futex: Handle user space corruption gracefully
[deliverable/linux.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47#include <linux/slab.h>
48#include <linux/poll.h>
49#include <linux/fs.h>
50#include <linux/file.h>
51#include <linux/jhash.h>
52#include <linux/init.h>
53#include <linux/futex.h>
54#include <linux/mount.h>
55#include <linux/pagemap.h>
56#include <linux/syscalls.h>
7ed20e1a 57#include <linux/signal.h>
9adef58b 58#include <linux/module.h>
fd5eea42 59#include <linux/magic.h>
b488893a
PE
60#include <linux/pid.h>
61#include <linux/nsproxy.h>
62
4732efbe 63#include <asm/futex.h>
1da177e4 64
c87e2837
IM
65#include "rtmutex_common.h"
66
a0c1e907
TG
67int __read_mostly futex_cmpxchg_enabled;
68
1da177e4
LT
69#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
c87e2837
IM
71/*
72 * Priority Inheritance state:
73 */
74struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90};
91
d8d88fbb
DH
92/**
93 * struct futex_q - The hashed futex queue entry, one per waiting task
94 * @task: the task waiting on the futex
95 * @lock_ptr: the hash bucket lock
96 * @key: the key the futex is hashed on
97 * @pi_state: optional priority inheritance state
98 * @rt_waiter: rt_waiter storage for use with requeue_pi
99 * @requeue_pi_key: the requeue_pi target futex key
100 * @bitset: bitset for the optional bitmasked wakeup
101 *
102 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
1da177e4
LT
103 * we can wake only the relevant ones (hashed queues may be shared).
104 *
105 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 106 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
1da177e4 107 * The order of wakup is always to make the first condition true, then
d8d88fbb
DH
108 * the second.
109 *
110 * PI futexes are typically woken before they are removed from the hash list via
111 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
112 */
113struct futex_q {
ec92d082 114 struct plist_node list;
1da177e4 115
d8d88fbb 116 struct task_struct *task;
1da177e4 117 spinlock_t *lock_ptr;
1da177e4 118 union futex_key key;
c87e2837 119 struct futex_pi_state *pi_state;
52400ba9 120 struct rt_mutex_waiter *rt_waiter;
84bc4af5 121 union futex_key *requeue_pi_key;
cd689985 122 u32 bitset;
1da177e4
LT
123};
124
125/*
b2d0994b
DH
126 * Hash buckets are shared by all the futex_keys that hash to the same
127 * location. Each key may have multiple futex_q structures, one for each task
128 * waiting on a futex.
1da177e4
LT
129 */
130struct futex_hash_bucket {
ec92d082
PP
131 spinlock_t lock;
132 struct plist_head chain;
1da177e4
LT
133};
134
135static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
136
1da177e4
LT
137/*
138 * We hash on the keys returned from get_futex_key (see below).
139 */
140static struct futex_hash_bucket *hash_futex(union futex_key *key)
141{
142 u32 hash = jhash2((u32*)&key->both.word,
143 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
144 key->both.offset);
145 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
146}
147
148/*
149 * Return 1 if two futex_keys are equal, 0 otherwise.
150 */
151static inline int match_futex(union futex_key *key1, union futex_key *key2)
152{
2bc87203
DH
153 return (key1 && key2
154 && key1->both.word == key2->both.word
1da177e4
LT
155 && key1->both.ptr == key2->both.ptr
156 && key1->both.offset == key2->both.offset);
157}
158
38d47c1b
PZ
159/*
160 * Take a reference to the resource addressed by a key.
161 * Can be called while holding spinlocks.
162 *
163 */
164static void get_futex_key_refs(union futex_key *key)
165{
166 if (!key->both.ptr)
167 return;
168
169 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
170 case FUT_OFF_INODE:
171 atomic_inc(&key->shared.inode->i_count);
172 break;
173 case FUT_OFF_MMSHARED:
174 atomic_inc(&key->private.mm->mm_count);
175 break;
176 }
177}
178
179/*
180 * Drop a reference to the resource addressed by a key.
181 * The hash bucket spinlock must not be held.
182 */
183static void drop_futex_key_refs(union futex_key *key)
184{
90621c40
DH
185 if (!key->both.ptr) {
186 /* If we're here then we tried to put a key we failed to get */
187 WARN_ON_ONCE(1);
38d47c1b 188 return;
90621c40 189 }
38d47c1b
PZ
190
191 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
192 case FUT_OFF_INODE:
193 iput(key->shared.inode);
194 break;
195 case FUT_OFF_MMSHARED:
196 mmdrop(key->private.mm);
197 break;
198 }
199}
200
34f01cc1 201/**
d96ee56c
DH
202 * get_futex_key() - Get parameters which are the keys for a futex
203 * @uaddr: virtual address of the futex
204 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
205 * @key: address where result is stored.
34f01cc1
ED
206 *
207 * Returns a negative error code or 0
208 * The key words are stored in *key on success.
1da177e4 209 *
f3a43f3f 210 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
1da177e4
LT
211 * offset_within_page). For private mappings, it's (uaddr, current->mm).
212 * We can usually work out the index without swapping in the page.
213 *
b2d0994b 214 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 215 */
64d1304a 216static int
7485d0d3 217get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
1da177e4 218{
e2970f2f 219 unsigned long address = (unsigned long)uaddr;
1da177e4 220 struct mm_struct *mm = current->mm;
1da177e4
LT
221 struct page *page;
222 int err;
223
224 /*
225 * The futex address must be "naturally" aligned.
226 */
e2970f2f 227 key->both.offset = address % PAGE_SIZE;
34f01cc1 228 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 229 return -EINVAL;
e2970f2f 230 address -= key->both.offset;
1da177e4 231
34f01cc1
ED
232 /*
233 * PROCESS_PRIVATE futexes are fast.
234 * As the mm cannot disappear under us and the 'key' only needs
235 * virtual address, we dont even have to find the underlying vma.
236 * Note : We do have to check 'uaddr' is a valid user address,
237 * but access_ok() should be faster than find_vma()
238 */
239 if (!fshared) {
7485d0d3 240 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
34f01cc1
ED
241 return -EFAULT;
242 key->private.mm = mm;
243 key->private.address = address;
42569c39 244 get_futex_key_refs(key);
34f01cc1
ED
245 return 0;
246 }
1da177e4 247
38d47c1b 248again:
7485d0d3 249 err = get_user_pages_fast(address, 1, 1, &page);
38d47c1b
PZ
250 if (err < 0)
251 return err;
252
ce2ae53b 253 page = compound_head(page);
38d47c1b
PZ
254 lock_page(page);
255 if (!page->mapping) {
256 unlock_page(page);
257 put_page(page);
258 goto again;
259 }
1da177e4
LT
260
261 /*
262 * Private mappings are handled in a simple way.
263 *
264 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
265 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 266 * the object not the particular process.
1da177e4 267 */
38d47c1b
PZ
268 if (PageAnon(page)) {
269 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 270 key->private.mm = mm;
e2970f2f 271 key->private.address = address;
38d47c1b
PZ
272 } else {
273 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
274 key->shared.inode = page->mapping->host;
275 key->shared.pgoff = page->index;
1da177e4
LT
276 }
277
38d47c1b 278 get_futex_key_refs(key);
1da177e4 279
38d47c1b
PZ
280 unlock_page(page);
281 put_page(page);
282 return 0;
1da177e4
LT
283}
284
38d47c1b 285static inline
c2f9f201 286void put_futex_key(int fshared, union futex_key *key)
1da177e4 287{
38d47c1b 288 drop_futex_key_refs(key);
1da177e4
LT
289}
290
d96ee56c
DH
291/**
292 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
293 * @uaddr: pointer to faulting user space address
294 *
295 * Slow path to fixup the fault we just took in the atomic write
296 * access to @uaddr.
297 *
298 * We have no generic implementation of a non destructive write to the
299 * user address. We know that we faulted in the atomic pagefault
300 * disabled section so we can as well avoid the #PF overhead by
301 * calling get_user_pages() right away.
302 */
303static int fault_in_user_writeable(u32 __user *uaddr)
304{
722d0172
AK
305 struct mm_struct *mm = current->mm;
306 int ret;
307
308 down_read(&mm->mmap_sem);
309 ret = get_user_pages(current, mm, (unsigned long)uaddr,
310 1, 1, 0, NULL, NULL);
311 up_read(&mm->mmap_sem);
312
d0725992
TG
313 return ret < 0 ? ret : 0;
314}
315
4b1c486b
DH
316/**
317 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
318 * @hb: the hash bucket the futex_q's reside in
319 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
320 *
321 * Must be called with the hb lock held.
322 */
323static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
324 union futex_key *key)
325{
326 struct futex_q *this;
327
328 plist_for_each_entry(this, &hb->chain, list) {
329 if (match_futex(&this->key, key))
330 return this;
331 }
332 return NULL;
333}
334
36cf3b5c
TG
335static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
336{
337 u32 curval;
338
339 pagefault_disable();
340 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
341 pagefault_enable();
342
343 return curval;
344}
345
346static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
347{
348 int ret;
349
a866374a 350 pagefault_disable();
e2970f2f 351 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
a866374a 352 pagefault_enable();
1da177e4
LT
353
354 return ret ? -EFAULT : 0;
355}
356
c87e2837
IM
357
358/*
359 * PI code:
360 */
361static int refill_pi_state_cache(void)
362{
363 struct futex_pi_state *pi_state;
364
365 if (likely(current->pi_state_cache))
366 return 0;
367
4668edc3 368 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
369
370 if (!pi_state)
371 return -ENOMEM;
372
c87e2837
IM
373 INIT_LIST_HEAD(&pi_state->list);
374 /* pi_mutex gets initialized later */
375 pi_state->owner = NULL;
376 atomic_set(&pi_state->refcount, 1);
38d47c1b 377 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
378
379 current->pi_state_cache = pi_state;
380
381 return 0;
382}
383
384static struct futex_pi_state * alloc_pi_state(void)
385{
386 struct futex_pi_state *pi_state = current->pi_state_cache;
387
388 WARN_ON(!pi_state);
389 current->pi_state_cache = NULL;
390
391 return pi_state;
392}
393
394static void free_pi_state(struct futex_pi_state *pi_state)
395{
396 if (!atomic_dec_and_test(&pi_state->refcount))
397 return;
398
399 /*
400 * If pi_state->owner is NULL, the owner is most probably dying
401 * and has cleaned up the pi_state already
402 */
403 if (pi_state->owner) {
1d615482 404 raw_spin_lock_irq(&pi_state->owner->pi_lock);
c87e2837 405 list_del_init(&pi_state->list);
1d615482 406 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
c87e2837
IM
407
408 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
409 }
410
411 if (current->pi_state_cache)
412 kfree(pi_state);
413 else {
414 /*
415 * pi_state->list is already empty.
416 * clear pi_state->owner.
417 * refcount is at 0 - put it back to 1.
418 */
419 pi_state->owner = NULL;
420 atomic_set(&pi_state->refcount, 1);
421 current->pi_state_cache = pi_state;
422 }
423}
424
425/*
426 * Look up the task based on what TID userspace gave us.
427 * We dont trust it.
