sched: Rename sched.c as sched/core.c in comments and Documentation
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
373 *
374 * Its all a bit involved since we cannot program an hrt while holding the
375 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
376 * reschedule event.
377 *
378 * When we get rescheduled we reprogram the hrtick_timer outside of the
379 * rq->lock.
380 */
8f4d37ec 381
8f4d37ec
PZ
382static void hrtick_clear(struct rq *rq)
383{
384 if (hrtimer_active(&rq->hrtick_timer))
385 hrtimer_cancel(&rq->hrtick_timer);
386}
387
8f4d37ec
PZ
388/*
389 * High-resolution timer tick.
390 * Runs from hardirq context with interrupts disabled.
391 */
392static enum hrtimer_restart hrtick(struct hrtimer *timer)
393{
394 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
395
396 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
397
05fa785c 398 raw_spin_lock(&rq->lock);
3e51f33f 399 update_rq_clock(rq);
8f4d37ec 400 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 401 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
402
403 return HRTIMER_NORESTART;
404}
405
95e904c7 406#ifdef CONFIG_SMP
31656519
PZ
407/*
408 * called from hardirq (IPI) context
409 */
410static void __hrtick_start(void *arg)
b328ca18 411{
31656519 412 struct rq *rq = arg;
b328ca18 413
05fa785c 414 raw_spin_lock(&rq->lock);
31656519
PZ
415 hrtimer_restart(&rq->hrtick_timer);
416 rq->hrtick_csd_pending = 0;
05fa785c 417 raw_spin_unlock(&rq->lock);
b328ca18
PZ
418}
419
31656519
PZ
420/*
421 * Called to set the hrtick timer state.
422 *
423 * called with rq->lock held and irqs disabled
424 */
029632fb 425void hrtick_start(struct rq *rq, u64 delay)
b328ca18 426{
31656519
PZ
427 struct hrtimer *timer = &rq->hrtick_timer;
428 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 429
cc584b21 430 hrtimer_set_expires(timer, time);
31656519
PZ
431
432 if (rq == this_rq()) {
433 hrtimer_restart(timer);
434 } else if (!rq->hrtick_csd_pending) {
6e275637 435 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
436 rq->hrtick_csd_pending = 1;
437 }
b328ca18
PZ
438}
439
440static int
441hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
442{
443 int cpu = (int)(long)hcpu;
444
445 switch (action) {
446 case CPU_UP_CANCELED:
447 case CPU_UP_CANCELED_FROZEN:
448 case CPU_DOWN_PREPARE:
449 case CPU_DOWN_PREPARE_FROZEN:
450 case CPU_DEAD:
451 case CPU_DEAD_FROZEN:
31656519 452 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
453 return NOTIFY_OK;
454 }
455
456 return NOTIFY_DONE;
457}
458
fa748203 459static __init void init_hrtick(void)
b328ca18
PZ
460{
461 hotcpu_notifier(hotplug_hrtick, 0);
462}
31656519
PZ
463#else
464/*
465 * Called to set the hrtick timer state.
466 *
467 * called with rq->lock held and irqs disabled
468 */
029632fb 469void hrtick_start(struct rq *rq, u64 delay)
31656519 470{
7f1e2ca9 471 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 472 HRTIMER_MODE_REL_PINNED, 0);
31656519 473}
b328ca18 474
006c75f1 475static inline void init_hrtick(void)
8f4d37ec 476{
8f4d37ec 477}
31656519 478#endif /* CONFIG_SMP */
8f4d37ec 479
31656519 480static void init_rq_hrtick(struct rq *rq)
8f4d37ec 481{
31656519
PZ
482#ifdef CONFIG_SMP
483 rq->hrtick_csd_pending = 0;
8f4d37ec 484
31656519
PZ
485 rq->hrtick_csd.flags = 0;
486 rq->hrtick_csd.func = __hrtick_start;
487 rq->hrtick_csd.info = rq;
488#endif
8f4d37ec 489
31656519
PZ
490 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
491 rq->hrtick_timer.function = hrtick;
8f4d37ec 492}
006c75f1 493#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
494static inline void hrtick_clear(struct rq *rq)
495{
496}
497
8f4d37ec
PZ
498static inline void init_rq_hrtick(struct rq *rq)
499{
500}
501
b328ca18
PZ
502static inline void init_hrtick(void)
503{
504}
006c75f1 505#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 506
c24d20db
IM
507/*
508 * resched_task - mark a task 'to be rescheduled now'.
509 *
510 * On UP this means the setting of the need_resched flag, on SMP it
511 * might also involve a cross-CPU call to trigger the scheduler on
512 * the target CPU.
513 */
514#ifdef CONFIG_SMP
029632fb 515void resched_task(struct task_struct *p)
c24d20db
IM
516{
517 int cpu;
518
05fa785c 519 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 520
5ed0cec0 521 if (test_tsk_need_resched(p))
c24d20db
IM
522 return;
523
5ed0cec0 524 set_tsk_need_resched(p);
c24d20db
IM
525
526 cpu = task_cpu(p);
527 if (cpu == smp_processor_id())
528 return;
529
530 /* NEED_RESCHED must be visible before we test polling */
531 smp_mb();
532 if (!tsk_is_polling(p))
533 smp_send_reschedule(cpu);
534}
535
029632fb 536void resched_cpu(int cpu)
c24d20db
IM
537{
538 struct rq *rq = cpu_rq(cpu);
539 unsigned long flags;
540
05fa785c 541 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
542 return;
543 resched_task(cpu_curr(cpu));
05fa785c 544 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 545}
06d8308c 546
3451d024 547#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
548/*
549 * In the semi idle case, use the nearest busy cpu for migrating timers
550 * from an idle cpu. This is good for power-savings.
551 *
552 * We don't do similar optimization for completely idle system, as
553 * selecting an idle cpu will add more delays to the timers than intended
554 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
555 */
556int get_nohz_timer_target(void)
557{
558 int cpu = smp_processor_id();
559 int i;
560 struct sched_domain *sd;
561
057f3fad 562 rcu_read_lock();
83cd4fe2 563 for_each_domain(cpu, sd) {
057f3fad
PZ
564 for_each_cpu(i, sched_domain_span(sd)) {
565 if (!idle_cpu(i)) {
566 cpu = i;
567 goto unlock;
568 }
569 }
83cd4fe2 570 }
057f3fad
PZ
571unlock:
572 rcu_read_unlock();
83cd4fe2
VP
573 return cpu;
574}
06d8308c
TG
575/*
576 * When add_timer_on() enqueues a timer into the timer wheel of an
577 * idle CPU then this timer might expire before the next timer event
578 * which is scheduled to wake up that CPU. In case of a completely
579 * idle system the next event might even be infinite time into the
580 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
581 * leaves the inner idle loop so the newly added timer is taken into
582 * account when the CPU goes back to idle and evaluates the timer
583 * wheel for the next timer event.
584 */
1c20091e 585static void wake_up_idle_cpu(int cpu)
06d8308c
TG
586{
587 struct rq *rq = cpu_rq(cpu);
588
589 if (cpu == smp_processor_id())
590 return;
591
592 /*
593 * This is safe, as this function is called with the timer
594 * wheel base lock of (cpu) held. When the CPU is on the way
595 * to idle and has not yet set rq->curr to idle then it will
596 * be serialized on the timer wheel base lock and take the new
597 * timer into account automatically.
598 */
599 if (rq->curr != rq->idle)
600 return;
45bf76df 601
45bf76df 602 /*
06d8308c
TG
603 * We can set TIF_RESCHED on the idle task of the other CPU
604 * lockless. The worst case is that the other CPU runs the
605 * idle task through an additional NOOP schedule()
45bf76df 606 */
5ed0cec0 607 set_tsk_need_resched(rq->idle);
45bf76df 608
06d8308c
TG
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(rq->idle))
612 smp_send_reschedule(cpu);
45bf76df
IM
613}
614
c5bfece2 615static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 616{
c5bfece2 617 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
618 if (cpu != smp_processor_id() ||
619 tick_nohz_tick_stopped())
620 smp_send_reschedule(cpu);
621 return true;
622 }
623
624 return false;
625}
626
627void wake_up_nohz_cpu(int cpu)
628{
c5bfece2 629 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
630 wake_up_idle_cpu(cpu);
631}
632
ca38062e 633static inline bool got_nohz_idle_kick(void)
45bf76df 634{
1c792db7 635 int cpu = smp_processor_id();
873b4c65
VG
636
637 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
638 return false;
639
640 if (idle_cpu(cpu) && !need_resched())
641 return true;
642
643 /*
644 * We can't run Idle Load Balance on this CPU for this time so we
645 * cancel it and clear NOHZ_BALANCE_KICK
646 */
647 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
648 return false;
45bf76df
IM
649}
650
3451d024 651#else /* CONFIG_NO_HZ_COMMON */
45bf76df 652
ca38062e 653static inline bool got_nohz_idle_kick(void)
2069dd75 654{
ca38062e 655 return false;
2069dd75
PZ
656}
657
3451d024 658#endif /* CONFIG_NO_HZ_COMMON */
d842de87 659
ce831b38
FW
660#ifdef CONFIG_NO_HZ_FULL
661bool sched_can_stop_tick(void)
662{
663 struct rq *rq;
664
665 rq = this_rq();
666
667 /* Make sure rq->nr_running update is visible after the IPI */
668 smp_rmb();
669
670 /* More than one running task need preemption */
671 if (rq->nr_running > 1)
672 return false;
673
674 return true;
675}
676#endif /* CONFIG_NO_HZ_FULL */
d842de87 677
029632fb 678void sched_avg_update(struct rq *rq)
18d95a28 679{
e9e9250b
PZ
680 s64 period = sched_avg_period();
681
78becc27 682 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
683 /*
684 * Inline assembly required to prevent the compiler
685 * optimising this loop into a divmod call.
686 * See __iter_div_u64_rem() for another example of this.
687 */
688 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
689 rq->age_stamp += period;
690 rq->rt_avg /= 2;
691 }
18d95a28
PZ
692}
693
6d6bc0ad 694#else /* !CONFIG_SMP */
029632fb 695void resched_task(struct task_struct *p)
18d95a28 696{
05fa785c 697 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 698 set_tsk_need_resched(p);
18d95a28 699}
6d6bc0ad 700#endif /* CONFIG_SMP */
18d95a28 701
a790de99
PT
702#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
703 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 704/*
8277434e
PT
705 * Iterate task_group tree rooted at *from, calling @down when first entering a
706 * node and @up when leaving it for the final time.
707 *
708 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 709 */
029632fb 710int walk_tg_tree_from(struct task_group *from,
8277434e 711 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
712{
713 struct task_group *parent, *child;
eb755805 714 int ret;
c09595f6 715
8277434e
PT
716 parent = from;
717
c09595f6 718down:
eb755805
PZ
719 ret = (*down)(parent, data);
720 if (ret)
8277434e 721 goto out;
c09595f6
PZ
722 list_for_each_entry_rcu(child, &parent->children, siblings) {
723 parent = child;
724 goto down;
725
726up:
727 continue;
728 }
eb755805 729 ret = (*up)(parent, data);
8277434e
PT
730 if (ret || parent == from)
731 goto out;
c09595f6
PZ
732
733 child = parent;
734 parent = parent->parent;
735 if (parent)
736 goto up;
8277434e 737out:
eb755805 738 return ret;
c09595f6
PZ
739}
740
029632fb 741int tg_nop(struct task_group *tg, void *data)
eb755805 742{
e2b245f8 743 return 0;
eb755805 744}
18d95a28
PZ
745#endif
746
45bf76df
IM
747static void set_load_weight(struct task_struct *p)
748{
f05998d4
NR
749 int prio = p->static_prio - MAX_RT_PRIO;
750 struct load_weight *load = &p->se.load;
751
dd41f596
IM
752 /*
753 * SCHED_IDLE tasks get minimal weight:
754 */
755 if (p->policy == SCHED_IDLE) {
c8b28116 756 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 757 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
758 return;
759 }
71f8bd46 760
c8b28116 761 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 762 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
763}
764
371fd7e7 765static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 766{
a64692a3 767 update_rq_clock(rq);
dd41f596 768 sched_info_queued(p);
371fd7e7 769 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
770}
771
371fd7e7 772static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 773{
a64692a3 774 update_rq_clock(rq);
46ac22ba 775 sched_info_dequeued(p);
371fd7e7 776 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
777}
778
029632fb 779void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
780{
781 if (task_contributes_to_load(p))
782 rq->nr_uninterruptible--;
783
371fd7e7 784 enqueue_task(rq, p, flags);
1e3c88bd
PZ
785}
786
029632fb 787void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
788{
789 if (task_contributes_to_load(p))
790 rq->nr_uninterruptible++;
791
371fd7e7 792 dequeue_task(rq, p, flags);
1e3c88bd
PZ
793}
794
fe44d621 795static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 796{
095c0aa8
GC
797/*
798 * In theory, the compile should just see 0 here, and optimize out the call
799 * to sched_rt_avg_update. But I don't trust it...
800 */
801#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
802 s64 steal = 0, irq_delta = 0;
803#endif
804#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 805 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
806
807 /*
808 * Since irq_time is only updated on {soft,}irq_exit, we might run into
809 * this case when a previous update_rq_clock() happened inside a
810 * {soft,}irq region.
811 *
812 * When this happens, we stop ->clock_task and only update the
813 * prev_irq_time stamp to account for the part that fit, so that a next
814 * update will consume the rest. This ensures ->clock_task is
815 * monotonic.
816 *
817 * It does however cause some slight miss-attribution of {soft,}irq
818 * time, a more accurate solution would be to update the irq_time using
819 * the current rq->clock timestamp, except that would require using
820 * atomic ops.
821 */
822 if (irq_delta > delta)
823 irq_delta = delta;
824
825 rq->prev_irq_time += irq_delta;
826 delta -= irq_delta;
095c0aa8
GC
827#endif
828#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 829 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
830 u64 st;
831
832 steal = paravirt_steal_clock(cpu_of(rq));
833 steal -= rq->prev_steal_time_rq;
834
835 if (unlikely(steal > delta))
836 steal = delta;
837
838 st = steal_ticks(steal);
839 steal = st * TICK_NSEC;
840
841 rq->prev_steal_time_rq += steal;
842
843 delta -= steal;
844 }
845#endif
846
fe44d621
PZ
847 rq->clock_task += delta;
848
095c0aa8
GC
849#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
850 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
851 sched_rt_avg_update(rq, irq_delta + steal);
852#endif
aa483808
VP
853}
854
34f971f6
PZ
855void sched_set_stop_task(int cpu, struct task_struct *stop)
856{
857 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
858 struct task_struct *old_stop = cpu_rq(cpu)->stop;
859
860 if (stop) {
861 /*
862 * Make it appear like a SCHED_FIFO task, its something
863 * userspace knows about and won't get confused about.
864 *
865 * Also, it will make PI more or less work without too
866 * much confusion -- but then, stop work should not
867 * rely on PI working anyway.
868 */
869 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
870
871 stop->sched_class = &stop_sched_class;
872 }
873
874 cpu_rq(cpu)->stop = stop;
875
876 if (old_stop) {
877 /*
878 * Reset it back to a normal scheduling class so that
879 * it can die in pieces.
880 */
881 old_stop->sched_class = &rt_sched_class;
882 }
883}
884
14531189 885/*
dd41f596 886 * __normal_prio - return the priority that is based on the static prio
14531189 887 */
14531189
IM
888static inline int __normal_prio(struct task_struct *p)
889{
dd41f596 890 return p->static_prio;
14531189
IM
891}
892
b29739f9
IM
893/*
894 * Calculate the expected normal priority: i.e. priority
895 * without taking RT-inheritance into account. Might be
896 * boosted by interactivity modifiers. Changes upon fork,
897 * setprio syscalls, and whenever the interactivity
898 * estimator recalculates.
899 */
36c8b586 900static inline int normal_prio(struct task_struct *p)
b29739f9
IM
901{
902 int prio;
903
e05606d3 904 if (task_has_rt_policy(p))
b29739f9
IM
905 prio = MAX_RT_PRIO-1 - p->rt_priority;
906 else
907 prio = __normal_prio(p);
908 return prio;
909}
910
911/*
912 * Calculate the current priority, i.e. the priority
913 * taken into account by the scheduler. This value might
914 * be boosted by RT tasks, or might be boosted by
915 * interactivity modifiers. Will be RT if the task got
916 * RT-boosted. If not then it returns p->normal_prio.
917 */
36c8b586 918static int effective_prio(struct task_struct *p)
b29739f9
IM
919{
920 p->normal_prio = normal_prio(p);
921 /*
922 * If we are RT tasks or we were boosted to RT priority,
923 * keep the priority unchanged. Otherwise, update priority
924 * to the normal priority:
925 */
926 if (!rt_prio(p->prio))
927 return p->normal_prio;
928 return p->prio;
929}
930
1da177e4
LT
931/**
932 * task_curr - is this task currently executing on a CPU?
933 * @p: the task in question.
934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
582b336e
MT
977static ATOMIC_NOTIFIER_HEAD(task_migration_notifier);
978
979void register_task_migration_notifier(struct notifier_block *n)
980{
981 atomic_notifier_chain_register(&task_migration_notifier, n);
982}
983
1da177e4 984#ifdef CONFIG_SMP
dd41f596 985void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 986{
e2912009
PZ
987#ifdef CONFIG_SCHED_DEBUG
988 /*
989 * We should never call set_task_cpu() on a blocked task,
990 * ttwu() will sort out the placement.
991 */
077614ee
PZ
992 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
993 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
994
995#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
996 /*
997 * The caller should hold either p->pi_lock or rq->lock, when changing
998 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
999 *
1000 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1001 * see task_group().
6c6c54e1
PZ
1002 *
1003 * Furthermore, all task_rq users should acquire both locks, see
1004 * task_rq_lock().
1005 */
0122ec5b
PZ
1006 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1007 lockdep_is_held(&task_rq(p)->lock)));
1008#endif
e2912009
PZ
1009#endif
1010
de1d7286 1011 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1012
0c69774e 1013 if (task_cpu(p) != new_cpu) {
582b336e
MT
1014 struct task_migration_notifier tmn;
1015
0a74bef8
PT
1016 if (p->sched_class->migrate_task_rq)
1017 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1018 p->se.nr_migrations++;
a8b0ca17 1019 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
582b336e
MT
1020
1021 tmn.task = p;
1022 tmn.from_cpu = task_cpu(p);
1023 tmn.to_cpu = new_cpu;
1024
1025 atomic_notifier_call_chain(&task_migration_notifier, 0, &tmn);
0c69774e 1026 }
dd41f596
IM
1027
1028 __set_task_cpu(p, new_cpu);
c65cc870
IM
1029}
1030
969c7921 1031struct migration_arg {
36c8b586 1032 struct task_struct *task;
1da177e4 1033 int dest_cpu;
70b97a7f 1034};
1da177e4 1035
969c7921
TH
1036static int migration_cpu_stop(void *data);
1037
1da177e4
LT
1038/*
1039 * wait_task_inactive - wait for a thread to unschedule.
1040 *
85ba2d86
RM
1041 * If @match_state is nonzero, it's the @p->state value just checked and
1042 * not expected to change. If it changes, i.e. @p might have woken up,
1043 * then return zero. When we succeed in waiting for @p to be off its CPU,
1044 * we return a positive number (its total switch count). If a second call
1045 * a short while later returns the same number, the caller can be sure that
1046 * @p has remained unscheduled the whole time.
1047 *
1da177e4
LT
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
85ba2d86 1054unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1055{
1056 unsigned long flags;
dd41f596 1057 int running, on_rq;
85ba2d86 1058 unsigned long ncsw;
70b97a7f 1059 struct rq *rq;
1da177e4 1060
3a5c359a
AK
1061 for (;;) {
1062 /*
1063 * We do the initial early heuristics without holding
1064 * any task-queue locks at all. We'll only try to get
1065 * the runqueue lock when things look like they will
1066 * work out!
1067 */
1068 rq = task_rq(p);
fa490cfd 1069
3a5c359a
AK
1070 /*
1071 * If the task is actively running on another CPU
1072 * still, just relax and busy-wait without holding
1073 * any locks.
1074 *
1075 * NOTE! Since we don't hold any locks, it's not
1076 * even sure that "rq" stays as the right runqueue!
1077 * But we don't care, since "task_running()" will
1078 * return false if the runqueue has changed and p
1079 * is actually now running somewhere else!
1080 */
85ba2d86
RM
1081 while (task_running(rq, p)) {
1082 if (match_state && unlikely(p->state != match_state))
1083 return 0;
3a5c359a 1084 cpu_relax();
85ba2d86 1085 }
fa490cfd 1086
3a5c359a
AK
1087 /*
1088 * Ok, time to look more closely! We need the rq
1089 * lock now, to be *sure*. If we're wrong, we'll
1090 * just go back and repeat.
1091 */
1092 rq = task_rq_lock(p, &flags);
27a9da65 1093 trace_sched_wait_task(p);
3a5c359a 1094 running = task_running(rq, p);
fd2f4419 1095 on_rq = p->on_rq;
85ba2d86 1096 ncsw = 0;
f31e11d8 1097 if (!match_state || p->state == match_state)
93dcf55f 1098 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1099 task_rq_unlock(rq, p, &flags);
fa490cfd 1100
85ba2d86
RM
1101 /*
1102 * If it changed from the expected state, bail out now.
1103 */
1104 if (unlikely(!ncsw))
1105 break;
1106
3a5c359a
AK
1107 /*
1108 * Was it really running after all now that we
1109 * checked with the proper locks actually held?
1110 *
1111 * Oops. Go back and try again..
1112 */
1113 if (unlikely(running)) {
1114 cpu_relax();
1115 continue;
1116 }
fa490cfd 1117
3a5c359a
AK
1118 /*
1119 * It's not enough that it's not actively running,
1120 * it must be off the runqueue _entirely_, and not
1121 * preempted!
1122 *
80dd99b3 1123 * So if it was still runnable (but just not actively
3a5c359a
AK
1124 * running right now), it's preempted, and we should
1125 * yield - it could be a while.
1126 */
1127 if (unlikely(on_rq)) {
8eb90c30
TG
1128 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1129
1130 set_current_state(TASK_UNINTERRUPTIBLE);
1131 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1132 continue;
1133 }
fa490cfd 1134
3a5c359a
AK
1135 /*
1136 * Ahh, all good. It wasn't running, and it wasn't
1137 * runnable, which means that it will never become
1138 * running in the future either. We're all done!
1139 */
1140 break;
1141 }
85ba2d86
RM
1142
1143 return ncsw;
1da177e4
LT
1144}
1145
1146/***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
25985edc 1153 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
36c8b586 1159void kick_process(struct task_struct *p)
1da177e4
LT
1160{
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168}
b43e3521 1169EXPORT_SYMBOL_GPL(kick_process);
476d139c 1170#endif /* CONFIG_SMP */
1da177e4 1171
970b13ba 1172#ifdef CONFIG_SMP
30da688e 1173/*
013fdb80 1174 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1175 */
5da9a0fb
PZ
1176static int select_fallback_rq(int cpu, struct task_struct *p)
1177{
aa00d89c
TC
1178 int nid = cpu_to_node(cpu);
1179 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1180 enum { cpuset, possible, fail } state = cpuset;
1181 int dest_cpu;
5da9a0fb 1182
aa00d89c
TC
1183 /*
1184 * If the node that the cpu is on has been offlined, cpu_to_node()
1185 * will return -1. There is no cpu on the node, and we should
1186 * select the cpu on the other node.
1187 */
1188 if (nid != -1) {
1189 nodemask = cpumask_of_node(nid);
1190
1191 /* Look for allowed, online CPU in same node. */
1192 for_each_cpu(dest_cpu, nodemask) {
1193 if (!cpu_online(dest_cpu))
1194 continue;
1195 if (!cpu_active(dest_cpu))
1196 continue;
1197 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1198 return dest_cpu;
1199 }
2baab4e9 1200 }
5da9a0fb 1201
2baab4e9
PZ
1202 for (;;) {
1203 /* Any allowed, online CPU? */
e3831edd 1204 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1205 if (!cpu_online(dest_cpu))
1206 continue;
1207 if (!cpu_active(dest_cpu))
1208 continue;
1209 goto out;
1210 }
5da9a0fb 1211
2baab4e9
PZ
1212 switch (state) {
1213 case cpuset:
1214 /* No more Mr. Nice Guy. */
1215 cpuset_cpus_allowed_fallback(p);
1216 state = possible;
1217 break;
1218
1219 case possible:
1220 do_set_cpus_allowed(p, cpu_possible_mask);
1221 state = fail;
1222 break;
1223
1224 case fail:
1225 BUG();
1226 break;
1227 }
1228 }
1229
1230out:
1231 if (state != cpuset) {
1232 /*
1233 * Don't tell them about moving exiting tasks or
1234 * kernel threads (both mm NULL), since they never
1235 * leave kernel.
1236 */
1237 if (p->mm && printk_ratelimit()) {
1238 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1239 task_pid_nr(p), p->comm, cpu);
1240 }
5da9a0fb
PZ
1241 }
1242
1243 return dest_cpu;
1244}
1245
e2912009 1246/*
013fdb80 1247 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1248 */
970b13ba 1249static inline
7608dec2 1250int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1251{
7608dec2 1252 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1253
1254 /*
1255 * In order not to call set_task_cpu() on a blocking task we need
1256 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1257 * cpu.
1258 *
1259 * Since this is common to all placement strategies, this lives here.
1260 *
1261 * [ this allows ->select_task() to simply return task_cpu(p) and
1262 * not worry about this generic constraint ]
1263 */
fa17b507 1264 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1265 !cpu_online(cpu)))
5da9a0fb 1266 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1267
1268 return cpu;
970b13ba 1269}
09a40af5
MG
1270
1271static void update_avg(u64 *avg, u64 sample)
1272{
1273 s64 diff = sample - *avg;
1274 *avg += diff >> 3;
1275}
970b13ba
PZ
1276#endif
1277
d7c01d27 1278static void
b84cb5df 1279ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1280{
d7c01d27 1281#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1282 struct rq *rq = this_rq();
1283
d7c01d27
PZ
1284#ifdef CONFIG_SMP
1285 int this_cpu = smp_processor_id();
1286
1287 if (cpu == this_cpu) {
1288 schedstat_inc(rq, ttwu_local);
1289 schedstat_inc(p, se.statistics.nr_wakeups_local);
1290 } else {
1291 struct sched_domain *sd;
1292
1293 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1294 rcu_read_lock();
d7c01d27
PZ
1295 for_each_domain(this_cpu, sd) {
1296 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1297 schedstat_inc(sd, ttwu_wake_remote);
1298 break;
1299 }
1300 }
057f3fad 1301 rcu_read_unlock();
d7c01d27 1302 }
f339b9dc
PZ
1303
1304 if (wake_flags & WF_MIGRATED)
1305 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1306
d7c01d27
PZ
1307#endif /* CONFIG_SMP */
1308
1309 schedstat_inc(rq, ttwu_count);
9ed3811a 1310 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1311
1312 if (wake_flags & WF_SYNC)
9ed3811a 1313 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1314
d7c01d27
PZ
1315#endif /* CONFIG_SCHEDSTATS */
1316}
1317
1318static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1319{
9ed3811a 1320 activate_task(rq, p, en_flags);
fd2f4419 1321 p->on_rq = 1;
c2f7115e
PZ
1322
1323 /* if a worker is waking up, notify workqueue */
1324 if (p->flags & PF_WQ_WORKER)
1325 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1326}
1327
23f41eeb
PZ
1328/*
1329 * Mark the task runnable and perform wakeup-preemption.
