *event)
5612{
5613}
5614
07b139c8 5615#endif /* CONFIG_EVENT_TRACING */
e077df4f 5616
24f1e32c 5617#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5618void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5619{
f5ffe02e
FW
5620 struct perf_sample_data sample;
5621 struct pt_regs *regs = data;
5622
fd0d000b 5623 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5624
a4eaf7f1 5625 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5626 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5627}
5628#endif
5629
b0a873eb
PZ
5630/*
5631 * hrtimer based swevent callback
5632 */
f29ac756 5633
b0a873eb 5634static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5635{
b0a873eb
PZ
5636 enum hrtimer_restart ret = HRTIMER_RESTART;
5637 struct perf_sample_data data;
5638 struct pt_regs *regs;
5639 struct perf_event *event;
5640 u64 period;
f29ac756 5641
b0a873eb 5642 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5643
5644 if (event->state != PERF_EVENT_STATE_ACTIVE)
5645 return HRTIMER_NORESTART;
5646
b0a873eb 5647 event->pmu->read(event);
f344011c 5648
fd0d000b 5649 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5650 regs = get_irq_regs();
5651
5652 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5653 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5654 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5655 ret = HRTIMER_NORESTART;
5656 }
24f1e32c 5657
b0a873eb
PZ
5658 period = max_t(u64, 10000, event->hw.sample_period);
5659 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5660
b0a873eb 5661 return ret;
f29ac756
PZ
5662}
5663
b0a873eb 5664static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5665{
b0a873eb 5666 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5667 s64 period;
5668
5669 if (!is_sampling_event(event))
5670 return;
f5ffe02e 5671
5d508e82
FBH
5672 period = local64_read(&hwc->period_left);
5673 if (period) {
5674 if (period < 0)
5675 period = 10000;
fa407f35 5676
5d508e82
FBH
5677 local64_set(&hwc->period_left, 0);
5678 } else {
5679 period = max_t(u64, 10000, hwc->sample_period);
5680 }
5681 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5682 ns_to_ktime(period), 0,
b5ab4cd5 5683 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5684}
b0a873eb
PZ
5685
5686static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5687{
b0a873eb
PZ
5688 struct hw_perf_event *hwc = &event->hw;
5689
6c7e550f 5690 if (is_sampling_event(event)) {
b0a873eb 5691 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5692 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5693
5694 hrtimer_cancel(&hwc->hrtimer);
5695 }
24f1e32c
FW
5696}
5697
ba3dd36c
PZ
5698static void perf_swevent_init_hrtimer(struct perf_event *event)
5699{
5700 struct hw_perf_event *hwc = &event->hw;
5701
5702 if (!is_sampling_event(event))
5703 return;
5704
5705 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5706 hwc->hrtimer.function = perf_swevent_hrtimer;
5707
5708 /*
5709 * Since hrtimers have a fixed rate, we can do a static freq->period
5710 * mapping and avoid the whole period adjust feedback stuff.
5711 */
5712 if (event->attr.freq) {
5713 long freq = event->attr.sample_freq;
5714
5715 event->attr.sample_period = NSEC_PER_SEC / freq;
5716 hwc->sample_period = event->attr.sample_period;
5717 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5718 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5719 event->attr.freq = 0;
5720 }
5721}
5722
b0a873eb
PZ
5723/*
5724 * Software event: cpu wall time clock
5725 */
5726
5727static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5728{
b0a873eb
PZ
5729 s64 prev;
5730 u64 now;
5731
a4eaf7f1 5732 now = local_clock();
b0a873eb
PZ
5733 prev = local64_xchg(&event->hw.prev_count, now);
5734 local64_add(now - prev, &event->count);
24f1e32c 5735}
24f1e32c 5736
a4eaf7f1 5737static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5738{
a4eaf7f1 5739 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5740 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5741}
5742
a4eaf7f1 5743static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5744{
b0a873eb
PZ
5745 perf_swevent_cancel_hrtimer(event);
5746 cpu_clock_event_update(event);
5747}
f29ac756 5748
a4eaf7f1
PZ
5749static int cpu_clock_event_add(struct perf_event *event, int flags)
5750{
5751 if (flags & PERF_EF_START)
5752 cpu_clock_event_start(event, flags);
5753
5754 return 0;
5755}
5756
5757static void cpu_clock_event_del(struct perf_event *event, int flags)
5758{
5759 cpu_clock_event_stop(event, flags);
5760}
5761
b0a873eb
PZ
5762static void cpu_clock_event_read(struct perf_event *event)
5763{
5764 cpu_clock_event_update(event);
5765}
f344011c 5766
b0a873eb
PZ
5767static int cpu_clock_event_init(struct perf_event *event)
5768{
5769 if (event->attr.type != PERF_TYPE_SOFTWARE)
5770 return -ENOENT;
5771
5772 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5773 return -ENOENT;
5774
2481c5fa
SE
5775 /*
5776 * no branch sampling for software events
5777 */
5778 if (has_branch_stack(event))
5779 return -EOPNOTSUPP;
5780
ba3dd36c
PZ
5781 perf_swevent_init_hrtimer(event);
5782
b0a873eb 5783 return 0;
f29ac756
PZ
5784}
5785
b0a873eb 5786static struct pmu perf_cpu_clock = {
89a1e187
PZ
5787 .task_ctx_nr = perf_sw_context,
5788
b0a873eb 5789 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5790 .add = cpu_clock_event_add,
5791 .del = cpu_clock_event_del,
5792 .start = cpu_clock_event_start,
5793 .stop = cpu_clock_event_stop,
b0a873eb 5794 .read = cpu_clock_event_read,
35edc2a5
PZ
5795
5796 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5797};
5798
5799/*
5800 * Software event: task time clock
5801 */
5802
5803static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5804{
b0a873eb
PZ
5805 u64 prev;
5806 s64 delta;
5c92d124 5807
b0a873eb
PZ
5808 prev = local64_xchg(&event->hw.prev_count, now);
5809 delta = now - prev;
5810 local64_add(delta, &event->count);
5811}
5c92d124 5812
a4eaf7f1 5813static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5814{
a4eaf7f1 5815 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5816 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5817}
5818
a4eaf7f1 5819static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5820{
5821 perf_swevent_cancel_hrtimer(event);
5822 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5823}
5824
5825static int task_clock_event_add(struct perf_event *event, int flags)
5826{
5827 if (flags & PERF_EF_START)
5828 task_clock_event_start(event, flags);
b0a873eb 5829
a4eaf7f1
PZ
5830 return 0;
5831}
5832
5833static void task_clock_event_del(struct perf_event *event, int flags)
5834{
5835 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5836}
5837
5838static void task_clock_event_read(struct perf_event *event)
5839{
768a06e2
PZ
5840 u64 now = perf_clock();
5841 u64 delta = now - event->ctx->timestamp;
5842 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5843
5844 task_clock_event_update(event, time);
5845}
5846
5847static int task_clock_event_init(struct perf_event *event)
6fb2915d 5848{
b0a873eb
PZ
5849 if (event->attr.type != PERF_TYPE_SOFTWARE)
5850 return -ENOENT;
5851
5852 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5853 return -ENOENT;
5854
2481c5fa
SE
5855 /*
5856 * no branch sampling for software events
5857 */
5858 if (has_branch_stack(event))
5859 return -EOPNOTSUPP;
5860
ba3dd36c
PZ
5861 perf_swevent_init_hrtimer(event);
5862
b0a873eb 5863 return 0;
6fb2915d
LZ
5864}
5865
b0a873eb 5866static struct pmu perf_task_clock = {
89a1e187
PZ
5867 .task_ctx_nr = perf_sw_context,
5868
b0a873eb 5869 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5870 .add = task_clock_event_add,
5871 .del = task_clock_event_del,
5872 .start = task_clock_event_start,
5873 .stop = task_clock_event_stop,
b0a873eb 5874 .read = task_clock_event_read,
35edc2a5
PZ
5875
5876 .event_idx = perf_swevent_event_idx,
b0a873eb 5877};
6fb2915d 5878
ad5133b7 5879static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5880{
e077df4f 5881}
6fb2915d 5882
ad5133b7 5883static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5884{
ad5133b7 5885 return 0;
6fb2915d
LZ
5886}
5887
ad5133b7 5888static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5889{
ad5133b7 5890 perf_pmu_disable(pmu);
6fb2915d
LZ
5891}
5892
ad5133b7
PZ
5893static int perf_pmu_commit_txn(struct pmu *pmu)
5894{
5895 perf_pmu_enable(pmu);
5896 return 0;
5897}
e077df4f 5898
ad5133b7 5899static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5900{
ad5133b7 5901 perf_pmu_enable(pmu);
24f1e32c
FW
5902}
5903
35edc2a5
PZ
5904static int perf_event_idx_default(struct perf_event *event)
5905{
5906 return event->hw.idx + 1;
5907}
5908
8dc85d54
PZ
5909/*
5910 * Ensures all contexts with the same task_ctx_nr have the same
5911 * pmu_cpu_context too.
