sched/rt: Add missing rmb()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
1da177e4 76
96f951ed 77#include <asm/switch_to.h>
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
db7e527d 80#include <asm/mutex.h>
e6e6685a
GC
81#ifdef CONFIG_PARAVIRT
82#include <asm/paravirt.h>
83#endif
1da177e4 84
029632fb 85#include "sched.h"
ea138446 86#include "../workqueue_internal.h"
29d5e047 87#include "../smpboot.h"
6e0534f2 88
a8d154b0 89#define CREATE_TRACE_POINTS
ad8d75ff 90#include <trace/events/sched.h>
a8d154b0 91
029632fb 92void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 93{
58088ad0
PT
94 unsigned long delta;
95 ktime_t soft, hard, now;
d0b27fa7 96
58088ad0
PT
97 for (;;) {
98 if (hrtimer_active(period_timer))
99 break;
100
101 now = hrtimer_cb_get_time(period_timer);
102 hrtimer_forward(period_timer, now, period);
d0b27fa7 103
58088ad0
PT
104 soft = hrtimer_get_softexpires(period_timer);
105 hard = hrtimer_get_expires(period_timer);
106 delta = ktime_to_ns(ktime_sub(hard, soft));
107 __hrtimer_start_range_ns(period_timer, soft, delta,
108 HRTIMER_MODE_ABS_PINNED, 0);
109 }
110}
111
029632fb
PZ
112DEFINE_MUTEX(sched_domains_mutex);
113DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 114
fe44d621 115static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 116
029632fb 117void update_rq_clock(struct rq *rq)
3e51f33f 118{
fe44d621 119 s64 delta;
305e6835 120
61eadef6 121 if (rq->skip_clock_update > 0)
f26f9aff 122 return;
aa483808 123
fe44d621
PZ
124 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
125 rq->clock += delta;
126 update_rq_clock_task(rq, delta);
3e51f33f
PZ
127}
128
bf5c91ba
IM
129/*
130 * Debugging: various feature bits
131 */
f00b45c1 132
f00b45c1
PZ
133#define SCHED_FEAT(name, enabled) \
134 (1UL << __SCHED_FEAT_##name) * enabled |
135
bf5c91ba 136const_debug unsigned int sysctl_sched_features =
391e43da 137#include "features.h"
f00b45c1
PZ
138 0;
139
140#undef SCHED_FEAT
141
142#ifdef CONFIG_SCHED_DEBUG
143#define SCHED_FEAT(name, enabled) \
144 #name ,
145
1292531f 146static const char * const sched_feat_names[] = {
391e43da 147#include "features.h"
f00b45c1
PZ
148};
149
150#undef SCHED_FEAT
151
34f3a814 152static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 153{
f00b45c1
PZ
154 int i;
155
f8b6d1cc 156 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
157 if (!(sysctl_sched_features & (1UL << i)))
158 seq_puts(m, "NO_");
159 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 160 }
34f3a814 161 seq_puts(m, "\n");
f00b45c1 162
34f3a814 163 return 0;
f00b45c1
PZ
164}
165
f8b6d1cc
PZ
166#ifdef HAVE_JUMP_LABEL
167
c5905afb
IM
168#define jump_label_key__true STATIC_KEY_INIT_TRUE
169#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
170
171#define SCHED_FEAT(name, enabled) \
172 jump_label_key__##enabled ,
173
c5905afb 174struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
175#include "features.h"
176};
177
178#undef SCHED_FEAT
179
180static void sched_feat_disable(int i)
181{
c5905afb
IM
182 if (static_key_enabled(&sched_feat_keys[i]))
183 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
184}
185
186static void sched_feat_enable(int i)
187{
c5905afb
IM
188 if (!static_key_enabled(&sched_feat_keys[i]))
189 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
190}
191#else
192static void sched_feat_disable(int i) { };
193static void sched_feat_enable(int i) { };
194#endif /* HAVE_JUMP_LABEL */
195
1a687c2e 196static int sched_feat_set(char *cmp)
f00b45c1 197{
f00b45c1 198 int i;
1a687c2e 199 int neg = 0;
f00b45c1 200
524429c3 201 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
202 neg = 1;
203 cmp += 3;
204 }
205
f8b6d1cc 206 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 207 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 208 if (neg) {
f00b45c1 209 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
210 sched_feat_disable(i);
211 } else {
f00b45c1 212 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
213 sched_feat_enable(i);
214 }
f00b45c1
PZ
215 break;
216 }
217 }
218
1a687c2e
MG
219 return i;
220}
221
222static ssize_t
223sched_feat_write(struct file *filp, const char __user *ubuf,
224 size_t cnt, loff_t *ppos)
225{
226 char buf[64];
227 char *cmp;
228 int i;
229
230 if (cnt > 63)
231 cnt = 63;
232
233 if (copy_from_user(&buf, ubuf, cnt))
234 return -EFAULT;
235
236 buf[cnt] = 0;
237 cmp = strstrip(buf);
238
239 i = sched_feat_set(cmp);
f8b6d1cc 240 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
241 return -EINVAL;
242
42994724 243 *ppos += cnt;
f00b45c1
PZ
244
245 return cnt;
246}
247
34f3a814
LZ
248static int sched_feat_open(struct inode *inode, struct file *filp)
249{
250 return single_open(filp, sched_feat_show, NULL);
251}
252
828c0950 253static const struct file_operations sched_feat_fops = {
34f3a814
LZ
254 .open = sched_feat_open,
255 .write = sched_feat_write,
256 .read = seq_read,
257 .llseek = seq_lseek,
258 .release = single_release,
f00b45c1
PZ
259};
260
261static __init int sched_init_debug(void)
262{
f00b45c1
PZ
263 debugfs_create_file("sched_features", 0644, NULL, NULL,
264 &sched_feat_fops);
265
266 return 0;
267}
268late_initcall(sched_init_debug);
f8b6d1cc 269#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 270
b82d9fdd
PZ
271/*
272 * Number of tasks to iterate in a single balance run.
273 * Limited because this is done with IRQs disabled.
274 */
275const_debug unsigned int sysctl_sched_nr_migrate = 32;
276
e9e9250b
PZ
277/*
278 * period over which we average the RT time consumption, measured
279 * in ms.
280 *
281 * default: 1s
282 */
283const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
284
fa85ae24 285/*
9f0c1e56 286 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
287 * default: 1s
288 */
9f0c1e56 289unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 290
029632fb 291__read_mostly int scheduler_running;
6892b75e 292
9f0c1e56
PZ
293/*
294 * part of the period that we allow rt tasks to run in us.
295 * default: 0.95s
296 */
297int sysctl_sched_rt_runtime = 950000;
fa85ae24 298
fa85ae24 299
1da177e4 300
0970d299 301/*
0122ec5b 302 * __task_rq_lock - lock the rq @p resides on.
b29739f9 303 */
70b97a7f 304static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
305 __acquires(rq->lock)
306{
0970d299
PZ
307 struct rq *rq;
308
0122ec5b
PZ
309 lockdep_assert_held(&p->pi_lock);
310
3a5c359a 311 for (;;) {
0970d299 312 rq = task_rq(p);
05fa785c 313 raw_spin_lock(&rq->lock);
65cc8e48 314 if (likely(rq == task_rq(p)))
3a5c359a 315 return rq;
05fa785c 316 raw_spin_unlock(&rq->lock);
b29739f9 317 }
b29739f9
IM
318}
319
1da177e4 320/*
0122ec5b 321 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 322 */
70b97a7f 323static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 324 __acquires(p->pi_lock)
1da177e4
LT
325 __acquires(rq->lock)
326{
70b97a7f 327 struct rq *rq;
1da177e4 328
3a5c359a 329 for (;;) {
0122ec5b 330 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 331 rq = task_rq(p);
05fa785c 332 raw_spin_lock(&rq->lock);
65cc8e48 333 if (likely(rq == task_rq(p)))
3a5c359a 334 return rq;
0122ec5b
PZ
335 raw_spin_unlock(&rq->lock);
336 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 337 }
1da177e4
LT
338}
339
a9957449 340static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
341 __releases(rq->lock)
342{
05fa785c 343 raw_spin_unlock(&rq->lock);
b29739f9
IM
344}
345
0122ec5b
PZ
346static inline void
347task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 348 __releases(rq->lock)
0122ec5b 349 __releases(p->pi_lock)
1da177e4 350{
0122ec5b
PZ
351 raw_spin_unlock(&rq->lock);
352 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
353}
354
1da177e4 355/*
cc2a73b5 356 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 357 */
a9957449 358static struct rq *this_rq_lock(void)
1da177e4
LT
359 __acquires(rq->lock)
360{
70b97a7f 361 struct rq *rq;
1da177e4
LT
362
363 local_irq_disable();
364 rq = this_rq();
05fa785c 365 raw_spin_lock(&rq->lock);
1da177e4
LT
366
367 return rq;
368}
369
8f4d37ec
PZ
370#ifdef CONFIG_SCHED_HRTICK
371/*
372 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 373 */
8f4d37ec 374
8f4d37ec
PZ
375static void hrtick_clear(struct rq *rq)
376{
377 if (hrtimer_active(&rq->hrtick_timer))
378 hrtimer_cancel(&rq->hrtick_timer);
379}
380
8f4d37ec
PZ
381/*
382 * High-resolution timer tick.
383 * Runs from hardirq context with interrupts disabled.
384 */
385static enum hrtimer_restart hrtick(struct hrtimer *timer)
386{
387 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
388
389 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
390
05fa785c 391 raw_spin_lock(&rq->lock);
3e51f33f 392 update_rq_clock(rq);
8f4d37ec 393 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 394 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
395
396 return HRTIMER_NORESTART;
397}
398
95e904c7 399#ifdef CONFIG_SMP
971ee28c
PZ
400
401static int __hrtick_restart(struct rq *rq)
402{
403 struct hrtimer *timer = &rq->hrtick_timer;
404 ktime_t time = hrtimer_get_softexpires(timer);
405
406 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
407}
408
31656519
PZ
409/*
410 * called from hardirq (IPI) context
411 */
412static void __hrtick_start(void *arg)
b328ca18 413{
31656519 414 struct rq *rq = arg;
b328ca18 415
05fa785c 416 raw_spin_lock(&rq->lock);
971ee28c 417 __hrtick_restart(rq);
31656519 418 rq->hrtick_csd_pending = 0;
05fa785c 419 raw_spin_unlock(&rq->lock);
b328ca18
PZ
420}
421
31656519
PZ
422/*
423 * Called to set the hrtick timer state.
424 *
425 * called with rq->lock held and irqs disabled
426 */
029632fb 427void hrtick_start(struct rq *rq, u64 delay)
b328ca18 428{
31656519
PZ
429 struct hrtimer *timer = &rq->hrtick_timer;
430 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 431
cc584b21 432 hrtimer_set_expires(timer, time);
31656519
PZ
433
434 if (rq == this_rq()) {
971ee28c 435 __hrtick_restart(rq);
31656519 436 } else if (!rq->hrtick_csd_pending) {
6e275637 437 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
438 rq->hrtick_csd_pending = 1;
439 }
b328ca18
PZ
440}
441
442static int
443hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
444{
445 int cpu = (int)(long)hcpu;
446
447 switch (action) {
448 case CPU_UP_CANCELED:
449 case CPU_UP_CANCELED_FROZEN:
450 case CPU_DOWN_PREPARE:
451 case CPU_DOWN_PREPARE_FROZEN:
452 case CPU_DEAD:
453 case CPU_DEAD_FROZEN:
31656519 454 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
455 return NOTIFY_OK;
456 }
457
458 return NOTIFY_DONE;
459}
460
fa748203 461static __init void init_hrtick(void)
b328ca18
PZ
462{
463 hotcpu_notifier(hotplug_hrtick, 0);
464}
31656519
PZ
465#else
466/*
467 * Called to set the hrtick timer state.
468 *
469 * called with rq->lock held and irqs disabled
470 */
029632fb 471void hrtick_start(struct rq *rq, u64 delay)
31656519 472{
7f1e2ca9 473 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 474 HRTIMER_MODE_REL_PINNED, 0);
31656519 475}
b328ca18 476
006c75f1 477static inline void init_hrtick(void)
8f4d37ec 478{
8f4d37ec 479}
31656519 480#endif /* CONFIG_SMP */
8f4d37ec 481
31656519 482static void init_rq_hrtick(struct rq *rq)
8f4d37ec 483{
31656519
PZ
484#ifdef CONFIG_SMP
485 rq->hrtick_csd_pending = 0;
8f4d37ec 486
31656519
PZ
487 rq->hrtick_csd.flags = 0;
488 rq->hrtick_csd.func = __hrtick_start;
489 rq->hrtick_csd.info = rq;
490#endif
8f4d37ec 491
31656519
PZ
492 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
493 rq->hrtick_timer.function = hrtick;
8f4d37ec 494}
006c75f1 495#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
496static inline void hrtick_clear(struct rq *rq)
497{
498}
499
8f4d37ec
PZ
500static inline void init_rq_hrtick(struct rq *rq)
501{
502}
503
b328ca18
PZ
504static inline void init_hrtick(void)
505{
506}
006c75f1 507#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 508
c24d20db
IM
509/*
510 * resched_task - mark a task 'to be rescheduled now'.
511 *
512 * On UP this means the setting of the need_resched flag, on SMP it
513 * might also involve a cross-CPU call to trigger the scheduler on
514 * the target CPU.
515 */
029632fb 516void resched_task(struct task_struct *p)
c24d20db
IM
517{
518 int cpu;
519
b021fe3e 520 lockdep_assert_held(&task_rq(p)->lock);
c24d20db 521
5ed0cec0 522 if (test_tsk_need_resched(p))
c24d20db
IM
523 return;
524
5ed0cec0 525 set_tsk_need_resched(p);
c24d20db
IM
526
527 cpu = task_cpu(p);
f27dde8d
PZ
528 if (cpu == smp_processor_id()) {
529 set_preempt_need_resched();
c24d20db 530 return;
f27dde8d 531 }
c24d20db
IM
532
533 /* NEED_RESCHED must be visible before we test polling */
534 smp_mb();
535 if (!tsk_is_polling(p))
536 smp_send_reschedule(cpu);
537}
538
029632fb 539void resched_cpu(int cpu)
c24d20db
IM
540{
541 struct rq *rq = cpu_rq(cpu);
542 unsigned long flags;
543
05fa785c 544 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
545 return;
546 resched_task(cpu_curr(cpu));
05fa785c 547 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 548}
06d8308c 549
b021fe3e 550#ifdef CONFIG_SMP
3451d024 551#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
552/*
553 * In the semi idle case, use the nearest busy cpu for migrating timers
554 * from an idle cpu. This is good for power-savings.
555 *
556 * We don't do similar optimization for completely idle system, as
557 * selecting an idle cpu will add more delays to the timers than intended
558 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
559 */
560int get_nohz_timer_target(void)
561{
562 int cpu = smp_processor_id();
563 int i;
564 struct sched_domain *sd;
565
057f3fad 566 rcu_read_lock();
83cd4fe2 567 for_each_domain(cpu, sd) {
057f3fad
PZ
568 for_each_cpu(i, sched_domain_span(sd)) {
569 if (!idle_cpu(i)) {
570 cpu = i;
571 goto unlock;
572 }
573 }
83cd4fe2 574 }
057f3fad
PZ
575unlock:
576 rcu_read_unlock();
83cd4fe2
VP
577 return cpu;
578}
06d8308c
TG
579/*
580 * When add_timer_on() enqueues a timer into the timer wheel of an
581 * idle CPU then this timer might expire before the next timer event
582 * which is scheduled to wake up that CPU. In case of a completely
583 * idle system the next event might even be infinite time into the
584 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
585 * leaves the inner idle loop so the newly added timer is taken into
586 * account when the CPU goes back to idle and evaluates the timer
587 * wheel for the next timer event.
588 */
1c20091e 589static void wake_up_idle_cpu(int cpu)
06d8308c
TG
590{
591 struct rq *rq = cpu_rq(cpu);
592
593 if (cpu == smp_processor_id())
594 return;
595
596 /*
597 * This is safe, as this function is called with the timer
598 * wheel base lock of (cpu) held. When the CPU is on the way
599 * to idle and has not yet set rq->curr to idle then it will
600 * be serialized on the timer wheel base lock and take the new
601 * timer into account automatically.
602 */
603 if (rq->curr != rq->idle)
604 return;
45bf76df 605
45bf76df 606 /*
06d8308c
TG
607 * We can set TIF_RESCHED on the idle task of the other CPU
608 * lockless. The worst case is that the other CPU runs the
609 * idle task through an additional NOOP schedule()
45bf76df 610 */
5ed0cec0 611 set_tsk_need_resched(rq->idle);
45bf76df 612
06d8308c
TG
613 /* NEED_RESCHED must be visible before we test polling */
614 smp_mb();
615 if (!tsk_is_polling(rq->idle))
616 smp_send_reschedule(cpu);
45bf76df
IM
617}
618
c5bfece2 619static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 620{
c5bfece2 621 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 smp_send_reschedule(cpu);
625 return true;
626 }
627
628 return false;
629}
630
631void wake_up_nohz_cpu(int cpu)
632{
c5bfece2 633 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
634 wake_up_idle_cpu(cpu);
635}
636
ca38062e 637static inline bool got_nohz_idle_kick(void)
45bf76df 638{
1c792db7 639 int cpu = smp_processor_id();
873b4c65
VG
640
641 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
642 return false;
643
644 if (idle_cpu(cpu) && !need_resched())
645 return true;
646
647 /*
648 * We can't run Idle Load Balance on this CPU for this time so we
649 * cancel it and clear NOHZ_BALANCE_KICK
650 */
651 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
652 return false;
45bf76df
IM
653}
654
3451d024 655#else /* CONFIG_NO_HZ_COMMON */
45bf76df 656
ca38062e 657static inline bool got_nohz_idle_kick(void)
2069dd75 658{
ca38062e 659 return false;
2069dd75
PZ
660}
661
3451d024 662#endif /* CONFIG_NO_HZ_COMMON */
d842de87 663
ce831b38
FW
664#ifdef CONFIG_NO_HZ_FULL
665bool sched_can_stop_tick(void)
666{
667 struct rq *rq;
668
669 rq = this_rq();
670
671 /* Make sure rq->nr_running update is visible after the IPI */
672 smp_rmb();
673
674 /* More than one running task need preemption */
675 if (rq->nr_running > 1)
676 return false;
677
678 return true;
679}
680#endif /* CONFIG_NO_HZ_FULL */
d842de87 681
029632fb 682void sched_avg_update(struct rq *rq)
18d95a28 683{
e9e9250b
PZ
684 s64 period = sched_avg_period();
685
78becc27 686 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
687 /*
688 * Inline assembly required to prevent the compiler
689 * optimising this loop into a divmod call.
690 * See __iter_div_u64_rem() for another example of this.
691 */
692 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
693 rq->age_stamp += period;
694 rq->rt_avg /= 2;
695 }
18d95a28
PZ
696}
697
6d6bc0ad 698#endif /* CONFIG_SMP */
18d95a28 699
a790de99
PT
700#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
701 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 702/*
8277434e
PT
703 * Iterate task_group tree rooted at *from, calling @down when first entering a
704 * node and @up when leaving it for the final time.
705 *
706 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 707 */
029632fb 708int walk_tg_tree_from(struct task_group *from,
8277434e 709 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
710{
711 struct task_group *parent, *child;
eb755805 712 int ret;
c09595f6 713
8277434e
PT
714 parent = from;
715
c09595f6 716down:
eb755805
PZ
717 ret = (*down)(parent, data);
718 if (ret)
8277434e 719 goto out;
c09595f6
PZ
720 list_for_each_entry_rcu(child, &parent->children, siblings) {
721 parent = child;
722 goto down;
723
724up:
725 continue;
726 }
eb755805 727 ret = (*up)(parent, data);
8277434e
PT
728 if (ret || parent == from)
729 goto out;
c09595f6
PZ
730
731 child = parent;
732 parent = parent->parent;
733 if (parent)
734 goto up;
8277434e 735out:
eb755805 736 return ret;
c09595f6
PZ
737}
738
029632fb 739int tg_nop(struct task_group *tg, void *data)
eb755805 740{
e2b245f8 741 return 0;
eb755805 742}
18d95a28
PZ
743#endif
744
45bf76df
IM
745static void set_load_weight(struct task_struct *p)
746{
f05998d4
NR
747 int prio = p->static_prio - MAX_RT_PRIO;
748 struct load_weight *load = &p->se.load;
749
dd41f596
IM
750 /*
751 * SCHED_IDLE tasks get minimal weight:
752 */
753 if (p->policy == SCHED_IDLE) {
c8b28116 754 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 755 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
756 return;
757 }
71f8bd46 758
c8b28116 759 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 760 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
761}
762
371fd7e7 763static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 764{
a64692a3 765 update_rq_clock(rq);
43148951 766 sched_info_queued(rq, p);
371fd7e7 767 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
768}
769
371fd7e7 770static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 771{
a64692a3 772 update_rq_clock(rq);
43148951 773 sched_info_dequeued(rq, p);
371fd7e7 774 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
775}
776
029632fb 777void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
778{
779 if (task_contributes_to_load(p))
780 rq->nr_uninterruptible--;
781
371fd7e7 782 enqueue_task(rq, p, flags);
1e3c88bd
PZ
783}
784
029632fb 785void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
786{
787 if (task_contributes_to_load(p))
788 rq->nr_uninterruptible++;
789
371fd7e7 790 dequeue_task(rq, p, flags);
1e3c88bd
PZ
791}
792
fe44d621 793static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 794{
095c0aa8
GC
795/*
796 * In theory, the compile should just see 0 here, and optimize out the call
797 * to sched_rt_avg_update. But I don't trust it...
798 */
799#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
800 s64 steal = 0, irq_delta = 0;
801#endif
802#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 803 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
804
805 /*
806 * Since irq_time is only updated on {soft,}irq_exit, we might run into
807 * this case when a previous update_rq_clock() happened inside a
808 * {soft,}irq region.
809 *
810 * When this happens, we stop ->clock_task and only update the
811 * prev_irq_time stamp to account for the part that fit, so that a next
812 * update will consume the rest. This ensures ->clock_task is
813 * monotonic.
814 *
815 * It does however cause some slight miss-attribution of {soft,}irq
816 * time, a more accurate solution would be to update the irq_time using
817 * the current rq->clock timestamp, except that would require using
818 * atomic ops.
819 */
820 if (irq_delta > delta)
821 irq_delta = delta;
822
823 rq->prev_irq_time += irq_delta;
824 delta -= irq_delta;
095c0aa8
GC
825#endif
826#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 827 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
828 u64 st;
829
830 steal = paravirt_steal_clock(cpu_of(rq));
831 steal -= rq->prev_steal_time_rq;
832
833 if (unlikely(steal > delta))
834 steal = delta;
835
836 st = steal_ticks(steal);
837 steal = st * TICK_NSEC;
838
839 rq->prev_steal_time_rq += steal;
840
841 delta -= steal;
842 }
843#endif
844
fe44d621
PZ
845 rq->clock_task += delta;
846
095c0aa8
GC
847#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
848 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
849 sched_rt_avg_update(rq, irq_delta + steal);
850#endif
aa483808
VP
851}
852
34f971f6
PZ
853void sched_set_stop_task(int cpu, struct task_struct *stop)
854{
855 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
856 struct task_struct *old_stop = cpu_rq(cpu)->stop;
857
858 if (stop) {
859 /*
860 * Make it appear like a SCHED_FIFO task, its something
861 * userspace knows about and won't get confused about.
862 *
863 * Also, it will make PI more or less work without too
864 * much confusion -- but then, stop work should not
865 * rely on PI working anyway.
866 */
867 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
868
869 stop->sched_class = &stop_sched_class;
870 }
871
872 cpu_rq(cpu)->stop = stop;
873
874 if (old_stop) {
875 /*
876 * Reset it back to a normal scheduling class so that
877 * it can die in pieces.
878 */
879 old_stop->sched_class = &rt_sched_class;
880 }
881}
882
14531189 883/*
dd41f596 884 * __normal_prio - return the priority that is based on the static prio
14531189 885 */
14531189
IM
886static inline int __normal_prio(struct task_struct *p)
887{
dd41f596 888 return p->static_prio;
14531189
IM
889}
890
b29739f9
IM
891/*
892 * Calculate the expected normal priority: i.e. priority
893 * without taking RT-inheritance into account. Might be
894 * boosted by interactivity modifiers. Changes upon fork,
895 * setprio syscalls, and whenever the interactivity
896 * estimator recalculates.
897 */
36c8b586 898static inline int normal_prio(struct task_struct *p)
b29739f9
IM
899{
900 int prio;
901
e05606d3 902 if (task_has_rt_policy(p))
b29739f9
IM
903 prio = MAX_RT_PRIO-1 - p->rt_priority;
904 else
905 prio = __normal_prio(p);
906 return prio;
907}
908
909/*
910 * Calculate the current priority, i.e. the priority
911 * taken into account by the scheduler. This value might
912 * be boosted by RT tasks, or might be boosted by
913 * interactivity modifiers. Will be RT if the task got
914 * RT-boosted. If not then it returns p->normal_prio.
915 */
36c8b586 916static int effective_prio(struct task_struct *p)
b29739f9
IM
917{
918 p->normal_prio = normal_prio(p);
919 /*
920 * If we are RT tasks or we were boosted to RT priority,
921 * keep the priority unchanged. Otherwise, update priority
922 * to the normal priority:
923 */
924 if (!rt_prio(p->prio))
925 return p->normal_prio;
926 return p->prio;
927}
928
1da177e4
LT
929/**
930 * task_curr - is this task currently executing on a CPU?
931 * @p: the task in question.
e69f6186
YB
932 *
933 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 934 */
36c8b586 935inline int task_curr(const struct task_struct *p)
1da177e4
LT
936{
937 return cpu_curr(task_cpu(p)) == p;
938}
939
cb469845
SR
940static inline void check_class_changed(struct rq *rq, struct task_struct *p,
941 const struct sched_class *prev_class,
da7a735e 942 int oldprio)
cb469845
SR
943{
944 if (prev_class != p->sched_class) {
945 if (prev_class->switched_from)
da7a735e
PZ
946 prev_class->switched_from(rq, p);
947 p->sched_class->switched_to(rq, p);
948 } else if (oldprio != p->prio)
949 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
950}
951
029632fb 952void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
953{
954 const struct sched_class *class;
955
956 if (p->sched_class == rq->curr->sched_class) {
957 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
958 } else {
959 for_each_class(class) {
960 if (class == rq->curr->sched_class)
961 break;
962 if (class == p->sched_class) {
963 resched_task(rq->curr);
964 break;
965 }
966 }
967 }
968
969 /*
970 * A queue event has occurred, and we're going to schedule. In
971 * this case, we can save a useless back to back clock update.
972 */
fd2f4419 973 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
974 rq->skip_clock_update = 1;
975}
976
1da177e4 977#ifdef CONFIG_SMP
dd41f596 978void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 979{
e2912009
PZ
980#ifdef CONFIG_SCHED_DEBUG
981 /*
982 * We should never call set_task_cpu() on a blocked task,
983 * ttwu() will sort out the placement.
984 */
077614ee 985 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
01028747 986 !(task_preempt_count(p) & PREEMPT_ACTIVE));
0122ec5b
PZ
987
988#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
989 /*
990 * The caller should hold either p->pi_lock or rq->lock, when changing
991 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
992 *
993 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 994 * see task_group().
6c6c54e1
PZ
995 *
996 * Furthermore, all task_rq users should acquire both locks, see
997 * task_rq_lock().
998 */
0122ec5b
PZ
999 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1000 lockdep_is_held(&task_rq(p)->lock)));
1001#endif
e2912009
PZ
1002#endif
1003
de1d7286 1004 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1005
0c69774e 1006 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1007 if (p->sched_class->migrate_task_rq)
1008 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1009 p->se.nr_migrations++;
a8b0ca17 1010 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1011 }
dd41f596
IM
1012
1013 __set_task_cpu(p, new_cpu);
c65cc870
IM
1014}
1015
ac66f547
PZ
1016static void __migrate_swap_task(struct task_struct *p, int cpu)
1017{
1018 if (p->on_rq) {
1019 struct rq *src_rq, *dst_rq;
1020
1021 src_rq = task_rq(p);
1022 dst_rq = cpu_rq(cpu);
1023
1024 deactivate_task(src_rq, p, 0);
1025 set_task_cpu(p, cpu);
1026 activate_task(dst_rq, p, 0);
1027 check_preempt_curr(dst_rq, p, 0);
1028 } else {
1029 /*
1030 * Task isn't running anymore; make it appear like we migrated
1031 * it before it went to sleep. This means on wakeup we make the
1032 * previous cpu our targer instead of where it really is.
1033 */
1034 p->wake_cpu = cpu;
1035 }
1036}
1037
1038struct migration_swap_arg {
1039 struct task_struct *src_task, *dst_task;
1040 int src_cpu, dst_cpu;
1041};
1042
1043static int migrate_swap_stop(void *data)
1044{
1045 struct migration_swap_arg *arg = data;
1046 struct rq *src_rq, *dst_rq;
1047 int ret = -EAGAIN;
1048
1049 src_rq = cpu_rq(arg->src_cpu);
1050 dst_rq = cpu_rq(arg->dst_cpu);
1051
1052 double_rq_lock(src_rq, dst_rq);
1053 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1054 goto unlock;
1055
1056 if (task_cpu(arg->src_task) != arg->src_cpu)
1057 goto unlock;
1058
1059 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1060 goto unlock;
1061
1062 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1063 goto unlock;
1064
1065 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1066 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1067
1068 ret = 0;
1069
1070unlock:
1071 double_rq_unlock(src_rq, dst_rq);
1072
1073 return ret;
1074}
1075
1076/*
1077 * Cross migrate two tasks
1078 */
1079int migrate_swap(struct task_struct *cur, struct task_struct *p)
1080{
1081 struct migration_swap_arg arg;
1082 int ret = -EINVAL;
1083
1084 get_online_cpus();
1085
1086 arg = (struct migration_swap_arg){
1087 .src_task = cur,
1088 .src_cpu = task_cpu(cur),
1089 .dst_task = p,
1090 .dst_cpu = task_cpu(p),
1091 };
1092
1093 if (arg.src_cpu == arg.dst_cpu)
1094 goto out;
1095
1096 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1097 goto out;
1098
1099 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1100 goto out;
1101
1102 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1103 goto out;
1104
1105 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1106
1107out:
1108 put_online_cpus();
1109 return ret;
1110}
1111
969c7921 1112struct migration_arg {
36c8b586 1113 struct task_struct *task;
1da177e4 1114 int dest_cpu;
70b97a7f 1115};
1da177e4 1116
969c7921
TH
1117static int migration_cpu_stop(void *data);
1118
1da177e4
LT
1119/*
1120 * wait_task_inactive - wait for a thread to unschedule.