428 */
429static struct task_struct * futex_find_get_task(pid_t pid)
430{
431 struct task_struct *p;
c69e8d9c 432 const struct cred *cred = current_cred(), *pcred;
c87e2837 433
d359b549 434 rcu_read_lock();
228ebcbe 435 p = find_task_by_vpid(pid);
c69e8d9c 436 if (!p) {
a06381fe 437 p = ERR_PTR(-ESRCH);
c69e8d9c
DH
438 } else {
439 pcred = __task_cred(p);
440 if (cred->euid != pcred->euid &&
441 cred->euid != pcred->uid)
442 p = ERR_PTR(-ESRCH);
443 else
444 get_task_struct(p);
445 }
a06381fe 446
d359b549 447 rcu_read_unlock();
c87e2837
IM
448
449 return p;
450}
451
452/*
453 * This task is holding PI mutexes at exit time => bad.
454 * Kernel cleans up PI-state, but userspace is likely hosed.
455 * (Robust-futex cleanup is separate and might save the day for userspace.)
456 */
457void exit_pi_state_list(struct task_struct *curr)
458{
c87e2837
IM
459 struct list_head *next, *head = &curr->pi_state_list;
460 struct futex_pi_state *pi_state;
627371d7 461 struct futex_hash_bucket *hb;
38d47c1b 462 union futex_key key = FUTEX_KEY_INIT;
c87e2837 463
a0c1e907
TG
464 if (!futex_cmpxchg_enabled)
465 return;
c87e2837
IM
466 /*
467 * We are a ZOMBIE and nobody can enqueue itself on
468 * pi_state_list anymore, but we have to be careful
627371d7 469 * versus waiters unqueueing themselves:
c87e2837 470 */
1d615482 471 raw_spin_lock_irq(&curr->pi_lock);
c87e2837
IM
472 while (!list_empty(head)) {
473
474 next = head->next;
475 pi_state = list_entry(next, struct futex_pi_state, list);
476 key = pi_state->key;
627371d7 477 hb = hash_futex(&key);
1d615482 478 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 479
c87e2837
IM
480 spin_lock(&hb->lock);
481
1d615482 482 raw_spin_lock_irq(&curr->pi_lock);
627371d7
IM
483 /*
484 * We dropped the pi-lock, so re-check whether this
485 * task still owns the PI-state:
486 */
c87e2837
IM
487 if (head->next != next) {
488 spin_unlock(&hb->lock);
489 continue;
490 }
491
c87e2837 492 WARN_ON(pi_state->owner != curr);
627371d7
IM
493 WARN_ON(list_empty(&pi_state->list));
494 list_del_init(&pi_state->list);
c87e2837 495 pi_state->owner = NULL;
1d615482 496 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
497
498 rt_mutex_unlock(&pi_state->pi_mutex);
499
500 spin_unlock(&hb->lock);
501
1d615482 502 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 503 }
1d615482 504 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837
IM
505}
506
507static int
d0aa7a70
PP
508lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
509 union futex_key *key, struct futex_pi_state **ps)
c87e2837
IM
510{
511 struct futex_pi_state *pi_state = NULL;
512 struct futex_q *this, *next;
ec92d082 513 struct plist_head *head;
c87e2837 514 struct task_struct *p;
778e9a9c 515 pid_t pid = uval & FUTEX_TID_MASK;
c87e2837
IM
516
517 head = &hb->chain;
518
ec92d082 519 plist_for_each_entry_safe(this, next, head, list) {
d0aa7a70 520 if (match_futex(&this->key, key)) {
c87e2837
IM
521 /*
522 * Another waiter already exists - bump up
523 * the refcount and return its pi_state:
524 */
525 pi_state = this->pi_state;
06a9ec29
TG
526 /*
527 * Userspace might have messed up non PI and PI futexes
528 */
529 if (unlikely(!pi_state))
530 return -EINVAL;
531
627371d7 532 WARN_ON(!atomic_read(&pi_state->refcount));
778e9a9c
AK
533 WARN_ON(pid && pi_state->owner &&
534 pi_state->owner->pid != pid);
627371d7 535
c87e2837 536 atomic_inc(&pi_state->refcount);
d0aa7a70 537 *ps = pi_state;
c87e2837
IM
538
539 return 0;
540 }
541 }
542
543 /*
e3f2ddea 544 * We are the first waiter - try to look up the real owner and attach
778e9a9c 545 * the new pi_state to it, but bail out when TID = 0
c87e2837 546 */
778e9a9c 547 if (!pid)
e3f2ddea 548 return -ESRCH;
c87e2837 549 p = futex_find_get_task(pid);
778e9a9c
AK
550 if (IS_ERR(p))
551 return PTR_ERR(p);
552
553 /*
554 * We need to look at the task state flags to figure out,
555 * whether the task is exiting. To protect against the do_exit
556 * change of the task flags, we do this protected by
557 * p->pi_lock:
558 */
1d615482 559 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
560 if (unlikely(p->flags & PF_EXITING)) {
561 /*
562 * The task is on the way out. When PF_EXITPIDONE is
563 * set, we know that the task has finished the
564 * cleanup:
565 */
566 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
567
1d615482 568 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
569 put_task_struct(p);
570 return ret;
571 }
c87e2837
IM
572
573 pi_state = alloc_pi_state();
574
575 /*
576 * Initialize the pi_mutex in locked state and make 'p'
577 * the owner of it:
578 */
579 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
580
581 /* Store the key for possible exit cleanups: */
d0aa7a70 582 pi_state->key = *key;
c87e2837 583
627371d7 584 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
585 list_add(&pi_state->list, &p->pi_state_list);
586 pi_state->owner = p;
1d615482 587 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
588
589 put_task_struct(p);
590
d0aa7a70 591 *ps = pi_state;
c87e2837
IM
592
593 return 0;
594}
595
1a52084d 596/**
d96ee56c 597 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
598 * @uaddr: the pi futex user address
599 * @hb: the pi futex hash bucket
600 * @key: the futex key associated with uaddr and hb
601 * @ps: the pi_state pointer where we store the result of the
602 * lookup
603 * @task: the task to perform the atomic lock work for. This will
604 * be "current" except in the case of requeue pi.
605 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d
DH
606 *
607 * Returns:
608 * 0 - ready to wait
609 * 1 - acquired the lock
610 * <0 - error
611 *
612 * The hb->lock and futex_key refs shall be held by the caller.
613 */
614static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
615 union futex_key *key,
616 struct futex_pi_state **ps,
bab5bc9e 617 struct task_struct *task, int set_waiters)
1a52084d
DH
618{
619 int lock_taken, ret, ownerdied = 0;
620 u32 uval, newval, curval;
621
622retry:
623 ret = lock_taken = 0;
624
625 /*
626 * To avoid races, we attempt to take the lock here again
627 * (by doing a 0 -> TID atomic cmpxchg), while holding all
628 * the locks. It will most likely not succeed.
629 */
630 newval = task_pid_vnr(task);
bab5bc9e
DH
631 if (set_waiters)
632 newval |= FUTEX_WAITERS;
1a52084d
DH
633
634 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
635
636 if (unlikely(curval == -EFAULT))
637 return -EFAULT;
638
639 /*
640 * Detect deadlocks.
641 */
642 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
643 return -EDEADLK;
644
645 /*
646 * Surprise - we got the lock. Just return to userspace:
647 */
648 if (unlikely(!curval))
649 return 1;
650
651 uval = curval;
652
653 /*
654 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
655 * to wake at the next unlock.
656 */
657 newval = curval | FUTEX_WAITERS;
658
659 /*
660 * There are two cases, where a futex might have no owner (the
661 * owner TID is 0): OWNER_DIED. We take over the futex in this
662 * case. We also do an unconditional take over, when the owner
663 * of the futex died.
664 *
665 * This is safe as we are protected by the hash bucket lock !
666 */
667 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
668 /* Keep the OWNER_DIED bit */
669 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
670 ownerdied = 0;
671 lock_taken = 1;
672 }
673
674 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
675
676 if (unlikely(curval == -EFAULT))
677 return -EFAULT;
678 if (unlikely(curval != uval))
679 goto retry;
680
681 /*
682 * We took the lock due to owner died take over.
683 */
684 if (unlikely(lock_taken))
685 return 1;
686
687 /*
688 * We dont have the lock. Look up the PI state (or create it if
689 * we are the first waiter):
690 */
691 ret = lookup_pi_state(uval, hb, key, ps);
692
693 if (unlikely(ret)) {
694 switch (ret) {
695 case -ESRCH:
696 /*
697 * No owner found for this futex. Check if the
698 * OWNER_DIED bit is set to figure out whether
699 * this is a robust futex or not.
700 */
701 if (get_futex_value_locked(&curval, uaddr))
702 return -EFAULT;
703
704 /*
705 * We simply start over in case of a robust
706 * futex. The code above will take the futex
707 * and return happy.
708 */
709 if (curval & FUTEX_OWNER_DIED) {
710 ownerdied = 1;
711 goto retry;
712 }
713 default:
714 break;
715 }
716 }
717
718 return ret;
719}
720
1da177e4
LT
721/*
722 * The hash bucket lock must be held when this is called.
723 * Afterwards, the futex_q must not be accessed.
724 */
725static void wake_futex(struct futex_q *q)
726{
f1a11e05
TG
727 struct task_struct *p = q->task;
728
1da177e4 729 /*
f1a11e05
TG
730 * We set q->lock_ptr = NULL _before_ we wake up the task. If
731 * a non futex wake up happens on another CPU then the task
732 * might exit and p would dereference a non existing task
733 * struct. Prevent this by holding a reference on p across the
734 * wake up.
1da177e4 735 */
f1a11e05
TG
736 get_task_struct(p);
737
738 plist_del(&q->list, &q->list.plist);
1da177e4 739 /*
f1a11e05
TG
740 * The waiting task can free the futex_q as soon as
741 * q->lock_ptr = NULL is written, without taking any locks. A
742 * memory barrier is required here to prevent the following
743 * store to lock_ptr from getting ahead of the plist_del.
1da177e4 744 */
ccdea2f8 745 smp_wmb();
1da177e4 746 q->lock_ptr = NULL;
f1a11e05
TG
747
748 wake_up_state(p, TASK_NORMAL);
749 put_task_struct(p);
1da177e4
LT
750}
751
c87e2837
IM
752static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
753{
754 struct task_struct *new_owner;
755 struct futex_pi_state *pi_state = this->pi_state;
756 u32 curval, newval;
757
758 if (!pi_state)
759 return -EINVAL;
760
51246bfd
TG
761 /*
762 * If current does not own the pi_state then the futex is
763 * inconsistent and user space fiddled with the futex value.
764 */
765 if (pi_state->owner != current)
766 return -EINVAL;
767
d209d74d 768 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
769 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
770
771 /*
772 * This happens when we have stolen the lock and the original
773 * pending owner did not enqueue itself back on the rt_mutex.
774 * Thats not a tragedy. We know that way, that a lock waiter
775 * is on the fly. We make the futex_q waiter the pending owner.
776 */
777 if (!new_owner)
778 new_owner = this->task;
779
780 /*
781 * We pass it to the next owner. (The WAITERS bit is always
782 * kept enabled while there is PI state around. We must also
783 * preserve the owner died bit.)