5912 */
5913static void *find_pmu_context(int ctxn)
24f1e32c 5914{
8dc85d54 5915 struct pmu *pmu;
b326e956 5916
8dc85d54
PZ
5917 if (ctxn < 0)
5918 return NULL;
24f1e32c 5919
8dc85d54
PZ
5920 list_for_each_entry(pmu, &pmus, entry) {
5921 if (pmu->task_ctx_nr == ctxn)
5922 return pmu->pmu_cpu_context;
5923 }
24f1e32c 5924
8dc85d54 5925 return NULL;
24f1e32c
FW
5926}
5927
51676957 5928static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5929{
51676957
PZ
5930 int cpu;
5931
5932 for_each_possible_cpu(cpu) {
5933 struct perf_cpu_context *cpuctx;
5934
5935 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5936
3f1f3320
PZ
5937 if (cpuctx->unique_pmu == old_pmu)
5938 cpuctx->unique_pmu = pmu;
51676957
PZ
5939 }
5940}
5941
5942static void free_pmu_context(struct pmu *pmu)
5943{
5944 struct pmu *i;
f5ffe02e 5945
8dc85d54 5946 mutex_lock(&pmus_lock);
0475f9ea 5947 /*
8dc85d54 5948 * Like a real lame refcount.
0475f9ea 5949 */
51676957
PZ
5950 list_for_each_entry(i, &pmus, entry) {
5951 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5952 update_pmu_context(i, pmu);
8dc85d54 5953 goto out;
51676957 5954 }
8dc85d54 5955 }
d6d020e9 5956
51676957 5957 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5958out:
5959 mutex_unlock(&pmus_lock);
24f1e32c 5960}
2e80a82a 5961static struct idr pmu_idr;
d6d020e9 5962
abe43400
PZ
5963static ssize_t
5964type_show(struct device *dev, struct device_attribute *attr, char *page)
5965{
5966 struct pmu *pmu = dev_get_drvdata(dev);
5967
5968 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5969}
5970
5971static struct device_attribute pmu_dev_attrs[] = {
5972 __ATTR_RO(type),
5973 __ATTR_NULL,
5974};
5975
5976static int pmu_bus_running;
5977static struct bus_type pmu_bus = {
5978 .name = "event_source",
5979 .dev_attrs = pmu_dev_attrs,
5980};
5981
5982static void pmu_dev_release(struct device *dev)
5983{
5984 kfree(dev);
5985}
5986
5987static int pmu_dev_alloc(struct pmu *pmu)
5988{
5989 int ret = -ENOMEM;
5990
5991 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5992 if (!pmu->dev)
5993 goto out;
5994
0c9d42ed 5995 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5996 device_initialize(pmu->dev);
5997 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5998 if (ret)
5999 goto free_dev;
6000
6001 dev_set_drvdata(pmu->dev, pmu);
6002 pmu->dev->bus = &pmu_bus;
6003 pmu->dev->release = pmu_dev_release;
6004 ret = device_add(pmu->dev);
6005 if (ret)
6006 goto free_dev;
6007
6008out:
6009 return ret;
6010
6011free_dev:
6012 put_device(pmu->dev);
6013 goto out;
6014}
6015
547e9fd7 6016static struct lock_class_key cpuctx_mutex;
facc4307 6017static struct lock_class_key cpuctx_lock;
547e9fd7 6018
2e80a82a 6019int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 6020{
108b02cf 6021 int cpu, ret;
24f1e32c 6022
b0a873eb 6023 mutex_lock(&pmus_lock);
33696fc0
PZ
6024 ret = -ENOMEM;
6025 pmu->pmu_disable_count = alloc_percpu(int);
6026 if (!pmu->pmu_disable_count)
6027 goto unlock;
f29ac756 6028
2e80a82a
PZ
6029 pmu->type = -1;
6030 if (!name)
6031 goto skip_type;
6032 pmu->name = name;
6033
6034 if (type < 0) {
0e9c3be2
TH
6035 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6036 if (type < 0) {
6037 ret = type;
2e80a82a
PZ
6038 goto free_pdc;
6039 }
6040 }
6041 pmu->type = type;
6042
abe43400
PZ
6043 if (pmu_bus_running) {
6044 ret = pmu_dev_alloc(pmu);
6045 if (ret)
6046 goto free_idr;
6047 }
6048
2e80a82a 6049skip_type:
8dc85d54
PZ
6050 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6051 if (pmu->pmu_cpu_context)
6052 goto got_cpu_context;
f29ac756 6053
c4814202 6054 ret = -ENOMEM;
108b02cf
PZ
6055 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6056 if (!pmu->pmu_cpu_context)
abe43400 6057 goto free_dev;
f344011c 6058
108b02cf
PZ
6059 for_each_possible_cpu(cpu) {
6060 struct perf_cpu_context *cpuctx;
6061
6062 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6063 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6064 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6065 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6066 cpuctx->ctx.type = cpu_context;
108b02cf 6067 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
6068 cpuctx->jiffies_interval = 1;
6069 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6070 cpuctx->unique_pmu = pmu;
108b02cf 6071 }
76e1d904 6072
8dc85d54 6073got_cpu_context:
ad5133b7
PZ
6074 if (!pmu->start_txn) {
6075 if (pmu->pmu_enable) {
6076 /*
6077 * If we have pmu_enable/pmu_disable calls, install
6078 * transaction stubs that use that to try and batch
6079 * hardware accesses.
6080 */
6081 pmu->start_txn = perf_pmu_start_txn;
6082 pmu->commit_txn = perf_pmu_commit_txn;
6083 pmu->cancel_txn = perf_pmu_cancel_txn;
6084 } else {
6085 pmu->start_txn = perf_pmu_nop_void;
6086 pmu->commit_txn = perf_pmu_nop_int;
6087 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6088 }
5c92d124 6089 }
15dbf27c 6090
ad5133b7
PZ
6091 if (!pmu->pmu_enable) {
6092 pmu->pmu_enable = perf_pmu_nop_void;
6093 pmu->pmu_disable = perf_pmu_nop_void;
6094 }
6095
35edc2a5
PZ
6096 if (!pmu->event_idx)
6097 pmu->event_idx = perf_event_idx_default;
6098
b0a873eb 6099 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6100 ret = 0;
6101unlock:
b0a873eb
PZ
6102 mutex_unlock(&pmus_lock);
6103
33696fc0 6104 return ret;
108b02cf 6105
abe43400
PZ
6106free_dev:
6107 device_del(pmu->dev);
6108 put_device(pmu->dev);
6109
2e80a82a
PZ
6110free_idr:
6111 if (pmu->type >= PERF_TYPE_MAX)
6112 idr_remove(&pmu_idr, pmu->type);
6113
108b02cf
PZ
6114free_pdc:
6115 free_percpu(pmu->pmu_disable_count);
6116 goto unlock;
f29ac756
PZ
6117}
6118
b0a873eb 6119void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6120{
b0a873eb
PZ
6121 mutex_lock(&pmus_lock);
6122 list_del_rcu(&pmu->entry);
6123 mutex_unlock(&pmus_lock);
5c92d124 6124
0475f9ea 6125 /*
cde8e884
PZ
6126 * We dereference the pmu list under both SRCU and regular RCU, so
6127 * synchronize against both of those.
