Commit | Line | Data |
---|---|---|
2965faa5 DY |
1 | /* |
2 | * kexec.c - kexec system call core code. | |
3 | * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> | |
4 | * | |
5 | * This source code is licensed under the GNU General Public License, | |
6 | * Version 2. See the file COPYING for more details. | |
7 | */ | |
8 | ||
de90a6bc | 9 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
2965faa5 DY |
10 | |
11 | #include <linux/capability.h> | |
12 | #include <linux/mm.h> | |
13 | #include <linux/file.h> | |
14 | #include <linux/slab.h> | |
15 | #include <linux/fs.h> | |
16 | #include <linux/kexec.h> | |
17 | #include <linux/mutex.h> | |
18 | #include <linux/list.h> | |
19 | #include <linux/highmem.h> | |
20 | #include <linux/syscalls.h> | |
21 | #include <linux/reboot.h> | |
22 | #include <linux/ioport.h> | |
23 | #include <linux/hardirq.h> | |
24 | #include <linux/elf.h> | |
25 | #include <linux/elfcore.h> | |
26 | #include <linux/utsname.h> | |
27 | #include <linux/numa.h> | |
28 | #include <linux/suspend.h> | |
29 | #include <linux/device.h> | |
30 | #include <linux/freezer.h> | |
31 | #include <linux/pm.h> | |
32 | #include <linux/cpu.h> | |
33 | #include <linux/uaccess.h> | |
34 | #include <linux/io.h> | |
35 | #include <linux/console.h> | |
36 | #include <linux/vmalloc.h> | |
37 | #include <linux/swap.h> | |
38 | #include <linux/syscore_ops.h> | |
39 | #include <linux/compiler.h> | |
40 | #include <linux/hugetlb.h> | |
41 | ||
42 | #include <asm/page.h> | |
43 | #include <asm/sections.h> | |
44 | ||
45 | #include <crypto/hash.h> | |
46 | #include <crypto/sha.h> | |
47 | #include "kexec_internal.h" | |
48 | ||
49 | DEFINE_MUTEX(kexec_mutex); | |
50 | ||
51 | /* Per cpu memory for storing cpu states in case of system crash. */ | |
52 | note_buf_t __percpu *crash_notes; | |
53 | ||
54 | /* vmcoreinfo stuff */ | |
55 | static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; | |
56 | u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; | |
57 | size_t vmcoreinfo_size; | |
58 | size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); | |
59 | ||
60 | /* Flag to indicate we are going to kexec a new kernel */ | |
61 | bool kexec_in_progress = false; | |
62 | ||
63 | ||
64 | /* Location of the reserved area for the crash kernel */ | |
65 | struct resource crashk_res = { | |
66 | .name = "Crash kernel", | |
67 | .start = 0, | |
68 | .end = 0, | |
1a085d07 TK |
69 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
70 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
71 | }; |
72 | struct resource crashk_low_res = { | |
73 | .name = "Crash kernel", | |
74 | .start = 0, | |
75 | .end = 0, | |
1a085d07 TK |
76 | .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, |
77 | .desc = IORES_DESC_CRASH_KERNEL | |
2965faa5 DY |
78 | }; |
79 | ||
80 | int kexec_should_crash(struct task_struct *p) | |
81 | { | |
82 | /* | |
83 | * If crash_kexec_post_notifiers is enabled, don't run | |
84 | * crash_kexec() here yet, which must be run after panic | |
85 | * notifiers in panic(). | |
86 | */ | |
87 | if (crash_kexec_post_notifiers) | |
88 | return 0; | |
89 | /* | |
90 | * There are 4 panic() calls in do_exit() path, each of which | |
91 | * corresponds to each of these 4 conditions. | |
92 | */ | |
93 | if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) | |
94 | return 1; | |
95 | return 0; | |
96 | } | |
97 | ||
21db79e8 PT |
98 | int kexec_crash_loaded(void) |
99 | { | |
100 | return !!kexec_crash_image; | |
101 | } | |
102 | EXPORT_SYMBOL_GPL(kexec_crash_loaded); | |
103 | ||
2965faa5 DY |
104 | /* |
105 | * When kexec transitions to the new kernel there is a one-to-one | |
106 | * mapping between physical and virtual addresses. On processors | |
107 | * where you can disable the MMU this is trivial, and easy. For | |
108 | * others it is still a simple predictable page table to setup. | |
109 | * | |
110 | * In that environment kexec copies the new kernel to its final | |
111 | * resting place. This means I can only support memory whose | |
112 | * physical address can fit in an unsigned long. In particular | |
113 | * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. | |
114 | * If the assembly stub has more restrictive requirements | |
115 | * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be | |
116 | * defined more restrictively in <asm/kexec.h>. | |
117 | * | |
118 | * The code for the transition from the current kernel to the | |
119 | * the new kernel is placed in the control_code_buffer, whose size | |
120 | * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single | |
121 | * page of memory is necessary, but some architectures require more. | |
122 | * Because this memory must be identity mapped in the transition from | |
123 | * virtual to physical addresses it must live in the range | |
124 | * 0 - TASK_SIZE, as only the user space mappings are arbitrarily | |
125 | * modifiable. | |
126 | * | |
127 | * The assembly stub in the control code buffer is passed a linked list | |
128 | * of descriptor pages detailing the source pages of the new kernel, | |
129 | * and the destination addresses of those source pages. As this data | |
130 | * structure is not used in the context of the current OS, it must | |
131 | * be self-contained. | |
132 | * | |
133 | * The code has been made to work with highmem pages and will use a | |
134 | * destination page in its final resting place (if it happens | |
135 | * to allocate it). The end product of this is that most of the | |
136 | * physical address space, and most of RAM can be used. | |
137 | * | |
138 | * Future directions include: | |
139 | * - allocating a page table with the control code buffer identity | |
140 | * mapped, to simplify machine_kexec and make kexec_on_panic more | |
141 | * reliable. | |
142 | */ | |
143 | ||
144 | /* | |
145 | * KIMAGE_NO_DEST is an impossible destination address..., for | |
146 | * allocating pages whose destination address we do not care about. | |
147 | */ | |
148 | #define KIMAGE_NO_DEST (-1UL) | |
1730f146 | 149 | #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) |
2965faa5 DY |
150 | |
151 | static struct page *kimage_alloc_page(struct kimage *image, | |
152 | gfp_t gfp_mask, | |
153 | unsigned long dest); | |
154 | ||
155 | int sanity_check_segment_list(struct kimage *image) | |
156 | { | |
4caf9615 | 157 | int i; |
2965faa5 | 158 | unsigned long nr_segments = image->nr_segments; |
1730f146 | 159 | unsigned long total_pages = 0; |
2965faa5 DY |
160 | |
161 | /* | |
162 | * Verify we have good destination addresses. The caller is | |
163 | * responsible for making certain we don't attempt to load | |
164 | * the new image into invalid or reserved areas of RAM. This | |
165 | * just verifies it is an address we can use. | |
166 | * | |
167 | * Since the kernel does everything in page size chunks ensure | |
168 | * the destination addresses are page aligned. Too many | |