784 */
e3f2ddea 785 if (!(uval & FUTEX_OWNER_DIED)) {
778e9a9c
AK
786 int ret = 0;
787
b488893a 788 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 789
36cf3b5c 790 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
778e9a9c 791
e3f2ddea 792 if (curval == -EFAULT)
778e9a9c 793 ret = -EFAULT;
cde898fa 794 else if (curval != uval)
778e9a9c
AK
795 ret = -EINVAL;
796 if (ret) {
d209d74d 797 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
778e9a9c
AK
798 return ret;
799 }
e3f2ddea 800 }
c87e2837 801
1d615482 802 raw_spin_lock_irq(&pi_state->owner->pi_lock);
627371d7
IM
803 WARN_ON(list_empty(&pi_state->list));
804 list_del_init(&pi_state->list);
1d615482 805 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
627371d7 806
1d615482 807 raw_spin_lock_irq(&new_owner->pi_lock);
627371d7 808 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
809 list_add(&pi_state->list, &new_owner->pi_state_list);
810 pi_state->owner = new_owner;
1d615482 811 raw_spin_unlock_irq(&new_owner->pi_lock);
627371d7 812
d209d74d 813 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
814 rt_mutex_unlock(&pi_state->pi_mutex);
815
816 return 0;
817}
818
819static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
820{
821 u32 oldval;
822
823 /*
824 * There is no waiter, so we unlock the futex. The owner died
825 * bit has not to be preserved here. We are the owner:
826 */
36cf3b5c 827 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
c87e2837
IM
828
829 if (oldval == -EFAULT)
830 return oldval;
831 if (oldval != uval)
832 return -EAGAIN;
833
834 return 0;
835}
836
8b8f319f
IM
837/*
838 * Express the locking dependencies for lockdep:
839 */
840static inline void
841double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
842{
843 if (hb1 <= hb2) {
844 spin_lock(&hb1->lock);
845 if (hb1 < hb2)
846 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
847 } else { /* hb1 > hb2 */
848 spin_lock(&hb2->lock);
849 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
850 }
851}
852
5eb3dc62
DH
853static inline void
854double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
855{
f061d351 856 spin_unlock(&hb1->lock);
88f502fe
IM
857 if (hb1 != hb2)
858 spin_unlock(&hb2->lock);
5eb3dc62
DH
859}
860
1da177e4 861/*
b2d0994b 862 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 863 */
c2f9f201 864static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
1da177e4 865{
e2970f2f 866 struct futex_hash_bucket *hb;
1da177e4 867 struct futex_q *this, *next;
ec92d082 868 struct plist_head *head;
38d47c1b 869 union futex_key key = FUTEX_KEY_INIT;
1da177e4
LT
870 int ret;
871
cd689985
TG
872 if (!bitset)
873 return -EINVAL;
874
7485d0d3 875 ret = get_futex_key(uaddr, fshared, &key);
1da177e4
LT
876 if (unlikely(ret != 0))
877 goto out;
878
e2970f2f
IM
879 hb = hash_futex(&key);
880 spin_lock(&hb->lock);
881 head = &hb->chain;
1da177e4 882
ec92d082 883 plist_for_each_entry_safe(this, next, head, list) {
1da177e4 884 if (match_futex (&this->key, &key)) {
52400ba9 885 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
886 ret = -EINVAL;
887 break;
888 }
cd689985
TG
889
890 /* Check if one of the bits is set in both bitsets */
891 if (!(this->bitset & bitset))
892 continue;
893
1da177e4
LT
894 wake_futex(this);
895 if (++ret >= nr_wake)
896 break;
897 }
898 }
899
e2970f2f 900 spin_unlock(&hb->lock);
38d47c1b 901 put_futex_key(fshared, &key);
42d35d48 902out:
1da177e4
LT
903 return ret;
904}
905
4732efbe
JJ
906/*
907 * Wake up all waiters hashed on the physical page that is mapped
908 * to this virtual address:
909 */
e2970f2f 910static int
c2f9f201 911futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
e2970f2f 912 int nr_wake, int nr_wake2, int op)
4732efbe 913{
38d47c1b 914 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 915 struct futex_hash_bucket *hb1, *hb2;
ec92d082 916 struct plist_head *head;
4732efbe 917 struct futex_q *this, *next;
e4dc5b7a 918 int ret, op_ret;
4732efbe 919
e4dc5b7a 920retry:
7485d0d3 921 ret = get_futex_key(uaddr1, fshared, &key1);
4732efbe
JJ
922 if (unlikely(ret != 0))
923 goto out;
7485d0d3 924 ret = get_futex_key(uaddr2, fshared, &key2);
4732efbe 925 if (unlikely(ret != 0))
42d35d48 926 goto out_put_key1;
4732efbe 927
e2970f2f
IM
928 hb1 = hash_futex(&key1);
929 hb2 = hash_futex(&key2);
4732efbe 930
e4dc5b7a 931retry_private:
eaaea803 932 double_lock_hb(hb1, hb2);
e2970f2f 933 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 934 if (unlikely(op_ret < 0)) {
4732efbe 935
5eb3dc62 936 double_unlock_hb(hb1, hb2);
4732efbe 937
7ee1dd3f 938#ifndef CONFIG_MMU
e2970f2f
IM
939 /*
940 * we don't get EFAULT from MMU faults if we don't have an MMU,
941 * but we might get them from range checking
942 */
7ee1dd3f 943 ret = op_ret;
42d35d48 944 goto out_put_keys;
7ee1dd3f
DH
945#endif
946
796f8d9b
DG
947 if (unlikely(op_ret != -EFAULT)) {
948 ret = op_ret;
42d35d48 949 goto out_put_keys;
796f8d9b
DG
950 }
951
d0725992 952 ret = fault_in_user_writeable(uaddr2);
4732efbe 953 if (ret)
de87fcc1 954 goto out_put_keys;
4732efbe 955
e4dc5b7a
DH
956 if (!fshared)
957 goto retry_private;
958
de87fcc1
DH
959 put_futex_key(fshared, &key2);
960 put_futex_key(fshared, &key1);
e4dc5b7a 961 goto retry;
4732efbe
JJ
962 }
963
e2970f2f 964 head = &hb1->chain;
4732efbe 965
ec92d082 966 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
967 if (match_futex (&this->key, &key1)) {
968 wake_futex(this);
969 if (++ret >= nr_wake)
970 break;
971 }
972 }
973
974 if (op_ret > 0) {
e2970f2f 975 head = &hb2->chain;
4732efbe
JJ
976
977 op_ret = 0;
ec92d082 978 plist_for_each_entry_safe(this, next, head, list) {
4732efbe
JJ
979 if (match_futex (&this->key, &key2)) {
980 wake_futex(this);
981 if (++op_ret >= nr_wake2)
982 break;
983 }
984 }
985 ret += op_ret;
986 }
987
5eb3dc62 988 double_unlock_hb(hb1, hb2);
42d35d48 989out_put_keys:
38d47c1b 990 put_futex_key(fshared, &key2);
42d35d48 991out_put_key1:
38d47c1b 992 put_futex_key(fshared, &key1);
42d35d48 993out:
4732efbe
JJ
994 return ret;
995}
996
9121e478
DH
997/**
998 * requeue_futex() - Requeue a futex_q from one hb to another
999 * @q: the futex_q to requeue
1000 * @hb1: the source hash_bucket
1001 * @hb2: the target hash_bucket
1002 * @key2: the new key for the requeued futex_q
1003 */
1004static inline
1005void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1006 struct futex_hash_bucket *hb2, union futex_key *key2)
1007{
1008
1009 /*
1010 * If key1 and key2 hash to the same bucket, no need to
1011 * requeue.
1012 */
1013 if (likely(&hb1->chain != &hb2->chain)) {
1014 plist_del(&q->list, &hb1->chain);
1015 plist_add(&q->list, &hb2->chain);
1016 q->lock_ptr = &hb2->lock;
1017#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1018 q->list.plist.spinlock = &hb2->lock;
9121e478
DH
1019#endif
1020 }
1021 get_futex_key_refs(key2);
1022 q->key = *key2;
1023}
1024
52400ba9
DH
1025/**
1026 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1027 * @q: the futex_q
1028 * @key: the key of the requeue target futex
1029 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1030 *
1031 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1032 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1033 * to the requeue target futex so the waiter can detect the wakeup on the right
1034 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1035 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1036 * to protect access to the pi_state to fixup the owner later. Must be called
1037 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1038 */
1039static inline
beda2c7e
DH
1040void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1041 struct futex_hash_bucket *hb)
52400ba9 1042{
52400ba9
DH
1043 get_futex_key_refs(key);
1044 q->key = *key;
1045
1046 WARN_ON(plist_node_empty(&q->list));
1047 plist_del(&q->list, &q->list.plist);
1048
1049 WARN_ON(!q->rt_waiter);
1050 q->rt_waiter = NULL;
1051
beda2c7e
DH
1052 q->lock_ptr = &hb->lock;
1053#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1054 q->list.plist.spinlock = &hb->lock;
beda2c7e
DH
1055#endif
1056
f1a11e05 1057 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1058}
1059
1060/**
1061 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1062 * @pifutex: the user address of the to futex
1063 * @hb1: the from futex hash bucket, must be locked by the caller
1064 * @hb2: the to futex hash bucket, must be locked by the caller
1065 * @key1: the from futex key
1066 * @key2: the to futex key
1067 * @ps: address to store the pi_state pointer
1068 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1069 *
1070 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1071 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1072 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1073 * hb1 and hb2 must be held by the caller.
52400ba9
DH
1074 *
1075 * Returns:
1076 * 0 - failed to acquire the lock atomicly
1077 * 1 - acquired the lock
1078 * <0 - error
1079 */
1080static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1081 struct futex_hash_bucket *hb1,
1082 struct futex_hash_bucket *hb2,
1083 union futex_key *key1, union futex_key *key2,
bab5bc9e 1084 struct futex_pi_state **ps, int set_waiters)
52400ba9 1085{
bab5bc9e 1086 struct futex_q *top_waiter = NULL;
52400ba9
DH
1087 u32 curval;
1088 int ret;
1089
1090 if (get_futex_value_locked(&curval, pifutex))
1091 return -EFAULT;
1092
bab5bc9e
DH
1093 /*
1094 * Find the top_waiter and determine if there are additional waiters.
1095 * If the caller intends to requeue more than 1 waiter to pifutex,
1096 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1097 * as we have means to handle the possible fault. If not, don't set
1098 * the bit unecessarily as it will force the subsequent unlock to enter
1099 * the kernel.
1100 */
52400ba9
DH
1101 top_waiter = futex_top_waiter(hb1, key1);
1102
1103 /* There are no waiters, nothing for us to do. */
1104 if (!top_waiter)
1105 return 0;
1106
84bc4af5
DH
1107 /* Ensure we requeue to the expected futex. */
1108 if (!match_futex(top_waiter->requeue_pi_key, key2))
1109 return -EINVAL;
1110
52400ba9 1111 /*
bab5bc9e
DH
1112 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1113 * the contended case or if set_waiters is 1. The pi_state is returned
1114 * in ps in contended cases.