0475f9ea 6128 */
b0a873eb 6129 synchronize_srcu(&pmus_srcu);
cde8e884 6130 synchronize_rcu();
d6d020e9 6131
33696fc0 6132 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6133 if (pmu->type >= PERF_TYPE_MAX)
6134 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6135 device_del(pmu->dev);
6136 put_device(pmu->dev);
51676957 6137 free_pmu_context(pmu);
b0a873eb 6138}
d6d020e9 6139
b0a873eb
PZ
6140struct pmu *perf_init_event(struct perf_event *event)
6141{
6142 struct pmu *pmu = NULL;
6143 int idx;
940c5b29 6144 int ret;
b0a873eb
PZ
6145
6146 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6147
6148 rcu_read_lock();
6149 pmu = idr_find(&pmu_idr, event->attr.type);
6150 rcu_read_unlock();
940c5b29 6151 if (pmu) {
7e5b2a01 6152 event->pmu = pmu;
940c5b29
LM
6153 ret = pmu->event_init(event);
6154 if (ret)
6155 pmu = ERR_PTR(ret);
2e80a82a 6156 goto unlock;
940c5b29 6157 }
2e80a82a 6158
b0a873eb 6159 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6160 event->pmu = pmu;
940c5b29 6161 ret = pmu->event_init(event);
b0a873eb 6162 if (!ret)
e5f4d339 6163 goto unlock;
76e1d904 6164
b0a873eb
PZ
6165 if (ret != -ENOENT) {
6166 pmu = ERR_PTR(ret);
e5f4d339 6167 goto unlock;
f344011c 6168 }
5c92d124 6169 }
e5f4d339
PZ
6170 pmu = ERR_PTR(-ENOENT);
6171unlock:
b0a873eb 6172 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6173
4aeb0b42 6174 return pmu;
5c92d124
IM
6175}
6176
0793a61d 6177/*
cdd6c482 6178 * Allocate and initialize a event structure
0793a61d 6179 */
cdd6c482 6180static struct perf_event *
c3f00c70 6181perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6182 struct task_struct *task,
6183 struct perf_event *group_leader,
6184 struct perf_event *parent_event,
4dc0da86
AK
6185 perf_overflow_handler_t overflow_handler,
6186 void *context)
0793a61d 6187{
51b0fe39 6188 struct pmu *pmu;
cdd6c482
IM
6189 struct perf_event *event;
6190 struct hw_perf_event *hwc;
d5d2bc0d 6191 long err;
0793a61d 6192
66832eb4
ON
6193 if ((unsigned)cpu >= nr_cpu_ids) {
6194 if (!task || cpu != -1)
6195 return ERR_PTR(-EINVAL);
6196 }
6197
c3f00c70 6198 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6199 if (!event)
d5d2bc0d 6200 return ERR_PTR(-ENOMEM);
0793a61d 6201
04289bb9 6202 /*
cdd6c482 6203 * Single events are their own group leaders, with an
04289bb9
IM
6204 * empty sibling list:
6205 */
6206 if (!group_leader)
cdd6c482 6207 group_leader = event;
04289bb9 6208
cdd6c482
IM
6209 mutex_init(&event->child_mutex);
6210 INIT_LIST_HEAD(&event->child_list);
fccc714b 6211
cdd6c482
IM
6212 INIT_LIST_HEAD(&event->group_entry);
6213 INIT_LIST_HEAD(&event->event_entry);
6214 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6215 INIT_LIST_HEAD(&event->rb_entry);
6216
cdd6c482 6217 init_waitqueue_head(&event->waitq);
e360adbe 6218 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6219
cdd6c482 6220 mutex_init(&event->mmap_mutex);
7b732a75 6221
a6fa941d 6222 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6223 event->cpu = cpu;
6224 event->attr = *attr;
6225 event->group_leader = group_leader;
6226 event->pmu = NULL;
cdd6c482 6227 event->oncpu = -1;
a96bbc16 6228
cdd6c482 6229 event->parent = parent_event;
b84fbc9f 6230
17cf22c3 6231 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6232 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6233
cdd6c482 6234 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6235
d580ff86
PZ
6236 if (task) {
6237 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6238
6239 if (attr->type == PERF_TYPE_TRACEPOINT)
6240 event->hw.tp_target = task;
d580ff86
PZ
6241#ifdef CONFIG_HAVE_HW_BREAKPOINT
6242 /*
6243 * hw_breakpoint is a bit difficult here..
6244 */
f22c1bb6 6245 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6246 event->hw.bp_target = task;
6247#endif
6248 }
6249
4dc0da86 6250 if (!overflow_handler && parent_event) {
b326e956 6251 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6252 context = parent_event->overflow_handler_context;
6253 }
66832eb4 6254
b326e956 6255 event->overflow_handler = overflow_handler;
4dc0da86 6256 event->overflow_handler_context = context;
97eaf530 6257
0231bb53 6258 perf_event__state_init(event);
a86ed508 6259
4aeb0b42 6260 pmu = NULL;
b8e83514 6261
cdd6c482 6262 hwc = &event->hw;
bd2b5b12 6263 hwc->sample_period = attr->sample_period;
0d48696f 6264 if (attr->freq && attr->sample_freq)
bd2b5b12 6265 hwc->sample_period = 1;
eced1dfc 6266 hwc->last_period = hwc->sample_period;
bd2b5b12 6267
e7850595 6268 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6269
2023b359 6270 /*
cdd6c482 6271 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6272 */
3dab77fb 6273 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6274 goto done;
6275
b0a873eb 6276 pmu = perf_init_event(event);
974802ea 6277
d5d2bc0d
PM
6278done:
6279 err = 0;
4aeb0b42 6280 if (!pmu)
d5d2bc0d 6281 err = -EINVAL;
4aeb0b42
RR
6282 else if (IS_ERR(pmu))
6283 err = PTR_ERR(pmu);
5c92d124 6284
d5d2bc0d 6285 if (err) {
cdd6c482
IM
6286 if (event->ns)
6287 put_pid_ns(event->ns);
6288 kfree(event);
d5d2bc0d 6289 return ERR_PTR(err);
621a01ea 6290 }
d5d2bc0d 6291
cdd6c482 6292 if (!event->parent) {
82cd6def 6293 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6294 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6295 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6296 atomic_inc(&nr_mmap_events);
6297 if (event->attr.comm)
6298 atomic_inc(&nr_comm_events);
6299 if (event->attr.task)
6300 atomic_inc(&nr_task_events);
927c7a9e
FW
6301 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6302 err = get_callchain_buffers();
6303 if (err) {
6304 free_event(event);
6305 return ERR_PTR(err);
6306 }
6307 }
d010b332
SE
6308 if (has_branch_stack(event)) {
6309 static_key_slow_inc(&perf_sched_events.key);
6310 if (!(event->attach_state & PERF_ATTACH_TASK))
6311 atomic_inc(&per_cpu(perf_branch_stack_events,
6312 event->cpu));
6313 }
f344011c 6314 }
9ee318a7 6315
cdd6c482 6316 return event;
0793a61d
TG
6317}
6318
cdd6c482
IM
6319static int perf_copy_attr(struct perf_event_attr __user *uattr,
6320 struct perf_event_attr *attr)
974802ea 6321{
974802ea 6322 u32 size;
cdf8073d 6323 int ret;
974802ea
PZ
6324
6325 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6326 return -EFAULT;
6327
6328 /*
6329 * zero the full structure, so that a short copy will be nice.
6330 */
6331 memset(attr, 0, sizeof(*attr));
6332
6333 ret = get_user(size, &uattr->size);
6334 if (ret)
6335 return ret;
6336
6337 if (size > PAGE_SIZE) /* silly large */
6338 goto err_size;
6339
6340 if (!size) /* abi compat */
6341 size = PERF_ATTR_SIZE_VER0;
6342
6343 if (size < PERF_ATTR_SIZE_VER0)
6344 goto err_size;
6345
6346 /*
6347 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6348 * ensure all the unknown bits are 0 - i.e. new
6349 * user-space does not rely on any kernel feature
6350 * extensions we dont know about yet.