1330 */
89363381 1331static void
23f41eeb 1332ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1333{
9ed3811a 1334 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1335 trace_sched_wakeup(p, true);
9ed3811a
TH
1336
1337 p->state = TASK_RUNNING;
1338#ifdef CONFIG_SMP
1339 if (p->sched_class->task_woken)
1340 p->sched_class->task_woken(rq, p);
1341
e69c6341 1342 if (rq->idle_stamp) {
78becc27 1343 u64 delta = rq_clock(rq) - rq->idle_stamp;
9ed3811a
TH
1344 u64 max = 2*sysctl_sched_migration_cost;
1345
1346 if (delta > max)
1347 rq->avg_idle = max;
1348 else
1349 update_avg(&rq->avg_idle, delta);
1350 rq->idle_stamp = 0;
1351 }
1352#endif
1353}
1354
c05fbafb
PZ
1355static void
1356ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1357{
1358#ifdef CONFIG_SMP
1359 if (p->sched_contributes_to_load)
1360 rq->nr_uninterruptible--;
1361#endif
1362
1363 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1364 ttwu_do_wakeup(rq, p, wake_flags);
1365}
1366
1367/*
1368 * Called in case the task @p isn't fully descheduled from its runqueue,
1369 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1370 * since all we need to do is flip p->state to TASK_RUNNING, since
1371 * the task is still ->on_rq.
1372 */
1373static int ttwu_remote(struct task_struct *p, int wake_flags)
1374{
1375 struct rq *rq;
1376 int ret = 0;
1377
1378 rq = __task_rq_lock(p);
1379 if (p->on_rq) {
1ad4ec0d
FW
1380 /* check_preempt_curr() may use rq clock */
1381 update_rq_clock(rq);
c05fbafb
PZ
1382 ttwu_do_wakeup(rq, p, wake_flags);
1383 ret = 1;
1384 }
1385 __task_rq_unlock(rq);
1386
1387 return ret;
1388}
1389
317f3941 1390#ifdef CONFIG_SMP
fa14ff4a 1391static void sched_ttwu_pending(void)
317f3941
PZ
1392{
1393 struct rq *rq = this_rq();
fa14ff4a
PZ
1394 struct llist_node *llist = llist_del_all(&rq->wake_list);
1395 struct task_struct *p;
317f3941
PZ
1396
1397 raw_spin_lock(&rq->lock);
1398
fa14ff4a
PZ
1399 while (llist) {
1400 p = llist_entry(llist, struct task_struct, wake_entry);
1401 llist = llist_next(llist);
317f3941
PZ
1402 ttwu_do_activate(rq, p, 0);
1403 }
1404
1405 raw_spin_unlock(&rq->lock);
1406}
1407
1408void scheduler_ipi(void)
1409{
873b4c65
VG
1410 if (llist_empty(&this_rq()->wake_list)
1411 && !tick_nohz_full_cpu(smp_processor_id())
1412 && !got_nohz_idle_kick())
c5d753a5
PZ
1413 return;
1414
1415 /*
1416 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1417 * traditionally all their work was done from the interrupt return
1418 * path. Now that we actually do some work, we need to make sure
1419 * we do call them.
1420 *
1421 * Some archs already do call them, luckily irq_enter/exit nest
1422 * properly.
1423 *
1424 * Arguably we should visit all archs and update all handlers,
1425 * however a fair share of IPIs are still resched only so this would
1426 * somewhat pessimize the simple resched case.
1427 */
1428 irq_enter();
ff442c51 1429 tick_nohz_full_check();
fa14ff4a 1430 sched_ttwu_pending();
ca38062e
SS
1431
1432 /*
1433 * Check if someone kicked us for doing the nohz idle load balance.
1434 */
873b4c65 1435 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1436 this_rq()->idle_balance = 1;
ca38062e 1437 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1438 }
c5d753a5 1439 irq_exit();
317f3941
PZ
1440}
1441
1442static void ttwu_queue_remote(struct task_struct *p, int cpu)
1443{
fa14ff4a 1444 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1445 smp_send_reschedule(cpu);
1446}
d6aa8f85 1447
39be3501 1448bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1449{
1450 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1451}
d6aa8f85 1452#endif /* CONFIG_SMP */
317f3941 1453
c05fbafb
PZ
1454static void ttwu_queue(struct task_struct *p, int cpu)
1455{
1456 struct rq *rq = cpu_rq(cpu);
1457
17d9f311 1458#if defined(CONFIG_SMP)
39be3501 1459 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1460 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1461 ttwu_queue_remote(p, cpu);
1462 return;
1463 }
1464#endif
1465
c05fbafb
PZ
1466 raw_spin_lock(&rq->lock);
1467 ttwu_do_activate(rq, p, 0);
1468 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1469}
1470
1471/**
1da177e4 1472 * try_to_wake_up - wake up a thread
9ed3811a 1473 * @p: the thread to be awakened
1da177e4 1474 * @state: the mask of task states that can be woken
9ed3811a 1475 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1476 *
1477 * Put it on the run-queue if it's not already there. The "current"
1478 * thread is always on the run-queue (except when the actual
1479 * re-schedule is in progress), and as such you're allowed to do
1480 * the simpler "current->state = TASK_RUNNING" to mark yourself
1481 * runnable without the overhead of this.
1482 *
9ed3811a
TH
1483 * Returns %true if @p was woken up, %false if it was already running
1484 * or @state didn't match @p's state.
1da177e4 1485 */
e4a52bcb
PZ
1486static int
1487try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1488{
1da177e4 1489 unsigned long flags;
c05fbafb 1490 int cpu, success = 0;
2398f2c6 1491
04e2f174 1492 smp_wmb();
013fdb80 1493 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1494 if (!(p->state & state))
1da177e4
LT
1495 goto out;
1496
c05fbafb 1497 success = 1; /* we're going to change ->state */
1da177e4 1498 cpu = task_cpu(p);
1da177e4 1499
c05fbafb
PZ
1500 if (p->on_rq && ttwu_remote(p, wake_flags))
1501 goto stat;
1da177e4 1502
1da177e4 1503#ifdef CONFIG_SMP
e9c84311 1504 /*
c05fbafb
PZ
1505 * If the owning (remote) cpu is still in the middle of schedule() with
1506 * this task as prev, wait until its done referencing the task.
e9c84311 1507 */
f3e94786 1508 while (p->on_cpu)
e4a52bcb 1509 cpu_relax();
0970d299 1510 /*
e4a52bcb 1511 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1512 */
e4a52bcb 1513 smp_rmb();
1da177e4 1514
a8e4f2ea 1515 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1516 p->state = TASK_WAKING;
e7693a36 1517
e4a52bcb 1518 if (p->sched_class->task_waking)
74f8e4b2 1519 p->sched_class->task_waking(p);
efbbd05a 1520
7608dec2 1521 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1522 if (task_cpu(p) != cpu) {
1523 wake_flags |= WF_MIGRATED;
e4a52bcb 1524 set_task_cpu(p, cpu);
f339b9dc 1525 }
1da177e4 1526#endif /* CONFIG_SMP */
1da177e4 1527
c05fbafb
PZ
1528 ttwu_queue(p, cpu);
1529stat:
b84cb5df 1530 ttwu_stat(p, cpu, wake_flags);
1da177e4 1531out:
013fdb80 1532 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1533
1534 return success;
1535}
1536
21aa9af0
TH
1537/**
1538 * try_to_wake_up_local - try to wake up a local task with rq lock held
1539 * @p: the thread to be awakened
1540 *
2acca55e 1541 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1542 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1543 * the current task.
21aa9af0
TH
1544 */
1545static void try_to_wake_up_local(struct task_struct *p)
1546{
1547 struct rq *rq = task_rq(p);
21aa9af0 1548
383efcd0
TH
1549 if (WARN_ON_ONCE(rq != this_rq()) ||
1550 WARN_ON_ONCE(p == current))
1551 return;
1552
21aa9af0
TH
1553 lockdep_assert_held(&rq->lock);
1554
2acca55e
PZ
1555 if (!raw_spin_trylock(&p->pi_lock)) {
1556 raw_spin_unlock(&rq->lock);
1557 raw_spin_lock(&p->pi_lock);
1558 raw_spin_lock(&rq->lock);
1559 }
1560
21aa9af0 1561 if (!(p->state & TASK_NORMAL))
2acca55e 1562 goto out;
21aa9af0 1563
fd2f4419 1564 if (!p->on_rq)
d7c01d27
PZ
1565 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1566
23f41eeb 1567 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1568 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1569out:
1570 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1571}
1572
50fa610a
DH
1573/**
1574 * wake_up_process - Wake up a specific process
1575 * @p: The process to be woken up.
1576 *
1577 * Attempt to wake up the nominated process and move it to the set of runnable
1578 * processes. Returns 1 if the process was woken up, 0 if it was already
1579 * running.
1580 *
1581 * It may be assumed that this function implies a write memory barrier before
1582 * changing the task state if and only if any tasks are woken up.
1583 */
7ad5b3a5 1584int wake_up_process(struct task_struct *p)
1da177e4 1585{
9067ac85
ON
1586 WARN_ON(task_is_stopped_or_traced(p));
1587 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1588}
1da177e4
LT
1589EXPORT_SYMBOL(wake_up_process);
1590
7ad5b3a5 1591int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1592{
1593 return try_to_wake_up(p, state, 0);
1594}
1595
1da177e4
LT
1596/*
1597 * Perform scheduler related setup for a newly forked process p.
1598 * p is forked by current.
dd41f596
IM
1599 *
1600 * __sched_fork() is basic setup used by init_idle() too:
1601 */
1602static void __sched_fork(struct task_struct *p)
1603{
fd2f4419
PZ
1604 p->on_rq = 0;
1605
1606 p->se.on_rq = 0;
dd41f596
IM
1607 p->se.exec_start = 0;
1608 p->se.sum_exec_runtime = 0;
f6cf891c 1609 p->se.prev_sum_exec_runtime = 0;
6c594c21 1610 p->se.nr_migrations = 0;
da7a735e 1611 p->se.vruntime = 0;
fd2f4419 1612 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 1613
f4e26b12
PT
1614/*
1615 * Load-tracking only depends on SMP, FAIR_GROUP_SCHED dependency below may be
1616 * removed when useful for applications beyond shares distribution (e.g.
1617 * load-balance).
1618 */
1619#if defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)
9d85f21c
PT
1620 p->se.avg.runnable_avg_period = 0;
1621 p->se.avg.runnable_avg_sum = 0;
1622#endif
6cfb0d5d 1623#ifdef CONFIG_SCHEDSTATS
41acab88 1624 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1625#endif
476d139c 1626
fa717060 1627 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1628
e107be36
AK
1629#ifdef CONFIG_PREEMPT_NOTIFIERS
1630 INIT_HLIST_HEAD(&p->preempt_notifiers);
1631#endif
cbee9f88
PZ
1632
1633#ifdef CONFIG_NUMA_BALANCING
1634 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1635 p->mm->numa_next_scan = jiffies;
b8593bfd 1636 p->mm->numa_next_reset = jiffies;
cbee9f88
PZ
1637 p->mm->numa_scan_seq = 0;
1638 }
1639
1640 p->node_stamp = 0ULL;
1641 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1642 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
4b96a29b 1643 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88
PZ
1644 p->numa_work.next = &p->numa_work;
1645#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1646}
1647
1a687c2e 1648#ifdef CONFIG_NUMA_BALANCING
3105b86a 1649#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1650void set_numabalancing_state(bool enabled)
1651{
1652 if (enabled)
1653 sched_feat_set("NUMA");
1654 else
1655 sched_feat_set("NO_NUMA");
1656}
3105b86a
MG
1657#else
1658__read_mostly bool numabalancing_enabled;
1659
1660void set_numabalancing_state(bool enabled)
1661{
1662 numabalancing_enabled = enabled;
dd41f596 1663}
3105b86a 1664#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1665#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1666
1667/*
1668 * fork()/clone()-time setup:
1669 */
3e51e3ed 1670void sched_fork(struct task_struct *p)
dd41f596 1671{
0122ec5b 1672 unsigned long flags;
dd41f596
IM
1673 int cpu = get_cpu();
1674
1675 __sched_fork(p);
06b83b5f 1676 /*
0017d735 1677 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1678 * nobody will actually run it, and a signal or other external
1679 * event cannot wake it up and insert it on the runqueue either.
1680 */
0017d735 1681 p->state = TASK_RUNNING;
dd41f596 1682
c350a04e
MG
1683 /*
1684 * Make sure we do not leak PI boosting priority to the child.
1685 */
1686 p->prio = current->normal_prio;
1687
b9dc29e7
MG
1688 /*
1689 * Revert to default priority/policy on fork if requested.
1690 */
1691 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1692 if (task_has_rt_policy(p)) {
b9dc29e7 1693 p->policy = SCHED_NORMAL;
6c697bdf 1694 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1695 p->rt_priority = 0;
1696 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1697 p->static_prio = NICE_TO_PRIO(0);
1698
1699 p->prio = p->normal_prio = __normal_prio(p);
1700 set_load_weight(p);
6c697bdf 1701
b9dc29e7
MG
1702 /*
1703 * We don't need the reset flag anymore after the fork. It has
1704 * fulfilled its duty:
1705 */
1706 p->sched_reset_on_fork = 0;
1707 }
ca94c442 1708
2ddbf952
HS
1709 if (!rt_prio(p->prio))
1710 p->sched_class = &fair_sched_class;
b29739f9 1711
cd29fe6f
PZ
1712 if (p->sched_class->task_fork)
1713 p->sched_class->task_fork(p);
1714
86951599
PZ
1715 /*
1716 * The child is not yet in the pid-hash so no cgroup attach races,
1717 * and the cgroup is pinned to this child due to cgroup_fork()
1718 * is ran before sched_fork().
1719 *
1720 * Silence PROVE_RCU.
1721 */
0122ec5b 1722 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1723 set_task_cpu(p, cpu);
0122ec5b 1724 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1725
52f17b6c 1726#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1727 if (likely(sched_info_on()))
52f17b6c 1728 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1729#endif
3ca7a440
PZ
1730#if defined(CONFIG_SMP)
1731 p->on_cpu = 0;
4866cde0 1732#endif
bdd4e85d 1733#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1734 /* Want to start with kernel preemption disabled. */
a1261f54 1735 task_thread_info(p)->preempt_count = 1;
1da177e4 1736#endif
806c09a7 1737#ifdef CONFIG_SMP
917b627d 1738 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1739#endif
917b627d 1740
476d139c 1741 put_cpu();
1da177e4
LT
1742}
1743
1744/*
1745 * wake_up_new_task - wake up a newly created task for the first time.
1746 *
1747 * This function will do some initial scheduler statistics housekeeping
1748 * that must be done for every newly created context, then puts the task
1749 * on the runqueue and wakes it.
1750 */
3e51e3ed 1751void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1752{
1753 unsigned long flags;
dd41f596 1754 struct rq *rq;
fabf318e 1755
ab2515c4 1756 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1757#ifdef CONFIG_SMP
1758 /*
1759 * Fork balancing, do it here and not earlier because:
1760 * - cpus_allowed can change in the fork path
1761 * - any previously selected cpu might disappear through hotplug
fabf318e 1762 */
ab2515c4 1763 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1764#endif
1765
ab2515c4 1766 rq = __task_rq_lock(p);
cd29fe6f 1767 activate_task(rq, p, 0);
fd2f4419 1768 p->on_rq = 1;
89363381 1769 trace_sched_wakeup_new(p, true);
a7558e01 1770 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1771#ifdef CONFIG_SMP
efbbd05a
PZ
1772 if (p->sched_class->task_woken)
1773 p->sched_class->task_woken(rq, p);
9a897c5a 1774#endif
0122ec5b 1775 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1776}
1777
e107be36
AK
1778#ifdef CONFIG_PREEMPT_NOTIFIERS
1779
1780/**
80dd99b3 1781 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1782 * @notifier: notifier struct to register
e107be36
AK
1783 */
1784void preempt_notifier_register(struct preempt_notifier *notifier)
1785{
1786 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1787}
1788EXPORT_SYMBOL_GPL(preempt_notifier_register);
1789
1790/**
1791 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1792 * @notifier: notifier struct to unregister
e107be36
AK
1793 *
1794 * This is safe to call from within a preemption notifier.
1795 */
1796void preempt_notifier_unregister(struct preempt_notifier *notifier)
1797{
1798 hlist_del(&notifier->link);
1799}
1800EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1801
1802static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1803{
1804 struct preempt_notifier *notifier;
e107be36 1805
b67bfe0d 1806 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1807 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1808}
1809
1810static void
1811fire_sched_out_preempt_notifiers(struct task_struct *curr,
1812 struct task_struct *next)
1813{
1814 struct preempt_notifier *notifier;
e107be36 1815
b67bfe0d 1816 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1817 notifier->ops->sched_out(notifier, next);
1818}
1819
6d6bc0ad 1820#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1821
1822static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1823{
1824}
1825
1826static void
1827fire_sched_out_preempt_notifiers(struct task_struct *curr,
1828 struct task_struct *next)
1829{
1830}
1831
6d6bc0ad 1832#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1833
4866cde0
NP
1834/**
1835 * prepare_task_switch - prepare to switch tasks
1836 * @rq: the runqueue preparing to switch
421cee29 1837 * @prev: the current task that is being switched out
4866cde0
NP
1838 * @next: the task we are going to switch to.
1839 *
1840 * This is called with the rq lock held and interrupts off. It must
1841 * be paired with a subsequent finish_task_switch after the context
1842 * switch.
1843 *
1844 * prepare_task_switch sets up locking and calls architecture specific
1845 * hooks.
1846 */
e107be36
AK
1847static inline void
1848prepare_task_switch(struct rq *rq, struct task_struct *prev,
1849 struct task_struct *next)
4866cde0 1850{
895dd92c 1851 trace_sched_switch(prev, next);
fe4b04fa
PZ
1852 sched_info_switch(prev, next);
1853 perf_event_task_sched_out(prev, next);
e107be36 1854 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1855 prepare_lock_switch(rq, next);
1856 prepare_arch_switch(next);
1857}
1858
1da177e4
LT
1859/**
1860 * finish_task_switch - clean up after a task-switch
344babaa 1861 * @rq: runqueue associated with task-switch
1da177e4
LT
1862 * @prev: the thread we just switched away from.
1863 *
4866cde0
NP
1864 * finish_task_switch must be called after the context switch, paired
1865 * with a prepare_task_switch call before the context switch.
1866 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1867 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1868 *
1869 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1870 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1871 * with the lock held can cause deadlocks; see schedule() for
1872 * details.)
1873 */
a9957449 1874static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1875 __releases(rq->lock)
1876{
1da177e4 1877 struct mm_struct *mm = rq->prev_mm;
55a101f8 1878 long prev_state;
1da177e4
LT
1879
1880 rq->prev_mm = NULL;
1881
1882 /*
1883 * A task struct has one reference for the use as "current".
c394cc9f 1884 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1885 * schedule one last time. The schedule call will never return, and
1886 * the scheduled task must drop that reference.
c394cc9f 1887 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1888 * still held, otherwise prev could be scheduled on another cpu, die
1889 * there before we look at prev->state, and then the reference would
1890 * be dropped twice.
1891 * Manfred Spraul <manfred@colorfullife.com>
1892 */
55a101f8 1893 prev_state = prev->state;
bf9fae9f 1894 vtime_task_switch(prev);
4866cde0 1895 finish_arch_switch(prev);
a8d757ef 1896 perf_event_task_sched_in(prev, current);
4866cde0 1897 finish_lock_switch(rq, prev);
01f23e16 1898 finish_arch_post_lock_switch();
e8fa1362 1899
e107be36 1900 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1901 if (mm)
1902 mmdrop(mm);
c394cc9f 1903 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1904 /*
1905 * Remove function-return probe instances associated with this
1906 * task and put them back on the free list.
9761eea8 1907 */
c6fd91f0 1908 kprobe_flush_task(prev);
1da177e4 1909 put_task_struct(prev);
c6fd91f0 1910 }
99e5ada9
FW
1911
1912 tick_nohz_task_switch(current);
1da177e4
LT
1913}
1914
3f029d3c
GH
1915#ifdef CONFIG_SMP
1916
1917/* assumes rq->lock is held */
1918static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1919{
1920 if (prev->sched_class->pre_schedule)
1921 prev->sched_class->pre_schedule(rq, prev);
1922}
1923
1924/* rq->lock is NOT held, but preemption is disabled */
1925static inline void post_schedule(struct rq *rq)
1926{
1927 if (rq->post_schedule) {
1928 unsigned long flags;
1929
05fa785c 1930 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1931 if (rq->curr->sched_class->post_schedule)
1932 rq->curr->sched_class->post_schedule(rq);
05fa785c 1933 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1934
1935 rq->post_schedule = 0;
1936 }
1937}
1938
1939#else
da19ab51 1940
3f029d3c
GH
1941static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1942{
1943}
1944
1945static inline void post_schedule(struct rq *rq)
1946{
1da177e4
LT
1947}
1948
3f029d3c
GH
1949#endif
1950
1da177e4
LT
1951/**
1952 * schedule_tail - first thing a freshly forked thread must call.
1953 * @prev: the thread we just switched away from.
1954 */
36c8b586 1955asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1956 __releases(rq->lock)
1957{
70b97a7f
IM
1958 struct rq *rq = this_rq();
1959
4866cde0 1960 finish_task_switch(rq, prev);
da19ab51 1961
3f029d3c
GH
1962 /*
1963 * FIXME: do we need to worry about rq being invalidated by the
1964 * task_switch?
1965 */
1966 post_schedule(rq);
70b97a7f 1967
4866cde0
NP
1968#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1969 /* In this case, finish_task_switch does not reenable preemption */
1970 preempt_enable();
1971#endif
1da177e4 1972 if (current->set_child_tid)
b488893a 1973 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1974}
1975
1976/*
1977 * context_switch - switch to the new MM and the new
1978 * thread's register state.
1979 */
dd41f596 1980static inline void
70b97a7f 1981context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1982 struct task_struct *next)
1da177e4 1983{
dd41f596 1984 struct mm_struct *mm, *oldmm;
1da177e4 1985
e107be36 1986 prepare_task_switch(rq, prev, next);
fe4b04fa 1987
dd41f596
IM
1988 mm = next->mm;
1989 oldmm = prev->active_mm;
9226d125
ZA
1990 /*
1991 * For paravirt, this is coupled with an exit in switch_to to
1992 * combine the page table reload and the switch backend into
1993 * one hypercall.
1994 */
224101ed 1995 arch_start_context_switch(prev);
9226d125 1996
31915ab4 1997 if (!mm) {
1da177e4
LT
1998 next->active_mm = oldmm;
1999 atomic_inc(&oldmm->mm_count);
2000 enter_lazy_tlb(oldmm, next);
2001 } else
2002 switch_mm(oldmm, mm, next);
2003
31915ab4 2004 if (!prev->mm) {
1da177e4 2005 prev->active_mm = NULL;
1da177e4
LT
2006 rq->prev_mm = oldmm;
2007 }
3a5f5e48
IM
2008 /*
2009 * Since the runqueue lock will be released by the next
2010 * task (which is an invalid locking op but in the case
2011 * of the scheduler it's an obvious special-case), so we
2012 * do an early lockdep release here:
2013 */
2014#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2015 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2016#endif
1da177e4 2017
91d1aa43 2018 context_tracking_task_switch(prev, next);
1da177e4
LT
2019 /* Here we just switch the register state and the stack. */
2020 switch_to(prev, next, prev);
2021
dd41f596
IM
2022 barrier();
2023 /*
2024 * this_rq must be evaluated again because prev may have moved
2025 * CPUs since it called schedule(), thus the 'rq' on its stack
2026 * frame will be invalid.
2027 */
2028 finish_task_switch(this_rq(), prev);
1da177e4
LT
2029}
2030
2031/*
1c3e8264 2032 * nr_running and nr_context_switches:
1da177e4
LT
2033 *
2034 * externally visible scheduler statistics: current number of runnable
1c3e8264 2035 * threads, total number of context switches performed since bootup.
1da177e4
LT
2036 */
2037unsigned long nr_running(void)
2038{
2039 unsigned long i, sum = 0;
2040
2041 for_each_online_cpu(i)
2042 sum += cpu_rq(i)->nr_running;
2043
2044 return sum;
f711f609 2045}
1da177e4 2046
1da177e4 2047unsigned long long nr_context_switches(void)
46cb4b7c 2048{
cc94abfc
SR
2049 int i;
2050 unsigned long long sum = 0;
46cb4b7c 2051
0a945022 2052 for_each_possible_cpu(i)
1da177e4 2053 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2054
1da177e4
LT
2055 return sum;
2056}
483b4ee6 2057
1da177e4
LT
2058unsigned long nr_iowait(void)
2059{
2060 unsigned long i, sum = 0;
483b4ee6 2061
0a945022 2062 for_each_possible_cpu(i)
1da177e4 2063 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2064
1da177e4
LT
2065 return sum;
2066}
483b4ee6 2067
8c215bd3 2068unsigned long nr_iowait_cpu(int cpu)
69d25870 2069{
8c215bd3 2070 struct rq *this = cpu_rq(cpu);
69d25870
AV
2071 return atomic_read(&this->nr_iowait);
2072}
46cb4b7c 2073
dd41f596 2074#ifdef CONFIG_SMP
8a0be9ef 2075
46cb4b7c 2076/*
38022906
PZ
2077 * sched_exec - execve() is a valuable balancing opportunity, because at
2078 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2079 */
38022906 2080void sched_exec(void)
46cb4b7c 2081{
38022906 2082 struct task_struct *p = current;
1da177e4 2083 unsigned long flags;
0017d735 2084 int dest_cpu;
46cb4b7c 2085
8f42ced9 2086 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2087 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2088 if (dest_cpu == smp_processor_id())
2089 goto unlock;
38022906 2090
8f42ced9 2091 if (likely(cpu_active(dest_cpu))) {
969c7921 2092 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2093
8f42ced9
PZ
2094 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2095 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2096 return;
2097 }
0017d735 2098unlock:
8f42ced9 2099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2100}
dd41f596 2101
1da177e4
LT
2102#endif
2103
1da177e4 2104DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2105DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2106
2107EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2108EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2109
2110/*
c5f8d995 2111 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2112 * @p in case that task is currently running.
c5f8d995
HS
2113 *
2114 * Called with task_rq_lock() held on @rq.
1da177e4 2115 */
c5f8d995
HS
2116static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2117{
2118 u64 ns = 0;
2119
2120 if (task_current(rq, p)) {
2121 update_rq_clock(rq);
78becc27 2122 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2123 if ((s64)ns < 0)
2124 ns = 0;
2125 }
2126
2127 return ns;
2128}
2129
bb34d92f 2130unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2131{
1da177e4 2132 unsigned long flags;
41b86e9c 2133 struct rq *rq;
bb34d92f 2134 u64 ns = 0;
48f24c4d 2135
41b86e9c 2136 rq = task_rq_lock(p, &flags);
c5f8d995 2137 ns = do_task_delta_exec(p, rq);
0122ec5b 2138 task_rq_unlock(rq, p, &flags);
1508487e 2139
c5f8d995
HS
2140 return ns;
2141}
f06febc9 2142
c5f8d995
HS
2143/*
2144 * Return accounted runtime for the task.
2145 * In case the task is currently running, return the runtime plus current's
2146 * pending runtime that have not been accounted yet.
2147 */
2148unsigned long long task_sched_runtime(struct task_struct *p)
2149{
2150 unsigned long flags;
2151 struct rq *rq;
2152 u64 ns = 0;
2153
2154 rq = task_rq_lock(p, &flags);
2155 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2156 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2157
2158 return ns;
2159}
48f24c4d 2160
7835b98b
CL
2161/*
2162 * This function gets called by the timer code, with HZ frequency.
2163 * We call it with interrupts disabled.