1121 *
85ba2d86
RM
1122 * If @match_state is nonzero, it's the @p->state value just checked and
1123 * not expected to change. If it changes, i.e. @p might have woken up,
1124 * then return zero. When we succeed in waiting for @p to be off its CPU,
1125 * we return a positive number (its total switch count). If a second call
1126 * a short while later returns the same number, the caller can be sure that
1127 * @p has remained unscheduled the whole time.
1128 *
1da177e4
LT
1129 * The caller must ensure that the task *will* unschedule sometime soon,
1130 * else this function might spin for a *long* time. This function can't
1131 * be called with interrupts off, or it may introduce deadlock with
1132 * smp_call_function() if an IPI is sent by the same process we are
1133 * waiting to become inactive.
1134 */
85ba2d86 1135unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1136{
1137 unsigned long flags;
dd41f596 1138 int running, on_rq;
85ba2d86 1139 unsigned long ncsw;
70b97a7f 1140 struct rq *rq;
1da177e4 1141
3a5c359a
AK
1142 for (;;) {
1143 /*
1144 * We do the initial early heuristics without holding
1145 * any task-queue locks at all. We'll only try to get
1146 * the runqueue lock when things look like they will
1147 * work out!
1148 */
1149 rq = task_rq(p);
fa490cfd 1150
3a5c359a
AK
1151 /*
1152 * If the task is actively running on another CPU
1153 * still, just relax and busy-wait without holding
1154 * any locks.
1155 *
1156 * NOTE! Since we don't hold any locks, it's not
1157 * even sure that "rq" stays as the right runqueue!
1158 * But we don't care, since "task_running()" will
1159 * return false if the runqueue has changed and p
1160 * is actually now running somewhere else!
1161 */
85ba2d86
RM
1162 while (task_running(rq, p)) {
1163 if (match_state && unlikely(p->state != match_state))
1164 return 0;
3a5c359a 1165 cpu_relax();
85ba2d86 1166 }
fa490cfd 1167
3a5c359a
AK
1168 /*
1169 * Ok, time to look more closely! We need the rq
1170 * lock now, to be *sure*. If we're wrong, we'll
1171 * just go back and repeat.
1172 */
1173 rq = task_rq_lock(p, &flags);
27a9da65 1174 trace_sched_wait_task(p);
3a5c359a 1175 running = task_running(rq, p);
fd2f4419 1176 on_rq = p->on_rq;
85ba2d86 1177 ncsw = 0;
f31e11d8 1178 if (!match_state || p->state == match_state)
93dcf55f 1179 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1180 task_rq_unlock(rq, p, &flags);
fa490cfd 1181
85ba2d86
RM
1182 /*
1183 * If it changed from the expected state, bail out now.
1184 */
1185 if (unlikely(!ncsw))
1186 break;
1187
3a5c359a
AK
1188 /*
1189 * Was it really running after all now that we
1190 * checked with the proper locks actually held?
1191 *
1192 * Oops. Go back and try again..
1193 */
1194 if (unlikely(running)) {
1195 cpu_relax();
1196 continue;
1197 }
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * It's not enough that it's not actively running,
1201 * it must be off the runqueue _entirely_, and not
1202 * preempted!
1203 *
80dd99b3 1204 * So if it was still runnable (but just not actively
3a5c359a
AK
1205 * running right now), it's preempted, and we should
1206 * yield - it could be a while.
1207 */
1208 if (unlikely(on_rq)) {
8eb90c30
TG
1209 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1210
1211 set_current_state(TASK_UNINTERRUPTIBLE);
1212 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1213 continue;
1214 }
fa490cfd 1215
3a5c359a
AK
1216 /*
1217 * Ahh, all good. It wasn't running, and it wasn't
1218 * runnable, which means that it will never become
1219 * running in the future either. We're all done!
1220 */
1221 break;
1222 }
85ba2d86
RM
1223
1224 return ncsw;
1da177e4
LT
1225}
1226
1227/***
1228 * kick_process - kick a running thread to enter/exit the kernel
1229 * @p: the to-be-kicked thread
1230 *
1231 * Cause a process which is running on another CPU to enter
1232 * kernel-mode, without any delay. (to get signals handled.)
1233 *
25985edc 1234 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1235 * because all it wants to ensure is that the remote task enters
1236 * the kernel. If the IPI races and the task has been migrated
1237 * to another CPU then no harm is done and the purpose has been
1238 * achieved as well.
1239 */
36c8b586 1240void kick_process(struct task_struct *p)
1da177e4
LT
1241{
1242 int cpu;
1243
1244 preempt_disable();
1245 cpu = task_cpu(p);
1246 if ((cpu != smp_processor_id()) && task_curr(p))
1247 smp_send_reschedule(cpu);
1248 preempt_enable();
1249}
b43e3521 1250EXPORT_SYMBOL_GPL(kick_process);
476d139c 1251#endif /* CONFIG_SMP */
1da177e4 1252
970b13ba 1253#ifdef CONFIG_SMP
30da688e 1254/*
013fdb80 1255 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1256 */
5da9a0fb
PZ
1257static int select_fallback_rq(int cpu, struct task_struct *p)
1258{
aa00d89c
TC
1259 int nid = cpu_to_node(cpu);
1260 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1261 enum { cpuset, possible, fail } state = cpuset;
1262 int dest_cpu;
5da9a0fb 1263
aa00d89c
TC
1264 /*
1265 * If the node that the cpu is on has been offlined, cpu_to_node()
1266 * will return -1. There is no cpu on the node, and we should
1267 * select the cpu on the other node.
1268 */
1269 if (nid != -1) {
1270 nodemask = cpumask_of_node(nid);
1271
1272 /* Look for allowed, online CPU in same node. */
1273 for_each_cpu(dest_cpu, nodemask) {
1274 if (!cpu_online(dest_cpu))
1275 continue;
1276 if (!cpu_active(dest_cpu))
1277 continue;
1278 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1279 return dest_cpu;
1280 }
2baab4e9 1281 }
5da9a0fb 1282
2baab4e9
PZ
1283 for (;;) {
1284 /* Any allowed, online CPU? */
e3831edd 1285 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1286 if (!cpu_online(dest_cpu))
1287 continue;
1288 if (!cpu_active(dest_cpu))
1289 continue;
1290 goto out;
1291 }
5da9a0fb 1292
2baab4e9
PZ
1293 switch (state) {
1294 case cpuset:
1295 /* No more Mr. Nice Guy. */
1296 cpuset_cpus_allowed_fallback(p);
1297 state = possible;
1298 break;
1299
1300 case possible:
1301 do_set_cpus_allowed(p, cpu_possible_mask);
1302 state = fail;
1303 break;
1304
1305 case fail:
1306 BUG();
1307 break;
1308 }
1309 }
1310
1311out:
1312 if (state != cpuset) {
1313 /*
1314 * Don't tell them about moving exiting tasks or
1315 * kernel threads (both mm NULL), since they never
1316 * leave kernel.
1317 */
1318 if (p->mm && printk_ratelimit()) {
1319 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1320 task_pid_nr(p), p->comm, cpu);
1321 }
5da9a0fb
PZ
1322 }
1323
1324 return dest_cpu;
1325}
1326
e2912009 1327/*
013fdb80 1328 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1329 */
970b13ba 1330static inline
ac66f547 1331int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1332{
ac66f547 1333 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1334
1335 /*
1336 * In order not to call set_task_cpu() on a blocking task we need
1337 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1338 * cpu.
1339 *
1340 * Since this is common to all placement strategies, this lives here.
1341 *
1342 * [ this allows ->select_task() to simply return task_cpu(p) and
1343 * not worry about this generic constraint ]
1344 */
fa17b507 1345 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1346 !cpu_online(cpu)))
5da9a0fb 1347 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1348
1349 return cpu;
970b13ba 1350}
09a40af5
MG
1351
1352static void update_avg(u64 *avg, u64 sample)
1353{
1354 s64 diff = sample - *avg;
1355 *avg += diff >> 3;
1356}
970b13ba
PZ
1357#endif
1358
d7c01d27 1359static void
b84cb5df 1360ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1361{
d7c01d27 1362#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1363 struct rq *rq = this_rq();
1364
d7c01d27
PZ
1365#ifdef CONFIG_SMP
1366 int this_cpu = smp_processor_id();
1367
1368 if (cpu == this_cpu) {
1369 schedstat_inc(rq, ttwu_local);
1370 schedstat_inc(p, se.statistics.nr_wakeups_local);
1371 } else {
1372 struct sched_domain *sd;
1373
1374 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1375 rcu_read_lock();
d7c01d27
PZ
1376 for_each_domain(this_cpu, sd) {
1377 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1378 schedstat_inc(sd, ttwu_wake_remote);
1379 break;
1380 }
1381 }
057f3fad 1382 rcu_read_unlock();
d7c01d27 1383 }
f339b9dc
PZ
1384
1385 if (wake_flags & WF_MIGRATED)
1386 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1387
d7c01d27
PZ
1388#endif /* CONFIG_SMP */
1389
1390 schedstat_inc(rq, ttwu_count);
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1392
1393 if (wake_flags & WF_SYNC)
9ed3811a 1394 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1395
d7c01d27
PZ
1396#endif /* CONFIG_SCHEDSTATS */
1397}
1398
1399static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1400{
9ed3811a 1401 activate_task(rq, p, en_flags);
fd2f4419 1402 p->on_rq = 1;
c2f7115e
PZ
1403
1404 /* if a worker is waking up, notify workqueue */
1405 if (p->flags & PF_WQ_WORKER)
1406 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1407}
1408
23f41eeb
PZ
1409/*
1410 * Mark the task runnable and perform wakeup-preemption.
1411 */
89363381 1412static void
23f41eeb 1413ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1414{
9ed3811a 1415 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1416 trace_sched_wakeup(p, true);
9ed3811a
TH
1417
1418 p->state = TASK_RUNNING;
1419#ifdef CONFIG_SMP
1420 if (p->sched_class->task_woken)
1421 p->sched_class->task_woken(rq, p);
1422
e69c6341 1423 if (rq->idle_stamp) {
78becc27 1424 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1425 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1426
abfafa54
JL
1427 update_avg(&rq->avg_idle, delta);
1428
1429 if (rq->avg_idle > max)
9ed3811a 1430 rq->avg_idle = max;
abfafa54 1431
9ed3811a
TH
1432 rq->idle_stamp = 0;
1433 }
1434#endif
1435}
1436
c05fbafb
PZ
1437static void
1438ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1439{
1440#ifdef CONFIG_SMP
1441 if (p->sched_contributes_to_load)
1442 rq->nr_uninterruptible--;
1443#endif
1444
1445 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1446 ttwu_do_wakeup(rq, p, wake_flags);
1447}
1448
1449/*
1450 * Called in case the task @p isn't fully descheduled from its runqueue,
1451 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1452 * since all we need to do is flip p->state to TASK_RUNNING, since
1453 * the task is still ->on_rq.
1454 */
1455static int ttwu_remote(struct task_struct *p, int wake_flags)
1456{
1457 struct rq *rq;
1458 int ret = 0;
1459
1460 rq = __task_rq_lock(p);
1461 if (p->on_rq) {
1ad4ec0d
FW
1462 /* check_preempt_curr() may use rq clock */
1463 update_rq_clock(rq);
c05fbafb
PZ
1464 ttwu_do_wakeup(rq, p, wake_flags);
1465 ret = 1;
1466 }
1467 __task_rq_unlock(rq);
1468
1469 return ret;
1470}
1471
317f3941 1472#ifdef CONFIG_SMP
fa14ff4a 1473static void sched_ttwu_pending(void)
317f3941
PZ
1474{
1475 struct rq *rq = this_rq();
fa14ff4a
PZ
1476 struct llist_node *llist = llist_del_all(&rq->wake_list);
1477 struct task_struct *p;
317f3941
PZ
1478
1479 raw_spin_lock(&rq->lock);
1480
fa14ff4a
PZ
1481 while (llist) {
1482 p = llist_entry(llist, struct task_struct, wake_entry);
1483 llist = llist_next(llist);
317f3941
PZ
1484 ttwu_do_activate(rq, p, 0);
1485 }
1486
1487 raw_spin_unlock(&rq->lock);
1488}
1489
1490void scheduler_ipi(void)
1491{
f27dde8d
PZ
1492 /*
1493 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1494 * TIF_NEED_RESCHED remotely (for the first time) will also send
1495 * this IPI.
1496 */
1497 if (tif_need_resched())
1498 set_preempt_need_resched();
1499
873b4c65
VG
1500 if (llist_empty(&this_rq()->wake_list)
1501 && !tick_nohz_full_cpu(smp_processor_id())
1502 && !got_nohz_idle_kick())
c5d753a5
PZ
1503 return;
1504
1505 /*
1506 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1507 * traditionally all their work was done from the interrupt return
1508 * path. Now that we actually do some work, we need to make sure
1509 * we do call them.
1510 *
1511 * Some archs already do call them, luckily irq_enter/exit nest
1512 * properly.
1513 *
1514 * Arguably we should visit all archs and update all handlers,
1515 * however a fair share of IPIs are still resched only so this would
1516 * somewhat pessimize the simple resched case.
1517 */
1518 irq_enter();
ff442c51 1519 tick_nohz_full_check();
fa14ff4a 1520 sched_ttwu_pending();
ca38062e
SS
1521
1522 /*
1523 * Check if someone kicked us for doing the nohz idle load balance.
1524 */
873b4c65 1525 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1526 this_rq()->idle_balance = 1;
ca38062e 1527 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1528 }
c5d753a5 1529 irq_exit();
317f3941
PZ
1530}
1531
1532static void ttwu_queue_remote(struct task_struct *p, int cpu)
1533{
fa14ff4a 1534 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1535 smp_send_reschedule(cpu);
1536}
d6aa8f85 1537
39be3501 1538bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1539{
1540 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1541}
d6aa8f85 1542#endif /* CONFIG_SMP */
317f3941 1543
c05fbafb
PZ
1544static void ttwu_queue(struct task_struct *p, int cpu)
1545{
1546 struct rq *rq = cpu_rq(cpu);
1547
17d9f311 1548#if defined(CONFIG_SMP)
39be3501 1549 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1550 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1551 ttwu_queue_remote(p, cpu);
1552 return;
1553 }
1554#endif
1555
c05fbafb
PZ
1556 raw_spin_lock(&rq->lock);
1557 ttwu_do_activate(rq, p, 0);
1558 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1559}
1560
1561/**
1da177e4 1562 * try_to_wake_up - wake up a thread
9ed3811a 1563 * @p: the thread to be awakened
1da177e4 1564 * @state: the mask of task states that can be woken
9ed3811a 1565 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1566 *
1567 * Put it on the run-queue if it's not already there. The "current"
1568 * thread is always on the run-queue (except when the actual
1569 * re-schedule is in progress), and as such you're allowed to do
1570 * the simpler "current->state = TASK_RUNNING" to mark yourself
1571 * runnable without the overhead of this.
1572 *
e69f6186 1573 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1574 * or @state didn't match @p's state.
1da177e4 1575 */
e4a52bcb
PZ
1576static int
1577try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1578{
1da177e4 1579 unsigned long flags;
c05fbafb 1580 int cpu, success = 0;
2398f2c6 1581
e0acd0a6
ON
1582 /*
1583 * If we are going to wake up a thread waiting for CONDITION we
1584 * need to ensure that CONDITION=1 done by the caller can not be
1585 * reordered with p->state check below. This pairs with mb() in
1586 * set_current_state() the waiting thread does.
1587 */
1588 smp_mb__before_spinlock();
013fdb80 1589 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1590 if (!(p->state & state))
1da177e4
LT
1591 goto out;
1592
c05fbafb 1593 success = 1; /* we're going to change ->state */
1da177e4 1594 cpu = task_cpu(p);
1da177e4 1595
c05fbafb
PZ
1596 if (p->on_rq && ttwu_remote(p, wake_flags))
1597 goto stat;
1da177e4 1598
1da177e4 1599#ifdef CONFIG_SMP
e9c84311 1600 /*
c05fbafb
PZ
1601 * If the owning (remote) cpu is still in the middle of schedule() with
1602 * this task as prev, wait until its done referencing the task.
e9c84311 1603 */
f3e94786 1604 while (p->on_cpu)
e4a52bcb 1605 cpu_relax();
0970d299 1606 /*
e4a52bcb 1607 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1608 */
e4a52bcb 1609 smp_rmb();
1da177e4 1610
a8e4f2ea 1611 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1612 p->state = TASK_WAKING;
e7693a36 1613
e4a52bcb 1614 if (p->sched_class->task_waking)
74f8e4b2 1615 p->sched_class->task_waking(p);
efbbd05a 1616
ac66f547 1617 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1618 if (task_cpu(p) != cpu) {
1619 wake_flags |= WF_MIGRATED;
e4a52bcb 1620 set_task_cpu(p, cpu);
f339b9dc 1621 }
1da177e4 1622#endif /* CONFIG_SMP */
1da177e4 1623
c05fbafb
PZ
1624 ttwu_queue(p, cpu);
1625stat:
b84cb5df 1626 ttwu_stat(p, cpu, wake_flags);
1da177e4 1627out:
013fdb80 1628 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1629
1630 return success;
1631}
1632
21aa9af0
TH
1633/**
1634 * try_to_wake_up_local - try to wake up a local task with rq lock held
1635 * @p: the thread to be awakened
1636 *
2acca55e 1637 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1638 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1639 * the current task.
21aa9af0
TH
1640 */
1641static void try_to_wake_up_local(struct task_struct *p)
1642{
1643 struct rq *rq = task_rq(p);
21aa9af0 1644
383efcd0
TH
1645 if (WARN_ON_ONCE(rq != this_rq()) ||
1646 WARN_ON_ONCE(p == current))
1647 return;
1648
21aa9af0
TH
1649 lockdep_assert_held(&rq->lock);
1650
2acca55e
PZ
1651 if (!raw_spin_trylock(&p->pi_lock)) {
1652 raw_spin_unlock(&rq->lock);
1653 raw_spin_lock(&p->pi_lock);
1654 raw_spin_lock(&rq->lock);
1655 }
1656
21aa9af0 1657 if (!(p->state & TASK_NORMAL))
2acca55e 1658 goto out;
21aa9af0 1659
fd2f4419 1660 if (!p->on_rq)
d7c01d27
PZ
1661 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1662
23f41eeb 1663 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1664 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1665out:
1666 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1667}
1668
50fa610a
DH
1669/**
1670 * wake_up_process - Wake up a specific process
1671 * @p: The process to be woken up.
1672 *
1673 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1674 * processes.
1675 *
1676 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1677 *
1678 * It may be assumed that this function implies a write memory barrier before
1679 * changing the task state if and only if any tasks are woken up.
1680 */
7ad5b3a5 1681int wake_up_process(struct task_struct *p)
1da177e4 1682{
9067ac85
ON
1683 WARN_ON(task_is_stopped_or_traced(p));
1684 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1685}
1da177e4
LT
1686EXPORT_SYMBOL(wake_up_process);
1687
7ad5b3a5 1688int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1689{
1690 return try_to_wake_up(p, state, 0);
1691}
1692
1da177e4
LT
1693/*
1694 * Perform scheduler related setup for a newly forked process p.
1695 * p is forked by current.
dd41f596
IM
1696 *
1697 * __sched_fork() is basic setup used by init_idle() too:
1698 */
5e1576ed 1699static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1700{
fd2f4419
PZ
1701 p->on_rq = 0;
1702
1703 p->se.on_rq = 0;
dd41f596
IM
1704 p->se.exec_start = 0;
1705 p->se.sum_exec_runtime = 0;
f6cf891c 1706 p->se.prev_sum_exec_runtime = 0;
6c594c21 1707 p->se.nr_migrations = 0;
da7a735e 1708 p->se.vruntime = 0;
fd2f4419 1709 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1710
1711#ifdef CONFIG_SCHEDSTATS
41acab88 1712 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1713#endif
476d139c 1714
fa717060 1715 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1716
e107be36
AK
1717#ifdef CONFIG_PREEMPT_NOTIFIERS
1718 INIT_HLIST_HEAD(&p->preempt_notifiers);
1719#endif
cbee9f88
PZ
1720
1721#ifdef CONFIG_NUMA_BALANCING
1722 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1723 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1724 p->mm->numa_scan_seq = 0;
1725 }
1726
5e1576ed
RR
1727 if (clone_flags & CLONE_VM)
1728 p->numa_preferred_nid = current->numa_preferred_nid;
1729 else
1730 p->numa_preferred_nid = -1;
1731
cbee9f88
PZ
1732 p->node_stamp = 0ULL;
1733 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1734 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1735 p->numa_work.next = &p->numa_work;
f809ca9a 1736 p->numa_faults = NULL;
745d6147 1737 p->numa_faults_buffer = NULL;
8c8a743c
PZ
1738
1739 INIT_LIST_HEAD(&p->numa_entry);
1740 p->numa_group = NULL;
cbee9f88 1741#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1742}
1743
1a687c2e 1744#ifdef CONFIG_NUMA_BALANCING
3105b86a 1745#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1746void set_numabalancing_state(bool enabled)
1747{
1748 if (enabled)
1749 sched_feat_set("NUMA");
1750 else
1751 sched_feat_set("NO_NUMA");
1752}
3105b86a
MG
1753#else
1754__read_mostly bool numabalancing_enabled;
1755
1756void set_numabalancing_state(bool enabled)
1757{
1758 numabalancing_enabled = enabled;
dd41f596 1759}
3105b86a 1760#endif /* CONFIG_SCHED_DEBUG */
1a687c2e 1761#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1762
1763/*
1764 * fork()/clone()-time setup:
1765 */
5e1576ed 1766void sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1767{
0122ec5b 1768 unsigned long flags;
dd41f596
IM
1769 int cpu = get_cpu();
1770
5e1576ed 1771 __sched_fork(clone_flags, p);
06b83b5f 1772 /*
0017d735 1773 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1774 * nobody will actually run it, and a signal or other external
1775 * event cannot wake it up and insert it on the runqueue either.
1776 */
0017d735 1777 p->state = TASK_RUNNING;
dd41f596 1778
c350a04e
MG
1779 /*
1780 * Make sure we do not leak PI boosting priority to the child.
1781 */
1782 p->prio = current->normal_prio;
1783
b9dc29e7
MG
1784 /*
1785 * Revert to default priority/policy on fork if requested.
1786 */
1787 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1788 if (task_has_rt_policy(p)) {
b9dc29e7 1789 p->policy = SCHED_NORMAL;
6c697bdf 1790 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1791 p->rt_priority = 0;
1792 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1793 p->static_prio = NICE_TO_PRIO(0);
1794
1795 p->prio = p->normal_prio = __normal_prio(p);
1796 set_load_weight(p);
6c697bdf 1797
b9dc29e7
MG
1798 /*
1799 * We don't need the reset flag anymore after the fork. It has
1800 * fulfilled its duty:
1801 */
1802 p->sched_reset_on_fork = 0;
1803 }
ca94c442 1804
2ddbf952
HS
1805 if (!rt_prio(p->prio))
1806 p->sched_class = &fair_sched_class;
b29739f9 1807
cd29fe6f
PZ
1808 if (p->sched_class->task_fork)
1809 p->sched_class->task_fork(p);
1810
86951599
PZ
1811 /*
1812 * The child is not yet in the pid-hash so no cgroup attach races,
1813 * and the cgroup is pinned to this child due to cgroup_fork()
1814 * is ran before sched_fork().
1815 *
1816 * Silence PROVE_RCU.
1817 */
0122ec5b 1818 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1819 set_task_cpu(p, cpu);
0122ec5b 1820 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1821
52f17b6c 1822#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1823 if (likely(sched_info_on()))
52f17b6c 1824 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1825#endif
3ca7a440
PZ
1826#if defined(CONFIG_SMP)
1827 p->on_cpu = 0;
4866cde0 1828#endif
01028747 1829 init_task_preempt_count(p);
806c09a7 1830#ifdef CONFIG_SMP
917b627d 1831 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1832#endif
917b627d 1833
476d139c 1834 put_cpu();
1da177e4
LT
1835}
1836
1837/*
1838 * wake_up_new_task - wake up a newly created task for the first time.
1839 *
1840 * This function will do some initial scheduler statistics housekeeping
1841 * that must be done for every newly created context, then puts the task
1842 * on the runqueue and wakes it.
1843 */
3e51e3ed 1844void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1845{
1846 unsigned long flags;
dd41f596 1847 struct rq *rq;
fabf318e 1848
ab2515c4 1849 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1850#ifdef CONFIG_SMP
1851 /*
1852 * Fork balancing, do it here and not earlier because:
1853 * - cpus_allowed can change in the fork path
1854 * - any previously selected cpu might disappear through hotplug
fabf318e 1855 */
ac66f547 1856 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
1857#endif
1858
a75cdaa9
AS
1859 /* Initialize new task's runnable average */
1860 init_task_runnable_average(p);
ab2515c4 1861 rq = __task_rq_lock(p);
cd29fe6f 1862 activate_task(rq, p, 0);
fd2f4419 1863 p->on_rq = 1;
89363381 1864 trace_sched_wakeup_new(p, true);
a7558e01 1865 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1866#ifdef CONFIG_SMP
efbbd05a
PZ
1867 if (p->sched_class->task_woken)
1868 p->sched_class->task_woken(rq, p);
9a897c5a 1869#endif
0122ec5b 1870 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1871}
1872
e107be36
AK
1873#ifdef CONFIG_PREEMPT_NOTIFIERS
1874
1875/**
80dd99b3 1876 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1877 * @notifier: notifier struct to register
e107be36
AK
1878 */
1879void preempt_notifier_register(struct preempt_notifier *notifier)
1880{
1881 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1882}
1883EXPORT_SYMBOL_GPL(preempt_notifier_register);
1884
1885/**
1886 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1887 * @notifier: notifier struct to unregister
e107be36
AK
1888 *
1889 * This is safe to call from within a preemption notifier.
1890 */
1891void preempt_notifier_unregister(struct preempt_notifier *notifier)
1892{
1893 hlist_del(&notifier->link);
1894}
1895EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1896
1897static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1898{
1899 struct preempt_notifier *notifier;
e107be36 1900
b67bfe0d 1901 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1902 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1903}
1904
1905static void
1906fire_sched_out_preempt_notifiers(struct task_struct *curr,
1907 struct task_struct *next)
1908{
1909 struct preempt_notifier *notifier;
e107be36 1910
b67bfe0d 1911 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
1912 notifier->ops->sched_out(notifier, next);
1913}
1914
6d6bc0ad 1915#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1916
1917static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1918{
1919}
1920
1921static void
1922fire_sched_out_preempt_notifiers(struct task_struct *curr,
1923 struct task_struct *next)
1924{
1925}
1926
6d6bc0ad 1927#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1928
4866cde0
NP
1929/**
1930 * prepare_task_switch - prepare to switch tasks
1931 * @rq: the runqueue preparing to switch
421cee29 1932 * @prev: the current task that is being switched out
4866cde0
NP
1933 * @next: the task we are going to switch to.
1934 *
1935 * This is called with the rq lock held and interrupts off. It must
1936 * be paired with a subsequent finish_task_switch after the context
1937 * switch.
1938 *
1939 * prepare_task_switch sets up locking and calls architecture specific
1940 * hooks.
1941 */
e107be36
AK
1942static inline void
1943prepare_task_switch(struct rq *rq, struct task_struct *prev,
1944 struct task_struct *next)
4866cde0 1945{
895dd92c 1946 trace_sched_switch(prev, next);
43148951 1947 sched_info_switch(rq, prev, next);
fe4b04fa 1948 perf_event_task_sched_out(prev, next);
e107be36 1949 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1950 prepare_lock_switch(rq, next);
1951 prepare_arch_switch(next);
1952}
1953
1da177e4
LT
1954/**
1955 * finish_task_switch - clean up after a task-switch
344babaa 1956 * @rq: runqueue associated with task-switch
1da177e4
LT
1957 * @prev: the thread we just switched away from.
1958 *
4866cde0
NP
1959 * finish_task_switch must be called after the context switch, paired
1960 * with a prepare_task_switch call before the context switch.
1961 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1962 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1963 *
1964 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1965 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1966 * with the lock held can cause deadlocks; see schedule() for
1967 * details.)
1968 */
a9957449 1969static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1970 __releases(rq->lock)
1971{
1da177e4 1972 struct mm_struct *mm = rq->prev_mm;
55a101f8 1973 long prev_state;
1da177e4
LT
1974
1975 rq->prev_mm = NULL;
1976
1977 /*
1978 * A task struct has one reference for the use as "current".
c394cc9f 1979 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1980 * schedule one last time. The schedule call will never return, and
1981 * the scheduled task must drop that reference.
c394cc9f 1982 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1983 * still held, otherwise prev could be scheduled on another cpu, die
1984 * there before we look at prev->state, and then the reference would
1985 * be dropped twice.
1986 * Manfred Spraul <manfred@colorfullife.com>
1987 */
55a101f8 1988 prev_state = prev->state;
bf9fae9f 1989 vtime_task_switch(prev);
4866cde0 1990 finish_arch_switch(prev);
a8d757ef 1991 perf_event_task_sched_in(prev, current);
4866cde0 1992 finish_lock_switch(rq, prev);
01f23e16 1993 finish_arch_post_lock_switch();
e8fa1362 1994
e107be36 1995 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1996 if (mm)
1997 mmdrop(mm);
c394cc9f 1998 if (unlikely(prev_state == TASK_DEAD)) {
f809ca9a
MG
1999 task_numa_free(prev);
2000
c6fd91f0 2001 /*
2002 * Remove function-return probe instances associated with this
2003 * task and put them back on the free list.