52400ba9 1115 */
bab5bc9e
DH
1116 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1117 set_waiters);
52400ba9 1118 if (ret == 1)
beda2c7e 1119 requeue_pi_wake_futex(top_waiter, key2, hb2);
52400ba9
DH
1120
1121 return ret;
1122}
1123
1124/**
1125 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1126 * uaddr1: source futex user address
1127 * uaddr2: target futex user address
1128 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1129 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1130 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1131 * pi futex (pi to pi requeue is not supported)
1132 *
1133 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1134 * uaddr2 atomically on behalf of the top waiter.
1135 *
1136 * Returns:
1137 * >=0 - on success, the number of tasks requeued or woken
1138 * <0 - on error
1da177e4 1139 */
c2f9f201 1140static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
52400ba9
DH
1141 int nr_wake, int nr_requeue, u32 *cmpval,
1142 int requeue_pi)
1da177e4 1143{
38d47c1b 1144 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1145 int drop_count = 0, task_count = 0, ret;
1146 struct futex_pi_state *pi_state = NULL;
e2970f2f 1147 struct futex_hash_bucket *hb1, *hb2;
ec92d082 1148 struct plist_head *head1;
1da177e4 1149 struct futex_q *this, *next;
52400ba9
DH
1150 u32 curval2;
1151
1152 if (requeue_pi) {
1153 /*
1154 * requeue_pi requires a pi_state, try to allocate it now
1155 * without any locks in case it fails.
1156 */
1157 if (refill_pi_state_cache())
1158 return -ENOMEM;
1159 /*
1160 * requeue_pi must wake as many tasks as it can, up to nr_wake
1161 * + nr_requeue, since it acquires the rt_mutex prior to
1162 * returning to userspace, so as to not leave the rt_mutex with
1163 * waiters and no owner. However, second and third wake-ups
1164 * cannot be predicted as they involve race conditions with the
1165 * first wake and a fault while looking up the pi_state. Both
1166 * pthread_cond_signal() and pthread_cond_broadcast() should
1167 * use nr_wake=1.
1168 */
1169 if (nr_wake != 1)
1170 return -EINVAL;
1171 }
1da177e4 1172
42d35d48 1173retry:
52400ba9
DH
1174 if (pi_state != NULL) {
1175 /*
1176 * We will have to lookup the pi_state again, so free this one
1177 * to keep the accounting correct.
1178 */
1179 free_pi_state(pi_state);
1180 pi_state = NULL;
1181 }
1182
7485d0d3 1183 ret = get_futex_key(uaddr1, fshared, &key1);
1da177e4
LT
1184 if (unlikely(ret != 0))
1185 goto out;
7485d0d3 1186 ret = get_futex_key(uaddr2, fshared, &key2);
1da177e4 1187 if (unlikely(ret != 0))
42d35d48 1188 goto out_put_key1;
1da177e4 1189
e2970f2f
IM
1190 hb1 = hash_futex(&key1);
1191 hb2 = hash_futex(&key2);
1da177e4 1192
e4dc5b7a 1193retry_private:
8b8f319f 1194 double_lock_hb(hb1, hb2);
1da177e4 1195
e2970f2f
IM
1196 if (likely(cmpval != NULL)) {
1197 u32 curval;
1da177e4 1198
e2970f2f 1199 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
1200
1201 if (unlikely(ret)) {
5eb3dc62 1202 double_unlock_hb(hb1, hb2);
1da177e4 1203
e2970f2f 1204 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
1205 if (ret)
1206 goto out_put_keys;
1da177e4 1207
e4dc5b7a
DH
1208 if (!fshared)
1209 goto retry_private;
1da177e4 1210
e4dc5b7a
DH
1211 put_futex_key(fshared, &key2);
1212 put_futex_key(fshared, &key1);
1213 goto retry;
1da177e4 1214 }
e2970f2f 1215 if (curval != *cmpval) {
1da177e4
LT
1216 ret = -EAGAIN;
1217 goto out_unlock;
1218 }
1219 }
1220
52400ba9 1221 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
1222 /*
1223 * Attempt to acquire uaddr2 and wake the top waiter. If we
1224 * intend to requeue waiters, force setting the FUTEX_WAITERS
1225 * bit. We force this here where we are able to easily handle
1226 * faults rather in the requeue loop below.
1227 */
52400ba9 1228 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 1229 &key2, &pi_state, nr_requeue);
52400ba9
DH
1230
1231 /*
1232 * At this point the top_waiter has either taken uaddr2 or is
1233 * waiting on it. If the former, then the pi_state will not
1234 * exist yet, look it up one more time to ensure we have a
1235 * reference to it.
1236 */
1237 if (ret == 1) {
1238 WARN_ON(pi_state);
89061d3d 1239 drop_count++;
52400ba9
DH
1240 task_count++;
1241 ret = get_futex_value_locked(&curval2, uaddr2);
1242 if (!ret)
1243 ret = lookup_pi_state(curval2, hb2, &key2,
1244 &pi_state);
1245 }
1246
1247 switch (ret) {
1248 case 0:
1249 break;
1250 case -EFAULT:
1251 double_unlock_hb(hb1, hb2);
1252 put_futex_key(fshared, &key2);
1253 put_futex_key(fshared, &key1);
d0725992 1254 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
1255 if (!ret)
1256 goto retry;
1257 goto out;
1258 case -EAGAIN:
1259 /* The owner was exiting, try again. */
1260 double_unlock_hb(hb1, hb2);
1261 put_futex_key(fshared, &key2);
1262 put_futex_key(fshared, &key1);
1263 cond_resched();
1264 goto retry;
1265 default:
1266 goto out_unlock;
1267 }
1268 }
1269
e2970f2f 1270 head1 = &hb1->chain;
ec92d082 1271 plist_for_each_entry_safe(this, next, head1, list) {
52400ba9
DH
1272 if (task_count - nr_wake >= nr_requeue)
1273 break;
1274
1275 if (!match_futex(&this->key, &key1))
1da177e4 1276 continue;
52400ba9 1277
392741e0
DH
1278 /*
1279 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1280 * be paired with each other and no other futex ops.
1281 */
1282 if ((requeue_pi && !this->rt_waiter) ||
1283 (!requeue_pi && this->rt_waiter)) {
1284 ret = -EINVAL;
1285 break;
1286 }
52400ba9
DH
1287
1288 /*
1289 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1290 * lock, we already woke the top_waiter. If not, it will be
1291 * woken by futex_unlock_pi().
1292 */
1293 if (++task_count <= nr_wake && !requeue_pi) {
1da177e4 1294 wake_futex(this);
52400ba9
DH
1295 continue;
1296 }
1da177e4 1297
84bc4af5
DH
1298 /* Ensure we requeue to the expected futex for requeue_pi. */
1299 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1300 ret = -EINVAL;
1301 break;
1302 }
1303
52400ba9
DH
1304 /*
1305 * Requeue nr_requeue waiters and possibly one more in the case
1306 * of requeue_pi if we couldn't acquire the lock atomically.
1307 */
1308 if (requeue_pi) {
1309 /* Prepare the waiter to take the rt_mutex. */
1310 atomic_inc(&pi_state->refcount);
1311 this->pi_state = pi_state;
1312 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1313 this->rt_waiter,
1314 this->task, 1);
1315 if (ret == 1) {
1316 /* We got the lock. */
beda2c7e 1317 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 1318 drop_count++;
52400ba9
DH
1319 continue;
1320 } else if (ret) {
1321 /* -EDEADLK */
1322 this->pi_state = NULL;
1323 free_pi_state(pi_state);
1324 goto out_unlock;
1325 }
1da177e4 1326 }
52400ba9
DH
1327 requeue_futex(this, hb1, hb2, &key2);
1328 drop_count++;
1da177e4
LT
1329 }
1330
1331out_unlock:
5eb3dc62 1332 double_unlock_hb(hb1, hb2);
1da177e4 1333
cd84a42f
DH
1334 /*
1335 * drop_futex_key_refs() must be called outside the spinlocks. During
1336 * the requeue we moved futex_q's from the hash bucket at key1 to the
1337 * one at key2 and updated their key pointer. We no longer need to
1338 * hold the references to key1.
1339 */
1da177e4 1340 while (--drop_count >= 0)
9adef58b 1341 drop_futex_key_refs(&key1);
1da177e4 1342
42d35d48 1343out_put_keys:
38d47c1b 1344 put_futex_key(fshared, &key2);
42d35d48 1345out_put_key1:
38d47c1b 1346 put_futex_key(fshared, &key1);
42d35d48 1347out:
52400ba9
DH
1348 if (pi_state != NULL)
1349 free_pi_state(pi_state);
1350 return ret ? ret : task_count;
1da177e4
LT
1351}
1352
1353/* The key must be already stored in q->key. */
82af7aca 1354static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1da177e4 1355{
e2970f2f 1356 struct futex_hash_bucket *hb;
1da177e4 1357
9adef58b 1358 get_futex_key_refs(&q->key);
e2970f2f
IM
1359 hb = hash_futex(&q->key);
1360 q->lock_ptr = &hb->lock;
1da177e4 1361
e2970f2f
IM
1362 spin_lock(&hb->lock);
1363 return hb;
1da177e4
LT
1364}
1365
d40d65c8
DH
1366static inline void
1367queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1368{
1369 spin_unlock(&hb->lock);
1370 drop_futex_key_refs(&q->key);
1371}
1372
1373/**
1374 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1375 * @q: The futex_q to enqueue
1376 * @hb: The destination hash bucket
1377 *
1378 * The hb->lock must be held by the caller, and is released here. A call to
1379 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1380 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1381 * or nothing if the unqueue is done as part of the wake process and the unqueue
1382 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1383 * an example).
1384 */
82af7aca 1385static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 1386{
ec92d082
PP
1387 int prio;
1388
1389 /*
1390 * The priority used to register this element is
1391 * - either the real thread-priority for the real-time threads
1392 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1393 * - or MAX_RT_PRIO for non-RT threads.
1394 * Thus, all RT-threads are woken first in priority order, and
1395 * the others are woken last, in FIFO order.
1396 */
1397 prio = min(current->normal_prio, MAX_RT_PRIO);
1398
1399 plist_node_init(&q->list, prio);
1400#ifdef CONFIG_DEBUG_PI_LIST
a2672459 1401 q->list.plist.spinlock = &hb->lock;
ec92d082
PP
1402#endif
1403 plist_add(&q->list, &hb->chain);
c87e2837 1404 q->task = current;
e2970f2f 1405 spin_unlock(&hb->lock);
1da177e4
LT
1406}
1407
d40d65c8
DH
1408/**
1409 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1410 * @q: The futex_q to unqueue
1411 *
1412 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1413 * be paired with exactly one earlier call to queue_me().