7835b98b
CL
2164 */
2165void scheduler_tick(void)
2166{
7835b98b
CL
2167 int cpu = smp_processor_id();
2168 struct rq *rq = cpu_rq(cpu);
dd41f596 2169 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2170
2171 sched_clock_tick();
dd41f596 2172
05fa785c 2173 raw_spin_lock(&rq->lock);
3e51f33f 2174 update_rq_clock(rq);
fdf3e95d 2175 update_cpu_load_active(rq);
fa85ae24 2176 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 2177 raw_spin_unlock(&rq->lock);
7835b98b 2178
e9d2b064 2179 perf_event_task_tick();
e220d2dc 2180
e418e1c2 2181#ifdef CONFIG_SMP
6eb57e0d 2182 rq->idle_balance = idle_cpu(cpu);
dd41f596 2183 trigger_load_balance(rq, cpu);
e418e1c2 2184#endif
265f22a9 2185 rq_last_tick_reset(rq);
1da177e4
LT
2186}
2187
265f22a9
FW
2188#ifdef CONFIG_NO_HZ_FULL
2189/**
2190 * scheduler_tick_max_deferment
2191 *
2192 * Keep at least one tick per second when a single
2193 * active task is running because the scheduler doesn't
2194 * yet completely support full dynticks environment.
2195 *
2196 * This makes sure that uptime, CFS vruntime, load
2197 * balancing, etc... continue to move forward, even
2198 * with a very low granularity.
2199 */
2200u64 scheduler_tick_max_deferment(void)
2201{
2202 struct rq *rq = this_rq();
2203 unsigned long next, now = ACCESS_ONCE(jiffies);
2204
2205 next = rq->last_sched_tick + HZ;
2206
2207 if (time_before_eq(next, now))
2208 return 0;
2209
2210 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2211}
265f22a9 2212#endif
1da177e4 2213
132380a0 2214notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2215{
2216 if (in_lock_functions(addr)) {
2217 addr = CALLER_ADDR2;
2218 if (in_lock_functions(addr))
2219 addr = CALLER_ADDR3;
2220 }
2221 return addr;
2222}
1da177e4 2223
7e49fcce
SR
2224#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2225 defined(CONFIG_PREEMPT_TRACER))
2226
43627582 2227void __kprobes add_preempt_count(int val)
1da177e4 2228{
6cd8a4bb 2229#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2230 /*
2231 * Underflow?
2232 */
9a11b49a
IM
2233 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2234 return;
6cd8a4bb 2235#endif
1da177e4 2236 preempt_count() += val;
6cd8a4bb 2237#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2238 /*
2239 * Spinlock count overflowing soon?
2240 */
33859f7f
MOS
2241 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2242 PREEMPT_MASK - 10);
6cd8a4bb
SR
2243#endif
2244 if (preempt_count() == val)
2245 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2246}
2247EXPORT_SYMBOL(add_preempt_count);
2248
43627582 2249void __kprobes sub_preempt_count(int val)
1da177e4 2250{
6cd8a4bb 2251#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2252 /*
2253 * Underflow?
2254 */
01e3eb82 2255 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2256 return;
1da177e4
LT
2257 /*
2258 * Is the spinlock portion underflowing?
2259 */
9a11b49a
IM
2260 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2261 !(preempt_count() & PREEMPT_MASK)))
2262 return;
6cd8a4bb 2263#endif
9a11b49a 2264
6cd8a4bb
SR
2265 if (preempt_count() == val)
2266 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
2267 preempt_count() -= val;
2268}
2269EXPORT_SYMBOL(sub_preempt_count);
2270
2271#endif
2272
2273/*
dd41f596 2274 * Print scheduling while atomic bug:
1da177e4 2275 */
dd41f596 2276static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2277{
664dfa65
DJ
2278 if (oops_in_progress)
2279 return;
2280
3df0fc5b
PZ
2281 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2282 prev->comm, prev->pid, preempt_count());
838225b4 2283
dd41f596 2284 debug_show_held_locks(prev);
e21f5b15 2285 print_modules();
dd41f596
IM
2286 if (irqs_disabled())
2287 print_irqtrace_events(prev);
6135fc1e 2288 dump_stack();
373d4d09 2289 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2290}
1da177e4 2291
dd41f596
IM
2292/*
2293 * Various schedule()-time debugging checks and statistics:
2294 */
2295static inline void schedule_debug(struct task_struct *prev)
2296{
1da177e4 2297 /*
41a2d6cf 2298 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2299 * schedule() atomically, we ignore that path for now.
2300 * Otherwise, whine if we are scheduling when we should not be.
2301 */
3f33a7ce 2302 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2303 __schedule_bug(prev);
b3fbab05 2304 rcu_sleep_check();
dd41f596 2305
1da177e4
LT
2306 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2307
2d72376b 2308 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2309}
2310
6cecd084 2311static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2312{
61eadef6 2313 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2314 update_rq_clock(rq);
6cecd084 2315 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2316}
2317
dd41f596
IM
2318/*
2319 * Pick up the highest-prio task:
2320 */
2321static inline struct task_struct *
b67802ea 2322pick_next_task(struct rq *rq)
dd41f596 2323{
5522d5d5 2324 const struct sched_class *class;
dd41f596 2325 struct task_struct *p;
1da177e4
LT
2326
2327 /*
dd41f596
IM
2328 * Optimization: we know that if all tasks are in
2329 * the fair class we can call that function directly:
1da177e4 2330 */
953bfcd1 2331 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2332 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2333 if (likely(p))
2334 return p;
1da177e4
LT
2335 }
2336
34f971f6 2337 for_each_class(class) {
fb8d4724 2338 p = class->pick_next_task(rq);
dd41f596
IM
2339 if (p)
2340 return p;
dd41f596 2341 }
34f971f6
PZ
2342
2343 BUG(); /* the idle class will always have a runnable task */
dd41f596 2344}
1da177e4 2345
dd41f596 2346/*
c259e01a 2347 * __schedule() is the main scheduler function.
edde96ea
PE
2348 *
2349 * The main means of driving the scheduler and thus entering this function are:
2350 *
2351 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2352 *
2353 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2354 * paths. For example, see arch/x86/entry_64.S.
2355 *
2356 * To drive preemption between tasks, the scheduler sets the flag in timer
2357 * interrupt handler scheduler_tick().
2358 *
2359 * 3. Wakeups don't really cause entry into schedule(). They add a
2360 * task to the run-queue and that's it.
2361 *
2362 * Now, if the new task added to the run-queue preempts the current
2363 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2364 * called on the nearest possible occasion:
2365 *
2366 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2367 *
2368 * - in syscall or exception context, at the next outmost
2369 * preempt_enable(). (this might be as soon as the wake_up()'s
2370 * spin_unlock()!)
2371 *
2372 * - in IRQ context, return from interrupt-handler to
2373 * preemptible context
2374 *
2375 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2376 * then at the next:
2377 *
2378 * - cond_resched() call
2379 * - explicit schedule() call
2380 * - return from syscall or exception to user-space
2381 * - return from interrupt-handler to user-space
dd41f596 2382 */
c259e01a 2383static void __sched __schedule(void)
dd41f596
IM
2384{
2385 struct task_struct *prev, *next;
67ca7bde 2386 unsigned long *switch_count;
dd41f596 2387 struct rq *rq;
31656519 2388 int cpu;
dd41f596 2389
ff743345
PZ
2390need_resched:
2391 preempt_disable();
dd41f596
IM
2392 cpu = smp_processor_id();
2393 rq = cpu_rq(cpu);
25502a6c 2394 rcu_note_context_switch(cpu);
dd41f596 2395 prev = rq->curr;
dd41f596 2396
dd41f596 2397 schedule_debug(prev);
1da177e4 2398
31656519 2399 if (sched_feat(HRTICK))
f333fdc9 2400 hrtick_clear(rq);
8f4d37ec 2401
05fa785c 2402 raw_spin_lock_irq(&rq->lock);
1da177e4 2403
246d86b5 2404 switch_count = &prev->nivcsw;
1da177e4 2405 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2406 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2407 prev->state = TASK_RUNNING;
21aa9af0 2408 } else {
2acca55e
PZ
2409 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2410 prev->on_rq = 0;
2411
21aa9af0 2412 /*
2acca55e
PZ
2413 * If a worker went to sleep, notify and ask workqueue
2414 * whether it wants to wake up a task to maintain
2415 * concurrency.
21aa9af0
TH
2416 */
2417 if (prev->flags & PF_WQ_WORKER) {
2418 struct task_struct *to_wakeup;
2419
2420 to_wakeup = wq_worker_sleeping(prev, cpu);
2421 if (to_wakeup)
2422 try_to_wake_up_local(to_wakeup);
2423 }
21aa9af0 2424 }
dd41f596 2425 switch_count = &prev->nvcsw;
1da177e4
LT
2426 }
2427
3f029d3c 2428 pre_schedule(rq, prev);
f65eda4f 2429
dd41f596 2430 if (unlikely(!rq->nr_running))
1da177e4 2431 idle_balance(cpu, rq);
1da177e4 2432
df1c99d4 2433 put_prev_task(rq, prev);
b67802ea 2434 next = pick_next_task(rq);
f26f9aff
MG
2435 clear_tsk_need_resched(prev);
2436 rq->skip_clock_update = 0;
1da177e4 2437
1da177e4 2438 if (likely(prev != next)) {
1da177e4
LT
2439 rq->nr_switches++;
2440 rq->curr = next;
2441 ++*switch_count;
2442
dd41f596 2443 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2444 /*
246d86b5
ON
2445 * The context switch have flipped the stack from under us
2446 * and restored the local variables which were saved when
2447 * this task called schedule() in the past. prev == current
2448 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2449 */
2450 cpu = smp_processor_id();
2451 rq = cpu_rq(cpu);
1da177e4 2452 } else
05fa785c 2453 raw_spin_unlock_irq(&rq->lock);
1da177e4 2454
3f029d3c 2455 post_schedule(rq);
1da177e4 2456
ba74c144 2457 sched_preempt_enable_no_resched();
ff743345 2458 if (need_resched())
1da177e4
LT
2459 goto need_resched;
2460}
c259e01a 2461
9c40cef2
TG
2462static inline void sched_submit_work(struct task_struct *tsk)
2463{
3c7d5184 2464 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2465 return;
2466 /*
2467 * If we are going to sleep and we have plugged IO queued,
2468 * make sure to submit it to avoid deadlocks.
2469 */
2470 if (blk_needs_flush_plug(tsk))
2471 blk_schedule_flush_plug(tsk);
2472}
2473
6ebbe7a0 2474asmlinkage void __sched schedule(void)
c259e01a 2475{
9c40cef2
TG
2476 struct task_struct *tsk = current;
2477
2478 sched_submit_work(tsk);
c259e01a
TG
2479 __schedule();
2480}
1da177e4
LT
2481EXPORT_SYMBOL(schedule);
2482
91d1aa43 2483#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2484asmlinkage void __sched schedule_user(void)
2485{
2486 /*
2487 * If we come here after a random call to set_need_resched(),
2488 * or we have been woken up remotely but the IPI has not yet arrived,
2489 * we haven't yet exited the RCU idle mode. Do it here manually until
2490 * we find a better solution.
2491 */
91d1aa43 2492 user_exit();
20ab65e3 2493 schedule();
91d1aa43 2494 user_enter();
20ab65e3
FW
2495}
2496#endif
2497
c5491ea7
TG
2498/**
2499 * schedule_preempt_disabled - called with preemption disabled
2500 *
2501 * Returns with preemption disabled. Note: preempt_count must be 1
2502 */
2503void __sched schedule_preempt_disabled(void)
2504{
ba74c144 2505 sched_preempt_enable_no_resched();
c5491ea7
TG
2506 schedule();
2507 preempt_disable();
2508}
2509
1da177e4
LT
2510#ifdef CONFIG_PREEMPT
2511/*
2ed6e34f 2512 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2513 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2514 * occur there and call schedule directly.
2515 */
d1f74e20 2516asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
2517{
2518 struct thread_info *ti = current_thread_info();
6478d880 2519
1da177e4
LT
2520 /*
2521 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2522 * we do not want to preempt the current task. Just return..
1da177e4 2523 */
beed33a8 2524 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
2525 return;
2526
3a5c359a 2527 do {
d1f74e20 2528 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 2529 __schedule();
d1f74e20 2530 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 2531
3a5c359a
AK
2532 /*
2533 * Check again in case we missed a preemption opportunity
2534 * between schedule and now.
2535 */
2536 barrier();
5ed0cec0 2537 } while (need_resched());
1da177e4 2538}
1da177e4
LT
2539EXPORT_SYMBOL(preempt_schedule);
2540
2541/*
2ed6e34f 2542 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2543 * off of irq context.
2544 * Note, that this is called and return with irqs disabled. This will
2545 * protect us against recursive calling from irq.
2546 */
2547asmlinkage void __sched preempt_schedule_irq(void)
2548{
2549 struct thread_info *ti = current_thread_info();
b22366cd 2550 enum ctx_state prev_state;
6478d880 2551
2ed6e34f 2552 /* Catch callers which need to be fixed */
1da177e4
LT
2553 BUG_ON(ti->preempt_count || !irqs_disabled());
2554
b22366cd
FW
2555 prev_state = exception_enter();
2556
3a5c359a
AK
2557 do {
2558 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 2559 local_irq_enable();
c259e01a 2560 __schedule();
3a5c359a 2561 local_irq_disable();
3a5c359a 2562 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 2563
3a5c359a
AK
2564 /*
2565 * Check again in case we missed a preemption opportunity
2566 * between schedule and now.
2567 */
2568 barrier();
5ed0cec0 2569 } while (need_resched());
b22366cd
FW
2570
2571 exception_exit(prev_state);
1da177e4
LT
2572}
2573
2574#endif /* CONFIG_PREEMPT */
2575
63859d4f 2576int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2577 void *key)
1da177e4 2578{
63859d4f 2579 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2580}
1da177e4
LT
2581EXPORT_SYMBOL(default_wake_function);
2582
2583/*
41a2d6cf
IM
2584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2586 * number) then we wake all the non-exclusive tasks and one exclusive task.
2587 *
2588 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2591 */
78ddb08f 2592static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2593 int nr_exclusive, int wake_flags, void *key)
1da177e4 2594{
2e45874c 2595 wait_queue_t *curr, *next;
1da177e4 2596
2e45874c 2597 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2598 unsigned flags = curr->flags;
2599
63859d4f 2600 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2601 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2602 break;
2603 }
2604}
2605
2606/**
2607 * __wake_up - wake up threads blocked on a waitqueue.
2608 * @q: the waitqueue
2609 * @mode: which threads
2610 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2611 * @key: is directly passed to the wakeup function
50fa610a
DH
2612 *
2613 * It may be assumed that this function implies a write memory barrier before
2614 * changing the task state if and only if any tasks are woken up.
1da177e4 2615 */
7ad5b3a5 2616void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2617 int nr_exclusive, void *key)
1da177e4
LT
2618{
2619 unsigned long flags;
2620
2621 spin_lock_irqsave(&q->lock, flags);
2622 __wake_up_common(q, mode, nr_exclusive, 0, key);
2623 spin_unlock_irqrestore(&q->lock, flags);
2624}
1da177e4
LT
2625EXPORT_SYMBOL(__wake_up);
2626
2627/*
2628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2629 */
63b20011 2630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2631{
63b20011 2632 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2633}
22c43c81 2634EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2635
4ede816a
DL
2636void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2637{
2638 __wake_up_common(q, mode, 1, 0, key);
2639}
bf294b41 2640EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2641
1da177e4 2642/**
4ede816a 2643 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2644 * @q: the waitqueue
2645 * @mode: which threads
2646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2647 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2648 *
2649 * The sync wakeup differs that the waker knows that it will schedule
2650 * away soon, so while the target thread will be woken up, it will not
2651 * be migrated to another CPU - ie. the two threads are 'synchronized'
2652 * with each other. This can prevent needless bouncing between CPUs.
2653 *
2654 * On UP it can prevent extra preemption.
50fa610a
DH
2655 *
2656 * It may be assumed that this function implies a write memory barrier before
2657 * changing the task state if and only if any tasks are woken up.
1da177e4 2658 */
4ede816a
DL
2659void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2660 int nr_exclusive, void *key)
1da177e4
LT
2661{
2662 unsigned long flags;
7d478721 2663 int wake_flags = WF_SYNC;
1da177e4
LT
2664
2665 if (unlikely(!q))
2666 return;
2667
2668 if (unlikely(!nr_exclusive))
7d478721 2669 wake_flags = 0;
1da177e4
LT
2670
2671 spin_lock_irqsave(&q->lock, flags);
7d478721 2672 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2673 spin_unlock_irqrestore(&q->lock, flags);
2674}
4ede816a
DL
2675EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2676
2677/*
2678 * __wake_up_sync - see __wake_up_sync_key()
2679 */
2680void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2681{
2682 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2683}
1da177e4
LT
2684EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2685
65eb3dc6
KD
2686/**
2687 * complete: - signals a single thread waiting on this completion
2688 * @x: holds the state of this particular completion
2689 *
2690 * This will wake up a single thread waiting on this completion. Threads will be
2691 * awakened in the same order in which they were queued.
2692 *
2693 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2694 *
2695 * It may be assumed that this function implies a write memory barrier before
2696 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2697 */
b15136e9 2698void complete(struct completion *x)
1da177e4
LT
2699{
2700 unsigned long flags;
2701
2702 spin_lock_irqsave(&x->wait.lock, flags);
2703 x->done++;
d9514f6c 2704 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2705 spin_unlock_irqrestore(&x->wait.lock, flags);
2706}
2707EXPORT_SYMBOL(complete);
2708
65eb3dc6
KD
2709/**
2710 * complete_all: - signals all threads waiting on this completion
2711 * @x: holds the state of this particular completion
2712 *
2713 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2714 *
2715 * It may be assumed that this function implies a write memory barrier before
2716 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2717 */
b15136e9 2718void complete_all(struct completion *x)
1da177e4
LT
2719{
2720 unsigned long flags;
2721
2722 spin_lock_irqsave(&x->wait.lock, flags);
2723 x->done += UINT_MAX/2;
d9514f6c 2724 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2725 spin_unlock_irqrestore(&x->wait.lock, flags);
2726}
2727EXPORT_SYMBOL(complete_all);
2728
8cbbe86d 2729static inline long __sched
686855f5
VD
2730do_wait_for_common(struct completion *x,
2731 long (*action)(long), long timeout, int state)
1da177e4 2732{
1da177e4
LT
2733 if (!x->done) {
2734 DECLARE_WAITQUEUE(wait, current);
2735
a93d2f17 2736 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2737 do {
94d3d824 2738 if (signal_pending_state(state, current)) {
ea71a546
ON
2739 timeout = -ERESTARTSYS;
2740 break;
8cbbe86d
AK
2741 }
2742 __set_current_state(state);
1da177e4 2743 spin_unlock_irq(&x->wait.lock);
686855f5 2744 timeout = action(timeout);
1da177e4 2745 spin_lock_irq(&x->wait.lock);
ea71a546 2746 } while (!x->done && timeout);
1da177e4 2747 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2748 if (!x->done)
2749 return timeout;
1da177e4
LT
2750 }
2751 x->done--;
ea71a546 2752 return timeout ?: 1;
1da177e4 2753}
1da177e4 2754
686855f5
VD
2755static inline long __sched
2756__wait_for_common(struct completion *x,
2757 long (*action)(long), long timeout, int state)
1da177e4 2758{
1da177e4
LT
2759 might_sleep();
2760
2761 spin_lock_irq(&x->wait.lock);
686855f5 2762 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2763 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2764 return timeout;
2765}
1da177e4 2766
686855f5
VD
2767static long __sched
2768wait_for_common(struct completion *x, long timeout, int state)
2769{
2770 return __wait_for_common(x, schedule_timeout, timeout, state);
2771}
2772
2773static long __sched
2774wait_for_common_io(struct completion *x, long timeout, int state)
2775{
2776 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2777}
2778
65eb3dc6
KD
2779/**
2780 * wait_for_completion: - waits for completion of a task
2781 * @x: holds the state of this particular completion
2782 *
2783 * This waits to be signaled for completion of a specific task. It is NOT
2784 * interruptible and there is no timeout.
2785 *
2786 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2787 * and interrupt capability. Also see complete().
2788 */
b15136e9 2789void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2790{
2791 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2792}
8cbbe86d 2793EXPORT_SYMBOL(wait_for_completion);
1da177e4 2794
65eb3dc6
KD
2795/**
2796 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2797 * @x: holds the state of this particular completion
2798 * @timeout: timeout value in jiffies
2799 *
2800 * This waits for either a completion of a specific task to be signaled or for a
2801 * specified timeout to expire. The timeout is in jiffies. It is not
2802 * interruptible.
c6dc7f05
BF
2803 *
2804 * The return value is 0 if timed out, and positive (at least 1, or number of
2805 * jiffies left till timeout) if completed.
65eb3dc6 2806 */
b15136e9 2807unsigned long __sched
8cbbe86d 2808wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2809{
8cbbe86d 2810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2811}
8cbbe86d 2812EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2813
686855f5
VD
2814/**
2815 * wait_for_completion_io: - waits for completion of a task
2816 * @x: holds the state of this particular completion
2817 *
2818 * This waits to be signaled for completion of a specific task. It is NOT
2819 * interruptible and there is no timeout. The caller is accounted as waiting
2820 * for IO.
2821 */
2822void __sched wait_for_completion_io(struct completion *x)
2823{
2824 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2825}
2826EXPORT_SYMBOL(wait_for_completion_io);
2827
2828/**
2829 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2830 * @x: holds the state of this particular completion
2831 * @timeout: timeout value in jiffies
2832 *
2833 * This waits for either a completion of a specific task to be signaled or for a
2834 * specified timeout to expire. The timeout is in jiffies. It is not
2835 * interruptible. The caller is accounted as waiting for IO.
2836 *
2837 * The return value is 0 if timed out, and positive (at least 1, or number of
2838 * jiffies left till timeout) if completed.
2839 */
2840unsigned long __sched
2841wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2842{
2843 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2844}
2845EXPORT_SYMBOL(wait_for_completion_io_timeout);
2846
65eb3dc6
KD
2847/**
2848 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2849 * @x: holds the state of this particular completion
2850 *
2851 * This waits for completion of a specific task to be signaled. It is
2852 * interruptible.
c6dc7f05
BF
2853 *
2854 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2855 */
8cbbe86d 2856int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2857{
51e97990
AK
2858 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2859 if (t == -ERESTARTSYS)
2860 return t;
2861 return 0;
0fec171c 2862}
8cbbe86d 2863EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2864
65eb3dc6
KD
2865/**
2866 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2867 * @x: holds the state of this particular completion
2868 * @timeout: timeout value in jiffies
2869 *
2870 * This waits for either a completion of a specific task to be signaled or for a
2871 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
2872 *
2873 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2874 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 2875 */
6bf41237 2876long __sched
8cbbe86d
AK
2877wait_for_completion_interruptible_timeout(struct completion *x,
2878 unsigned long timeout)
0fec171c 2879{
8cbbe86d 2880 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2881}
8cbbe86d 2882EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2883
65eb3dc6
KD
2884/**
2885 * wait_for_completion_killable: - waits for completion of a task (killable)
2886 * @x: holds the state of this particular completion
2887 *
2888 * This waits to be signaled for completion of a specific task. It can be
2889 * interrupted by a kill signal.
c6dc7f05
BF
2890 *
2891 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2892 */
009e577e
MW
2893int __sched wait_for_completion_killable(struct completion *x)
2894{
2895 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2896 if (t == -ERESTARTSYS)
2897 return t;
2898 return 0;
2899}
2900EXPORT_SYMBOL(wait_for_completion_killable);
2901
0aa12fb4
SW
2902/**
2903 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
2904 * @x: holds the state of this particular completion
2905 * @timeout: timeout value in jiffies
2906 *
2907 * This waits for either a completion of a specific task to be
2908 * signaled or for a specified timeout to expire. It can be
2909 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
2910 *
2911 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
2912 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 2913 */
6bf41237 2914long __sched
0aa12fb4
SW
2915wait_for_completion_killable_timeout(struct completion *x,
2916 unsigned long timeout)
2917{
2918 return wait_for_common(x, timeout, TASK_KILLABLE);
2919}
2920EXPORT_SYMBOL(wait_for_completion_killable_timeout);
2921
be4de352
DC
2922/**
2923 * try_wait_for_completion - try to decrement a completion without blocking
2924 * @x: completion structure
2925 *
2926 * Returns: 0 if a decrement cannot be done without blocking
2927 * 1 if a decrement succeeded.
2928 *
2929 * If a completion is being used as a counting completion,
2930 * attempt to decrement the counter without blocking. This
2931 * enables us to avoid waiting if the resource the completion
2932 * is protecting is not available.
2933 */
2934bool try_wait_for_completion(struct completion *x)
2935{
7539a3b3 2936 unsigned long flags;
be4de352
DC
2937 int ret = 1;
2938
7539a3b3 2939 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2940 if (!x->done)
2941 ret = 0;
2942 else
2943 x->done--;
7539a3b3 2944 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2945 return ret;
2946}
2947EXPORT_SYMBOL(try_wait_for_completion);
2948
2949/**
2950 * completion_done - Test to see if a completion has any waiters
2951 * @x: completion structure
2952 *
2953 * Returns: 0 if there are waiters (wait_for_completion() in progress)
2954 * 1 if there are no waiters.
2955 *
2956 */
2957bool completion_done(struct completion *x)
2958{
7539a3b3 2959 unsigned long flags;
be4de352
DC
2960 int ret = 1;
2961
7539a3b3 2962 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
2963 if (!x->done)
2964 ret = 0;
7539a3b3 2965 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
2966 return ret;
2967}
2968EXPORT_SYMBOL(completion_done);
2969
8cbbe86d
AK
2970static long __sched
2971sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 2972{
0fec171c
IM
2973 unsigned long flags;
2974 wait_queue_t wait;
2975
2976 init_waitqueue_entry(&wait, current);
1da177e4 2977
8cbbe86d 2978 __set_current_state(state);
1da177e4 2979
8cbbe86d
AK
2980 spin_lock_irqsave(&q->lock, flags);
2981 __add_wait_queue(q, &wait);
2982 spin_unlock(&q->lock);
2983 timeout = schedule_timeout(timeout);
2984 spin_lock_irq(&q->lock);
2985 __remove_wait_queue(q, &wait);
2986 spin_unlock_irqrestore(&q->lock, flags);
2987
2988 return timeout;
2989}
2990
2991void __sched interruptible_sleep_on(wait_queue_head_t *q)
2992{
2993 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 2994}
1da177e4
LT
2995EXPORT_SYMBOL(interruptible_sleep_on);
2996
0fec171c 2997long __sched
95cdf3b7 2998interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 2999{
8cbbe86d 3000 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3001}
1da177e4
LT
3002EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3003
0fec171c 3004void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3005{
8cbbe86d 3006 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3007}
1da177e4
LT
3008EXPORT_SYMBOL(sleep_on);
3009
0fec171c 3010long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3011{
8cbbe86d 3012 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3013}
1da177e4
LT
3014EXPORT_SYMBOL(sleep_on_timeout);
3015
b29739f9
IM
3016#ifdef CONFIG_RT_MUTEXES
3017
3018/*
3019 * rt_mutex_setprio - set the current priority of a task
3020 * @p: task
3021 * @prio: prio value (kernel-internal form)
3022 *
3023 * This function changes the 'effective' priority of a task. It does
3024 * not touch ->normal_prio like __setscheduler().
3025 *
3026 * Used by the rt_mutex code to implement priority inheritance logic.
3027 */
36c8b586 3028void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3029{
83b699ed 3030 int oldprio, on_rq, running;
70b97a7f 3031 struct rq *rq;
83ab0aa0 3032 const struct sched_class *prev_class;
b29739f9
IM
3033
3034 BUG_ON(prio < 0 || prio > MAX_PRIO);
3035
0122ec5b 3036 rq = __task_rq_lock(p);
b29739f9 3037
1c4dd99b
TG
3038 /*
3039 * Idle task boosting is a nono in general. There is one
3040 * exception, when PREEMPT_RT and NOHZ is active:
3041 *
3042 * The idle task calls get_next_timer_interrupt() and holds
3043 * the timer wheel base->lock on the CPU and another CPU wants
3044 * to access the timer (probably to cancel it). We can safely
3045 * ignore the boosting request, as the idle CPU runs this code
3046 * with interrupts disabled and will complete the lock
3047 * protected section without being interrupted. So there is no
3048 * real need to boost.