9761eea8 2004 */
c6fd91f0 2005 kprobe_flush_task(prev);
1da177e4 2006 put_task_struct(prev);
c6fd91f0 2007 }
99e5ada9
FW
2008
2009 tick_nohz_task_switch(current);
1da177e4
LT
2010}
2011
3f029d3c
GH
2012#ifdef CONFIG_SMP
2013
2014/* assumes rq->lock is held */
2015static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2016{
2017 if (prev->sched_class->pre_schedule)
2018 prev->sched_class->pre_schedule(rq, prev);
2019}
2020
2021/* rq->lock is NOT held, but preemption is disabled */
2022static inline void post_schedule(struct rq *rq)
2023{
2024 if (rq->post_schedule) {
2025 unsigned long flags;
2026
05fa785c 2027 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2028 if (rq->curr->sched_class->post_schedule)
2029 rq->curr->sched_class->post_schedule(rq);
05fa785c 2030 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2031
2032 rq->post_schedule = 0;
2033 }
2034}
2035
2036#else
da19ab51 2037
3f029d3c
GH
2038static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2039{
2040}
2041
2042static inline void post_schedule(struct rq *rq)
2043{
1da177e4
LT
2044}
2045
3f029d3c
GH
2046#endif
2047
1da177e4
LT
2048/**
2049 * schedule_tail - first thing a freshly forked thread must call.
2050 * @prev: the thread we just switched away from.
2051 */
36c8b586 2052asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2053 __releases(rq->lock)
2054{
70b97a7f
IM
2055 struct rq *rq = this_rq();
2056
4866cde0 2057 finish_task_switch(rq, prev);
da19ab51 2058
3f029d3c
GH
2059 /*
2060 * FIXME: do we need to worry about rq being invalidated by the
2061 * task_switch?
2062 */
2063 post_schedule(rq);
70b97a7f 2064
4866cde0
NP
2065#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2066 /* In this case, finish_task_switch does not reenable preemption */
2067 preempt_enable();
2068#endif
1da177e4 2069 if (current->set_child_tid)
b488893a 2070 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2071}
2072
2073/*
2074 * context_switch - switch to the new MM and the new
2075 * thread's register state.
2076 */
dd41f596 2077static inline void
70b97a7f 2078context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2079 struct task_struct *next)
1da177e4 2080{
dd41f596 2081 struct mm_struct *mm, *oldmm;
1da177e4 2082
e107be36 2083 prepare_task_switch(rq, prev, next);
fe4b04fa 2084
dd41f596
IM
2085 mm = next->mm;
2086 oldmm = prev->active_mm;
9226d125
ZA
2087 /*
2088 * For paravirt, this is coupled with an exit in switch_to to
2089 * combine the page table reload and the switch backend into
2090 * one hypercall.
2091 */
224101ed 2092 arch_start_context_switch(prev);
9226d125 2093
31915ab4 2094 if (!mm) {
1da177e4
LT
2095 next->active_mm = oldmm;
2096 atomic_inc(&oldmm->mm_count);
2097 enter_lazy_tlb(oldmm, next);
2098 } else
2099 switch_mm(oldmm, mm, next);
2100
31915ab4 2101 if (!prev->mm) {
1da177e4 2102 prev->active_mm = NULL;
1da177e4
LT
2103 rq->prev_mm = oldmm;
2104 }
3a5f5e48
IM
2105 /*
2106 * Since the runqueue lock will be released by the next
2107 * task (which is an invalid locking op but in the case
2108 * of the scheduler it's an obvious special-case), so we
2109 * do an early lockdep release here:
2110 */
2111#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2112 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2113#endif
1da177e4 2114
91d1aa43 2115 context_tracking_task_switch(prev, next);
1da177e4
LT
2116 /* Here we just switch the register state and the stack. */
2117 switch_to(prev, next, prev);
2118
dd41f596
IM
2119 barrier();
2120 /*
2121 * this_rq must be evaluated again because prev may have moved
2122 * CPUs since it called schedule(), thus the 'rq' on its stack
2123 * frame will be invalid.
2124 */
2125 finish_task_switch(this_rq(), prev);
1da177e4
LT
2126}
2127
2128/*
1c3e8264 2129 * nr_running and nr_context_switches:
1da177e4
LT
2130 *
2131 * externally visible scheduler statistics: current number of runnable
1c3e8264 2132 * threads, total number of context switches performed since bootup.
1da177e4
LT
2133 */
2134unsigned long nr_running(void)
2135{
2136 unsigned long i, sum = 0;
2137
2138 for_each_online_cpu(i)
2139 sum += cpu_rq(i)->nr_running;
2140
2141 return sum;
f711f609 2142}
1da177e4 2143
1da177e4 2144unsigned long long nr_context_switches(void)
46cb4b7c 2145{
cc94abfc
SR
2146 int i;
2147 unsigned long long sum = 0;
46cb4b7c 2148
0a945022 2149 for_each_possible_cpu(i)
1da177e4 2150 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2151
1da177e4
LT
2152 return sum;
2153}
483b4ee6 2154
1da177e4
LT
2155unsigned long nr_iowait(void)
2156{
2157 unsigned long i, sum = 0;
483b4ee6 2158
0a945022 2159 for_each_possible_cpu(i)
1da177e4 2160 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2161
1da177e4
LT
2162 return sum;
2163}
483b4ee6 2164
8c215bd3 2165unsigned long nr_iowait_cpu(int cpu)
69d25870 2166{
8c215bd3 2167 struct rq *this = cpu_rq(cpu);
69d25870
AV
2168 return atomic_read(&this->nr_iowait);
2169}
46cb4b7c 2170
dd41f596 2171#ifdef CONFIG_SMP
8a0be9ef 2172
46cb4b7c 2173/*
38022906
PZ
2174 * sched_exec - execve() is a valuable balancing opportunity, because at
2175 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2176 */
38022906 2177void sched_exec(void)
46cb4b7c 2178{
38022906 2179 struct task_struct *p = current;
1da177e4 2180 unsigned long flags;
0017d735 2181 int dest_cpu;
46cb4b7c 2182
8f42ced9 2183 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2184 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2185 if (dest_cpu == smp_processor_id())
2186 goto unlock;
38022906 2187
8f42ced9 2188 if (likely(cpu_active(dest_cpu))) {
969c7921 2189 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2190
8f42ced9
PZ
2191 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2192 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2193 return;
2194 }
0017d735 2195unlock:
8f42ced9 2196 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2197}
dd41f596 2198
1da177e4
LT
2199#endif
2200
1da177e4 2201DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2202DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2203
2204EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2205EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2206
2207/*
c5f8d995 2208 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2209 * @p in case that task is currently running.
c5f8d995
HS
2210 *
2211 * Called with task_rq_lock() held on @rq.
1da177e4 2212 */
c5f8d995
HS
2213static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2214{
2215 u64 ns = 0;
2216
2217 if (task_current(rq, p)) {
2218 update_rq_clock(rq);
78becc27 2219 ns = rq_clock_task(rq) - p->se.exec_start;
c5f8d995
HS
2220 if ((s64)ns < 0)
2221 ns = 0;
2222 }
2223
2224 return ns;
2225}
2226
bb34d92f 2227unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2228{
1da177e4 2229 unsigned long flags;
41b86e9c 2230 struct rq *rq;
bb34d92f 2231 u64 ns = 0;
48f24c4d 2232
41b86e9c 2233 rq = task_rq_lock(p, &flags);
c5f8d995 2234 ns = do_task_delta_exec(p, rq);
0122ec5b 2235 task_rq_unlock(rq, p, &flags);
1508487e 2236
c5f8d995
HS
2237 return ns;
2238}
f06febc9 2239
c5f8d995
HS
2240/*
2241 * Return accounted runtime for the task.
2242 * In case the task is currently running, return the runtime plus current's
2243 * pending runtime that have not been accounted yet.
2244 */
2245unsigned long long task_sched_runtime(struct task_struct *p)
2246{
2247 unsigned long flags;
2248 struct rq *rq;
2249 u64 ns = 0;
2250
2251 rq = task_rq_lock(p, &flags);
2252 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2253 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2254
2255 return ns;
2256}
48f24c4d 2257
7835b98b
CL
2258/*
2259 * This function gets called by the timer code, with HZ frequency.
2260 * We call it with interrupts disabled.
7835b98b
CL
2261 */
2262void scheduler_tick(void)
2263{
7835b98b
CL
2264 int cpu = smp_processor_id();
2265 struct rq *rq = cpu_rq(cpu);
dd41f596 2266 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2267
2268 sched_clock_tick();
dd41f596 2269
05fa785c 2270 raw_spin_lock(&rq->lock);
3e51f33f 2271 update_rq_clock(rq);
fa85ae24 2272 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2273 update_cpu_load_active(rq);
05fa785c 2274 raw_spin_unlock(&rq->lock);
7835b98b 2275
e9d2b064 2276 perf_event_task_tick();
e220d2dc 2277
e418e1c2 2278#ifdef CONFIG_SMP
6eb57e0d 2279 rq->idle_balance = idle_cpu(cpu);
dd41f596 2280 trigger_load_balance(rq, cpu);
e418e1c2 2281#endif
265f22a9 2282 rq_last_tick_reset(rq);
1da177e4
LT
2283}
2284
265f22a9
FW
2285#ifdef CONFIG_NO_HZ_FULL
2286/**
2287 * scheduler_tick_max_deferment
2288 *
2289 * Keep at least one tick per second when a single
2290 * active task is running because the scheduler doesn't
2291 * yet completely support full dynticks environment.
2292 *
2293 * This makes sure that uptime, CFS vruntime, load
2294 * balancing, etc... continue to move forward, even
2295 * with a very low granularity.
e69f6186
YB
2296 *
2297 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2298 */
2299u64 scheduler_tick_max_deferment(void)
2300{
2301 struct rq *rq = this_rq();
2302 unsigned long next, now = ACCESS_ONCE(jiffies);
2303
2304 next = rq->last_sched_tick + HZ;
2305
2306 if (time_before_eq(next, now))
2307 return 0;
2308
2309 return jiffies_to_usecs(next - now) * NSEC_PER_USEC;
1da177e4 2310}
265f22a9 2311#endif
1da177e4 2312
132380a0 2313notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2314{
2315 if (in_lock_functions(addr)) {
2316 addr = CALLER_ADDR2;
2317 if (in_lock_functions(addr))
2318 addr = CALLER_ADDR3;
2319 }
2320 return addr;
2321}
1da177e4 2322
7e49fcce
SR
2323#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2324 defined(CONFIG_PREEMPT_TRACER))
2325
bdb43806 2326void __kprobes preempt_count_add(int val)
1da177e4 2327{
6cd8a4bb 2328#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2329 /*
2330 * Underflow?
2331 */
9a11b49a
IM
2332 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2333 return;
6cd8a4bb 2334#endif
bdb43806 2335 __preempt_count_add(val);
6cd8a4bb 2336#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2337 /*
2338 * Spinlock count overflowing soon?
2339 */
33859f7f
MOS
2340 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2341 PREEMPT_MASK - 10);
6cd8a4bb
SR
2342#endif
2343 if (preempt_count() == val)
2344 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4 2345}
bdb43806 2346EXPORT_SYMBOL(preempt_count_add);
1da177e4 2347
bdb43806 2348void __kprobes preempt_count_sub(int val)
1da177e4 2349{
6cd8a4bb 2350#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2351 /*
2352 * Underflow?
2353 */
01e3eb82 2354 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2355 return;
1da177e4
LT
2356 /*
2357 * Is the spinlock portion underflowing?
2358 */
9a11b49a
IM
2359 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2360 !(preempt_count() & PREEMPT_MASK)))
2361 return;
6cd8a4bb 2362#endif
9a11b49a 2363
6cd8a4bb
SR
2364 if (preempt_count() == val)
2365 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2366 __preempt_count_sub(val);
1da177e4 2367}
bdb43806 2368EXPORT_SYMBOL(preempt_count_sub);
1da177e4
LT
2369
2370#endif
2371
2372/*
dd41f596 2373 * Print scheduling while atomic bug:
1da177e4 2374 */
dd41f596 2375static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2376{
664dfa65
DJ
2377 if (oops_in_progress)
2378 return;
2379
3df0fc5b
PZ
2380 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2381 prev->comm, prev->pid, preempt_count());
838225b4 2382
dd41f596 2383 debug_show_held_locks(prev);
e21f5b15 2384 print_modules();
dd41f596
IM
2385 if (irqs_disabled())
2386 print_irqtrace_events(prev);
6135fc1e 2387 dump_stack();
373d4d09 2388 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2389}
1da177e4 2390
dd41f596
IM
2391/*
2392 * Various schedule()-time debugging checks and statistics:
2393 */
2394static inline void schedule_debug(struct task_struct *prev)
2395{
1da177e4 2396 /*
41a2d6cf 2397 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
2398 * schedule() atomically, we ignore that path for now.
2399 * Otherwise, whine if we are scheduling when we should not be.
2400 */
3f33a7ce 2401 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 2402 __schedule_bug(prev);
b3fbab05 2403 rcu_sleep_check();
dd41f596 2404
1da177e4
LT
2405 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2406
2d72376b 2407 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2408}
2409
6cecd084 2410static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 2411{
61eadef6 2412 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 2413 update_rq_clock(rq);
6cecd084 2414 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
2415}
2416
dd41f596
IM
2417/*
2418 * Pick up the highest-prio task:
2419 */
2420static inline struct task_struct *
b67802ea 2421pick_next_task(struct rq *rq)
dd41f596 2422{
5522d5d5 2423 const struct sched_class *class;
dd41f596 2424 struct task_struct *p;
1da177e4
LT
2425
2426 /*
dd41f596
IM
2427 * Optimization: we know that if all tasks are in
2428 * the fair class we can call that function directly:
1da177e4 2429 */
953bfcd1 2430 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 2431 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
2432 if (likely(p))
2433 return p;
1da177e4
LT
2434 }
2435
34f971f6 2436 for_each_class(class) {
fb8d4724 2437 p = class->pick_next_task(rq);
dd41f596
IM
2438 if (p)
2439 return p;
dd41f596 2440 }
34f971f6
PZ
2441
2442 BUG(); /* the idle class will always have a runnable task */
dd41f596 2443}
1da177e4 2444
dd41f596 2445/*
c259e01a 2446 * __schedule() is the main scheduler function.
edde96ea
PE
2447 *
2448 * The main means of driving the scheduler and thus entering this function are:
2449 *
2450 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2451 *
2452 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2453 * paths. For example, see arch/x86/entry_64.S.
2454 *
2455 * To drive preemption between tasks, the scheduler sets the flag in timer
2456 * interrupt handler scheduler_tick().
2457 *
2458 * 3. Wakeups don't really cause entry into schedule(). They add a
2459 * task to the run-queue and that's it.
2460 *
2461 * Now, if the new task added to the run-queue preempts the current
2462 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2463 * called on the nearest possible occasion:
2464 *
2465 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2466 *
2467 * - in syscall or exception context, at the next outmost
2468 * preempt_enable(). (this might be as soon as the wake_up()'s
2469 * spin_unlock()!)
2470 *
2471 * - in IRQ context, return from interrupt-handler to
2472 * preemptible context
2473 *
2474 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2475 * then at the next:
2476 *
2477 * - cond_resched() call
2478 * - explicit schedule() call
2479 * - return from syscall or exception to user-space
2480 * - return from interrupt-handler to user-space
dd41f596 2481 */
c259e01a 2482static void __sched __schedule(void)
dd41f596
IM
2483{
2484 struct task_struct *prev, *next;
67ca7bde 2485 unsigned long *switch_count;
dd41f596 2486 struct rq *rq;
31656519 2487 int cpu;
dd41f596 2488
ff743345
PZ
2489need_resched:
2490 preempt_disable();
dd41f596
IM
2491 cpu = smp_processor_id();
2492 rq = cpu_rq(cpu);
25502a6c 2493 rcu_note_context_switch(cpu);
dd41f596 2494 prev = rq->curr;
dd41f596 2495
dd41f596 2496 schedule_debug(prev);
1da177e4 2497
31656519 2498 if (sched_feat(HRTICK))
f333fdc9 2499 hrtick_clear(rq);
8f4d37ec 2500
e0acd0a6
ON
2501 /*
2502 * Make sure that signal_pending_state()->signal_pending() below
2503 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2504 * done by the caller to avoid the race with signal_wake_up().
2505 */
2506 smp_mb__before_spinlock();
05fa785c 2507 raw_spin_lock_irq(&rq->lock);
1da177e4 2508
246d86b5 2509 switch_count = &prev->nivcsw;
1da177e4 2510 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2511 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2512 prev->state = TASK_RUNNING;
21aa9af0 2513 } else {
2acca55e
PZ
2514 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2515 prev->on_rq = 0;
2516
21aa9af0 2517 /*
2acca55e
PZ
2518 * If a worker went to sleep, notify and ask workqueue
2519 * whether it wants to wake up a task to maintain
2520 * concurrency.
21aa9af0
TH
2521 */
2522 if (prev->flags & PF_WQ_WORKER) {
2523 struct task_struct *to_wakeup;
2524
2525 to_wakeup = wq_worker_sleeping(prev, cpu);
2526 if (to_wakeup)
2527 try_to_wake_up_local(to_wakeup);
2528 }
21aa9af0 2529 }
dd41f596 2530 switch_count = &prev->nvcsw;
1da177e4
LT
2531 }
2532
3f029d3c 2533 pre_schedule(rq, prev);
f65eda4f 2534
dd41f596 2535 if (unlikely(!rq->nr_running))
1da177e4 2536 idle_balance(cpu, rq);
1da177e4 2537
df1c99d4 2538 put_prev_task(rq, prev);
b67802ea 2539 next = pick_next_task(rq);
f26f9aff 2540 clear_tsk_need_resched(prev);
f27dde8d 2541 clear_preempt_need_resched();
f26f9aff 2542 rq->skip_clock_update = 0;
1da177e4 2543
1da177e4 2544 if (likely(prev != next)) {
1da177e4
LT
2545 rq->nr_switches++;
2546 rq->curr = next;
2547 ++*switch_count;
2548
dd41f596 2549 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 2550 /*
246d86b5
ON
2551 * The context switch have flipped the stack from under us
2552 * and restored the local variables which were saved when
2553 * this task called schedule() in the past. prev == current
2554 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
2555 */
2556 cpu = smp_processor_id();
2557 rq = cpu_rq(cpu);
1da177e4 2558 } else
05fa785c 2559 raw_spin_unlock_irq(&rq->lock);
1da177e4 2560
3f029d3c 2561 post_schedule(rq);
1da177e4 2562
ba74c144 2563 sched_preempt_enable_no_resched();
ff743345 2564 if (need_resched())
1da177e4
LT
2565 goto need_resched;
2566}
c259e01a 2567
9c40cef2
TG
2568static inline void sched_submit_work(struct task_struct *tsk)
2569{
3c7d5184 2570 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2571 return;
2572 /*
2573 * If we are going to sleep and we have plugged IO queued,
2574 * make sure to submit it to avoid deadlocks.
2575 */
2576 if (blk_needs_flush_plug(tsk))
2577 blk_schedule_flush_plug(tsk);
2578}
2579
6ebbe7a0 2580asmlinkage void __sched schedule(void)
c259e01a 2581{
9c40cef2
TG
2582 struct task_struct *tsk = current;
2583
2584 sched_submit_work(tsk);
c259e01a
TG
2585 __schedule();
2586}
1da177e4
LT
2587EXPORT_SYMBOL(schedule);
2588
91d1aa43 2589#ifdef CONFIG_CONTEXT_TRACKING
20ab65e3
FW
2590asmlinkage void __sched schedule_user(void)
2591{
2592 /*
2593 * If we come here after a random call to set_need_resched(),
2594 * or we have been woken up remotely but the IPI has not yet arrived,
2595 * we haven't yet exited the RCU idle mode. Do it here manually until
2596 * we find a better solution.
2597 */
91d1aa43 2598 user_exit();
20ab65e3 2599 schedule();
91d1aa43 2600 user_enter();
20ab65e3
FW
2601}
2602#endif
2603
c5491ea7
TG
2604/**
2605 * schedule_preempt_disabled - called with preemption disabled
2606 *
2607 * Returns with preemption disabled. Note: preempt_count must be 1
2608 */
2609void __sched schedule_preempt_disabled(void)
2610{
ba74c144 2611 sched_preempt_enable_no_resched();
c5491ea7
TG
2612 schedule();
2613 preempt_disable();
2614}
2615
1da177e4
LT
2616#ifdef CONFIG_PREEMPT
2617/*
2ed6e34f 2618 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2619 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2620 * occur there and call schedule directly.
2621 */
d1f74e20 2622asmlinkage void __sched notrace preempt_schedule(void)
1da177e4 2623{
1da177e4
LT
2624 /*
2625 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2626 * we do not want to preempt the current task. Just return..
1da177e4 2627 */
fbb00b56 2628 if (likely(!preemptible()))
1da177e4
LT
2629 return;
2630
3a5c359a 2631 do {
bdb43806 2632 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 2633 __schedule();
bdb43806 2634 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2635
3a5c359a
AK
2636 /*
2637 * Check again in case we missed a preemption opportunity
2638 * between schedule and now.
2639 */
2640 barrier();
5ed0cec0 2641 } while (need_resched());
1da177e4 2642}
1da177e4
LT
2643EXPORT_SYMBOL(preempt_schedule);
2644
2645/*
2ed6e34f 2646 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2647 * off of irq context.
2648 * Note, that this is called and return with irqs disabled. This will
2649 * protect us against recursive calling from irq.
2650 */
2651asmlinkage void __sched preempt_schedule_irq(void)
2652{
b22366cd 2653 enum ctx_state prev_state;
6478d880 2654
2ed6e34f 2655 /* Catch callers which need to be fixed */
f27dde8d 2656 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2657
b22366cd
FW
2658 prev_state = exception_enter();
2659
3a5c359a 2660 do {
bdb43806 2661 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2662 local_irq_enable();
c259e01a 2663 __schedule();
3a5c359a 2664 local_irq_disable();
bdb43806 2665 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2666
3a5c359a
AK
2667 /*
2668 * Check again in case we missed a preemption opportunity
2669 * between schedule and now.
2670 */
2671 barrier();
5ed0cec0 2672 } while (need_resched());
b22366cd
FW
2673
2674 exception_exit(prev_state);
1da177e4
LT
2675}
2676
2677#endif /* CONFIG_PREEMPT */
2678
63859d4f 2679int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2680 void *key)
1da177e4 2681{
63859d4f 2682 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2683}
1da177e4
LT
2684EXPORT_SYMBOL(default_wake_function);
2685
2686/*
41a2d6cf
IM
2687 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
2688 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
2689 * number) then we wake all the non-exclusive tasks and one exclusive task.
2690 *
2691 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 2692 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
2693 * zero in this (rare) case, and we handle it by continuing to scan the queue.
2694 */
78ddb08f 2695static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 2696 int nr_exclusive, int wake_flags, void *key)
1da177e4 2697{
2e45874c 2698 wait_queue_t *curr, *next;
1da177e4 2699
2e45874c 2700 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
2701 unsigned flags = curr->flags;
2702
63859d4f 2703 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 2704 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
2705 break;
2706 }
2707}
2708
2709/**
2710 * __wake_up - wake up threads blocked on a waitqueue.
2711 * @q: the waitqueue
2712 * @mode: which threads
2713 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 2714 * @key: is directly passed to the wakeup function
50fa610a
DH
2715 *
2716 * It may be assumed that this function implies a write memory barrier before
2717 * changing the task state if and only if any tasks are woken up.
1da177e4 2718 */
7ad5b3a5 2719void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 2720 int nr_exclusive, void *key)
1da177e4
LT
2721{
2722 unsigned long flags;
2723
2724 spin_lock_irqsave(&q->lock, flags);
2725 __wake_up_common(q, mode, nr_exclusive, 0, key);
2726 spin_unlock_irqrestore(&q->lock, flags);
2727}
1da177e4
LT
2728EXPORT_SYMBOL(__wake_up);
2729
2730/*
2731 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
2732 */
63b20011 2733void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 2734{
63b20011 2735 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 2736}
22c43c81 2737EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 2738
4ede816a
DL
2739void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
2740{
2741 __wake_up_common(q, mode, 1, 0, key);
2742}
bf294b41 2743EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 2744
1da177e4 2745/**
4ede816a 2746 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
2747 * @q: the waitqueue
2748 * @mode: which threads
2749 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 2750 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
2751 *
2752 * The sync wakeup differs that the waker knows that it will schedule
2753 * away soon, so while the target thread will be woken up, it will not
2754 * be migrated to another CPU - ie. the two threads are 'synchronized'
2755 * with each other. This can prevent needless bouncing between CPUs.
2756 *
2757 * On UP it can prevent extra preemption.
50fa610a
DH
2758 *
2759 * It may be assumed that this function implies a write memory barrier before
2760 * changing the task state if and only if any tasks are woken up.
1da177e4 2761 */
4ede816a
DL
2762void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
2763 int nr_exclusive, void *key)
1da177e4
LT
2764{
2765 unsigned long flags;
7d478721 2766 int wake_flags = WF_SYNC;
1da177e4
LT
2767
2768 if (unlikely(!q))
2769 return;
2770
cedce3e7 2771 if (unlikely(nr_exclusive != 1))
7d478721 2772 wake_flags = 0;
1da177e4
LT
2773
2774 spin_lock_irqsave(&q->lock, flags);
7d478721 2775 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
2776 spin_unlock_irqrestore(&q->lock, flags);
2777}
4ede816a
DL
2778EXPORT_SYMBOL_GPL(__wake_up_sync_key);
2779
2780/*
2781 * __wake_up_sync - see __wake_up_sync_key()
2782 */
2783void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2784{
2785 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
2786}
1da177e4
LT
2787EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
2788
65eb3dc6
KD
2789/**
2790 * complete: - signals a single thread waiting on this completion
2791 * @x: holds the state of this particular completion
2792 *
2793 * This will wake up a single thread waiting on this completion. Threads will be
2794 * awakened in the same order in which they were queued.
2795 *
2796 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
2797 *
2798 * It may be assumed that this function implies a write memory barrier before
2799 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2800 */
b15136e9 2801void complete(struct completion *x)
1da177e4
LT
2802{
2803 unsigned long flags;
2804
2805 spin_lock_irqsave(&x->wait.lock, flags);
2806 x->done++;
d9514f6c 2807 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
2808 spin_unlock_irqrestore(&x->wait.lock, flags);
2809}
2810EXPORT_SYMBOL(complete);
2811
65eb3dc6
KD
2812/**
2813 * complete_all: - signals all threads waiting on this completion
2814 * @x: holds the state of this particular completion
2815 *
2816 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
2817 *
2818 * It may be assumed that this function implies a write memory barrier before
2819 * changing the task state if and only if any tasks are woken up.
65eb3dc6 2820 */
b15136e9 2821void complete_all(struct completion *x)
1da177e4
LT
2822{
2823 unsigned long flags;
2824
2825 spin_lock_irqsave(&x->wait.lock, flags);
2826 x->done += UINT_MAX/2;
d9514f6c 2827 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
2828 spin_unlock_irqrestore(&x->wait.lock, flags);
2829}
2830EXPORT_SYMBOL(complete_all);
2831
8cbbe86d 2832static inline long __sched
686855f5
VD
2833do_wait_for_common(struct completion *x,
2834 long (*action)(long), long timeout, int state)
1da177e4 2835{
1da177e4
LT
2836 if (!x->done) {
2837 DECLARE_WAITQUEUE(wait, current);
2838
a93d2f17 2839 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 2840 do {
94d3d824 2841 if (signal_pending_state(state, current)) {
ea71a546
ON
2842 timeout = -ERESTARTSYS;
2843 break;
8cbbe86d
AK
2844 }
2845 __set_current_state(state);
1da177e4 2846 spin_unlock_irq(&x->wait.lock);
686855f5 2847 timeout = action(timeout);
1da177e4 2848 spin_lock_irq(&x->wait.lock);
ea71a546 2849 } while (!x->done && timeout);
1da177e4 2850 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
2851 if (!x->done)
2852 return timeout;
1da177e4
LT
2853 }
2854 x->done--;
ea71a546 2855 return timeout ?: 1;
1da177e4 2856}
1da177e4 2857
686855f5
VD
2858static inline long __sched
2859__wait_for_common(struct completion *x,
2860 long (*action)(long), long timeout, int state)
1da177e4 2861{
1da177e4
LT
2862 might_sleep();
2863
2864 spin_lock_irq(&x->wait.lock);
686855f5 2865 timeout = do_wait_for_common(x, action, timeout, state);
1da177e4 2866 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
2867 return timeout;
2868}
1da177e4 2869
686855f5
VD
2870static long __sched
2871wait_for_common(struct completion *x, long timeout, int state)
2872{
2873 return __wait_for_common(x, schedule_timeout, timeout, state);
2874}
2875
2876static long __sched
2877wait_for_common_io(struct completion *x, long timeout, int state)
2878{
2879 return __wait_for_common(x, io_schedule_timeout, timeout, state);
2880}
2881
65eb3dc6
KD
2882/**
2883 * wait_for_completion: - waits for completion of a task
2884 * @x: holds the state of this particular completion
2885 *
2886 * This waits to be signaled for completion of a specific task. It is NOT
2887 * interruptible and there is no timeout.
2888 *
2889 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
2890 * and interrupt capability. Also see complete().
2891 */
b15136e9 2892void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
2893{
2894 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 2895}
8cbbe86d 2896EXPORT_SYMBOL(wait_for_completion);
1da177e4 2897
65eb3dc6
KD
2898/**
2899 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
2900 * @x: holds the state of this particular completion
2901 * @timeout: timeout value in jiffies
2902 *
2903 * This waits for either a completion of a specific task to be signaled or for a
2904 * specified timeout to expire. The timeout is in jiffies. It is not
2905 * interruptible.
c6dc7f05 2906 *
e69f6186
YB
2907 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2908 * till timeout) if completed.
65eb3dc6 2909 */
b15136e9 2910unsigned long __sched
8cbbe86d 2911wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 2912{
8cbbe86d 2913 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 2914}
8cbbe86d 2915EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 2916
686855f5
VD
2917/**
2918 * wait_for_completion_io: - waits for completion of a task
2919 * @x: holds the state of this particular completion
2920 *
2921 * This waits to be signaled for completion of a specific task. It is NOT
2922 * interruptible and there is no timeout. The caller is accounted as waiting
2923 * for IO.
2924 */
2925void __sched wait_for_completion_io(struct completion *x)
2926{
2927 wait_for_common_io(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
2928}
2929EXPORT_SYMBOL(wait_for_completion_io);
2930
2931/**
2932 * wait_for_completion_io_timeout: - waits for completion of a task (w/timeout)
2933 * @x: holds the state of this particular completion
2934 * @timeout: timeout value in jiffies
2935 *
2936 * This waits for either a completion of a specific task to be signaled or for a
2937 * specified timeout to expire. The timeout is in jiffies. It is not
2938 * interruptible. The caller is accounted as waiting for IO.