169 | * special cases crop of when we don't do this. The most | |
170 | * insidious is getting overlapping destination addresses | |
171 | * simply because addresses are changed to page size | |
172 | * granularity. | |
173 | */ | |
2965faa5 DY |
174 | for (i = 0; i < nr_segments; i++) { |
175 | unsigned long mstart, mend; | |
176 | ||
177 | mstart = image->segment[i].mem; | |
178 | mend = mstart + image->segment[i].memsz; | |
465d3777 RK |
179 | if (mstart > mend) |
180 | return -EADDRNOTAVAIL; | |
2965faa5 | 181 | if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) |
4caf9615 | 182 | return -EADDRNOTAVAIL; |
2965faa5 | 183 | if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) |
4caf9615 | 184 | return -EADDRNOTAVAIL; |
2965faa5 DY |
185 | } |
186 | ||
187 | /* Verify our destination addresses do not overlap. | |
188 | * If we alloed overlapping destination addresses | |
189 | * through very weird things can happen with no | |
190 | * easy explanation as one segment stops on another. | |
191 | */ | |
2965faa5 DY |
192 | for (i = 0; i < nr_segments; i++) { |
193 | unsigned long mstart, mend; | |
194 | unsigned long j; | |
195 | ||
196 | mstart = image->segment[i].mem; | |
197 | mend = mstart + image->segment[i].memsz; | |
198 | for (j = 0; j < i; j++) { | |
199 | unsigned long pstart, pend; | |
200 | ||
201 | pstart = image->segment[j].mem; | |
202 | pend = pstart + image->segment[j].memsz; | |
203 | /* Do the segments overlap ? */ | |
204 | if ((mend > pstart) && (mstart < pend)) | |
4caf9615 | 205 | return -EINVAL; |
2965faa5 DY |
206 | } |
207 | } | |
208 | ||
209 | /* Ensure our buffer sizes are strictly less than | |
210 | * our memory sizes. This should always be the case, | |
211 | * and it is easier to check up front than to be surprised | |
212 | * later on. | |
213 | */ | |
2965faa5 DY |
214 | for (i = 0; i < nr_segments; i++) { |
215 | if (image->segment[i].bufsz > image->segment[i].memsz) | |
4caf9615 | 216 | return -EINVAL; |
2965faa5 DY |
217 | } |
218 | ||
1730f146 | 219 | /* |
220 | * Verify that no more than half of memory will be consumed. If the | |
221 | * request from userspace is too large, a large amount of time will be | |
222 | * wasted allocating pages, which can cause a soft lockup. | |
223 | */ | |
224 | for (i = 0; i < nr_segments; i++) { | |
225 | if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) | |
226 | return -EINVAL; | |
227 | ||
228 | total_pages += PAGE_COUNT(image->segment[i].memsz); | |
229 | } | |
230 | ||
231 | if (total_pages > totalram_pages / 2) | |
232 | return -EINVAL; | |
233 | ||
2965faa5 DY |
234 | /* |
235 | * Verify we have good destination addresses. Normally | |
236 | * the caller is responsible for making certain we don't | |
237 | * attempt to load the new image into invalid or reserved | |
238 | * areas of RAM. But crash kernels are preloaded into a | |
239 | * reserved area of ram. We must ensure the addresses | |
240 | * are in the reserved area otherwise preloading the | |
241 | * kernel could corrupt things. | |
242 | */ | |
243 | ||
244 | if (image->type == KEXEC_TYPE_CRASH) { | |
2965faa5 DY |
245 | for (i = 0; i < nr_segments; i++) { |
246 | unsigned long mstart, mend; | |
247 | ||
248 | mstart = image->segment[i].mem; | |
249 | mend = mstart + image->segment[i].memsz - 1; | |
250 | /* Ensure we are within the crash kernel limits */ | |
43546d86 RK |
251 | if ((mstart < phys_to_boot_phys(crashk_res.start)) || |
252 | (mend > phys_to_boot_phys(crashk_res.end))) | |
4caf9615 | 253 | return -EADDRNOTAVAIL; |
2965faa5 DY |
254 | } |
255 | } | |
256 | ||
257 | return 0; | |
258 | } | |
259 | ||
260 | struct kimage *do_kimage_alloc_init(void) | |
261 | { | |
262 | struct kimage *image; | |
263 | ||
264 | /* Allocate a controlling structure */ | |
265 | image = kzalloc(sizeof(*image), GFP_KERNEL); | |
266 | if (!image) | |
267 | return NULL; | |
268 | ||
269 | image->head = 0; | |
270 | image->entry = &image->head; | |
271 | image->last_entry = &image->head; | |
272 | image->control_page = ~0; /* By default this does not apply */ | |
273 | image->type = KEXEC_TYPE_DEFAULT; | |
274 | ||
275 | /* Initialize the list of control pages */ | |
276 | INIT_LIST_HEAD(&image->control_pages); | |
277 | ||
278 | /* Initialize the list of destination pages */ | |
279 | INIT_LIST_HEAD(&image->dest_pages); | |
280 | ||
281 | /* Initialize the list of unusable pages */ | |
282 | INIT_LIST_HEAD(&image->unusable_pages); | |
283 | ||
284 | return image; | |
285 | } | |
286 | ||
287 | int kimage_is_destination_range(struct kimage *image, | |
288 | unsigned long start, | |
289 | unsigned long end) | |
290 | { | |
291 | unsigned long i; | |
292 | ||
293 | for (i = 0; i < image->nr_segments; i++) { | |
294 | unsigned long mstart, mend; | |
295 | ||
296 | mstart = image->segment[i].mem; | |
297 | mend = mstart + image->segment[i].memsz; | |
298 | if ((end > mstart) && (start < mend)) | |
299 | return 1; | |
300 | } | |
301 | ||
302 | return 0; | |
303 | } | |
304 | ||
305 | static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) | |
306 | { | |
307 | struct page *pages; | |
308 | ||
309 | pages = alloc_pages(gfp_mask, order); | |
310 | if (pages) { | |
311 | unsigned int count, i; | |
312 | ||
313 | pages->mapping = NULL; | |
314 | set_page_private(pages, order); | |
315 | count = 1 << order; | |
316 | for (i = 0; i < count; i++) | |
317 | SetPageReserved(pages + i); | |
318 | } | |
319 | ||
320 | return pages; | |
321 | } | |
322 | ||
323 | static void kimage_free_pages(struct page *page) | |
324 | { | |
325 | unsigned int order, count, i; | |
326 | ||
327 | order = page_private(page); | |
328 | count = 1 << order; | |
329 | for (i = 0; i < count; i++) | |
330 | ClearPageReserved(page + i); | |
331 | __free_pages(page, order); | |
332 | } | |
333 | ||
334 | void kimage_free_page_list(struct list_head *list) | |
335 | { | |
2b24692b | 336 | struct page *page, *next; |
2965faa5 | 337 | |
2b24692b | 338 | list_for_each_entry_safe(page, next, list, lru) { |
2965faa5 DY |
339 | list_del(&page->lru); |
340 | kimage_free_pages(page); | |
341 | } | |
342 | } | |
343 | ||
344 | static struct page *kimage_alloc_normal_control_pages(struct kimage *image, | |
345 | unsigned int order) | |
346 | { | |
347 | /* Control pages are special, they are the intermediaries | |
348 | * that are needed while we copy the rest of the pages | |
349 | * to their final resting place. As such they must | |
350 | * not conflict with either the destination addresses | |
351 | * or memory the kernel is already using. | |
352 | * | |
353 | * The only case where we really need more than one of | |
354 | * these are for architectures where we cannot disable | |
355 | * the MMU and must instead generate an identity mapped | |
356 | * page table for all of the memory. | |
357 | * | |
358 | * At worst this runs in O(N) of the image size. | |