3049 */
3050 if (unlikely(p == rq->idle)) {
3051 WARN_ON(p != rq->curr);
3052 WARN_ON(p->pi_blocked_on);
3053 goto out_unlock;
3054 }
3055
a8027073 3056 trace_sched_pi_setprio(p, prio);
d5f9f942 3057 oldprio = p->prio;
83ab0aa0 3058 prev_class = p->sched_class;
fd2f4419 3059 on_rq = p->on_rq;
051a1d1a 3060 running = task_current(rq, p);
0e1f3483 3061 if (on_rq)
69be72c1 3062 dequeue_task(rq, p, 0);
0e1f3483
HS
3063 if (running)
3064 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3065
3066 if (rt_prio(prio))
3067 p->sched_class = &rt_sched_class;
3068 else
3069 p->sched_class = &fair_sched_class;
3070
b29739f9
IM
3071 p->prio = prio;
3072
0e1f3483
HS
3073 if (running)
3074 p->sched_class->set_curr_task(rq);
da7a735e 3075 if (on_rq)
371fd7e7 3076 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3077
da7a735e 3078 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3079out_unlock:
0122ec5b 3080 __task_rq_unlock(rq);
b29739f9 3081}
b29739f9 3082#endif
36c8b586 3083void set_user_nice(struct task_struct *p, long nice)
1da177e4 3084{
dd41f596 3085 int old_prio, delta, on_rq;
1da177e4 3086 unsigned long flags;
70b97a7f 3087 struct rq *rq;
1da177e4
LT
3088
3089 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3090 return;
3091 /*
3092 * We have to be careful, if called from sys_setpriority(),
3093 * the task might be in the middle of scheduling on another CPU.
3094 */
3095 rq = task_rq_lock(p, &flags);
3096 /*
3097 * The RT priorities are set via sched_setscheduler(), but we still
3098 * allow the 'normal' nice value to be set - but as expected
3099 * it wont have any effect on scheduling until the task is
dd41f596 3100 * SCHED_FIFO/SCHED_RR:
1da177e4 3101 */
e05606d3 3102 if (task_has_rt_policy(p)) {
1da177e4
LT
3103 p->static_prio = NICE_TO_PRIO(nice);
3104 goto out_unlock;
3105 }
fd2f4419 3106 on_rq = p->on_rq;
c09595f6 3107 if (on_rq)
69be72c1 3108 dequeue_task(rq, p, 0);
1da177e4 3109
1da177e4 3110 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3111 set_load_weight(p);
b29739f9
IM
3112 old_prio = p->prio;
3113 p->prio = effective_prio(p);
3114 delta = p->prio - old_prio;
1da177e4 3115
dd41f596 3116 if (on_rq) {
371fd7e7 3117 enqueue_task(rq, p, 0);
1da177e4 3118 /*
d5f9f942
AM
3119 * If the task increased its priority or is running and
3120 * lowered its priority, then reschedule its CPU:
1da177e4 3121 */
d5f9f942 3122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3123 resched_task(rq->curr);
3124 }
3125out_unlock:
0122ec5b 3126 task_rq_unlock(rq, p, &flags);
1da177e4 3127}
1da177e4
LT
3128EXPORT_SYMBOL(set_user_nice);
3129
e43379f1
MM
3130/*
3131 * can_nice - check if a task can reduce its nice value
3132 * @p: task
3133 * @nice: nice value
3134 */
36c8b586 3135int can_nice(const struct task_struct *p, const int nice)
e43379f1 3136{
024f4747
MM
3137 /* convert nice value [19,-20] to rlimit style value [1,40] */
3138 int nice_rlim = 20 - nice;
48f24c4d 3139
78d7d407 3140 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3141 capable(CAP_SYS_NICE));
3142}
3143
1da177e4
LT
3144#ifdef __ARCH_WANT_SYS_NICE
3145
3146/*
3147 * sys_nice - change the priority of the current process.
3148 * @increment: priority increment
3149 *
3150 * sys_setpriority is a more generic, but much slower function that
3151 * does similar things.
3152 */
5add95d4 3153SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3154{
48f24c4d 3155 long nice, retval;
1da177e4
LT
3156
3157 /*
3158 * Setpriority might change our priority at the same moment.
3159 * We don't have to worry. Conceptually one call occurs first
3160 * and we have a single winner.
3161 */
e43379f1
MM
3162 if (increment < -40)
3163 increment = -40;
1da177e4
LT
3164 if (increment > 40)
3165 increment = 40;
3166
2b8f836f 3167 nice = TASK_NICE(current) + increment;
1da177e4
LT
3168 if (nice < -20)
3169 nice = -20;
3170 if (nice > 19)
3171 nice = 19;
3172
e43379f1
MM
3173 if (increment < 0 && !can_nice(current, nice))
3174 return -EPERM;
3175
1da177e4
LT
3176 retval = security_task_setnice(current, nice);
3177 if (retval)
3178 return retval;
3179
3180 set_user_nice(current, nice);
3181 return 0;
3182}
3183
3184#endif
3185
3186/**
3187 * task_prio - return the priority value of a given task.
3188 * @p: the task in question.
3189 *
3190 * This is the priority value as seen by users in /proc.
3191 * RT tasks are offset by -200. Normal tasks are centered
3192 * around 0, value goes from -16 to +15.
3193 */
36c8b586 3194int task_prio(const struct task_struct *p)
1da177e4
LT
3195{
3196 return p->prio - MAX_RT_PRIO;
3197}
3198
3199/**
3200 * task_nice - return the nice value of a given task.
3201 * @p: the task in question.
3202 */
36c8b586 3203int task_nice(const struct task_struct *p)
1da177e4
LT
3204{
3205 return TASK_NICE(p);
3206}
150d8bed 3207EXPORT_SYMBOL(task_nice);
1da177e4
LT
3208
3209/**
3210 * idle_cpu - is a given cpu idle currently?
3211 * @cpu: the processor in question.
3212 */
3213int idle_cpu(int cpu)
3214{
908a3283
TG
3215 struct rq *rq = cpu_rq(cpu);
3216
3217 if (rq->curr != rq->idle)
3218 return 0;
3219
3220 if (rq->nr_running)
3221 return 0;
3222
3223#ifdef CONFIG_SMP
3224 if (!llist_empty(&rq->wake_list))
3225 return 0;
3226#endif
3227
3228 return 1;
1da177e4
LT
3229}
3230
1da177e4
LT
3231/**
3232 * idle_task - return the idle task for a given cpu.
3233 * @cpu: the processor in question.
3234 */
36c8b586 3235struct task_struct *idle_task(int cpu)
1da177e4
LT
3236{
3237 return cpu_rq(cpu)->idle;
3238}
3239
3240/**
3241 * find_process_by_pid - find a process with a matching PID value.
3242 * @pid: the pid in question.
3243 */
a9957449 3244static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3245{
228ebcbe 3246 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3247}
3248
3249/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3250static void
3251__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3252{
1da177e4
LT
3253 p->policy = policy;
3254 p->rt_priority = prio;
b29739f9
IM
3255 p->normal_prio = normal_prio(p);
3256 /* we are holding p->pi_lock already */
3257 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3258 if (rt_prio(p->prio))
3259 p->sched_class = &rt_sched_class;
3260 else
3261 p->sched_class = &fair_sched_class;
2dd73a4f 3262 set_load_weight(p);
1da177e4
LT
3263}
3264
c69e8d9c
DH
3265/*
3266 * check the target process has a UID that matches the current process's
3267 */
3268static bool check_same_owner(struct task_struct *p)
3269{
3270 const struct cred *cred = current_cred(), *pcred;
3271 bool match;
3272
3273 rcu_read_lock();
3274 pcred = __task_cred(p);
9c806aa0
EB
3275 match = (uid_eq(cred->euid, pcred->euid) ||
3276 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3277 rcu_read_unlock();
3278 return match;
3279}
3280
961ccddd 3281static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3282 const struct sched_param *param, bool user)
1da177e4 3283{
83b699ed 3284 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3285 unsigned long flags;
83ab0aa0 3286 const struct sched_class *prev_class;
70b97a7f 3287 struct rq *rq;
ca94c442 3288 int reset_on_fork;
1da177e4 3289
66e5393a
SR
3290 /* may grab non-irq protected spin_locks */
3291 BUG_ON(in_interrupt());
1da177e4
LT
3292recheck:
3293 /* double check policy once rq lock held */
ca94c442
LP
3294 if (policy < 0) {
3295 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3296 policy = oldpolicy = p->policy;
ca94c442
LP
3297 } else {
3298 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3299 policy &= ~SCHED_RESET_ON_FORK;
3300
3301 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3302 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3303 policy != SCHED_IDLE)
3304 return -EINVAL;
3305 }
3306
1da177e4
LT
3307 /*
3308 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3309 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3310 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3311 */
3312 if (param->sched_priority < 0 ||
95cdf3b7 3313 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3314 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3315 return -EINVAL;
e05606d3 3316 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3317 return -EINVAL;
3318
37e4ab3f
OC
3319 /*
3320 * Allow unprivileged RT tasks to decrease priority:
3321 */
961ccddd 3322 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3323 if (rt_policy(policy)) {
a44702e8
ON
3324 unsigned long rlim_rtprio =
3325 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3326
3327 /* can't set/change the rt policy */
3328 if (policy != p->policy && !rlim_rtprio)
3329 return -EPERM;
3330
3331 /* can't increase priority */
3332 if (param->sched_priority > p->rt_priority &&
3333 param->sched_priority > rlim_rtprio)
3334 return -EPERM;
3335 }
c02aa73b 3336
dd41f596 3337 /*
c02aa73b
DH
3338 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3339 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3340 */
c02aa73b
DH
3341 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3342 if (!can_nice(p, TASK_NICE(p)))
3343 return -EPERM;
3344 }
5fe1d75f 3345
37e4ab3f 3346 /* can't change other user's priorities */
c69e8d9c 3347 if (!check_same_owner(p))
37e4ab3f 3348 return -EPERM;
ca94c442
LP
3349
3350 /* Normal users shall not reset the sched_reset_on_fork flag */
3351 if (p->sched_reset_on_fork && !reset_on_fork)
3352 return -EPERM;
37e4ab3f 3353 }
1da177e4 3354
725aad24 3355 if (user) {
b0ae1981 3356 retval = security_task_setscheduler(p);
725aad24
JF
3357 if (retval)
3358 return retval;
3359 }
3360
b29739f9
IM
3361 /*
3362 * make sure no PI-waiters arrive (or leave) while we are
3363 * changing the priority of the task:
0122ec5b 3364 *
25985edc 3365 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3366 * runqueue lock must be held.
3367 */
0122ec5b 3368 rq = task_rq_lock(p, &flags);
dc61b1d6 3369
34f971f6
PZ
3370 /*
3371 * Changing the policy of the stop threads its a very bad idea
3372 */
3373 if (p == rq->stop) {
0122ec5b 3374 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3375 return -EINVAL;
3376 }
3377
a51e9198
DF
3378 /*
3379 * If not changing anything there's no need to proceed further:
3380 */
3381 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3382 param->sched_priority == p->rt_priority))) {
45afb173 3383 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3384 return 0;
3385 }
3386
dc61b1d6
PZ
3387#ifdef CONFIG_RT_GROUP_SCHED
3388 if (user) {
3389 /*
3390 * Do not allow realtime tasks into groups that have no runtime
3391 * assigned.
3392 */
3393 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3394 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3395 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3396 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3397 return -EPERM;
3398 }
3399 }
3400#endif
3401
1da177e4
LT
3402 /* recheck policy now with rq lock held */
3403 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3404 policy = oldpolicy = -1;
0122ec5b 3405 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3406 goto recheck;
3407 }
fd2f4419 3408 on_rq = p->on_rq;
051a1d1a 3409 running = task_current(rq, p);
0e1f3483 3410 if (on_rq)
4ca9b72b 3411 dequeue_task(rq, p, 0);
0e1f3483
HS
3412 if (running)
3413 p->sched_class->put_prev_task(rq, p);
f6b53205 3414
ca94c442
LP
3415 p->sched_reset_on_fork = reset_on_fork;
3416
1da177e4 3417 oldprio = p->prio;
83ab0aa0 3418 prev_class = p->sched_class;
dd41f596 3419 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3420
0e1f3483
HS
3421 if (running)
3422 p->sched_class->set_curr_task(rq);
da7a735e 3423 if (on_rq)
4ca9b72b 3424 enqueue_task(rq, p, 0);
cb469845 3425
da7a735e 3426 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3427 task_rq_unlock(rq, p, &flags);
b29739f9 3428
95e02ca9
TG
3429 rt_mutex_adjust_pi(p);
3430
1da177e4
LT
3431 return 0;
3432}
961ccddd
RR
3433
3434/**
3435 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3436 * @p: the task in question.
3437 * @policy: new policy.
3438 * @param: structure containing the new RT priority.
3439 *
3440 * NOTE that the task may be already dead.
3441 */
3442int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3443 const struct sched_param *param)
961ccddd
RR
3444{
3445 return __sched_setscheduler(p, policy, param, true);
3446}
1da177e4
LT
3447EXPORT_SYMBOL_GPL(sched_setscheduler);
3448
961ccddd
RR
3449/**
3450 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3451 * @p: the task in question.
3452 * @policy: new policy.
3453 * @param: structure containing the new RT priority.
3454 *
3455 * Just like sched_setscheduler, only don't bother checking if the
3456 * current context has permission. For example, this is needed in
3457 * stop_machine(): we create temporary high priority worker threads,
3458 * but our caller might not have that capability.
3459 */
3460int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3461 const struct sched_param *param)
961ccddd
RR
3462{
3463 return __sched_setscheduler(p, policy, param, false);
3464}
3465
95cdf3b7
IM
3466static int
3467do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3468{
1da177e4
LT
3469 struct sched_param lparam;
3470 struct task_struct *p;
36c8b586 3471 int retval;
1da177e4
LT
3472
3473 if (!param || pid < 0)
3474 return -EINVAL;
3475 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3476 return -EFAULT;
5fe1d75f
ON
3477
3478 rcu_read_lock();
3479 retval = -ESRCH;
1da177e4 3480 p = find_process_by_pid(pid);
5fe1d75f
ON
3481 if (p != NULL)
3482 retval = sched_setscheduler(p, policy, &lparam);
3483 rcu_read_unlock();
36c8b586 3484
1da177e4
LT
3485 return retval;
3486}
3487
3488/**
3489 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3490 * @pid: the pid in question.
3491 * @policy: new policy.
3492 * @param: structure containing the new RT priority.
3493 */
5add95d4
HC
3494SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3495 struct sched_param __user *, param)
1da177e4 3496{
c21761f1
JB
3497 /* negative values for policy are not valid */
3498 if (policy < 0)
3499 return -EINVAL;
3500
1da177e4
LT
3501 return do_sched_setscheduler(pid, policy, param);
3502}
3503
3504/**
3505 * sys_sched_setparam - set/change the RT priority of a thread
3506 * @pid: the pid in question.
3507 * @param: structure containing the new RT priority.
3508 */
5add95d4 3509SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3510{
3511 return do_sched_setscheduler(pid, -1, param);
3512}
3513
3514/**
3515 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3516 * @pid: the pid in question.
3517 */
5add95d4 3518SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3519{
36c8b586 3520 struct task_struct *p;
3a5c359a 3521 int retval;
1da177e4
LT
3522
3523 if (pid < 0)
3a5c359a 3524 return -EINVAL;
1da177e4
LT
3525
3526 retval = -ESRCH;
5fe85be0 3527 rcu_read_lock();
1da177e4
LT
3528 p = find_process_by_pid(pid);
3529 if (p) {
3530 retval = security_task_getscheduler(p);
3531 if (!retval)
ca94c442
LP
3532 retval = p->policy
3533 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3534 }
5fe85be0 3535 rcu_read_unlock();
1da177e4
LT
3536 return retval;
3537}
3538
3539/**
ca94c442 3540 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3541 * @pid: the pid in question.
3542 * @param: structure containing the RT priority.
3543 */
5add95d4 3544SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3545{
3546 struct sched_param lp;
36c8b586 3547 struct task_struct *p;
3a5c359a 3548 int retval;
1da177e4
LT
3549
3550 if (!param || pid < 0)
3a5c359a 3551 return -EINVAL;
1da177e4 3552
5fe85be0 3553 rcu_read_lock();
1da177e4
LT
3554 p = find_process_by_pid(pid);
3555 retval = -ESRCH;
3556 if (!p)
3557 goto out_unlock;
3558
3559 retval = security_task_getscheduler(p);
3560 if (retval)
3561 goto out_unlock;
3562
3563 lp.sched_priority = p->rt_priority;
5fe85be0 3564 rcu_read_unlock();
1da177e4
LT
3565
3566 /*
3567 * This one might sleep, we cannot do it with a spinlock held ...
3568 */
3569 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3570
1da177e4
LT
3571 return retval;
3572
3573out_unlock:
5fe85be0 3574 rcu_read_unlock();
1da177e4
LT
3575 return retval;
3576}
3577
96f874e2 3578long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3579{
5a16f3d3 3580 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3581 struct task_struct *p;
3582 int retval;
1da177e4 3583
95402b38 3584 get_online_cpus();
23f5d142 3585 rcu_read_lock();
1da177e4
LT
3586
3587 p = find_process_by_pid(pid);
3588 if (!p) {
23f5d142 3589 rcu_read_unlock();
95402b38 3590 put_online_cpus();
1da177e4
LT
3591 return -ESRCH;
3592 }
3593
23f5d142 3594 /* Prevent p going away */
1da177e4 3595 get_task_struct(p);
23f5d142 3596 rcu_read_unlock();
1da177e4 3597
14a40ffc
TH
3598 if (p->flags & PF_NO_SETAFFINITY) {
3599 retval = -EINVAL;
3600 goto out_put_task;
3601 }
5a16f3d3
RR
3602 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3603 retval = -ENOMEM;
3604 goto out_put_task;
3605 }
3606 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3607 retval = -ENOMEM;
3608 goto out_free_cpus_allowed;
3609 }
1da177e4 3610 retval = -EPERM;
4c44aaaf
EB
3611 if (!check_same_owner(p)) {
3612 rcu_read_lock();
3613 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3614 rcu_read_unlock();
3615 goto out_unlock;
3616 }
3617 rcu_read_unlock();
3618 }
1da177e4 3619
b0ae1981 3620 retval = security_task_setscheduler(p);
e7834f8f
DQ
3621 if (retval)
3622 goto out_unlock;
3623
5a16f3d3
RR
3624 cpuset_cpus_allowed(p, cpus_allowed);
3625 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3626again:
5a16f3d3 3627 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3628
8707d8b8 3629 if (!retval) {
5a16f3d3
RR
3630 cpuset_cpus_allowed(p, cpus_allowed);
3631 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3632 /*
3633 * We must have raced with a concurrent cpuset
3634 * update. Just reset the cpus_allowed to the
3635 * cpuset's cpus_allowed
3636 */
5a16f3d3 3637 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3638 goto again;
3639 }
3640 }
1da177e4 3641out_unlock:
5a16f3d3
RR
3642 free_cpumask_var(new_mask);
3643out_free_cpus_allowed:
3644 free_cpumask_var(cpus_allowed);
3645out_put_task:
1da177e4 3646 put_task_struct(p);
95402b38 3647 put_online_cpus();
1da177e4
LT
3648 return retval;
3649}
3650
3651static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3652 struct cpumask *new_mask)
1da177e4 3653{
96f874e2
RR
3654 if (len < cpumask_size())
3655 cpumask_clear(new_mask);
3656 else if (len > cpumask_size())
3657 len = cpumask_size();
3658
1da177e4
LT
3659 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3660}
3661
3662/**
3663 * sys_sched_setaffinity - set the cpu affinity of a process
3664 * @pid: pid of the process
3665 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3666 * @user_mask_ptr: user-space pointer to the new cpu mask
3667 */
5add95d4
HC
3668SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3669 unsigned long __user *, user_mask_ptr)
1da177e4 3670{
5a16f3d3 3671 cpumask_var_t new_mask;
1da177e4
LT
3672 int retval;
3673
5a16f3d3
RR
3674 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3675 return -ENOMEM;
1da177e4 3676
5a16f3d3
RR
3677 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3678 if (retval == 0)
3679 retval = sched_setaffinity(pid, new_mask);
3680 free_cpumask_var(new_mask);
3681 return retval;
1da177e4
LT
3682}
3683
96f874e2 3684long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3685{
36c8b586 3686 struct task_struct *p;
31605683 3687 unsigned long flags;
1da177e4 3688 int retval;
1da177e4 3689
95402b38 3690 get_online_cpus();
23f5d142 3691 rcu_read_lock();
1da177e4
LT
3692
3693 retval = -ESRCH;
3694 p = find_process_by_pid(pid);
3695 if (!p)
3696 goto out_unlock;
3697
e7834f8f
DQ
3698 retval = security_task_getscheduler(p);
3699 if (retval)
3700 goto out_unlock;
3701
013fdb80 3702 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3703 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3704 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3705
3706out_unlock:
23f5d142 3707 rcu_read_unlock();
95402b38 3708 put_online_cpus();
1da177e4 3709
9531b62f 3710 return retval;
1da177e4
LT
3711}
3712
3713/**
3714 * sys_sched_getaffinity - get the cpu affinity of a process
3715 * @pid: pid of the process
3716 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3717 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3718 */
5add95d4
HC
3719SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3720 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3721{
3722 int ret;
f17c8607 3723 cpumask_var_t mask;
1da177e4 3724
84fba5ec 3725 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3726 return -EINVAL;
3727 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3728 return -EINVAL;
3729
f17c8607
RR
3730 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3731 return -ENOMEM;
1da177e4 3732
f17c8607
RR
3733 ret = sched_getaffinity(pid, mask);
3734 if (ret == 0) {
8bc037fb 3735 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3736
3737 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3738 ret = -EFAULT;
3739 else
cd3d8031 3740 ret = retlen;
f17c8607
RR
3741 }
3742 free_cpumask_var(mask);
1da177e4 3743
f17c8607 3744 return ret;
1da177e4
LT
3745}
3746
3747/**
3748 * sys_sched_yield - yield the current processor to other threads.
3749 *
dd41f596
IM
3750 * This function yields the current CPU to other tasks. If there are no
3751 * other threads running on this CPU then this function will return.
1da177e4 3752 */
5add95d4 3753SYSCALL_DEFINE0(sched_yield)
1da177e4 3754{
70b97a7f 3755 struct rq *rq = this_rq_lock();
1da177e4 3756
2d72376b 3757 schedstat_inc(rq, yld_count);
4530d7ab 3758 current->sched_class->yield_task(rq);
1da177e4
LT
3759
3760 /*
3761 * Since we are going to call schedule() anyway, there's
3762 * no need to preempt or enable interrupts:
3763 */
3764 __release(rq->lock);
8a25d5de 3765 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3766 do_raw_spin_unlock(&rq->lock);
ba74c144 3767 sched_preempt_enable_no_resched();
1da177e4
LT
3768
3769 schedule();
3770
3771 return 0;
3772}
3773
d86ee480
PZ
3774static inline int should_resched(void)
3775{
3776 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
3777}
3778
e7b38404 3779static void __cond_resched(void)
1da177e4 3780{
e7aaaa69 3781 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 3782 __schedule();
e7aaaa69 3783 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
3784}
3785
02b67cc3 3786int __sched _cond_resched(void)
1da177e4 3787{
d86ee480 3788 if (should_resched()) {
1da177e4
LT
3789 __cond_resched();
3790 return 1;
3791 }
3792 return 0;
3793}
02b67cc3 3794EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3795
3796/*
613afbf8 3797 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3798 * call schedule, and on return reacquire the lock.
3799 *
41a2d6cf 3800 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3801 * operations here to prevent schedule() from being called twice (once via
3802 * spin_unlock(), once by hand).
3803 */
613afbf8 3804int __cond_resched_lock(spinlock_t *lock)
1da177e4 3805{
d86ee480 3806 int resched = should_resched();
6df3cecb
JK
3807 int ret = 0;
3808
f607c668
PZ
3809 lockdep_assert_held(lock);
3810
95c354fe 3811 if (spin_needbreak(lock) || resched) {
1da177e4 3812 spin_unlock(lock);
d86ee480 3813 if (resched)
95c354fe
NP
3814 __cond_resched();
3815 else
3816 cpu_relax();
6df3cecb 3817 ret = 1;
1da177e4 3818 spin_lock(lock);
1da177e4 3819 }
6df3cecb 3820 return ret;
1da177e4 3821}
613afbf8 3822EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3823
613afbf8 3824int __sched __cond_resched_softirq(void)
1da177e4
LT
3825{
3826 BUG_ON(!in_softirq());
3827
d86ee480 3828 if (should_resched()) {
98d82567 3829 local_bh_enable();
1da177e4
LT
3830 __cond_resched();
3831 local_bh_disable();
3832 return 1;
3833 }
3834 return 0;
3835}
613afbf8 3836EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3837
1da177e4
LT
3838/**
3839 * yield - yield the current processor to other threads.
3840 *
8e3fabfd
PZ
3841 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3842 *
3843 * The scheduler is at all times free to pick the calling task as the most
3844 * eligible task to run, if removing the yield() call from your code breaks
3845 * it, its already broken.
3846 *
3847 * Typical broken usage is:
3848 *
3849 * while (!event)
3850 * yield();
3851 *
3852 * where one assumes that yield() will let 'the other' process run that will
3853 * make event true. If the current task is a SCHED_FIFO task that will never
3854 * happen. Never use yield() as a progress guarantee!!
3855 *
3856 * If you want to use yield() to wait for something, use wait_event().
3857 * If you want to use yield() to be 'nice' for others, use cond_resched().
3858 * If you still want to use yield(), do not!
1da177e4
LT
3859 */
3860void __sched yield(void)
3861{
3862 set_current_state(TASK_RUNNING);
3863 sys_sched_yield();
3864}
1da177e4
LT
3865EXPORT_SYMBOL(yield);
3866
d95f4122
MG
3867/**
3868 * yield_to - yield the current processor to another thread in
3869 * your thread group, or accelerate that thread toward the
3870 * processor it's on.
16addf95
RD
3871 * @p: target task
3872 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3873 *
3874 * It's the caller's job to ensure that the target task struct
3875 * can't go away on us before we can do any checks.
3876 *
7b270f60
PZ
3877 * Returns:
3878 * true (>0) if we indeed boosted the target task.
3879 * false (0) if we failed to boost the target.
3880 * -ESRCH if there's no task to yield to.
d95f4122
MG
3881 */
3882bool __sched yield_to(struct task_struct *p, bool preempt)
3883{
3884 struct task_struct *curr = current;
3885 struct rq *rq, *p_rq;
3886 unsigned long flags;
c3c18640 3887 int yielded = 0;
d95f4122
MG
3888
3889 local_irq_save(flags);
3890 rq = this_rq();
3891
3892again:
3893 p_rq = task_rq(p);
7b270f60
PZ
3894 /*
3895 * If we're the only runnable task on the rq and target rq also
3896 * has only one task, there's absolutely no point in yielding.
3897 */
3898 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
3899 yielded = -ESRCH;
3900 goto out_irq;
3901 }
3902
d95f4122
MG
3903 double_rq_lock(rq, p_rq);
3904 while (task_rq(p) != p_rq) {
3905 double_rq_unlock(rq, p_rq);
3906 goto again;
3907 }
3908
3909 if (!curr->sched_class->yield_to_task)
7b270f60 3910 goto out_unlock;
d95f4122
MG
3911
3912 if (curr->sched_class != p->sched_class)
7b270f60 3913 goto out_unlock;
d95f4122
MG
3914
3915 if (task_running(p_rq, p) || p->state)
7b270f60 3916 goto out_unlock;
d95f4122
MG
3917
3918 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 3919 if (yielded) {
d95f4122 3920 schedstat_inc(rq, yld_count);
6d1cafd8
VP
3921 /*
3922 * Make p's CPU reschedule; pick_next_entity takes care of
3923 * fairness.