2939 *
e69f6186
YB
2940 * Return: 0 if timed out, and positive (at least 1, or number of jiffies left
2941 * till timeout) if completed.
686855f5
VD
2942 */
2943unsigned long __sched
2944wait_for_completion_io_timeout(struct completion *x, unsigned long timeout)
2945{
2946 return wait_for_common_io(x, timeout, TASK_UNINTERRUPTIBLE);
2947}
2948EXPORT_SYMBOL(wait_for_completion_io_timeout);
2949
65eb3dc6
KD
2950/**
2951 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
2952 * @x: holds the state of this particular completion
2953 *
2954 * This waits for completion of a specific task to be signaled. It is
2955 * interruptible.
c6dc7f05 2956 *
e69f6186 2957 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2958 */
8cbbe86d 2959int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 2960{
51e97990
AK
2961 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
2962 if (t == -ERESTARTSYS)
2963 return t;
2964 return 0;
0fec171c 2965}
8cbbe86d 2966EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 2967
65eb3dc6
KD
2968/**
2969 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
2970 * @x: holds the state of this particular completion
2971 * @timeout: timeout value in jiffies
2972 *
2973 * This waits for either a completion of a specific task to be signaled or for a
2974 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05 2975 *
e69f6186
YB
2976 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
2977 * or number of jiffies left till timeout) if completed.
65eb3dc6 2978 */
6bf41237 2979long __sched
8cbbe86d
AK
2980wait_for_completion_interruptible_timeout(struct completion *x,
2981 unsigned long timeout)
0fec171c 2982{
8cbbe86d 2983 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 2984}
8cbbe86d 2985EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 2986
65eb3dc6
KD
2987/**
2988 * wait_for_completion_killable: - waits for completion of a task (killable)
2989 * @x: holds the state of this particular completion
2990 *
2991 * This waits to be signaled for completion of a specific task. It can be
2992 * interrupted by a kill signal.
c6dc7f05 2993 *
e69f6186 2994 * Return: -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 2995 */
009e577e
MW
2996int __sched wait_for_completion_killable(struct completion *x)
2997{
2998 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
2999 if (t == -ERESTARTSYS)
3000 return t;
3001 return 0;
3002}
3003EXPORT_SYMBOL(wait_for_completion_killable);
3004
0aa12fb4
SW
3005/**
3006 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3007 * @x: holds the state of this particular completion
3008 * @timeout: timeout value in jiffies
3009 *
3010 * This waits for either a completion of a specific task to be
3011 * signaled or for a specified timeout to expire. It can be
3012 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05 3013 *
e69f6186
YB
3014 * Return: -ERESTARTSYS if interrupted, 0 if timed out, positive (at least 1,
3015 * or number of jiffies left till timeout) if completed.
0aa12fb4 3016 */
6bf41237 3017long __sched
0aa12fb4
SW
3018wait_for_completion_killable_timeout(struct completion *x,
3019 unsigned long timeout)
3020{
3021 return wait_for_common(x, timeout, TASK_KILLABLE);
3022}
3023EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3024
be4de352
DC
3025/**
3026 * try_wait_for_completion - try to decrement a completion without blocking
3027 * @x: completion structure
3028 *
e69f6186 3029 * Return: 0 if a decrement cannot be done without blocking
be4de352
DC
3030 * 1 if a decrement succeeded.
3031 *
3032 * If a completion is being used as a counting completion,
3033 * attempt to decrement the counter without blocking. This
3034 * enables us to avoid waiting if the resource the completion
3035 * is protecting is not available.
3036 */
3037bool try_wait_for_completion(struct completion *x)
3038{
7539a3b3 3039 unsigned long flags;
be4de352
DC
3040 int ret = 1;
3041
7539a3b3 3042 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3043 if (!x->done)
3044 ret = 0;
3045 else
3046 x->done--;
7539a3b3 3047 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3048 return ret;
3049}
3050EXPORT_SYMBOL(try_wait_for_completion);
3051
3052/**
3053 * completion_done - Test to see if a completion has any waiters
3054 * @x: completion structure
3055 *
e69f6186 3056 * Return: 0 if there are waiters (wait_for_completion() in progress)
be4de352
DC
3057 * 1 if there are no waiters.
3058 *
3059 */
3060bool completion_done(struct completion *x)
3061{
7539a3b3 3062 unsigned long flags;
be4de352
DC
3063 int ret = 1;
3064
7539a3b3 3065 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3066 if (!x->done)
3067 ret = 0;
7539a3b3 3068 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3069 return ret;
3070}
3071EXPORT_SYMBOL(completion_done);
3072
8cbbe86d
AK
3073static long __sched
3074sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3075{
0fec171c
IM
3076 unsigned long flags;
3077 wait_queue_t wait;
3078
3079 init_waitqueue_entry(&wait, current);
1da177e4 3080
8cbbe86d 3081 __set_current_state(state);
1da177e4 3082
8cbbe86d
AK
3083 spin_lock_irqsave(&q->lock, flags);
3084 __add_wait_queue(q, &wait);
3085 spin_unlock(&q->lock);
3086 timeout = schedule_timeout(timeout);
3087 spin_lock_irq(&q->lock);
3088 __remove_wait_queue(q, &wait);
3089 spin_unlock_irqrestore(&q->lock, flags);
3090
3091 return timeout;
3092}
3093
3094void __sched interruptible_sleep_on(wait_queue_head_t *q)
3095{
3096 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3097}
1da177e4
LT
3098EXPORT_SYMBOL(interruptible_sleep_on);
3099
0fec171c 3100long __sched
95cdf3b7 3101interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3102{
8cbbe86d 3103 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3104}
1da177e4
LT
3105EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3106
0fec171c 3107void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3108{
8cbbe86d 3109 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3110}
1da177e4
LT
3111EXPORT_SYMBOL(sleep_on);
3112
0fec171c 3113long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3114{
8cbbe86d 3115 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3116}
1da177e4
LT
3117EXPORT_SYMBOL(sleep_on_timeout);
3118
b29739f9
IM
3119#ifdef CONFIG_RT_MUTEXES
3120
3121/*
3122 * rt_mutex_setprio - set the current priority of a task
3123 * @p: task
3124 * @prio: prio value (kernel-internal form)
3125 *
3126 * This function changes the 'effective' priority of a task. It does
3127 * not touch ->normal_prio like __setscheduler().
3128 *
3129 * Used by the rt_mutex code to implement priority inheritance logic.
3130 */
36c8b586 3131void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3132{
83b699ed 3133 int oldprio, on_rq, running;
70b97a7f 3134 struct rq *rq;
83ab0aa0 3135 const struct sched_class *prev_class;
b29739f9
IM
3136
3137 BUG_ON(prio < 0 || prio > MAX_PRIO);
3138
0122ec5b 3139 rq = __task_rq_lock(p);
b29739f9 3140
1c4dd99b
TG
3141 /*
3142 * Idle task boosting is a nono in general. There is one
3143 * exception, when PREEMPT_RT and NOHZ is active:
3144 *
3145 * The idle task calls get_next_timer_interrupt() and holds
3146 * the timer wheel base->lock on the CPU and another CPU wants
3147 * to access the timer (probably to cancel it). We can safely
3148 * ignore the boosting request, as the idle CPU runs this code
3149 * with interrupts disabled and will complete the lock
3150 * protected section without being interrupted. So there is no
3151 * real need to boost.
3152 */
3153 if (unlikely(p == rq->idle)) {
3154 WARN_ON(p != rq->curr);
3155 WARN_ON(p->pi_blocked_on);
3156 goto out_unlock;
3157 }
3158
a8027073 3159 trace_sched_pi_setprio(p, prio);
d5f9f942 3160 oldprio = p->prio;
83ab0aa0 3161 prev_class = p->sched_class;
fd2f4419 3162 on_rq = p->on_rq;
051a1d1a 3163 running = task_current(rq, p);
0e1f3483 3164 if (on_rq)
69be72c1 3165 dequeue_task(rq, p, 0);
0e1f3483
HS
3166 if (running)
3167 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3168
3169 if (rt_prio(prio))
3170 p->sched_class = &rt_sched_class;
3171 else
3172 p->sched_class = &fair_sched_class;
3173
b29739f9
IM
3174 p->prio = prio;
3175
0e1f3483
HS
3176 if (running)
3177 p->sched_class->set_curr_task(rq);
da7a735e 3178 if (on_rq)
371fd7e7 3179 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3180
da7a735e 3181 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3182out_unlock:
0122ec5b 3183 __task_rq_unlock(rq);
b29739f9 3184}
b29739f9 3185#endif
36c8b586 3186void set_user_nice(struct task_struct *p, long nice)
1da177e4 3187{
dd41f596 3188 int old_prio, delta, on_rq;
1da177e4 3189 unsigned long flags;
70b97a7f 3190 struct rq *rq;
1da177e4
LT
3191
3192 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3193 return;
3194 /*
3195 * We have to be careful, if called from sys_setpriority(),
3196 * the task might be in the middle of scheduling on another CPU.
3197 */
3198 rq = task_rq_lock(p, &flags);
3199 /*
3200 * The RT priorities are set via sched_setscheduler(), but we still
3201 * allow the 'normal' nice value to be set - but as expected
3202 * it wont have any effect on scheduling until the task is
dd41f596 3203 * SCHED_FIFO/SCHED_RR:
1da177e4 3204 */
e05606d3 3205 if (task_has_rt_policy(p)) {
1da177e4
LT
3206 p->static_prio = NICE_TO_PRIO(nice);
3207 goto out_unlock;
3208 }
fd2f4419 3209 on_rq = p->on_rq;
c09595f6 3210 if (on_rq)
69be72c1 3211 dequeue_task(rq, p, 0);
1da177e4 3212
1da177e4 3213 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3214 set_load_weight(p);
b29739f9
IM
3215 old_prio = p->prio;
3216 p->prio = effective_prio(p);
3217 delta = p->prio - old_prio;
1da177e4 3218
dd41f596 3219 if (on_rq) {
371fd7e7 3220 enqueue_task(rq, p, 0);
1da177e4 3221 /*
d5f9f942
AM
3222 * If the task increased its priority or is running and
3223 * lowered its priority, then reschedule its CPU:
1da177e4 3224 */
d5f9f942 3225 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3226 resched_task(rq->curr);
3227 }
3228out_unlock:
0122ec5b 3229 task_rq_unlock(rq, p, &flags);
1da177e4 3230}
1da177e4
LT
3231EXPORT_SYMBOL(set_user_nice);
3232
e43379f1
MM
3233/*
3234 * can_nice - check if a task can reduce its nice value
3235 * @p: task
3236 * @nice: nice value
3237 */
36c8b586 3238int can_nice(const struct task_struct *p, const int nice)
e43379f1 3239{
024f4747
MM
3240 /* convert nice value [19,-20] to rlimit style value [1,40] */
3241 int nice_rlim = 20 - nice;
48f24c4d 3242
78d7d407 3243 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3244 capable(CAP_SYS_NICE));
3245}
3246
1da177e4
LT
3247#ifdef __ARCH_WANT_SYS_NICE
3248
3249/*
3250 * sys_nice - change the priority of the current process.
3251 * @increment: priority increment
3252 *
3253 * sys_setpriority is a more generic, but much slower function that
3254 * does similar things.
3255 */
5add95d4 3256SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3257{
48f24c4d 3258 long nice, retval;
1da177e4
LT
3259
3260 /*
3261 * Setpriority might change our priority at the same moment.
3262 * We don't have to worry. Conceptually one call occurs first
3263 * and we have a single winner.
3264 */
e43379f1
MM
3265 if (increment < -40)
3266 increment = -40;
1da177e4
LT
3267 if (increment > 40)
3268 increment = 40;
3269
2b8f836f 3270 nice = TASK_NICE(current) + increment;
1da177e4
LT
3271 if (nice < -20)
3272 nice = -20;
3273 if (nice > 19)
3274 nice = 19;
3275
e43379f1
MM
3276 if (increment < 0 && !can_nice(current, nice))
3277 return -EPERM;
3278
1da177e4
LT
3279 retval = security_task_setnice(current, nice);
3280 if (retval)
3281 return retval;
3282
3283 set_user_nice(current, nice);
3284 return 0;
3285}
3286
3287#endif
3288
3289/**
3290 * task_prio - return the priority value of a given task.
3291 * @p: the task in question.
3292 *
e69f6186 3293 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3294 * RT tasks are offset by -200. Normal tasks are centered
3295 * around 0, value goes from -16 to +15.
3296 */
36c8b586 3297int task_prio(const struct task_struct *p)
1da177e4
LT
3298{
3299 return p->prio - MAX_RT_PRIO;
3300}
3301
3302/**
3303 * task_nice - return the nice value of a given task.
3304 * @p: the task in question.
e69f6186
YB
3305 *
3306 * Return: The nice value [ -20 ... 0 ... 19 ].
1da177e4 3307 */
36c8b586 3308int task_nice(const struct task_struct *p)
1da177e4
LT
3309{
3310 return TASK_NICE(p);
3311}
150d8bed 3312EXPORT_SYMBOL(task_nice);
1da177e4
LT
3313
3314/**
3315 * idle_cpu - is a given cpu idle currently?
3316 * @cpu: the processor in question.
e69f6186
YB
3317 *
3318 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3319 */
3320int idle_cpu(int cpu)
3321{
908a3283
TG
3322 struct rq *rq = cpu_rq(cpu);
3323
3324 if (rq->curr != rq->idle)
3325 return 0;
3326
3327 if (rq->nr_running)
3328 return 0;
3329
3330#ifdef CONFIG_SMP
3331 if (!llist_empty(&rq->wake_list))
3332 return 0;
3333#endif
3334
3335 return 1;
1da177e4
LT
3336}
3337
1da177e4
LT
3338/**
3339 * idle_task - return the idle task for a given cpu.
3340 * @cpu: the processor in question.
e69f6186
YB
3341 *
3342 * Return: The idle task for the cpu @cpu.
1da177e4 3343 */
36c8b586 3344struct task_struct *idle_task(int cpu)
1da177e4
LT
3345{
3346 return cpu_rq(cpu)->idle;
3347}
3348
3349/**
3350 * find_process_by_pid - find a process with a matching PID value.
3351 * @pid: the pid in question.
e69f6186
YB
3352 *
3353 * The task of @pid, if found. %NULL otherwise.
1da177e4 3354 */
a9957449 3355static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3356{
228ebcbe 3357 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3358}
3359
3360/* Actually do priority change: must hold rq lock. */
dd41f596
IM
3361static void
3362__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 3363{
1da177e4
LT
3364 p->policy = policy;
3365 p->rt_priority = prio;
b29739f9
IM
3366 p->normal_prio = normal_prio(p);
3367 /* we are holding p->pi_lock already */
3368 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
3369 if (rt_prio(p->prio))
3370 p->sched_class = &rt_sched_class;
3371 else
3372 p->sched_class = &fair_sched_class;
2dd73a4f 3373 set_load_weight(p);
1da177e4
LT
3374}
3375
c69e8d9c
DH
3376/*
3377 * check the target process has a UID that matches the current process's
3378 */
3379static bool check_same_owner(struct task_struct *p)
3380{
3381 const struct cred *cred = current_cred(), *pcred;
3382 bool match;
3383
3384 rcu_read_lock();
3385 pcred = __task_cred(p);
9c806aa0
EB
3386 match = (uid_eq(cred->euid, pcred->euid) ||
3387 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3388 rcu_read_unlock();
3389 return match;
3390}
3391
961ccddd 3392static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3393 const struct sched_param *param, bool user)
1da177e4 3394{
83b699ed 3395 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 3396 unsigned long flags;
83ab0aa0 3397 const struct sched_class *prev_class;
70b97a7f 3398 struct rq *rq;
ca94c442 3399 int reset_on_fork;
1da177e4 3400
66e5393a
SR
3401 /* may grab non-irq protected spin_locks */
3402 BUG_ON(in_interrupt());
1da177e4
LT
3403recheck:
3404 /* double check policy once rq lock held */
ca94c442
LP
3405 if (policy < 0) {
3406 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3407 policy = oldpolicy = p->policy;
ca94c442
LP
3408 } else {
3409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3410 policy &= ~SCHED_RESET_ON_FORK;
3411
3412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3414 policy != SCHED_IDLE)
3415 return -EINVAL;
3416 }
3417
1da177e4
LT
3418 /*
3419 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3421 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
3422 */
3423 if (param->sched_priority < 0 ||
95cdf3b7 3424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3426 return -EINVAL;
e05606d3 3427 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
3428 return -EINVAL;
3429
37e4ab3f
OC
3430 /*
3431 * Allow unprivileged RT tasks to decrease priority:
3432 */
961ccddd 3433 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 3434 if (rt_policy(policy)) {
a44702e8
ON
3435 unsigned long rlim_rtprio =
3436 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3437
3438 /* can't set/change the rt policy */
3439 if (policy != p->policy && !rlim_rtprio)
3440 return -EPERM;
3441
3442 /* can't increase priority */
3443 if (param->sched_priority > p->rt_priority &&
3444 param->sched_priority > rlim_rtprio)
3445 return -EPERM;
3446 }
c02aa73b 3447
dd41f596 3448 /*
c02aa73b
DH
3449 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3450 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3451 */
c02aa73b
DH
3452 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3453 if (!can_nice(p, TASK_NICE(p)))
3454 return -EPERM;
3455 }
5fe1d75f 3456
37e4ab3f 3457 /* can't change other user's priorities */
c69e8d9c 3458 if (!check_same_owner(p))
37e4ab3f 3459 return -EPERM;
ca94c442
LP
3460
3461 /* Normal users shall not reset the sched_reset_on_fork flag */
3462 if (p->sched_reset_on_fork && !reset_on_fork)
3463 return -EPERM;
37e4ab3f 3464 }
1da177e4 3465
725aad24 3466 if (user) {
b0ae1981 3467 retval = security_task_setscheduler(p);
725aad24
JF
3468 if (retval)
3469 return retval;
3470 }
3471
b29739f9
IM
3472 /*
3473 * make sure no PI-waiters arrive (or leave) while we are
3474 * changing the priority of the task:
0122ec5b 3475 *
25985edc 3476 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3477 * runqueue lock must be held.
3478 */
0122ec5b 3479 rq = task_rq_lock(p, &flags);
dc61b1d6 3480
34f971f6
PZ
3481 /*
3482 * Changing the policy of the stop threads its a very bad idea
3483 */
3484 if (p == rq->stop) {
0122ec5b 3485 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3486 return -EINVAL;
3487 }
3488
a51e9198
DF
3489 /*
3490 * If not changing anything there's no need to proceed further:
3491 */
3492 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3493 param->sched_priority == p->rt_priority))) {
45afb173 3494 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3495 return 0;
3496 }
3497
dc61b1d6
PZ
3498#ifdef CONFIG_RT_GROUP_SCHED
3499 if (user) {
3500 /*
3501 * Do not allow realtime tasks into groups that have no runtime
3502 * assigned.
3503 */
3504 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3505 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3506 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3507 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3508 return -EPERM;
3509 }
3510 }
3511#endif
3512
1da177e4
LT
3513 /* recheck policy now with rq lock held */
3514 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3515 policy = oldpolicy = -1;
0122ec5b 3516 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3517 goto recheck;
3518 }
fd2f4419 3519 on_rq = p->on_rq;
051a1d1a 3520 running = task_current(rq, p);
0e1f3483 3521 if (on_rq)
4ca9b72b 3522 dequeue_task(rq, p, 0);
0e1f3483
HS
3523 if (running)
3524 p->sched_class->put_prev_task(rq, p);
f6b53205 3525
ca94c442
LP
3526 p->sched_reset_on_fork = reset_on_fork;
3527
1da177e4 3528 oldprio = p->prio;
83ab0aa0 3529 prev_class = p->sched_class;
dd41f596 3530 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 3531
0e1f3483
HS
3532 if (running)
3533 p->sched_class->set_curr_task(rq);
da7a735e 3534 if (on_rq)
4ca9b72b 3535 enqueue_task(rq, p, 0);
cb469845 3536
da7a735e 3537 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3538 task_rq_unlock(rq, p, &flags);
b29739f9 3539
95e02ca9
TG
3540 rt_mutex_adjust_pi(p);
3541
1da177e4
LT
3542 return 0;
3543}
961ccddd
RR
3544
3545/**
3546 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3547 * @p: the task in question.
3548 * @policy: new policy.
3549 * @param: structure containing the new RT priority.
3550 *
e69f6186
YB
3551 * Return: 0 on success. An error code otherwise.
3552 *
961ccddd
RR
3553 * NOTE that the task may be already dead.
3554 */
3555int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3556 const struct sched_param *param)
961ccddd
RR
3557{
3558 return __sched_setscheduler(p, policy, param, true);
3559}
1da177e4
LT
3560EXPORT_SYMBOL_GPL(sched_setscheduler);
3561
961ccddd
RR
3562/**
3563 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3564 * @p: the task in question.
3565 * @policy: new policy.
3566 * @param: structure containing the new RT priority.
3567 *
3568 * Just like sched_setscheduler, only don't bother checking if the
3569 * current context has permission. For example, this is needed in
3570 * stop_machine(): we create temporary high priority worker threads,
3571 * but our caller might not have that capability.
e69f6186
YB
3572 *
3573 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3574 */
3575int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3576 const struct sched_param *param)
961ccddd
RR
3577{
3578 return __sched_setscheduler(p, policy, param, false);
3579}
3580
95cdf3b7
IM
3581static int
3582do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3583{
1da177e4
LT
3584 struct sched_param lparam;
3585 struct task_struct *p;
36c8b586 3586 int retval;
1da177e4
LT
3587
3588 if (!param || pid < 0)
3589 return -EINVAL;
3590 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3591 return -EFAULT;
5fe1d75f
ON
3592
3593 rcu_read_lock();
3594 retval = -ESRCH;
1da177e4 3595 p = find_process_by_pid(pid);
5fe1d75f
ON
3596 if (p != NULL)
3597 retval = sched_setscheduler(p, policy, &lparam);
3598 rcu_read_unlock();
36c8b586 3599
1da177e4
LT
3600 return retval;
3601}
3602
3603/**
3604 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3605 * @pid: the pid in question.
3606 * @policy: new policy.
3607 * @param: structure containing the new RT priority.
e69f6186
YB
3608 *
3609 * Return: 0 on success. An error code otherwise.
1da177e4 3610 */
5add95d4
HC
3611SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3612 struct sched_param __user *, param)
1da177e4 3613{
c21761f1
JB
3614 /* negative values for policy are not valid */
3615 if (policy < 0)
3616 return -EINVAL;
3617
1da177e4
LT
3618 return do_sched_setscheduler(pid, policy, param);
3619}
3620
3621/**
3622 * sys_sched_setparam - set/change the RT priority of a thread
3623 * @pid: the pid in question.
3624 * @param: structure containing the new RT priority.
e69f6186
YB
3625 *
3626 * Return: 0 on success. An error code otherwise.
1da177e4 3627 */
5add95d4 3628SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3629{
3630 return do_sched_setscheduler(pid, -1, param);
3631}
3632
3633/**
3634 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3635 * @pid: the pid in question.
e69f6186
YB
3636 *
3637 * Return: On success, the policy of the thread. Otherwise, a negative error
3638 * code.
1da177e4 3639 */
5add95d4 3640SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3641{
36c8b586 3642 struct task_struct *p;
3a5c359a 3643 int retval;
1da177e4
LT
3644
3645 if (pid < 0)
3a5c359a 3646 return -EINVAL;
1da177e4
LT
3647
3648 retval = -ESRCH;
5fe85be0 3649 rcu_read_lock();
1da177e4
LT
3650 p = find_process_by_pid(pid);
3651 if (p) {
3652 retval = security_task_getscheduler(p);
3653 if (!retval)
ca94c442
LP
3654 retval = p->policy
3655 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3656 }
5fe85be0 3657 rcu_read_unlock();
1da177e4
LT
3658 return retval;
3659}
3660
3661/**
ca94c442 3662 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3663 * @pid: the pid in question.
3664 * @param: structure containing the RT priority.
e69f6186
YB
3665 *
3666 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3667 * code.
1da177e4 3668 */
5add95d4 3669SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
3670{
3671 struct sched_param lp;
36c8b586 3672 struct task_struct *p;
3a5c359a 3673 int retval;
1da177e4
LT
3674
3675 if (!param || pid < 0)
3a5c359a 3676 return -EINVAL;
1da177e4 3677
5fe85be0 3678 rcu_read_lock();
1da177e4
LT
3679 p = find_process_by_pid(pid);
3680 retval = -ESRCH;
3681 if (!p)
3682 goto out_unlock;
3683
3684 retval = security_task_getscheduler(p);
3685 if (retval)
3686 goto out_unlock;
3687
3688 lp.sched_priority = p->rt_priority;
5fe85be0 3689 rcu_read_unlock();
1da177e4
LT
3690
3691 /*
3692 * This one might sleep, we cannot do it with a spinlock held ...
3693 */
3694 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3695
1da177e4
LT
3696 return retval;
3697
3698out_unlock:
5fe85be0 3699 rcu_read_unlock();
1da177e4
LT
3700 return retval;
3701}
3702
96f874e2 3703long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 3704{
5a16f3d3 3705 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
3706 struct task_struct *p;
3707 int retval;
1da177e4 3708
95402b38 3709 get_online_cpus();
23f5d142 3710 rcu_read_lock();
1da177e4
LT
3711
3712 p = find_process_by_pid(pid);
3713 if (!p) {
23f5d142 3714 rcu_read_unlock();
95402b38 3715 put_online_cpus();
1da177e4
LT
3716 return -ESRCH;
3717 }
3718
23f5d142 3719 /* Prevent p going away */
1da177e4 3720 get_task_struct(p);
23f5d142 3721 rcu_read_unlock();
1da177e4 3722
14a40ffc
TH
3723 if (p->flags & PF_NO_SETAFFINITY) {
3724 retval = -EINVAL;
3725 goto out_put_task;
3726 }
5a16f3d3
RR
3727 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
3728 retval = -ENOMEM;
3729 goto out_put_task;
3730 }
3731 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
3732 retval = -ENOMEM;
3733 goto out_free_cpus_allowed;
3734 }
1da177e4 3735 retval = -EPERM;
4c44aaaf
EB
3736 if (!check_same_owner(p)) {
3737 rcu_read_lock();
3738 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
3739 rcu_read_unlock();
3740 goto out_unlock;
3741 }
3742 rcu_read_unlock();
3743 }
1da177e4 3744
b0ae1981 3745 retval = security_task_setscheduler(p);
e7834f8f
DQ
3746 if (retval)
3747 goto out_unlock;
3748
5a16f3d3
RR
3749 cpuset_cpus_allowed(p, cpus_allowed);
3750 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 3751again:
5a16f3d3 3752 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 3753
8707d8b8 3754 if (!retval) {
5a16f3d3
RR
3755 cpuset_cpus_allowed(p, cpus_allowed);
3756 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
3757 /*
3758 * We must have raced with a concurrent cpuset
3759 * update. Just reset the cpus_allowed to the
3760 * cpuset's cpus_allowed
3761 */
5a16f3d3 3762 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
3763 goto again;
3764 }
3765 }
1da177e4 3766out_unlock:
5a16f3d3
RR
3767 free_cpumask_var(new_mask);
3768out_free_cpus_allowed:
3769 free_cpumask_var(cpus_allowed);
3770out_put_task:
1da177e4 3771 put_task_struct(p);
95402b38 3772 put_online_cpus();
1da177e4
LT
3773 return retval;
3774}
3775
3776static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 3777 struct cpumask *new_mask)
1da177e4 3778{
96f874e2
RR
3779 if (len < cpumask_size())
3780 cpumask_clear(new_mask);
3781 else if (len > cpumask_size())
3782 len = cpumask_size();
3783
1da177e4
LT
3784 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3785}
3786
3787/**
3788 * sys_sched_setaffinity - set the cpu affinity of a process
3789 * @pid: pid of the process
3790 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3791 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
3792 *
3793 * Return: 0 on success. An error code otherwise.
1da177e4 3794 */
5add95d4
HC
3795SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
3796 unsigned long __user *, user_mask_ptr)
1da177e4 3797{
5a16f3d3 3798 cpumask_var_t new_mask;
1da177e4
LT
3799 int retval;
3800
5a16f3d3
RR
3801 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
3802 return -ENOMEM;
1da177e4 3803
5a16f3d3
RR
3804 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
3805 if (retval == 0)
3806 retval = sched_setaffinity(pid, new_mask);
3807 free_cpumask_var(new_mask);
3808 return retval;
1da177e4
LT
3809}
3810
96f874e2 3811long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 3812{
36c8b586 3813 struct task_struct *p;
31605683 3814 unsigned long flags;
1da177e4 3815 int retval;
1da177e4 3816
95402b38 3817 get_online_cpus();
23f5d142 3818 rcu_read_lock();
1da177e4
LT
3819
3820 retval = -ESRCH;
3821 p = find_process_by_pid(pid);
3822 if (!p)
3823 goto out_unlock;
3824
e7834f8f
DQ
3825 retval = security_task_getscheduler(p);
3826 if (retval)
3827 goto out_unlock;
3828
013fdb80 3829 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 3830 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 3831 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
3832
3833out_unlock:
23f5d142 3834 rcu_read_unlock();
95402b38 3835 put_online_cpus();
1da177e4 3836
9531b62f 3837 return retval;
1da177e4
LT
3838}
3839
3840/**
3841 * sys_sched_getaffinity - get the cpu affinity of a process
3842 * @pid: pid of the process
3843 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3844 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
3845 *
3846 * Return: 0 on success. An error code otherwise.
1da177e4 3847 */
5add95d4
HC
3848SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
3849 unsigned long __user *, user_mask_ptr)
1da177e4
LT
3850{
3851 int ret;
f17c8607 3852 cpumask_var_t mask;
1da177e4 3853
84fba5ec 3854 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
3855 return -EINVAL;
3856 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
3857 return -EINVAL;
3858
f17c8607
RR
3859 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
3860 return -ENOMEM;
1da177e4 3861
f17c8607
RR
3862 ret = sched_getaffinity(pid, mask);
3863 if (ret == 0) {
8bc037fb 3864 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
3865
3866 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
3867 ret = -EFAULT;
3868 else
cd3d8031 3869 ret = retlen;
f17c8607
RR
3870 }
3871 free_cpumask_var(mask);
1da177e4 3872
f17c8607 3873 return ret;
1da177e4
LT
3874}
3875
3876/**
3877 * sys_sched_yield - yield the current processor to other threads.