359 | */ | |
360 | struct list_head extra_pages; | |
361 | struct page *pages; | |
362 | unsigned int count; | |
363 | ||
364 | count = 1 << order; | |
365 | INIT_LIST_HEAD(&extra_pages); | |
366 | ||
367 | /* Loop while I can allocate a page and the page allocated | |
368 | * is a destination page. | |
369 | */ | |
370 | do { | |
371 | unsigned long pfn, epfn, addr, eaddr; | |
372 | ||
373 | pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); | |
374 | if (!pages) | |
375 | break; | |
43546d86 | 376 | pfn = page_to_boot_pfn(pages); |
2965faa5 DY |
377 | epfn = pfn + count; |
378 | addr = pfn << PAGE_SHIFT; | |
379 | eaddr = epfn << PAGE_SHIFT; | |
380 | if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || | |
381 | kimage_is_destination_range(image, addr, eaddr)) { | |
382 | list_add(&pages->lru, &extra_pages); | |
383 | pages = NULL; | |
384 | } | |
385 | } while (!pages); | |
386 | ||
387 | if (pages) { | |
388 | /* Remember the allocated page... */ | |
389 | list_add(&pages->lru, &image->control_pages); | |
390 | ||
391 | /* Because the page is already in it's destination | |
392 | * location we will never allocate another page at | |
393 | * that address. Therefore kimage_alloc_pages | |
394 | * will not return it (again) and we don't need | |
395 | * to give it an entry in image->segment[]. | |
396 | */ | |
397 | } | |
398 | /* Deal with the destination pages I have inadvertently allocated. | |
399 | * | |
400 | * Ideally I would convert multi-page allocations into single | |
401 | * page allocations, and add everything to image->dest_pages. | |
402 | * | |
403 | * For now it is simpler to just free the pages. | |
404 | */ | |
405 | kimage_free_page_list(&extra_pages); | |
406 | ||
407 | return pages; | |
408 | } | |
409 | ||
410 | static struct page *kimage_alloc_crash_control_pages(struct kimage *image, | |
411 | unsigned int order) | |
412 | { | |
413 | /* Control pages are special, they are the intermediaries | |
414 | * that are needed while we copy the rest of the pages | |
415 | * to their final resting place. As such they must | |
416 | * not conflict with either the destination addresses | |
417 | * or memory the kernel is already using. | |
418 | * | |
419 | * Control pages are also the only pags we must allocate | |
420 | * when loading a crash kernel. All of the other pages | |
421 | * are specified by the segments and we just memcpy | |
422 | * into them directly. | |
423 | * | |
424 | * The only case where we really need more than one of | |
425 | * these are for architectures where we cannot disable | |
426 | * the MMU and must instead generate an identity mapped | |
427 | * page table for all of the memory. | |
428 | * | |
429 | * Given the low demand this implements a very simple | |
430 | * allocator that finds the first hole of the appropriate | |
431 | * size in the reserved memory region, and allocates all | |
432 | * of the memory up to and including the hole. | |
433 | */ | |
434 | unsigned long hole_start, hole_end, size; | |
435 | struct page *pages; | |
436 | ||
437 | pages = NULL; | |
438 | size = (1 << order) << PAGE_SHIFT; | |
439 | hole_start = (image->control_page + (size - 1)) & ~(size - 1); | |
440 | hole_end = hole_start + size - 1; | |
441 | while (hole_end <= crashk_res.end) { | |
442 | unsigned long i; | |
443 | ||
444 | if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) | |
445 | break; | |
446 | /* See if I overlap any of the segments */ | |
447 | for (i = 0; i < image->nr_segments; i++) { | |
448 | unsigned long mstart, mend; | |
449 | ||
450 | mstart = image->segment[i].mem; | |
451 | mend = mstart + image->segment[i].memsz - 1; | |
452 | if ((hole_end >= mstart) && (hole_start <= mend)) { | |
453 | /* Advance the hole to the end of the segment */ | |
454 | hole_start = (mend + (size - 1)) & ~(size - 1); | |
455 | hole_end = hole_start + size - 1; | |
456 | break; | |
457 | } | |
458 | } | |
459 | /* If I don't overlap any segments I have found my hole! */ | |
460 | if (i == image->nr_segments) { | |
461 | pages = pfn_to_page(hole_start >> PAGE_SHIFT); | |
04e9949b | 462 | image->control_page = hole_end; |
2965faa5 DY |
463 | break; |
464 | } | |
465 | } | |
2965faa5 DY |
466 | |
467 | return pages; | |
468 | } | |
469 | ||
470 | ||
471 | struct page *kimage_alloc_control_pages(struct kimage *image, | |
472 | unsigned int order) | |
473 | { | |
474 | struct page *pages = NULL; | |
475 | ||
476 | switch (image->type) { | |
477 | case KEXEC_TYPE_DEFAULT: | |
478 | pages = kimage_alloc_normal_control_pages(image, order); | |
479 | break; | |
480 | case KEXEC_TYPE_CRASH: | |
481 | pages = kimage_alloc_crash_control_pages(image, order); | |
482 | break; | |
483 | } | |
484 | ||
485 | return pages; | |
486 | } | |
487 | ||
488 | static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) | |
489 | { | |
490 | if (*image->entry != 0) | |
491 | image->entry++; | |
492 | ||
493 | if (image->entry == image->last_entry) { | |
494 | kimage_entry_t *ind_page; | |
495 | struct page *page; | |
496 | ||
497 | page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); | |
498 | if (!page) | |
499 | return -ENOMEM; | |
500 | ||
501 | ind_page = page_address(page); | |
43546d86 | 502 | *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; |
2965faa5 DY |
503 | image->entry = ind_page; |
504 | image->last_entry = ind_page + | |
505 | ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); | |
506 | } | |
507 | *image->entry = entry; | |
508 | image->entry++; | |
509 | *image->entry = 0; | |
510 | ||
511 | return 0; | |
512 | } | |
513 | ||
514 | static int kimage_set_destination(struct kimage *image, | |
515 | unsigned long destination) | |
516 | { | |
517 | int result; | |
518 | ||
519 | destination &= PAGE_MASK; | |
520 | result = kimage_add_entry(image, destination | IND_DESTINATION); | |
521 | ||
522 | return result; | |
523 | } | |
524 | ||
525 | ||
526 | static int kimage_add_page(struct kimage *image, unsigned long page) | |
527 | { | |
528 | int result; | |
529 | ||
530 | page &= PAGE_MASK; | |
531 | result = kimage_add_entry(image, page | IND_SOURCE); | |
532 | ||
533 | return result; | |
534 | } | |
535 | ||
536 | ||
537 | static void kimage_free_extra_pages(struct kimage *image) | |
538 | { | |
539 | /* Walk through and free any extra destination pages I may have */ | |
540 | kimage_free_page_list(&image->dest_pages); | |
541 | ||
542 | /* Walk through and free any unusable pages I have cached */ | |
543 | kimage_free_page_list(&image->unusable_pages); | |
544 | ||
545 | } | |
546 | void kimage_terminate(struct kimage *image) | |
547 | { | |
548 | if (*image->entry != 0) | |
549 | image->entry++; | |
550 | ||
551 | *image->entry = IND_DONE; | |
552 | } | |
553 | ||
554 | #define for_each_kimage_entry(image, ptr, entry) \ | |
555 | for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ | |
556 | ptr = (entry & IND_INDIRECTION) ? \ | |
43546d86 | 557 | boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) |
2965faa5 DY |
558 | |
559 | static void kimage_free_entry(kimage_entry_t entry) | |
560 | { | |
561 | struct page *page; | |
562 | ||
43546d86 | 563 | page = boot_pfn_to_page(entry >> PAGE_SHIFT); |
2965faa5 DY |
564 | kimage_free_pages(page); |
565 | } | |
566 | ||
567 | void kimage_free(struct kimage *image) | |
568 | { | |
569 | kimage_entry_t *ptr, entry; | |
570 | kimage_entry_t ind = 0; | |
571 | ||
572 | if (!image) | |
573 | return; | |
574 | ||
575 | kimage_free_extra_pages(image); | |
576 | for_each_kimage_entry(image, ptr, entry) { | |
577 | if (entry & IND_INDIRECTION) { | |
578 | /* Free the previous indirection page */ | |
579 | if (ind & IND_INDIRECTION) | |
580 | kimage_free_entry(ind); | |
581 | /* Save this indirection page until we are | |
582 | * done with it. | |
583 | */ | |
584 | ind = entry; | |
585 | } else if (entry & IND_SOURCE) | |
586 | kimage_free_entry(entry); | |
587 | } | |
588 | /* Free the final indirection page */ | |
589 | if (ind & IND_INDIRECTION) | |
590 | kimage_free_entry(ind); | |
591 | ||
592 | /* Handle any machine specific cleanup */ | |
593 | machine_kexec_cleanup(image); | |
594 | ||
595 | /* Free the kexec control pages... */ | |
596 | kimage_free_page_list(&image->control_pages); | |
597 | ||
598 | /* | |
599 | * Free up any temporary buffers allocated. This might hit if | |
600 | * error occurred much later after buffer allocation. | |
601 | */ | |
602 | if (image->file_mode) | |
603 | kimage_file_post_load_cleanup(image); | |
604 | ||
605 | kfree(image); | |
606 | } | |
607 | ||
608 | static kimage_entry_t *kimage_dst_used(struct kimage *image, | |
609 | unsigned long page) | |
610 | { | |
611 | kimage_entry_t *ptr, entry; | |
612 | unsigned long destination = 0; | |
613 | ||
614 | for_each_kimage_entry(image, ptr, entry) { | |
615 | if (entry & IND_DESTINATION) | |
616 | destination = entry & PAGE_MASK; | |
617 | else if (entry & IND_SOURCE) { | |
618 | if (page == destination) | |
619 | return ptr; | |
620 | destination += PAGE_SIZE; | |
621 | } | |
622 | } | |
623 | ||
624 | return NULL; | |
625 | } | |
626 | ||
627 | static struct page *kimage_alloc_page(struct kimage *image, | |
628 | gfp_t gfp_mask, | |
629 | unsigned long destination) | |
630 | { | |
631 | /* | |
632 | * Here we implement safeguards to ensure that a source page | |
633 | * is not copied to its destination page before the data on | |
634 | * the destination page is no longer useful. | |
635 | * | |
636 | * To do this we maintain the invariant that a source page is | |
637 | * either its own destination page, or it is not a | |
638 | * destination page at all. | |
639 | * | |
640 | * That is slightly stronger than required, but the proof | |
641 | * that no problems will not occur is trivial, and the | |
642 | * implementation is simply to verify. | |
643 | * | |
644 | * When allocating all pages normally this algorithm will run | |
645 | * in O(N) time, but in the worst case it will run in O(N^2) | |
646 | * time. If the runtime is a problem the data structures can | |
647 | * be fixed. | |
648 | */ | |
649 | struct page *page; | |
650 | unsigned long addr; | |
651 | ||
652 | /* | |
653 | * Walk through the list of destination pages, and see if I | |
654 | * have a match. | |
655 | */ | |
656 | list_for_each_entry(page, &image->dest_pages, lru) { | |
43546d86 | 657 | addr = page_to_boot_pfn(page) << PAGE_SHIFT; |
2965faa5 DY |
658 | if (addr == destination) { |
659 | list_del(&page->lru); | |
660 | return page; | |
661 | } | |
662 | } | |
663 | page = NULL; | |
664 | while (1) { | |
665 | kimage_entry_t *old; | |
666 | ||
667 | /* Allocate a page, if we run out of memory give up */ | |
668 | page = kimage_alloc_pages(gfp_mask, 0); | |
669 | if (!page) | |
670 | return NULL; | |
671 | /* If the page cannot be used file it away */ | |
43546d86 | 672 | if (page_to_boot_pfn(page) > |
2965faa5 DY |
673 | (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { |
674 | list_add(&page->lru, &image->unusable_pages); | |
675 | continue; | |
676 | } | |
43546d86 | 677 | addr = page_to_boot_pfn(page) << PAGE_SHIFT; |
2965faa5 DY |
678 | |
679 | /* If it is the destination page we want use it */ | |
680 | if (addr == destination) | |
681 | break; | |
682 | ||
683 | /* If the page is not a destination page use it */ | |
684 | if (!kimage_is_destination_range(image, addr, | |
685 | addr + PAGE_SIZE)) | |
686 | break; | |
687 | ||
688 | /* | |
689 | * I know that the page is someones destination page. | |
690 | * See if there is already a source page for this | |
691 | * destination page. And if so swap the source pages. | |
692 | */ | |
693 | old = kimage_dst_used(image, addr); | |
694 | if (old) { | |
695 | /* If so move it */ | |
696 | unsigned long old_addr; | |
697 | struct page *old_page; | |
698 | ||
699 | old_addr = *old & PAGE_MASK; | |
43546d86 | 700 | old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); |
2965faa5 DY |
701 | copy_highpage(page, old_page); |
702 | *old = addr | (*old & ~PAGE_MASK); | |
703 | ||
704 | /* The old page I have found cannot be a | |
705 | * destination page, so return it if it's | |
706 | * gfp_flags honor the ones passed in. | |
707 | */ | |
708 | if (!(gfp_mask & __GFP_HIGHMEM) && | |
709 | PageHighMem(old_page)) { | |
710 | kimage_free_pages(old_page); | |
711 | continue; | |
712 | } | |
713 | addr = old_addr; | |
714 | page = old_page; | |
715 | break; | |
716 | } | |
717 | /* Place the page on the destination list, to be used later */ | |
718 | list_add(&page->lru, &image->dest_pages); | |
719 | } | |
720 | ||
721 | return page; | |
722 | } | |
723 | ||
724 | static int kimage_load_normal_segment(struct kimage *image, | |
725 | struct kexec_segment *segment) | |
726 | { | |
727 | unsigned long maddr; | |
728 | size_t ubytes, mbytes; | |
729 | int result; | |
730 | unsigned char __user *buf = NULL; | |
731 | unsigned char *kbuf = NULL; | |
732 | ||
733 | result = 0; | |
734 | if (image->file_mode) | |
735 | kbuf = segment->kbuf; | |
736 | else | |
737 | buf = segment->buf; | |
738 | ubytes = segment->bufsz; | |
739 | mbytes = segment->memsz; | |
740 | maddr = segment->mem; | |
741 | ||
742 | result = kimage_set_destination(image, maddr); | |
743 | if (result < 0) | |
744 | goto out; | |
745 | ||
746 | while (mbytes) { | |
747 | struct page *page; | |
748 | char *ptr; | |
749 | size_t uchunk, mchunk; | |
750 | ||
751 | page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); | |
752 | if (!page) { | |
753 | result = -ENOMEM; | |
754 | goto out; | |
755 | } | |
43546d86 | 756 | result = kimage_add_page(image, page_to_boot_pfn(page) |
2965faa5 DY |
757 | << PAGE_SHIFT); |
758 | if (result < 0) | |
759 | goto out; | |
760 | ||
761 | ptr = kmap(page); | |
762 | /* Start with a clear page */ | |
763 | clear_page(ptr); | |