974802ea
PZ
6351 */
6352 if (size > sizeof(*attr)) {
cdf8073d
IS
6353 unsigned char __user *addr;
6354 unsigned char __user *end;
6355 unsigned char val;
974802ea 6356
cdf8073d
IS
6357 addr = (void __user *)uattr + sizeof(*attr);
6358 end = (void __user *)uattr + size;
974802ea 6359
cdf8073d 6360 for (; addr < end; addr++) {
974802ea
PZ
6361 ret = get_user(val, addr);
6362 if (ret)
6363 return ret;
6364 if (val)
6365 goto err_size;
6366 }
b3e62e35 6367 size = sizeof(*attr);
974802ea
PZ
6368 }
6369
6370 ret = copy_from_user(attr, uattr, size);
6371 if (ret)
6372 return -EFAULT;
6373
cd757645 6374 if (attr->__reserved_1)
974802ea
PZ
6375 return -EINVAL;
6376
6377 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6378 return -EINVAL;
6379
6380 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6381 return -EINVAL;
6382
bce38cd5
SE
6383 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6384 u64 mask = attr->branch_sample_type;
6385
6386 /* only using defined bits */
6387 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6388 return -EINVAL;
6389
6390 /* at least one branch bit must be set */
6391 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6392 return -EINVAL;
6393
6394 /* kernel level capture: check permissions */
6395 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6396 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6397 return -EACCES;
6398
6399 /* propagate priv level, when not set for branch */
6400 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6401
6402 /* exclude_kernel checked on syscall entry */
6403 if (!attr->exclude_kernel)
6404 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6405
6406 if (!attr->exclude_user)
6407 mask |= PERF_SAMPLE_BRANCH_USER;
6408
6409 if (!attr->exclude_hv)
6410 mask |= PERF_SAMPLE_BRANCH_HV;
6411 /*
6412 * adjust user setting (for HW filter setup)
6413 */
6414 attr->branch_sample_type = mask;
6415 }
6416 }
4018994f 6417
c5ebcedb 6418 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6419 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6420 if (ret)
6421 return ret;
6422 }
6423
6424 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6425 if (!arch_perf_have_user_stack_dump())
6426 return -ENOSYS;
6427
6428 /*
6429 * We have __u32 type for the size, but so far
6430 * we can only use __u16 as maximum due to the
6431 * __u16 sample size limit.
6432 */
6433 if (attr->sample_stack_user >= USHRT_MAX)
6434 ret = -EINVAL;
6435 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6436 ret = -EINVAL;
6437 }
4018994f 6438
974802ea
PZ
6439out:
6440 return ret;
6441
6442err_size:
6443 put_user(sizeof(*attr), &uattr->size);
6444 ret = -E2BIG;
6445 goto out;
6446}
6447
ac9721f3
PZ
6448static int
6449perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6450{
76369139 6451 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6452 int ret = -EINVAL;
6453
ac9721f3 6454 if (!output_event)
a4be7c27
PZ
6455 goto set;
6456
ac9721f3
PZ
6457 /* don't allow circular references */
6458 if (event == output_event)
a4be7c27
PZ
6459 goto out;
6460
0f139300
PZ
6461 /*
6462 * Don't allow cross-cpu buffers
6463 */
6464 if (output_event->cpu != event->cpu)
6465 goto out;
6466
6467 /*
76369139 6468 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6469 */
6470 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6471 goto out;
6472
a4be7c27 6473set:
cdd6c482 6474 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6475 /* Can't redirect output if we've got an active mmap() */
6476 if (atomic_read(&event->mmap_count))
6477 goto unlock;
a4be7c27 6478
ac9721f3 6479 if (output_event) {
76369139
FW
6480 /* get the rb we want to redirect to */
6481 rb = ring_buffer_get(output_event);
6482 if (!rb)
ac9721f3 6483 goto unlock;
a4be7c27
PZ
6484 }
6485
76369139
FW
6486 old_rb = event->rb;
6487 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6488 if (old_rb)
6489 ring_buffer_detach(event, old_rb);
a4be7c27 6490 ret = 0;
ac9721f3
PZ
6491unlock:
6492 mutex_unlock(&event->mmap_mutex);
6493
76369139
FW
6494 if (old_rb)
6495 ring_buffer_put(old_rb);
a4be7c27 6496out:
a4be7c27
PZ
6497 return ret;
6498}
6499
0793a61d 6500/**
cdd6c482 6501 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6502 *
cdd6c482 6503 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6504 * @pid: target pid
9f66a381 6505 * @cpu: target cpu
cdd6c482 6506 * @group_fd: group leader event fd
0793a61d 6507 */
cdd6c482
IM
6508SYSCALL_DEFINE5(perf_event_open,
6509 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6510 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6511{
b04243ef
PZ
6512 struct perf_event *group_leader = NULL, *output_event = NULL;
6513 struct perf_event *event, *sibling;
cdd6c482
IM
6514 struct perf_event_attr attr;
6515 struct perf_event_context *ctx;
6516 struct file *event_file = NULL;
2903ff01 6517 struct fd group = {NULL, 0};
38a81da2 6518 struct task_struct *task = NULL;
89a1e187 6519 struct pmu *pmu;
ea635c64 6520 int event_fd;
b04243ef 6521 int move_group = 0;
dc86cabe 6522 int err;
0793a61d 6523
2743a5b0 6524 /* for future expandability... */
e5d1367f 6525 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6526 return -EINVAL;
6527
dc86cabe
IM
6528 err = perf_copy_attr(attr_uptr, &attr);
6529 if (err)
6530 return err;
eab656ae 6531
0764771d
PZ
6532 if (!attr.exclude_kernel) {
6533 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6534 return -EACCES;
6535 }
6536
df58ab24 6537 if (attr.freq) {
cdd6c482 6538 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6539 return -EINVAL;
6540 }
6541
e5d1367f
SE
6542 /*
6543 * In cgroup mode, the pid argument is used to pass the fd
6544 * opened to the cgroup directory in cgroupfs. The cpu argument
6545 * designates the cpu on which to monitor threads from that
6546 * cgroup.
6547 */
6548 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6549 return -EINVAL;
6550
ab72a702 6551 event_fd = get_unused_fd();
ea635c64
AV
6552 if (event_fd < 0)
6553 return event_fd;
6554
ac9721f3 6555 if (group_fd != -1) {
2903ff01
AV
6556 err = perf_fget_light(group_fd, &group);
6557 if (err)
d14b12d7 6558 goto err_fd;
2903ff01 6559 group_leader = group.file->private_data;
ac9721f3
PZ
6560 if (flags & PERF_FLAG_FD_OUTPUT)
6561 output_event = group_leader;
6562 if (flags & PERF_FLAG_FD_NO_GROUP)
6563 group_leader = NULL;
6564 }
6565
e5d1367f 6566 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6567 task = find_lively_task_by_vpid(pid);
6568 if (IS_ERR(task)) {
6569 err = PTR_ERR(task);
6570 goto err_group_fd;
6571 }
6572 }
6573
fbfc623f
YZ
6574 get_online_cpus();
6575
4dc0da86
AK
6576 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6577 NULL, NULL);
d14b12d7
SE
6578 if (IS_ERR(event)) {
6579 err = PTR_ERR(event);
c6be5a5c 6580 goto err_task;
d14b12d7
SE
6581 }
6582
e5d1367f
SE
6583 if (flags & PERF_FLAG_PID_CGROUP) {
6584 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6585 if (err)
6586 goto err_alloc;
08309379
PZ
6587 /*
6588 * one more event:
6589 * - that has cgroup constraint on event->cpu
6590 * - that may need work on context switch
6591 */
6592 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6593 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6594 }
6595
89a1e187
PZ
6596 /*
6597 * Special case software events and allow them to be part of
6598 * any hardware group.
6599 */
6600 pmu = event->pmu;
b04243ef
PZ
6601
6602 if (group_leader &&
6603 (is_software_event(event) != is_software_event(group_leader))) {
6604 if (is_software_event(event)) {
6605 /*
6606 * If event and group_leader are not both a software
6607 * event, and event is, then group leader is not.
6608 *
6609 * Allow the addition of software events to !software
6610 * groups, this is safe because software events never
6611 * fail to schedule.