1414 *
1415 * Returns:
1416 * 1 - if the futex_q was still queued (and we removed unqueued it)
1417 * 0 - if the futex_q was already removed by the waking thread
1da177e4 1418 */
1da177e4
LT
1419static int unqueue_me(struct futex_q *q)
1420{
1da177e4 1421 spinlock_t *lock_ptr;
e2970f2f 1422 int ret = 0;
1da177e4
LT
1423
1424 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 1425retry:
1da177e4 1426 lock_ptr = q->lock_ptr;
e91467ec 1427 barrier();
c80544dc 1428 if (lock_ptr != NULL) {
1da177e4
LT
1429 spin_lock(lock_ptr);
1430 /*
1431 * q->lock_ptr can change between reading it and
1432 * spin_lock(), causing us to take the wrong lock. This
1433 * corrects the race condition.
1434 *
1435 * Reasoning goes like this: if we have the wrong lock,
1436 * q->lock_ptr must have changed (maybe several times)
1437 * between reading it and the spin_lock(). It can
1438 * change again after the spin_lock() but only if it was
1439 * already changed before the spin_lock(). It cannot,
1440 * however, change back to the original value. Therefore
1441 * we can detect whether we acquired the correct lock.
1442 */
1443 if (unlikely(lock_ptr != q->lock_ptr)) {
1444 spin_unlock(lock_ptr);
1445 goto retry;
1446 }
ec92d082
PP
1447 WARN_ON(plist_node_empty(&q->list));
1448 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1449
1450 BUG_ON(q->pi_state);
1451
1da177e4
LT
1452 spin_unlock(lock_ptr);
1453 ret = 1;
1454 }
1455
9adef58b 1456 drop_futex_key_refs(&q->key);
1da177e4
LT
1457 return ret;
1458}
1459
c87e2837
IM
1460/*
1461 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
1462 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1463 * and dropped here.
c87e2837 1464 */
d0aa7a70 1465static void unqueue_me_pi(struct futex_q *q)
c87e2837 1466{
ec92d082
PP
1467 WARN_ON(plist_node_empty(&q->list));
1468 plist_del(&q->list, &q->list.plist);
c87e2837
IM
1469
1470 BUG_ON(!q->pi_state);
1471 free_pi_state(q->pi_state);
1472 q->pi_state = NULL;
1473
d0aa7a70 1474 spin_unlock(q->lock_ptr);
c87e2837 1475
9adef58b 1476 drop_futex_key_refs(&q->key);
c87e2837
IM
1477}
1478
d0aa7a70 1479/*
cdf71a10 1480 * Fixup the pi_state owner with the new owner.
d0aa7a70 1481 *
778e9a9c
AK
1482 * Must be called with hash bucket lock held and mm->sem held for non
1483 * private futexes.
d0aa7a70 1484 */
778e9a9c 1485static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c2f9f201 1486 struct task_struct *newowner, int fshared)
d0aa7a70 1487{
cdf71a10 1488 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
d0aa7a70 1489 struct futex_pi_state *pi_state = q->pi_state;
1b7558e4 1490 struct task_struct *oldowner = pi_state->owner;
d0aa7a70 1491 u32 uval, curval, newval;
e4dc5b7a 1492 int ret;
d0aa7a70
PP
1493
1494 /* Owner died? */
1b7558e4
TG
1495 if (!pi_state->owner)
1496 newtid |= FUTEX_OWNER_DIED;
1497
1498 /*
1499 * We are here either because we stole the rtmutex from the
1500 * pending owner or we are the pending owner which failed to
1501 * get the rtmutex. We have to replace the pending owner TID
1502 * in the user space variable. This must be atomic as we have
1503 * to preserve the owner died bit here.
1504 *
b2d0994b
DH
1505 * Note: We write the user space value _before_ changing the pi_state
1506 * because we can fault here. Imagine swapped out pages or a fork
1507 * that marked all the anonymous memory readonly for cow.
1b7558e4
TG
1508 *
1509 * Modifying pi_state _before_ the user space value would
1510 * leave the pi_state in an inconsistent state when we fault
1511 * here, because we need to drop the hash bucket lock to
1512 * handle the fault. This might be observed in the PID check
1513 * in lookup_pi_state.
1514 */
1515retry:
1516 if (get_futex_value_locked(&uval, uaddr))
1517 goto handle_fault;
1518
1519 while (1) {
1520 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1521
1522 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1523
1524 if (curval == -EFAULT)
1525 goto handle_fault;
1526 if (curval == uval)
1527 break;
1528 uval = curval;
1529 }
1530
1531 /*
1532 * We fixed up user space. Now we need to fix the pi_state
1533 * itself.
1534 */
d0aa7a70 1535 if (pi_state->owner != NULL) {
1d615482 1536 raw_spin_lock_irq(&pi_state->owner->pi_lock);
d0aa7a70
PP
1537 WARN_ON(list_empty(&pi_state->list));
1538 list_del_init(&pi_state->list);
1d615482 1539 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1b7558e4 1540 }
d0aa7a70 1541
cdf71a10 1542 pi_state->owner = newowner;
d0aa7a70 1543
1d615482 1544 raw_spin_lock_irq(&newowner->pi_lock);
d0aa7a70 1545 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 1546 list_add(&pi_state->list, &newowner->pi_state_list);
1d615482 1547 raw_spin_unlock_irq(&newowner->pi_lock);
1b7558e4 1548 return 0;
d0aa7a70 1549
d0aa7a70 1550 /*
1b7558e4
TG
1551 * To handle the page fault we need to drop the hash bucket
1552 * lock here. That gives the other task (either the pending
1553 * owner itself or the task which stole the rtmutex) the
1554 * chance to try the fixup of the pi_state. So once we are
1555 * back from handling the fault we need to check the pi_state
1556 * after reacquiring the hash bucket lock and before trying to
1557 * do another fixup. When the fixup has been done already we
1558 * simply return.
d0aa7a70 1559 */
1b7558e4
TG
1560handle_fault:
1561 spin_unlock(q->lock_ptr);
778e9a9c 1562
d0725992 1563 ret = fault_in_user_writeable(uaddr);
778e9a9c 1564
1b7558e4 1565 spin_lock(q->lock_ptr);
778e9a9c 1566
1b7558e4
TG
1567 /*
1568 * Check if someone else fixed it for us:
1569 */
1570 if (pi_state->owner != oldowner)
1571 return 0;
1572
1573 if (ret)
1574 return ret;
1575
1576 goto retry;
d0aa7a70
PP
1577}
1578
34f01cc1
ED
1579/*
1580 * In case we must use restart_block to restart a futex_wait,
ce6bd420 1581 * we encode in the 'flags' shared capability
34f01cc1 1582 */
1acdac10
TG
1583#define FLAGS_SHARED 0x01
1584#define FLAGS_CLOCKRT 0x02
a72188d8 1585#define FLAGS_HAS_TIMEOUT 0x04
34f01cc1 1586
72c1bbf3 1587static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 1588
dd973998
DH
1589/**
1590 * fixup_owner() - Post lock pi_state and corner case management
1591 * @uaddr: user address of the futex
1592 * @fshared: whether the futex is shared (1) or not (0)
1593 * @q: futex_q (contains pi_state and access to the rt_mutex)
1594 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1595 *
1596 * After attempting to lock an rt_mutex, this function is called to cleanup
1597 * the pi_state owner as well as handle race conditions that may allow us to
1598 * acquire the lock. Must be called with the hb lock held.
1599 *
1600 * Returns:
1601 * 1 - success, lock taken
1602 * 0 - success, lock not taken
1603 * <0 - on error (-EFAULT)
1604 */
1605static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1606 int locked)
1607{
1608 struct task_struct *owner;
1609 int ret = 0;
1610
1611 if (locked) {
1612 /*
1613 * Got the lock. We might not be the anticipated owner if we
1614 * did a lock-steal - fix up the PI-state in that case:
1615 */
1616 if (q->pi_state->owner != current)
1617 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1618 goto out;
1619 }
1620
1621 /*
1622 * Catch the rare case, where the lock was released when we were on the
1623 * way back before we locked the hash bucket.
1624 */
1625 if (q->pi_state->owner == current) {
1626 /*
1627 * Try to get the rt_mutex now. This might fail as some other
1628 * task acquired the rt_mutex after we removed ourself from the
1629 * rt_mutex waiters list.
1630 */
1631 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1632 locked = 1;
1633 goto out;
1634 }
1635
1636 /*
1637 * pi_state is incorrect, some other task did a lock steal and
1638 * we returned due to timeout or signal without taking the
1639 * rt_mutex. Too late. We can access the rt_mutex_owner without
1640 * locking, as the other task is now blocked on the hash bucket
1641 * lock. Fix the state up.
1642 */
1643 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1644 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1645 goto out;
1646 }
1647
1648 /*
1649 * Paranoia check. If we did not take the lock, then we should not be
1650 * the owner, nor the pending owner, of the rt_mutex.
1651 */
1652 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1653 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1654 "pi-state %p\n", ret,
1655 q->pi_state->pi_mutex.owner,
1656 q->pi_state->owner);
1657
1658out:
1659 return ret ? ret : locked;
1660}
1661
ca5f9524
DH
1662/**
1663 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1664 * @hb: the futex hash bucket, must be locked by the caller
1665 * @q: the futex_q to queue up on
1666 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
1667 */
1668static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 1669 struct hrtimer_sleeper *timeout)
ca5f9524 1670{
9beba3c5
DH
1671 /*
1672 * The task state is guaranteed to be set before another task can
1673 * wake it. set_current_state() is implemented using set_mb() and
1674 * queue_me() calls spin_unlock() upon completion, both serializing
1675 * access to the hash list and forcing another memory barrier.
1676 */
f1a11e05 1677 set_current_state(TASK_INTERRUPTIBLE);
0729e196 1678 queue_me(q, hb);
ca5f9524
DH
1679
1680 /* Arm the timer */
1681 if (timeout) {
1682 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1683 if (!hrtimer_active(&timeout->timer))
1684 timeout->task = NULL;
1685 }
1686
1687 /*
0729e196
DH
1688 * If we have been removed from the hash list, then another task
1689 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
1690 */
1691 if (likely(!plist_node_empty(&q->list))) {
1692 /*
1693 * If the timer has already expired, current will already be
1694 * flagged for rescheduling. Only call schedule if there
1695 * is no timeout, or if it has yet to expire.
1696 */
1697 if (!timeout || timeout->task)
1698 schedule();
1699 }
1700 __set_current_state(TASK_RUNNING);
1701}
1702
f801073f
DH
1703/**
1704 * futex_wait_setup() - Prepare to wait on a futex
1705 * @uaddr: the futex userspace address
1706 * @val: the expected value
1707 * @fshared: whether the futex is shared (1) or not (0)
1708 * @q: the associated futex_q
1709 * @hb: storage for hash_bucket pointer to be returned to caller
1710 *
1711 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1712 * compare it with the expected value. Handle atomic faults internally.
1713 * Return with the hb lock held and a q.key reference on success, and unlocked
1714 * with no q.key reference on failure.
1715 *
1716 * Returns:
1717 * 0 - uaddr contains val and hb has been locked
1718 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1719 */
1720static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1721 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 1722{
e2970f2f
IM
1723 u32 uval;
1724 int ret;
1da177e4 1725
1da177e4 1726 /*
b2d0994b 1727 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
1728 * Order is important:
1729 *
1730 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1731 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1732 *
1733 * The basic logical guarantee of a futex is that it blocks ONLY
1734 * if cond(var) is known to be true at the time of blocking, for
1735 * any cond. If we queued after testing *uaddr, that would open
1736 * a race condition where we could block indefinitely with
1737 * cond(var) false, which would violate the guarantee.