764 | ptr += maddr & ~PAGE_MASK; | |
765 | mchunk = min_t(size_t, mbytes, | |
766 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
767 | uchunk = min(ubytes, mchunk); | |
768 | ||
769 | /* For file based kexec, source pages are in kernel memory */ | |
770 | if (image->file_mode) | |
771 | memcpy(ptr, kbuf, uchunk); | |
772 | else | |
773 | result = copy_from_user(ptr, buf, uchunk); | |
774 | kunmap(page); | |
775 | if (result) { | |
776 | result = -EFAULT; | |
777 | goto out; | |
778 | } | |
779 | ubytes -= uchunk; | |
780 | maddr += mchunk; | |
781 | if (image->file_mode) | |
782 | kbuf += mchunk; | |
783 | else | |
784 | buf += mchunk; | |
785 | mbytes -= mchunk; | |
786 | } | |
787 | out: | |
788 | return result; | |
789 | } | |
790 | ||
791 | static int kimage_load_crash_segment(struct kimage *image, | |
792 | struct kexec_segment *segment) | |
793 | { | |
794 | /* For crash dumps kernels we simply copy the data from | |
795 | * user space to it's destination. | |
796 | * We do things a page at a time for the sake of kmap. | |
797 | */ | |
798 | unsigned long maddr; | |
799 | size_t ubytes, mbytes; | |
800 | int result; | |
801 | unsigned char __user *buf = NULL; | |
802 | unsigned char *kbuf = NULL; | |
803 | ||
804 | result = 0; | |
805 | if (image->file_mode) | |
806 | kbuf = segment->kbuf; | |
807 | else | |
808 | buf = segment->buf; | |
809 | ubytes = segment->bufsz; | |
810 | mbytes = segment->memsz; | |
811 | maddr = segment->mem; | |
812 | while (mbytes) { | |
813 | struct page *page; | |
814 | char *ptr; | |
815 | size_t uchunk, mchunk; | |
816 | ||
43546d86 | 817 | page = boot_pfn_to_page(maddr >> PAGE_SHIFT); |
2965faa5 DY |
818 | if (!page) { |
819 | result = -ENOMEM; | |
820 | goto out; | |
821 | } | |
822 | ptr = kmap(page); | |
823 | ptr += maddr & ~PAGE_MASK; | |
824 | mchunk = min_t(size_t, mbytes, | |
825 | PAGE_SIZE - (maddr & ~PAGE_MASK)); | |
826 | uchunk = min(ubytes, mchunk); | |
827 | if (mchunk > uchunk) { | |
828 | /* Zero the trailing part of the page */ | |
829 | memset(ptr + uchunk, 0, mchunk - uchunk); | |
830 | } | |
831 | ||
832 | /* For file based kexec, source pages are in kernel memory */ | |
833 | if (image->file_mode) | |
834 | memcpy(ptr, kbuf, uchunk); | |
835 | else | |
836 | result = copy_from_user(ptr, buf, uchunk); | |
837 | kexec_flush_icache_page(page); | |
838 | kunmap(page); | |
839 | if (result) { | |
840 | result = -EFAULT; | |
841 | goto out; | |
842 | } | |
843 | ubytes -= uchunk; | |
844 | maddr += mchunk; | |
845 | if (image->file_mode) | |
846 | kbuf += mchunk; | |
847 | else | |
848 | buf += mchunk; | |
849 | mbytes -= mchunk; | |
850 | } | |
851 | out: | |
852 | return result; | |
853 | } | |
854 | ||
855 | int kimage_load_segment(struct kimage *image, | |
856 | struct kexec_segment *segment) | |
857 | { | |
858 | int result = -ENOMEM; | |
859 | ||
860 | switch (image->type) { | |
861 | case KEXEC_TYPE_DEFAULT: | |
862 | result = kimage_load_normal_segment(image, segment); | |
863 | break; | |
864 | case KEXEC_TYPE_CRASH: | |
865 | result = kimage_load_crash_segment(image, segment); | |
866 | break; | |
867 | } | |
868 | ||
869 | return result; | |
870 | } | |
871 | ||
872 | struct kimage *kexec_image; | |
873 | struct kimage *kexec_crash_image; | |
874 | int kexec_load_disabled; | |
875 | ||
7bbee5ca HK |
876 | /* |
877 | * No panic_cpu check version of crash_kexec(). This function is called | |
878 | * only when panic_cpu holds the current CPU number; this is the only CPU | |
879 | * which processes crash_kexec routines. | |
880 | */ | |
881 | void __crash_kexec(struct pt_regs *regs) | |
2965faa5 DY |
882 | { |
883 | /* Take the kexec_mutex here to prevent sys_kexec_load | |
884 | * running on one cpu from replacing the crash kernel | |
885 | * we are using after a panic on a different cpu. | |
886 | * | |
887 | * If the crash kernel was not located in a fixed area | |
888 | * of memory the xchg(&kexec_crash_image) would be | |
889 | * sufficient. But since I reuse the memory... | |
890 | */ | |
891 | if (mutex_trylock(&kexec_mutex)) { | |
892 | if (kexec_crash_image) { | |
893 | struct pt_regs fixed_regs; | |
894 | ||
895 | crash_setup_regs(&fixed_regs, regs); | |
896 | crash_save_vmcoreinfo(); | |
897 | machine_crash_shutdown(&fixed_regs); | |
898 | machine_kexec(kexec_crash_image); | |
899 | } | |
900 | mutex_unlock(&kexec_mutex); | |
901 | } | |
902 | } | |
903 | ||
7bbee5ca HK |
904 | void crash_kexec(struct pt_regs *regs) |
905 | { | |
906 | int old_cpu, this_cpu; | |
907 | ||
908 | /* | |
909 | * Only one CPU is allowed to execute the crash_kexec() code as with | |
910 | * panic(). Otherwise parallel calls of panic() and crash_kexec() | |
911 | * may stop each other. To exclude them, we use panic_cpu here too. | |
912 | */ | |
913 | this_cpu = raw_smp_processor_id(); | |
914 | old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); | |
915 | if (old_cpu == PANIC_CPU_INVALID) { | |
916 | /* This is the 1st CPU which comes here, so go ahead. */ | |
cf9b1106 | 917 | printk_nmi_flush_on_panic(); |
7bbee5ca HK |
918 | __crash_kexec(regs); |
919 | ||
920 | /* | |
921 | * Reset panic_cpu to allow another panic()/crash_kexec() | |
922 | * call. | |
923 | */ | |
924 | atomic_set(&panic_cpu, PANIC_CPU_INVALID); | |
925 | } | |
926 | } | |
927 | ||
2965faa5 DY |
928 | size_t crash_get_memory_size(void) |
929 | { | |
930 | size_t size = 0; | |
931 | ||
932 | mutex_lock(&kexec_mutex); | |
933 | if (crashk_res.end != crashk_res.start) | |
934 | size = resource_size(&crashk_res); | |
935 | mutex_unlock(&kexec_mutex); | |
936 | return size; | |
937 | } | |
938 | ||
939 | void __weak crash_free_reserved_phys_range(unsigned long begin, | |
940 | unsigned long end) | |
941 | { | |
942 | unsigned long addr; | |
943 | ||
944 | for (addr = begin; addr < end; addr += PAGE_SIZE) | |
43546d86 | 945 | free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); |
2965faa5 DY |
946 | } |
947 | ||
948 | int crash_shrink_memory(unsigned long new_size) | |
949 | { | |
950 | int ret = 0; | |
951 | unsigned long start, end; | |
952 | unsigned long old_size; | |
953 | struct resource *ram_res; | |
954 | ||
955 | mutex_lock(&kexec_mutex); | |
956 | ||
957 | if (kexec_crash_image) { | |
958 | ret = -ENOENT; | |
959 | goto unlock; | |
960 | } | |
961 | start = crashk_res.start; | |
962 | end = crashk_res.end; | |
963 | old_size = (end == 0) ? 0 : end - start + 1; | |
964 | if (new_size >= old_size) { | |
965 | ret = (new_size == old_size) ? 0 : -EINVAL; | |
966 | goto unlock; | |
967 | } | |
968 | ||
969 | ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); | |
970 | if (!ram_res) { | |
971 | ret = -ENOMEM; | |
972 | goto unlock; | |
973 | } | |
974 | ||
975 | start = roundup(start, KEXEC_CRASH_MEM_ALIGN); | |
976 | end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); | |
977 | ||
2965faa5 DY |