3924 */
3925 if (preempt && rq != p_rq)
3926 resched_task(p_rq->curr);
3927 }
d95f4122 3928
7b270f60 3929out_unlock:
d95f4122 3930 double_rq_unlock(rq, p_rq);
7b270f60 3931out_irq:
d95f4122
MG
3932 local_irq_restore(flags);
3933
7b270f60 3934 if (yielded > 0)
d95f4122
MG
3935 schedule();
3936
3937 return yielded;
3938}
3939EXPORT_SYMBOL_GPL(yield_to);
3940
1da177e4 3941/*
41a2d6cf 3942 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 3943 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
3944 */
3945void __sched io_schedule(void)
3946{
54d35f29 3947 struct rq *rq = raw_rq();
1da177e4 3948
0ff92245 3949 delayacct_blkio_start();
1da177e4 3950 atomic_inc(&rq->nr_iowait);
73c10101 3951 blk_flush_plug(current);
8f0dfc34 3952 current->in_iowait = 1;
1da177e4 3953 schedule();
8f0dfc34 3954 current->in_iowait = 0;
1da177e4 3955 atomic_dec(&rq->nr_iowait);
0ff92245 3956 delayacct_blkio_end();
1da177e4 3957}
1da177e4
LT
3958EXPORT_SYMBOL(io_schedule);
3959
3960long __sched io_schedule_timeout(long timeout)
3961{
54d35f29 3962 struct rq *rq = raw_rq();
1da177e4
LT
3963 long ret;
3964
0ff92245 3965 delayacct_blkio_start();
1da177e4 3966 atomic_inc(&rq->nr_iowait);
73c10101 3967 blk_flush_plug(current);
8f0dfc34 3968 current->in_iowait = 1;
1da177e4 3969 ret = schedule_timeout(timeout);
8f0dfc34 3970 current->in_iowait = 0;
1da177e4 3971 atomic_dec(&rq->nr_iowait);
0ff92245 3972 delayacct_blkio_end();
1da177e4
LT
3973 return ret;
3974}
3975
3976/**
3977 * sys_sched_get_priority_max - return maximum RT priority.
3978 * @policy: scheduling class.
3979 *
3980 * this syscall returns the maximum rt_priority that can be used
3981 * by a given scheduling class.
3982 */
5add95d4 3983SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
3984{
3985 int ret = -EINVAL;
3986
3987 switch (policy) {
3988 case SCHED_FIFO:
3989 case SCHED_RR:
3990 ret = MAX_USER_RT_PRIO-1;
3991 break;
3992 case SCHED_NORMAL:
b0a9499c 3993 case SCHED_BATCH:
dd41f596 3994 case SCHED_IDLE:
1da177e4
LT
3995 ret = 0;
3996 break;
3997 }
3998 return ret;
3999}
4000
4001/**
4002 * sys_sched_get_priority_min - return minimum RT priority.
4003 * @policy: scheduling class.
4004 *
4005 * this syscall returns the minimum rt_priority that can be used
4006 * by a given scheduling class.
4007 */
5add95d4 4008SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4009{
4010 int ret = -EINVAL;
4011
4012 switch (policy) {
4013 case SCHED_FIFO:
4014 case SCHED_RR:
4015 ret = 1;
4016 break;
4017 case SCHED_NORMAL:
b0a9499c 4018 case SCHED_BATCH:
dd41f596 4019 case SCHED_IDLE:
1da177e4
LT
4020 ret = 0;
4021 }
4022 return ret;
4023}
4024
4025/**
4026 * sys_sched_rr_get_interval - return the default timeslice of a process.
4027 * @pid: pid of the process.
4028 * @interval: userspace pointer to the timeslice value.
4029 *
4030 * this syscall writes the default timeslice value of a given process
4031 * into the user-space timespec buffer. A value of '0' means infinity.
4032 */
17da2bd9 4033SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4034 struct timespec __user *, interval)
1da177e4 4035{
36c8b586 4036 struct task_struct *p;
a4ec24b4 4037 unsigned int time_slice;
dba091b9
TG
4038 unsigned long flags;
4039 struct rq *rq;
3a5c359a 4040 int retval;
1da177e4 4041 struct timespec t;
1da177e4
LT
4042
4043 if (pid < 0)
3a5c359a 4044 return -EINVAL;
1da177e4
LT
4045
4046 retval = -ESRCH;
1a551ae7 4047 rcu_read_lock();
1da177e4
LT
4048 p = find_process_by_pid(pid);
4049 if (!p)
4050 goto out_unlock;
4051
4052 retval = security_task_getscheduler(p);
4053 if (retval)
4054 goto out_unlock;
4055
dba091b9
TG
4056 rq = task_rq_lock(p, &flags);
4057 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4058 task_rq_unlock(rq, p, &flags);
a4ec24b4 4059
1a551ae7 4060 rcu_read_unlock();
a4ec24b4 4061 jiffies_to_timespec(time_slice, &t);
1da177e4 4062 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4063 return retval;
3a5c359a 4064
1da177e4 4065out_unlock:
1a551ae7 4066 rcu_read_unlock();
1da177e4
LT
4067 return retval;
4068}
4069
7c731e0a 4070static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4071
82a1fcb9 4072void sched_show_task(struct task_struct *p)
1da177e4 4073{
1da177e4 4074 unsigned long free = 0;
4e79752c 4075 int ppid;
36c8b586 4076 unsigned state;
1da177e4 4077
1da177e4 4078 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4079 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4080 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4081#if BITS_PER_LONG == 32
1da177e4 4082 if (state == TASK_RUNNING)
3df0fc5b 4083 printk(KERN_CONT " running ");
1da177e4 4084 else
3df0fc5b 4085 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4086#else
4087 if (state == TASK_RUNNING)
3df0fc5b 4088 printk(KERN_CONT " running task ");
1da177e4 4089 else
3df0fc5b 4090 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4091#endif
4092#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4093 free = stack_not_used(p);
1da177e4 4094#endif
4e79752c
PM
4095 rcu_read_lock();
4096 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4097 rcu_read_unlock();
3df0fc5b 4098 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4099 task_pid_nr(p), ppid,
aa47b7e0 4100 (unsigned long)task_thread_info(p)->flags);
1da177e4 4101
3d1cb205 4102 print_worker_info(KERN_INFO, p);
5fb5e6de 4103 show_stack(p, NULL);
1da177e4
LT
4104}
4105
e59e2ae2 4106void show_state_filter(unsigned long state_filter)
1da177e4 4107{
36c8b586 4108 struct task_struct *g, *p;
1da177e4 4109
4bd77321 4110#if BITS_PER_LONG == 32
3df0fc5b
PZ
4111 printk(KERN_INFO
4112 " task PC stack pid father\n");
1da177e4 4113#else
3df0fc5b
PZ
4114 printk(KERN_INFO
4115 " task PC stack pid father\n");
1da177e4 4116#endif
510f5acc 4117 rcu_read_lock();
1da177e4
LT
4118 do_each_thread(g, p) {
4119 /*
4120 * reset the NMI-timeout, listing all files on a slow
25985edc 4121 * console might take a lot of time:
1da177e4
LT
4122 */
4123 touch_nmi_watchdog();
39bc89fd 4124 if (!state_filter || (p->state & state_filter))
82a1fcb9 4125 sched_show_task(p);
1da177e4
LT
4126 } while_each_thread(g, p);
4127
04c9167f
JF
4128 touch_all_softlockup_watchdogs();
4129
dd41f596
IM
4130#ifdef CONFIG_SCHED_DEBUG
4131 sysrq_sched_debug_show();
4132#endif
510f5acc 4133 rcu_read_unlock();
e59e2ae2
IM
4134 /*
4135 * Only show locks if all tasks are dumped:
4136 */
93335a21 4137 if (!state_filter)
e59e2ae2 4138 debug_show_all_locks();
1da177e4
LT
4139}
4140
1df21055
IM
4141void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4142{
dd41f596 4143 idle->sched_class = &idle_sched_class;
1df21055
IM
4144}
4145
f340c0d1
IM
4146/**
4147 * init_idle - set up an idle thread for a given CPU
4148 * @idle: task in question
4149 * @cpu: cpu the idle task belongs to
4150 *
4151 * NOTE: this function does not set the idle thread's NEED_RESCHED
4152 * flag, to make booting more robust.
4153 */
5c1e1767 4154void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4155{
70b97a7f 4156 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4157 unsigned long flags;
4158
05fa785c 4159 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4160
dd41f596 4161 __sched_fork(idle);
06b83b5f 4162 idle->state = TASK_RUNNING;
dd41f596
IM
4163 idle->se.exec_start = sched_clock();
4164
1e1b6c51 4165 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4166 /*
4167 * We're having a chicken and egg problem, even though we are
4168 * holding rq->lock, the cpu isn't yet set to this cpu so the
4169 * lockdep check in task_group() will fail.
4170 *
4171 * Similar case to sched_fork(). / Alternatively we could
4172 * use task_rq_lock() here and obtain the other rq->lock.
4173 *
4174 * Silence PROVE_RCU
4175 */
4176 rcu_read_lock();
dd41f596 4177 __set_task_cpu(idle, cpu);
6506cf6c 4178 rcu_read_unlock();
1da177e4 4179
1da177e4 4180 rq->curr = rq->idle = idle;
3ca7a440
PZ
4181#if defined(CONFIG_SMP)
4182 idle->on_cpu = 1;
4866cde0 4183#endif
05fa785c 4184 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4185
4186 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4187 task_thread_info(idle)->preempt_count = 0;
55cd5340 4188
dd41f596
IM
4189 /*
4190 * The idle tasks have their own, simple scheduling class:
4191 */
4192 idle->sched_class = &idle_sched_class;
868baf07 4193 ftrace_graph_init_idle_task(idle, cpu);
6a61671b 4194 vtime_init_idle(idle);
f1c6f1a7
CE
4195#if defined(CONFIG_SMP)
4196 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4197#endif
19978ca6
IM
4198}
4199
1da177e4 4200#ifdef CONFIG_SMP
1e1b6c51
KM
4201void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4202{
4203 if (p->sched_class && p->sched_class->set_cpus_allowed)
4204 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4205
4206 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4207 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4208}
4209
1da177e4
LT
4210/*
4211 * This is how migration works:
4212 *
969c7921
TH
4213 * 1) we invoke migration_cpu_stop() on the target CPU using
4214 * stop_one_cpu().
4215 * 2) stopper starts to run (implicitly forcing the migrated thread
4216 * off the CPU)
4217 * 3) it checks whether the migrated task is still in the wrong runqueue.
4218 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4219 * it and puts it into the right queue.
969c7921
TH
4220 * 5) stopper completes and stop_one_cpu() returns and the migration
4221 * is done.
1da177e4
LT
4222 */
4223
4224/*
4225 * Change a given task's CPU affinity. Migrate the thread to a
4226 * proper CPU and schedule it away if the CPU it's executing on
4227 * is removed from the allowed bitmask.
4228 *
4229 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4230 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4231 * call is not atomic; no spinlocks may be held.
4232 */
96f874e2 4233int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4234{
4235 unsigned long flags;
70b97a7f 4236 struct rq *rq;
969c7921 4237 unsigned int dest_cpu;
48f24c4d 4238 int ret = 0;
1da177e4
LT
4239
4240 rq = task_rq_lock(p, &flags);
e2912009 4241
db44fc01
YZ
4242 if (cpumask_equal(&p->cpus_allowed, new_mask))
4243 goto out;
4244
6ad4c188 4245 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4246 ret = -EINVAL;
4247 goto out;
4248 }
4249
1e1b6c51 4250 do_set_cpus_allowed(p, new_mask);
73fe6aae 4251
1da177e4 4252 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4253 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4254 goto out;
4255
969c7921 4256 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4257 if (p->on_rq) {
969c7921 4258 struct migration_arg arg = { p, dest_cpu };
1da177e4 4259 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4260 task_rq_unlock(rq, p, &flags);
969c7921 4261 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4262 tlb_migrate_finish(p->mm);
4263 return 0;
4264 }
4265out:
0122ec5b 4266 task_rq_unlock(rq, p, &flags);
48f24c4d 4267
1da177e4
LT
4268 return ret;
4269}
cd8ba7cd 4270EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4271
4272/*
41a2d6cf 4273 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4274 * this because either it can't run here any more (set_cpus_allowed()
4275 * away from this CPU, or CPU going down), or because we're
4276 * attempting to rebalance this task on exec (sched_exec).
4277 *
4278 * So we race with normal scheduler movements, but that's OK, as long
4279 * as the task is no longer on this CPU.
efc30814
KK
4280 *
4281 * Returns non-zero if task was successfully migrated.
1da177e4 4282 */
efc30814 4283static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4284{
70b97a7f 4285 struct rq *rq_dest, *rq_src;
e2912009 4286 int ret = 0;
1da177e4 4287
e761b772 4288 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4289 return ret;
1da177e4
LT
4290
4291 rq_src = cpu_rq(src_cpu);
4292 rq_dest = cpu_rq(dest_cpu);
4293
0122ec5b 4294 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4295 double_rq_lock(rq_src, rq_dest);
4296 /* Already moved. */
4297 if (task_cpu(p) != src_cpu)
b1e38734 4298 goto done;
1da177e4 4299 /* Affinity changed (again). */
fa17b507 4300 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4301 goto fail;
1da177e4 4302
e2912009
PZ
4303 /*
4304 * If we're not on a rq, the next wake-up will ensure we're
4305 * placed properly.
4306 */
fd2f4419 4307 if (p->on_rq) {
4ca9b72b 4308 dequeue_task(rq_src, p, 0);
e2912009 4309 set_task_cpu(p, dest_cpu);
4ca9b72b 4310 enqueue_task(rq_dest, p, 0);
15afe09b 4311 check_preempt_curr(rq_dest, p, 0);
1da177e4 4312 }
b1e38734 4313done:
efc30814 4314 ret = 1;
b1e38734 4315fail:
1da177e4 4316 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4317 raw_spin_unlock(&p->pi_lock);
efc30814 4318 return ret;
1da177e4
LT
4319}
4320
4321/*
969c7921
TH
4322 * migration_cpu_stop - this will be executed by a highprio stopper thread
4323 * and performs thread migration by bumping thread off CPU then
4324 * 'pushing' onto another runqueue.
1da177e4 4325 */
969c7921 4326static int migration_cpu_stop(void *data)
1da177e4 4327{
969c7921 4328 struct migration_arg *arg = data;
f7b4cddc 4329
969c7921
TH
4330 /*
4331 * The original target cpu might have gone down and we might
4332 * be on another cpu but it doesn't matter.
4333 */
f7b4cddc 4334 local_irq_disable();
969c7921 4335 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4336 local_irq_enable();
1da177e4 4337 return 0;
f7b4cddc
ON
4338}
4339
1da177e4 4340#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4341
054b9108 4342/*
48c5ccae
PZ
4343 * Ensures that the idle task is using init_mm right before its cpu goes
4344 * offline.
054b9108 4345 */
48c5ccae 4346void idle_task_exit(void)
1da177e4 4347{
48c5ccae 4348 struct mm_struct *mm = current->active_mm;
e76bd8d9 4349
48c5ccae 4350 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4351
48c5ccae
PZ
4352 if (mm != &init_mm)
4353 switch_mm(mm, &init_mm, current);
4354 mmdrop(mm);
1da177e4
LT
4355}
4356
4357/*
5d180232
PZ
4358 * Since this CPU is going 'away' for a while, fold any nr_active delta
4359 * we might have. Assumes we're called after migrate_tasks() so that the
4360 * nr_active count is stable.
4361 *
4362 * Also see the comment "Global load-average calculations".
1da177e4 4363 */
5d180232 4364static void calc_load_migrate(struct rq *rq)
1da177e4 4365{
5d180232
PZ
4366 long delta = calc_load_fold_active(rq);
4367 if (delta)
4368 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4369}
4370
48f24c4d 4371/*
48c5ccae
PZ
4372 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4373 * try_to_wake_up()->select_task_rq().
4374 *
4375 * Called with rq->lock held even though we'er in stop_machine() and
4376 * there's no concurrency possible, we hold the required locks anyway
4377 * because of lock validation efforts.
1da177e4 4378 */
48c5ccae 4379static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4380{
70b97a7f 4381 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4382 struct task_struct *next, *stop = rq->stop;
4383 int dest_cpu;
1da177e4
LT
4384
4385 /*
48c5ccae
PZ
4386 * Fudge the rq selection such that the below task selection loop
4387 * doesn't get stuck on the currently eligible stop task.
4388 *
4389 * We're currently inside stop_machine() and the rq is either stuck
4390 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4391 * either way we should never end up calling schedule() until we're
4392 * done here.
1da177e4 4393 */
48c5ccae 4394 rq->stop = NULL;
48f24c4d 4395
77bd3970
FW
4396 /*
4397 * put_prev_task() and pick_next_task() sched
4398 * class method both need to have an up-to-date
4399 * value of rq->clock[_task]
4400 */
4401 update_rq_clock(rq);
4402
dd41f596 4403 for ( ; ; ) {
48c5ccae
PZ
4404 /*
4405 * There's this thread running, bail when that's the only
4406 * remaining thread.
4407 */
4408 if (rq->nr_running == 1)
dd41f596 4409 break;
48c5ccae 4410
b67802ea 4411 next = pick_next_task(rq);
48c5ccae 4412 BUG_ON(!next);
79c53799 4413 next->sched_class->put_prev_task(rq, next);
e692ab53 4414
48c5ccae
PZ
4415 /* Find suitable destination for @next, with force if needed. */
4416 dest_cpu = select_fallback_rq(dead_cpu, next);
4417 raw_spin_unlock(&rq->lock);
4418
4419 __migrate_task(next, dead_cpu, dest_cpu);
4420
4421 raw_spin_lock(&rq->lock);
1da177e4 4422 }
dce48a84 4423
48c5ccae 4424 rq->stop = stop;
dce48a84 4425}
48c5ccae 4426
1da177e4
LT
4427#endif /* CONFIG_HOTPLUG_CPU */
4428
e692ab53
NP
4429#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4430
4431static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4432 {
4433 .procname = "sched_domain",
c57baf1e 4434 .mode = 0555,
e0361851 4435 },
56992309 4436 {}
e692ab53
NP
4437};
4438
4439static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4440 {
4441 .procname = "kernel",
c57baf1e 4442 .mode = 0555,
e0361851
AD
4443 .child = sd_ctl_dir,
4444 },
56992309 4445 {}
e692ab53
NP
4446};
4447
4448static struct ctl_table *sd_alloc_ctl_entry(int n)
4449{
4450 struct ctl_table *entry =
5cf9f062 4451 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4452
e692ab53
NP
4453 return entry;
4454}
4455
6382bc90
MM
4456static void sd_free_ctl_entry(struct ctl_table **tablep)
4457{
cd790076 4458 struct ctl_table *entry;
6382bc90 4459
cd790076
MM
4460 /*
4461 * In the intermediate directories, both the child directory and
4462 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4463 * will always be set. In the lowest directory the names are
cd790076
MM
4464 * static strings and all have proc handlers.
4465 */
4466 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4467 if (entry->child)
4468 sd_free_ctl_entry(&entry->child);
cd790076
MM
4469 if (entry->proc_handler == NULL)
4470 kfree(entry->procname);
4471 }
6382bc90
MM
4472
4473 kfree(*tablep);
4474 *tablep = NULL;
4475}
4476
201c373e 4477static int min_load_idx = 0;
fd9b86d3 4478static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4479
e692ab53 4480static void
e0361851 4481set_table_entry(struct ctl_table *entry,
e692ab53 4482 const char *procname, void *data, int maxlen,
201c373e
NK
4483 umode_t mode, proc_handler *proc_handler,
4484 bool load_idx)
e692ab53 4485{
e692ab53
NP
4486 entry->procname = procname;
4487 entry->data = data;
4488 entry->maxlen = maxlen;
4489 entry->mode = mode;
4490 entry->proc_handler = proc_handler;
201c373e
NK
4491
4492 if (load_idx) {
4493 entry->extra1 = &min_load_idx;
4494 entry->extra2 = &max_load_idx;
4495 }
e692ab53
NP
4496}
4497
4498static struct ctl_table *
4499sd_alloc_ctl_domain_table(struct sched_domain *sd)
4500{
a5d8c348 4501 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4502
ad1cdc1d
MM
4503 if (table == NULL)
4504 return NULL;
4505
e0361851 4506 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4507 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4508 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4509 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4510 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4511 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4512 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4513 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4514 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4515 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4516 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4517 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4518 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4519 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4520 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4521 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4522 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4523 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4524 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4525 &sd->cache_nice_tries,
201c373e 4526 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4527 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4528 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4529 set_table_entry(&table[11], "name", sd->name,
201c373e 4530 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4531 /* &table[12] is terminator */
e692ab53
NP
4532
4533 return table;
4534}
4535
9a4e7159 4536static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4537{
4538 struct ctl_table *entry, *table;
4539 struct sched_domain *sd;
4540 int domain_num = 0, i;
4541 char buf[32];
4542
4543 for_each_domain(cpu, sd)
4544 domain_num++;
4545 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4546 if (table == NULL)
4547 return NULL;
e692ab53
NP
4548
4549 i = 0;
4550 for_each_domain(cpu, sd) {
4551 snprintf(buf, 32, "domain%d", i);
e692ab53 4552 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4553 entry->mode = 0555;
e692ab53
NP
4554 entry->child = sd_alloc_ctl_domain_table(sd);
4555 entry++;
4556 i++;
4557 }
4558 return table;
4559}
4560
4561static struct ctl_table_header *sd_sysctl_header;
6382bc90 4562static void register_sched_domain_sysctl(void)
e692ab53 4563{
6ad4c188 4564 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4565 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4566 char buf[32];
4567
7378547f
MM
4568 WARN_ON(sd_ctl_dir[0].child);
4569 sd_ctl_dir[0].child = entry;
4570
ad1cdc1d
MM
4571 if (entry == NULL)
4572 return;
4573
6ad4c188 4574 for_each_possible_cpu(i) {
e692ab53 4575 snprintf(buf, 32, "cpu%d", i);
e692ab53 4576 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4577 entry->mode = 0555;
e692ab53 4578 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4579 entry++;
e692ab53 4580 }
7378547f
MM
4581
4582 WARN_ON(sd_sysctl_header);
e692ab53
NP
4583 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4584}
6382bc90 4585
7378547f 4586/* may be called multiple times per register */
6382bc90
MM
4587static void unregister_sched_domain_sysctl(void)
4588{
7378547f
MM
4589 if (sd_sysctl_header)
4590 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4591 sd_sysctl_header = NULL;
7378547f
MM
4592 if (sd_ctl_dir[0].child)
4593 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4594}
e692ab53 4595#else
6382bc90
MM
4596static void register_sched_domain_sysctl(void)
4597{
4598}
4599static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4600{
4601}
4602#endif
4603
1f11eb6a
GH
4604static void set_rq_online(struct rq *rq)
4605{
4606 if (!rq->online) {
4607 const struct sched_class *class;
4608
c6c4927b 4609 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4610 rq->online = 1;
4611
4612 for_each_class(class) {
4613 if (class->rq_online)
4614 class->rq_online(rq);
4615 }
4616 }
4617}
4618
4619static void set_rq_offline(struct rq *rq)
4620{
4621 if (rq->online) {
4622 const struct sched_class *class;
4623
4624 for_each_class(class) {
4625 if (class->rq_offline)
4626 class->rq_offline(rq);
4627 }
4628
c6c4927b 4629 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4630 rq->online = 0;
4631 }
4632}
4633
1da177e4
LT
4634/*
4635 * migration_call - callback that gets triggered when a CPU is added.
4636 * Here we can start up the necessary migration thread for the new CPU.
4637 */
48f24c4d
IM
4638static int __cpuinit
4639migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4640{
48f24c4d 4641 int cpu = (long)hcpu;
1da177e4 4642 unsigned long flags;
969c7921 4643 struct rq *rq = cpu_rq(cpu);
1da177e4 4644
48c5ccae 4645 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4646
1da177e4 4647 case CPU_UP_PREPARE:
a468d389 4648 rq->calc_load_update = calc_load_update;
1da177e4 4649 break;
48f24c4d 4650
1da177e4 4651 case CPU_ONLINE:
1f94ef59 4652 /* Update our root-domain */
05fa785c 4653 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4654 if (rq->rd) {
c6c4927b 4655 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4656
4657 set_rq_online(rq);
1f94ef59 4658 }
05fa785c 4659 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4660 break;
48f24c4d 4661
1da177e4 4662#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4663 case CPU_DYING:
317f3941 4664 sched_ttwu_pending();
57d885fe 4665 /* Update our root-domain */
05fa785c 4666 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4667 if (rq->rd) {
c6c4927b 4668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4669 set_rq_offline(rq);
57d885fe 4670 }
48c5ccae
PZ
4671 migrate_tasks(cpu);
4672 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4673 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4674 break;
48c5ccae 4675
5d180232 4676 case CPU_DEAD:
f319da0c 4677 calc_load_migrate(rq);
57d885fe 4678 break;
1da177e4
LT
4679#endif
4680 }
49c022e6
PZ
4681
4682 update_max_interval();
4683
1da177e4
LT
4684 return NOTIFY_OK;
4685}
4686
f38b0820
PM
4687/*
4688 * Register at high priority so that task migration (migrate_all_tasks)
4689 * happens before everything else. This has to be lower priority than
cdd6c482 4690 * the notifier in the perf_event subsystem, though.
1da177e4 4691 */
26c2143b 4692static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 4693 .notifier_call = migration_call,
50a323b7 4694 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4695};
4696
3a101d05
TH
4697static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
4698 unsigned long action, void *hcpu)
4699{
4700 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4701 case CPU_STARTING:
3a101d05
TH
4702 case CPU_DOWN_FAILED:
4703 set_cpu_active((long)hcpu, true);
4704 return NOTIFY_OK;
4705 default:
4706 return NOTIFY_DONE;
4707 }
4708}
4709
4710static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
4711 unsigned long action, void *hcpu)
4712{
4713 switch (action & ~CPU_TASKS_FROZEN) {
4714 case CPU_DOWN_PREPARE:
4715 set_cpu_active((long)hcpu, false);
4716 return NOTIFY_OK;
4717 default:
4718 return NOTIFY_DONE;
4719 }
4720}
4721
7babe8db 4722static int __init migration_init(void)
1da177e4
LT
4723{
4724 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4725 int err;
48f24c4d 4726
3a101d05 4727 /* Initialize migration for the boot CPU */
07dccf33
AM
4728 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4729 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4730 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4731 register_cpu_notifier(&migration_notifier);
7babe8db 4732
3a101d05
TH
4733 /* Register cpu active notifiers */
4734 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4735 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4736
a004cd42 4737 return 0;
1da177e4 4738}
7babe8db 4739early_initcall(migration_init);
1da177e4
LT
4740#endif
4741
4742#ifdef CONFIG_SMP
476f3534 4743
4cb98839
PZ
4744static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4745
3e9830dc 4746#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4747
d039ac60 4748static __read_mostly int sched_debug_enabled;
f6630114 4749
d039ac60 4750static int __init sched_debug_setup(char *str)
f6630114 4751{
d039ac60 4752 sched_debug_enabled = 1;
f6630114
MT
4753
4754 return 0;
4755}
d039ac60
PZ
4756early_param("sched_debug", sched_debug_setup);
4757
4758static inline bool sched_debug(void)
4759{
4760 return sched_debug_enabled;
4761}
f6630114 4762
7c16ec58 4763static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4764 struct cpumask *groupmask)
1da177e4 4765{
4dcf6aff 4766 struct sched_group *group = sd->groups;
434d53b0 4767 char str[256];
1da177e4 4768
968ea6d8 4769 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4770 cpumask_clear(groupmask);
4dcf6aff
IM
4771
4772 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4773
4774 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4775 printk("does not load-balance\n");
4dcf6aff 4776 if (sd->parent)
3df0fc5b
PZ
4777 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4778 " has parent");
4dcf6aff 4779 return -1;
41c7ce9a
NP
4780 }
4781
3df0fc5b 4782 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4783
758b2cdc 4784 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4785 printk(KERN_ERR "ERROR: domain->span does not contain "
4786 "CPU%d\n", cpu);
4dcf6aff 4787 }
758b2cdc 4788 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4789 printk(KERN_ERR "ERROR: domain->groups does not contain"
4790 " CPU%d\n", cpu);
4dcf6aff 4791 }
1da177e4 4792
4dcf6aff 4793 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4794 do {
4dcf6aff 4795 if (!group) {
3df0fc5b
PZ
4796 printk("\n");
4797 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4798 break;
4799 }
4800
c3decf0d
PZ
4801 /*
4802 * Even though we initialize ->power to something semi-sane,
4803 * we leave power_orig unset. This allows us to detect if
4804 * domain iteration is still funny without causing /0 traps.