6612 */
6613 pmu = group_leader->pmu;
6614 } else if (is_software_event(group_leader) &&
6615 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6616 /*
6617 * In case the group is a pure software group, and we
6618 * try to add a hardware event, move the whole group to
6619 * the hardware context.
6620 */
6621 move_group = 1;
6622 }
6623 }
89a1e187
PZ
6624
6625 /*
6626 * Get the target context (task or percpu):
6627 */
e2d37cd2 6628 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6629 if (IS_ERR(ctx)) {
6630 err = PTR_ERR(ctx);
c6be5a5c 6631 goto err_alloc;
89a1e187
PZ
6632 }
6633
fd1edb3a
PZ
6634 if (task) {
6635 put_task_struct(task);
6636 task = NULL;
6637 }
6638
ccff286d 6639 /*
cdd6c482 6640 * Look up the group leader (we will attach this event to it):
04289bb9 6641 */
ac9721f3 6642 if (group_leader) {
dc86cabe 6643 err = -EINVAL;
04289bb9 6644
04289bb9 6645 /*
ccff286d
IM
6646 * Do not allow a recursive hierarchy (this new sibling
6647 * becoming part of another group-sibling):
6648 */
6649 if (group_leader->group_leader != group_leader)
c3f00c70 6650 goto err_context;
ccff286d
IM
6651 /*
6652 * Do not allow to attach to a group in a different
6653 * task or CPU context:
04289bb9 6654 */
b04243ef
PZ
6655 if (move_group) {
6656 if (group_leader->ctx->type != ctx->type)
6657 goto err_context;
6658 } else {
6659 if (group_leader->ctx != ctx)
6660 goto err_context;
6661 }
6662
3b6f9e5c
PM
6663 /*
6664 * Only a group leader can be exclusive or pinned
6665 */
0d48696f 6666 if (attr.exclusive || attr.pinned)
c3f00c70 6667 goto err_context;
ac9721f3
PZ
6668 }
6669
6670 if (output_event) {
6671 err = perf_event_set_output(event, output_event);
6672 if (err)
c3f00c70 6673 goto err_context;
ac9721f3 6674 }
0793a61d 6675
ea635c64
AV
6676 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6677 if (IS_ERR(event_file)) {
6678 err = PTR_ERR(event_file);
c3f00c70 6679 goto err_context;
ea635c64 6680 }
9b51f66d 6681
b04243ef
PZ
6682 if (move_group) {
6683 struct perf_event_context *gctx = group_leader->ctx;
6684
6685 mutex_lock(&gctx->mutex);
fe4b04fa 6686 perf_remove_from_context(group_leader);
0231bb53
JO
6687
6688 /*
6689 * Removing from the context ends up with disabled
6690 * event. What we want here is event in the initial
6691 * startup state, ready to be add into new context.
6692 */
6693 perf_event__state_init(group_leader);
b04243ef
PZ
6694 list_for_each_entry(sibling, &group_leader->sibling_list,
6695 group_entry) {
fe4b04fa 6696 perf_remove_from_context(sibling);
0231bb53 6697 perf_event__state_init(sibling);
b04243ef
PZ
6698 put_ctx(gctx);
6699 }
6700 mutex_unlock(&gctx->mutex);
6701 put_ctx(gctx);
ea635c64 6702 }
9b51f66d 6703
ad3a37de 6704 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6705 mutex_lock(&ctx->mutex);
b04243ef
PZ
6706
6707 if (move_group) {
0cda4c02 6708 synchronize_rcu();
e2d37cd2 6709 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6710 get_ctx(ctx);
6711 list_for_each_entry(sibling, &group_leader->sibling_list,
6712 group_entry) {
e2d37cd2 6713 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6714 get_ctx(ctx);
6715 }
6716 }
6717
e2d37cd2 6718 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6719 ++ctx->generation;
fe4b04fa 6720 perf_unpin_context(ctx);
d859e29f 6721 mutex_unlock(&ctx->mutex);
9b51f66d 6722
fbfc623f
YZ
6723 put_online_cpus();
6724
cdd6c482 6725 event->owner = current;
8882135b 6726
cdd6c482
IM
6727 mutex_lock(&current->perf_event_mutex);
6728 list_add_tail(&event->owner_entry, &current->perf_event_list);
6729 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6730
c320c7b7
ACM
6731 /*
6732 * Precalculate sample_data sizes
6733 */
6734 perf_event__header_size(event);
6844c09d 6735 perf_event__id_header_size(event);
c320c7b7 6736
8a49542c
PZ
6737 /*
6738 * Drop the reference on the group_event after placing the
6739 * new event on the sibling_list. This ensures destruction
6740 * of the group leader will find the pointer to itself in
6741 * perf_group_detach().
6742 */
2903ff01 6743 fdput(group);
ea635c64
AV
6744 fd_install(event_fd, event_file);
6745 return event_fd;
0793a61d 6746
c3f00c70 6747err_context:
fe4b04fa 6748 perf_unpin_context(ctx);
ea635c64 6749 put_ctx(ctx);
c6be5a5c 6750err_alloc:
ea635c64 6751 free_event(event);
e7d0bc04 6752err_task:
fbfc623f 6753 put_online_cpus();
e7d0bc04
PZ
6754 if (task)
6755 put_task_struct(task);
89a1e187 6756err_group_fd:
2903ff01 6757 fdput(group);
ea635c64
AV
6758err_fd:
6759 put_unused_fd(event_fd);
dc86cabe 6760 return err;
0793a61d
TG
6761}
6762
fb0459d7
AV
6763/**
6764 * perf_event_create_kernel_counter
6765 *
6766 * @attr: attributes of the counter to create
6767 * @cpu: cpu in which the counter is bound
38a81da2 6768 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6769 */
6770struct perf_event *
6771perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6772 struct task_struct *task,
4dc0da86
AK
6773 perf_overflow_handler_t overflow_handler,
6774 void *context)
fb0459d7 6775{
fb0459d7 6776 struct perf_event_context *ctx;
c3f00c70 6777 struct perf_event *event;
fb0459d7 6778 int err;
d859e29f 6779
fb0459d7
AV
6780 /*
6781 * Get the target context (task or percpu):
6782 */
d859e29f 6783
4dc0da86
AK
6784 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6785 overflow_handler, context);
c3f00c70
PZ
6786 if (IS_ERR(event)) {
6787 err = PTR_ERR(event);
6788 goto err;
6789 }
d859e29f 6790
38a81da2 6791 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6792 if (IS_ERR(ctx)) {
6793 err = PTR_ERR(ctx);
c3f00c70 6794 goto err_free;
d859e29f 6795 }
fb0459d7 6796
fb0459d7
AV
6797 WARN_ON_ONCE(ctx->parent_ctx);
6798 mutex_lock(&ctx->mutex);
6799 perf_install_in_context(ctx, event, cpu);
6800 ++ctx->generation;
fe4b04fa 6801 perf_unpin_context(ctx);
fb0459d7
AV
6802 mutex_unlock(&ctx->mutex);
6803
fb0459d7
AV
6804 return event;
6805
c3f00c70
PZ
6806err_free:
6807 free_event(event);
6808err:
c6567f64 6809 return ERR_PTR(err);
9b51f66d 6810}
fb0459d7 6811EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6812
0cda4c02
YZ
6813void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6814{
6815 struct perf_event_context *src_ctx;
6816 struct perf_event_context *dst_ctx;
6817 struct perf_event *event, *tmp;
6818 LIST_HEAD(events);
6819
6820 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6821 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6822
6823 mutex_lock(&src_ctx->mutex);
6824 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6825 event_entry) {
6826 perf_remove_from_context(event);
6827 put_ctx(src_ctx);
6828 list_add(&event->event_entry, &events);
6829 }
6830 mutex_unlock(&src_ctx->mutex);
6831
6832 synchronize_rcu();
6833
6834 mutex_lock(&dst_ctx->mutex);
6835 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6836 list_del(&event->event_entry);
6837 if (event->state >= PERF_EVENT_STATE_OFF)
6838 event->state = PERF_EVENT_STATE_INACTIVE;
6839 perf_install_in_context(dst_ctx, event, dst_cpu);
6840 get_ctx(dst_ctx);
6841 }
6842 mutex_unlock(&dst_ctx->mutex);
6843}
6844EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6845
cdd6c482 6846static void sync_child_event(struct perf_event *child_event,
38b200d6 6847 struct task_struct *child)
d859e29f 6848{
cdd6c482 6849 struct perf_event *parent_event = child_event->parent;
8bc20959 6850 u64 child_val;
d859e29f 6851
cdd6c482
IM
6852 if (child_event->attr.inherit_stat)
6853 perf_event_read_event(child_event, child);
38b200d6 6854
b5e58793 6855 child_val = perf_event_count(child_event);
d859e29f
PM
6856
6857 /*
6858 * Add back the child's count to the parent's count:
6859 */
a6e6dea6 6860 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6861 atomic64_add(child_event->total_time_enabled,
6862 &parent_event->child_total_time_enabled);
6863 atomic64_add(child_event->total_time_running,
6864 &parent_event->child_total_time_running);
d859e29f
PM
6865
6866 /*
cdd6c482 6867 * Remove this event from the parent's list
d859e29f 6868 */
cdd6c482
IM
6869 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6870 mutex_lock(&parent_event->child_mutex);
6871 list_del_init(&child_event->child_list);
6872 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6873
6874 /*
cdd6c482 6875 * Release the parent event, if this was the last
d859e29f
PM
6876 * reference to it.