3878 *
dd41f596
IM
3879 * This function yields the current CPU to other tasks. If there are no
3880 * other threads running on this CPU then this function will return.
e69f6186
YB
3881 *
3882 * Return: 0.
1da177e4 3883 */
5add95d4 3884SYSCALL_DEFINE0(sched_yield)
1da177e4 3885{
70b97a7f 3886 struct rq *rq = this_rq_lock();
1da177e4 3887
2d72376b 3888 schedstat_inc(rq, yld_count);
4530d7ab 3889 current->sched_class->yield_task(rq);
1da177e4
LT
3890
3891 /*
3892 * Since we are going to call schedule() anyway, there's
3893 * no need to preempt or enable interrupts:
3894 */
3895 __release(rq->lock);
8a25d5de 3896 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 3897 do_raw_spin_unlock(&rq->lock);
ba74c144 3898 sched_preempt_enable_no_resched();
1da177e4
LT
3899
3900 schedule();
3901
3902 return 0;
3903}
3904
e7b38404 3905static void __cond_resched(void)
1da177e4 3906{
bdb43806 3907 __preempt_count_add(PREEMPT_ACTIVE);
c259e01a 3908 __schedule();
bdb43806 3909 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4
LT
3910}
3911
02b67cc3 3912int __sched _cond_resched(void)
1da177e4 3913{
d86ee480 3914 if (should_resched()) {
1da177e4
LT
3915 __cond_resched();
3916 return 1;
3917 }
3918 return 0;
3919}
02b67cc3 3920EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
3921
3922/*
613afbf8 3923 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
3924 * call schedule, and on return reacquire the lock.
3925 *
41a2d6cf 3926 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
3927 * operations here to prevent schedule() from being called twice (once via
3928 * spin_unlock(), once by hand).
3929 */
613afbf8 3930int __cond_resched_lock(spinlock_t *lock)
1da177e4 3931{
d86ee480 3932 int resched = should_resched();
6df3cecb
JK
3933 int ret = 0;
3934
f607c668
PZ
3935 lockdep_assert_held(lock);
3936
95c354fe 3937 if (spin_needbreak(lock) || resched) {
1da177e4 3938 spin_unlock(lock);
d86ee480 3939 if (resched)
95c354fe
NP
3940 __cond_resched();
3941 else
3942 cpu_relax();
6df3cecb 3943 ret = 1;
1da177e4 3944 spin_lock(lock);
1da177e4 3945 }
6df3cecb 3946 return ret;
1da177e4 3947}
613afbf8 3948EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 3949
613afbf8 3950int __sched __cond_resched_softirq(void)
1da177e4
LT
3951{
3952 BUG_ON(!in_softirq());
3953
d86ee480 3954 if (should_resched()) {
98d82567 3955 local_bh_enable();
1da177e4
LT
3956 __cond_resched();
3957 local_bh_disable();
3958 return 1;
3959 }
3960 return 0;
3961}
613afbf8 3962EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 3963
1da177e4
LT
3964/**
3965 * yield - yield the current processor to other threads.
3966 *
8e3fabfd
PZ
3967 * Do not ever use this function, there's a 99% chance you're doing it wrong.
3968 *
3969 * The scheduler is at all times free to pick the calling task as the most
3970 * eligible task to run, if removing the yield() call from your code breaks
3971 * it, its already broken.
3972 *
3973 * Typical broken usage is:
3974 *
3975 * while (!event)
3976 * yield();
3977 *
3978 * where one assumes that yield() will let 'the other' process run that will
3979 * make event true. If the current task is a SCHED_FIFO task that will never
3980 * happen. Never use yield() as a progress guarantee!!
3981 *
3982 * If you want to use yield() to wait for something, use wait_event().
3983 * If you want to use yield() to be 'nice' for others, use cond_resched().
3984 * If you still want to use yield(), do not!
1da177e4
LT
3985 */
3986void __sched yield(void)
3987{
3988 set_current_state(TASK_RUNNING);
3989 sys_sched_yield();
3990}
1da177e4
LT
3991EXPORT_SYMBOL(yield);
3992
d95f4122
MG
3993/**
3994 * yield_to - yield the current processor to another thread in
3995 * your thread group, or accelerate that thread toward the
3996 * processor it's on.
16addf95
RD
3997 * @p: target task
3998 * @preempt: whether task preemption is allowed or not
d95f4122
MG
3999 *
4000 * It's the caller's job to ensure that the target task struct
4001 * can't go away on us before we can do any checks.
4002 *
e69f6186 4003 * Return:
7b270f60
PZ
4004 * true (>0) if we indeed boosted the target task.
4005 * false (0) if we failed to boost the target.
4006 * -ESRCH if there's no task to yield to.
d95f4122
MG
4007 */
4008bool __sched yield_to(struct task_struct *p, bool preempt)
4009{
4010 struct task_struct *curr = current;
4011 struct rq *rq, *p_rq;
4012 unsigned long flags;
c3c18640 4013 int yielded = 0;
d95f4122
MG
4014
4015 local_irq_save(flags);
4016 rq = this_rq();
4017
4018again:
4019 p_rq = task_rq(p);
7b270f60
PZ
4020 /*
4021 * If we're the only runnable task on the rq and target rq also
4022 * has only one task, there's absolutely no point in yielding.
4023 */
4024 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4025 yielded = -ESRCH;
4026 goto out_irq;
4027 }
4028
d95f4122
MG
4029 double_rq_lock(rq, p_rq);
4030 while (task_rq(p) != p_rq) {
4031 double_rq_unlock(rq, p_rq);
4032 goto again;
4033 }
4034
4035 if (!curr->sched_class->yield_to_task)
7b270f60 4036 goto out_unlock;
d95f4122
MG
4037
4038 if (curr->sched_class != p->sched_class)
7b270f60 4039 goto out_unlock;
d95f4122
MG
4040
4041 if (task_running(p_rq, p) || p->state)
7b270f60 4042 goto out_unlock;
d95f4122
MG
4043
4044 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4045 if (yielded) {
d95f4122 4046 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4047 /*
4048 * Make p's CPU reschedule; pick_next_entity takes care of
4049 * fairness.
4050 */
4051 if (preempt && rq != p_rq)
4052 resched_task(p_rq->curr);
4053 }
d95f4122 4054
7b270f60 4055out_unlock:
d95f4122 4056 double_rq_unlock(rq, p_rq);
7b270f60 4057out_irq:
d95f4122
MG
4058 local_irq_restore(flags);
4059
7b270f60 4060 if (yielded > 0)
d95f4122
MG
4061 schedule();
4062
4063 return yielded;
4064}
4065EXPORT_SYMBOL_GPL(yield_to);
4066
1da177e4 4067/*
41a2d6cf 4068 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4069 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4070 */
4071void __sched io_schedule(void)
4072{
54d35f29 4073 struct rq *rq = raw_rq();
1da177e4 4074
0ff92245 4075 delayacct_blkio_start();
1da177e4 4076 atomic_inc(&rq->nr_iowait);
73c10101 4077 blk_flush_plug(current);
8f0dfc34 4078 current->in_iowait = 1;
1da177e4 4079 schedule();
8f0dfc34 4080 current->in_iowait = 0;
1da177e4 4081 atomic_dec(&rq->nr_iowait);
0ff92245 4082 delayacct_blkio_end();
1da177e4 4083}
1da177e4
LT
4084EXPORT_SYMBOL(io_schedule);
4085
4086long __sched io_schedule_timeout(long timeout)
4087{
54d35f29 4088 struct rq *rq = raw_rq();
1da177e4
LT
4089 long ret;
4090
0ff92245 4091 delayacct_blkio_start();
1da177e4 4092 atomic_inc(&rq->nr_iowait);
73c10101 4093 blk_flush_plug(current);
8f0dfc34 4094 current->in_iowait = 1;
1da177e4 4095 ret = schedule_timeout(timeout);
8f0dfc34 4096 current->in_iowait = 0;
1da177e4 4097 atomic_dec(&rq->nr_iowait);
0ff92245 4098 delayacct_blkio_end();
1da177e4
LT
4099 return ret;
4100}
4101
4102/**
4103 * sys_sched_get_priority_max - return maximum RT priority.
4104 * @policy: scheduling class.
4105 *
e69f6186
YB
4106 * Return: On success, this syscall returns the maximum
4107 * rt_priority that can be used by a given scheduling class.
4108 * On failure, a negative error code is returned.
1da177e4 4109 */
5add95d4 4110SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4111{
4112 int ret = -EINVAL;
4113
4114 switch (policy) {
4115 case SCHED_FIFO:
4116 case SCHED_RR:
4117 ret = MAX_USER_RT_PRIO-1;
4118 break;
4119 case SCHED_NORMAL:
b0a9499c 4120 case SCHED_BATCH:
dd41f596 4121 case SCHED_IDLE:
1da177e4
LT
4122 ret = 0;
4123 break;
4124 }
4125 return ret;
4126}
4127
4128/**
4129 * sys_sched_get_priority_min - return minimum RT priority.
4130 * @policy: scheduling class.
4131 *
e69f6186
YB
4132 * Return: On success, this syscall returns the minimum
4133 * rt_priority that can be used by a given scheduling class.
4134 * On failure, a negative error code is returned.
1da177e4 4135 */
5add95d4 4136SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4137{
4138 int ret = -EINVAL;
4139
4140 switch (policy) {
4141 case SCHED_FIFO:
4142 case SCHED_RR:
4143 ret = 1;
4144 break;
4145 case SCHED_NORMAL:
b0a9499c 4146 case SCHED_BATCH:
dd41f596 4147 case SCHED_IDLE:
1da177e4
LT
4148 ret = 0;
4149 }
4150 return ret;
4151}
4152
4153/**
4154 * sys_sched_rr_get_interval - return the default timeslice of a process.
4155 * @pid: pid of the process.
4156 * @interval: userspace pointer to the timeslice value.
4157 *
4158 * this syscall writes the default timeslice value of a given process
4159 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4160 *
4161 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4162 * an error code.
1da177e4 4163 */
17da2bd9 4164SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4165 struct timespec __user *, interval)
1da177e4 4166{
36c8b586 4167 struct task_struct *p;
a4ec24b4 4168 unsigned int time_slice;
dba091b9
TG
4169 unsigned long flags;
4170 struct rq *rq;
3a5c359a 4171 int retval;
1da177e4 4172 struct timespec t;
1da177e4
LT
4173
4174 if (pid < 0)
3a5c359a 4175 return -EINVAL;
1da177e4
LT
4176
4177 retval = -ESRCH;
1a551ae7 4178 rcu_read_lock();
1da177e4
LT
4179 p = find_process_by_pid(pid);
4180 if (!p)
4181 goto out_unlock;
4182
4183 retval = security_task_getscheduler(p);
4184 if (retval)
4185 goto out_unlock;
4186
dba091b9
TG
4187 rq = task_rq_lock(p, &flags);
4188 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4189 task_rq_unlock(rq, p, &flags);
a4ec24b4 4190
1a551ae7 4191 rcu_read_unlock();
a4ec24b4 4192 jiffies_to_timespec(time_slice, &t);
1da177e4 4193 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4194 return retval;
3a5c359a 4195
1da177e4 4196out_unlock:
1a551ae7 4197 rcu_read_unlock();
1da177e4
LT
4198 return retval;
4199}
4200
7c731e0a 4201static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4202
82a1fcb9 4203void sched_show_task(struct task_struct *p)
1da177e4 4204{
1da177e4 4205 unsigned long free = 0;
4e79752c 4206 int ppid;
36c8b586 4207 unsigned state;
1da177e4 4208
1da177e4 4209 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4210 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4211 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4212#if BITS_PER_LONG == 32
1da177e4 4213 if (state == TASK_RUNNING)
3df0fc5b 4214 printk(KERN_CONT " running ");
1da177e4 4215 else
3df0fc5b 4216 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4217#else
4218 if (state == TASK_RUNNING)
3df0fc5b 4219 printk(KERN_CONT " running task ");
1da177e4 4220 else
3df0fc5b 4221 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4222#endif
4223#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4224 free = stack_not_used(p);
1da177e4 4225#endif
4e79752c
PM
4226 rcu_read_lock();
4227 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4228 rcu_read_unlock();
3df0fc5b 4229 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4230 task_pid_nr(p), ppid,
aa47b7e0 4231 (unsigned long)task_thread_info(p)->flags);
1da177e4 4232
3d1cb205 4233 print_worker_info(KERN_INFO, p);
5fb5e6de 4234 show_stack(p, NULL);
1da177e4
LT
4235}
4236
e59e2ae2 4237void show_state_filter(unsigned long state_filter)
1da177e4 4238{
36c8b586 4239 struct task_struct *g, *p;
1da177e4 4240
4bd77321 4241#if BITS_PER_LONG == 32
3df0fc5b
PZ
4242 printk(KERN_INFO
4243 " task PC stack pid father\n");
1da177e4 4244#else
3df0fc5b
PZ
4245 printk(KERN_INFO
4246 " task PC stack pid father\n");
1da177e4 4247#endif
510f5acc 4248 rcu_read_lock();
1da177e4
LT
4249 do_each_thread(g, p) {
4250 /*
4251 * reset the NMI-timeout, listing all files on a slow
25985edc 4252 * console might take a lot of time:
1da177e4
LT
4253 */
4254 touch_nmi_watchdog();
39bc89fd 4255 if (!state_filter || (p->state & state_filter))
82a1fcb9 4256 sched_show_task(p);
1da177e4
LT
4257 } while_each_thread(g, p);
4258
04c9167f
JF
4259 touch_all_softlockup_watchdogs();
4260
dd41f596
IM
4261#ifdef CONFIG_SCHED_DEBUG
4262 sysrq_sched_debug_show();
4263#endif
510f5acc 4264 rcu_read_unlock();
e59e2ae2
IM
4265 /*
4266 * Only show locks if all tasks are dumped:
4267 */
93335a21 4268 if (!state_filter)
e59e2ae2 4269 debug_show_all_locks();
1da177e4
LT
4270}
4271
0db0628d 4272void init_idle_bootup_task(struct task_struct *idle)
1df21055 4273{
dd41f596 4274 idle->sched_class = &idle_sched_class;
1df21055
IM
4275}
4276
f340c0d1
IM
4277/**
4278 * init_idle - set up an idle thread for a given CPU
4279 * @idle: task in question
4280 * @cpu: cpu the idle task belongs to
4281 *
4282 * NOTE: this function does not set the idle thread's NEED_RESCHED
4283 * flag, to make booting more robust.
4284 */
0db0628d 4285void init_idle(struct task_struct *idle, int cpu)
1da177e4 4286{
70b97a7f 4287 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4288 unsigned long flags;
4289
05fa785c 4290 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4291
5e1576ed 4292 __sched_fork(0, idle);
06b83b5f 4293 idle->state = TASK_RUNNING;
dd41f596
IM
4294 idle->se.exec_start = sched_clock();
4295
1e1b6c51 4296 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4297 /*
4298 * We're having a chicken and egg problem, even though we are
4299 * holding rq->lock, the cpu isn't yet set to this cpu so the
4300 * lockdep check in task_group() will fail.
4301 *
4302 * Similar case to sched_fork(). / Alternatively we could
4303 * use task_rq_lock() here and obtain the other rq->lock.
4304 *
4305 * Silence PROVE_RCU
4306 */
4307 rcu_read_lock();
dd41f596 4308 __set_task_cpu(idle, cpu);
6506cf6c 4309 rcu_read_unlock();
1da177e4 4310
1da177e4 4311 rq->curr = rq->idle = idle;
3ca7a440
PZ
4312#if defined(CONFIG_SMP)
4313 idle->on_cpu = 1;
4866cde0 4314#endif
05fa785c 4315 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4316
4317 /* Set the preempt count _outside_ the spinlocks! */
01028747 4318 init_idle_preempt_count(idle, cpu);
55cd5340 4319
dd41f596
IM
4320 /*
4321 * The idle tasks have their own, simple scheduling class:
4322 */
4323 idle->sched_class = &idle_sched_class;
868baf07 4324 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4325 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4326#if defined(CONFIG_SMP)
4327 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4328#endif
19978ca6
IM
4329}
4330
1da177e4 4331#ifdef CONFIG_SMP
1e1b6c51
KM
4332void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4333{
4334 if (p->sched_class && p->sched_class->set_cpus_allowed)
4335 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4336
4337 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4338 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4339}
4340
1da177e4
LT
4341/*
4342 * This is how migration works:
4343 *
969c7921
TH
4344 * 1) we invoke migration_cpu_stop() on the target CPU using
4345 * stop_one_cpu().
4346 * 2) stopper starts to run (implicitly forcing the migrated thread
4347 * off the CPU)
4348 * 3) it checks whether the migrated task is still in the wrong runqueue.
4349 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4350 * it and puts it into the right queue.
969c7921
TH
4351 * 5) stopper completes and stop_one_cpu() returns and the migration
4352 * is done.
1da177e4
LT
4353 */
4354
4355/*
4356 * Change a given task's CPU affinity. Migrate the thread to a
4357 * proper CPU and schedule it away if the CPU it's executing on
4358 * is removed from the allowed bitmask.
4359 *
4360 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4361 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4362 * call is not atomic; no spinlocks may be held.
4363 */
96f874e2 4364int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4365{
4366 unsigned long flags;
70b97a7f 4367 struct rq *rq;
969c7921 4368 unsigned int dest_cpu;
48f24c4d 4369 int ret = 0;
1da177e4
LT
4370
4371 rq = task_rq_lock(p, &flags);
e2912009 4372
db44fc01
YZ
4373 if (cpumask_equal(&p->cpus_allowed, new_mask))
4374 goto out;
4375
6ad4c188 4376 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4377 ret = -EINVAL;
4378 goto out;
4379 }
4380
1e1b6c51 4381 do_set_cpus_allowed(p, new_mask);
73fe6aae 4382
1da177e4 4383 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4384 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4385 goto out;
4386
969c7921 4387 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 4388 if (p->on_rq) {
969c7921 4389 struct migration_arg arg = { p, dest_cpu };
1da177e4 4390 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4391 task_rq_unlock(rq, p, &flags);
969c7921 4392 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4393 tlb_migrate_finish(p->mm);
4394 return 0;
4395 }
4396out:
0122ec5b 4397 task_rq_unlock(rq, p, &flags);
48f24c4d 4398
1da177e4
LT
4399 return ret;
4400}
cd8ba7cd 4401EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4402
4403/*
41a2d6cf 4404 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4405 * this because either it can't run here any more (set_cpus_allowed()
4406 * away from this CPU, or CPU going down), or because we're
4407 * attempting to rebalance this task on exec (sched_exec).
4408 *
4409 * So we race with normal scheduler movements, but that's OK, as long
4410 * as the task is no longer on this CPU.
efc30814
KK
4411 *
4412 * Returns non-zero if task was successfully migrated.
1da177e4 4413 */
efc30814 4414static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4415{
70b97a7f 4416 struct rq *rq_dest, *rq_src;
e2912009 4417 int ret = 0;
1da177e4 4418
e761b772 4419 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4420 return ret;
1da177e4
LT
4421
4422 rq_src = cpu_rq(src_cpu);
4423 rq_dest = cpu_rq(dest_cpu);
4424
0122ec5b 4425 raw_spin_lock(&p->pi_lock);
1da177e4
LT
4426 double_rq_lock(rq_src, rq_dest);
4427 /* Already moved. */
4428 if (task_cpu(p) != src_cpu)
b1e38734 4429 goto done;
1da177e4 4430 /* Affinity changed (again). */
fa17b507 4431 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4432 goto fail;
1da177e4 4433
e2912009
PZ
4434 /*
4435 * If we're not on a rq, the next wake-up will ensure we're
4436 * placed properly.
4437 */
fd2f4419 4438 if (p->on_rq) {
4ca9b72b 4439 dequeue_task(rq_src, p, 0);
e2912009 4440 set_task_cpu(p, dest_cpu);
4ca9b72b 4441 enqueue_task(rq_dest, p, 0);
15afe09b 4442 check_preempt_curr(rq_dest, p, 0);
1da177e4 4443 }
b1e38734 4444done:
efc30814 4445 ret = 1;
b1e38734 4446fail:
1da177e4 4447 double_rq_unlock(rq_src, rq_dest);
0122ec5b 4448 raw_spin_unlock(&p->pi_lock);
efc30814 4449 return ret;
1da177e4
LT
4450}
4451
e6628d5b
MG
4452#ifdef CONFIG_NUMA_BALANCING
4453/* Migrate current task p to target_cpu */
4454int migrate_task_to(struct task_struct *p, int target_cpu)
4455{
4456 struct migration_arg arg = { p, target_cpu };
4457 int curr_cpu = task_cpu(p);
4458
4459 if (curr_cpu == target_cpu)
4460 return 0;
4461
4462 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4463 return -EINVAL;
4464
4465 /* TODO: This is not properly updating schedstats */
4466
4467 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4468}
0ec8aa00
PZ
4469
4470/*
4471 * Requeue a task on a given node and accurately track the number of NUMA
4472 * tasks on the runqueues
4473 */
4474void sched_setnuma(struct task_struct *p, int nid)
4475{
4476 struct rq *rq;
4477 unsigned long flags;
4478 bool on_rq, running;
4479
4480 rq = task_rq_lock(p, &flags);
4481 on_rq = p->on_rq;
4482 running = task_current(rq, p);
4483
4484 if (on_rq)
4485 dequeue_task(rq, p, 0);
4486 if (running)
4487 p->sched_class->put_prev_task(rq, p);
4488
4489 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4490
4491 if (running)
4492 p->sched_class->set_curr_task(rq);
4493 if (on_rq)
4494 enqueue_task(rq, p, 0);
4495 task_rq_unlock(rq, p, &flags);
4496}
e6628d5b
MG
4497#endif
4498
1da177e4 4499/*
969c7921
TH
4500 * migration_cpu_stop - this will be executed by a highprio stopper thread
4501 * and performs thread migration by bumping thread off CPU then
4502 * 'pushing' onto another runqueue.
1da177e4 4503 */
969c7921 4504static int migration_cpu_stop(void *data)
1da177e4 4505{
969c7921 4506 struct migration_arg *arg = data;
f7b4cddc 4507
969c7921
TH
4508 /*
4509 * The original target cpu might have gone down and we might
4510 * be on another cpu but it doesn't matter.
4511 */
f7b4cddc 4512 local_irq_disable();
969c7921 4513 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4514 local_irq_enable();
1da177e4 4515 return 0;
f7b4cddc
ON
4516}
4517
1da177e4 4518#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4519
054b9108 4520/*
48c5ccae
PZ
4521 * Ensures that the idle task is using init_mm right before its cpu goes
4522 * offline.
054b9108 4523 */
48c5ccae 4524void idle_task_exit(void)
1da177e4 4525{
48c5ccae 4526 struct mm_struct *mm = current->active_mm;
e76bd8d9 4527
48c5ccae 4528 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4529
48c5ccae
PZ
4530 if (mm != &init_mm)
4531 switch_mm(mm, &init_mm, current);
4532 mmdrop(mm);
1da177e4
LT
4533}
4534
4535/*
5d180232
PZ
4536 * Since this CPU is going 'away' for a while, fold any nr_active delta
4537 * we might have. Assumes we're called after migrate_tasks() so that the
4538 * nr_active count is stable.
4539 *
4540 * Also see the comment "Global load-average calculations".
1da177e4 4541 */
5d180232 4542static void calc_load_migrate(struct rq *rq)
1da177e4 4543{
5d180232
PZ
4544 long delta = calc_load_fold_active(rq);
4545 if (delta)
4546 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4547}
4548
48f24c4d 4549/*
48c5ccae
PZ
4550 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4551 * try_to_wake_up()->select_task_rq().
4552 *
4553 * Called with rq->lock held even though we'er in stop_machine() and
4554 * there's no concurrency possible, we hold the required locks anyway
4555 * because of lock validation efforts.
1da177e4 4556 */
48c5ccae 4557static void migrate_tasks(unsigned int dead_cpu)
1da177e4 4558{
70b97a7f 4559 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
4560 struct task_struct *next, *stop = rq->stop;
4561 int dest_cpu;
1da177e4
LT
4562
4563 /*
48c5ccae
PZ
4564 * Fudge the rq selection such that the below task selection loop
4565 * doesn't get stuck on the currently eligible stop task.
4566 *
4567 * We're currently inside stop_machine() and the rq is either stuck
4568 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4569 * either way we should never end up calling schedule() until we're
4570 * done here.
1da177e4 4571 */
48c5ccae 4572 rq->stop = NULL;
48f24c4d 4573
77bd3970
FW
4574 /*
4575 * put_prev_task() and pick_next_task() sched
4576 * class method both need to have an up-to-date
4577 * value of rq->clock[_task]
4578 */
4579 update_rq_clock(rq);
4580
dd41f596 4581 for ( ; ; ) {
48c5ccae
PZ
4582 /*
4583 * There's this thread running, bail when that's the only
4584 * remaining thread.
4585 */
4586 if (rq->nr_running == 1)
dd41f596 4587 break;
48c5ccae 4588
b67802ea 4589 next = pick_next_task(rq);
48c5ccae 4590 BUG_ON(!next);
79c53799 4591 next->sched_class->put_prev_task(rq, next);
e692ab53 4592
48c5ccae
PZ
4593 /* Find suitable destination for @next, with force if needed. */
4594 dest_cpu = select_fallback_rq(dead_cpu, next);
4595 raw_spin_unlock(&rq->lock);
4596
4597 __migrate_task(next, dead_cpu, dest_cpu);
4598
4599 raw_spin_lock(&rq->lock);
1da177e4 4600 }
dce48a84 4601
48c5ccae 4602 rq->stop = stop;
dce48a84 4603}
48c5ccae 4604
1da177e4
LT
4605#endif /* CONFIG_HOTPLUG_CPU */
4606
e692ab53
NP
4607#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4608
4609static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
4610 {
4611 .procname = "sched_domain",
c57baf1e 4612 .mode = 0555,
e0361851 4613 },
56992309 4614 {}
e692ab53
NP
4615};
4616
4617static struct ctl_table sd_ctl_root[] = {
e0361851
AD
4618 {
4619 .procname = "kernel",
c57baf1e 4620 .mode = 0555,
e0361851
AD
4621 .child = sd_ctl_dir,
4622 },
56992309 4623 {}
e692ab53
NP
4624};
4625
4626static struct ctl_table *sd_alloc_ctl_entry(int n)
4627{
4628 struct ctl_table *entry =
5cf9f062 4629 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 4630
e692ab53
NP
4631 return entry;
4632}
4633
6382bc90
MM
4634static void sd_free_ctl_entry(struct ctl_table **tablep)
4635{
cd790076 4636 struct ctl_table *entry;
6382bc90 4637
cd790076
MM
4638 /*
4639 * In the intermediate directories, both the child directory and
4640 * procname are dynamically allocated and could fail but the mode
41a2d6cf 4641 * will always be set. In the lowest directory the names are
cd790076
MM
4642 * static strings and all have proc handlers.
4643 */
4644 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
4645 if (entry->child)
4646 sd_free_ctl_entry(&entry->child);
cd790076
MM
4647 if (entry->proc_handler == NULL)
4648 kfree(entry->procname);
4649 }
6382bc90
MM
4650
4651 kfree(*tablep);
4652 *tablep = NULL;
4653}
4654
201c373e 4655static int min_load_idx = 0;
fd9b86d3 4656static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 4657
e692ab53 4658static void
e0361851 4659set_table_entry(struct ctl_table *entry,
e692ab53 4660 const char *procname, void *data, int maxlen,
201c373e
NK
4661 umode_t mode, proc_handler *proc_handler,
4662 bool load_idx)
e692ab53 4663{
e692ab53
NP
4664 entry->procname = procname;
4665 entry->data = data;
4666 entry->maxlen = maxlen;
4667 entry->mode = mode;
4668 entry->proc_handler = proc_handler;
201c373e
NK
4669
4670 if (load_idx) {
4671 entry->extra1 = &min_load_idx;
4672 entry->extra2 = &max_load_idx;
4673 }
e692ab53
NP
4674}
4675
4676static struct ctl_table *
4677sd_alloc_ctl_domain_table(struct sched_domain *sd)
4678{
a5d8c348 4679 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 4680
ad1cdc1d
MM
4681 if (table == NULL)
4682 return NULL;
4683
e0361851 4684 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 4685 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4686 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 4687 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 4688 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 4689 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4690 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 4691 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4692 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 4693 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4694 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 4695 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4696 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 4697 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 4698 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 4699 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 4700 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 4701 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4702 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 4703 &sd->cache_nice_tries,
201c373e 4704 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 4705 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 4706 sizeof(int), 0644, proc_dointvec_minmax, false);
a5d8c348 4707 set_table_entry(&table[11], "name", sd->name,
201c373e 4708 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
a5d8c348 4709 /* &table[12] is terminator */
e692ab53
NP
4710
4711 return table;
4712}
4713
be7002e6 4714static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
4715{
4716 struct ctl_table *entry, *table;
4717 struct sched_domain *sd;
4718 int domain_num = 0, i;
4719 char buf[32];
4720
4721 for_each_domain(cpu, sd)
4722 domain_num++;
4723 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
4724 if (table == NULL)
4725 return NULL;
e692ab53
NP
4726
4727 i = 0;
4728 for_each_domain(cpu, sd) {
4729 snprintf(buf, 32, "domain%d", i);
e692ab53 4730 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4731 entry->mode = 0555;
e692ab53
NP
4732 entry->child = sd_alloc_ctl_domain_table(sd);
4733 entry++;
4734 i++;
4735 }
4736 return table;
4737}
4738
4739static struct ctl_table_header *sd_sysctl_header;
6382bc90 4740static void register_sched_domain_sysctl(void)
e692ab53 4741{
6ad4c188 4742 int i, cpu_num = num_possible_cpus();
e692ab53
NP
4743 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4744 char buf[32];
4745
7378547f
MM
4746 WARN_ON(sd_ctl_dir[0].child);
4747 sd_ctl_dir[0].child = entry;
4748
ad1cdc1d
MM
4749 if (entry == NULL)
4750 return;
4751
6ad4c188 4752 for_each_possible_cpu(i) {
e692ab53 4753 snprintf(buf, 32, "cpu%d", i);
e692ab53 4754 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 4755 entry->mode = 0555;
e692ab53 4756 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 4757 entry++;
e692ab53 4758 }
7378547f
MM
4759
4760 WARN_ON(sd_sysctl_header);
e692ab53
NP
4761 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4762}
6382bc90 4763
7378547f 4764/* may be called multiple times per register */
6382bc90
MM
4765static void unregister_sched_domain_sysctl(void)
4766{
7378547f
MM
4767 if (sd_sysctl_header)
4768 unregister_sysctl_table(sd_sysctl_header);
6382bc90 4769 sd_sysctl_header = NULL;
7378547f
MM
4770 if (sd_ctl_dir[0].child)
4771 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 4772}
e692ab53 4773#else
6382bc90
MM
4774static void register_sched_domain_sysctl(void)
4775{
4776}
4777static void unregister_sched_domain_sysctl(void)
e692ab53
NP
4778{
4779}
4780#endif
4781
1f11eb6a
GH
4782static void set_rq_online(struct rq *rq)
4783{
4784 if (!rq->online) {
4785 const struct sched_class *class;
4786
c6c4927b 4787 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4788 rq->online = 1;
4789
4790 for_each_class(class) {
4791 if (class->rq_online)
4792 class->rq_online(rq);
4793 }
4794 }
4795}
4796
4797static void set_rq_offline(struct rq *rq)
4798{
4799 if (rq->online) {
4800 const struct sched_class *class;
4801
4802 for_each_class(class) {
4803 if (class->rq_offline)
4804 class->rq_offline(rq);
4805 }
4806
c6c4927b 4807 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
4808 rq->online = 0;
4809 }
4810}
4811
1da177e4
LT
4812/*
4813 * migration_call - callback that gets triggered when a CPU is added.