4805 */
4806 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4807 printk(KERN_CONT "\n");
4808 printk(KERN_ERR "ERROR: domain->cpu_power not "
4809 "set\n");
4dcf6aff
IM
4810 break;
4811 }
1da177e4 4812
758b2cdc 4813 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4814 printk(KERN_CONT "\n");
4815 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4816 break;
4817 }
1da177e4 4818
cb83b629
PZ
4819 if (!(sd->flags & SD_OVERLAP) &&
4820 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4821 printk(KERN_CONT "\n");
4822 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
4823 break;
4824 }
1da177e4 4825
758b2cdc 4826 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 4827
968ea6d8 4828 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 4829
3df0fc5b 4830 printk(KERN_CONT " %s", str);
9c3f75cb 4831 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 4832 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 4833 group->sgp->power);
381512cf 4834 }
1da177e4 4835
4dcf6aff
IM
4836 group = group->next;
4837 } while (group != sd->groups);
3df0fc5b 4838 printk(KERN_CONT "\n");
1da177e4 4839
758b2cdc 4840 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 4841 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 4842
758b2cdc
RR
4843 if (sd->parent &&
4844 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
4845 printk(KERN_ERR "ERROR: parent span is not a superset "
4846 "of domain->span\n");
4dcf6aff
IM
4847 return 0;
4848}
1da177e4 4849
4dcf6aff
IM
4850static void sched_domain_debug(struct sched_domain *sd, int cpu)
4851{
4852 int level = 0;
1da177e4 4853
d039ac60 4854 if (!sched_debug_enabled)
f6630114
MT
4855 return;
4856
4dcf6aff
IM
4857 if (!sd) {
4858 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4859 return;
4860 }
1da177e4 4861
4dcf6aff
IM
4862 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4863
4864 for (;;) {
4cb98839 4865 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 4866 break;
1da177e4
LT
4867 level++;
4868 sd = sd->parent;
33859f7f 4869 if (!sd)
4dcf6aff
IM
4870 break;
4871 }
1da177e4 4872}
6d6bc0ad 4873#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 4874# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
4875static inline bool sched_debug(void)
4876{
4877 return false;
4878}
6d6bc0ad 4879#endif /* CONFIG_SCHED_DEBUG */
1da177e4 4880
1a20ff27 4881static int sd_degenerate(struct sched_domain *sd)
245af2c7 4882{
758b2cdc 4883 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
4884 return 1;
4885
4886 /* Following flags need at least 2 groups */
4887 if (sd->flags & (SD_LOAD_BALANCE |
4888 SD_BALANCE_NEWIDLE |
4889 SD_BALANCE_FORK |
89c4710e
SS
4890 SD_BALANCE_EXEC |
4891 SD_SHARE_CPUPOWER |
4892 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
4893 if (sd->groups != sd->groups->next)
4894 return 0;
4895 }
4896
4897 /* Following flags don't use groups */
c88d5910 4898 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
4899 return 0;
4900
4901 return 1;
4902}
4903
48f24c4d
IM
4904static int
4905sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
4906{
4907 unsigned long cflags = sd->flags, pflags = parent->flags;
4908
4909 if (sd_degenerate(parent))
4910 return 1;
4911
758b2cdc 4912 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
4913 return 0;
4914
245af2c7
SS
4915 /* Flags needing groups don't count if only 1 group in parent */
4916 if (parent->groups == parent->groups->next) {
4917 pflags &= ~(SD_LOAD_BALANCE |
4918 SD_BALANCE_NEWIDLE |
4919 SD_BALANCE_FORK |
89c4710e
SS
4920 SD_BALANCE_EXEC |
4921 SD_SHARE_CPUPOWER |
4922 SD_SHARE_PKG_RESOURCES);
5436499e
KC
4923 if (nr_node_ids == 1)
4924 pflags &= ~SD_SERIALIZE;
245af2c7
SS
4925 }
4926 if (~cflags & pflags)
4927 return 0;
4928
4929 return 1;
4930}
4931
dce840a0 4932static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 4933{
dce840a0 4934 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 4935
68e74568 4936 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
4937 free_cpumask_var(rd->rto_mask);
4938 free_cpumask_var(rd->online);
4939 free_cpumask_var(rd->span);
4940 kfree(rd);
4941}
4942
57d885fe
GH
4943static void rq_attach_root(struct rq *rq, struct root_domain *rd)
4944{
a0490fa3 4945 struct root_domain *old_rd = NULL;
57d885fe 4946 unsigned long flags;
57d885fe 4947
05fa785c 4948 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
4949
4950 if (rq->rd) {
a0490fa3 4951 old_rd = rq->rd;
57d885fe 4952
c6c4927b 4953 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 4954 set_rq_offline(rq);
57d885fe 4955
c6c4927b 4956 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 4957
a0490fa3
IM
4958 /*
4959 * If we dont want to free the old_rt yet then
4960 * set old_rd to NULL to skip the freeing later
4961 * in this function:
4962 */
4963 if (!atomic_dec_and_test(&old_rd->refcount))
4964 old_rd = NULL;
57d885fe
GH
4965 }
4966
4967 atomic_inc(&rd->refcount);
4968 rq->rd = rd;
4969
c6c4927b 4970 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 4971 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 4972 set_rq_online(rq);
57d885fe 4973
05fa785c 4974 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
4975
4976 if (old_rd)
dce840a0 4977 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
4978}
4979
68c38fc3 4980static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
4981{
4982 memset(rd, 0, sizeof(*rd));
4983
68c38fc3 4984 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 4985 goto out;
68c38fc3 4986 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 4987 goto free_span;
68c38fc3 4988 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 4989 goto free_online;
6e0534f2 4990
68c38fc3 4991 if (cpupri_init(&rd->cpupri) != 0)
68e74568 4992 goto free_rto_mask;
c6c4927b 4993 return 0;
6e0534f2 4994
68e74568
RR
4995free_rto_mask:
4996 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
4997free_online:
4998 free_cpumask_var(rd->online);
4999free_span:
5000 free_cpumask_var(rd->span);
0c910d28 5001out:
c6c4927b 5002 return -ENOMEM;
57d885fe
GH
5003}
5004
029632fb
PZ
5005/*
5006 * By default the system creates a single root-domain with all cpus as
5007 * members (mimicking the global state we have today).
5008 */
5009struct root_domain def_root_domain;
5010
57d885fe
GH
5011static void init_defrootdomain(void)
5012{
68c38fc3 5013 init_rootdomain(&def_root_domain);
c6c4927b 5014
57d885fe
GH
5015 atomic_set(&def_root_domain.refcount, 1);
5016}
5017
dc938520 5018static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5019{
5020 struct root_domain *rd;
5021
5022 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5023 if (!rd)
5024 return NULL;
5025
68c38fc3 5026 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5027 kfree(rd);
5028 return NULL;
5029 }
57d885fe
GH
5030
5031 return rd;
5032}
5033
e3589f6c
PZ
5034static void free_sched_groups(struct sched_group *sg, int free_sgp)
5035{
5036 struct sched_group *tmp, *first;
5037
5038 if (!sg)
5039 return;
5040
5041 first = sg;
5042 do {
5043 tmp = sg->next;
5044
5045 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5046 kfree(sg->sgp);
5047
5048 kfree(sg);
5049 sg = tmp;
5050 } while (sg != first);
5051}
5052
dce840a0
PZ
5053static void free_sched_domain(struct rcu_head *rcu)
5054{
5055 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5056
5057 /*
5058 * If its an overlapping domain it has private groups, iterate and
5059 * nuke them all.
5060 */
5061 if (sd->flags & SD_OVERLAP) {
5062 free_sched_groups(sd->groups, 1);
5063 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5064 kfree(sd->groups->sgp);
dce840a0 5065 kfree(sd->groups);
9c3f75cb 5066 }
dce840a0
PZ
5067 kfree(sd);
5068}
5069
5070static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5071{
5072 call_rcu(&sd->rcu, free_sched_domain);
5073}
5074
5075static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5076{
5077 for (; sd; sd = sd->parent)
5078 destroy_sched_domain(sd, cpu);
5079}
5080
518cd623
PZ
5081/*
5082 * Keep a special pointer to the highest sched_domain that has
5083 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5084 * allows us to avoid some pointer chasing select_idle_sibling().
5085 *
5086 * Also keep a unique ID per domain (we use the first cpu number in
5087 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5088 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5089 */
5090DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5091DEFINE_PER_CPU(int, sd_llc_id);
5092
5093static void update_top_cache_domain(int cpu)
5094{
5095 struct sched_domain *sd;
5096 int id = cpu;
5097
5098 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
37407ea7 5099 if (sd)
518cd623
PZ
5100 id = cpumask_first(sched_domain_span(sd));
5101
5102 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5103 per_cpu(sd_llc_id, cpu) = id;
5104}
5105
1da177e4 5106/*
0eab9146 5107 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5108 * hold the hotplug lock.
5109 */
0eab9146
IM
5110static void
5111cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5112{
70b97a7f 5113 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5114 struct sched_domain *tmp;
5115
5116 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5117 for (tmp = sd; tmp; ) {
245af2c7
SS
5118 struct sched_domain *parent = tmp->parent;
5119 if (!parent)
5120 break;
f29c9b1c 5121
1a848870 5122 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5123 tmp->parent = parent->parent;
1a848870
SS
5124 if (parent->parent)
5125 parent->parent->child = tmp;
dce840a0 5126 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5127 } else
5128 tmp = tmp->parent;
245af2c7
SS
5129 }
5130
1a848870 5131 if (sd && sd_degenerate(sd)) {
dce840a0 5132 tmp = sd;
245af2c7 5133 sd = sd->parent;
dce840a0 5134 destroy_sched_domain(tmp, cpu);
1a848870
SS
5135 if (sd)
5136 sd->child = NULL;
5137 }
1da177e4 5138
4cb98839 5139 sched_domain_debug(sd, cpu);
1da177e4 5140
57d885fe 5141 rq_attach_root(rq, rd);
dce840a0 5142 tmp = rq->sd;
674311d5 5143 rcu_assign_pointer(rq->sd, sd);
dce840a0 5144 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5145
5146 update_top_cache_domain(cpu);
1da177e4
LT
5147}
5148
5149/* cpus with isolated domains */
dcc30a35 5150static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5151
5152/* Setup the mask of cpus configured for isolated domains */
5153static int __init isolated_cpu_setup(char *str)
5154{
bdddd296 5155 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5156 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5157 return 1;
5158}
5159
8927f494 5160__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5161
d3081f52
PZ
5162static const struct cpumask *cpu_cpu_mask(int cpu)
5163{
5164 return cpumask_of_node(cpu_to_node(cpu));
5165}
5166
dce840a0
PZ
5167struct sd_data {
5168 struct sched_domain **__percpu sd;
5169 struct sched_group **__percpu sg;
9c3f75cb 5170 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5171};
5172
49a02c51 5173struct s_data {
21d42ccf 5174 struct sched_domain ** __percpu sd;
49a02c51
AH
5175 struct root_domain *rd;
5176};
5177
2109b99e 5178enum s_alloc {
2109b99e 5179 sa_rootdomain,
21d42ccf 5180 sa_sd,
dce840a0 5181 sa_sd_storage,
2109b99e
AH
5182 sa_none,
5183};
5184
54ab4ff4
PZ
5185struct sched_domain_topology_level;
5186
5187typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5188typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5189
e3589f6c
PZ
5190#define SDTL_OVERLAP 0x01
5191
eb7a74e6 5192struct sched_domain_topology_level {
2c402dc3
PZ
5193 sched_domain_init_f init;
5194 sched_domain_mask_f mask;
e3589f6c 5195 int flags;
cb83b629 5196 int numa_level;
54ab4ff4 5197 struct sd_data data;
eb7a74e6
PZ
5198};
5199
c1174876
PZ
5200/*
5201 * Build an iteration mask that can exclude certain CPUs from the upwards
5202 * domain traversal.
5203 *
5204 * Asymmetric node setups can result in situations where the domain tree is of
5205 * unequal depth, make sure to skip domains that already cover the entire
5206 * range.
5207 *
5208 * In that case build_sched_domains() will have terminated the iteration early
5209 * and our sibling sd spans will be empty. Domains should always include the
5210 * cpu they're built on, so check that.
5211 *
5212 */
5213static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5214{
5215 const struct cpumask *span = sched_domain_span(sd);
5216 struct sd_data *sdd = sd->private;
5217 struct sched_domain *sibling;
5218 int i;
5219
5220 for_each_cpu(i, span) {
5221 sibling = *per_cpu_ptr(sdd->sd, i);
5222 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5223 continue;
5224
5225 cpumask_set_cpu(i, sched_group_mask(sg));
5226 }
5227}
5228
5229/*
5230 * Return the canonical balance cpu for this group, this is the first cpu
5231 * of this group that's also in the iteration mask.
5232 */
5233int group_balance_cpu(struct sched_group *sg)
5234{
5235 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5236}
5237
e3589f6c
PZ
5238static int
5239build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5240{
5241 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5242 const struct cpumask *span = sched_domain_span(sd);
5243 struct cpumask *covered = sched_domains_tmpmask;
5244 struct sd_data *sdd = sd->private;
5245 struct sched_domain *child;
5246 int i;
5247
5248 cpumask_clear(covered);
5249
5250 for_each_cpu(i, span) {
5251 struct cpumask *sg_span;
5252
5253 if (cpumask_test_cpu(i, covered))
5254 continue;
5255
c1174876
PZ
5256 child = *per_cpu_ptr(sdd->sd, i);
5257
5258 /* See the comment near build_group_mask(). */
5259 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5260 continue;
5261
e3589f6c 5262 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5263 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5264
5265 if (!sg)
5266 goto fail;
5267
5268 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5269 if (child->child) {
5270 child = child->child;
5271 cpumask_copy(sg_span, sched_domain_span(child));
5272 } else
5273 cpumask_set_cpu(i, sg_span);
5274
5275 cpumask_or(covered, covered, sg_span);
5276
74a5ce20 5277 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5278 if (atomic_inc_return(&sg->sgp->ref) == 1)
5279 build_group_mask(sd, sg);
5280
c3decf0d
PZ
5281 /*
5282 * Initialize sgp->power such that even if we mess up the
5283 * domains and no possible iteration will get us here, we won't
5284 * die on a /0 trap.
5285 */
5286 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5287
c1174876
PZ
5288 /*
5289 * Make sure the first group of this domain contains the
5290 * canonical balance cpu. Otherwise the sched_domain iteration
5291 * breaks. See update_sg_lb_stats().
5292 */
74a5ce20 5293 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5294 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5295 groups = sg;
5296
5297 if (!first)
5298 first = sg;
5299 if (last)
5300 last->next = sg;
5301 last = sg;
5302 last->next = first;
5303 }
5304 sd->groups = groups;
5305
5306 return 0;
5307
5308fail:
5309 free_sched_groups(first, 0);
5310
5311 return -ENOMEM;
5312}
5313
dce840a0 5314static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5315{
dce840a0
PZ
5316 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5317 struct sched_domain *child = sd->child;
1da177e4 5318
dce840a0
PZ
5319 if (child)
5320 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5321
9c3f75cb 5322 if (sg) {
dce840a0 5323 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5324 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5325 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5326 }
dce840a0
PZ
5327
5328 return cpu;
1e9f28fa 5329}
1e9f28fa 5330
01a08546 5331/*
dce840a0
PZ
5332 * build_sched_groups will build a circular linked list of the groups
5333 * covered by the given span, and will set each group's ->cpumask correctly,
5334 * and ->cpu_power to 0.
e3589f6c
PZ
5335 *
5336 * Assumes the sched_domain tree is fully constructed
01a08546 5337 */
e3589f6c
PZ
5338static int
5339build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5340{
dce840a0
PZ
5341 struct sched_group *first = NULL, *last = NULL;
5342 struct sd_data *sdd = sd->private;
5343 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5344 struct cpumask *covered;
dce840a0 5345 int i;
9c1cfda2 5346
e3589f6c
PZ
5347 get_group(cpu, sdd, &sd->groups);
5348 atomic_inc(&sd->groups->ref);
5349
5350 if (cpu != cpumask_first(sched_domain_span(sd)))
5351 return 0;
5352
f96225fd
PZ
5353 lockdep_assert_held(&sched_domains_mutex);
5354 covered = sched_domains_tmpmask;
5355
dce840a0 5356 cpumask_clear(covered);
6711cab4 5357
dce840a0
PZ
5358 for_each_cpu(i, span) {
5359 struct sched_group *sg;
5360 int group = get_group(i, sdd, &sg);
5361 int j;
6711cab4 5362
dce840a0
PZ
5363 if (cpumask_test_cpu(i, covered))
5364 continue;
6711cab4 5365
dce840a0 5366 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5367 sg->sgp->power = 0;
c1174876 5368 cpumask_setall(sched_group_mask(sg));
0601a88d 5369
dce840a0
PZ
5370 for_each_cpu(j, span) {
5371 if (get_group(j, sdd, NULL) != group)
5372 continue;
0601a88d 5373
dce840a0
PZ
5374 cpumask_set_cpu(j, covered);
5375 cpumask_set_cpu(j, sched_group_cpus(sg));
5376 }
0601a88d 5377
dce840a0
PZ
5378 if (!first)
5379 first = sg;
5380 if (last)
5381 last->next = sg;
5382 last = sg;
5383 }
5384 last->next = first;
e3589f6c
PZ
5385
5386 return 0;
0601a88d 5387}
51888ca2 5388
89c4710e
SS
5389/*
5390 * Initialize sched groups cpu_power.
5391 *
5392 * cpu_power indicates the capacity of sched group, which is used while
5393 * distributing the load between different sched groups in a sched domain.
5394 * Typically cpu_power for all the groups in a sched domain will be same unless
5395 * there are asymmetries in the topology. If there are asymmetries, group
5396 * having more cpu_power will pickup more load compared to the group having
5397 * less cpu_power.
89c4710e
SS
5398 */
5399static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5400{
e3589f6c 5401 struct sched_group *sg = sd->groups;
89c4710e 5402
e3589f6c
PZ
5403 WARN_ON(!sd || !sg);
5404
5405 do {
5406 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5407 sg = sg->next;
5408 } while (sg != sd->groups);
89c4710e 5409
c1174876 5410 if (cpu != group_balance_cpu(sg))
e3589f6c 5411 return;
aae6d3dd 5412
d274cb30 5413 update_group_power(sd, cpu);
69e1e811 5414 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5415}
5416
029632fb
PZ
5417int __weak arch_sd_sibling_asym_packing(void)
5418{
5419 return 0*SD_ASYM_PACKING;
89c4710e
SS
5420}
5421
7c16ec58
MT
5422/*
5423 * Initializers for schedule domains
5424 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5425 */
5426
a5d8c348
IM
5427#ifdef CONFIG_SCHED_DEBUG
5428# define SD_INIT_NAME(sd, type) sd->name = #type
5429#else
5430# define SD_INIT_NAME(sd, type) do { } while (0)
5431#endif
5432
54ab4ff4
PZ
5433#define SD_INIT_FUNC(type) \
5434static noinline struct sched_domain * \
5435sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5436{ \
5437 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5438 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5439 SD_INIT_NAME(sd, type); \
5440 sd->private = &tl->data; \
5441 return sd; \
7c16ec58
MT
5442}
5443
5444SD_INIT_FUNC(CPU)
7c16ec58
MT
5445#ifdef CONFIG_SCHED_SMT
5446 SD_INIT_FUNC(SIBLING)
5447#endif
5448#ifdef CONFIG_SCHED_MC
5449 SD_INIT_FUNC(MC)
5450#endif
01a08546
HC
5451#ifdef CONFIG_SCHED_BOOK
5452 SD_INIT_FUNC(BOOK)
5453#endif
7c16ec58 5454
1d3504fc 5455static int default_relax_domain_level = -1;
60495e77 5456int sched_domain_level_max;
1d3504fc
HS
5457
5458static int __init setup_relax_domain_level(char *str)
5459{
a841f8ce
DS
5460 if (kstrtoint(str, 0, &default_relax_domain_level))
5461 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5462
1d3504fc
HS
5463 return 1;
5464}
5465__setup("relax_domain_level=", setup_relax_domain_level);
5466
5467static void set_domain_attribute(struct sched_domain *sd,
5468 struct sched_domain_attr *attr)
5469{
5470 int request;
5471
5472 if (!attr || attr->relax_domain_level < 0) {
5473 if (default_relax_domain_level < 0)
5474 return;
5475 else
5476 request = default_relax_domain_level;
5477 } else
5478 request = attr->relax_domain_level;
5479 if (request < sd->level) {
5480 /* turn off idle balance on this domain */
c88d5910 5481 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5482 } else {
5483 /* turn on idle balance on this domain */
c88d5910 5484 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5485 }
5486}
5487
54ab4ff4
PZ
5488static void __sdt_free(const struct cpumask *cpu_map);
5489static int __sdt_alloc(const struct cpumask *cpu_map);
5490
2109b99e
AH
5491static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5492 const struct cpumask *cpu_map)
5493{
5494 switch (what) {
2109b99e 5495 case sa_rootdomain:
822ff793
PZ
5496 if (!atomic_read(&d->rd->refcount))
5497 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5498 case sa_sd:
5499 free_percpu(d->sd); /* fall through */
dce840a0 5500 case sa_sd_storage:
54ab4ff4 5501 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5502 case sa_none:
5503 break;
5504 }
5505}
3404c8d9 5506
2109b99e
AH
5507static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5508 const struct cpumask *cpu_map)
5509{
dce840a0
PZ
5510 memset(d, 0, sizeof(*d));
5511
54ab4ff4
PZ
5512 if (__sdt_alloc(cpu_map))
5513 return sa_sd_storage;
dce840a0
PZ
5514 d->sd = alloc_percpu(struct sched_domain *);
5515 if (!d->sd)
5516 return sa_sd_storage;
2109b99e 5517 d->rd = alloc_rootdomain();
dce840a0 5518 if (!d->rd)
21d42ccf 5519 return sa_sd;
2109b99e
AH
5520 return sa_rootdomain;
5521}
57d885fe 5522
dce840a0
PZ
5523/*
5524 * NULL the sd_data elements we've used to build the sched_domain and
5525 * sched_group structure so that the subsequent __free_domain_allocs()
5526 * will not free the data we're using.
5527 */
5528static void claim_allocations(int cpu, struct sched_domain *sd)
5529{
5530 struct sd_data *sdd = sd->private;
dce840a0
PZ
5531
5532 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5533 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5534
e3589f6c 5535 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5536 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5537
5538 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5539 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5540}
5541
2c402dc3
PZ
5542#ifdef CONFIG_SCHED_SMT
5543static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5544{
2c402dc3 5545 return topology_thread_cpumask(cpu);
3bd65a80 5546}
2c402dc3 5547#endif
7f4588f3 5548
d069b916
PZ
5549/*
5550 * Topology list, bottom-up.
5551 */
2c402dc3 5552static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5553#ifdef CONFIG_SCHED_SMT
5554 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5555#endif
1e9f28fa 5556#ifdef CONFIG_SCHED_MC
2c402dc3 5557 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5558#endif
d069b916
PZ
5559#ifdef CONFIG_SCHED_BOOK
5560 { sd_init_BOOK, cpu_book_mask, },
5561#endif
5562 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5563 { NULL, },
5564};
5565
5566static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5567
cb83b629
PZ
5568#ifdef CONFIG_NUMA
5569
5570static int sched_domains_numa_levels;
cb83b629
PZ
5571static int *sched_domains_numa_distance;
5572static struct cpumask ***sched_domains_numa_masks;
5573static int sched_domains_curr_level;
5574
cb83b629
PZ
5575static inline int sd_local_flags(int level)
5576{
10717dcd 5577 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5578 return 0;
5579
5580 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5581}
5582
5583static struct sched_domain *
5584sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5585{
5586 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5587 int level = tl->numa_level;
5588 int sd_weight = cpumask_weight(
5589 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5590
5591 *sd = (struct sched_domain){
5592 .min_interval = sd_weight,
5593 .max_interval = 2*sd_weight,
5594 .busy_factor = 32,
870a0bb5 5595 .imbalance_pct = 125,
cb83b629
PZ
5596 .cache_nice_tries = 2,
5597 .busy_idx = 3,
5598 .idle_idx = 2,
5599 .newidle_idx = 0,
5600 .wake_idx = 0,
5601 .forkexec_idx = 0,
5602
5603 .flags = 1*SD_LOAD_BALANCE
5604 | 1*SD_BALANCE_NEWIDLE
5605 | 0*SD_BALANCE_EXEC
5606 | 0*SD_BALANCE_FORK
5607 | 0*SD_BALANCE_WAKE
5608 | 0*SD_WAKE_AFFINE
cb83b629 5609 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5610 | 0*SD_SHARE_PKG_RESOURCES
5611 | 1*SD_SERIALIZE
5612 | 0*SD_PREFER_SIBLING
5613 | sd_local_flags(level)
5614 ,
5615 .last_balance = jiffies,
5616 .balance_interval = sd_weight,
5617 };
5618 SD_INIT_NAME(sd, NUMA);
5619 sd->private = &tl->data;
5620
5621 /*
5622 * Ugly hack to pass state to sd_numa_mask()...
5623 */
5624 sched_domains_curr_level = tl->numa_level;
5625
5626 return sd;
5627}
5628
5629static const struct cpumask *sd_numa_mask(int cpu)
5630{
5631 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5632}
5633
d039ac60
PZ
5634static void sched_numa_warn(const char *str)
5635{
5636 static int done = false;
5637 int i,j;
5638
5639 if (done)
5640 return;
5641
5642 done = true;
5643
5644 printk(KERN_WARNING "ERROR: %s\n\n", str);
5645
5646 for (i = 0; i < nr_node_ids; i++) {
5647 printk(KERN_WARNING " ");
5648 for (j = 0; j < nr_node_ids; j++)
5649 printk(KERN_CONT "%02d ", node_distance(i,j));
5650 printk(KERN_CONT "\n");
5651 }
5652 printk(KERN_WARNING "\n");
5653}
5654
5655static bool find_numa_distance(int distance)
5656{
5657 int i;
5658
5659 if (distance == node_distance(0, 0))
5660 return true;
5661
5662 for (i = 0; i < sched_domains_numa_levels; i++) {
5663 if (sched_domains_numa_distance[i] == distance)
5664 return true;
5665 }
5666
5667 return false;
5668}
5669
cb83b629
PZ
5670static void sched_init_numa(void)
5671{
5672 int next_distance, curr_distance = node_distance(0, 0);
5673 struct sched_domain_topology_level *tl;
5674 int level = 0;
5675 int i, j, k;
5676
cb83b629
PZ
5677 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5678 if (!sched_domains_numa_distance)
5679 return;
5680
5681 /*
5682 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5683 * unique distances in the node_distance() table.