6877 */
a6fa941d 6878 put_event(parent_event);
d859e29f
PM
6879}
6880
9b51f66d 6881static void
cdd6c482
IM
6882__perf_event_exit_task(struct perf_event *child_event,
6883 struct perf_event_context *child_ctx,
38b200d6 6884 struct task_struct *child)
9b51f66d 6885{
38b435b1
PZ
6886 if (child_event->parent) {
6887 raw_spin_lock_irq(&child_ctx->lock);
6888 perf_group_detach(child_event);
6889 raw_spin_unlock_irq(&child_ctx->lock);
6890 }
9b51f66d 6891
fe4b04fa 6892 perf_remove_from_context(child_event);
0cc0c027 6893
9b51f66d 6894 /*
38b435b1 6895 * It can happen that the parent exits first, and has events
9b51f66d 6896 * that are still around due to the child reference. These
38b435b1 6897 * events need to be zapped.
9b51f66d 6898 */
38b435b1 6899 if (child_event->parent) {
cdd6c482
IM
6900 sync_child_event(child_event, child);
6901 free_event(child_event);
4bcf349a 6902 }
9b51f66d
IM
6903}
6904
8dc85d54 6905static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6906{
cdd6c482
IM
6907 struct perf_event *child_event, *tmp;
6908 struct perf_event_context *child_ctx;
a63eaf34 6909 unsigned long flags;
9b51f66d 6910
8dc85d54 6911 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6912 perf_event_task(child, NULL, 0);
9b51f66d 6913 return;
9f498cc5 6914 }
9b51f66d 6915
a63eaf34 6916 local_irq_save(flags);
ad3a37de
PM
6917 /*
6918 * We can't reschedule here because interrupts are disabled,
6919 * and either child is current or it is a task that can't be
6920 * scheduled, so we are now safe from rescheduling changing
6921 * our context.
6922 */
806839b2 6923 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6924
6925 /*
6926 * Take the context lock here so that if find_get_context is
cdd6c482 6927 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6928 * incremented the context's refcount before we do put_ctx below.
6929 */
e625cce1 6930 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6931 task_ctx_sched_out(child_ctx);
8dc85d54 6932 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6933 /*
6934 * If this context is a clone; unclone it so it can't get
6935 * swapped to another process while we're removing all
cdd6c482 6936 * the events from it.
71a851b4
PZ
6937 */
6938 unclone_ctx(child_ctx);
5e942bb3 6939 update_context_time(child_ctx);
e625cce1 6940 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6941
6942 /*
cdd6c482
IM
6943 * Report the task dead after unscheduling the events so that we
6944 * won't get any samples after PERF_RECORD_EXIT. We can however still
6945 * get a few PERF_RECORD_READ events.
9f498cc5 6946 */
cdd6c482 6947 perf_event_task(child, child_ctx, 0);
a63eaf34 6948
66fff224
PZ
6949 /*
6950 * We can recurse on the same lock type through:
6951 *
cdd6c482
IM
6952 * __perf_event_exit_task()
6953 * sync_child_event()
a6fa941d
AV
6954 * put_event()
6955 * mutex_lock(&ctx->mutex)
66fff224
PZ
6956 *
6957 * But since its the parent context it won't be the same instance.
6958 */
a0507c84 6959 mutex_lock(&child_ctx->mutex);
a63eaf34 6960
8bc20959 6961again:
889ff015
FW
6962 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6963 group_entry)
6964 __perf_event_exit_task(child_event, child_ctx, child);
6965
6966 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6967 group_entry)
cdd6c482 6968 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6969
6970 /*
cdd6c482 6971 * If the last event was a group event, it will have appended all
8bc20959
PZ
6972 * its siblings to the list, but we obtained 'tmp' before that which
6973 * will still point to the list head terminating the iteration.
6974 */
889ff015
FW
6975 if (!list_empty(&child_ctx->pinned_groups) ||
6976 !list_empty(&child_ctx->flexible_groups))
8bc20959 6977 goto again;
a63eaf34
PM
6978
6979 mutex_unlock(&child_ctx->mutex);
6980
6981 put_ctx(child_ctx);
9b51f66d
IM
6982}
6983
8dc85d54
PZ
6984/*
6985 * When a child task exits, feed back event values to parent events.
6986 */
6987void perf_event_exit_task(struct task_struct *child)
6988{
8882135b 6989 struct perf_event *event, *tmp;
8dc85d54
PZ
6990 int ctxn;
6991
8882135b
PZ
6992 mutex_lock(&child->perf_event_mutex);
6993 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6994 owner_entry) {
6995 list_del_init(&event->owner_entry);
6996
6997 /*
6998 * Ensure the list deletion is visible before we clear
6999 * the owner, closes a race against perf_release() where
7000 * we need to serialize on the owner->perf_event_mutex.