978 | crash_free_reserved_phys_range(end, crashk_res.end); |
979 | ||
980 | if ((start == end) && (crashk_res.parent != NULL)) | |
981 | release_resource(&crashk_res); | |
982 | ||
983 | ram_res->start = end; | |
984 | ram_res->end = crashk_res.end; | |
1a085d07 | 985 | ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; |
2965faa5 DY |
986 | ram_res->name = "System RAM"; |
987 | ||
988 | crashk_res.end = end - 1; | |
989 | ||
990 | insert_resource(&iomem_resource, ram_res); | |
2965faa5 DY |
991 | |
992 | unlock: | |
993 | mutex_unlock(&kexec_mutex); | |
994 | return ret; | |
995 | } | |
996 | ||
997 | static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, | |
998 | size_t data_len) | |
999 | { | |
1000 | struct elf_note note; | |
1001 | ||
1002 | note.n_namesz = strlen(name) + 1; | |
1003 | note.n_descsz = data_len; | |
1004 | note.n_type = type; | |
1005 | memcpy(buf, ¬e, sizeof(note)); | |
1006 | buf += (sizeof(note) + 3)/4; | |
1007 | memcpy(buf, name, note.n_namesz); | |
1008 | buf += (note.n_namesz + 3)/4; | |
1009 | memcpy(buf, data, note.n_descsz); | |
1010 | buf += (note.n_descsz + 3)/4; | |
1011 | ||
1012 | return buf; | |
1013 | } | |
1014 | ||
1015 | static void final_note(u32 *buf) | |
1016 | { | |
1017 | struct elf_note note; | |
1018 | ||
1019 | note.n_namesz = 0; | |
1020 | note.n_descsz = 0; | |
1021 | note.n_type = 0; | |
1022 | memcpy(buf, ¬e, sizeof(note)); | |
1023 | } | |
1024 | ||
1025 | void crash_save_cpu(struct pt_regs *regs, int cpu) | |
1026 | { | |
1027 | struct elf_prstatus prstatus; | |
1028 | u32 *buf; | |
1029 | ||
1030 | if ((cpu < 0) || (cpu >= nr_cpu_ids)) | |
1031 | return; | |
1032 | ||
1033 | /* Using ELF notes here is opportunistic. | |
1034 | * I need a well defined structure format | |
1035 | * for the data I pass, and I need tags | |
1036 | * on the data to indicate what information I have | |
1037 | * squirrelled away. ELF notes happen to provide | |
1038 | * all of that, so there is no need to invent something new. | |
1039 | */ | |
1040 | buf = (u32 *)per_cpu_ptr(crash_notes, cpu); | |
1041 | if (!buf) | |
1042 | return; | |
1043 | memset(&prstatus, 0, sizeof(prstatus)); | |
1044 | prstatus.pr_pid = current->pid; | |
1045 | elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); | |
1046 | buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, | |
1047 | &prstatus, sizeof(prstatus)); | |
1048 | final_note(buf); | |
1049 | } | |
1050 | ||
1051 | static int __init crash_notes_memory_init(void) | |
1052 | { | |
1053 | /* Allocate memory for saving cpu registers. */ | |
bbb78b8f BH |
1054 | size_t size, align; |
1055 | ||
1056 | /* | |
1057 | * crash_notes could be allocated across 2 vmalloc pages when percpu | |
1058 | * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc | |
1059 | * pages are also on 2 continuous physical pages. In this case the | |
1060 | * 2nd part of crash_notes in 2nd page could be lost since only the | |
1061 | * starting address and size of crash_notes are exported through sysfs. | |
1062 | * Here round up the size of crash_notes to the nearest power of two | |
1063 | * and pass it to __alloc_percpu as align value. This can make sure | |
1064 | * crash_notes is allocated inside one physical page. | |
1065 | */ | |
1066 | size = sizeof(note_buf_t); | |
1067 | align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); | |
1068 | ||
1069 | /* | |
1070 | * Break compile if size is bigger than PAGE_SIZE since crash_notes | |
1071 | * definitely will be in 2 pages with that. | |
1072 | */ | |
1073 | BUILD_BUG_ON(size > PAGE_SIZE); | |
1074 | ||
1075 | crash_notes = __alloc_percpu(size, align); | |
2965faa5 | 1076 | if (!crash_notes) { |
de90a6bc | 1077 | pr_warn("Memory allocation for saving cpu register states failed\n"); |
2965faa5 DY |
1078 | return -ENOMEM; |
1079 | } | |
1080 | return 0; | |
1081 | } | |
1082 | subsys_initcall(crash_notes_memory_init); | |
1083 | ||
1084 | ||
1085 | /* | |
1086 | * parsing the "crashkernel" commandline | |
1087 | * | |
1088 | * this code is intended to be called from architecture specific code | |
1089 | */ | |
1090 | ||
1091 | ||
1092 | /* | |
1093 | * This function parses command lines in the format | |
1094 | * | |
1095 | * crashkernel=ramsize-range:size[,...][@offset] | |
1096 | * | |
1097 | * The function returns 0 on success and -EINVAL on failure. | |
1098 | */ | |
1099 | static int __init parse_crashkernel_mem(char *cmdline, | |
1100 | unsigned long long system_ram, | |
1101 | unsigned long long *crash_size, | |
1102 | unsigned long long *crash_base) | |
1103 | { | |
1104 | char *cur = cmdline, *tmp; | |
1105 | ||
1106 | /* for each entry of the comma-separated list */ | |
1107 | do { | |
1108 | unsigned long long start, end = ULLONG_MAX, size; | |
1109 | ||
1110 | /* get the start of the range */ | |
1111 | start = memparse(cur, &tmp); | |
1112 | if (cur == tmp) { | |
1113 | pr_warn("crashkernel: Memory value expected\n"); | |
1114 | return -EINVAL; | |
1115 | } | |
1116 | cur = tmp; | |
1117 | if (*cur != '-') { | |
1118 | pr_warn("crashkernel: '-' expected\n"); | |
1119 | return -EINVAL; | |
1120 | } | |
1121 | cur++; | |
1122 | ||
1123 | /* if no ':' is here, than we read the end */ | |
1124 | if (*cur != ':') { | |
1125 | end = memparse(cur, &tmp); | |
1126 | if (cur == tmp) { | |
1127 | pr_warn("crashkernel: Memory value expected\n"); | |
1128 | return -EINVAL; | |
1129 | } | |
1130 | cur = tmp; | |
1131 | if (end <= start) { | |
1132 | pr_warn("crashkernel: end <= start\n"); | |
1133 | return -EINVAL; | |
1134 | } | |
1135 | } | |
1136 | ||
1137 | if (*cur != ':') { | |
1138 | pr_warn("crashkernel: ':' expected\n"); | |
1139 | return -EINVAL; | |
1140 | } | |
1141 | cur++; | |
1142 | ||
1143 | size = memparse(cur, &tmp); | |
1144 | if (cur == tmp) { | |
1145 | pr_warn("Memory value expected\n"); | |
1146 | return -EINVAL; | |
1147 | } | |
1148 | cur = tmp; | |
1149 | if (size >= system_ram) { | |
1150 | pr_warn("crashkernel: invalid size\n"); | |
1151 | return -EINVAL; | |
1152 | } | |
1153 | ||
1154 | /* match ? */ | |
1155 | if (system_ram >= start && system_ram < end) { | |
1156 | *crash_size = size; | |
1157 | break; | |
1158 | } | |
1159 | } while (*cur++ == ','); | |
1160 | ||
1161 | if (*crash_size > 0) { | |
1162 | while (*cur && *cur != ' ' && *cur != '@') | |
1163 | cur++; | |
1164 | if (*cur == '@') { | |
1165 | cur++; | |
1166 | *crash_base = memparse(cur, &tmp); | |
1167 | if (cur == tmp) { | |
1168 | pr_warn("Memory value expected after '@'\n"); | |
1169 | return -EINVAL; | |
1170 | } | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | return 0; | |
1175 | } | |
1176 | ||
1177 | /* | |
1178 | * That function parses "simple" (old) crashkernel command lines like | |
1179 | * | |
1180 | * crashkernel=size[@offset] | |
1181 | * | |
1182 | * It returns 0 on success and -EINVAL on failure. | |
1183 | */ | |
1184 | static int __init parse_crashkernel_simple(char *cmdline, | |