4814 * Here we can start up the necessary migration thread for the new CPU.
4815 */
0db0628d 4816static int
48f24c4d 4817migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 4818{
48f24c4d 4819 int cpu = (long)hcpu;
1da177e4 4820 unsigned long flags;
969c7921 4821 struct rq *rq = cpu_rq(cpu);
1da177e4 4822
48c5ccae 4823 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 4824
1da177e4 4825 case CPU_UP_PREPARE:
a468d389 4826 rq->calc_load_update = calc_load_update;
1da177e4 4827 break;
48f24c4d 4828
1da177e4 4829 case CPU_ONLINE:
1f94ef59 4830 /* Update our root-domain */
05fa785c 4831 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 4832 if (rq->rd) {
c6c4927b 4833 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
4834
4835 set_rq_online(rq);
1f94ef59 4836 }
05fa785c 4837 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 4838 break;
48f24c4d 4839
1da177e4 4840#ifdef CONFIG_HOTPLUG_CPU
08f503b0 4841 case CPU_DYING:
317f3941 4842 sched_ttwu_pending();
57d885fe 4843 /* Update our root-domain */
05fa785c 4844 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 4845 if (rq->rd) {
c6c4927b 4846 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 4847 set_rq_offline(rq);
57d885fe 4848 }
48c5ccae
PZ
4849 migrate_tasks(cpu);
4850 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 4851 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 4852 break;
48c5ccae 4853
5d180232 4854 case CPU_DEAD:
f319da0c 4855 calc_load_migrate(rq);
57d885fe 4856 break;
1da177e4
LT
4857#endif
4858 }
49c022e6
PZ
4859
4860 update_max_interval();
4861
1da177e4
LT
4862 return NOTIFY_OK;
4863}
4864
f38b0820
PM
4865/*
4866 * Register at high priority so that task migration (migrate_all_tasks)
4867 * happens before everything else. This has to be lower priority than
cdd6c482 4868 * the notifier in the perf_event subsystem, though.
1da177e4 4869 */
0db0628d 4870static struct notifier_block migration_notifier = {
1da177e4 4871 .notifier_call = migration_call,
50a323b7 4872 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
4873};
4874
0db0628d 4875static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
4876 unsigned long action, void *hcpu)
4877{
4878 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 4879 case CPU_STARTING:
3a101d05
TH
4880 case CPU_DOWN_FAILED:
4881 set_cpu_active((long)hcpu, true);
4882 return NOTIFY_OK;
4883 default:
4884 return NOTIFY_DONE;
4885 }
4886}
4887
0db0628d 4888static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
4889 unsigned long action, void *hcpu)
4890{
4891 switch (action & ~CPU_TASKS_FROZEN) {
4892 case CPU_DOWN_PREPARE:
4893 set_cpu_active((long)hcpu, false);
4894 return NOTIFY_OK;
4895 default:
4896 return NOTIFY_DONE;
4897 }
4898}
4899
7babe8db 4900static int __init migration_init(void)
1da177e4
LT
4901{
4902 void *cpu = (void *)(long)smp_processor_id();
07dccf33 4903 int err;
48f24c4d 4904
3a101d05 4905 /* Initialize migration for the boot CPU */
07dccf33
AM
4906 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4907 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
4908 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4909 register_cpu_notifier(&migration_notifier);
7babe8db 4910
3a101d05
TH
4911 /* Register cpu active notifiers */
4912 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
4913 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
4914
a004cd42 4915 return 0;
1da177e4 4916}
7babe8db 4917early_initcall(migration_init);
1da177e4
LT
4918#endif
4919
4920#ifdef CONFIG_SMP
476f3534 4921
4cb98839
PZ
4922static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
4923
3e9830dc 4924#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 4925
d039ac60 4926static __read_mostly int sched_debug_enabled;
f6630114 4927
d039ac60 4928static int __init sched_debug_setup(char *str)
f6630114 4929{
d039ac60 4930 sched_debug_enabled = 1;
f6630114
MT
4931
4932 return 0;
4933}
d039ac60
PZ
4934early_param("sched_debug", sched_debug_setup);
4935
4936static inline bool sched_debug(void)
4937{
4938 return sched_debug_enabled;
4939}
f6630114 4940
7c16ec58 4941static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 4942 struct cpumask *groupmask)
1da177e4 4943{
4dcf6aff 4944 struct sched_group *group = sd->groups;
434d53b0 4945 char str[256];
1da177e4 4946
968ea6d8 4947 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 4948 cpumask_clear(groupmask);
4dcf6aff
IM
4949
4950 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
4951
4952 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 4953 printk("does not load-balance\n");
4dcf6aff 4954 if (sd->parent)
3df0fc5b
PZ
4955 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
4956 " has parent");
4dcf6aff 4957 return -1;
41c7ce9a
NP
4958 }
4959
3df0fc5b 4960 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 4961
758b2cdc 4962 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
4963 printk(KERN_ERR "ERROR: domain->span does not contain "
4964 "CPU%d\n", cpu);
4dcf6aff 4965 }
758b2cdc 4966 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
4967 printk(KERN_ERR "ERROR: domain->groups does not contain"
4968 " CPU%d\n", cpu);
4dcf6aff 4969 }
1da177e4 4970
4dcf6aff 4971 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 4972 do {
4dcf6aff 4973 if (!group) {
3df0fc5b
PZ
4974 printk("\n");
4975 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
4976 break;
4977 }
4978
c3decf0d
PZ
4979 /*
4980 * Even though we initialize ->power to something semi-sane,
4981 * we leave power_orig unset. This allows us to detect if
4982 * domain iteration is still funny without causing /0 traps.
4983 */
4984 if (!group->sgp->power_orig) {
3df0fc5b
PZ
4985 printk(KERN_CONT "\n");
4986 printk(KERN_ERR "ERROR: domain->cpu_power not "
4987 "set\n");
4dcf6aff
IM
4988 break;
4989 }
1da177e4 4990
758b2cdc 4991 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
4992 printk(KERN_CONT "\n");
4993 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
4994 break;
4995 }
1da177e4 4996
cb83b629
PZ
4997 if (!(sd->flags & SD_OVERLAP) &&
4998 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
4999 printk(KERN_CONT "\n");
5000 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5001 break;
5002 }
1da177e4 5003
758b2cdc 5004 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5005
968ea6d8 5006 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5007
3df0fc5b 5008 printk(KERN_CONT " %s", str);
9c3f75cb 5009 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5010 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5011 group->sgp->power);
381512cf 5012 }
1da177e4 5013
4dcf6aff
IM
5014 group = group->next;
5015 } while (group != sd->groups);
3df0fc5b 5016 printk(KERN_CONT "\n");
1da177e4 5017
758b2cdc 5018 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5019 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5020
758b2cdc
RR
5021 if (sd->parent &&
5022 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5023 printk(KERN_ERR "ERROR: parent span is not a superset "
5024 "of domain->span\n");
4dcf6aff
IM
5025 return 0;
5026}
1da177e4 5027
4dcf6aff
IM
5028static void sched_domain_debug(struct sched_domain *sd, int cpu)
5029{
5030 int level = 0;
1da177e4 5031
d039ac60 5032 if (!sched_debug_enabled)
f6630114
MT
5033 return;
5034
4dcf6aff
IM
5035 if (!sd) {
5036 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5037 return;
5038 }
1da177e4 5039
4dcf6aff
IM
5040 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5041
5042 for (;;) {
4cb98839 5043 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5044 break;
1da177e4
LT
5045 level++;
5046 sd = sd->parent;
33859f7f 5047 if (!sd)
4dcf6aff
IM
5048 break;
5049 }
1da177e4 5050}
6d6bc0ad 5051#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5052# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5053static inline bool sched_debug(void)
5054{
5055 return false;
5056}
6d6bc0ad 5057#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5058
1a20ff27 5059static int sd_degenerate(struct sched_domain *sd)
245af2c7 5060{
758b2cdc 5061 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5062 return 1;
5063
5064 /* Following flags need at least 2 groups */
5065 if (sd->flags & (SD_LOAD_BALANCE |
5066 SD_BALANCE_NEWIDLE |
5067 SD_BALANCE_FORK |
89c4710e
SS
5068 SD_BALANCE_EXEC |
5069 SD_SHARE_CPUPOWER |
5070 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5071 if (sd->groups != sd->groups->next)
5072 return 0;
5073 }
5074
5075 /* Following flags don't use groups */
c88d5910 5076 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5077 return 0;
5078
5079 return 1;
5080}
5081
48f24c4d
IM
5082static int
5083sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5084{
5085 unsigned long cflags = sd->flags, pflags = parent->flags;
5086
5087 if (sd_degenerate(parent))
5088 return 1;
5089
758b2cdc 5090 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5091 return 0;
5092
245af2c7
SS
5093 /* Flags needing groups don't count if only 1 group in parent */
5094 if (parent->groups == parent->groups->next) {
5095 pflags &= ~(SD_LOAD_BALANCE |
5096 SD_BALANCE_NEWIDLE |
5097 SD_BALANCE_FORK |
89c4710e
SS
5098 SD_BALANCE_EXEC |
5099 SD_SHARE_CPUPOWER |
10866e62
PZ
5100 SD_SHARE_PKG_RESOURCES |
5101 SD_PREFER_SIBLING);
5436499e
KC
5102 if (nr_node_ids == 1)
5103 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5104 }
5105 if (~cflags & pflags)
5106 return 0;
5107
5108 return 1;
5109}
5110
dce840a0 5111static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5112{
dce840a0 5113 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5114
68e74568 5115 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5116 free_cpumask_var(rd->rto_mask);
5117 free_cpumask_var(rd->online);
5118 free_cpumask_var(rd->span);
5119 kfree(rd);
5120}
5121
57d885fe
GH
5122static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5123{
a0490fa3 5124 struct root_domain *old_rd = NULL;
57d885fe 5125 unsigned long flags;
57d885fe 5126
05fa785c 5127 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5128
5129 if (rq->rd) {
a0490fa3 5130 old_rd = rq->rd;
57d885fe 5131
c6c4927b 5132 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5133 set_rq_offline(rq);
57d885fe 5134
c6c4927b 5135 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5136
a0490fa3
IM
5137 /*
5138 * If we dont want to free the old_rt yet then
5139 * set old_rd to NULL to skip the freeing later
5140 * in this function:
5141 */
5142 if (!atomic_dec_and_test(&old_rd->refcount))
5143 old_rd = NULL;
57d885fe
GH
5144 }
5145
5146 atomic_inc(&rd->refcount);
5147 rq->rd = rd;
5148
c6c4927b 5149 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5150 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5151 set_rq_online(rq);
57d885fe 5152
05fa785c 5153 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5154
5155 if (old_rd)
dce840a0 5156 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5157}
5158
68c38fc3 5159static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5160{
5161 memset(rd, 0, sizeof(*rd));
5162
68c38fc3 5163 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5164 goto out;
68c38fc3 5165 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5166 goto free_span;
68c38fc3 5167 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5168 goto free_online;
6e0534f2 5169
68c38fc3 5170 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5171 goto free_rto_mask;
c6c4927b 5172 return 0;
6e0534f2 5173
68e74568
RR
5174free_rto_mask:
5175 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5176free_online:
5177 free_cpumask_var(rd->online);
5178free_span:
5179 free_cpumask_var(rd->span);
0c910d28 5180out:
c6c4927b 5181 return -ENOMEM;
57d885fe
GH
5182}
5183
029632fb
PZ
5184/*
5185 * By default the system creates a single root-domain with all cpus as
5186 * members (mimicking the global state we have today).
5187 */
5188struct root_domain def_root_domain;
5189
57d885fe
GH
5190static void init_defrootdomain(void)
5191{
68c38fc3 5192 init_rootdomain(&def_root_domain);
c6c4927b 5193
57d885fe
GH
5194 atomic_set(&def_root_domain.refcount, 1);
5195}
5196
dc938520 5197static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5198{
5199 struct root_domain *rd;
5200
5201 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5202 if (!rd)
5203 return NULL;
5204
68c38fc3 5205 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5206 kfree(rd);
5207 return NULL;
5208 }
57d885fe
GH
5209
5210 return rd;
5211}
5212
e3589f6c
PZ
5213static void free_sched_groups(struct sched_group *sg, int free_sgp)
5214{
5215 struct sched_group *tmp, *first;
5216
5217 if (!sg)
5218 return;
5219
5220 first = sg;
5221 do {
5222 tmp = sg->next;
5223
5224 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5225 kfree(sg->sgp);
5226
5227 kfree(sg);
5228 sg = tmp;
5229 } while (sg != first);
5230}
5231
dce840a0
PZ
5232static void free_sched_domain(struct rcu_head *rcu)
5233{
5234 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5235
5236 /*
5237 * If its an overlapping domain it has private groups, iterate and
5238 * nuke them all.
5239 */
5240 if (sd->flags & SD_OVERLAP) {
5241 free_sched_groups(sd->groups, 1);
5242 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5243 kfree(sd->groups->sgp);
dce840a0 5244 kfree(sd->groups);
9c3f75cb 5245 }
dce840a0
PZ
5246 kfree(sd);
5247}
5248
5249static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5250{
5251 call_rcu(&sd->rcu, free_sched_domain);
5252}
5253
5254static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5255{
5256 for (; sd; sd = sd->parent)
5257 destroy_sched_domain(sd, cpu);
5258}
5259
518cd623
PZ
5260/*
5261 * Keep a special pointer to the highest sched_domain that has
5262 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5263 * allows us to avoid some pointer chasing select_idle_sibling().
5264 *
5265 * Also keep a unique ID per domain (we use the first cpu number in
5266 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5267 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5268 */
5269DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5270DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5271DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5272DEFINE_PER_CPU(struct sched_domain *, sd_numa);
518cd623
PZ
5273
5274static void update_top_cache_domain(int cpu)
5275{
5276 struct sched_domain *sd;
5277 int id = cpu;
7d9ffa89 5278 int size = 1;
518cd623
PZ
5279
5280 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5281 if (sd) {
518cd623 5282 id = cpumask_first(sched_domain_span(sd));
7d9ffa89
PZ
5283 size = cpumask_weight(sched_domain_span(sd));
5284 }
518cd623
PZ
5285
5286 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5287 per_cpu(sd_llc_size, cpu) = size;
518cd623 5288 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5289
5290 sd = lowest_flag_domain(cpu, SD_NUMA);
5291 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
518cd623
PZ
5292}
5293
1da177e4 5294/*
0eab9146 5295 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5296 * hold the hotplug lock.
5297 */
0eab9146
IM
5298static void
5299cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5300{
70b97a7f 5301 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5302 struct sched_domain *tmp;
5303
5304 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5305 for (tmp = sd; tmp; ) {
245af2c7
SS
5306 struct sched_domain *parent = tmp->parent;
5307 if (!parent)
5308 break;
f29c9b1c 5309
1a848870 5310 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5311 tmp->parent = parent->parent;
1a848870
SS
5312 if (parent->parent)
5313 parent->parent->child = tmp;
10866e62
PZ
5314 /*
5315 * Transfer SD_PREFER_SIBLING down in case of a
5316 * degenerate parent; the spans match for this
5317 * so the property transfers.
5318 */
5319 if (parent->flags & SD_PREFER_SIBLING)
5320 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5321 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5322 } else
5323 tmp = tmp->parent;
245af2c7
SS
5324 }
5325
1a848870 5326 if (sd && sd_degenerate(sd)) {
dce840a0 5327 tmp = sd;
245af2c7 5328 sd = sd->parent;
dce840a0 5329 destroy_sched_domain(tmp, cpu);
1a848870
SS
5330 if (sd)
5331 sd->child = NULL;
5332 }
1da177e4 5333
4cb98839 5334 sched_domain_debug(sd, cpu);
1da177e4 5335
57d885fe 5336 rq_attach_root(rq, rd);
dce840a0 5337 tmp = rq->sd;
674311d5 5338 rcu_assign_pointer(rq->sd, sd);
dce840a0 5339 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5340
5341 update_top_cache_domain(cpu);
1da177e4
LT
5342}
5343
5344/* cpus with isolated domains */
dcc30a35 5345static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5346
5347/* Setup the mask of cpus configured for isolated domains */
5348static int __init isolated_cpu_setup(char *str)
5349{
bdddd296 5350 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5351 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5352 return 1;
5353}
5354
8927f494 5355__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5356
d3081f52
PZ
5357static const struct cpumask *cpu_cpu_mask(int cpu)
5358{
5359 return cpumask_of_node(cpu_to_node(cpu));
5360}
5361
dce840a0
PZ
5362struct sd_data {
5363 struct sched_domain **__percpu sd;
5364 struct sched_group **__percpu sg;
9c3f75cb 5365 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5366};
5367
49a02c51 5368struct s_data {
21d42ccf 5369 struct sched_domain ** __percpu sd;
49a02c51
AH
5370 struct root_domain *rd;
5371};
5372
2109b99e 5373enum s_alloc {
2109b99e 5374 sa_rootdomain,
21d42ccf 5375 sa_sd,
dce840a0 5376 sa_sd_storage,
2109b99e
AH
5377 sa_none,
5378};
5379
54ab4ff4
PZ
5380struct sched_domain_topology_level;
5381
5382typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5383typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5384
e3589f6c
PZ
5385#define SDTL_OVERLAP 0x01
5386
eb7a74e6 5387struct sched_domain_topology_level {
2c402dc3
PZ
5388 sched_domain_init_f init;
5389 sched_domain_mask_f mask;
e3589f6c 5390 int flags;
cb83b629 5391 int numa_level;
54ab4ff4 5392 struct sd_data data;
eb7a74e6
PZ
5393};
5394
c1174876
PZ
5395/*
5396 * Build an iteration mask that can exclude certain CPUs from the upwards
5397 * domain traversal.
5398 *
5399 * Asymmetric node setups can result in situations where the domain tree is of
5400 * unequal depth, make sure to skip domains that already cover the entire
5401 * range.
5402 *
5403 * In that case build_sched_domains() will have terminated the iteration early
5404 * and our sibling sd spans will be empty. Domains should always include the
5405 * cpu they're built on, so check that.
5406 *
5407 */
5408static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5409{
5410 const struct cpumask *span = sched_domain_span(sd);
5411 struct sd_data *sdd = sd->private;
5412 struct sched_domain *sibling;
5413 int i;
5414
5415 for_each_cpu(i, span) {
5416 sibling = *per_cpu_ptr(sdd->sd, i);
5417 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5418 continue;
5419
5420 cpumask_set_cpu(i, sched_group_mask(sg));
5421 }
5422}
5423
5424/*
5425 * Return the canonical balance cpu for this group, this is the first cpu
5426 * of this group that's also in the iteration mask.
5427 */
5428int group_balance_cpu(struct sched_group *sg)
5429{
5430 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5431}
5432
e3589f6c
PZ
5433static int
5434build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5435{
5436 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5437 const struct cpumask *span = sched_domain_span(sd);
5438 struct cpumask *covered = sched_domains_tmpmask;
5439 struct sd_data *sdd = sd->private;
5440 struct sched_domain *child;
5441 int i;
5442
5443 cpumask_clear(covered);
5444
5445 for_each_cpu(i, span) {
5446 struct cpumask *sg_span;
5447
5448 if (cpumask_test_cpu(i, covered))
5449 continue;
5450
c1174876
PZ
5451 child = *per_cpu_ptr(sdd->sd, i);
5452
5453 /* See the comment near build_group_mask(). */
5454 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5455 continue;
5456
e3589f6c 5457 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5458 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5459
5460 if (!sg)
5461 goto fail;
5462
5463 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
5464 if (child->child) {
5465 child = child->child;
5466 cpumask_copy(sg_span, sched_domain_span(child));
5467 } else
5468 cpumask_set_cpu(i, sg_span);
5469
5470 cpumask_or(covered, covered, sg_span);
5471
74a5ce20 5472 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
5473 if (atomic_inc_return(&sg->sgp->ref) == 1)
5474 build_group_mask(sd, sg);
5475
c3decf0d
PZ
5476 /*
5477 * Initialize sgp->power such that even if we mess up the
5478 * domains and no possible iteration will get us here, we won't
5479 * die on a /0 trap.
5480 */
5481 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 5482
c1174876
PZ
5483 /*
5484 * Make sure the first group of this domain contains the
5485 * canonical balance cpu. Otherwise the sched_domain iteration
5486 * breaks. See update_sg_lb_stats().
5487 */
74a5ce20 5488 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5489 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5490 groups = sg;
5491
5492 if (!first)
5493 first = sg;
5494 if (last)
5495 last->next = sg;
5496 last = sg;
5497 last->next = first;
5498 }
5499 sd->groups = groups;
5500
5501 return 0;
5502
5503fail:
5504 free_sched_groups(first, 0);
5505
5506 return -ENOMEM;
5507}
5508
dce840a0 5509static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5510{
dce840a0
PZ
5511 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5512 struct sched_domain *child = sd->child;
1da177e4 5513
dce840a0
PZ
5514 if (child)
5515 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5516
9c3f75cb 5517 if (sg) {
dce840a0 5518 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 5519 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 5520 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 5521 }
dce840a0
PZ
5522
5523 return cpu;
1e9f28fa 5524}
1e9f28fa 5525
01a08546 5526/*
dce840a0
PZ
5527 * build_sched_groups will build a circular linked list of the groups
5528 * covered by the given span, and will set each group's ->cpumask correctly,
5529 * and ->cpu_power to 0.
e3589f6c
PZ
5530 *
5531 * Assumes the sched_domain tree is fully constructed
01a08546 5532 */
e3589f6c
PZ
5533static int
5534build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5535{
dce840a0
PZ
5536 struct sched_group *first = NULL, *last = NULL;
5537 struct sd_data *sdd = sd->private;
5538 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5539 struct cpumask *covered;
dce840a0 5540 int i;
9c1cfda2 5541
e3589f6c
PZ
5542 get_group(cpu, sdd, &sd->groups);
5543 atomic_inc(&sd->groups->ref);
5544
0936629f 5545 if (cpu != cpumask_first(span))
e3589f6c
PZ
5546 return 0;
5547
f96225fd
PZ
5548 lockdep_assert_held(&sched_domains_mutex);
5549 covered = sched_domains_tmpmask;
5550
dce840a0 5551 cpumask_clear(covered);
6711cab4 5552
dce840a0
PZ
5553 for_each_cpu(i, span) {
5554 struct sched_group *sg;
cd08e923 5555 int group, j;
6711cab4 5556
dce840a0
PZ
5557 if (cpumask_test_cpu(i, covered))
5558 continue;
6711cab4 5559
cd08e923 5560 group = get_group(i, sdd, &sg);
dce840a0 5561 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 5562 sg->sgp->power = 0;
c1174876 5563 cpumask_setall(sched_group_mask(sg));
0601a88d 5564
dce840a0
PZ
5565 for_each_cpu(j, span) {
5566 if (get_group(j, sdd, NULL) != group)
5567 continue;
0601a88d 5568
dce840a0
PZ
5569 cpumask_set_cpu(j, covered);
5570 cpumask_set_cpu(j, sched_group_cpus(sg));
5571 }
0601a88d 5572
dce840a0
PZ
5573 if (!first)
5574 first = sg;
5575 if (last)
5576 last->next = sg;
5577 last = sg;
5578 }
5579 last->next = first;
e3589f6c
PZ
5580
5581 return 0;
0601a88d 5582}
51888ca2 5583
89c4710e
SS
5584/*
5585 * Initialize sched groups cpu_power.
5586 *
5587 * cpu_power indicates the capacity of sched group, which is used while
5588 * distributing the load between different sched groups in a sched domain.
5589 * Typically cpu_power for all the groups in a sched domain will be same unless
5590 * there are asymmetries in the topology. If there are asymmetries, group
5591 * having more cpu_power will pickup more load compared to the group having
5592 * less cpu_power.
89c4710e
SS
5593 */
5594static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5595{
e3589f6c 5596 struct sched_group *sg = sd->groups;
89c4710e 5597
94c95ba6 5598 WARN_ON(!sg);
e3589f6c
PZ
5599
5600 do {
5601 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5602 sg = sg->next;
5603 } while (sg != sd->groups);
89c4710e 5604
c1174876 5605 if (cpu != group_balance_cpu(sg))
e3589f6c 5606 return;
aae6d3dd 5607
d274cb30 5608 update_group_power(sd, cpu);
69e1e811 5609 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
5610}
5611
029632fb
PZ
5612int __weak arch_sd_sibling_asym_packing(void)
5613{
5614 return 0*SD_ASYM_PACKING;
89c4710e
SS
5615}
5616
7c16ec58
MT
5617/*
5618 * Initializers for schedule domains
5619 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5620 */
5621
a5d8c348
IM
5622#ifdef CONFIG_SCHED_DEBUG
5623# define SD_INIT_NAME(sd, type) sd->name = #type
5624#else
5625# define SD_INIT_NAME(sd, type) do { } while (0)
5626#endif
5627
54ab4ff4
PZ
5628#define SD_INIT_FUNC(type) \
5629static noinline struct sched_domain * \
5630sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5631{ \
5632 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5633 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
5634 SD_INIT_NAME(sd, type); \
5635 sd->private = &tl->data; \
5636 return sd; \
7c16ec58
MT
5637}
5638
5639SD_INIT_FUNC(CPU)
7c16ec58
MT
5640#ifdef CONFIG_SCHED_SMT
5641 SD_INIT_FUNC(SIBLING)
5642#endif
5643#ifdef CONFIG_SCHED_MC
5644 SD_INIT_FUNC(MC)
5645#endif
01a08546
HC
5646#ifdef CONFIG_SCHED_BOOK
5647 SD_INIT_FUNC(BOOK)
5648#endif
7c16ec58 5649
1d3504fc 5650static int default_relax_domain_level = -1;
60495e77 5651int sched_domain_level_max;
1d3504fc
HS
5652
5653static int __init setup_relax_domain_level(char *str)
5654{
a841f8ce
DS
5655 if (kstrtoint(str, 0, &default_relax_domain_level))
5656 pr_warn("Unable to set relax_domain_level\n");
30e0e178 5657
1d3504fc
HS
5658 return 1;
5659}
5660__setup("relax_domain_level=", setup_relax_domain_level);
5661
5662static void set_domain_attribute(struct sched_domain *sd,
5663 struct sched_domain_attr *attr)
5664{
5665 int request;
5666
5667 if (!attr || attr->relax_domain_level < 0) {
5668 if (default_relax_domain_level < 0)
5669 return;
5670 else
5671 request = default_relax_domain_level;
5672 } else
5673 request = attr->relax_domain_level;
5674 if (request < sd->level) {
5675 /* turn off idle balance on this domain */
c88d5910 5676 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5677 } else {
5678 /* turn on idle balance on this domain */
c88d5910 5679 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
5680 }
5681}
5682
54ab4ff4
PZ
5683static void __sdt_free(const struct cpumask *cpu_map);
5684static int __sdt_alloc(const struct cpumask *cpu_map);
5685
2109b99e
AH
5686static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5687 const struct cpumask *cpu_map)
5688{
5689 switch (what) {
2109b99e 5690 case sa_rootdomain:
822ff793
PZ
5691 if (!atomic_read(&d->rd->refcount))
5692 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
5693 case sa_sd:
5694 free_percpu(d->sd); /* fall through */
dce840a0 5695 case sa_sd_storage:
54ab4ff4 5696 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
5697 case sa_none:
5698 break;
5699 }
5700}
3404c8d9 5701
2109b99e
AH
5702static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5703 const struct cpumask *cpu_map)
5704{
dce840a0
PZ
5705 memset(d, 0, sizeof(*d));
5706
54ab4ff4
PZ
5707 if (__sdt_alloc(cpu_map))
5708 return sa_sd_storage;
dce840a0
PZ
5709 d->sd = alloc_percpu(struct sched_domain *);
5710 if (!d->sd)
5711 return sa_sd_storage;
2109b99e 5712 d->rd = alloc_rootdomain();
dce840a0 5713 if (!d->rd)
21d42ccf 5714 return sa_sd;
2109b99e
AH
5715 return sa_rootdomain;
5716}
57d885fe 5717
dce840a0
PZ
5718/*
5719 * NULL the sd_data elements we've used to build the sched_domain and
5720 * sched_group structure so that the subsequent __free_domain_allocs()
5721 * will not free the data we're using.
5722 */
5723static void claim_allocations(int cpu, struct sched_domain *sd)
5724{
5725 struct sd_data *sdd = sd->private;
dce840a0
PZ
5726
5727 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5728 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5729
e3589f6c 5730 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 5731 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
5732
5733 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 5734 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
5735}
5736
2c402dc3
PZ
5737#ifdef CONFIG_SCHED_SMT
5738static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 5739{
2c402dc3 5740 return topology_thread_cpumask(cpu);
3bd65a80 5741}
2c402dc3 5742#endif
7f4588f3 5743
d069b916
PZ
5744/*
5745 * Topology list, bottom-up.