7001 */
7002 smp_wmb();
7003 event->owner = NULL;
7004 }
7005 mutex_unlock(&child->perf_event_mutex);
7006
8dc85d54
PZ
7007 for_each_task_context_nr(ctxn)
7008 perf_event_exit_task_context(child, ctxn);
7009}
7010
889ff015
FW
7011static void perf_free_event(struct perf_event *event,
7012 struct perf_event_context *ctx)
7013{
7014 struct perf_event *parent = event->parent;
7015
7016 if (WARN_ON_ONCE(!parent))
7017 return;
7018
7019 mutex_lock(&parent->child_mutex);
7020 list_del_init(&event->child_list);
7021 mutex_unlock(&parent->child_mutex);
7022
a6fa941d 7023 put_event(parent);
889ff015 7024
8a49542c 7025 perf_group_detach(event);
889ff015
FW
7026 list_del_event(event, ctx);
7027 free_event(event);
7028}
7029
bbbee908
PZ
7030/*
7031 * free an unexposed, unused context as created by inheritance by
8dc85d54 7032 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7033 */
cdd6c482 7034void perf_event_free_task(struct task_struct *task)
bbbee908 7035{
8dc85d54 7036 struct perf_event_context *ctx;
cdd6c482 7037 struct perf_event *event, *tmp;
8dc85d54 7038 int ctxn;
bbbee908 7039
8dc85d54
PZ
7040 for_each_task_context_nr(ctxn) {
7041 ctx = task->perf_event_ctxp[ctxn];
7042 if (!ctx)
7043 continue;
bbbee908 7044
8dc85d54 7045 mutex_lock(&ctx->mutex);
bbbee908 7046again:
8dc85d54
PZ
7047 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7048 group_entry)
7049 perf_free_event(event, ctx);
bbbee908 7050
8dc85d54
PZ
7051 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7052 group_entry)
7053 perf_free_event(event, ctx);
bbbee908 7054
8dc85d54
PZ
7055 if (!list_empty(&ctx->pinned_groups) ||
7056 !list_empty(&ctx->flexible_groups))
7057 goto again;
bbbee908 7058
8dc85d54 7059 mutex_unlock(&ctx->mutex);
bbbee908 7060
8dc85d54
PZ
7061 put_ctx(ctx);
7062 }
889ff015
FW
7063}
7064
4e231c79
PZ
7065void perf_event_delayed_put(struct task_struct *task)
7066{
7067 int ctxn;
7068
7069 for_each_task_context_nr(ctxn)
7070 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7071}
7072
97dee4f3
PZ
7073/*
7074 * inherit a event from parent task to child task:
7075 */
7076static struct perf_event *
7077inherit_event(struct perf_event *parent_event,
7078 struct task_struct *parent,
7079 struct perf_event_context *parent_ctx,
7080 struct task_struct *child,
7081 struct perf_event *group_leader,
7082 struct perf_event_context *child_ctx)
7083{
7084 struct perf_event *child_event;
cee010ec 7085 unsigned long flags;
97dee4f3
PZ
7086
7087 /*
7088 * Instead of creating recursive hierarchies of events,
7089 * we link inherited events back to the original parent,
7090 * which has a filp for sure, which we use as the reference
7091 * count:
7092 */
7093 if (parent_event->parent)
7094 parent_event = parent_event->parent;
7095
7096 child_event = perf_event_alloc(&parent_event->attr,
7097 parent_event->cpu,
d580ff86 7098 child,
97dee4f3 7099 group_leader, parent_event,
4dc0da86 7100 NULL, NULL);
97dee4f3
PZ
7101 if (IS_ERR(child_event))
7102 return child_event;
a6fa941d
AV
7103
7104 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7105 free_event(child_event);
7106 return NULL;
7107 }
7108
97dee4f3
PZ
7109 get_ctx(child_ctx);
7110
7111 /*
7112 * Make the child state follow the state of the parent event,
7113 * not its attr.disabled bit. We hold the parent's mutex,
7114 * so we won't race with perf_event_{en, dis}able_family.
7115 */
7116 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7117 child_event->state = PERF_EVENT_STATE_INACTIVE;
7118 else
7119 child_event->state = PERF_EVENT_STATE_OFF;
7120
7121 if (parent_event->attr.freq) {
7122 u64 sample_period = parent_event->hw.sample_period;
7123 struct hw_perf_event *hwc = &child_event->hw;
7124
7125 hwc->sample_period = sample_period;
7126 hwc->last_period = sample_period;
7127
7128 local64_set(&hwc->period_left, sample_period);
7129 }
7130
7131 child_event->ctx = child_ctx;
7132 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7133 child_event->overflow_handler_context
7134 = parent_event->overflow_handler_context;
97dee4f3 7135
614b6780
TG
7136 /*
7137 * Precalculate sample_data sizes
7138 */
7139 perf_event__header_size(child_event);
6844c09d 7140 perf_event__id_header_size(child_event);
614b6780 7141
97dee4f3
PZ
7142 /*
7143 * Link it up in the child's context:
7144 */
cee010ec 7145 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7146 add_event_to_ctx(child_event, child_ctx);
cee010ec 7147 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7148
97dee4f3
PZ
7149 /*
7150 * Link this into the parent event's child list
7151 */
7152 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7153 mutex_lock(&parent_event->child_mutex);
7154 list_add_tail(&child_event->child_list, &parent_event->child_list);
7155 mutex_unlock(&parent_event->child_mutex);
7156
7157 return child_event;
7158}
7159
7160static int inherit_group(struct perf_event *parent_event,
7161 struct task_struct *parent,
7162 struct perf_event_context *parent_ctx,
7163 struct task_struct *child,
7164 struct perf_event_context *child_ctx)
7165{
7166 struct perf_event *leader;
7167 struct perf_event *sub;
7168 struct perf_event *child_ctr;
7169
7170 leader = inherit_event(parent_event, parent, parent_ctx,
7171 child, NULL, child_ctx);
7172 if (IS_ERR(leader))
7173 return PTR_ERR(leader);
7174 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7175 child_ctr = inherit_event(sub, parent, parent_ctx,
7176 child, leader, child_ctx);
7177 if (IS_ERR(child_ctr))
7178 return PTR_ERR(child_ctr);
7179 }
7180 return 0;
889ff015
FW
7181}
7182
7183static int
7184inherit_task_group(struct perf_event *event, struct task_struct *parent,
7185 struct perf_event_context *parent_ctx,
8dc85d54 7186 struct task_struct *child, int ctxn,
889ff015
FW
7187 int *inherited_all)
7188{
7189 int ret;
8dc85d54 7190 struct perf_event_context *child_ctx;
889ff015
FW
7191
7192 if (!event->attr.inherit) {
7193 *inherited_all = 0;
7194 return 0;
bbbee908
PZ
7195 }
7196
fe4b04fa 7197 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7198 if (!child_ctx) {
7199 /*
7200 * This is executed from the parent task context, so
7201 * inherit events that have been marked for cloning.
7202 * First allocate and initialize a context for the
7203 * child.
7204 */
bbbee908 7205
eb184479 7206 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7207 if (!child_ctx)
7208 return -ENOMEM;
bbbee908 7209
8dc85d54 7210 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7211 }
7212
7213 ret = inherit_group(event, parent, parent_ctx,
7214 child, child_ctx);
7215
7216 if (ret)
7217 *inherited_all = 0;
7218
7219 return ret;
bbbee908
PZ
7220}
7221
9b51f66d 7222/*
cdd6c482 7223 * Initialize the perf_event context in task_struct
9b51f66d 7224 */
8dc85d54 7225int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7226{
889ff015 7227 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7228 struct perf_event_context *cloned_ctx;
7229 struct perf_event *event;
9b51f66d 7230 struct task_struct *parent = current;
564c2b21 7231 int inherited_all = 1;
dddd3379 7232 unsigned long flags;
6ab423e0 7233 int ret = 0;
9b51f66d 7234
8dc85d54 7235 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7236 return 0;
7237
ad3a37de 7238 /*
25346b93
PM
7239 * If the parent's context is a clone, pin it so it won't get
7240 * swapped under us.
ad3a37de 7241 */
8dc85d54 7242 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7243
ad3a37de
PM
7244 /*
7245 * No need to check if parent_ctx != NULL here; since we saw
7246 * it non-NULL earlier, the only reason for it to become NULL
7247 * is if we exit, and since we're currently in the middle of
7248 * a fork we can't be exiting at the same time.
7249 */
ad3a37de 7250
9b51f66d
IM
7251 /*
7252 * Lock the parent list. No need to lock the child - not PID
7253 * hashed yet and not running, so nobody can access it.
7254 */
d859e29f 7255 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7256
7257 /*
7258 * We dont have to disable NMIs - we are only looking at
7259 * the list, not manipulating it:
7260 */
889ff015 7261 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7262 ret = inherit_task_group(event, parent, parent_ctx,
7263 child, ctxn, &inherited_all);
889ff015
FW
7264 if (ret)
7265 break;
7266 }
b93f7978 7267
dddd3379
TG
7268 /*
7269 * We can't hold ctx->lock when iterating the ->flexible_group list due
7270 * to allocations, but we need to prevent rotation because
7271 * rotate_ctx() will change the list from interrupt context.