1185 | unsigned long long *crash_size, | |
1186 | unsigned long long *crash_base) | |
1187 | { | |
1188 | char *cur = cmdline; | |
1189 | ||
1190 | *crash_size = memparse(cmdline, &cur); | |
1191 | if (cmdline == cur) { | |
1192 | pr_warn("crashkernel: memory value expected\n"); | |
1193 | return -EINVAL; | |
1194 | } | |
1195 | ||
1196 | if (*cur == '@') | |
1197 | *crash_base = memparse(cur+1, &cur); | |
1198 | else if (*cur != ' ' && *cur != '\0') { | |
53b90c0c | 1199 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1200 | return -EINVAL; |
1201 | } | |
1202 | ||
1203 | return 0; | |
1204 | } | |
1205 | ||
1206 | #define SUFFIX_HIGH 0 | |
1207 | #define SUFFIX_LOW 1 | |
1208 | #define SUFFIX_NULL 2 | |
1209 | static __initdata char *suffix_tbl[] = { | |
1210 | [SUFFIX_HIGH] = ",high", | |
1211 | [SUFFIX_LOW] = ",low", | |
1212 | [SUFFIX_NULL] = NULL, | |
1213 | }; | |
1214 | ||
1215 | /* | |
1216 | * That function parses "suffix" crashkernel command lines like | |
1217 | * | |
1218 | * crashkernel=size,[high|low] | |
1219 | * | |
1220 | * It returns 0 on success and -EINVAL on failure. | |
1221 | */ | |
1222 | static int __init parse_crashkernel_suffix(char *cmdline, | |
1223 | unsigned long long *crash_size, | |
1224 | const char *suffix) | |
1225 | { | |
1226 | char *cur = cmdline; | |
1227 | ||
1228 | *crash_size = memparse(cmdline, &cur); | |
1229 | if (cmdline == cur) { | |
1230 | pr_warn("crashkernel: memory value expected\n"); | |
1231 | return -EINVAL; | |
1232 | } | |
1233 | ||
1234 | /* check with suffix */ | |
1235 | if (strncmp(cur, suffix, strlen(suffix))) { | |
53b90c0c | 1236 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1237 | return -EINVAL; |
1238 | } | |
1239 | cur += strlen(suffix); | |
1240 | if (*cur != ' ' && *cur != '\0') { | |
53b90c0c | 1241 | pr_warn("crashkernel: unrecognized char: %c\n", *cur); |
2965faa5 DY |
1242 | return -EINVAL; |
1243 | } | |
1244 | ||
1245 | return 0; | |
1246 | } | |
1247 | ||
1248 | static __init char *get_last_crashkernel(char *cmdline, | |
1249 | const char *name, | |
1250 | const char *suffix) | |
1251 | { | |
1252 | char *p = cmdline, *ck_cmdline = NULL; | |
1253 | ||
1254 | /* find crashkernel and use the last one if there are more */ | |
1255 | p = strstr(p, name); | |
1256 | while (p) { | |
1257 | char *end_p = strchr(p, ' '); | |
1258 | char *q; | |
1259 | ||
1260 | if (!end_p) | |
1261 | end_p = p + strlen(p); | |
1262 | ||
1263 | if (!suffix) { | |
1264 | int i; | |
1265 | ||
1266 | /* skip the one with any known suffix */ | |
1267 | for (i = 0; suffix_tbl[i]; i++) { | |
1268 | q = end_p - strlen(suffix_tbl[i]); | |
1269 | if (!strncmp(q, suffix_tbl[i], | |
1270 | strlen(suffix_tbl[i]))) | |
1271 | goto next; | |
1272 | } | |
1273 | ck_cmdline = p; | |
1274 | } else { | |
1275 | q = end_p - strlen(suffix); | |
1276 | if (!strncmp(q, suffix, strlen(suffix))) | |
1277 | ck_cmdline = p; | |
1278 | } | |
1279 | next: | |
1280 | p = strstr(p+1, name); | |
1281 | } | |
1282 | ||
1283 | if (!ck_cmdline) | |
1284 | return NULL; | |
1285 | ||
1286 | return ck_cmdline; | |
1287 | } | |
1288 | ||
1289 | static int __init __parse_crashkernel(char *cmdline, | |
1290 | unsigned long long system_ram, | |
1291 | unsigned long long *crash_size, | |
1292 | unsigned long long *crash_base, | |
1293 | const char *name, | |
1294 | const char *suffix) | |
1295 | { | |
1296 | char *first_colon, *first_space; | |
1297 | char *ck_cmdline; | |
1298 | ||
1299 | BUG_ON(!crash_size || !crash_base); | |
1300 | *crash_size = 0; | |
1301 | *crash_base = 0; | |
1302 | ||
1303 | ck_cmdline = get_last_crashkernel(cmdline, name, suffix); | |
1304 | ||
1305 | if (!ck_cmdline) | |
1306 | return -EINVAL; | |
1307 | ||
1308 | ck_cmdline += strlen(name); | |
1309 | ||
1310 | if (suffix) | |
1311 | return parse_crashkernel_suffix(ck_cmdline, crash_size, | |
1312 | suffix); | |
1313 | /* | |
1314 | * if the commandline contains a ':', then that's the extended | |
1315 | * syntax -- if not, it must be the classic syntax | |
1316 | */ | |
1317 | first_colon = strchr(ck_cmdline, ':'); | |
1318 | first_space = strchr(ck_cmdline, ' '); | |
1319 | if (first_colon && (!first_space || first_colon < first_space)) | |
1320 | return parse_crashkernel_mem(ck_cmdline, system_ram, | |
1321 | crash_size, crash_base); | |
1322 | ||
1323 | return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); | |
1324 | } | |
1325 | ||
1326 | /* | |
1327 | * That function is the entry point for command line parsing and should be | |
1328 | * called from the arch-specific code. | |
1329 | */ | |
1330 | int __init parse_crashkernel(char *cmdline, | |
1331 | unsigned long long system_ram, | |
1332 | unsigned long long *crash_size, | |
1333 | unsigned long long *crash_base) | |
1334 | { | |
1335 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1336 | "crashkernel=", NULL); | |
1337 | } | |
1338 | ||
1339 | int __init parse_crashkernel_high(char *cmdline, | |
1340 | unsigned long long system_ram, | |
1341 | unsigned long long *crash_size, | |
1342 | unsigned long long *crash_base) | |
1343 | { | |
1344 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1345 | "crashkernel=", suffix_tbl[SUFFIX_HIGH]); | |
1346 | } | |
1347 | ||
1348 | int __init parse_crashkernel_low(char *cmdline, | |
1349 | unsigned long long system_ram, | |
1350 | unsigned long long *crash_size, | |
1351 | unsigned long long *crash_base) | |
1352 | { | |
1353 | return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, | |
1354 | "crashkernel=", suffix_tbl[SUFFIX_LOW]); | |
1355 | } | |
1356 | ||
1357 | static void update_vmcoreinfo_note(void) | |
1358 | { | |
1359 | u32 *buf = vmcoreinfo_note; | |
1360 | ||
1361 | if (!vmcoreinfo_size) | |
1362 | return; | |
1363 | buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, | |
1364 | vmcoreinfo_size); | |
1365 | final_note(buf); | |
1366 | } | |
1367 | ||
1368 | void crash_save_vmcoreinfo(void) | |
1369 | { | |
1370 | vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); | |
1371 | update_vmcoreinfo_note(); | |
1372 | } | |
1373 | ||
1374 | void vmcoreinfo_append_str(const char *fmt, ...) | |
1375 | { | |
1376 | va_list args; | |
1377 | char buf[0x50]; | |
1378 | size_t r; | |
1379 | ||
1380 | va_start(args, fmt); | |
1381 | r = vscnprintf(buf, sizeof(buf), fmt, args); | |
1382 | va_end(args); | |
1383 | ||
1384 | r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); | |
1385 | ||
1386 | memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); | |
1387 | ||
1388 | vmcoreinfo_size += r; | |
1389 | } | |
1390 | ||
1391 | /* | |
1392 | * provide an empty default implementation here -- architecture | |
1393 | * code may override this | |
1394 | */ | |
1395 | void __weak arch_crash_save_vmcoreinfo(void) | |
1396 | {} | |
1397 | ||
dae28018 | 1398 | phys_addr_t __weak paddr_vmcoreinfo_note(void) |
2965faa5 DY |