5746 */
2c402dc3 5747static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
5748#ifdef CONFIG_SCHED_SMT
5749 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 5750#endif
1e9f28fa 5751#ifdef CONFIG_SCHED_MC
2c402dc3 5752 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 5753#endif
d069b916
PZ
5754#ifdef CONFIG_SCHED_BOOK
5755 { sd_init_BOOK, cpu_book_mask, },
5756#endif
5757 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
5758 { NULL, },
5759};
5760
5761static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5762
27723a68
VK
5763#define for_each_sd_topology(tl) \
5764 for (tl = sched_domain_topology; tl->init; tl++)
5765
cb83b629
PZ
5766#ifdef CONFIG_NUMA
5767
5768static int sched_domains_numa_levels;
cb83b629
PZ
5769static int *sched_domains_numa_distance;
5770static struct cpumask ***sched_domains_numa_masks;
5771static int sched_domains_curr_level;
5772
cb83b629
PZ
5773static inline int sd_local_flags(int level)
5774{
10717dcd 5775 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
5776 return 0;
5777
5778 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5779}
5780
5781static struct sched_domain *
5782sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5783{
5784 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5785 int level = tl->numa_level;
5786 int sd_weight = cpumask_weight(
5787 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5788
5789 *sd = (struct sched_domain){
5790 .min_interval = sd_weight,
5791 .max_interval = 2*sd_weight,
5792 .busy_factor = 32,
870a0bb5 5793 .imbalance_pct = 125,
cb83b629
PZ
5794 .cache_nice_tries = 2,
5795 .busy_idx = 3,
5796 .idle_idx = 2,
5797 .newidle_idx = 0,
5798 .wake_idx = 0,
5799 .forkexec_idx = 0,
5800
5801 .flags = 1*SD_LOAD_BALANCE
5802 | 1*SD_BALANCE_NEWIDLE
5803 | 0*SD_BALANCE_EXEC
5804 | 0*SD_BALANCE_FORK
5805 | 0*SD_BALANCE_WAKE
5806 | 0*SD_WAKE_AFFINE
cb83b629 5807 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
5808 | 0*SD_SHARE_PKG_RESOURCES
5809 | 1*SD_SERIALIZE
5810 | 0*SD_PREFER_SIBLING
3a7053b3 5811 | 1*SD_NUMA
cb83b629
PZ
5812 | sd_local_flags(level)
5813 ,
5814 .last_balance = jiffies,
5815 .balance_interval = sd_weight,
5816 };
5817 SD_INIT_NAME(sd, NUMA);
5818 sd->private = &tl->data;
5819
5820 /*
5821 * Ugly hack to pass state to sd_numa_mask()...
5822 */
5823 sched_domains_curr_level = tl->numa_level;
5824
5825 return sd;
5826}
5827
5828static const struct cpumask *sd_numa_mask(int cpu)
5829{
5830 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
5831}
5832
d039ac60
PZ
5833static void sched_numa_warn(const char *str)
5834{
5835 static int done = false;
5836 int i,j;
5837
5838 if (done)
5839 return;
5840
5841 done = true;
5842
5843 printk(KERN_WARNING "ERROR: %s\n\n", str);
5844
5845 for (i = 0; i < nr_node_ids; i++) {
5846 printk(KERN_WARNING " ");
5847 for (j = 0; j < nr_node_ids; j++)
5848 printk(KERN_CONT "%02d ", node_distance(i,j));
5849 printk(KERN_CONT "\n");
5850 }
5851 printk(KERN_WARNING "\n");
5852}
5853
5854static bool find_numa_distance(int distance)
5855{
5856 int i;
5857
5858 if (distance == node_distance(0, 0))
5859 return true;
5860
5861 for (i = 0; i < sched_domains_numa_levels; i++) {
5862 if (sched_domains_numa_distance[i] == distance)
5863 return true;
5864 }
5865
5866 return false;
5867}
5868
cb83b629
PZ
5869static void sched_init_numa(void)
5870{
5871 int next_distance, curr_distance = node_distance(0, 0);
5872 struct sched_domain_topology_level *tl;
5873 int level = 0;
5874 int i, j, k;
5875
cb83b629
PZ
5876 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
5877 if (!sched_domains_numa_distance)
5878 return;
5879
5880 /*
5881 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
5882 * unique distances in the node_distance() table.
5883 *
5884 * Assumes node_distance(0,j) includes all distances in
5885 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
5886 */
5887 next_distance = curr_distance;
5888 for (i = 0; i < nr_node_ids; i++) {
5889 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
5890 for (k = 0; k < nr_node_ids; k++) {
5891 int distance = node_distance(i, k);
5892
5893 if (distance > curr_distance &&
5894 (distance < next_distance ||
5895 next_distance == curr_distance))
5896 next_distance = distance;
5897
5898 /*
5899 * While not a strong assumption it would be nice to know
5900 * about cases where if node A is connected to B, B is not
5901 * equally connected to A.
5902 */
5903 if (sched_debug() && node_distance(k, i) != distance)
5904 sched_numa_warn("Node-distance not symmetric");
5905
5906 if (sched_debug() && i && !find_numa_distance(distance))
5907 sched_numa_warn("Node-0 not representative");
5908 }
5909 if (next_distance != curr_distance) {
5910 sched_domains_numa_distance[level++] = next_distance;
5911 sched_domains_numa_levels = level;
5912 curr_distance = next_distance;
5913 } else break;
cb83b629 5914 }
d039ac60
PZ
5915
5916 /*
5917 * In case of sched_debug() we verify the above assumption.
5918 */
5919 if (!sched_debug())
5920 break;
cb83b629
PZ
5921 }
5922 /*
5923 * 'level' contains the number of unique distances, excluding the
5924 * identity distance node_distance(i,i).
5925 *
28b4a521 5926 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
5927 * numbers.
5928 */
5929
5f7865f3
TC
5930 /*
5931 * Here, we should temporarily reset sched_domains_numa_levels to 0.
5932 * If it fails to allocate memory for array sched_domains_numa_masks[][],
5933 * the array will contain less then 'level' members. This could be
5934 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
5935 * in other functions.
5936 *
5937 * We reset it to 'level' at the end of this function.
5938 */
5939 sched_domains_numa_levels = 0;
5940
cb83b629
PZ
5941 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
5942 if (!sched_domains_numa_masks)
5943 return;
5944
5945 /*
5946 * Now for each level, construct a mask per node which contains all
5947 * cpus of nodes that are that many hops away from us.
5948 */
5949 for (i = 0; i < level; i++) {
5950 sched_domains_numa_masks[i] =
5951 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
5952 if (!sched_domains_numa_masks[i])
5953 return;
5954
5955 for (j = 0; j < nr_node_ids; j++) {
2ea45800 5956 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
5957 if (!mask)
5958 return;
5959
5960 sched_domains_numa_masks[i][j] = mask;
5961
5962 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 5963 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
5964 continue;
5965
5966 cpumask_or(mask, mask, cpumask_of_node(k));
5967 }
5968 }
5969 }
5970
5971 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
5972 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
5973 if (!tl)
5974 return;
5975
5976 /*
5977 * Copy the default topology bits..
5978 */
5979 for (i = 0; default_topology[i].init; i++)
5980 tl[i] = default_topology[i];
5981
5982 /*
5983 * .. and append 'j' levels of NUMA goodness.
5984 */
5985 for (j = 0; j < level; i++, j++) {
5986 tl[i] = (struct sched_domain_topology_level){
5987 .init = sd_numa_init,
5988 .mask = sd_numa_mask,
5989 .flags = SDTL_OVERLAP,
5990 .numa_level = j,
5991 };
5992 }
5993
5994 sched_domain_topology = tl;
5f7865f3
TC
5995
5996 sched_domains_numa_levels = level;
cb83b629 5997}
301a5cba
TC
5998
5999static void sched_domains_numa_masks_set(int cpu)
6000{
6001 int i, j;
6002 int node = cpu_to_node(cpu);
6003
6004 for (i = 0; i < sched_domains_numa_levels; i++) {
6005 for (j = 0; j < nr_node_ids; j++) {
6006 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6007 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6008 }
6009 }
6010}
6011
6012static void sched_domains_numa_masks_clear(int cpu)
6013{
6014 int i, j;
6015 for (i = 0; i < sched_domains_numa_levels; i++) {
6016 for (j = 0; j < nr_node_ids; j++)
6017 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6018 }
6019}
6020
6021/*
6022 * Update sched_domains_numa_masks[level][node] array when new cpus
6023 * are onlined.
6024 */
6025static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6026 unsigned long action,
6027 void *hcpu)
6028{
6029 int cpu = (long)hcpu;
6030
6031 switch (action & ~CPU_TASKS_FROZEN) {
6032 case CPU_ONLINE:
6033 sched_domains_numa_masks_set(cpu);
6034 break;
6035
6036 case CPU_DEAD:
6037 sched_domains_numa_masks_clear(cpu);
6038 break;
6039
6040 default:
6041 return NOTIFY_DONE;
6042 }
6043
6044 return NOTIFY_OK;
cb83b629
PZ
6045}
6046#else
6047static inline void sched_init_numa(void)
6048{
6049}
301a5cba
TC
6050
6051static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6052 unsigned long action,
6053 void *hcpu)
6054{
6055 return 0;
6056}
cb83b629
PZ
6057#endif /* CONFIG_NUMA */
6058
54ab4ff4
PZ
6059static int __sdt_alloc(const struct cpumask *cpu_map)
6060{
6061 struct sched_domain_topology_level *tl;
6062 int j;
6063
27723a68 6064 for_each_sd_topology(tl) {
54ab4ff4
PZ
6065 struct sd_data *sdd = &tl->data;
6066
6067 sdd->sd = alloc_percpu(struct sched_domain *);
6068 if (!sdd->sd)
6069 return -ENOMEM;
6070
6071 sdd->sg = alloc_percpu(struct sched_group *);
6072 if (!sdd->sg)
6073 return -ENOMEM;
6074
9c3f75cb
PZ
6075 sdd->sgp = alloc_percpu(struct sched_group_power *);
6076 if (!sdd->sgp)
6077 return -ENOMEM;
6078
54ab4ff4
PZ
6079 for_each_cpu(j, cpu_map) {
6080 struct sched_domain *sd;
6081 struct sched_group *sg;
9c3f75cb 6082 struct sched_group_power *sgp;
54ab4ff4
PZ
6083
6084 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6085 GFP_KERNEL, cpu_to_node(j));
6086 if (!sd)
6087 return -ENOMEM;
6088
6089 *per_cpu_ptr(sdd->sd, j) = sd;
6090
6091 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6092 GFP_KERNEL, cpu_to_node(j));
6093 if (!sg)
6094 return -ENOMEM;
6095
30b4e9eb
IM
6096 sg->next = sg;
6097
54ab4ff4 6098 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6099
c1174876 6100 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6101 GFP_KERNEL, cpu_to_node(j));
6102 if (!sgp)
6103 return -ENOMEM;
6104
6105 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6106 }
6107 }
6108
6109 return 0;
6110}
6111
6112static void __sdt_free(const struct cpumask *cpu_map)
6113{
6114 struct sched_domain_topology_level *tl;
6115 int j;
6116
27723a68 6117 for_each_sd_topology(tl) {
54ab4ff4
PZ
6118 struct sd_data *sdd = &tl->data;
6119
6120 for_each_cpu(j, cpu_map) {
fb2cf2c6 6121 struct sched_domain *sd;
6122
6123 if (sdd->sd) {
6124 sd = *per_cpu_ptr(sdd->sd, j);
6125 if (sd && (sd->flags & SD_OVERLAP))
6126 free_sched_groups(sd->groups, 0);
6127 kfree(*per_cpu_ptr(sdd->sd, j));
6128 }
6129
6130 if (sdd->sg)
6131 kfree(*per_cpu_ptr(sdd->sg, j));
6132 if (sdd->sgp)
6133 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6134 }
6135 free_percpu(sdd->sd);
fb2cf2c6 6136 sdd->sd = NULL;
54ab4ff4 6137 free_percpu(sdd->sg);
fb2cf2c6 6138 sdd->sg = NULL;
9c3f75cb 6139 free_percpu(sdd->sgp);
fb2cf2c6 6140 sdd->sgp = NULL;
54ab4ff4
PZ
6141 }
6142}
6143
2c402dc3 6144struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6145 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6146 struct sched_domain *child, int cpu)
2c402dc3 6147{
54ab4ff4 6148 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6149 if (!sd)
d069b916 6150 return child;
2c402dc3 6151
2c402dc3 6152 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6153 if (child) {
6154 sd->level = child->level + 1;
6155 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6156 child->parent = sd;
c75e0128 6157 sd->child = child;
60495e77 6158 }
a841f8ce 6159 set_domain_attribute(sd, attr);
2c402dc3
PZ
6160
6161 return sd;
6162}
6163
2109b99e
AH
6164/*
6165 * Build sched domains for a given set of cpus and attach the sched domains
6166 * to the individual cpus
6167 */
dce840a0
PZ
6168static int build_sched_domains(const struct cpumask *cpu_map,
6169 struct sched_domain_attr *attr)
2109b99e 6170{
1c632169 6171 enum s_alloc alloc_state;
dce840a0 6172 struct sched_domain *sd;
2109b99e 6173 struct s_data d;
822ff793 6174 int i, ret = -ENOMEM;
9c1cfda2 6175
2109b99e
AH
6176 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6177 if (alloc_state != sa_rootdomain)
6178 goto error;
9c1cfda2 6179
dce840a0 6180 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6181 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6182 struct sched_domain_topology_level *tl;
6183
3bd65a80 6184 sd = NULL;
27723a68 6185 for_each_sd_topology(tl) {
4a850cbe 6186 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6187 if (tl == sched_domain_topology)
6188 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6189 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6190 sd->flags |= SD_OVERLAP;
d110235d
PZ
6191 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6192 break;
e3589f6c 6193 }
dce840a0
PZ
6194 }
6195
6196 /* Build the groups for the domains */
6197 for_each_cpu(i, cpu_map) {
6198 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6199 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6200 if (sd->flags & SD_OVERLAP) {
6201 if (build_overlap_sched_groups(sd, i))
6202 goto error;
6203 } else {
6204 if (build_sched_groups(sd, i))
6205 goto error;
6206 }
1cf51902 6207 }
a06dadbe 6208 }
9c1cfda2 6209
1da177e4 6210 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6211 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6212 if (!cpumask_test_cpu(i, cpu_map))
6213 continue;
9c1cfda2 6214
dce840a0
PZ
6215 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6216 claim_allocations(i, sd);
cd4ea6ae 6217 init_sched_groups_power(i, sd);
dce840a0 6218 }
f712c0c7 6219 }
9c1cfda2 6220
1da177e4 6221 /* Attach the domains */
dce840a0 6222 rcu_read_lock();
abcd083a 6223 for_each_cpu(i, cpu_map) {
21d42ccf 6224 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6225 cpu_attach_domain(sd, d.rd, i);
1da177e4 6226 }
dce840a0 6227 rcu_read_unlock();
51888ca2 6228
822ff793 6229 ret = 0;
51888ca2 6230error:
2109b99e 6231 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6232 return ret;
1da177e4 6233}
029190c5 6234
acc3f5d7 6235static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6236static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6237static struct sched_domain_attr *dattr_cur;
6238 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6239
6240/*
6241 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6242 * cpumask) fails, then fallback to a single sched domain,
6243 * as determined by the single cpumask fallback_doms.
029190c5 6244 */
4212823f 6245static cpumask_var_t fallback_doms;
029190c5 6246
ee79d1bd
HC
6247/*
6248 * arch_update_cpu_topology lets virtualized architectures update the
6249 * cpu core maps. It is supposed to return 1 if the topology changed
6250 * or 0 if it stayed the same.
6251 */
6252int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6253{
ee79d1bd 6254 return 0;
22e52b07
HC
6255}
6256
acc3f5d7
RR
6257cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6258{
6259 int i;
6260 cpumask_var_t *doms;
6261
6262 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6263 if (!doms)
6264 return NULL;
6265 for (i = 0; i < ndoms; i++) {
6266 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6267 free_sched_domains(doms, i);
6268 return NULL;
6269 }
6270 }
6271 return doms;
6272}
6273
6274void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6275{
6276 unsigned int i;
6277 for (i = 0; i < ndoms; i++)
6278 free_cpumask_var(doms[i]);
6279 kfree(doms);
6280}
6281
1a20ff27 6282/*
41a2d6cf 6283 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6284 * For now this just excludes isolated cpus, but could be used to
6285 * exclude other special cases in the future.
1a20ff27 6286 */
c4a8849a 6287static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6288{
7378547f
MM
6289 int err;
6290
22e52b07 6291 arch_update_cpu_topology();
029190c5 6292 ndoms_cur = 1;
acc3f5d7 6293 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6294 if (!doms_cur)
acc3f5d7
RR
6295 doms_cur = &fallback_doms;
6296 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6297 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6298 register_sched_domain_sysctl();
7378547f
MM
6299
6300 return err;
1a20ff27
DG
6301}
6302
1a20ff27
DG
6303/*
6304 * Detach sched domains from a group of cpus specified in cpu_map
6305 * These cpus will now be attached to the NULL domain
6306 */
96f874e2 6307static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6308{
6309 int i;
6310
dce840a0 6311 rcu_read_lock();
abcd083a 6312 for_each_cpu(i, cpu_map)
57d885fe 6313 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6314 rcu_read_unlock();
1a20ff27
DG
6315}
6316
1d3504fc
HS
6317/* handle null as "default" */
6318static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6319 struct sched_domain_attr *new, int idx_new)
6320{
6321 struct sched_domain_attr tmp;
6322
6323 /* fast path */
6324 if (!new && !cur)
6325 return 1;
6326
6327 tmp = SD_ATTR_INIT;
6328 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6329 new ? (new + idx_new) : &tmp,
6330 sizeof(struct sched_domain_attr));
6331}
6332
029190c5
PJ
6333/*
6334 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6335 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6336 * doms_new[] to the current sched domain partitioning, doms_cur[].
6337 * It destroys each deleted domain and builds each new domain.
6338 *
acc3f5d7 6339 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6340 * The masks don't intersect (don't overlap.) We should setup one
6341 * sched domain for each mask. CPUs not in any of the cpumasks will
6342 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6343 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6344 * it as it is.
6345 *
acc3f5d7
RR
6346 * The passed in 'doms_new' should be allocated using
6347 * alloc_sched_domains. This routine takes ownership of it and will
6348 * free_sched_domains it when done with it. If the caller failed the
6349 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6350 * and partition_sched_domains() will fallback to the single partition
6351 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6352 *
96f874e2 6353 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6354 * ndoms_new == 0 is a special case for destroying existing domains,
6355 * and it will not create the default domain.
dfb512ec 6356 *
029190c5
PJ
6357 * Call with hotplug lock held
6358 */
acc3f5d7 6359void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6360 struct sched_domain_attr *dattr_new)
029190c5 6361{
dfb512ec 6362 int i, j, n;
d65bd5ec 6363 int new_topology;
029190c5 6364
712555ee 6365 mutex_lock(&sched_domains_mutex);
a1835615 6366
7378547f
MM
6367 /* always unregister in case we don't destroy any domains */
6368 unregister_sched_domain_sysctl();
6369
d65bd5ec
HC
6370 /* Let architecture update cpu core mappings. */
6371 new_topology = arch_update_cpu_topology();
6372
dfb512ec 6373 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6374
6375 /* Destroy deleted domains */
6376 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6377 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6378 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6379 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6380 goto match1;
6381 }
6382 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6383 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6384match1:
6385 ;
6386 }
6387
c8d2d47a 6388 n = ndoms_cur;
e761b772 6389 if (doms_new == NULL) {
c8d2d47a 6390 n = 0;
acc3f5d7 6391 doms_new = &fallback_doms;
6ad4c188 6392 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6393 WARN_ON_ONCE(dattr_new);
e761b772
MK
6394 }
6395
029190c5
PJ
6396 /* Build new domains */
6397 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6398 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6399 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6400 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6401 goto match2;
6402 }
6403 /* no match - add a new doms_new */
dce840a0 6404 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6405match2:
6406 ;
6407 }
6408
6409 /* Remember the new sched domains */
acc3f5d7
RR
6410 if (doms_cur != &fallback_doms)
6411 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6412 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6413 doms_cur = doms_new;
1d3504fc 6414 dattr_cur = dattr_new;
029190c5 6415 ndoms_cur = ndoms_new;
7378547f
MM
6416
6417 register_sched_domain_sysctl();
a1835615 6418
712555ee 6419 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6420}
6421
d35be8ba
SB
6422static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6423
1da177e4 6424/*
3a101d05
TH
6425 * Update cpusets according to cpu_active mask. If cpusets are
6426 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6427 * around partition_sched_domains().
d35be8ba
SB
6428 *
6429 * If we come here as part of a suspend/resume, don't touch cpusets because we
6430 * want to restore it back to its original state upon resume anyway.
1da177e4 6431 */
0b2e918a
TH
6432static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6433 void *hcpu)
e761b772 6434{
d35be8ba
SB
6435 switch (action) {
6436 case CPU_ONLINE_FROZEN:
6437 case CPU_DOWN_FAILED_FROZEN:
6438
6439 /*
6440 * num_cpus_frozen tracks how many CPUs are involved in suspend
6441 * resume sequence. As long as this is not the last online
6442 * operation in the resume sequence, just build a single sched
6443 * domain, ignoring cpusets.
6444 */
6445 num_cpus_frozen--;
6446 if (likely(num_cpus_frozen)) {
6447 partition_sched_domains(1, NULL, NULL);
6448 break;
6449 }
6450
6451 /*
6452 * This is the last CPU online operation. So fall through and
6453 * restore the original sched domains by considering the
6454 * cpuset configurations.
6455 */
6456
e761b772 6457 case CPU_ONLINE:
6ad4c188 6458 case CPU_DOWN_FAILED:
7ddf96b0 6459 cpuset_update_active_cpus(true);
d35be8ba 6460 break;
3a101d05
TH
6461 default:
6462 return NOTIFY_DONE;
6463 }
d35be8ba 6464 return NOTIFY_OK;
3a101d05 6465}
e761b772 6466
0b2e918a
TH
6467static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6468 void *hcpu)
3a101d05 6469{
d35be8ba 6470 switch (action) {
3a101d05 6471 case CPU_DOWN_PREPARE:
7ddf96b0 6472 cpuset_update_active_cpus(false);
d35be8ba
SB
6473 break;
6474 case CPU_DOWN_PREPARE_FROZEN:
6475 num_cpus_frozen++;
6476 partition_sched_domains(1, NULL, NULL);
6477 break;
e761b772
MK
6478 default:
6479 return NOTIFY_DONE;
6480 }
d35be8ba 6481 return NOTIFY_OK;
e761b772 6482}
e761b772 6483
1da177e4
LT
6484void __init sched_init_smp(void)
6485{
dcc30a35
RR
6486 cpumask_var_t non_isolated_cpus;
6487
6488 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6489 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6490
cb83b629
PZ
6491 sched_init_numa();
6492
95402b38 6493 get_online_cpus();
712555ee 6494 mutex_lock(&sched_domains_mutex);
c4a8849a 6495 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6496 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6497 if (cpumask_empty(non_isolated_cpus))
6498 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6499 mutex_unlock(&sched_domains_mutex);
95402b38 6500 put_online_cpus();
e761b772 6501
301a5cba 6502 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
6503 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6504 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 6505
b328ca18 6506 init_hrtick();
5c1e1767
NP
6507
6508 /* Move init over to a non-isolated CPU */
dcc30a35 6509 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6510 BUG();
19978ca6 6511 sched_init_granularity();
dcc30a35 6512 free_cpumask_var(non_isolated_cpus);
4212823f 6513
0e3900e6 6514 init_sched_rt_class();
1da177e4
LT
6515}
6516#else
6517void __init sched_init_smp(void)
6518{
19978ca6 6519 sched_init_granularity();
1da177e4
LT
6520}
6521#endif /* CONFIG_SMP */
6522
cd1bb94b
AB
6523const_debug unsigned int sysctl_timer_migration = 1;
6524
1da177e4
LT
6525int in_sched_functions(unsigned long addr)
6526{
1da177e4
LT
6527 return in_lock_functions(addr) ||
6528 (addr >= (unsigned long)__sched_text_start
6529 && addr < (unsigned long)__sched_text_end);
6530}
6531
029632fb 6532#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
6533/*
6534 * Default task group.
6535 * Every task in system belongs to this group at bootup.
6536 */
029632fb 6537struct task_group root_task_group;
35cf4e50 6538LIST_HEAD(task_groups);
052f1dc7 6539#endif
6f505b16 6540
e6252c3e 6541DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 6542
1da177e4
LT
6543void __init sched_init(void)
6544{
dd41f596 6545 int i, j;
434d53b0
MT
6546 unsigned long alloc_size = 0, ptr;
6547
6548#ifdef CONFIG_FAIR_GROUP_SCHED
6549 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6550#endif
6551#ifdef CONFIG_RT_GROUP_SCHED
6552 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 6553#endif
df7c8e84 6554#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 6555 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 6556#endif
434d53b0 6557 if (alloc_size) {
36b7b6d4 6558 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
6559
6560#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 6561 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
6562 ptr += nr_cpu_ids * sizeof(void **);
6563
07e06b01 6564 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 6565 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 6566
6d6bc0ad 6567#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 6568#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6569 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
6570 ptr += nr_cpu_ids * sizeof(void **);
6571
07e06b01 6572 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
6573 ptr += nr_cpu_ids * sizeof(void **);
6574
6d6bc0ad 6575#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
6576#ifdef CONFIG_CPUMASK_OFFSTACK
6577 for_each_possible_cpu(i) {
e6252c3e 6578 per_cpu(load_balance_mask, i) = (void *)ptr;
df7c8e84
RR
6579 ptr += cpumask_size();
6580 }
6581#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 6582 }
dd41f596 6583
57d885fe
GH
6584#ifdef CONFIG_SMP
6585 init_defrootdomain();
6586#endif
6587
d0b27fa7
PZ
6588 init_rt_bandwidth(&def_rt_bandwidth,
6589 global_rt_period(), global_rt_runtime());
6590
6591#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 6592 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 6593 global_rt_period(), global_rt_runtime());
6d6bc0ad 6594#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 6595
7c941438 6596#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
6597 list_add(&root_task_group.list, &task_groups);
6598 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 6599 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 6600 autogroup_init(&init_task);
54c707e9 6601
7c941438 6602#endif /* CONFIG_CGROUP_SCHED */
6f505b16 6603
0a945022 6604 for_each_possible_cpu(i) {
70b97a7f 6605 struct rq *rq;
1da177e4
LT
6606
6607 rq = cpu_rq(i);
05fa785c 6608 raw_spin_lock_init(&rq->lock);
7897986b 6609 rq->nr_running = 0;
dce48a84
TG
6610 rq->calc_load_active = 0;
6611 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 6612 init_cfs_rq(&rq->cfs);
6f505b16 6613 init_rt_rq(&rq->rt, rq);
dd41f596 6614#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 6615 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 6616 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 6617 /*
07e06b01 6618 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
6619 *
6620 * In case of task-groups formed thr' the cgroup filesystem, it
6621 * gets 100% of the cpu resources in the system. This overall
6622 * system cpu resource is divided among the tasks of
07e06b01 6623 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
6624 * based on each entity's (task or task-group's) weight
6625 * (se->load.weight).
6626 *
07e06b01 6627 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
6628 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6629 * then A0's share of the cpu resource is:
6630 *
0d905bca 6631 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 6632 *
07e06b01
YZ
6633 * We achieve this by letting root_task_group's tasks sit
6634 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 6635 */
ab84d31e 6636 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 6637 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
6638#endif /* CONFIG_FAIR_GROUP_SCHED */
6639
6640 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 6641#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 6642 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 6643 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 6644#endif
1da177e4 6645
dd41f596
IM
6646 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6647 rq->cpu_load[j] = 0;
fdf3e95d
VP
6648
6649 rq->last_load_update_tick = jiffies;
6650
1da177e4 6651#ifdef CONFIG_SMP
41c7ce9a 6652 rq->sd = NULL;
57d885fe 6653 rq->rd = NULL;
1399fa78 6654 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 6655 rq->post_schedule = 0;
1da177e4 6656 rq->active_balance = 0;
dd41f596 6657 rq->next_balance = jiffies;
1da177e4 6658 rq->push_cpu = 0;
0a2966b4 6659 rq->cpu = i;
1f11eb6a 6660 rq->online = 0;
eae0c9df
MG
6661 rq->idle_stamp = 0;
6662 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 6663 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
6664
6665 INIT_LIST_HEAD(&rq->cfs_tasks);
6666
dc938520 6667 rq_attach_root(rq, &def_root_domain);
3451d024 6668#ifdef CONFIG_NO_HZ_COMMON
1c792db7 6669 rq->nohz_flags = 0;
83cd4fe2 6670#endif
265f22a9
FW
6671#ifdef CONFIG_NO_HZ_FULL
6672 rq->last_sched_tick = 0;
6673#endif
1da177e4 6674#endif
8f4d37ec 6675 init_rq_hrtick(rq);
1da177e4 6676 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
6677 }
6678
2dd73a4f 6679 set_load_weight(&init_task);
b50f60ce 6680
e107be36
AK
6681#ifdef CONFIG_PREEMPT_NOTIFIERS
6682 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6683#endif
6684
b50f60ce 6685#ifdef CONFIG_RT_MUTEXES
732375c6 6686 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
6687#endif
6688
1da177e4
LT
6689 /*
6690 * The boot idle thread does lazy MMU switching as well:
6691 */
6692 atomic_inc(&init_mm.mm_count);
6693 enter_lazy_tlb(&init_mm, current);
6694
6695 /*
6696 * Make us the idle thread. Technically, schedule() should not be
6697 * called from this thread, however somewhere below it might be,
6698 * but because we are the idle thread, we just pick up running again
6699 * when this runqueue becomes "idle".