5684 *
5685 * Assumes node_distance(0,j) includes all distances in
5686 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5687 */
5688 next_distance = curr_distance;
5689 for (i = 0; i < nr_node_ids; i++) {
5690 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5691 for (k = 0; k < nr_node_ids; k++) {
5692 int distance = node_distance(i, k);
5693
5694 if (distance > curr_distance &&
5695 (distance < next_distance ||
5696 next_distance == curr_distance))
5697 next_distance = distance;
5698
5699 /*
5700 * While not a strong assumption it would be nice to know
5701 * about cases where if node A is connected to B, B is not
5702 * equally connected to A.
5703 */
5704 if (sched_debug() && node_distance(k, i) != distance)
5705 sched_numa_warn("Node-distance not symmetric");
5706
5707 if (sched_debug() && i && !find_numa_distance(distance))
5708 sched_numa_warn("Node-0 not representative");
5709 }
5710 if (next_distance != curr_distance) {
5711 sched_domains_numa_distance[level++] = next_distance;
5712 sched_domains_numa_levels = level;
5713 curr_distance = next_distance;
5714 } else break;
cb83b629 5715 }
d039ac60
PZ
5716
5717 /*
5718 * In case of sched_debug() we verify the above assumption.
5719 */
5720 if (!sched_debug())
5721 break;
cb83b629
PZ
5722 }
5723 /*
5724 * 'level' contains the number of unique distances, excluding the
5725 * identity distance node_distance(i,i).
5726 *
28b4a521 5727 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5728 * numbers.
5729 */
5730
5f7865f3
TC
5731 /*
5732 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5733 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5734 * the array will contain less then 'level' members. This could be
5735 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5736 * in other functions.
5737 *
5738 * We reset it to 'level' at the end of this function.
5739 */
5740 sched_domains_numa_levels = 0;
5741
cb83b629
PZ
5742 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5743 if (!sched_domains_numa_masks)
5744 return;
5745
5746 /*
5747 * Now for each level, construct a mask per node which contains all
5748 * cpus of nodes that are that many hops away from us.
5749 */
5750 for (i = 0; i < level; i++) {
5751 sched_domains_numa_masks[i] =
5752 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5753 if (!sched_domains_numa_masks[i])
5754 return;
5755
5756 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5757 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5758 if (!mask)
5759 return;
5760
5761 sched_domains_numa_masks[i][j] = mask;
5762
5763 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5764 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5765 continue;
5766
5767 cpumask_or(mask, mask, cpumask_of_node(k));
5768 }
5769 }
5770 }
5771
5772 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5773 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5774 if (!tl)
5775 return;
5776
5777 /*
5778 * Copy the default topology bits..
5779 */
5780 for (i = 0; default_topology[i].init; i++)
5781 tl[i] = default_topology[i];
5782
5783 /*
5784 * .. and append 'j' levels of NUMA goodness.
5785 */
5786 for (j = 0; j < level; i++, j++) {
5787 tl[i] = (struct sched_domain_topology_level){
5788 .init = sd_numa_init,
5789 .mask = sd_numa_mask,
5790 .flags = SDTL_OVERLAP,
5791 .numa_level = j,
5792 };
5793 }
5794
5795 sched_domain_topology = tl;
5f7865f3
TC
5796
5797 sched_domains_numa_levels = level;
cb83b629 5798}
301a5cba
TC
5799
5800static void sched_domains_numa_masks_set(int cpu)
5801{
5802 int i, j;
5803 int node = cpu_to_node(cpu);
5804
5805 for (i = 0; i < sched_domains_numa_levels; i++) {
5806 for (j = 0; j < nr_node_ids; j++) {
5807 if (node_distance(j, node) <= sched_domains_numa_distance[i])
5808 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
5809 }
5810 }
5811}
5812
5813static void sched_domains_numa_masks_clear(int cpu)
5814{
5815 int i, j;
5816 for (i = 0; i < sched_domains_numa_levels; i++) {
5817 for (j = 0; j < nr_node_ids; j++)
5818 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
5819 }
5820}
5821
5822/*
5823 * Update sched_domains_numa_masks[level][node] array when new cpus
5824 * are onlined.
5825 */
5826static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5827 unsigned long action,
5828 void *hcpu)
5829{
5830 int cpu = (long)hcpu;
5831
5832 switch (action & ~CPU_TASKS_FROZEN) {
5833 case CPU_ONLINE:
5834 sched_domains_numa_masks_set(cpu);
5835 break;
5836
5837 case CPU_DEAD:
5838 sched_domains_numa_masks_clear(cpu);
5839 break;
5840
5841 default:
5842 return NOTIFY_DONE;
5843 }
5844
5845 return NOTIFY_OK;
cb83b629
PZ
5846}
5847#else
5848static inline void sched_init_numa(void)
5849{
5850}
301a5cba
TC
5851
5852static int sched_domains_numa_masks_update(struct notifier_block *nfb,
5853 unsigned long action,
5854 void *hcpu)
5855{
5856 return 0;
5857}
cb83b629
PZ
5858#endif /* CONFIG_NUMA */
5859
54ab4ff4
PZ
5860static int __sdt_alloc(const struct cpumask *cpu_map)
5861{
5862 struct sched_domain_topology_level *tl;
5863 int j;
5864
5865 for (tl = sched_domain_topology; tl->init; tl++) {
5866 struct sd_data *sdd = &tl->data;
5867
5868 sdd->sd = alloc_percpu(struct sched_domain *);
5869 if (!sdd->sd)
5870 return -ENOMEM;
5871
5872 sdd->sg = alloc_percpu(struct sched_group *);
5873 if (!sdd->sg)
5874 return -ENOMEM;
5875
9c3f75cb
PZ
5876 sdd->sgp = alloc_percpu(struct sched_group_power *);
5877 if (!sdd->sgp)
5878 return -ENOMEM;
5879
54ab4ff4
PZ
5880 for_each_cpu(j, cpu_map) {
5881 struct sched_domain *sd;
5882 struct sched_group *sg;
9c3f75cb 5883 struct sched_group_power *sgp;
54ab4ff4
PZ
5884
5885 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
5886 GFP_KERNEL, cpu_to_node(j));
5887 if (!sd)
5888 return -ENOMEM;
5889
5890 *per_cpu_ptr(sdd->sd, j) = sd;
5891
5892 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5893 GFP_KERNEL, cpu_to_node(j));
5894 if (!sg)
5895 return -ENOMEM;
5896
30b4e9eb
IM
5897 sg->next = sg;
5898
54ab4ff4 5899 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 5900
c1174876 5901 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
5902 GFP_KERNEL, cpu_to_node(j));
5903 if (!sgp)
5904 return -ENOMEM;
5905
5906 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
5907 }
5908 }
5909
5910 return 0;
5911}
5912
5913static void __sdt_free(const struct cpumask *cpu_map)
5914{
5915 struct sched_domain_topology_level *tl;
5916 int j;
5917
5918 for (tl = sched_domain_topology; tl->init; tl++) {
5919 struct sd_data *sdd = &tl->data;
5920
5921 for_each_cpu(j, cpu_map) {
fb2cf2c6 5922 struct sched_domain *sd;
5923
5924 if (sdd->sd) {
5925 sd = *per_cpu_ptr(sdd->sd, j);
5926 if (sd && (sd->flags & SD_OVERLAP))
5927 free_sched_groups(sd->groups, 0);
5928 kfree(*per_cpu_ptr(sdd->sd, j));
5929 }
5930
5931 if (sdd->sg)
5932 kfree(*per_cpu_ptr(sdd->sg, j));
5933 if (sdd->sgp)
5934 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
5935 }
5936 free_percpu(sdd->sd);
fb2cf2c6 5937 sdd->sd = NULL;
54ab4ff4 5938 free_percpu(sdd->sg);
fb2cf2c6 5939 sdd->sg = NULL;
9c3f75cb 5940 free_percpu(sdd->sgp);
fb2cf2c6 5941 sdd->sgp = NULL;
54ab4ff4
PZ
5942 }
5943}
5944
2c402dc3
PZ
5945struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
5946 struct s_data *d, const struct cpumask *cpu_map,
d069b916 5947 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
5948 int cpu)
5949{
54ab4ff4 5950 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 5951 if (!sd)
d069b916 5952 return child;
2c402dc3 5953
2c402dc3 5954 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
5955 if (child) {
5956 sd->level = child->level + 1;
5957 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 5958 child->parent = sd;
60495e77 5959 }
d069b916 5960 sd->child = child;
a841f8ce 5961 set_domain_attribute(sd, attr);
2c402dc3
PZ
5962
5963 return sd;
5964}
5965
2109b99e
AH
5966/*
5967 * Build sched domains for a given set of cpus and attach the sched domains
5968 * to the individual cpus
5969 */
dce840a0
PZ
5970static int build_sched_domains(const struct cpumask *cpu_map,
5971 struct sched_domain_attr *attr)
2109b99e
AH
5972{
5973 enum s_alloc alloc_state = sa_none;
dce840a0 5974 struct sched_domain *sd;
2109b99e 5975 struct s_data d;
822ff793 5976 int i, ret = -ENOMEM;
9c1cfda2 5977
2109b99e
AH
5978 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
5979 if (alloc_state != sa_rootdomain)
5980 goto error;
9c1cfda2 5981
dce840a0 5982 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 5983 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
5984 struct sched_domain_topology_level *tl;
5985
3bd65a80 5986 sd = NULL;
e3589f6c 5987 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 5988 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
5989 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
5990 sd->flags |= SD_OVERLAP;
d110235d
PZ
5991 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
5992 break;
e3589f6c 5993 }
d274cb30 5994
d069b916
PZ
5995 while (sd->child)
5996 sd = sd->child;
5997
21d42ccf 5998 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
5999 }
6000
6001 /* Build the groups for the domains */
6002 for_each_cpu(i, cpu_map) {
6003 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6004 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6005 if (sd->flags & SD_OVERLAP) {
6006 if (build_overlap_sched_groups(sd, i))
6007 goto error;
6008 } else {
6009 if (build_sched_groups(sd, i))
6010 goto error;
6011 }
1cf51902 6012 }
a06dadbe 6013 }
9c1cfda2 6014
1da177e4 6015 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6016 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6017 if (!cpumask_test_cpu(i, cpu_map))
6018 continue;
9c1cfda2 6019
dce840a0
PZ
6020 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6021 claim_allocations(i, sd);
cd4ea6ae 6022 init_sched_groups_power(i, sd);
dce840a0 6023 }
f712c0c7 6024 }
9c1cfda2 6025
1da177e4 6026 /* Attach the domains */
dce840a0 6027 rcu_read_lock();
abcd083a 6028 for_each_cpu(i, cpu_map) {
21d42ccf 6029 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6030 cpu_attach_domain(sd, d.rd, i);
1da177e4 6031 }
dce840a0 6032 rcu_read_unlock();
51888ca2 6033
822ff793 6034 ret = 0;
51888ca2 6035error:
2109b99e 6036 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6037 return ret;
1da177e4 6038}
029190c5 6039
acc3f5d7 6040static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6041static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6042static struct sched_domain_attr *dattr_cur;
6043 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6044
6045/*
6046 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6047 * cpumask) fails, then fallback to a single sched domain,
6048 * as determined by the single cpumask fallback_doms.
029190c5 6049 */
4212823f 6050static cpumask_var_t fallback_doms;
029190c5 6051
ee79d1bd
HC
6052/*
6053 * arch_update_cpu_topology lets virtualized architectures update the
6054 * cpu core maps. It is supposed to return 1 if the topology changed
6055 * or 0 if it stayed the same.
6056 */
6057int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6058{
ee79d1bd 6059 return 0;
22e52b07
HC
6060}
6061
acc3f5d7
RR
6062cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6063{
6064 int i;
6065 cpumask_var_t *doms;
6066
6067 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6068 if (!doms)
6069 return NULL;
6070 for (i = 0; i < ndoms; i++) {
6071 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6072 free_sched_domains(doms, i);
6073 return NULL;
6074 }
6075 }
6076 return doms;
6077}
6078
6079void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6080{
6081 unsigned int i;
6082 for (i = 0; i < ndoms; i++)
6083 free_cpumask_var(doms[i]);
6084 kfree(doms);
6085}
6086
1a20ff27 6087/*
41a2d6cf 6088 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6089 * For now this just excludes isolated cpus, but could be used to
6090 * exclude other special cases in the future.
1a20ff27 6091 */
c4a8849a 6092static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6093{
7378547f
MM
6094 int err;
6095
22e52b07 6096 arch_update_cpu_topology();
029190c5 6097 ndoms_cur = 1;
acc3f5d7 6098 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6099 if (!doms_cur)
acc3f5d7
RR
6100 doms_cur = &fallback_doms;
6101 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6102 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6103 register_sched_domain_sysctl();
7378547f
MM
6104
6105 return err;
1a20ff27
DG
6106}
6107
1a20ff27
DG
6108/*
6109 * Detach sched domains from a group of cpus specified in cpu_map
6110 * These cpus will now be attached to the NULL domain
6111 */
96f874e2 6112static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6113{
6114 int i;
6115
dce840a0 6116 rcu_read_lock();
abcd083a 6117 for_each_cpu(i, cpu_map)
57d885fe 6118 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6119 rcu_read_unlock();
1a20ff27
DG
6120}
6121
1d3504fc
HS
6122/* handle null as "default" */
6123static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6124 struct sched_domain_attr *new, int idx_new)
6125{
6126 struct sched_domain_attr tmp;
6127
6128 /* fast path */
6129 if (!new && !cur)
6130 return 1;
6131
6132 tmp = SD_ATTR_INIT;
6133 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6134 new ? (new + idx_new) : &tmp,
6135 sizeof(struct sched_domain_attr));
6136}
6137
029190c5
PJ
6138/*
6139 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6140 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6141 * doms_new[] to the current sched domain partitioning, doms_cur[].
6142 * It destroys each deleted domain and builds each new domain.
6143 *
acc3f5d7 6144 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6145 * The masks don't intersect (don't overlap.) We should setup one
6146 * sched domain for each mask. CPUs not in any of the cpumasks will
6147 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6148 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6149 * it as it is.
6150 *
acc3f5d7
RR
6151 * The passed in 'doms_new' should be allocated using
6152 * alloc_sched_domains. This routine takes ownership of it and will
6153 * free_sched_domains it when done with it. If the caller failed the
6154 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6155 * and partition_sched_domains() will fallback to the single partition
6156 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6157 *
96f874e2 6158 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6159 * ndoms_new == 0 is a special case for destroying existing domains,
6160 * and it will not create the default domain.
dfb512ec 6161 *
029190c5
PJ
6162 * Call with hotplug lock held
6163 */
acc3f5d7 6164void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6165 struct sched_domain_attr *dattr_new)
029190c5 6166{
dfb512ec 6167 int i, j, n;
d65bd5ec 6168 int new_topology;
029190c5 6169
712555ee 6170 mutex_lock(&sched_domains_mutex);
a1835615 6171
7378547f
MM
6172 /* always unregister in case we don't destroy any domains */
6173 unregister_sched_domain_sysctl();
6174
d65bd5ec
HC
6175 /* Let architecture update cpu core mappings. */
6176 new_topology = arch_update_cpu_topology();
6177
dfb512ec 6178 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6179
6180 /* Destroy deleted domains */
6181 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6182 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6183 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6184 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6185 goto match1;
6186 }
6187 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6188 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6189match1:
6190 ;
6191 }
6192
e761b772
MK
6193 if (doms_new == NULL) {
6194 ndoms_cur = 0;
acc3f5d7 6195 doms_new = &fallback_doms;
6ad4c188 6196 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6197 WARN_ON_ONCE(dattr_new);
e761b772
MK
6198 }
6199
029190c5
PJ
6200 /* Build new domains */
6201 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6202 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6203 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6204 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6205 goto match2;
6206 }
6207 /* no match - add a new doms_new */
dce840a0 6208 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6209match2:
6210 ;
6211 }
6212
6213 /* Remember the new sched domains */
acc3f5d7
RR
6214 if (doms_cur != &fallback_doms)
6215 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6216 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6217 doms_cur = doms_new;
1d3504fc 6218 dattr_cur = dattr_new;
029190c5 6219 ndoms_cur = ndoms_new;
7378547f
MM
6220
6221 register_sched_domain_sysctl();
a1835615 6222
712555ee 6223 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6224}
6225
d35be8ba
SB
6226static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6227
1da177e4 6228/*
3a101d05
TH
6229 * Update cpusets according to cpu_active mask. If cpusets are
6230 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6231 * around partition_sched_domains().
d35be8ba
SB
6232 *
6233 * If we come here as part of a suspend/resume, don't touch cpusets because we
6234 * want to restore it back to its original state upon resume anyway.
1da177e4 6235 */
0b2e918a
TH
6236static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6237 void *hcpu)
e761b772 6238{
d35be8ba
SB
6239 switch (action) {
6240 case CPU_ONLINE_FROZEN:
6241 case CPU_DOWN_FAILED_FROZEN:
6242
6243 /*
6244 * num_cpus_frozen tracks how many CPUs are involved in suspend
6245 * resume sequence. As long as this is not the last online
6246 * operation in the resume sequence, just build a single sched
6247 * domain, ignoring cpusets.
6248 */
6249 num_cpus_frozen--;
6250 if (likely(num_cpus_frozen)) {
6251 partition_sched_domains(1, NULL, NULL);
6252 break;
6253 }
6254
6255 /*
6256 * This is the last CPU online operation. So fall through and
6257 * restore the original sched domains by considering the
6258 * cpuset configurations.
6259 */
6260
e761b772 6261 case CPU_ONLINE:
6ad4c188 6262 case CPU_DOWN_FAILED:
7ddf96b0 6263 cpuset_update_active_cpus(true);
d35be8ba 6264 break;
3a101d05
TH
6265 default:
6266 return NOTIFY_DONE;
6267 }
d35be8ba 6268 return NOTIFY_OK;
3a101d05 6269}
e761b772 6270
0b2e918a
TH
6271static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6272 void *hcpu)
3a101d05 6273{
d35be8ba 6274 switch (action) {
3a101d05 6275 case CPU_DOWN_PREPARE:
7ddf96b0 6276 cpuset_update_active_cpus(false);
d35be8ba
SB
6277 break;
6278 case CPU_DOWN_PREPARE_FROZEN:
6279 num_cpus_frozen++;
6280 partition_sched_domains(1, NULL, NULL);
6281 break;
e761b772
MK
6282 default:
6283 return NOTIFY_DONE;
6284 }
d35be8ba 6285 return NOTIFY_OK;
e761b772 6286}
e761b772 6287
1da177e4
LT
6288void __init sched_init_smp(void)
6289{
dcc30a35
RR
6290 cpumask_var_t non_isolated_cpus;
6291
6292 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6293 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6294
cb83b629
PZ
6295 sched_init_numa();
6296
95402b38 6297 get_online_cpus();
712555ee 6298 mutex_lock(&sched_domains_mutex);
c4a8849a 6299 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6300 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6301 if (cpumask_empty(non_isolated_cpus))
6302 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6303 mutex_unlock(&sched_domains_mutex);
95402b38 6304 put_online_cpus();
e761b772 6305
301a5cba 6306 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6307 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6308 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6309
b328ca18 6310 init_hrtick();
5c1e1767
NP
6311
6312 /* Move init over to a non-isolated CPU */
dcc30a35 6313 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6314 BUG();
19978ca6 6315 sched_init_granularity();
dcc30a35 6316 free_cpumask_var(non_isolated_cpus);
4212823f 6317
0e3900e6 6318 init_sched_rt_class();
1da177e4
LT
6319}
6320#else
6321void __init sched_init_smp(void)
6322{
19978ca6 6323 sched_init_granularity();
1da177e4
LT
6324}
6325#endif /* CONFIG_SMP */
6326
cd1bb94b
AB
6327const_debug unsigned int sysctl_timer_migration = 1;
6328
1da177e4
LT
6329int in_sched_functions(unsigned long addr)
6330{
1da177e4
LT
6331 return in_lock_functions(addr) ||
6332 (addr >= (unsigned long)__sched_text_start
6333 && addr < (unsigned long)__sched_text_end);
6334}
6335
029632fb 6336#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6337/*
6338 * Default task group.
6339 * Every task in system belongs to this group at bootup.
6340 */
029632fb 6341struct task_group root_task_group;
35cf4e50 6342LIST_HEAD(task_groups);
052f1dc7 6343#endif
6f505b16 6344
e6252c3e 6345DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6346
1da177e4
LT
6347void __init sched_init(void)
6348{
dd41f596 6349 int i, j;
434d53b0
MT
6350 unsigned long alloc_size = 0, ptr;
6351
6352#ifdef CONFIG_FAIR_GROUP_SCHED
6353 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6354#endif
6355#ifdef CONFIG_RT_GROUP_SCHED
6356 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6357#endif
df7c8e84 6358#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6359 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6360#endif
434d53b0 6361 if (alloc_size) {
36b7b6d4 6362 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6363
6364#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6365 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6366 ptr += nr_cpu_ids * sizeof(void **);
6367
07e06b01 6368 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6369 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6370
6d6bc0ad 6371#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6372#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6373 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6374 ptr += nr_cpu_ids * sizeof(void **);
6375
07e06b01 6376 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6377 ptr += nr_cpu_ids * sizeof(void **);
6378
6d6bc0ad 6379#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6380#ifdef CONFIG_CPUMASK_OFFSTACK
6381 for_each_possible_cpu(i) {
e6252c3e 6382 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6383 ptr += cpumask_size();
6384 }
6385#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6386 }
dd41f596 6387
57d885fe
GH
6388#ifdef CONFIG_SMP
6389 init_defrootdomain();
6390#endif
6391
d0b27fa7
PZ
6392 init_rt_bandwidth(&def_rt_bandwidth,
6393 global_rt_period(), global_rt_runtime());
6394
6395#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6396 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6397 global_rt_period(), global_rt_runtime());
6d6bc0ad 6398#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6399
7c941438 6400#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6401 list_add(&root_task_group.list, &task_groups);
6402 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6403 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6404 autogroup_init(&init_task);
54c707e9 6405
7c941438 6406#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6407
0a945022 6408 for_each_possible_cpu(i) {
70b97a7f 6409 struct rq *rq;
1da177e4
LT
6410
6411 rq = cpu_rq(i);
05fa785c 6412 raw_spin_lock_init(&rq->lock);
7897986b 6413 rq->nr_running = 0;
dce48a84
TG
6414 rq->calc_load_active = 0;
6415 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6416 init_cfs_rq(&rq->cfs);
6f505b16 6417 init_rt_rq(&rq->rt, rq);
dd41f596 6418#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6419 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6420 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6421 /*
07e06b01 6422 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6423 *
6424 * In case of task-groups formed thr' the cgroup filesystem, it
6425 * gets 100% of the cpu resources in the system. This overall
6426 * system cpu resource is divided among the tasks of
07e06b01 6427 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6428 * based on each entity's (task or task-group's) weight
6429 * (se->load.weight).
6430 *
07e06b01 6431 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6432 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6433 * then A0's share of the cpu resource is:
6434 *
0d905bca 6435 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6436 *
07e06b01
YZ
6437 * We achieve this by letting root_task_group's tasks sit
6438 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6439 */
ab84d31e 6440 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6441 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6442#endif /* CONFIG_FAIR_GROUP_SCHED */
6443
6444 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6445#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6446 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6447 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6448#endif
1da177e4 6449
dd41f596
IM
6450 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6451 rq->cpu_load[j] = 0;
fdf3e95d
VP
6452
6453 rq->last_load_update_tick = jiffies;
6454
1da177e4 6455#ifdef CONFIG_SMP
41c7ce9a 6456 rq->sd = NULL;
57d885fe 6457 rq->rd = NULL;
1399fa78 6458 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6459 rq->post_schedule = 0;
1da177e4 6460 rq->active_balance = 0;
dd41f596 6461 rq->next_balance = jiffies;
1da177e4 6462 rq->push_cpu = 0;
0a2966b4 6463 rq->cpu = i;
1f11eb6a 6464 rq->online = 0;
eae0c9df
MG
6465 rq->idle_stamp = 0;
6466 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
6467
6468 INIT_LIST_HEAD(&rq->cfs_tasks);
6469
dc938520 6470 rq_attach_root(rq, &def_root_domain);
3451d024 6471#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6472 rq->nohz_flags = 0;
83cd4fe2 6473#endif
265f22a9
FW
6474#ifdef CONFIG_NO_HZ_FULL
6475 rq->last_sched_tick = 0;
6476#endif
1da177e4 6477#endif
8f4d37ec 6478 init_rq_hrtick(rq);
1da177e4 6479 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6480 }
6481
2dd73a4f 6482 set_load_weight(&init_task);
b50f60ce 6483
e107be36
AK
6484#ifdef CONFIG_PREEMPT_NOTIFIERS
6485 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6486#endif
6487
b50f60ce 6488#ifdef CONFIG_RT_MUTEXES
732375c6 6489 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6490#endif
6491
1da177e4
LT
6492 /*
6493 * The boot idle thread does lazy MMU switching as well:
6494 */
6495 atomic_inc(&init_mm.mm_count);
6496 enter_lazy_tlb(&init_mm, current);
6497
6498 /*
6499 * Make us the idle thread. Technically, schedule() should not be
6500 * called from this thread, however somewhere below it might be,
6501 * but because we are the idle thread, we just pick up running again
6502 * when this runqueue becomes "idle".
6503 */
6504 init_idle(current, smp_processor_id());
dce48a84
TG
6505
6506 calc_load_update = jiffies + LOAD_FREQ;
6507
dd41f596
IM
6508 /*
6509 * During early bootup we pretend to be a normal task:
6510 */
6511 current->sched_class = &fair_sched_class;
6892b75e 6512
bf4d83f6 6513#ifdef CONFIG_SMP
4cb98839 6514 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6515 /* May be allocated at isolcpus cmdline parse time */
6516 if (cpu_isolated_map == NULL)
6517 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6518 idle_thread_set_boot_cpu();
029632fb
PZ
6519#endif
6520 init_sched_fair_class();
6a7b3dc3 6521
6892b75e 6522 scheduler_running = 1;
1da177e4
LT
6523}
6524
d902db1e 6525#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6526static inline int preempt_count_equals(int preempt_offset)
6527{
234da7bc 6528 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6529
4ba8216c 6530 return (nested == preempt_offset);
e4aafea2
FW
6531}
6532
d894837f 6533void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6534{
1da177e4
LT
6535 static unsigned long prev_jiffy; /* ratelimiting */
6536
b3fbab05 6537 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6538 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6539 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6540 return;
6541 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6542 return;
6543 prev_jiffy = jiffies;
6544
3df0fc5b
PZ
6545 printk(KERN_ERR
6546 "BUG: sleeping function called from invalid context at %s:%d\n",
6547 file, line);
6548 printk(KERN_ERR
6549 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6550 in_atomic(), irqs_disabled(),
6551 current->pid, current->comm);
aef745fc
IM
6552
6553 debug_show_held_locks(current);
6554 if (irqs_disabled())
6555 print_irqtrace_events(current);
6556 dump_stack();
1da177e4
LT
6557}
6558EXPORT_SYMBOL(__might_sleep);
6559#endif
6560
6561#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6562static void normalize_task(struct rq *rq, struct task_struct *p)
6563{
da7a735e
PZ
6564 const struct sched_class *prev_class = p->sched_class;
6565 int old_prio = p->prio;
3a5e4dc1 6566 int on_rq;
3e51f33f 6567
fd2f4419 6568 on_rq = p->on_rq;
3a5e4dc1 6569 if (on_rq)
4ca9b72b 6570 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6571 __setscheduler(rq, p, SCHED_NORMAL, 0);
6572 if (on_rq) {
4ca9b72b 6573 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6574 resched_task(rq->curr);
6575 }
da7a735e
PZ
6576
6577 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6578}
6579
1da177e4
LT
6580void normalize_rt_tasks(void)
6581{
a0f98a1c 6582 struct task_struct *g, *p;
1da177e4 6583 unsigned long flags;
70b97a7f 6584 struct rq *rq;
1da177e4 6585
4cf5d77a 6586 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6587 do_each_thread(g, p) {
178be793
IM
6588 /*
6589 * Only normalize user tasks:
6590 */
6591 if (!p->mm)
6592 continue;
6593
6cfb0d5d 6594 p->se.exec_start = 0;
6cfb0d5d 6595#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6596 p->se.statistics.wait_start = 0;
6597 p->se.statistics.sleep_start = 0;
6598 p->se.statistics.block_start = 0;
6cfb0d5d 6599#endif
dd41f596
IM
6600
6601 if (!rt_task(p)) {
6602 /*
6603 * Renice negative nice level userspace
6604 * tasks back to 0:
6605 */
6606 if (TASK_NICE(p) < 0 && p->mm)
6607 set_user_nice(p, 0);
1da177e4 6608 continue;
dd41f596 6609 }
1da177e4 6610
1d615482 6611 raw_spin_lock(&p->pi_lock);
b29739f9 6612 rq = __task_rq_lock(p);
1da177e4 6613
178be793 6614 normalize_task(rq, p);
3a5e4dc1 6615
b29739f9 6616 __task_rq_unlock(rq);
1d615482 6617 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6618 } while_each_thread(g, p);
6619
4cf5d77a 6620 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6621}
6622
6623#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6624
67fc4e0c 6625#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6626/*
67fc4e0c 6627 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6628 *
6629 * They can only be called when the whole system has been
6630 * stopped - every CPU needs to be quiescent, and no scheduling
6631 * activity can take place. Using them for anything else would
6632 * be a serious bug, and as a result, they aren't even visible
6633 * under any other configuration.