1399 | { |
1400 | return __pa((unsigned long)(char *)&vmcoreinfo_note); | |
1401 | } | |
1402 | ||
1403 | static int __init crash_save_vmcoreinfo_init(void) | |
1404 | { | |
1405 | VMCOREINFO_OSRELEASE(init_uts_ns.name.release); | |
1406 | VMCOREINFO_PAGESIZE(PAGE_SIZE); | |
1407 | ||
1408 | VMCOREINFO_SYMBOL(init_uts_ns); | |
1409 | VMCOREINFO_SYMBOL(node_online_map); | |
1410 | #ifdef CONFIG_MMU | |
1411 | VMCOREINFO_SYMBOL(swapper_pg_dir); | |
1412 | #endif | |
1413 | VMCOREINFO_SYMBOL(_stext); | |
1414 | VMCOREINFO_SYMBOL(vmap_area_list); | |
1415 | ||
1416 | #ifndef CONFIG_NEED_MULTIPLE_NODES | |
1417 | VMCOREINFO_SYMBOL(mem_map); | |
1418 | VMCOREINFO_SYMBOL(contig_page_data); | |
1419 | #endif | |
1420 | #ifdef CONFIG_SPARSEMEM | |
1421 | VMCOREINFO_SYMBOL(mem_section); | |
1422 | VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); | |
1423 | VMCOREINFO_STRUCT_SIZE(mem_section); | |
1424 | VMCOREINFO_OFFSET(mem_section, section_mem_map); | |
1425 | #endif | |
1426 | VMCOREINFO_STRUCT_SIZE(page); | |
1427 | VMCOREINFO_STRUCT_SIZE(pglist_data); | |
1428 | VMCOREINFO_STRUCT_SIZE(zone); | |
1429 | VMCOREINFO_STRUCT_SIZE(free_area); | |
1430 | VMCOREINFO_STRUCT_SIZE(list_head); | |
1431 | VMCOREINFO_SIZE(nodemask_t); | |
1432 | VMCOREINFO_OFFSET(page, flags); | |
0139aa7b | 1433 | VMCOREINFO_OFFSET(page, _refcount); |
2965faa5 DY |
1434 | VMCOREINFO_OFFSET(page, mapping); |
1435 | VMCOREINFO_OFFSET(page, lru); | |
1436 | VMCOREINFO_OFFSET(page, _mapcount); | |
1437 | VMCOREINFO_OFFSET(page, private); | |
8639a847 AK |
1438 | VMCOREINFO_OFFSET(page, compound_dtor); |
1439 | VMCOREINFO_OFFSET(page, compound_order); | |
d7f53518 | 1440 | VMCOREINFO_OFFSET(page, compound_head); |
2965faa5 DY |
1441 | VMCOREINFO_OFFSET(pglist_data, node_zones); |
1442 | VMCOREINFO_OFFSET(pglist_data, nr_zones); | |
1443 | #ifdef CONFIG_FLAT_NODE_MEM_MAP | |
1444 | VMCOREINFO_OFFSET(pglist_data, node_mem_map); | |
1445 | #endif | |
1446 | VMCOREINFO_OFFSET(pglist_data, node_start_pfn); | |
1447 | VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); | |
1448 | VMCOREINFO_OFFSET(pglist_data, node_id); | |
1449 | VMCOREINFO_OFFSET(zone, free_area); | |
1450 | VMCOREINFO_OFFSET(zone, vm_stat); | |
1451 | VMCOREINFO_OFFSET(zone, spanned_pages); | |
1452 | VMCOREINFO_OFFSET(free_area, free_list); | |
1453 | VMCOREINFO_OFFSET(list_head, next); | |
1454 | VMCOREINFO_OFFSET(list_head, prev); | |
1455 | VMCOREINFO_OFFSET(vmap_area, va_start); | |
1456 | VMCOREINFO_OFFSET(vmap_area, list); | |
1457 | VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); | |
1458 | log_buf_kexec_setup(); | |
1459 | VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); | |
1460 | VMCOREINFO_NUMBER(NR_FREE_PAGES); | |
1461 | VMCOREINFO_NUMBER(PG_lru); | |
1462 | VMCOREINFO_NUMBER(PG_private); | |
1463 | VMCOREINFO_NUMBER(PG_swapcache); | |
1464 | VMCOREINFO_NUMBER(PG_slab); | |
1465 | #ifdef CONFIG_MEMORY_FAILURE | |
1466 | VMCOREINFO_NUMBER(PG_hwpoison); | |
1467 | #endif | |
1468 | VMCOREINFO_NUMBER(PG_head_mask); | |
1469 | VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); | |
1303a27c BH |
1470 | #ifdef CONFIG_X86 |
1471 | VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE); | |
1472 | #endif | |
8639a847 AK |
1473 | #ifdef CONFIG_HUGETLB_PAGE |
1474 | VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR); | |
2965faa5 DY |
1475 | #endif |
1476 | ||
1477 | arch_crash_save_vmcoreinfo(); | |
1478 | update_vmcoreinfo_note(); | |
1479 | ||
1480 | return 0; | |
1481 | } | |
1482 | ||
1483 | subsys_initcall(crash_save_vmcoreinfo_init); | |
1484 | ||
1485 | /* | |
1486 | * Move into place and start executing a preloaded standalone | |
1487 | * executable. If nothing was preloaded return an error. | |
1488 | */ | |
1489 | int kernel_kexec(void) | |
1490 | { | |
1491 | int error = 0; | |
1492 | ||
1493 | if (!mutex_trylock(&kexec_mutex)) | |
1494 | return -EBUSY; | |
1495 | if (!kexec_image) { | |
1496 | error = -EINVAL; | |
1497 | goto Unlock; | |
1498 | } | |
1499 | ||
1500 | #ifdef CONFIG_KEXEC_JUMP | |
1501 | if (kexec_image->preserve_context) { | |
1502 | lock_system_sleep(); | |
1503 | pm_prepare_console(); | |
1504 | error = freeze_processes(); | |
1505 | if (error) { | |
1506 | error = -EBUSY; | |
1507 | goto Restore_console; | |
1508 | } | |
1509 | suspend_console(); | |
1510 | error = dpm_suspend_start(PMSG_FREEZE); | |
1511 | if (error) | |
1512 | goto Resume_console; | |
1513 | /* At this point, dpm_suspend_start() has been called, | |
1514 | * but *not* dpm_suspend_end(). We *must* call | |
1515 | * dpm_suspend_end() now. Otherwise, drivers for | |
1516 | * some devices (e.g. interrupt controllers) become | |
1517 | * desynchronized with the actual state of the | |
1518 | * hardware at resume time, and evil weirdness ensues. | |
1519 | */ | |
1520 | error = dpm_suspend_end(PMSG_FREEZE); | |
1521 | if (error) | |
1522 | goto Resume_devices; | |
1523 | error = disable_nonboot_cpus(); | |
1524 | if (error) | |
1525 | goto Enable_cpus; | |
1526 | local_irq_disable(); | |
1527 | error = syscore_suspend(); | |
1528 | if (error) | |
1529 | goto Enable_irqs; | |
1530 | } else | |
1531 | #endif | |
1532 | { | |
1533 | kexec_in_progress = true; | |
1534 | kernel_restart_prepare(NULL); | |
1535 | migrate_to_reboot_cpu(); | |
1536 | ||
1537 | /* | |
1538 | * migrate_to_reboot_cpu() disables CPU hotplug assuming that | |
1539 | * no further code needs to use CPU hotplug (which is true in | |
1540 | * the reboot case). However, the kexec path depends on using | |
1541 | * CPU hotplug again; so re-enable it here. | |
1542 | */ | |
1543 | cpu_hotplug_enable(); | |
1544 | pr_emerg("Starting new kernel\n"); | |
1545 | machine_shutdown(); | |
1546 | } | |
1547 | ||
1548 | machine_kexec(kexec_image); | |
1549 | ||
1550 | #ifdef CONFIG_KEXEC_JUMP | |
1551 | if (kexec_image->preserve_context) { | |
1552 | syscore_resume(); | |
1553 | Enable_irqs: | |
1554 | local_irq_enable(); | |
1555 | Enable_cpus: | |
1556 | enable_nonboot_cpus(); | |
1557 | dpm_resume_start(PMSG_RESTORE); | |
1558 | Resume_devices: | |
1559 | dpm_resume_end(PMSG_RESTORE); | |
1560 | Resume_console: | |
1561 | resume_console(); | |
1562 | thaw_processes(); | |
1563 | Restore_console: | |
1564 | pm_restore_console(); | |
1565 | unlock_system_sleep(); | |
1566 | } | |
1567 | #endif | |
1568 | ||
1569 | Unlock: | |
1570 | mutex_unlock(&kexec_mutex); | |
1571 | return error; | |
1572 | } | |
1573 | ||
1574 | /* | |
7a0058ec XP |
1575 | * Protection mechanism for crashkernel reserved memory after |
1576 | * the kdump kernel is loaded. | |
2965faa5 DY |
1577 | * |
1578 | * Provide an empty default implementation here -- architecture | |
1579 | * code may override this | |
1580 | */ | |
9b492cf5 XP |
1581 | void __weak arch_kexec_protect_crashkres(void) |
1582 | {} | |
1583 | ||
1584 | void __weak arch_kexec_unprotect_crashkres(void) | |
1585 | {} |