6700 */
6701 init_idle(current, smp_processor_id());
dce48a84
TG
6702
6703 calc_load_update = jiffies + LOAD_FREQ;
6704
dd41f596
IM
6705 /*
6706 * During early bootup we pretend to be a normal task:
6707 */
6708 current->sched_class = &fair_sched_class;
6892b75e 6709
bf4d83f6 6710#ifdef CONFIG_SMP
4cb98839 6711 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
6712 /* May be allocated at isolcpus cmdline parse time */
6713 if (cpu_isolated_map == NULL)
6714 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 6715 idle_thread_set_boot_cpu();
029632fb
PZ
6716#endif
6717 init_sched_fair_class();
6a7b3dc3 6718
6892b75e 6719 scheduler_running = 1;
1da177e4
LT
6720}
6721
d902db1e 6722#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
6723static inline int preempt_count_equals(int preempt_offset)
6724{
234da7bc 6725 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 6726
4ba8216c 6727 return (nested == preempt_offset);
e4aafea2
FW
6728}
6729
d894837f 6730void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 6731{
1da177e4
LT
6732 static unsigned long prev_jiffy; /* ratelimiting */
6733
b3fbab05 6734 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
6735 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6736 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
6737 return;
6738 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6739 return;
6740 prev_jiffy = jiffies;
6741
3df0fc5b
PZ
6742 printk(KERN_ERR
6743 "BUG: sleeping function called from invalid context at %s:%d\n",
6744 file, line);
6745 printk(KERN_ERR
6746 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6747 in_atomic(), irqs_disabled(),
6748 current->pid, current->comm);
aef745fc
IM
6749
6750 debug_show_held_locks(current);
6751 if (irqs_disabled())
6752 print_irqtrace_events(current);
6753 dump_stack();
1da177e4
LT
6754}
6755EXPORT_SYMBOL(__might_sleep);
6756#endif
6757
6758#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6759static void normalize_task(struct rq *rq, struct task_struct *p)
6760{
da7a735e
PZ
6761 const struct sched_class *prev_class = p->sched_class;
6762 int old_prio = p->prio;
3a5e4dc1 6763 int on_rq;
3e51f33f 6764
fd2f4419 6765 on_rq = p->on_rq;
3a5e4dc1 6766 if (on_rq)
4ca9b72b 6767 dequeue_task(rq, p, 0);
3a5e4dc1
AK
6768 __setscheduler(rq, p, SCHED_NORMAL, 0);
6769 if (on_rq) {
4ca9b72b 6770 enqueue_task(rq, p, 0);
3a5e4dc1
AK
6771 resched_task(rq->curr);
6772 }
da7a735e
PZ
6773
6774 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
6775}
6776
1da177e4
LT
6777void normalize_rt_tasks(void)
6778{
a0f98a1c 6779 struct task_struct *g, *p;
1da177e4 6780 unsigned long flags;
70b97a7f 6781 struct rq *rq;
1da177e4 6782
4cf5d77a 6783 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 6784 do_each_thread(g, p) {
178be793
IM
6785 /*
6786 * Only normalize user tasks:
6787 */
6788 if (!p->mm)
6789 continue;
6790
6cfb0d5d 6791 p->se.exec_start = 0;
6cfb0d5d 6792#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
6793 p->se.statistics.wait_start = 0;
6794 p->se.statistics.sleep_start = 0;
6795 p->se.statistics.block_start = 0;
6cfb0d5d 6796#endif
dd41f596
IM
6797
6798 if (!rt_task(p)) {
6799 /*
6800 * Renice negative nice level userspace
6801 * tasks back to 0:
6802 */
6803 if (TASK_NICE(p) < 0 && p->mm)
6804 set_user_nice(p, 0);
1da177e4 6805 continue;
dd41f596 6806 }
1da177e4 6807
1d615482 6808 raw_spin_lock(&p->pi_lock);
b29739f9 6809 rq = __task_rq_lock(p);
1da177e4 6810
178be793 6811 normalize_task(rq, p);
3a5e4dc1 6812
b29739f9 6813 __task_rq_unlock(rq);
1d615482 6814 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
6815 } while_each_thread(g, p);
6816
4cf5d77a 6817 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
6818}
6819
6820#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 6821
67fc4e0c 6822#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 6823/*
67fc4e0c 6824 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
6825 *
6826 * They can only be called when the whole system has been
6827 * stopped - every CPU needs to be quiescent, and no scheduling
6828 * activity can take place. Using them for anything else would
6829 * be a serious bug, and as a result, they aren't even visible
6830 * under any other configuration.
6831 */
6832
6833/**
6834 * curr_task - return the current task for a given cpu.
6835 * @cpu: the processor in question.
6836 *
6837 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
6838 *
6839 * Return: The current task for @cpu.
1df5c10a 6840 */
36c8b586 6841struct task_struct *curr_task(int cpu)
1df5c10a
LT
6842{
6843 return cpu_curr(cpu);
6844}
6845
67fc4e0c
JW
6846#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6847
6848#ifdef CONFIG_IA64
1df5c10a
LT
6849/**
6850 * set_curr_task - set the current task for a given cpu.
6851 * @cpu: the processor in question.
6852 * @p: the task pointer to set.
6853 *
6854 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
6855 * are serviced on a separate stack. It allows the architecture to switch the
6856 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
6857 * must be called with all CPU's synchronized, and interrupts disabled, the
6858 * and caller must save the original value of the current task (see
6859 * curr_task() above) and restore that value before reenabling interrupts and
6860 * re-starting the system.
6861 *
6862 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6863 */
36c8b586 6864void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6865{
6866 cpu_curr(cpu) = p;
6867}
6868
6869#endif
29f59db3 6870
7c941438 6871#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
6872/* task_group_lock serializes the addition/removal of task groups */
6873static DEFINE_SPINLOCK(task_group_lock);
6874
bccbe08a
PZ
6875static void free_sched_group(struct task_group *tg)
6876{
6877 free_fair_sched_group(tg);
6878 free_rt_sched_group(tg);
e9aa1dd1 6879 autogroup_free(tg);
bccbe08a
PZ
6880 kfree(tg);
6881}
6882
6883/* allocate runqueue etc for a new task group */
ec7dc8ac 6884struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
6885{
6886 struct task_group *tg;
bccbe08a
PZ
6887
6888 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6889 if (!tg)
6890 return ERR_PTR(-ENOMEM);
6891
ec7dc8ac 6892 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
6893 goto err;
6894
ec7dc8ac 6895 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
6896 goto err;
6897
ace783b9
LZ
6898 return tg;
6899
6900err:
6901 free_sched_group(tg);
6902 return ERR_PTR(-ENOMEM);
6903}
6904
6905void sched_online_group(struct task_group *tg, struct task_group *parent)
6906{
6907 unsigned long flags;
6908
8ed36996 6909 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6910 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
6911
6912 WARN_ON(!parent); /* root should already exist */
6913
6914 tg->parent = parent;
f473aa5e 6915 INIT_LIST_HEAD(&tg->children);
09f2724a 6916 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 6917 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6918}
6919
9b5b7751 6920/* rcu callback to free various structures associated with a task group */
6f505b16 6921static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 6922{
29f59db3 6923 /* now it should be safe to free those cfs_rqs */
6f505b16 6924 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
6925}
6926
9b5b7751 6927/* Destroy runqueue etc associated with a task group */
4cf86d77 6928void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
6929{
6930 /* wait for possible concurrent references to cfs_rqs complete */
6931 call_rcu(&tg->rcu, free_sched_group_rcu);
6932}
6933
6934void sched_offline_group(struct task_group *tg)
29f59db3 6935{
8ed36996 6936 unsigned long flags;
9b5b7751 6937 int i;
29f59db3 6938
3d4b47b4
PZ
6939 /* end participation in shares distribution */
6940 for_each_possible_cpu(i)
bccbe08a 6941 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
6942
6943 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 6944 list_del_rcu(&tg->list);
f473aa5e 6945 list_del_rcu(&tg->siblings);
8ed36996 6946 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
6947}
6948
9b5b7751 6949/* change task's runqueue when it moves between groups.
3a252015
IM
6950 * The caller of this function should have put the task in its new group
6951 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6952 * reflect its new group.
9b5b7751
SV
6953 */
6954void sched_move_task(struct task_struct *tsk)
29f59db3 6955{
8323f26c 6956 struct task_group *tg;
29f59db3
SV
6957 int on_rq, running;
6958 unsigned long flags;
6959 struct rq *rq;
6960
6961 rq = task_rq_lock(tsk, &flags);
6962
051a1d1a 6963 running = task_current(rq, tsk);
fd2f4419 6964 on_rq = tsk->on_rq;
29f59db3 6965
0e1f3483 6966 if (on_rq)
29f59db3 6967 dequeue_task(rq, tsk, 0);
0e1f3483
HS
6968 if (unlikely(running))
6969 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 6970
8af01f56 6971 tg = container_of(task_css_check(tsk, cpu_cgroup_subsys_id,
8323f26c
PZ
6972 lockdep_is_held(&tsk->sighand->siglock)),
6973 struct task_group, css);
6974 tg = autogroup_task_group(tsk, tg);
6975 tsk->sched_task_group = tg;
6976
810b3817 6977#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
6978 if (tsk->sched_class->task_move_group)
6979 tsk->sched_class->task_move_group(tsk, on_rq);
6980 else
810b3817 6981#endif
b2b5ce02 6982 set_task_rq(tsk, task_cpu(tsk));
810b3817 6983
0e1f3483
HS
6984 if (unlikely(running))
6985 tsk->sched_class->set_curr_task(rq);
6986 if (on_rq)
371fd7e7 6987 enqueue_task(rq, tsk, 0);
29f59db3 6988
0122ec5b 6989 task_rq_unlock(rq, tsk, &flags);
29f59db3 6990}
7c941438 6991#endif /* CONFIG_CGROUP_SCHED */
29f59db3 6992
a790de99 6993#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
6994static unsigned long to_ratio(u64 period, u64 runtime)
6995{
6996 if (runtime == RUNTIME_INF)
9a7e0b18 6997 return 1ULL << 20;
9f0c1e56 6998
9a7e0b18 6999 return div64_u64(runtime << 20, period);
9f0c1e56 7000}
a790de99
PT
7001#endif
7002
7003#ifdef CONFIG_RT_GROUP_SCHED
7004/*
7005 * Ensure that the real time constraints are schedulable.
7006 */
7007static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7008
9a7e0b18
PZ
7009/* Must be called with tasklist_lock held */
7010static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7011{
9a7e0b18 7012 struct task_struct *g, *p;
b40b2e8e 7013
9a7e0b18 7014 do_each_thread(g, p) {
029632fb 7015 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7016 return 1;
7017 } while_each_thread(g, p);
b40b2e8e 7018
9a7e0b18
PZ
7019 return 0;
7020}
b40b2e8e 7021
9a7e0b18
PZ
7022struct rt_schedulable_data {
7023 struct task_group *tg;
7024 u64 rt_period;
7025 u64 rt_runtime;
7026};
b40b2e8e 7027
a790de99 7028static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7029{
7030 struct rt_schedulable_data *d = data;
7031 struct task_group *child;
7032 unsigned long total, sum = 0;
7033 u64 period, runtime;
b40b2e8e 7034
9a7e0b18
PZ
7035 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7036 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7037
9a7e0b18
PZ
7038 if (tg == d->tg) {
7039 period = d->rt_period;
7040 runtime = d->rt_runtime;
b40b2e8e 7041 }
b40b2e8e 7042
4653f803
PZ
7043 /*
7044 * Cannot have more runtime than the period.
7045 */
7046 if (runtime > period && runtime != RUNTIME_INF)
7047 return -EINVAL;
6f505b16 7048
4653f803
PZ
7049 /*
7050 * Ensure we don't starve existing RT tasks.
7051 */
9a7e0b18
PZ
7052 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7053 return -EBUSY;
6f505b16 7054
9a7e0b18 7055 total = to_ratio(period, runtime);
6f505b16 7056
4653f803
PZ
7057 /*
7058 * Nobody can have more than the global setting allows.
7059 */
7060 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7061 return -EINVAL;
6f505b16 7062
4653f803
PZ
7063 /*
7064 * The sum of our children's runtime should not exceed our own.
7065 */
9a7e0b18
PZ
7066 list_for_each_entry_rcu(child, &tg->children, siblings) {
7067 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7068 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7069
9a7e0b18
PZ
7070 if (child == d->tg) {
7071 period = d->rt_period;
7072 runtime = d->rt_runtime;
7073 }
6f505b16 7074
9a7e0b18 7075 sum += to_ratio(period, runtime);
9f0c1e56 7076 }
6f505b16 7077
9a7e0b18
PZ
7078 if (sum > total)
7079 return -EINVAL;
7080
7081 return 0;
6f505b16
PZ
7082}
7083
9a7e0b18 7084static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7085{
8277434e
PT
7086 int ret;
7087
9a7e0b18
PZ
7088 struct rt_schedulable_data data = {
7089 .tg = tg,
7090 .rt_period = period,
7091 .rt_runtime = runtime,
7092 };
7093
8277434e
PT
7094 rcu_read_lock();
7095 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7096 rcu_read_unlock();
7097
7098 return ret;
521f1a24
DG
7099}
7100
ab84d31e 7101static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7102 u64 rt_period, u64 rt_runtime)
6f505b16 7103{
ac086bc2 7104 int i, err = 0;
9f0c1e56 7105
9f0c1e56 7106 mutex_lock(&rt_constraints_mutex);
521f1a24 7107 read_lock(&tasklist_lock);
9a7e0b18
PZ
7108 err = __rt_schedulable(tg, rt_period, rt_runtime);
7109 if (err)
9f0c1e56 7110 goto unlock;
ac086bc2 7111
0986b11b 7112 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7113 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7114 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7115
7116 for_each_possible_cpu(i) {
7117 struct rt_rq *rt_rq = tg->rt_rq[i];
7118
0986b11b 7119 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7120 rt_rq->rt_runtime = rt_runtime;
0986b11b 7121 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7122 }
0986b11b 7123 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7124unlock:
521f1a24 7125 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7126 mutex_unlock(&rt_constraints_mutex);
7127
7128 return err;
6f505b16
PZ
7129}
7130
25cc7da7 7131static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7132{
7133 u64 rt_runtime, rt_period;
7134
7135 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7136 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7137 if (rt_runtime_us < 0)
7138 rt_runtime = RUNTIME_INF;
7139
ab84d31e 7140 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7141}
7142
25cc7da7 7143static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7144{
7145 u64 rt_runtime_us;
7146
d0b27fa7 7147 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7148 return -1;
7149
d0b27fa7 7150 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7151 do_div(rt_runtime_us, NSEC_PER_USEC);
7152 return rt_runtime_us;
7153}
d0b27fa7 7154
25cc7da7 7155static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7156{
7157 u64 rt_runtime, rt_period;
7158
7159 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7160 rt_runtime = tg->rt_bandwidth.rt_runtime;
7161
619b0488
R
7162 if (rt_period == 0)
7163 return -EINVAL;
7164
ab84d31e 7165 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7166}
7167
25cc7da7 7168static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7169{
7170 u64 rt_period_us;
7171
7172 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7173 do_div(rt_period_us, NSEC_PER_USEC);
7174 return rt_period_us;
7175}
7176
7177static int sched_rt_global_constraints(void)
7178{
4653f803 7179 u64 runtime, period;
d0b27fa7
PZ
7180 int ret = 0;
7181
ec5d4989
HS
7182 if (sysctl_sched_rt_period <= 0)
7183 return -EINVAL;
7184
4653f803
PZ
7185 runtime = global_rt_runtime();
7186 period = global_rt_period();
7187
7188 /*
7189 * Sanity check on the sysctl variables.
7190 */
7191 if (runtime > period && runtime != RUNTIME_INF)
7192 return -EINVAL;
10b612f4 7193
d0b27fa7 7194 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7195 read_lock(&tasklist_lock);
4653f803 7196 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7197 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7198 mutex_unlock(&rt_constraints_mutex);
7199
7200 return ret;
7201}
54e99124 7202
25cc7da7 7203static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7204{
7205 /* Don't accept realtime tasks when there is no way for them to run */
7206 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7207 return 0;
7208
7209 return 1;
7210}
7211
6d6bc0ad 7212#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7213static int sched_rt_global_constraints(void)
7214{
ac086bc2
PZ
7215 unsigned long flags;
7216 int i;
7217
ec5d4989
HS
7218 if (sysctl_sched_rt_period <= 0)
7219 return -EINVAL;
7220
60aa605d
PZ
7221 /*
7222 * There's always some RT tasks in the root group
7223 * -- migration, kstopmachine etc..
7224 */
7225 if (sysctl_sched_rt_runtime == 0)
7226 return -EBUSY;
7227
0986b11b 7228 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7229 for_each_possible_cpu(i) {
7230 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7231
0986b11b 7232 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7233 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7234 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7235 }
0986b11b 7236 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7237
d0b27fa7
PZ
7238 return 0;
7239}
6d6bc0ad 7240#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7241
ce0dbbbb
CW
7242int sched_rr_handler(struct ctl_table *table, int write,
7243 void __user *buffer, size_t *lenp,
7244 loff_t *ppos)
7245{
7246 int ret;
7247 static DEFINE_MUTEX(mutex);
7248
7249 mutex_lock(&mutex);
7250 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7251 /* make sure that internally we keep jiffies */
7252 /* also, writing zero resets timeslice to default */
7253 if (!ret && write) {
7254 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7255 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7256 }
7257 mutex_unlock(&mutex);
7258 return ret;
7259}
7260
d0b27fa7 7261int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7262 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7263 loff_t *ppos)
7264{
7265 int ret;
7266 int old_period, old_runtime;
7267 static DEFINE_MUTEX(mutex);
7268
7269 mutex_lock(&mutex);
7270 old_period = sysctl_sched_rt_period;
7271 old_runtime = sysctl_sched_rt_runtime;
7272
8d65af78 7273 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7274
7275 if (!ret && write) {
7276 ret = sched_rt_global_constraints();
7277 if (ret) {
7278 sysctl_sched_rt_period = old_period;
7279 sysctl_sched_rt_runtime = old_runtime;
7280 } else {
7281 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7282 def_rt_bandwidth.rt_period =
7283 ns_to_ktime(global_rt_period());
7284 }
7285 }
7286 mutex_unlock(&mutex);
7287
7288 return ret;
7289}
68318b8e 7290
052f1dc7 7291#ifdef CONFIG_CGROUP_SCHED
68318b8e 7292
a7c6d554 7293static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7294{
a7c6d554 7295 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7296}
7297
eb95419b
TH
7298static struct cgroup_subsys_state *
7299cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7300{
eb95419b
TH
7301 struct task_group *parent = css_tg(parent_css);
7302 struct task_group *tg;
68318b8e 7303
eb95419b 7304 if (!parent) {
68318b8e 7305 /* This is early initialization for the top cgroup */
07e06b01 7306 return &root_task_group.css;
68318b8e
SV
7307 }
7308
ec7dc8ac 7309 tg = sched_create_group(parent);
68318b8e
SV
7310 if (IS_ERR(tg))
7311 return ERR_PTR(-ENOMEM);
7312
68318b8e
SV
7313 return &tg->css;
7314}
7315
eb95419b 7316static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7317{
eb95419b
TH
7318 struct task_group *tg = css_tg(css);
7319 struct task_group *parent = css_tg(css_parent(css));
ace783b9 7320
63876986
TH
7321 if (parent)
7322 sched_online_group(tg, parent);
ace783b9
LZ
7323 return 0;
7324}
7325
eb95419b 7326static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7327{
eb95419b 7328 struct task_group *tg = css_tg(css);
68318b8e
SV
7329
7330 sched_destroy_group(tg);
7331}
7332
eb95419b 7333static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7334{
eb95419b 7335 struct task_group *tg = css_tg(css);
ace783b9
LZ
7336
7337 sched_offline_group(tg);
7338}
7339
eb95419b 7340static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 7341 struct cgroup_taskset *tset)
68318b8e 7342{
bb9d97b6
TH
7343 struct task_struct *task;
7344
d99c8727 7345 cgroup_taskset_for_each(task, css, tset) {
b68aa230 7346#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 7347 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 7348 return -EINVAL;
b68aa230 7349#else
bb9d97b6
TH
7350 /* We don't support RT-tasks being in separate groups */
7351 if (task->sched_class != &fair_sched_class)
7352 return -EINVAL;
b68aa230 7353#endif
bb9d97b6 7354 }
be367d09
BB
7355 return 0;
7356}
68318b8e 7357
eb95419b 7358static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 7359 struct cgroup_taskset *tset)
68318b8e 7360{
bb9d97b6
TH
7361 struct task_struct *task;
7362
d99c8727 7363 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 7364 sched_move_task(task);
68318b8e
SV
7365}
7366
eb95419b
TH
7367static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
7368 struct cgroup_subsys_state *old_css,
7369 struct task_struct *task)
068c5cc5
PZ
7370{
7371 /*
7372 * cgroup_exit() is called in the copy_process() failure path.
7373 * Ignore this case since the task hasn't ran yet, this avoids
7374 * trying to poke a half freed task state from generic code.
7375 */
7376 if (!(task->flags & PF_EXITING))
7377 return;
7378
7379 sched_move_task(task);
7380}
7381
052f1dc7 7382#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
7383static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7384 struct cftype *cftype, u64 shareval)
68318b8e 7385{
182446d0 7386 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
7387}
7388
182446d0
TH
7389static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7390 struct cftype *cft)
68318b8e 7391{
182446d0 7392 struct task_group *tg = css_tg(css);
68318b8e 7393
c8b28116 7394 return (u64) scale_load_down(tg->shares);
68318b8e 7395}
ab84d31e
PT
7396
7397#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7398static DEFINE_MUTEX(cfs_constraints_mutex);
7399
ab84d31e
PT
7400const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7401const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7402
a790de99
PT
7403static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7404
ab84d31e
PT
7405static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7406{
56f570e5 7407 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7408 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7409
7410 if (tg == &root_task_group)
7411 return -EINVAL;
7412
7413 /*
7414 * Ensure we have at some amount of bandwidth every period. This is
7415 * to prevent reaching a state of large arrears when throttled via
7416 * entity_tick() resulting in prolonged exit starvation.
7417 */
7418 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7419 return -EINVAL;
7420
7421 /*
7422 * Likewise, bound things on the otherside by preventing insane quota
7423 * periods. This also allows us to normalize in computing quota
7424 * feasibility.
7425 */
7426 if (period > max_cfs_quota_period)
7427 return -EINVAL;
7428
a790de99
PT
7429 mutex_lock(&cfs_constraints_mutex);
7430 ret = __cfs_schedulable(tg, period, quota);
7431 if (ret)
7432 goto out_unlock;
7433
58088ad0 7434 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7435 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7436 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7437 raw_spin_lock_irq(&cfs_b->lock);
7438 cfs_b->period = ns_to_ktime(period);
7439 cfs_b->quota = quota;
58088ad0 7440
a9cf55b2 7441 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7442 /* restart the period timer (if active) to handle new period expiry */
7443 if (runtime_enabled && cfs_b->timer_active) {
7444 /* force a reprogram */
7445 cfs_b->timer_active = 0;
7446 __start_cfs_bandwidth(cfs_b);
7447 }
ab84d31e
PT
7448 raw_spin_unlock_irq(&cfs_b->lock);
7449
7450 for_each_possible_cpu(i) {
7451 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7452 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7453
7454 raw_spin_lock_irq(&rq->lock);
58088ad0 7455 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7456 cfs_rq->runtime_remaining = 0;
671fd9da 7457
029632fb 7458 if (cfs_rq->throttled)
671fd9da 7459 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7460 raw_spin_unlock_irq(&rq->lock);
7461 }
a790de99
PT
7462out_unlock:
7463 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7464
a790de99 7465 return ret;
ab84d31e
PT
7466}
7467
7468int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7469{
7470 u64 quota, period;
7471
029632fb 7472 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7473 if (cfs_quota_us < 0)
7474 quota = RUNTIME_INF;
7475 else
7476 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7477
7478 return tg_set_cfs_bandwidth(tg, period, quota);
7479}
7480
7481long tg_get_cfs_quota(struct task_group *tg)
7482{
7483 u64 quota_us;
7484
029632fb 7485 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7486 return -1;
7487
029632fb 7488 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7489 do_div(quota_us, NSEC_PER_USEC);
7490
7491 return quota_us;
7492}
7493
7494int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7495{
7496 u64 quota, period;
7497
7498 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7499 quota = tg->cfs_bandwidth.quota;
ab84d31e 7500
ab84d31e
PT
7501 return tg_set_cfs_bandwidth(tg, period, quota);
7502}
7503
7504long tg_get_cfs_period(struct task_group *tg)
7505{
7506 u64 cfs_period_us;
7507
029632fb 7508 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7509 do_div(cfs_period_us, NSEC_PER_USEC);
7510
7511 return cfs_period_us;
7512}
7513
182446d0
TH
7514static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7515 struct cftype *cft)
ab84d31e 7516{
182446d0 7517 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
7518}
7519
182446d0
TH
7520static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7521 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 7522{
182446d0 7523 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
7524}
7525
182446d0
TH
7526static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7527 struct cftype *cft)
ab84d31e 7528{
182446d0 7529 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
7530}
7531
182446d0
TH
7532static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7533 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 7534{
182446d0 7535 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
7536}
7537
a790de99
PT
7538struct cfs_schedulable_data {
7539 struct task_group *tg;
7540 u64 period, quota;
7541};
7542
7543/*
7544 * normalize group quota/period to be quota/max_period
7545 * note: units are usecs
7546 */
7547static u64 normalize_cfs_quota(struct task_group *tg,
7548 struct cfs_schedulable_data *d)
7549{
7550 u64 quota, period;
7551
7552 if (tg == d->tg) {
7553 period = d->period;
7554 quota = d->quota;
7555 } else {
7556 period = tg_get_cfs_period(tg);
7557 quota = tg_get_cfs_quota(tg);
7558 }
7559
7560 /* note: these should typically be equivalent */
7561 if (quota == RUNTIME_INF || quota == -1)
7562 return RUNTIME_INF;
7563
7564 return to_ratio(period, quota);
7565}
7566
7567static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7568{
7569 struct cfs_schedulable_data *d = data;
029632fb 7570 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7571 s64 quota = 0, parent_quota = -1;
7572
7573 if (!tg->parent) {
7574 quota = RUNTIME_INF;
7575 } else {
029632fb 7576 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7577
7578 quota = normalize_cfs_quota(tg, d);
7579 parent_quota = parent_b->hierarchal_quota;
7580
7581 /*
7582 * ensure max(child_quota) <= parent_quota, inherit when no
7583 * limit is set
7584 */
7585 if (quota == RUNTIME_INF)
7586 quota = parent_quota;
7587 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7588 return -EINVAL;
7589 }
7590 cfs_b->hierarchal_quota = quota;
7591
7592 return 0;
7593}
7594
7595static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7596{
8277434e 7597 int ret;
a790de99
PT
7598 struct cfs_schedulable_data data = {
7599 .tg = tg,
7600 .period = period,
7601 .quota = quota,
7602 };
7603
7604 if (quota != RUNTIME_INF) {
7605 do_div(data.period, NSEC_PER_USEC);
7606 do_div(data.quota, NSEC_PER_USEC);
7607 }
7608
8277434e
PT
7609 rcu_read_lock();
7610 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7611 rcu_read_unlock();
7612
7613 return ret;
a790de99 7614}
e8da1b18 7615
182446d0 7616static int cpu_stats_show(struct cgroup_subsys_state *css, struct cftype *cft,
e8da1b18
NR
7617 struct cgroup_map_cb *cb)
7618{
182446d0 7619 struct task_group *tg = css_tg(css);
029632fb 7620 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
7621
7622 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7623 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7624 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7625
7626 return 0;
7627}
ab84d31e 7628#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 7629#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 7630
052f1dc7 7631#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
7632static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7633 struct cftype *cft, s64 val)
6f505b16 7634{
182446d0 7635 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
7636}
7637
182446d0
TH
7638static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7639 struct cftype *cft)
6f505b16 7640{
182446d0 7641 return sched_group_rt_runtime(css_tg(css));
6f505b16 7642}
d0b27fa7 7643
182446d0
TH
7644static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7645 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 7646{
182446d0 7647 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
7648}
7649
182446d0
TH
7650static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7651 struct cftype *cft)
d0b27fa7 7652{
182446d0 7653 return sched_group_rt_period(css_tg(css));
d0b27fa7 7654}
6d6bc0ad 7655#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 7656
fe5c7cc2 7657static struct cftype cpu_files[] = {
052f1dc7 7658#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
7659 {
7660 .name = "shares",
f4c753b7
PM
7661 .read_u64 = cpu_shares_read_u64,
7662 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 7663 },
052f1dc7 7664#endif
ab84d31e
PT
7665#ifdef CONFIG_CFS_BANDWIDTH
7666 {
7667 .name = "cfs_quota_us",
7668 .read_s64 = cpu_cfs_quota_read_s64,
7669 .write_s64 = cpu_cfs_quota_write_s64,
7670 },
7671 {
7672 .name = "cfs_period_us",
7673 .read_u64 = cpu_cfs_period_read_u64,
7674 .write_u64 = cpu_cfs_period_write_u64,
7675 },
e8da1b18
NR
7676 {
7677 .name = "stat",
7678 .read_map = cpu_stats_show,
7679 },
ab84d31e 7680#endif
052f1dc7 7681#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7682 {
9f0c1e56 7683 .name = "rt_runtime_us",
06ecb27c
PM
7684 .read_s64 = cpu_rt_runtime_read,
7685 .write_s64 = cpu_rt_runtime_write,
6f505b16 7686 },
d0b27fa7
PZ
7687 {
7688 .name = "rt_period_us",
f4c753b7
PM
7689 .read_u64 = cpu_rt_period_read_uint,
7690 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 7691 },
052f1dc7 7692#endif
4baf6e33 7693 { } /* terminate */
68318b8e
SV
7694};
7695
68318b8e 7696struct cgroup_subsys cpu_cgroup_subsys = {
38605cae 7697 .name = "cpu",
92fb9748
TH
7698 .css_alloc = cpu_cgroup_css_alloc,
7699 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
7700 .css_online = cpu_cgroup_css_online,
7701 .css_offline = cpu_cgroup_css_offline,
bb9d97b6
TH
7702 .can_attach = cpu_cgroup_can_attach,
7703 .attach = cpu_cgroup_attach,
068c5cc5 7704 .exit = cpu_cgroup_exit,
38605cae 7705 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 7706 .base_cftypes = cpu_files,
68318b8e
SV
7707 .early_init = 1,
7708};
7709
052f1dc7 7710#endif /* CONFIG_CGROUP_SCHED */
d842de87 7711
b637a328
PM
7712void dump_cpu_task(int cpu)
7713{
7714 pr_info("Task dump for CPU %d:\n", cpu);
7715 sched_show_task(cpu_curr(cpu));
7716}
This page took 2.327625 seconds and 5 git commands to generate.