7272 */
7273 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7274 parent_ctx->rotate_disable = 1;
7275 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7276
889ff015 7277 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7278 ret = inherit_task_group(event, parent, parent_ctx,
7279 child, ctxn, &inherited_all);
889ff015 7280 if (ret)
9b51f66d 7281 break;
564c2b21
PM
7282 }
7283
dddd3379
TG
7284 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7285 parent_ctx->rotate_disable = 0;
dddd3379 7286
8dc85d54 7287 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7288
05cbaa28 7289 if (child_ctx && inherited_all) {
564c2b21
PM
7290 /*
7291 * Mark the child context as a clone of the parent
7292 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7293 *
7294 * Note that if the parent is a clone, the holding of
7295 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7296 */
c5ed5145 7297 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7298 if (cloned_ctx) {
7299 child_ctx->parent_ctx = cloned_ctx;
25346b93 7300 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7301 } else {
7302 child_ctx->parent_ctx = parent_ctx;
7303 child_ctx->parent_gen = parent_ctx->generation;
7304 }
7305 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7306 }
7307
c5ed5145 7308 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7309 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7310
25346b93 7311 perf_unpin_context(parent_ctx);
fe4b04fa 7312 put_ctx(parent_ctx);
ad3a37de 7313
6ab423e0 7314 return ret;
9b51f66d
IM
7315}
7316
8dc85d54
PZ
7317/*
7318 * Initialize the perf_event context in task_struct
7319 */
7320int perf_event_init_task(struct task_struct *child)
7321{
7322 int ctxn, ret;
7323
8550d7cb
ON
7324 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7325 mutex_init(&child->perf_event_mutex);
7326 INIT_LIST_HEAD(&child->perf_event_list);
7327
8dc85d54
PZ
7328 for_each_task_context_nr(ctxn) {
7329 ret = perf_event_init_context(child, ctxn);
7330 if (ret)
7331 return ret;
7332 }
7333
7334 return 0;
7335}
7336
220b140b
PM
7337static void __init perf_event_init_all_cpus(void)
7338{
b28ab83c 7339 struct swevent_htable *swhash;
220b140b 7340 int cpu;
220b140b
PM
7341
7342 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7343 swhash = &per_cpu(swevent_htable, cpu);
7344 mutex_init(&swhash->hlist_mutex);
e9d2b064 7345 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7346 }
7347}
7348
cdd6c482 7349static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7350{
108b02cf 7351 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7352
b28ab83c 7353 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7354 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7355 struct swevent_hlist *hlist;
7356
b28ab83c
PZ
7357 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7358 WARN_ON(!hlist);
7359 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7360 }
b28ab83c 7361 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7362}
7363
c277443c 7364#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7365static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7366{
e9d2b064
PZ
7367 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7368
7369 WARN_ON(!irqs_disabled());
7370
7371 list_del_init(&cpuctx->rotation_list);
7372}
7373
108b02cf 7374static void __perf_event_exit_context(void *__info)
0793a61d 7375{
108b02cf 7376 struct perf_event_context *ctx = __info;
cdd6c482 7377 struct perf_event *event, *tmp;
0793a61d 7378
108b02cf 7379 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7380
889ff015 7381 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7382 __perf_remove_from_context(event);
889ff015 7383 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7384 __perf_remove_from_context(event);
0793a61d 7385}
108b02cf
PZ
7386
7387static void perf_event_exit_cpu_context(int cpu)
7388{
7389 struct perf_event_context *ctx;
7390 struct pmu *pmu;
7391 int idx;
7392
7393 idx = srcu_read_lock(&pmus_srcu);
7394 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7395 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7396
7397 mutex_lock(&ctx->mutex);
7398 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7399 mutex_unlock(&ctx->mutex);
7400 }
7401 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7402}
7403
cdd6c482 7404static void perf_event_exit_cpu(int cpu)
0793a61d 7405{
b28ab83c 7406 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7407
b28ab83c
PZ
7408 mutex_lock(&swhash->hlist_mutex);
7409 swevent_hlist_release(swhash);
7410 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7411
108b02cf 7412 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7413}
7414#else
cdd6c482 7415static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7416#endif
7417
c277443c
PZ
7418static int
7419perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7420{
7421 int cpu;
7422
7423 for_each_online_cpu(cpu)
7424 perf_event_exit_cpu(cpu);
7425
7426 return NOTIFY_OK;
7427}
7428
7429/*
7430 * Run the perf reboot notifier at the very last possible moment so that
7431 * the generic watchdog code runs as long as possible.
7432 */
7433static struct notifier_block perf_reboot_notifier = {
7434 .notifier_call = perf_reboot,
7435 .priority = INT_MIN,
7436};
7437
0793a61d
TG
7438static int __cpuinit
7439perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7440{
7441 unsigned int cpu = (long)hcpu;
7442
4536e4d1 7443 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7444
7445 case CPU_UP_PREPARE:
5e11637e 7446 case CPU_DOWN_FAILED:
cdd6c482 7447 perf_event_init_cpu(cpu);
0793a61d
TG
7448 break;
7449
5e11637e 7450 case CPU_UP_CANCELED:
0793a61d 7451 case CPU_DOWN_PREPARE:
cdd6c482 7452 perf_event_exit_cpu(cpu);
0793a61d
TG
7453 break;
7454
7455 default:
7456 break;
7457 }
7458
7459 return NOTIFY_OK;
7460}
7461
cdd6c482 7462void __init perf_event_init(void)
0793a61d 7463{
3c502e7a
JW
7464 int ret;
7465
2e80a82a
PZ
7466 idr_init(&pmu_idr);
7467
220b140b 7468 perf_event_init_all_cpus();
b0a873eb 7469 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7470 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7471 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7472 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7473 perf_tp_register();
7474 perf_cpu_notifier(perf_cpu_notify);
c277443c 7475 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7476
7477 ret = init_hw_breakpoint();
7478 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7479
7480 /* do not patch jump label more than once per second */
7481 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7482
7483 /*
7484 * Build time assertion that we keep the data_head at the intended
7485 * location. IOW, validation we got the __reserved[] size right.
7486 */
7487 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7488 != 1024);
0793a61d 7489}
abe43400
PZ
7490
7491static int __init perf_event_sysfs_init(void)
7492{
7493 struct pmu *pmu;
7494 int ret;
7495
7496 mutex_lock(&pmus_lock);
7497
7498 ret = bus_register(&pmu_bus);
7499 if (ret)
7500 goto unlock;
7501
7502 list_for_each_entry(pmu, &pmus, entry) {
7503 if (!pmu->name || pmu->type < 0)
7504 continue;
7505
7506 ret = pmu_dev_alloc(pmu);
7507 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7508 }
7509 pmu_bus_running = 1;
7510 ret = 0;
7511
7512unlock:
7513 mutex_unlock(&pmus_lock);
7514
7515 return ret;
7516}
7517device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7518
7519#ifdef CONFIG_CGROUP_PERF
92fb9748 7520static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7521{
7522 struct perf_cgroup *jc;
e5d1367f 7523
1b15d055 7524 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7525 if (!jc)
7526 return ERR_PTR(-ENOMEM);
7527
e5d1367f
SE
7528 jc->info = alloc_percpu(struct perf_cgroup_info);
7529 if (!jc->info) {
7530 kfree(jc);
7531 return ERR_PTR(-ENOMEM);
7532 }
7533
e5d1367f
SE
7534 return &jc->css;
7535}
7536
92fb9748 7537static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7538{
7539 struct perf_cgroup *jc;
7540 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7541 struct perf_cgroup, css);
7542 free_percpu(jc->info);
7543 kfree(jc);
7544}
7545
7546static int __perf_cgroup_move(void *info)
7547{
7548 struct task_struct *task = info;
7549 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7550 return 0;
7551}
7552
761b3ef5 7553static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7554{
bb9d97b6
TH
7555 struct task_struct *task;
7556
7557 cgroup_taskset_for_each(task, cgrp, tset)
7558 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7559}
7560
761b3ef5
LZ
7561static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7562 struct task_struct *task)
e5d1367f
SE
7563{
7564 /*
7565 * cgroup_exit() is called in the copy_process() failure path.
7566 * Ignore this case since the task hasn't ran yet, this avoids
7567 * trying to poke a half freed task state from generic code.
7568 */
7569 if (!(task->flags & PF_EXITING))
7570 return;
7571
bb9d97b6 7572 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7573}
7574
7575struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7576 .name = "perf_event",
7577 .subsys_id = perf_subsys_id,
92fb9748
TH
7578 .css_alloc = perf_cgroup_css_alloc,
7579 .css_free = perf_cgroup_css_free,
e7e7ee2e 7580 .exit = perf_cgroup_exit,
bb9d97b6 7581 .attach = perf_cgroup_attach,
e5d1367f
SE
7582};
7583#endif /* CONFIG_CGROUP_PERF */
This page took 1.012436 seconds and 5 git commands to generate.