1738 *
1739 * A consequence is that futex_wait() can return zero and absorb
1740 * a wakeup when *uaddr != val on entry to the syscall. This is
1741 * rare, but normal.
1da177e4 1742 */
f801073f
DH
1743retry:
1744 q->key = FUTEX_KEY_INIT;
7485d0d3 1745 ret = get_futex_key(uaddr, fshared, &q->key);
f801073f 1746 if (unlikely(ret != 0))
a5a2a0c7 1747 return ret;
f801073f
DH
1748
1749retry_private:
1750 *hb = queue_lock(q);
1751
e2970f2f 1752 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 1753
f801073f
DH
1754 if (ret) {
1755 queue_unlock(q, *hb);
1da177e4 1756
e2970f2f 1757 ret = get_user(uval, uaddr);
e4dc5b7a 1758 if (ret)
f801073f 1759 goto out;
1da177e4 1760
e4dc5b7a
DH
1761 if (!fshared)
1762 goto retry_private;
1763
f801073f 1764 put_futex_key(fshared, &q->key);
e4dc5b7a 1765 goto retry;
1da177e4 1766 }
ca5f9524 1767
f801073f
DH
1768 if (uval != val) {
1769 queue_unlock(q, *hb);
1770 ret = -EWOULDBLOCK;
2fff78c7 1771 }
1da177e4 1772
f801073f
DH
1773out:
1774 if (ret)
1775 put_futex_key(fshared, &q->key);
1776 return ret;
1777}
1778
1779static int futex_wait(u32 __user *uaddr, int fshared,
1780 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1781{
1782 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
1783 struct restart_block *restart;
1784 struct futex_hash_bucket *hb;
1785 struct futex_q q;
1786 int ret;
1787
1788 if (!bitset)
1789 return -EINVAL;
1790
1791 q.pi_state = NULL;
1792 q.bitset = bitset;
52400ba9 1793 q.rt_waiter = NULL;
84bc4af5 1794 q.requeue_pi_key = NULL;
f801073f
DH
1795
1796 if (abs_time) {
1797 to = &timeout;
1798
1799 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1800 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1801 hrtimer_init_sleeper(to, current);
1802 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1803 current->timer_slack_ns);
1804 }
1805
d58e6576 1806retry:
f801073f
DH
1807 /* Prepare to wait on uaddr. */
1808 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1809 if (ret)
1810 goto out;
1811
ca5f9524 1812 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 1813 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
1814
1815 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 1816 ret = 0;
1da177e4 1817 if (!unqueue_me(&q))
2fff78c7
PZ
1818 goto out_put_key;
1819 ret = -ETIMEDOUT;
ca5f9524 1820 if (to && !to->task)
2fff78c7 1821 goto out_put_key;
72c1bbf3 1822
e2970f2f 1823 /*
d58e6576
TG
1824 * We expect signal_pending(current), but we might be the
1825 * victim of a spurious wakeup as well.
e2970f2f 1826 */
d58e6576
TG
1827 if (!signal_pending(current)) {
1828 put_futex_key(fshared, &q.key);
1829 goto retry;
1830 }
1831
2fff78c7 1832 ret = -ERESTARTSYS;
c19384b5 1833 if (!abs_time)
2fff78c7 1834 goto out_put_key;
1da177e4 1835
2fff78c7
PZ
1836 restart = &current_thread_info()->restart_block;
1837 restart->fn = futex_wait_restart;
1838 restart->futex.uaddr = (u32 *)uaddr;
1839 restart->futex.val = val;
1840 restart->futex.time = abs_time->tv64;
1841 restart->futex.bitset = bitset;
a72188d8 1842 restart->futex.flags = FLAGS_HAS_TIMEOUT;
2fff78c7
PZ
1843
1844 if (fshared)
1845 restart->futex.flags |= FLAGS_SHARED;
1846 if (clockrt)
1847 restart->futex.flags |= FLAGS_CLOCKRT;
42d35d48 1848
2fff78c7
PZ
1849 ret = -ERESTART_RESTARTBLOCK;
1850
1851out_put_key:
1852 put_futex_key(fshared, &q.key);
42d35d48 1853out:
ca5f9524
DH
1854 if (to) {
1855 hrtimer_cancel(&to->timer);
1856 destroy_hrtimer_on_stack(&to->timer);
1857 }
c87e2837
IM
1858 return ret;
1859}
1860
72c1bbf3
NP
1861
1862static long futex_wait_restart(struct restart_block *restart)
1863{
ce6bd420 1864 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
c2f9f201 1865 int fshared = 0;
a72188d8 1866 ktime_t t, *tp = NULL;
72c1bbf3 1867
a72188d8
DH
1868 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1869 t.tv64 = restart->futex.time;
1870 tp = &t;
1871 }
72c1bbf3 1872 restart->fn = do_no_restart_syscall;
ce6bd420 1873 if (restart->futex.flags & FLAGS_SHARED)
c2f9f201 1874 fshared = 1;
a72188d8 1875 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1acdac10
TG
1876 restart->futex.bitset,
1877 restart->futex.flags & FLAGS_CLOCKRT);
72c1bbf3
NP
1878}
1879
1880
c87e2837
IM
1881/*
1882 * Userspace tried a 0 -> TID atomic transition of the futex value
1883 * and failed. The kernel side here does the whole locking operation:
1884 * if there are waiters then it will block, it does PI, etc. (Due to
1885 * races the kernel might see a 0 value of the futex too.)
1886 */
c2f9f201 1887static int futex_lock_pi(u32 __user *uaddr, int fshared,
34f01cc1 1888 int detect, ktime_t *time, int trylock)
c87e2837 1889{
c5780e97 1890 struct hrtimer_sleeper timeout, *to = NULL;
c87e2837 1891 struct futex_hash_bucket *hb;
c87e2837 1892 struct futex_q q;
dd973998 1893 int res, ret;
c87e2837
IM
1894
1895 if (refill_pi_state_cache())
1896 return -ENOMEM;
1897
c19384b5 1898 if (time) {
c5780e97 1899 to = &timeout;
237fc6e7
TG
1900 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1901 HRTIMER_MODE_ABS);
c5780e97 1902 hrtimer_init_sleeper(to, current);
cc584b21 1903 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
1904 }
1905
c87e2837 1906 q.pi_state = NULL;
52400ba9 1907 q.rt_waiter = NULL;
84bc4af5 1908 q.requeue_pi_key = NULL;
42d35d48 1909retry:
38d47c1b 1910 q.key = FUTEX_KEY_INIT;
7485d0d3 1911 ret = get_futex_key(uaddr, fshared, &q.key);
c87e2837 1912 if (unlikely(ret != 0))
42d35d48 1913 goto out;
c87e2837 1914
e4dc5b7a 1915retry_private:
82af7aca 1916 hb = queue_lock(&q);
c87e2837 1917
bab5bc9e 1918 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 1919 if (unlikely(ret)) {
778e9a9c 1920 switch (ret) {
1a52084d
DH
1921 case 1:
1922 /* We got the lock. */
1923 ret = 0;
1924 goto out_unlock_put_key;
1925 case -EFAULT:
1926 goto uaddr_faulted;
778e9a9c
AK
1927 case -EAGAIN:
1928 /*
1929 * Task is exiting and we just wait for the
1930 * exit to complete.
1931 */
1932 queue_unlock(&q, hb);
de87fcc1 1933 put_futex_key(fshared, &q.key);
778e9a9c
AK
1934 cond_resched();
1935 goto retry;
778e9a9c 1936 default:
42d35d48 1937 goto out_unlock_put_key;
c87e2837 1938 }
c87e2837
IM
1939 }
1940
1941 /*
1942 * Only actually queue now that the atomic ops are done:
1943 */
82af7aca 1944 queue_me(&q, hb);
c87e2837 1945
c87e2837
IM
1946 WARN_ON(!q.pi_state);
1947 /*
1948 * Block on the PI mutex:
1949 */
1950 if (!trylock)
1951 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1952 else {
1953 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1954 /* Fixup the trylock return value: */
1955 ret = ret ? 0 : -EWOULDBLOCK;
1956 }
1957
a99e4e41 1958 spin_lock(q.lock_ptr);
dd973998
DH
1959 /*
1960 * Fixup the pi_state owner and possibly acquire the lock if we
1961 * haven't already.
1962 */
1963 res = fixup_owner(uaddr, fshared, &q, !ret);
1964 /*
1965 * If fixup_owner() returned an error, proprogate that. If it acquired
1966 * the lock, clear our -ETIMEDOUT or -EINTR.
1967 */
1968 if (res)
1969 ret = (res < 0) ? res : 0;
c87e2837 1970
e8f6386c 1971 /*
dd973998
DH
1972 * If fixup_owner() faulted and was unable to handle the fault, unlock
1973 * it and return the fault to userspace.
e8f6386c
DH
1974 */
1975 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1976 rt_mutex_unlock(&q.pi_state->pi_mutex);
1977
778e9a9c
AK
1978 /* Unqueue and drop the lock */
1979 unqueue_me_pi(&q);
c87e2837 1980
5ecb01cf 1981 goto out_put_key;
c87e2837 1982
42d35d48 1983out_unlock_put_key:
c87e2837
IM
1984 queue_unlock(&q, hb);
1985
42d35d48 1986out_put_key:
38d47c1b 1987 put_futex_key(fshared, &q.key);
42d35d48 1988out:
237fc6e7
TG
1989 if (to)
1990 destroy_hrtimer_on_stack(&to->timer);
dd973998 1991 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 1992
42d35d48 1993uaddr_faulted:
778e9a9c
AK
1994 queue_unlock(&q, hb);
1995
d0725992 1996 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
1997 if (ret)
1998 goto out_put_key;
c87e2837 1999
e4dc5b7a
DH
2000 if (!fshared)
2001 goto retry_private;
2002
2003 put_futex_key(fshared, &q.key);
2004 goto retry;
c87e2837
IM
2005}
2006
c87e2837
IM
2007/*
2008 * Userspace attempted a TID -> 0 atomic transition, and failed.
2009 * This is the in-kernel slowpath: we look up the PI state (if any),
2010 * and do the rt-mutex unlock.