6634 */
6635
6636/**
6637 * curr_task - return the current task for a given cpu.
6638 * @cpu: the processor in question.
6639 *
6640 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6641 */
36c8b586 6642struct task_struct *curr_task(int cpu)
1df5c10a
LT
6643{
6644 return cpu_curr(cpu);
6645}
6646
67fc4e0c
JW
6647#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6648
6649#ifdef CONFIG_IA64
1df5c10a
LT
6650/**
6651 * set_curr_task - set the current task for a given cpu.
6652 * @cpu: the processor in question.
6653 * @p: the task pointer to set.
6654 *
6655 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6656 * are serviced on a separate stack. It allows the architecture to switch the
6657 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6658 * must be called with all CPU's synchronized, and interrupts disabled, the
6659 * and caller must save the original value of the current task (see
6660 * curr_task() above) and restore that value before reenabling interrupts and
6661 * re-starting the system.
6662 *
6663 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6664 */
36c8b586 6665void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6666{
6667 cpu_curr(cpu) = p;
6668}
6669
6670#endif
29f59db3 6671
7c941438 6672#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6673/* task_group_lock serializes the addition/removal of task groups */
6674static DEFINE_SPINLOCK(task_group_lock);
6675
bccbe08a
PZ
6676static void free_sched_group(struct task_group *tg)
6677{
6678 free_fair_sched_group(tg);
6679 free_rt_sched_group(tg);
e9aa1dd1 6680 autogroup_free(tg);
bccbe08a
PZ
6681 kfree(tg);
6682}
6683
6684/* allocate runqueue etc for a new task group */
ec7dc8ac 6685struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6686{
6687 struct task_group *tg;
bccbe08a
PZ
6688
6689 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6690 if (!tg)
6691 return ERR_PTR(-ENOMEM);
6692
ec7dc8ac 6693 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6694 goto err;
6695
ec7dc8ac 6696 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6697 goto err;
6698
ace783b9
LZ
6699 return tg;
6700
6701err:
6702 free_sched_group(tg);
6703 return ERR_PTR(-ENOMEM);
6704}
6705
6706void sched_online_group(struct task_group *tg, struct task_group *parent)
6707{
6708 unsigned long flags;
6709
8ed36996 6710 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6711 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6712
6713 WARN_ON(!parent); /* root should already exist */
6714
6715 tg->parent = parent;
f473aa5e 6716 INIT_LIST_HEAD(&tg->children);
09f2724a 6717 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6718 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6719}
6720
9b5b7751 6721/* rcu callback to free various structures associated with a task group */
6f505b16 6722static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6723{
29f59db3 6724 /* now it should be safe to free those cfs_rqs */
6f505b16 6725 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6726}
6727
9b5b7751 6728/* Destroy runqueue etc associated with a task group */
4cf86d77 6729void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6730{
6731 /* wait for possible concurrent references to cfs_rqs complete */
6732 call_rcu(&tg->rcu, free_sched_group_rcu);
6733}
6734
6735void sched_offline_group(struct task_group *tg)
29f59db3 6736{
8ed36996 6737 unsigned long flags;
9b5b7751 6738 int i;
29f59db3 6739
3d4b47b4
PZ
6740 /* end participation in shares distribution */
6741 for_each_possible_cpu(i)
bccbe08a 6742 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6743
6744 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6745 list_del_rcu(&tg->list);
f473aa5e 6746 list_del_rcu(&tg->siblings);
8ed36996 6747 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6748}
6749
9b5b7751 6750/* change task's runqueue when it moves between groups.
3a252015
IM
6751 * The caller of this function should have put the task in its new group
6752 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6753 * reflect its new group.
9b5b7751
SV
6754 */
6755void sched_move_task(struct task_struct *tsk)
29f59db3 6756{
8323f26c 6757 struct task_group *tg;
29f59db3
SV
6758 int on_rq, running;
6759 unsigned long flags;
6760 struct rq *rq;
6761
6762 rq = task_rq_lock(tsk, &flags);
6763
051a1d1a 6764 running = task_current(rq, tsk);
fd2f4419 6765 on_rq = tsk->on_rq;
29f59db3 6766
0e1f3483 6767 if (on_rq)
29f59db3 6768 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6769 if (unlikely(running))
6770 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6771
8323f26c
PZ
6772 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
6773 lockdep_is_held(&tsk->sighand->siglock)),
6774 struct task_group, css);
6775 tg = autogroup_task_group(tsk, tg);
6776 tsk->sched_task_group = tg;
6777
810b3817 6778#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6779 if (tsk->sched_class->task_move_group)
6780 tsk->sched_class->task_move_group(tsk, on_rq);
6781 else
810b3817 6782#endif
b2b5ce02 6783 set_task_rq(tsk, task_cpu(tsk));
810b3817 6784
0e1f3483
HS
6785 if (unlikely(running))
6786 tsk->sched_class->set_curr_task(rq);
6787 if (on_rq)
371fd7e7 6788 enqueue_task(rq, tsk, 0);
29f59db3 6789
0122ec5b 6790 task_rq_unlock(rq, tsk, &flags);
29f59db3 6791}
7c941438 6792#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6793
a790de99 6794#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6795static unsigned long to_ratio(u64 period, u64 runtime)
6796{
6797 if (runtime == RUNTIME_INF)
9a7e0b18 6798 return 1ULL << 20;
9f0c1e56 6799
9a7e0b18 6800 return div64_u64(runtime << 20, period);
9f0c1e56 6801}
a790de99
PT
6802#endif
6803
6804#ifdef CONFIG_RT_GROUP_SCHED
6805/*
6806 * Ensure that the real time constraints are schedulable.
6807 */
6808static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 6809
9a7e0b18
PZ
6810/* Must be called with tasklist_lock held */
6811static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 6812{
9a7e0b18 6813 struct task_struct *g, *p;
b40b2e8e 6814
9a7e0b18 6815 do_each_thread(g, p) {
029632fb 6816 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
6817 return 1;
6818 } while_each_thread(g, p);
b40b2e8e 6819
9a7e0b18
PZ
6820 return 0;
6821}
b40b2e8e 6822
9a7e0b18
PZ
6823struct rt_schedulable_data {
6824 struct task_group *tg;
6825 u64 rt_period;
6826 u64 rt_runtime;
6827};
b40b2e8e 6828
a790de99 6829static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
6830{
6831 struct rt_schedulable_data *d = data;
6832 struct task_group *child;
6833 unsigned long total, sum = 0;
6834 u64 period, runtime;
b40b2e8e 6835
9a7e0b18
PZ
6836 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6837 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 6838
9a7e0b18
PZ
6839 if (tg == d->tg) {
6840 period = d->rt_period;
6841 runtime = d->rt_runtime;
b40b2e8e 6842 }
b40b2e8e 6843
4653f803
PZ
6844 /*
6845 * Cannot have more runtime than the period.
6846 */
6847 if (runtime > period && runtime != RUNTIME_INF)
6848 return -EINVAL;
6f505b16 6849
4653f803
PZ
6850 /*
6851 * Ensure we don't starve existing RT tasks.
6852 */
9a7e0b18
PZ
6853 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
6854 return -EBUSY;
6f505b16 6855
9a7e0b18 6856 total = to_ratio(period, runtime);
6f505b16 6857
4653f803
PZ
6858 /*
6859 * Nobody can have more than the global setting allows.
6860 */
6861 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
6862 return -EINVAL;
6f505b16 6863
4653f803
PZ
6864 /*
6865 * The sum of our children's runtime should not exceed our own.
6866 */
9a7e0b18
PZ
6867 list_for_each_entry_rcu(child, &tg->children, siblings) {
6868 period = ktime_to_ns(child->rt_bandwidth.rt_period);
6869 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 6870
9a7e0b18
PZ
6871 if (child == d->tg) {
6872 period = d->rt_period;
6873 runtime = d->rt_runtime;
6874 }
6f505b16 6875
9a7e0b18 6876 sum += to_ratio(period, runtime);
9f0c1e56 6877 }
6f505b16 6878
9a7e0b18
PZ
6879 if (sum > total)
6880 return -EINVAL;
6881
6882 return 0;
6f505b16
PZ
6883}
6884
9a7e0b18 6885static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 6886{
8277434e
PT
6887 int ret;
6888
9a7e0b18
PZ
6889 struct rt_schedulable_data data = {
6890 .tg = tg,
6891 .rt_period = period,
6892 .rt_runtime = runtime,
6893 };
6894
8277434e
PT
6895 rcu_read_lock();
6896 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
6897 rcu_read_unlock();
6898
6899 return ret;
521f1a24
DG
6900}
6901
ab84d31e 6902static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 6903 u64 rt_period, u64 rt_runtime)
6f505b16 6904{
ac086bc2 6905 int i, err = 0;
9f0c1e56 6906
9f0c1e56 6907 mutex_lock(&rt_constraints_mutex);
521f1a24 6908 read_lock(&tasklist_lock);
9a7e0b18
PZ
6909 err = __rt_schedulable(tg, rt_period, rt_runtime);
6910 if (err)
9f0c1e56 6911 goto unlock;
ac086bc2 6912
0986b11b 6913 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
6914 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
6915 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
6916
6917 for_each_possible_cpu(i) {
6918 struct rt_rq *rt_rq = tg->rt_rq[i];
6919
0986b11b 6920 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 6921 rt_rq->rt_runtime = rt_runtime;
0986b11b 6922 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 6923 }
0986b11b 6924 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 6925unlock:
521f1a24 6926 read_unlock(&tasklist_lock);
9f0c1e56
PZ
6927 mutex_unlock(&rt_constraints_mutex);
6928
6929 return err;
6f505b16
PZ
6930}
6931
25cc7da7 6932static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
6933{
6934 u64 rt_runtime, rt_period;
6935
6936 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
6937 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
6938 if (rt_runtime_us < 0)
6939 rt_runtime = RUNTIME_INF;
6940
ab84d31e 6941 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6942}
6943
25cc7da7 6944static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
6945{
6946 u64 rt_runtime_us;
6947
d0b27fa7 6948 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
6949 return -1;
6950
d0b27fa7 6951 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
6952 do_div(rt_runtime_us, NSEC_PER_USEC);
6953 return rt_runtime_us;
6954}
d0b27fa7 6955
25cc7da7 6956static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
6957{
6958 u64 rt_runtime, rt_period;
6959
6960 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
6961 rt_runtime = tg->rt_bandwidth.rt_runtime;
6962
619b0488
R
6963 if (rt_period == 0)
6964 return -EINVAL;
6965
ab84d31e 6966 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
6967}
6968
25cc7da7 6969static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
6970{
6971 u64 rt_period_us;
6972
6973 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
6974 do_div(rt_period_us, NSEC_PER_USEC);
6975 return rt_period_us;
6976}
6977
6978static int sched_rt_global_constraints(void)
6979{
4653f803 6980 u64 runtime, period;
d0b27fa7
PZ
6981 int ret = 0;
6982
ec5d4989
HS
6983 if (sysctl_sched_rt_period <= 0)
6984 return -EINVAL;
6985
4653f803
PZ
6986 runtime = global_rt_runtime();
6987 period = global_rt_period();
6988
6989 /*
6990 * Sanity check on the sysctl variables.
6991 */
6992 if (runtime > period && runtime != RUNTIME_INF)
6993 return -EINVAL;
10b612f4 6994
d0b27fa7 6995 mutex_lock(&rt_constraints_mutex);
9a7e0b18 6996 read_lock(&tasklist_lock);
4653f803 6997 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 6998 read_unlock(&tasklist_lock);
d0b27fa7
PZ
6999 mutex_unlock(&rt_constraints_mutex);
7000
7001 return ret;
7002}
54e99124 7003
25cc7da7 7004static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7005{
7006 /* Don't accept realtime tasks when there is no way for them to run */
7007 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7008 return 0;
7009
7010 return 1;
7011}
7012
6d6bc0ad 7013#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7014static int sched_rt_global_constraints(void)
7015{
ac086bc2
PZ
7016 unsigned long flags;
7017 int i;
7018
ec5d4989
HS
7019 if (sysctl_sched_rt_period <= 0)
7020 return -EINVAL;
7021
60aa605d
PZ
7022 /*
7023 * There's always some RT tasks in the root group
7024 * -- migration, kstopmachine etc..
7025 */
7026 if (sysctl_sched_rt_runtime == 0)
7027 return -EBUSY;
7028
0986b11b 7029 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7030 for_each_possible_cpu(i) {
7031 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7032
0986b11b 7033 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7034 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7035 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7036 }
0986b11b 7037 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7038
d0b27fa7
PZ
7039 return 0;
7040}
6d6bc0ad 7041#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7042
ce0dbbbb
CW
7043int sched_rr_handler(struct ctl_table *table, int write,
7044 void __user *buffer, size_t *lenp,
7045 loff_t *ppos)
7046{
7047 int ret;
7048 static DEFINE_MUTEX(mutex);
7049
7050 mutex_lock(&mutex);
7051 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7052 /* make sure that internally we keep jiffies */
7053 /* also, writing zero resets timeslice to default */
7054 if (!ret && write) {
7055 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7056 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7057 }
7058 mutex_unlock(&mutex);
7059 return ret;
7060}
7061
d0b27fa7 7062int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7063 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7064 loff_t *ppos)
7065{
7066 int ret;
7067 int old_period, old_runtime;
7068 static DEFINE_MUTEX(mutex);
7069
7070 mutex_lock(&mutex);
7071 old_period = sysctl_sched_rt_period;
7072 old_runtime = sysctl_sched_rt_runtime;
7073
8d65af78 7074 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7075
7076 if (!ret && write) {
7077 ret = sched_rt_global_constraints();
7078 if (ret) {
7079 sysctl_sched_rt_period = old_period;
7080 sysctl_sched_rt_runtime = old_runtime;
7081 } else {
7082 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7083 def_rt_bandwidth.rt_period =
7084 ns_to_ktime(global_rt_period());
7085 }
7086 }
7087 mutex_unlock(&mutex);
7088
7089 return ret;
7090}
68318b8e 7091
052f1dc7 7092#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7093
7094/* return corresponding task_group object of a cgroup */
2b01dfe3 7095static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7096{
2b01dfe3
PM
7097 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7098 struct task_group, css);
68318b8e
SV
7099}
7100
92fb9748 7101static struct cgroup_subsys_state *cpu_cgroup_css_alloc(struct cgroup *cgrp)
68318b8e 7102{
ec7dc8ac 7103 struct task_group *tg, *parent;
68318b8e 7104
2b01dfe3 7105 if (!cgrp->parent) {
68318b8e 7106 /* This is early initialization for the top cgroup */
07e06b01 7107 return &root_task_group.css;
68318b8e
SV
7108 }
7109
ec7dc8ac
DG
7110 parent = cgroup_tg(cgrp->parent);
7111 tg = sched_create_group(parent);
68318b8e
SV
7112 if (IS_ERR(tg))
7113 return ERR_PTR(-ENOMEM);
7114
68318b8e
SV
7115 return &tg->css;
7116}
7117
ace783b9
LZ
7118static int cpu_cgroup_css_online(struct cgroup *cgrp)
7119{
7120 struct task_group *tg = cgroup_tg(cgrp);
7121 struct task_group *parent;
7122
7123 if (!cgrp->parent)
7124 return 0;
7125
7126 parent = cgroup_tg(cgrp->parent);
7127 sched_online_group(tg, parent);
7128 return 0;
7129}
7130
92fb9748 7131static void cpu_cgroup_css_free(struct cgroup *cgrp)
68318b8e 7132{
2b01dfe3 7133 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7134
7135 sched_destroy_group(tg);
7136}
7137
ace783b9
LZ
7138static void cpu_cgroup_css_offline(struct cgroup *cgrp)
7139{
7140 struct task_group *tg = cgroup_tg(cgrp);
7141
7142 sched_offline_group(tg);
7143}
7144
761b3ef5 7145static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7146 struct cgroup_taskset *tset)
68318b8e 7147{
bb9d97b6
TH
7148 struct task_struct *task;
7149
7150 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7151#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7152 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7153 return -EINVAL;
b68aa230 7154#else
bb9d97b6
TH
7155 /* We don't support RT-tasks being in separate groups */
7156 if (task->sched_class != &fair_sched_class)
7157 return -EINVAL;
b68aa230 7158#endif
bb9d97b6 7159 }
be367d09
BB
7160 return 0;
7161}
68318b8e 7162
761b3ef5 7163static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7164 struct cgroup_taskset *tset)
68318b8e 7165{
bb9d97b6
TH
7166 struct task_struct *task;
7167
7168 cgroup_taskset_for_each(task, cgrp, tset)
7169 sched_move_task(task);
68318b8e
SV
7170}
7171
068c5cc5 7172static void
761b3ef5
LZ
7173cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7174 struct task_struct *task)
068c5cc5
PZ
7175{
7176 /*
7177 * cgroup_exit() is called in the copy_process() failure path.
7178 * Ignore this case since the task hasn't ran yet, this avoids
7179 * trying to poke a half freed task state from generic code.
7180 */
7181 if (!(task->flags & PF_EXITING))
7182 return;
7183
7184 sched_move_task(task);
7185}
7186
052f1dc7 7187#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7188static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7189 u64 shareval)
68318b8e 7190{
c8b28116 7191 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7192}
7193
f4c753b7 7194static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7195{
2b01dfe3 7196 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7197
c8b28116 7198 return (u64) scale_load_down(tg->shares);
68318b8e 7199}
ab84d31e
PT
7200
7201#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7202static DEFINE_MUTEX(cfs_constraints_mutex);
7203
ab84d31e
PT
7204const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7205const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7206
a790de99
PT
7207static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7208
ab84d31e
PT
7209static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7210{
56f570e5 7211 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7212 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7213
7214 if (tg == &root_task_group)
7215 return -EINVAL;
7216
7217 /*
7218 * Ensure we have at some amount of bandwidth every period. This is
7219 * to prevent reaching a state of large arrears when throttled via
7220 * entity_tick() resulting in prolonged exit starvation.
7221 */
7222 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7223 return -EINVAL;
7224
7225 /*
7226 * Likewise, bound things on the otherside by preventing insane quota
7227 * periods. This also allows us to normalize in computing quota
7228 * feasibility.
7229 */
7230 if (period > max_cfs_quota_period)
7231 return -EINVAL;
7232
a790de99
PT
7233 mutex_lock(&cfs_constraints_mutex);
7234 ret = __cfs_schedulable(tg, period, quota);
7235 if (ret)
7236 goto out_unlock;
7237
58088ad0 7238 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7239 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7240 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7241 raw_spin_lock_irq(&cfs_b->lock);
7242 cfs_b->period = ns_to_ktime(period);
7243 cfs_b->quota = quota;
58088ad0 7244
a9cf55b2 7245 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7246 /* restart the period timer (if active) to handle new period expiry */
7247 if (runtime_enabled && cfs_b->timer_active) {
7248 /* force a reprogram */
7249 cfs_b->timer_active = 0;
7250 __start_cfs_bandwidth(cfs_b);
7251 }
ab84d31e
PT
7252 raw_spin_unlock_irq(&cfs_b->lock);
7253
7254 for_each_possible_cpu(i) {
7255 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7256 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7257
7258 raw_spin_lock_irq(&rq->lock);
58088ad0 7259 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7260 cfs_rq->runtime_remaining = 0;
671fd9da 7261
029632fb 7262 if (cfs_rq->throttled)
671fd9da 7263 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7264 raw_spin_unlock_irq(&rq->lock);
7265 }
a790de99
PT
7266out_unlock:
7267 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7268
a790de99 7269 return ret;
ab84d31e
PT
7270}
7271
7272int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7273{
7274 u64 quota, period;
7275
029632fb 7276 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7277 if (cfs_quota_us < 0)
7278 quota = RUNTIME_INF;
7279 else
7280 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7281
7282 return tg_set_cfs_bandwidth(tg, period, quota);
7283}
7284
7285long tg_get_cfs_quota(struct task_group *tg)
7286{
7287 u64 quota_us;
7288
029632fb 7289 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7290 return -1;
7291
029632fb 7292 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7293 do_div(quota_us, NSEC_PER_USEC);
7294
7295 return quota_us;
7296}
7297
7298int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7299{
7300 u64 quota, period;
7301
7302 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7303 quota = tg->cfs_bandwidth.quota;
ab84d31e 7304
ab84d31e
PT
7305 return tg_set_cfs_bandwidth(tg, period, quota);
7306}
7307
7308long tg_get_cfs_period(struct task_group *tg)
7309{
7310 u64 cfs_period_us;
7311
029632fb 7312 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7313 do_div(cfs_period_us, NSEC_PER_USEC);
7314
7315 return cfs_period_us;
7316}
7317
7318static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7319{
7320 return tg_get_cfs_quota(cgroup_tg(cgrp));
7321}
7322
7323static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7324 s64 cfs_quota_us)
7325{
7326 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7327}
7328
7329static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7330{
7331 return tg_get_cfs_period(cgroup_tg(cgrp));
7332}
7333
7334static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7335 u64 cfs_period_us)
7336{
7337 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7338}
7339
a790de99
PT
7340struct cfs_schedulable_data {
7341 struct task_group *tg;
7342 u64 period, quota;
7343};
7344
7345/*
7346 * normalize group quota/period to be quota/max_period
7347 * note: units are usecs
7348 */
7349static u64 normalize_cfs_quota(struct task_group *tg,
7350 struct cfs_schedulable_data *d)
7351{
7352 u64 quota, period;
7353
7354 if (tg == d->tg) {
7355 period = d->period;
7356 quota = d->quota;
7357 } else {
7358 period = tg_get_cfs_period(tg);
7359 quota = tg_get_cfs_quota(tg);
7360 }
7361
7362 /* note: these should typically be equivalent */
7363 if (quota == RUNTIME_INF || quota == -1)
7364 return RUNTIME_INF;
7365
7366 return to_ratio(period, quota);
7367}
7368
7369static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7370{
7371 struct cfs_schedulable_data *d = data;
029632fb 7372 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7373 s64 quota = 0, parent_quota = -1;
7374
7375 if (!tg->parent) {
7376 quota = RUNTIME_INF;
7377 } else {
029632fb 7378 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7379
7380 quota = normalize_cfs_quota(tg, d);
7381 parent_quota = parent_b->hierarchal_quota;
7382
7383 /*
7384 * ensure max(child_quota) <= parent_quota, inherit when no
7385 * limit is set
7386 */
7387 if (quota == RUNTIME_INF)
7388 quota = parent_quota;
7389 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7390 return -EINVAL;
7391 }
7392 cfs_b->hierarchal_quota = quota;
7393
7394 return 0;
7395}
7396
7397static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7398{
8277434e 7399 int ret;
a790de99
PT
7400 struct cfs_schedulable_data data = {
7401 .tg = tg,
7402 .period = period,
7403 .quota = quota,
7404 };
7405
7406 if (quota != RUNTIME_INF) {
7407 do_div(data.period, NSEC_PER_USEC);
7408 do_div(data.quota, NSEC_PER_USEC);
7409 }
7410
8277434e
PT
7411 rcu_read_lock();
7412 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7413 rcu_read_unlock();
7414
7415 return ret;
a790de99 7416}
e8da1b18
NR
7417
7418static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7419 struct cgroup_map_cb *cb)
7420{
7421 struct task_group *tg = cgroup_tg(cgrp);
029632fb 7422 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7423
7424 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7425 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7426 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7427
7428 return 0;
7429}
ab84d31e 7430#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7431#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7432
052f1dc7 7433#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 7434static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 7435 s64 val)
6f505b16 7436{
06ecb27c 7437 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
7438}
7439
06ecb27c 7440static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 7441{
06ecb27c 7442 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 7443}
d0b27fa7
PZ
7444
7445static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7446 u64 rt_period_us)
7447{
7448 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7449}
7450
7451static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7452{
7453 return sched_group_rt_period(cgroup_tg(cgrp));
7454}
6d6bc0ad 7455#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7456
fe5c7cc2 7457static struct cftype cpu_files[] = {
052f1dc7 7458#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7459 {
7460 .name = "shares",
f4c753b7
PM
7461 .read_u64 = cpu_shares_read_u64,
7462 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7463 },
052f1dc7 7464#endif
ab84d31e
PT
7465#ifdef CONFIG_CFS_BANDWIDTH
7466 {
7467 .name = "cfs_quota_us",
7468 .read_s64 = cpu_cfs_quota_read_s64,
7469 .write_s64 = cpu_cfs_quota_write_s64,
7470 },
7471 {
7472 .name = "cfs_period_us",
7473 .read_u64 = cpu_cfs_period_read_u64,
7474 .write_u64 = cpu_cfs_period_write_u64,
7475 },
e8da1b18
NR
7476 {
7477 .name = "stat",
7478 .read_map = cpu_stats_show,
7479 },
ab84d31e 7480#endif
052f1dc7 7481#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7482 {
9f0c1e56 7483 .name = "rt_runtime_us",
06ecb27c
PM
7484 .read_s64 = cpu_rt_runtime_read,
7485 .write_s64 = cpu_rt_runtime_write,
6f505b16 7486 },
d0b27fa7
PZ
7487 {
7488 .name = "rt_period_us",
f4c753b7
PM
7489 .read_u64 = cpu_rt_period_read_uint,
7490 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7491 },
052f1dc7 7492#endif
4baf6e33 7493 { } /* terminate */
68318b8e
SV
7494};
7495
68318b8e 7496struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7497 .name = "cpu",
92fb9748
TH
7498 .css_alloc = cpu_cgroup_css_alloc,
7499 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7500 .css_online = cpu_cgroup_css_online,
7501 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7502 .can_attach = cpu_cgroup_can_attach,
7503 .attach = cpu_cgroup_attach,
068c5cc5 7504 .exit = cpu_cgroup_exit,
38605cae 7505 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7506 .base_cftypes = cpu_files,
68318b8e
SV
7507 .early_init = 1,
7508};
7509
052f1dc7 7510#endif /* CONFIG_CGROUP_SCHED */
d842de87 7511
b637a328
PM
7512void dump_cpu_task(int cpu)
7513{
7514 pr_info("Task dump for CPU %d:\n", cpu);
7515 sched_show_task(cpu_curr(cpu));
7516}
This page took 2.342132 seconds and 5 git commands to generate.