2011 */
c2f9f201 2012static int futex_unlock_pi(u32 __user *uaddr, int fshared)
c87e2837
IM
2013{
2014 struct futex_hash_bucket *hb;
2015 struct futex_q *this, *next;
2016 u32 uval;
ec92d082 2017 struct plist_head *head;
38d47c1b 2018 union futex_key key = FUTEX_KEY_INIT;
e4dc5b7a 2019 int ret;
c87e2837
IM
2020
2021retry:
2022 if (get_user(uval, uaddr))
2023 return -EFAULT;
2024 /*
2025 * We release only a lock we actually own:
2026 */
b488893a 2027 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
c87e2837 2028 return -EPERM;
c87e2837 2029
7485d0d3 2030 ret = get_futex_key(uaddr, fshared, &key);
c87e2837
IM
2031 if (unlikely(ret != 0))
2032 goto out;
2033
2034 hb = hash_futex(&key);
2035 spin_lock(&hb->lock);
2036
c87e2837
IM
2037 /*
2038 * To avoid races, try to do the TID -> 0 atomic transition
2039 * again. If it succeeds then we can return without waking
2040 * anyone else up:
2041 */
36cf3b5c 2042 if (!(uval & FUTEX_OWNER_DIED))
b488893a 2043 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
36cf3b5c 2044
c87e2837
IM
2045
2046 if (unlikely(uval == -EFAULT))
2047 goto pi_faulted;
2048 /*
2049 * Rare case: we managed to release the lock atomically,
2050 * no need to wake anyone else up:
2051 */
b488893a 2052 if (unlikely(uval == task_pid_vnr(current)))
c87e2837
IM
2053 goto out_unlock;
2054
2055 /*
2056 * Ok, other tasks may need to be woken up - check waiters
2057 * and do the wakeup if necessary:
2058 */
2059 head = &hb->chain;
2060
ec92d082 2061 plist_for_each_entry_safe(this, next, head, list) {
c87e2837
IM
2062 if (!match_futex (&this->key, &key))
2063 continue;
2064 ret = wake_futex_pi(uaddr, uval, this);
2065 /*
2066 * The atomic access to the futex value
2067 * generated a pagefault, so retry the
2068 * user-access and the wakeup:
2069 */
2070 if (ret == -EFAULT)
2071 goto pi_faulted;
2072 goto out_unlock;
2073 }
2074 /*
2075 * No waiters - kernel unlocks the futex:
2076 */
e3f2ddea
IM
2077 if (!(uval & FUTEX_OWNER_DIED)) {
2078 ret = unlock_futex_pi(uaddr, uval);
2079 if (ret == -EFAULT)
2080 goto pi_faulted;
2081 }
c87e2837
IM
2082
2083out_unlock:
2084 spin_unlock(&hb->lock);
38d47c1b 2085 put_futex_key(fshared, &key);
c87e2837 2086
42d35d48 2087out:
c87e2837
IM
2088 return ret;
2089
2090pi_faulted:
778e9a9c 2091 spin_unlock(&hb->lock);
e4dc5b7a 2092 put_futex_key(fshared, &key);
c87e2837 2093
d0725992 2094 ret = fault_in_user_writeable(uaddr);
b5686363 2095 if (!ret)
c87e2837
IM
2096 goto retry;
2097
1da177e4
LT
2098 return ret;
2099}
2100
52400ba9
DH
2101/**
2102 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2103 * @hb: the hash_bucket futex_q was original enqueued on
2104 * @q: the futex_q woken while waiting to be requeued
2105 * @key2: the futex_key of the requeue target futex
2106 * @timeout: the timeout associated with the wait (NULL if none)
2107 *
2108 * Detect if the task was woken on the initial futex as opposed to the requeue
2109 * target futex. If so, determine if it was a timeout or a signal that caused
2110 * the wakeup and return the appropriate error code to the caller. Must be
2111 * called with the hb lock held.
2112 *
2113 * Returns
2114 * 0 - no early wakeup detected
1c840c14 2115 * <0 - -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
2116 */
2117static inline
2118int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2119 struct futex_q *q, union futex_key *key2,
2120 struct hrtimer_sleeper *timeout)
2121{
2122 int ret = 0;
2123
2124 /*
2125 * With the hb lock held, we avoid races while we process the wakeup.
2126 * We only need to hold hb (and not hb2) to ensure atomicity as the
2127 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2128 * It can't be requeued from uaddr2 to something else since we don't
2129 * support a PI aware source futex for requeue.
2130 */
2131 if (!match_futex(&q->key, key2)) {
2132 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2133 /*
2134 * We were woken prior to requeue by a timeout or a signal.
2135 * Unqueue the futex_q and determine which it was.
2136 */
2137 plist_del(&q->list, &q->list.plist);
52400ba9 2138
d58e6576 2139 /* Handle spurious wakeups gracefully */
11df6ddd 2140 ret = -EWOULDBLOCK;
52400ba9
DH
2141 if (timeout && !timeout->task)
2142 ret = -ETIMEDOUT;
d58e6576 2143 else if (signal_pending(current))
1c840c14 2144 ret = -ERESTARTNOINTR;
52400ba9
DH
2145 }
2146 return ret;
2147}
2148
2149/**
2150 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 2151 * @uaddr: the futex we initially wait on (non-pi)
52400ba9
DH
2152 * @fshared: whether the futexes are shared (1) or not (0). They must be
2153 * the same type, no requeueing from private to shared, etc.
2154 * @val: the expected value of uaddr
2155 * @abs_time: absolute timeout
56ec1607 2156 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
2157 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2158 * @uaddr2: the pi futex we will take prior to returning to user-space
2159 *
2160 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2161 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2162 * complete the acquisition of the rt_mutex prior to returning to userspace.
2163 * This ensures the rt_mutex maintains an owner when it has waiters; without
2164 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2165 * need to.
2166 *
2167 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2168 * via the following:
2169 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
2170 * 2) wakeup on uaddr2 after a requeue
2171 * 3) signal
2172 * 4) timeout
52400ba9 2173 *
cc6db4e6 2174 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
2175 *
2176 * If 2, we may then block on trying to take the rt_mutex and return via:
2177 * 5) successful lock
2178 * 6) signal
2179 * 7) timeout
2180 * 8) other lock acquisition failure
2181 *
cc6db4e6 2182 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
2183 *
2184 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2185 *
2186 * Returns:
2187 * 0 - On success
2188 * <0 - On error
2189 */
2190static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2191 u32 val, ktime_t *abs_time, u32 bitset,
2192 int clockrt, u32 __user *uaddr2)
2193{
2194 struct hrtimer_sleeper timeout, *to = NULL;
2195 struct rt_mutex_waiter rt_waiter;
2196 struct rt_mutex *pi_mutex = NULL;
52400ba9
DH
2197 struct futex_hash_bucket *hb;
2198 union futex_key key2;
2199 struct futex_q q;
2200 int res, ret;
52400ba9
DH
2201
2202 if (!bitset)
2203 return -EINVAL;
2204
2205 if (abs_time) {
2206 to = &timeout;
2207 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2208 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2209 hrtimer_init_sleeper(to, current);
2210 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2211 current->timer_slack_ns);
2212 }
2213
2214 /*
2215 * The waiter is allocated on our stack, manipulated by the requeue
2216 * code while we sleep on uaddr.
2217 */
2218 debug_rt_mutex_init_waiter(&rt_waiter);
2219 rt_waiter.task = NULL;
2220
52400ba9 2221 key2 = FUTEX_KEY_INIT;
7485d0d3 2222 ret = get_futex_key(uaddr2, fshared, &key2);
52400ba9
DH
2223 if (unlikely(ret != 0))
2224 goto out;
2225
84bc4af5
DH
2226 q.pi_state = NULL;
2227 q.bitset = bitset;
2228 q.rt_waiter = &rt_waiter;
2229 q.requeue_pi_key = &key2;
2230
52400ba9
DH
2231 /* Prepare to wait on uaddr. */
2232 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
c8b15a70
TG
2233 if (ret)
2234 goto out_key2;
52400ba9
DH
2235
2236 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 2237 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
2238
2239 spin_lock(&hb->lock);
2240 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2241 spin_unlock(&hb->lock);
2242 if (ret)
2243 goto out_put_keys;
2244
2245 /*
2246 * In order for us to be here, we know our q.key == key2, and since
2247 * we took the hb->lock above, we also know that futex_requeue() has
2248 * completed and we no longer have to concern ourselves with a wakeup
2249 * race with the atomic proxy lock acquition by the requeue code.
2250 */
2251
2252 /* Check if the requeue code acquired the second futex for us. */
2253 if (!q.rt_waiter) {
2254 /*
2255 * Got the lock. We might not be the anticipated owner if we
2256 * did a lock-steal - fix up the PI-state in that case.
2257 */
2258 if (q.pi_state && (q.pi_state->owner != current)) {
2259 spin_lock(q.lock_ptr);
2260 ret = fixup_pi_state_owner(uaddr2, &q, current,
2261 fshared);
2262 spin_unlock(q.lock_ptr);
2263 }
2264 } else {
2265 /*
2266 * We have been woken up by futex_unlock_pi(), a timeout, or a
2267 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2268 * the pi_state.
2269 */
2270 WARN_ON(!&q.pi_state);
2271 pi_mutex = &q.pi_state->pi_mutex;
2272 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2273 debug_rt_mutex_free_waiter(&rt_waiter);
2274
2275 spin_lock(q.lock_ptr);
2276 /*
2277 * Fixup the pi_state owner and possibly acquire the lock if we
2278 * haven't already.
2279 */
2280 res = fixup_owner(uaddr2, fshared, &q, !ret);
2281 /*
2282 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 2283 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
2284 */
2285 if (res)
2286 ret = (res < 0) ? res : 0;
2287
2288 /* Unqueue and drop the lock. */
2289 unqueue_me_pi(&q);
2290 }
2291
2292 /*
2293 * If fixup_pi_state_owner() faulted and was unable to handle the
2294 * fault, unlock the rt_mutex and return the fault to userspace.
2295 */
2296 if (ret == -EFAULT) {
2297 if (rt_mutex_owner(pi_mutex) == current)
2298 rt_mutex_unlock(pi_mutex);
2299 } else if (ret == -EINTR) {
52400ba9 2300 /*
cc6db4e6
DH
2301 * We've already been requeued, but cannot restart by calling
2302 * futex_lock_pi() directly. We could restart this syscall, but
2303 * it would detect that the user space "val" changed and return
2304 * -EWOULDBLOCK. Save the overhead of the restart and return
2305 * -EWOULDBLOCK directly.
52400ba9 2306 */
2070887f 2307 ret = -EWOULDBLOCK;
52400ba9
DH
2308 }
2309
2310out_put_keys:
2311 put_futex_key(fshared, &q.key);
c8b15a70 2312out_key2:
52400ba9
DH
2313 put_futex_key(fshared, &key2);
2314
2315out:
2316 if (to) {
2317 hrtimer_cancel(&to->timer);
2318 destroy_hrtimer_on_stack(&to->timer);
2319 }
2320 return ret;
2321}
2322
0771dfef
IM
2323/*
2324 * Support for robust futexes: the kernel cleans up held futexes at
2325 * thread exit time.
2326 *
2327 * Implementation: user-space maintains a per-thread list of locks it
2328 * is holding. Upon do_exit(), the kernel carefully walks this list,
2329 * and marks all locks that are owned by this thread with the
c87e2837 2330 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
2331 * always manipulated with the lock held, so the list is private and
2332 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2333 * field, to allow the kernel to clean up if the thread dies after
2334 * acquiring the lock, but just before it could have added itself to
2335 * the list. There can only be one such pending lock.
2336 */
2337
2338/**
d96ee56c
DH
2339 * sys_set_robust_list() - Set the robust-futex list head of a task
2340 * @head: pointer to the list-head
2341 * @len: length of the list-head, as userspace expects
0771dfef 2342 */
836f92ad
HC
2343SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2344 size_t, len)
0771dfef 2345{
a0c1e907
TG
2346 if (!futex_cmpxchg_enabled)
2347 return -ENOSYS;
0771dfef
IM
2348 /*
2349 * The kernel knows only one size for now:
2350 */
2351 if (unlikely(len != sizeof(*head)))
2352 return -EINVAL;
2353
2354 current->robust_list = head;
2355
2356 return 0;
2357}
2358
2359/**
d96ee56c
DH
2360 * sys_get_robust_list() - Get the robust-futex list head of a task
2361 * @pid: pid of the process [zero for current task]
2362 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2363 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 2364 */
836f92ad
HC
2365SYSCALL_DEFINE3(get_robust_list, int, pid,
2366 struct robust_list_head __user * __user *, head_ptr,
2367 size_t __user *, len_ptr)
0771dfef 2368{
ba46df98 2369 struct robust_list_head __user *head;
0771dfef 2370 unsigned long ret;
c69e8d9c 2371 const struct cred *cred = current_cred(), *pcred;
0771dfef 2372
a0c1e907
TG
2373 if (!futex_cmpxchg_enabled)
2374 return -ENOSYS;
2375
0771dfef
IM
2376 if (!pid)
2377 head = current->robust_list;
2378 else {
2379 struct task_struct *p;
2380
2381 ret = -ESRCH;
aaa2a97e 2382 rcu_read_lock();
228ebcbe 2383 p = find_task_by_vpid(pid);
0771dfef
IM
2384 if (!p)
2385 goto err_unlock;
2386 ret = -EPERM;
c69e8d9c
DH
2387 pcred = __task_cred(p);
2388 if (cred->euid != pcred->euid &&
2389 cred->euid != pcred->uid &&
76aac0e9 2390 !capable(CAP_SYS_PTRACE))
0771dfef
IM
2391 goto err_unlock;
2392 head = p->robust_list;
aaa2a97e 2393 rcu_read_unlock();
0771dfef
IM
2394 }
2395
2396 if (put_user(sizeof(*head), len_ptr))
2397 return -EFAULT;
2398 return put_user(head, head_ptr);
2399
2400err_unlock:
aaa2a97e 2401 rcu_read_unlock();
0771dfef
IM
2402
2403 return ret;
2404}
2405
2406/*
2407 * Process a futex-list entry, check whether it's owned by the
2408 * dying task, and do notification if so:
2409 */
e3f2ddea 2410int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
0771dfef 2411{
e3f2ddea 2412 u32 uval, nval, mval;
0771dfef 2413
8f17d3a5
IM
2414retry:
2415 if (get_user(uval, uaddr))
0771dfef
IM
2416 return -1;
2417
b488893a 2418 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
0771dfef
IM
2419 /*
2420 * Ok, this dying thread is truly holding a futex
2421 * of interest. Set the OWNER_DIED bit atomically
2422 * via cmpxchg, and if the value had FUTEX_WAITERS
2423 * set, wake up a waiter (if any). (We have to do a
2424 * futex_wake() even if OWNER_DIED is already set -
2425 * to handle the rare but possible case of recursive
2426 * thread-death.) The rest of the cleanup is done in
2427 * userspace.
2428 */
e3f2ddea
IM
2429 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2430 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2431
c87e2837
IM
2432 if (nval == -EFAULT)
2433 return -1;
2434
2435 if (nval != uval)
8f17d3a5 2436 goto retry;
0771dfef 2437
e3f2ddea
IM
2438 /*
2439 * Wake robust non-PI futexes here. The wakeup of
2440 * PI futexes happens in exit_pi_state():
2441 */
36cf3b5c 2442 if (!pi && (uval & FUTEX_WAITERS))
c2f9f201 2443 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
0771dfef
IM
2444 }
2445 return 0;
2446}
2447
e3f2ddea
IM
2448/*
2449 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2450 */
2451static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98
AV
2452 struct robust_list __user * __user *head,
2453 int *pi)
e3f2ddea
IM
2454{
2455 unsigned long uentry;
2456
ba46df98 2457 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
2458 return -EFAULT;
2459
ba46df98 2460 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
2461 *pi = uentry & 1;
2462
2463 return 0;
2464}
2465
0771dfef
IM
2466/*
2467 * Walk curr->robust_list (very carefully, it's a userspace list!)
2468 * and mark any locks found there dead, and notify any waiters.
2469 *
2470 * We silently return on any sign of list-walking problem.
2471 */
2472void exit_robust_list(struct task_struct *curr)
2473{
2474 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e
MS
2475 struct robust_list __user *entry, *next_entry, *pending;
2476 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
0771dfef 2477 unsigned long futex_offset;
9f96cb1e 2478 int rc;
0771dfef 2479
a0c1e907
TG
2480 if (!futex_cmpxchg_enabled)
2481 return;
2482
0771dfef
IM
2483 /*
2484 * Fetch the list head (which was registered earlier, via
2485 * sys_set_robust_list()):
2486 */
e3f2ddea 2487 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
2488 return;
2489 /*
2490 * Fetch the relative futex offset:
2491 */
2492 if (get_user(futex_offset, &head->futex_offset))
2493 return;
2494 /*
2495 * Fetch any possibly pending lock-add first, and handle it
2496 * if it exists:
2497 */
e3f2ddea 2498 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 2499 return;
e3f2ddea 2500
9f96cb1e 2501 next_entry = NULL; /* avoid warning with gcc */
0771dfef 2502 while (entry != &head->list) {
9f96cb1e
MS
2503 /*
2504 * Fetch the next entry in the list before calling
2505 * handle_futex_death:
2506 */
2507 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
2508 /*
2509 * A pending lock might already be on the list, so
c87e2837 2510 * don't process it twice:
0771dfef
IM
2511 */
2512 if (entry != pending)
ba46df98 2513 if (handle_futex_death((void __user *)entry + futex_offset,
e3f2ddea 2514 curr, pi))
0771dfef 2515 return;
9f96cb1e 2516 if (rc)
0771dfef 2517 return;
9f96cb1e
MS
2518 entry = next_entry;
2519 pi = next_pi;
0771dfef
IM
2520 /*
2521 * Avoid excessively long or circular lists:
2522 */
2523 if (!--limit)
2524 break;
2525
2526 cond_resched();
2527 }
9f96cb1e
MS
2528
2529 if (pending)
2530 handle_futex_death((void __user *)pending + futex_offset,
2531 curr, pip);
0771dfef
IM
2532}
2533
c19384b5 2534long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 2535 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 2536{
1acdac10 2537 int clockrt, ret = -ENOSYS;
34f01cc1 2538 int cmd = op & FUTEX_CMD_MASK;
c2f9f201 2539 int fshared = 0;
34f01cc1
ED
2540
2541 if (!(op & FUTEX_PRIVATE_FLAG))
c2f9f201 2542 fshared = 1;
1da177e4 2543
1acdac10 2544 clockrt = op & FUTEX_CLOCK_REALTIME;
52400ba9 2545 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
1acdac10 2546 return -ENOSYS;
1da177e4 2547
34f01cc1 2548 switch (cmd) {
1da177e4 2549 case FUTEX_WAIT:
cd689985
TG
2550 val3 = FUTEX_BITSET_MATCH_ANY;
2551 case FUTEX_WAIT_BITSET:
1acdac10 2552 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
1da177e4
LT
2553 break;
2554 case FUTEX_WAKE:
cd689985
TG
2555 val3 = FUTEX_BITSET_MATCH_ANY;
2556 case FUTEX_WAKE_BITSET:
2557 ret = futex_wake(uaddr, fshared, val, val3);
1da177e4 2558 break;
1da177e4 2559 case FUTEX_REQUEUE:
52400ba9 2560 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
1da177e4
LT
2561 break;
2562 case FUTEX_CMP_REQUEUE:
52400ba9
DH
2563 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2564 0);
1da177e4 2565 break;
4732efbe 2566 case FUTEX_WAKE_OP:
34f01cc1 2567 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
4732efbe 2568 break;
c87e2837 2569 case FUTEX_LOCK_PI:
a0c1e907
TG
2570 if (futex_cmpxchg_enabled)
2571 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
c87e2837
IM
2572 break;
2573 case FUTEX_UNLOCK_PI:
a0c1e907
TG
2574 if (futex_cmpxchg_enabled)
2575 ret = futex_unlock_pi(uaddr, fshared);
c87e2837
IM
2576 break;
2577 case FUTEX_TRYLOCK_PI:
a0c1e907
TG
2578 if (futex_cmpxchg_enabled)
2579 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
c87e2837 2580 break;
52400ba9
DH
2581 case FUTEX_WAIT_REQUEUE_PI:
2582 val3 = FUTEX_BITSET_MATCH_ANY;
2583 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2584 clockrt, uaddr2);
2585 break;
52400ba9
DH
2586 case FUTEX_CMP_REQUEUE_PI:
2587 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2588 1);
2589 break;
1da177e4
LT
2590 default:
2591 ret = -ENOSYS;
2592 }
2593 return ret;
2594}
2595
2596
17da2bd9
HC
2597SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2598 struct timespec __user *, utime, u32 __user *, uaddr2,
2599 u32, val3)
1da177e4 2600{
c19384b5
PP
2601 struct timespec ts;
2602 ktime_t t, *tp = NULL;
e2970f2f 2603 u32 val2 = 0;
34f01cc1 2604 int cmd = op & FUTEX_CMD_MASK;
1da177e4 2605
cd689985 2606 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
2607 cmd == FUTEX_WAIT_BITSET ||
2608 cmd == FUTEX_WAIT_REQUEUE_PI)) {
c19384b5 2609 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 2610 return -EFAULT;
c19384b5 2611 if (!timespec_valid(&ts))
9741ef96 2612 return -EINVAL;
c19384b5
PP
2613
2614 t = timespec_to_ktime(ts);
34f01cc1 2615 if (cmd == FUTEX_WAIT)
5a7780e7 2616 t = ktime_add_safe(ktime_get(), t);
c19384b5 2617 tp = &t;
1da177e4
LT
2618 }
2619 /*
52400ba9 2620 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 2621 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 2622 */
f54f0986 2623 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 2624 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 2625 val2 = (u32) (unsigned long) utime;
1da177e4 2626
c19384b5 2627 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
2628}
2629
f6d107fb 2630static int __init futex_init(void)
1da177e4 2631{
a0c1e907 2632 u32 curval;
3e4ab747 2633 int i;
95362fa9 2634
a0c1e907
TG
2635 /*
2636 * This will fail and we want it. Some arch implementations do
2637 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2638 * functionality. We want to know that before we call in any
2639 * of the complex code paths. Also we want to prevent
2640 * registration of robust lists in that case. NULL is
2641 * guaranteed to fault and we get -EFAULT on functional
2642 * implementation, the non functional ones will return
2643 * -ENOSYS.
2644 */
2645 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2646 if (curval == -EFAULT)
2647 futex_cmpxchg_enabled = 1;
2648
3e4ab747
TG
2649 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2650 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2651 spin_lock_init(&futex_queues[i].lock);
2652 }
2653
1da177e4
LT
2654 return 0;
2655}
f6d107fb 2656__initcall(futex_init);
This page took 0.571263 seconds and 5 git commands to generate.